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The matrix is singular.

Usage Notes

Solving Systems of Linear Equations

A square system of linear equations has the form Ax = b, where A is a user-specified
n x n matrix, b is a given right-hand side n vector, and x is the solution n vector. Each
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entry of A and b must be specified by the user. The entire vector x is returned as output.

When A is invertible, a unique solution to Ax = b exists. The most commonly used direct
method for solving Ax = b factors the matrix A into a product of triangular matrices and
solves the resulting triangular systems of linear equations. Functions that use direct
methods for solving systems of linear equations all compute the solution to Ax = b.

Matrix Factorizations

In some applications, it is desirable to just factor the n x n matrix A into a product of two
triangular matrices. This can be done by a constructor of a class for solving the system of
linear equations Ax = b. The constructor of class LU computes the LU factorization of A.

Besides the basic matrix factorizations, such as LU and LLT , additional matrix
factorizations also are provided. For a real matrix A, its QR factorization can be
computed using the class QR. The class for computing the singular value decomposition
(SVD) of a matrix is discussed in a later section.

Matrix Inversions

The inverse of an n x n nonsingular matrix can be obtained by using the method inverse

in the classes for solving systems of linear equations. The inverse of a matrix need not be
computed if the purpose is to solve one or more systems of linear equations. Even with
multiple right-hand sides, solving a system of linear equations by computing the inverse
and performing matrix multiplication is usually more expensive than the method
discussed in the next section.

Multiple Right-Hand Sides

Consider the case where a system of linear equations has more than one right-hand side
vector. It is most economical to find the solution vectors by first factoring the coefficient
matrix A into products of triangular matrices. Then, the resulting triangular systems of
linear equations are solved for each right-hand side. When A is a real general matrix,
access to the LU factorization of A is computed by a constructor of LU. The solution xk

for the k-th right-hand side vector, bk is then found by two triangular solves, Lyk = bk and
Uxk = yk. The method solve in class LU is used to solve each right-hand side. These
arguments are found in other functions for solving systems of linear equations.
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Least-Squares Solutions and QR Factorizations

Least-squares solutions are usually computed for an over-determined system of linear
equations Am x nx = b, where m > n. A least-squares solution x minimizes the Euclidean
length of the residual vector r = Ax− b. The class QR computes a unique least-squares
solution for x when A has full column rank. If A is rank-deficient, then the base solution
for some variables is computed. These variables consist of the resulting columns after the
interchanges. The QR decomposition, with column interchanges or pivoting, is computed
such that AP = QR. Here, Q is orthogonal, R is upper-trapezoidal with its diagonal
elements nonincreasing in magnitude, and P is the permutation matrix determined by the
pivoting. The base solution xB is obtained by solving R(P T )x = QT b for the base
variables. For details, see class QR. The QR factorization of a matrix A such that AP =
QR with P specified by the user can be computed using keywords.

Singular Value Decompositions and Generalized Inverses

The SVD of an m x n matrix A is a matrix decomposition A = USV T . With
q = min(m,n), the factors Um x q and Vn x q are orthogonal matrices, and Sq x q is a
nonnegative diagonal matrix with nonincreasing diagonal terms. The class SVD computes
the singular values of A by default. Part or all of the U and V matrices, an estimate of the
rank of A, and the generalized inverse of A, also can be obtained.

Ill-Conditioning and Singularity

An m x n matrix A, is mathematically singular if there is an x 6= 0 such that Ax = 0. In
this case, the system of linear equations Ax = b does not have a unique solution. On the
other hand, a matrix A is numerically singular if it is “close” to a mathematically singular
matrix. Such problems are called ill-conditioned. If the numerical results with an
ill-conditioned problem are unacceptable, users can either use more accuracy if it is
available (for type float accuracy switch to double) or they can obtain an approximate
solution to the system. One form of approximation can be obtained using the SVD of A:
If q = min(m,n) and

A =
∑

q
i=1si,iuiv

T
i

then the approximate solution is given by the following:

xk =
∑

k
i=1ti,i

(
bTui

)
vi

The scalars ti,i are defined below.
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ti,i =
{
s−1
i,i if si,i ≥ tol > 0
0 otherwise

The user specifies the value of tol. This value determines how “close” the given matrix is
to a singular matrix. Further restrictions may apply to the number of terms in the sum,
k ≤ q. For example, there may be a value of k ≤ q such that the scalars

∣∣bTui

∣∣ , i > k are
smaller than the average uncertainty in the right-hand side b. This means that these
scalars can be replaced by zero; and hence, b is replaced by a vector that is within the
stated uncertainty of the problem.

class Matrix

Matrix manipulation functions.

Declaration

public class com.imsl.math.Matrix
extends java.lang.Object

Methods

• add
public static double[][] add( double[][] a, double[][] b )

– Description
Add two rectangular arrays, a + b.

– Parameters
∗ a – a double rectangular array
∗ b – a double rectangular array

– Returns – a double rectangular array representing the matrix sum of the two
arguments

– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

(1) the lengths of the rows of either of the input matrices are not uniform,
or (2) the matrices are not the same size.

• checkMatrix
public static void checkMatrix( double[][] a )
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– Description
Check that all of the rows in the matrix have the same length.

– Parameters
∗ a – a double matrix

– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

the lengths of the rows of the input matrix are not uniform.

• CheckMatrix
public static void CheckMatrix( double[][] a )

Deprecated

Check that all of the rows in the matrix have the same length.

– Parameters
∗ a – a double matrix

– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

the lengths of the rows of the input matrix are not uniform.

• checkSquareMatrix
public static void checkSquareMatrix( double[][] a )

– Description
Check that the matrix is square.

– Parameters
∗ a – a double matrix

– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

the matrix is not square.

• CheckSquareMatrix
public static void CheckSquareMatrix( double[][] a )

Deprecated

Check that the matrix is square.

– Parameters
∗ a – a double matrix

– Throws
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∗ java.lang.IllegalArgumentException – This exception is thrown when
the matrix is not square.

• frobeniusNorm
public static double frobeniusNorm( double[][] a )

– Description
Return the Frobenius norm of a matrix.

– Parameters
∗ a – a double rectangular array

– Returns – a double scalar value equal to the Frobenius norm of the matrix.

• infinityNorm
public static double infinityNorm( double[][] a )

– Description
Return the infinity norm of a matrix.

– Parameters
∗ a – a double rectangular array

– Returns – a double scalar value equal to the maximum of the row sums of the
absolute values of the array elements

• multiply
public static double[] multiply( double[][] a, double[] x )

– Description
Multiply the rectangular array a and the column array x.

– Parameters
∗ a – a double rectangular matrix
∗ x – a double column array

– Returns – a double vector representing the product of the arguments, a*x
– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

(1) the lengths of the rows of the input matrix are not uniform, or (2) the
number of columns in the input matrix is not equal to the number of
elements in the input column vector.

• multiply
public static double[][] multiply( double[][] a, double[][] b )

– Description
Multiply two rectangular arrays, a * b.

– Parameters
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∗ a – a double rectangular array
∗ b – a double rectangular array

– Returns – the double matrix product of a times b
– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

(1) the lengths of the rows of either of the input matrices are not uniform,
or (2) the number of columns in a is not equal to the number of rows in b.

• multiply
public static double[] multiply( double[] x, double[][] a )

– Description
Return the product of the row array x and the rectangular array a.

– Parameters
∗ x – a double row array
∗ a – a double rectangular matrix

– Returns – a double matrix representing the product of the arguments, x*a.
– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

(1) the lengths of the rows of the input matrix are not uniform, or (2) the
number of elements in the input vector is not equal to the number of rows
of the matrix.

• oneNorm
public static double oneNorm( double[][] a )

– Description
Return the matrix one norm.

– Parameters
∗ a – a double rectangular array

– Returns – a double value equal to the maximum of the column sums of the
absolute values of the array elements

• subtract
public static double[][] subtract( double[][] a, double[][] b )

– Description
Subtract two rectangular arrays, a - b.

– Parameters
∗ a – a double rectangular array
∗ b – a double rectangular array

– Returns – a double rectangular array representing the matrix difference of the
two arguments
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– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

(1) the lengths of the rows of either of the input matrices are not uniform,
or (2) the matrices are not the same size.

• transpose
public static double[][] transpose( double[][] a )

– Description
Return the transpose of a matrix.

– Parameters
∗ a – a double matrix

– Returns – a double matrix which is the transpose of the argument
– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

the lengths of the rows of the input matrix are not uniform.

Example: Matrix and PrintMatrix

The 1 norm of a matrix is found using a method from the Matrix class. The matrix is
printed using the PrintMatrix class.
import com.imsl.math.*;

public class MatrixEx1 {
public static void main(String args[]) {

double nrm1;

double a[][] = {
{0., 1., 2., 3.},
{4., 5., 6., 7.},
{8., 9., 8., 1.},
{6., 3., 4., 3.}

};

// Get the 1 norm of matrix a

nrm1 = Matrix.oneNorm(a);

// Construct a PrintMatrix object with a title

PrintMatrix p = new PrintMatrix("A Simple Matrix");

// Print the matrix and its 1 norm

p.print(a);

System.out.println("The 1 norm of the matrix is "+nrm1);
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}
}

Output

A Simple Matrix

0 1 2 3

0 0 1 2 3

1 4 5 6 7

2 8 9 8 1

3 6 3 4 3

The 1 norm of the matrix is 20.0

class ComplexMatrix

Complex matrix manipulation functions.

Declaration

public class com.imsl.math.ComplexMatrix
extends java.lang.Object

Methods

• add
public static Complex[][] add( Complex[][] a, Complex[][] b )

– Description
Add two rectangular Complex arrays, a + b.

– Parameters
∗ a – a Complex rectangular array
∗ b – a Complex rectangular array

– Returns – the Complex matrix sum of the two arguments
– Throws
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∗ java.lang.IllegalArgumentException – This exception is thrown when
(1) the lengths of the rows of either of the input matrices are not uniform,
or (2) the matrices are not the same size.

• checkMatrix
public static void checkMatrix( Complex[][] a )

– Description
Check that all of the rows in the Complex matrix have the same length.

– Parameters
∗ a – a Complex matrix

– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

the lengths of the rows of the input matrix are not uniform.

• CheckMatrix
public static void CheckMatrix( Complex[][] a )

Deprecated

Check that all of the rows in the Complex matrix have the same length.

– Parameters
∗ a – a Complex matrix

– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

the lengths of the rows of the input matrix are not uniform.

• checkSquareMatrix
public static void checkSquareMatrix( Complex[][] a )

– Description
Check that the Complex matrix is square.

– Parameters
∗ a – a Complex matrix

– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

the matrix is not square..

• CheckSquareMatrix
public static void CheckSquareMatrix( Complex[][] a )
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Deprecated

Check that the Complex matrix is square.

– Parameters
∗ a – a Complex matrix

– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

the matrix is not square..

• frobeniusNorm
public static double frobeniusNorm( Complex[][] a )

– Description
Return the Frobenius norm of a Complex matrix.

– Parameters
∗ a – a Complex rectangular matrix

– Returns – a double value equal to the Frobenius norm of the matrix
– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

the lengths of the rows of the input matrix is not uniform.

• infinityNorm
public static double infinityNorm( Complex[][] a )

– Description
Return the infinity norm of a Complex matrix.

– Parameters
∗ a – a Complex rectangular matrix

– Returns – a double value equal to the maximum of the row sums of the
absolute values of the array elements.

– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

the lengths of the rows of the input matrix is not uniform.

• multiply
public static Complex[] multiply( Complex[][] a, Complex[] x )

– Description
Multiply the rectangular array a and the column vector x, both Complex.

– Parameters
∗ a – a Complex rectangular matrix
∗ x – a Complex vector
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– Returns – a Complex vector containing the product of the arguments, A*x
– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

(1) the lengths of the rows of the input matrix are not uniform, and (2) the
number of columns in the input matrix is not equal to the number of
elements in the input vector.

• multiply
public static Complex[][] multiply( Complex[][] a, Complex[][] b )

– Description
Multiply two Complex rectangular arrays, a * b.

– Parameters
∗ a – a Complex rectangular array
∗ b – a Complex rectangular array

– Returns – the Complex matrix product of a times b
– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

(1) the lengths of the rows of either of the input matrices are not uniform,
or (2) the number of columns in a is not equal to the number of rows in b.

• multiply
public static Complex[] multiply( Complex[] x, Complex[][] a )

– Description
Return the product of the row vector x and the rectangular array a, both
Complex.

– Parameters
∗ x – a Complex row vector
∗ a – a Complex rectangular matrix

– Returns – a Complex vector containing the product of the arguments, x*A.
– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

(1) the lengths of the rows of the input matrix are not uniform, or (2) the
number of elements in the input vector is not equal to the number of rows
of the matrix.

• oneNorm
public static double oneNorm( Complex[][] a )

– Description
Return the Complex matrix one norm.

– Parameters

12 • ComplexMatrix JMSL



∗ a – a Complex rectangular array
– Returns – a double value equal to the maximum of the column sums of the

absolute values of the array elements
– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

the lengths of the rows of the input matrix is not uniform.

• subtract
public static Complex[][] subtract( Complex[][] a, Complex[][] b )

– Description
Subtract two Complex rectangular arrays, a - b.

– Parameters
∗ a – a Complex rectangular array
∗ b – a Complex rectangular array

– Returns – the Complex matrix difference of the two arguments.
– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

(1) the lengths of the rows of either of the input matrices are not uniform,
or (2) the matrices are not the same size.

• transpose
public static Complex[][] transpose( Complex[][] a )

– Description
Return the transpose of a Complex matrix.

– Parameters
∗ a – a Complex matrix

– Returns – the Complex matrix transpose of the argument
– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

the lengths of the rows of the input matrix are not uniform.

Example: Print a Complex Matrix

A Complex matrix is initialized and printed.
import com.imsl.math.*;

public class ComplexMatrixEx1 {
public static void main(String args[]) {

Complex a[][] = {
{new Complex(1,3), new Complex(3,5), new Complex(7,9)},
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{new Complex(8,7), new Complex(9,5), new Complex(1,9)},
{new Complex(2,9), new Complex(6,9), new Complex(7,3)},
{new Complex(5,4), new Complex(8,4), new Complex(5,9)}

};

// Construct a PrintMatrix object with a title

PrintMatrix p = new PrintMatrix("A Complex Matrix");

// Print the matrix

p.print(a);

}
}

Output

A Complex Matrix

0 1 2

0 1+3i 3+5i 7+9i

1 8+7i 9+5i 1+9i

2 2+9i 6+9i 7+3i

3 5+4i 8+4i 5+9i

class LU

LU factorization of a matrix of type double.

LU performs an LU factorization of a real general coefficient matrix. The condition

method estimates the condition number of the matrix. The LU factorization is done using
scaled partial pivoting. Scaled partial pivoting differs from partial pivoting in that the
pivoting strategy is the same as if each row were scaled to have the same infinity norm.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A−1||1. Since it is
expensive to compute ||A−1||1, the condition number is only estimated. The estimation
algorithm is the same as used by LINPACK and is described in a paper by Cline et al.
(1979).

An estimated condition number greater than 1/ε (where ε is machine precision) indicates
that very small changes in A can cause very large changes in the solution x. Iterative
refinement can sometimes find the solution to such a system.
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LU fails if U, the upper triangular part of the factorization, has a zero diagonal element.
This can occur only if A either is singular or is very close to a singular matrix.

Use the solve method to solve systems of equations. The determinant method can be
called to compute the determinant of the coefficient matrix.

LU is based on the LINPACK routine SGECO; see Dongarra et al. (1979). SGECO uses
unscaled partial pivoting.

Declaration

public class com.imsl.math.LU
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Fields

• protected double[][] factor

– LU factorization of A with partial pivoting

• protected int[] ipvt

– Pivot sequence for the factorization

Constructor

• LU
public LU( double[][] a ) throws
com.imsl.math.SingularMatrixException

– Description
Creates the LU factorization of a square matrix of type double.

– Parameters
∗ a – the double square matrix to be factored

– Throws
∗ java.lang.IllegalArgumentException – is thrown when the row lengths

of input matrix are not equal (for example, the matrix edges are “jagged”.)
∗ com.imsl.math.SingularMatrixException – is thrown when the input

matrix is singular.

Linear Systems LU • 15



Methods

• condition
public double condition( double[][] a )

– Description
Return an estimate of the reciprocal of the L1 condition number of a matrix.

– Parameters
∗ a – the double square matrix for which the reciprocal of the L1 condition

number is desired
– Returns – a double value representing an estimate of the reciprocal of the L1

condition number of the matrix

• determinant
public double determinant( )

– Description
Return the determinant of the matrix used to construct this instance.

– Returns – a double scalar containing the determinant of the matrix used to
construct this instance

• inverse
public double[][] inverse( )

– Description
Returns the inverse of the matrix used to construct this instance.

– Returns – a double matrix representing the inverse of the matrix used to
construct this instance

• solve
public double[] solve( double[] b )

– Description
Return the solution x of the linear system Ax = b using the LU factorization of
A.

– Parameters
∗ b – a double array containing the right-hand side of the linear system

– Returns – a double array containing the solution to the linear system of
equations

• solve
public static double[] solve( double[][] a, double[] b ) throws
com.imsl.math.SingularMatrixException
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– Description
Solve ax=b for x using the LU factorization of a.

– Parameters
∗ a – a double square matrix
∗ b – a double column vector

– Returns – a double column vector containing the solution to the linear system
of equations

– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

(1) the lengths of the rows of the input matrix are not uniform, and (2) the
number of rows in the input matrix is not equal to the number of elements
in x.
∗ com.imsl.math.SingularMatrixException – is thrown when the matrix

is singular.

• solveTranspose
public double[] solveTranspose( double[] b )

– Description
Return the solution x of the linear system AT = b.

– Parameters
∗ b – double array containing the right-hand side of the linear system

– Returns – double array containing the solution to the linear system of
equations

Example: LU Factorization of a Matrix

The LU Factorization of a Matrix is performed. A linear system is then solved using the
factorization. The inverse, determinant, and condition number of the input matrix are
also computed.
import com.imsl.math.*;

public class LUEx1 {
public static void main(String args[]) throws SingularMatrixException {

double a[][] = {
{1, 3, 3},
{1, 3, 4},
{1, 4, 3}

};
double b[] = {12, 13, 14};

// Compute the LU factorization of A
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LU lu = new LU(a);

// Solve Ax = b

double x[] = lu.solve(b);

new PrintMatrix("x").print(x);

// Find the inverse of A.

double ainv[][] = lu.inverse();

new PrintMatrix("ainv").print(ainv);

// Find the condition number of A.

double condition = lu.condition(a);

System.out.println("condition number = "+condition);

System.out.println();

// Find the determinant of A.

double determinant = lu.determinant();

System.out.println("determinant = "+determinant);

}
}

Output

x

0

0 3

1 2

2 1

ainv

0 1 2

0 7 -3 -3

1 -1 0 1

2 -1 1 0

condition number = 0.015120274914089344

determinant = -0.9999999999999998
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class ComplexLU

LU factorization of a matrix of type Complex.

ComplexLU performs an LU factorization of a complex general coefficient matrix.
ComplexLU‘s method condition estimates the condition number of the matrix. The LU
factorization is done using scaled partial pivoting. Scaled partial pivoting differs from
partial pivoting in that the pivoting strategy is the same as if each row were scaled to
have the same infinity norm.

The L1 condition number of the matrix A is defined to be κ (A) = ‖A‖1
∥∥A−1

∥∥
1
. Since it

is expensive to compute
∥∥A−1

∥∥
1
, the condition number is only estimated. The estimation

algorithm is the same as used by LINPACK and is described by Cline et al. (1979).

An estimated condition number greater than 1/ε (where ε is machine precision) indicates
that very small changes in A can cause very large changes in the solution x. Iterative
refinement can sometimes find the solution to such a system.

ComplexLU fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This can occur only if A either is singular or is very close to a singular matrix.

The solve method can be used to solve systems of equations. The method determinant

can be called to compute the determinant of the coefficient matrix.

ComplexLU is based on the LINPACK routine CGECO; see Dongarra et al. (1979). CGECO

uses unscaled partial pivoting.

Declaration

public class com.imsl.math.ComplexLU
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Fields

• protected Complex[][] factor

– LU factorization of A with partial pivoting

• protected int[] ipvt

– Pivot sequence for the factorization
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Constructor

• ComplexLU
public ComplexLU( Complex[][] a ) throws
com.imsl.math.SingularMatrixException

– Description
Creates the LU factorization of a square matrix of type Complex.

– Parameters
∗ a – Complex square matrix to be factored

– Throws
∗ java.lang.IllegalArgumentException – is thrown when the row lengths

of input matrix are not equal (for example, the matrix edges are “jagged”.)
∗ com.imsl.math.SingularMatrixException – is thrown when the input

matrix is singular.

Methods

• condition
public double condition( Complex[][] a )

– Description
Return an estimate of the reciprocal of the L1 condition number.

– Parameters
∗ a – a Complex matrix

– Returns – a double scalar value representing the estimate of the reciprocal of
the L1 condition number of the matrix a

• determinant
public Complex determinant( )

– Description
Return the determinant of the matrix used to construct this instance.

– Returns – a Complex scalar containing the determinant of the matrix used to
construct this instance

• inverse
public Complex[][] inverse( )
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– Description
Compute the inverse of a matrix of type Complex.

– Returns – a Complex matrix containing the inverse of the matrix used to
construct this object.

• solve
public Complex[] solve( Complex[] b )

– Description
Return the solution x of the linear system Ax = b using the LU factorization of
A.

– Parameters
∗ b – Complex array containing the right-hand side of the linear system

– Returns – Complex array containing the solution to the linear system of
equations

• solve
public static Complex[] solve( Complex[][] a, Complex[] b ) throws
com.imsl.math.SingularMatrixException

– Description
Solve ax=b for x using the LU factorization of a.

– Parameters
∗ a – a Complex square matrix
∗ b – a Complex column vector

– Returns – a Complex column vector containing the solution to the linear
system of equations.

– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown when

(1) the lengths of the rows of the input matrix are not uniform, and (2) the
number of rows in the input matrix is not equal to the number of elements
in x.
∗ com.imsl.math.SingularMatrixException – is thrown when the matrix

is singular.

• solveTranspose
public Complex[] solveTranspose( Complex[] b )

– Description
Return the solution x of the linear system ATx = b.

– Parameters
∗ b – Complex array containing the right-hand side of the linear system

– Returns – Complex array containing the solution to the linear system of
equations
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Example: LU Decomposition of a Complex Matrix

The Complex class is used to convert a real matrix to a Complex matrix. An LU
decomposition of the matrix is performed and the determinant and condition number of
the matrix are obtained.
import com.imsl.math.*;

public class ComplexLUEx1 {
public static void main(String args[]) throws SingularMatrixException {

double ar[][] = {
{1, 3, 3},
{1, 3, 4},
{1, 4, 3}

};
double br[] = {12, 13, 14};

Complex a[][] = new Complex[3][3];

Complex b[] = new Complex[3];

for (int i = 0; i < 3; i++){
b[i] = new Complex(br[i]);

for (int j = 0; j < 3; j++) {
a[i][j] = new Complex(ar[i][j]);

}
}

// Compute the LU factorization of A

ComplexLU clu = new ComplexLU(a);

// Solve Ax = b

Complex x[] = clu.solve(b);

System.out.println("The solution is:");

System.out.println(" ");

new PrintMatrix("x").print(x);

// Find the condition number of A.

double condition = clu.condition(a);

System.out.println("The condition number = "+condition);

System.out.println();

// Find the determinant of A.

Complex determinant = clu.determinant();
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System.out.println("The determinant = "+determinant);

}
}

Output

The solution is:

x

0

0 3

1 2

2 1

The condition number = 0.014886731391585757

The determinant = -0.9999999999999998

class Cholesky

Cholesky factorization of a matrix of type double.

Class Cholesky is based on the LINPACK routine SCHDC; see Dongarra et al. (1979).

Before the decomposition is computed, initial elements are moved to the leading part of A
and final elements to the trailing part of A. During the decomposition only rows and
columns corresponding to the free elements are moved. The result of the decomposition is
an upper triangular matrix R and a permutation matrix P that satisfy P TAP = RTR,
where P is represented by ipvt.

The method update is based on the LINPACK routine SCHUD; see Dongarra et al. (1979).

The Cholesky factorization of a matrix is A = RTR, where R is an upper triangular
matrix. Given this factorization, downdate computes the factorization

A− xxT = R̃T R̃

downdate determines an orthogonal matrix U as the product GN . . . G1 of Givens
rotations, such that

U

[
R
0

]
=
[
R̃
xT

]
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By multiplying this equation by its transpose and noting that UTU = I, the desired result

RTR− xxT = R̃T R̃

is obtained.

Let a be the solution of the linear system RTa = x and let

α =
√

1− ‖a‖22

The Givens rotations, Gi, are chosen such that

G1 · · ·GN

[
a
α

]
=
[

0
1

]

The Gi, are (N + 1) * (N + 1) matrices of the form

Gi =


Ii−1 0 0 0
0 ci 0 −si

0 0 IN−i 0
0 si 0 ci


where Ik is the identity matrix of order k; and ci = cos θi, si = sin θi for some θi.

The Givens rotations are then used to form

R̃, G1 · · · GN

[
R
0

]
=
[
R̃
x̃T

]

The matrix
R̃

is upper triangular and
x̃ = x

because

x =
(
RT 0

) [ a
α

]
=
(
RT 0

)
UTU

[
a
α

]
=
(
R̃T x̃

)[ 0
1

]
= x̃

.

Declaration

public class com.imsl.math.Cholesky
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable
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Inner Class

class Cholesky.NotSPDException

The matrix is not symmetric, positive definite.

Declaration

public static class com.imsl.math.Cholesky.NotSPDException
extends com.imsl.IMSLException (page 1240)

Constructor

• Cholesky.NotSPDException
public Cholesky.NotSPDException( )

Constructor

• Cholesky
public Cholesky( double[][] a ) throws
com.imsl.math.SingularMatrixException,
com.imsl.math.Cholesky.NotSPDException

– Description
Create the Cholesky factorization of a symmetric positive definite matrix of
type double.

– Parameters
∗ a – a double square matrix to be factored

– Throws
∗ java.lang.IllegalArgumentException – Thrown when the row lengths

of matrix a are not equal (for example, the matrix edges are “jagged”.)
∗ com.imsl.math.SingularMatrixException – Thrown when the input

matrix a is singular.
∗ com.imsl.math.Cholesky.NotSPDException – Thrown when the input

matrix is not symmetric, positive definite.
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Methods

• downdate
public void downdate( double[] x ) throws
com.imsl.math.Cholesky.NotSPDException

– Description
Downdates the factorization by subtracting a rank-1 matrix. The object will
contain the Cholesky factorization of a− x× xT , where a is the previously
factored matrix.

– Parameters
∗ x – A double array which specifies the rank-1 matrix. x is not modified by

this function.
– Throws
∗ com.imsl.math.Cholesky.NotSPDException – if a− x× xT is not

symmetric positive-definite.

• getR
public double[][] getR( )

– Description
Returns the R matrix that results from the Cholesky factorization. R is a lower
triangular matrix and A = RRT .

– Returns – a double matrix which contains the R matrix that results from the
Cholesky factorization

• inverse
public double[][] inverse( )

– Description
Returns the inverse of this matrix

– Returns – a double matrix containing the inverse

• solve
public double[] solve( double[] b )

– Description
Solve Ax = b where A is a positive definite matrix with elements of type double.

– Parameters
∗ b – a double array containing the right-hand side of the linear system

– Returns – a double array containing the solution to the system of linear
equations
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• update
public void update( double[] x )

– Description
Updates the factorization by adding a rank-1 matrix. The object will contain
the Cholesky factorization of a+ x ∗XT = b, where a is the previously factored
matrix.

– Parameters
∗ x – A double array which specifies the rank-1 matrix. x is not modified by

this function.

Example: Cholesky Factorization

The Cholesky Factorization of a matrix is performed as well as its inverse.
import com.imsl.math.*;

public class CholeskyEx1 {
public static void main(String args[]) throws com.imsl.IMSLException {

double a[][] = {
{ 1, -3, 2},
{-3, 10, -5},
{ 2, -5, 6}

};
double b[] = {27, -78, 64};

// Compute the Cholesky factorization of A

Cholesky cholesky = new Cholesky(a);

// Solve Ax = b

double x[] = cholesky.solve(b);

new PrintMatrix("x").print(x);

// Find the inverse of A.

double ainv[][] = cholesky.inverse();

new PrintMatrix("ainv").print(ainv);

}
}
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Output

x

0

0 1

1 -4

2 7

ainv

0 1 2

0 35 8 -5

1 8 2 -1

2 -5 -1 1

class QR

QR Decomposition of a matrix.

Class QR computes the QR decomposition of a matrix using Householder transformations.
It is based on the LINPACK routine SQRDC; see Dongarra et al. (1979).

QR determines an orthogonal matrix Q, a permutation matrix P, and an upper trapezoidal
matrix R with diagonal elements of nonincreasing magnitude, such that AP = QR. The
Householder transformation for column k is of the form

I −
uku

T
k

Pk

for k = 1, 2, . . ., min(number of rows of A, number of columns of A), where u has zeros in
the first k - 1 positions. The matrix Q is not produced directly by QR. Instead the
information needed to reconstruct the Householder transformations is saved. If the matrix
Q is needed explicitly, the method getQ can be called after QR. This method accumulates Q
from its factored form.

Before the decomposition is computed, initial columns are moved to the beginning of the
array A and the final columns to the end. Both initial and final columns are frozen in
place during the computation. Only free columns are pivoted. Pivoting is done on the free
columns of largest reduced norm.
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Declaration

public class com.imsl.math.QR
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Constructor

• QR
public QR( double[][] a )

– Description
Constructs the QR decomposition of a matrix with elements of type double.

– Parameters
∗ a – a double matrix to be factored

– Throws
∗ java.lang.IllegalArgumentException – Thrown when the row lengths

of input matrix a are not equal (i.e. the matrix edges are “jagged”.)

Methods

• getPermute
public int[] getPermute( )

– Description
Returns an integer vector containing information about the permutation of the
elements of the matrix during pivoting.

– Returns – an int array containing the permutation information. The k-th
element contains the index of the column of the matrix that has been
interchanged into the k-th column.

• getQ
public double[][] getQ( )

– Description
Returns the orthogonal or unitary matrix Q.

– Returns – a double matrix containing the accumulated orthogonal matrix Q
from the QR decomposition
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• getR
public double[][] getR( )

– Description
Returns the upper trapezoidal matrix R.

– Returns – the upper trapezoidal double matrix R of the QR decomposition

• getRank
public int getRank( )

– Description
Returns the rank of the matrix used to construct this instance.

– Returns – an int specifying the rank of the matrix used to construct this
instance

• rank
public int rank( double tolerance )

– Description
Returns the rank of the matrix given an input tolerance.

– Parameters
∗ tolerance – a double scalar value used in determining the rank of the

matrix
– Returns – an int specifying the rank of the matrix

• solve
public double[] solve( double[] b ) throws
com.imsl.math.SingularMatrixException

– Description
Returns the solution to the least-squares problem Ax = b.

– Parameters
∗ b – a double array to be manipulated

– Returns – a double array containing the solution vector to Ax = b with
components corresponding to the unused columns set to zero

– Throws
∗ com.imsl.math.SingularMatrixException – Thrown when the upper

triangular matrix R resulting from the QR factorization is singular.

• solve
public double[] solve( double[] b, double tol ) throws
com.imsl.math.SingularMatrixException
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– Description
Returns the solution to the least-squares problem Ax = b using an input
tolerance.

– Parameters
∗ b – a double array to be manipulated
∗ tol – a double scalar value used in determining the rank of A

– Returns – a double array containing the solution vector to Ax = b with
components corresponding to the unused columns set to zero

– Throws
∗ com.imsl.math.SingularMatrixException – Thrown when the upper

triangular matrix R resulting from the QR factorization is singular.

Example: QR Factorization of a Matrix

The QR Factorization of a Matrix is performed. A linear system is then solved using the
factorization. The rank of the input matrix is also computed.
import com.imsl.math.*;

public class QREx1 {
public static void main(String args[]) throws SingularMatrixException {

double a[][] = {
{1, 2, 4},
{1, 4, 16},
{1, 6, 36},
{1, 8, 64}

};
double b[] = {4.999, 9.001, 12.999, 17.001};

// Compute the QR factorization of A

QR qr = new QR(a);

// Solve Ax = b

double x[] = qr.solve(b);

new PrintMatrix("x").print(x);

// Print Q and R.

new PrintMatrix("Q").print(qr.getQ());

new PrintMatrix("R").print(qr.getR());

// Find the rank of A.

int rank = qr.getRank();

System.out.println("rank = "+rank);
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}
}

Output

x

0

0 0.999

1 2

2 -0

Q

0 1 2 3

0 -0.053 -0.542 0.808 -0.224

1 -0.213 -0.657 -0.269 0.671

2 -0.478 -0.346 -0.449 -0.671

3 -0.85 0.393 0.269 0.224

R

0 1 2

0 -75.26 -10.63 -1.594

1 0 -2.647 -1.153

2 0 0 0.359

3 0 0 0

rank = 3

class SVD

Singular Value Decomposition (SVD) of a rectangular matrix of type double.

SVD is based on the LINPACK routine SSVDC; see Dongarra et al. (1979).

Let n be the number of rows in A and let p be the number of columns in A. For any
n x p matrix A, there exists an n x n orthogonal matrix U and a p x p orthogonal matrix
V such that

UTAV =


[

Σ
0

]
if n ≥ p

[Σ 0] if n ≤ p
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where Σ = diag(σ1, . . . , σm), and m = min(n, p). The scalars σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0 are
called the singular values of A. The columns of U are called the left singular vectors of A.
The columns of V are called the right singular vectors of A.

The estimated rank of A is the number of σk that is larger than a tolerance η. If τ is the
parameter tol in the program, then

η =
{
τ if τ > 0
|τ | ‖A‖∞ if τ < 0

The Moore-Penrose generalized inverse of the matrix is computed by partitioning the
matricies U, V and Σ as U = (U1, U2), V = (V1, V2) and Σ1 = diag(σ1, . . . , σk) where the
“1” matrices are k by k. The Moore-Penrose generalized inverse is V1Σ−1

1 UT
1 .

Declaration

public class com.imsl.math.SVD
extends java.lang.Object

Inner Class

class SVD.DidNotConvergeException

The iteration did not converge

Declaration

public static class com.imsl.math.SVD.DidNotConvergeException
extends com.imsl.IMSLException (page 1240)

Constructors

• SVD.DidNotConvergeException
public SVD.DidNotConvergeException( java.lang.String message )

• SVD.DidNotConvergeException
public SVD.DidNotConvergeException( java.lang.String key,
java.lang.Object[] arguments )
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Constructors

• SVD
public SVD( double[][] a ) throws
com.imsl.math.SVD.DidNotConvergeException

– Description
Construct the singular value decomposition of a rectangular matrix with
default tolerance. The tolerance used is 2.2204460492503e-14. This tolerance is
used to determine rank. A singular value is considered negligible if the singular
value is less than or equal to this tolerance.

– Parameters
∗ a – a double matrix for which the singular value decomposition is to be

computed
– Throws
∗ java.lang.IllegalArgumentException – is thrown when the row lengths

of input matrix a are not equal (i.e. the matrix edges are “jagged”)

• SVD
public SVD( double[][] a, double tol ) throws
com.imsl.math.SVD.DidNotConvergeException

– Description
Construct the singular value decomposition of a rectangular matrix with a
given tolerance. If tol is positive, then a singular value is considered negligible
if the singular value is less than or equal to tol. If tol is negative, then a
singular value is considered negligible if the singular value is less than or equal
to the absolute value of the product of tol and the infinity norm of the input
matrix. In the latter case, the absolute value of tol generally contains an
estimate of the level of the relative error in the data.

– Parameters
∗ a – a double matrix for which the singular value decomposition is to be

computed
∗ tol – a double scalar containing the tolerance used to determine when a

singular value is negligible
– Throws
∗ java.lang.IllegalArgumentException – is thrown when the row lengths

of input matrix a are not equal (for example, the matrix edges are
“jagged”)
∗ com.imsl.math.SVD.DidNotConvergeException – is thrown when the

rank cannot be determined because convergence was not obtained for all
singular values
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Methods

• getInfo
public int getInfo( )

– Description
Returns convergence information about S, U, and V.

– Returns – Convergence was obtained for the info, info+1, ..., min(nra,nca)
singular values and their corresponding vectors. Here, nra and nca represent
the number of rows and columns of the input matrix respectively.

• getRank
public int getRank( )

– Description
Returns the rank of the matrix used to construct this instance.

– Returns – an int scalar containing the rank of the matrix used to construct
this instance. The estimated rank of the input matrix is the number of singular
values which are larger than a tolerance.

• getS
public double[] getS( )

– Description
Returns the singular values.

– Returns – a double array containing the singular values of the matrix

• getU
public double[][] getU( )

– Description
Returns the left singular vectors.

– Returns – a double matrix containing the left singular vectors

• getV
public double[][] getV( )

– Description
Returns the right singular vectors.

– Returns – a double matrix containing the right singular vectors

• inverse
public double[][] inverse( )
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– Description
Compute the Moore-Penrose generalized inverse of a real matrix.

– Returns – a double matrix containing the generalized inverse of the matrix
used to construct this instance

Example: Singular Value Decomposition of a Matrix

The singular value decomposition of a matrix is performed. The rank of the matrix is also
computed.
import com.imsl.math.*;

public class SVDEx1 {
public static void main(String args[]) throws SVD.DidNotConvergeException {

double a[][] = {
{1, 2, 1, 4},
{3, 2, 1, 3},
{4, 3, 1, 4},
{2, 1, 3, 1},
{1, 5, 2, 2},
{1, 2, 2, 3}

};

// Compute the SVD factorization of A

SVD svd = new SVD(a);

// Print U, S and V.

new PrintMatrix("U").print(svd.getU());

new PrintMatrix("S").print(svd.getS());

new PrintMatrix("V").print(svd.getV());

// Find the rank of A.

int rank = svd.getRank();

System.out.println("rank = "+rank);

}
}

Output

U

0 1 2 3 4 5
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0 -0.38 0.12 0.439 -0.565 0.024 -0.573

1 -0.404 0.345 -0.057 0.215 0.809 0.119

2 -0.545 0.429 0.051 0.432 -0.572 0.04

3 -0.265 -0.068 -0.884 -0.215 -0.063 -0.306

4 -0.446 -0.817 0.142 0.321 0.062 -0.08

5 -0.355 -0.102 -0.004 -0.546 -0.099 0.746

S

0

0 11.485

1 3.27

2 2.653

3 2.089

V

0 1 2 3

0 -0.444 0.556 -0.435 0.552

1 -0.558 -0.654 0.277 0.428

2 -0.324 -0.351 -0.732 -0.485

3 -0.621 0.374 0.444 -0.526

rank = 4

class SingularMatrixException

The matrix is singular.

Declaration

public class com.imsl.math.SingularMatrixException
extends com.imsl.IMSLException (page 1240)

Constructor

• SingularMatrixException
public SingularMatrixException( )
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Chapter 2

Eigensystem Analysis

Classes
Eigen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Collection of Eigen System functions.
SymEigen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Computes the eigenvalues and eigenvectors of a real symmetric matrix.

Usage Notes

An ordinary linear eigensystem problem is represented by the equation Ax = λx where A
denotes an n x n matrix. The value λ is an eigenvalue and x 6= 0 is the corresponding
eigenvector. The eigenvector is determined up to a scalar factor. In all functions, we have
chosen this factor so that x has Euclidean length one, and the component of x of largest
magnitude is positive. If x is a complex vector, this component of largest magnitude is
scaled to be real and positive. The entry where this component occurs can be arbitrary
for eigenvectors having nonunique maximum magnitude values.

Error Analysis and Accuracy

Except in special cases, functions will not return the exact eigenvalue-eigenvector pair for
the ordinary eigenvalue problem Ax = λx. Typically, the computed pair

x̃, λ̃

are an exact eigenvector-eigenvalue pair for a “nearby” matrix A + E. Information about
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E is known only in terms of bounds of the form ‖E‖2 ≤ f (n) ‖A‖2 ε. The value of f(n)
depends on the algorithm, but is typically a small fractional power of n. The parameter ε
is the machine precision. By a theorem due to Bauer and Fike (see Golub and Van Loan
1989, p. 342),

min
∣∣∣λ̃− λ∣∣∣ ≤ κ (X) ‖E‖2 for allλ inσ (A)

where σ(A) is the set of all eigenvalues of A (called the spectrum of A), X is the matrix of
eigenvectors, ‖·‖2 is Euclidean length, and κ(X) is the condition number of X defined as
κ (X) = ‖X‖2

∥∥X−1
∥∥

2
. If A is a real symmetric or complex Hermitian matrix, then its

eigenvector matrix X is respectively orthogonal or unitary. For these matrices, κ(X) = 1.

The accuracy of the computed eigenvalues

λ̃j

and eigenvectors

x̃j

can be checked by computing their performance index τ . The performance index is
defined to be

τ = max
1≤j≤n

∥∥∥Ax̃j − λ̃j x̃j

∥∥∥
2

nε ‖A‖2 ‖x̃j‖2

where ε is again the machine precision.

The performance index τ is related to the error analysis because

‖Ex̃j‖2 =
∥∥∥Ax̃j − λ̃j x̃j

∥∥∥
2

where E is the “nearby” matrix discussed above.

While the exact value of τ is precision and data dependent, the performance of an
eigensystem analysis function is defined as excellent if τ < 1, good if 1 ≤ τ ≤ 100, and
poor if τ > 100. This is an arbitrary definition, but large values of τ can serve as a
warning that there is a significant error in the calculation.

If the condition number κ(X) of the eigenvector matrix X is large, there can be large
errors in the eigenvalues even if τ is small. In particular, it is often difficult to recognize
near multiple eigenvalues or unstable mathematical problems from numerical results. This
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facet of the eigenvalue problem is often difficult for users to understand. Suppose the
accuracy of an individual eigenvalue is desired. This can be answered approximately by
computing the condition number of an individual eigenvalue(see Golub and Van Loan
1989, pp. 344-345). For matrices A, such that the computed array of normalized
eigenvectors X is invertible, the condition number of λi is

κj =
∥∥eTj X−1

∥∥ ,
the Euclidean length of the j-th row of X−1. Users can choose to compute this matrix
using the class LU in “Linear Systems.” An approximate bound for the accuracy of a
computed eigenvalue is then given by κjε ‖A‖. To compute an approximate bound for the
relative accuracy of an eigenvalue, divide this bound by |λj |.

class Eigen

Collection of Eigen System functions.

Eigen computes the eigenvalues and eigenvectors of a real matrix. The matrix is first
balanced. Orthogonal similarity transformations are used to reduce the balanced matrix
to a real upper Hessenberg matrix. The implicit double-shifted QR algorithm is used to
compute the eigenvalues and eigenvectors of this Hessenberg matrix. The eigenvectors are
normalized such that each has Euclidean length of value one. The largest component is
real and positive.

The balancing routine is based on the EISPACK routine BALANC. The reduction routine is
based on the EISPACK routines ORTHES and ORTRAN. The QR algorithm routine is based
on the EISPACK routine HQR2. See Smith et al. (1976) for the EISPACK routines.
Further details, some timing data, and credits are given in Hanson et al. (1990).

While the exact value of the performance index, τ , is highly machine dependent, the
performance of Eigen is considered excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if
τ > 100.

The performance index was first developed by the EISPACK project at Argonne National
Laboratory; see Smith et al. (1976, pages 124-125).

Declaration

public class com.imsl.math.Eigen
extends java.lang.Object
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Inner Class

class Eigen.DidNotConvergeException

The iteration did not converge

Declaration

public static class com.imsl.math.Eigen.DidNotConvergeException
extends com.imsl.IMSLException (page 1240)

Constructors

• Eigen.DidNotConvergeException
public Eigen.DidNotConvergeException( java.lang.String message )

• Eigen.DidNotConvergeException
public Eigen.DidNotConvergeException( java.lang.String key,
java.lang.Object[] arguments )

Constructors

• Eigen
public Eigen( double[][] a ) throws
com.imsl.math.Eigen.DidNotConvergeException

– Description
Constructs the eigenvalues and the eigenvectors of a real square matrix.

– Parameters
∗ a – is the double square matrix whose eigensystem is to be constructed

– Throws
∗ com.imsl.math.Eigen.DidNotConvergeException – is thrown when the

algorithm fails to converge on the eigenvalues of the matrix.

• Eigen
public Eigen( double[][] a, boolean computeVectors ) throws
com.imsl.math.Eigen.DidNotConvergeException
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– Description
Constructs the eigenvalues and (optionally) the eigenvectors of a real square
matrix.

– Parameters
∗ a – is the double square matrix whose eigensystem is to be constructed
∗ computeVectors – is true if the eigenvectors are to be computed

– Throws
∗ com.imsl.math.Eigen.DidNotConvergeException – is thrown when the

algorithm fails to converge on the eigenvalues of the matrix.

Methods

• getValues
public Complex[] getValues( )

– Description
Returns the eigenvalues of a matrix of type double.

– Returns – a Complex array containing the eigenvalues of this matrix in
descending order

• getVectors
public Complex[][] getVectors( )

– Description
Returns the eigenvectors.

– Returns – A Complex matrix containing the eigenvectors. The eigenvector
corresponding to the j-th eigenvalue is stored in the j-th column. Each vector is
normalized to have Euclidean length one.

• performanceIndex
public double performanceIndex( double[][] a )

– Description
Returns the performance index of a real eigensystem.

– Parameters
∗ a – a double matrix

– Returns – A double scalar value indicating how well the algorithms which
have computed the eigenvalue and eigenvector pairs have performed. A
performance index less than 1 is considered excellent, 1 to 100 is good, while
greater than 100 is considered poor.
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Example: Eigensystem Analysis

The eigenvalues and eigenvectors of a matrix are computed.
import com.imsl.math.*;

public class EigenEx1 {
public static void main(String args[]) throws

Eigen.DidNotConvergeException {
double a[][] = {

{ 8, -1, -5},
{-4, 4, -2},
{18, -5, -7}

};
Eigen eigen = new Eigen(a);

new PrintMatrix("Eigenvalues").print(eigen.getValues());

new PrintMatrix("Eigenvectors").print(eigen.getVectors());

}
}

Output

Eigenvalues

0

0 2+4i

1 2-4i

2 1

Eigenvectors

0 1 2

0 0.316-0.316i 0.316+0.316i 0.408

1 0.632 0.632 0.816

2 0-0.632i 0+0.632i 0.408

class SymEigen

Computes the eigenvalues and eigenvectors of a real symmetric matrix. Orthogonal
similarity transformations are used to reduce the matrix to an equivalent symmetric
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tridiagonal matrix. These transformations are accumulated. An implicit rational QR
algorithm is used to compute the eigenvalues of this tridiagonal matrix. The eigenvectors
are computed using the eigenvalues as perfect shifts, Parlett (1980, pages 169, 172). The
reduction routine is based on the EISPACK routine TRED2. See Smith et al. (1976) for the
EISPACK routines. Further details, some timing data, and credits are given in Hanson et
al. (1990).

Let M = the number of eigenvalues, λ = the array of eigenvalues, and xj is the associated
eigenvector with jth eigenvalue.

Also, let ε be the machine precision. The performance index, τ , is defined to be

τ = max
1≤j≤M

‖Axj − λjxj‖1
10Nε ‖A‖1 ‖xj‖1

While the exact value of τ is highly machine dependent, the performance of SymEigen is
considered excellent if τ < 1, good if 1 ≤ 100, and poor if τ > 100. The performance index
was first developed by the EISPACK project at Argonne National Laboratory; see Smith
et al. (1976, pages 124-125).

Declaration

public class com.imsl.math.SymEigen
extends java.lang.Object

Constructors

• SymEigen
public SymEigen( double[][] a )

– Description
Constructs the eigenvalues and the eigenvectors for a real symmetric matrix.

– Parameters
∗ a – is the symmetric matrix whose eigensystem is to be constructed.

• SymEigen
public SymEigen( double[][] a, boolean computeVectors )

– Description
Constructs the eigenvalues and (optionally) the eigenvectors for a real
symmetric matrix.
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– Parameters
∗ a – a double symmetric matrix whose eigensystem is to be constructed
∗ computeVectors – a boolean, true if the eigenvectors are to be computed

– Throws
∗ java.lang.IllegalArgumentException – is thrown when the lengths of

the rows of the input matrix are not uniform.

Methods

• getValues
public double[] getValues( )

– Description
Returns the eigenvalues

– Returns – a double array containing the eigenvalues in descending order. If
the algorithm fails to converge on an eigenvalue, that eigenvalue is set to NaN.

• getVectors
public double[][] getVectors( )

– Description
Return the eigenvectors of a symmetric matrix of type double.

– Returns – a double array containing the eigenvectors. The j-th column of the
eigenvector matrix corresponds to the j-th eigenvalue. The eigenvectors are
normalized to have Euclidean length one. If the eigenvectors were not
computed by the constructor, then null is returned.

• performanceIndex
public double performanceIndex( double[][] a )

– Description
Returns the performance index of a real symmetric eigensystem.

– Parameters
∗ a – a double symmetric matrix

– Returns – a double scalar value indicating how well the algorithms which have
computed the eigenvalue and eigenvector pairs have performed. A performance
index less than 1 is considered excellent, 1 to 100 is good, while greater than
100 is considered poor.

– Throws
∗ java.lang.IllegalArgumentException – is thrown when the lengths of

the rows of the input matrix are not uniform.
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Example: Eigenvalues and Eigenvectors of a Symmetric Matrix

The eigenvalues and eigenvectors of a symmetric matrix are computed.
import com.imsl.math.*;

public class SymEigenEx1 {
public static void main(String args[]) {

double a[][] = {
{1, 1, 1},
{1, 1, 1},
{1, 1, 1}

};

SymEigen eigen = new SymEigen(a);

new PrintMatrix("Eigenvalues").print(eigen.getValues());

new PrintMatrix("Eigenvectors").print(eigen.getVectors());

}
}

Output

Eigenvalues

0

0 3

1 -0

2 -0

Eigenvectors

0 1 2

0 0.577 0.816 0

1 0.577 -0.408 -0.707

2 0.577 -0.408 0.707
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Chapter 3

Interpolation and Approximation

Classes
Spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Spline represents and evaluates univariate piecewise polynomial splines.
CsAkima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Extension of the Spline class to handle the Akima cubic spline.
CsInterpolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

Extension of the Spline class to interpolate data points.
CsPeriodic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Extension of the Spline class to interpolate data points with periodic boundary
conditions.

CsShape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Extension of the Spline class to interpolate data points consistent with the
concavity of the data.

CsSmooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Extension of the Spline class to construct a smooth cubic spline from noisy
data points.

CsSmoothC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Extension of the Spline class used to construct a spline for noisy data points
using an alternate method.

BsInterpolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Extension of the BSpline class to interpolate data points.

BsLeastSquares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Extension of the BSpline class to compute a least squares spline approxima-
tion to data points.

RadialBasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
RadialBasis computes a least-squares fit to scattered data in Rd, where d is
the dimension.
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This chapter contains classes to interpolate and approximate data with cubic splines.
Interpolation means that the fitted curve passes through all of the specified data points.
An approximation spline does not have to pass through any of the data points. An
appoximating curve can therefore be smoother than an interpolating curve.

Cubic splines are smooth C1 or C2 fourth-order piecewise-polynomial (pp) functions. For
historical and other reasons, cubic splines are the most heavily used pp functions.

This chapter contains four cubic spline interpolation classes and two approximation
classes. These classes are dervived from the base class Spline, which provides basic
services, such as spline evaluation and integration.‘

The chart shows how the six cubic splines in this chapter fit a single data set.
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Class CsInterpolate allows the user to specify various endpoint conditions (such as the
value of the first and second derviatives at the right and left endpoints).

Class CsPeriodic is used to fit periodic (repeating) data. The sample data set used is not
periodic and so the curve does not pass through the final data point.

Class CsAkima keeps the shape of the data while minimizing oscillations.

Class CsShape keeps the shape of the data by preserving its convexity.

Class CsSmooth constructs a smooth spline from noisy data.

Class CsSmoothC2 constructs a smooth spline from noisy data using cross-validation and a
user-supplied smoothing parameter.

class Spline

Spline represents and evaluates univariate piecewise polynomial splines.

A univariate piecewise polynomial (function) p(x) is specified by giving its breakpoint
sequence ξ ∈ Rn, the order k (degree k-1) of its polynomial pieces, and the k × (n− 1)
matrix c of its local polynomial coefficients. In terms of this information, the piecewise
polynomial (ppoly) function is given by

p(x) =
k∑

j=1

cji
(x− ξi)j−1

(j − 1)!
for ξi ≤ x ≤ ξi+1

The breakpoint sequence ξ is assumed to be strictly increasing, and we extend the ppoly
function to the entire real axis by extrapolation from the first and last intervals.

Declaration

public abstract class com.imsl.math.Spline
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Fields

• protected double[][] coef

– Coefficients of the piecewise polynomials. This is an n by k array, where n is
the number of piecewise polynomials and k is the order (degree+1) of the
piecewise polynomials.
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coef[i] contains the coefficients for the piecewise polynomial valid in the
interval [x[k],x[k+1]).

• protected double[] breakPoint

– The breakpoint array of length n, where n is the number of piecewise
polynomials.

• protected static final double EPSILON LARGE

– The largest relative spacing for double.

Constructor

• Spline
public Spline( )

Methods

• copyAndSortData
protected void copyAndSortData( double[] xData, double[] yData )

– Description
Copy and sort xData into breakPoint and yData into the first column of coef.

• copyAndSortData
protected void copyAndSortData( double[] xData, double[] yData,
double[] weight )

– Description
Copy and sort xData into breakPoint and yData into the first column of coef.

• derivative
public double derivative( double x )

– Description
Returns the value of the first derivative of the spline at a point.

– Parameters
∗ x – a double, the point at which the derivative is to be evaluated

– Returns – a double containing the value of the first derivative of the spline at
the point x
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• derivative
public double[] derivative( double[] x, int ideriv )

– Description
Returns the value of the derivative of the spline at each point of an array.

– Parameters
∗ x – a double array of points at which the derivative is to be evaluated
∗ ideriv – an int specifying the derivative to be computed. If zero, the

function value is returned. If one, the first derivative is returned, etc.
– Returns – a double array containing the value of the derivative of the spline at

each point of the array x

• derivative
public double derivative( double x, int ideriv )

– Description
Returns the value of the derivative of the spline at a point.

– Parameters
∗ x – a double, the point at which the derivative is to be evaluated
∗ ideriv – an int specifying the derivative to be computed. If zero, the

function value is returned. If one, the first derivative is returned, etc.
– Returns – a double containing the value of the derivative of the spline at the

point x

• getBreakpoints
public double[] getBreakpoints( )

– Description
Returns a copy of the breakpoints.

– Returns – a double array containing a copy of the breakpoints

• integral
public double integral( double a, double b )

– Description
Returns the value of an integral of the spline.

– Parameters
∗ a – a double specifying the lower limit of integration
∗ b – a double specifying the upper limit of integration

– Returns – a double, the integral of the spline from a to b

• value
public double value( double x )
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– Description
Returns the value of the spline at a point.

– Parameters
∗ x – a double, the point at which the spline is to be evaluated

– Returns – a double giving the value of the spline at the point x

• value
public double[] value( double[] x )

– Description
Returns the value of the spline at each point of an array.

– Parameters
∗ x – a double array of points at which the spline is to be evaluated

– Returns – a double array containing the value of the spline at each point of
the array x

class CsAkima

Extension of the Spline class to handle the Akima cubic spline.

Class CsAkima computes a C1 cubic spline interpolant to a set of data points (xi, fi) for
i = 0, . . . , n− 1. The breakpoints of the spline are the abscissas. Endpoint conditions are
automatically determined by the program; see Akima (1970) or de Boor (1978).

If the data points arise from the values of a smooth, say C4, function f, i.e. fi = f(xi),
then the error will behave in a predictable fashion. Let ξ be the breakpoint vector for the
above spline interpolant. Then, the maximum absolute error satisfies

‖f − s‖[ξ0,ξn−1] ≤ C
∥∥∥f (2)

∥∥∥
[ξ0,ξn−1

|ξ|2

where

|ξ| := max
i=1,...,n−1

|ξi − ξi−1|

CsAkima is based on a method by Akima (1970) to combat wiggles in the interpolant. The
method is nonlinear; and although the interpolant is a piecewise cubic, cubic polynomials
are not reproduced. (However, linear polynomials are reproduced.)
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Declaration

public class com.imsl.math.CsAkima
extends com.imsl.math.Spline (page 51)

Constructor

• CsAkima
public CsAkima( double[] xData, double[] yData )

– Description
Constructs the Akima cubic spline interpolant to the given data points.

– Parameters
∗ xData – a double array containing the x-coordinates of the data. Values

must be distinct.
∗ yData – a double array containing the y-coordinates of the data.

– Throws
∗ java.lang.IllegalArgumentException – This exception is thrown if the

arrays xData and yData do not have the same length.

Example: The Akima cubic spline interpolant

A cubic spline interpolant to a function is computed. The value of the spline at point 0.25
is printed.
import com.imsl.math.*;

public class CsAkimaEx1 {
public static void main(String args[]) {

int n = 11;

double x[] = new double[n];

double y[] = new double[n];

for (int k = 0; k < n; k++) {
x[k] = (double)k/(double)(n-1);

y[k] = Math.sin(15.0*x[k]);

}

CsAkima cs = new CsAkima(x, y);

double csv = cs.value(0.25);

System.out.println("The computed cubic spline value at point .25 is "
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+ csv);

}
}

Output

The computed cubic spline value at point .25 is -0.478185519991867

class CsInterpolate

Extension of the Spline class to interpolate data points.

CsInterpolate computes a C2 cubic spline interpolant to a set of data points (xi, fi) for
i = 0, . . . , n− 1. The breakpoints of the spline are the abscissas. Endpoint conditions can
be automatically determined by the program, or explicitly specified by using the
appropriate constructor. Constructors are provided that allow setting specific values for
first or second derivative values at the endpoints, or for specifying conditions that
correspond to the “not-a-knot” condition (see de Boor 1978).

The “not-a-knot” conditions require that the third derivative of the spline be continuous
at the second and next-to-last breakpoint. If n is 2 or 3, then the linear or quadratic
interpolating polynomial is computed, respectively.

If the data points arise from the values of a smooth, say, C4 function f, i.e. fi = f(xi),
then the error will behave in a predictable fashion. Let ξ be the breakpoint vector for the
above spline interpolant. Then, the maximum absolute error satisfies

|f − s|[ξ0,ξn] ≤ C
∥∥∥f (4)

∥∥∥
[ξ0,ξn]

|ξ|4

where
|ξ| := max

i=0,...,n−1
|ξi+1 − ξi|

For more details, see de Boor (1978, pages 55-56).

Declaration

public class com.imsl.math.CsInterpolate
extends com.imsl.math.Spline (page 51)
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Fields

• public static final int NOT A KNOT

• public static final int FIRST DERIVATIVE

• public static final int SECOND DERIVATIVE

Constructors

• CsInterpolate
public CsInterpolate( double[] xData, double[] yData )

– Description
Constructs a cubic spline that interpolates the given data points. The
interpolant satisfies the “not-a-knot” condition.

– Parameters
∗ xData – A double array containing the x-coordinates of the data. Values

must be distinct.
∗ yData – A double array containing the y-coordinates of the data. The

arrays xData and yData must have the same length.

• CsInterpolate
public CsInterpolate( double[] xData, double[] yData, int typeLeft,
double valueLeft, int typeRight, double valueRight )

– Description
Constructs a cubic spline that interpolates the given data points with specified
derivative endpoint conditions.

– Parameters
∗ xData – A double array containing the x-coordinates of the data. Values

must be distinct.
∗ yData – A double array containing the y-coordinates of the data. The

arrays xData and yData must have the same length.
∗ typeLeft – An int denoting the type of condition at the left endpoint.

This can be NOT A KNOT, FIRST DERIVATIVE or SECOND DERIVATIVE.
∗ valueLeft – A double value at the left endpoint. If typeLeft is NOT A KNOT

this is ignored, Otherwise, it is the value of the specified derivative.
∗ typeRight – An int denoting the type of condition at the right endpoint.

This can be NOT A KNOT, FIRST DERIVATIVE or SECOND DERIVATIVE.
∗ valueRight – A double value at the right endpoint.
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Example: The cubic spline interpolant

A cubic spline interpolant to a function is computed. The value of the spline at point 0.25
is printed.
import com.imsl.math.*;

public class CsInterpolateEx1 {
public static void main(String args[]) {

int n = 11;

double x[] = new double[n];

double y[] = new double[n];

for (int k = 0; k < n; k++) {
x[k] = (double)k/(double)(n-1);

y[k] = Math.sin(15.0*x[k]);

}

CsInterpolate cs = new CsInterpolate(x, y);

double csv = cs.value(0.25);

System.out.println("The computed cubic spline value at point .25 is "

+ csv);

}
}

Output

The computed cubic spline value at point .25 is -0.5487725038121579

class CsPeriodic

Extension of the Spline class to interpolate data points with periodic boundary conditions.

Class CsPeriodic computes a C2 cubic spline interpolant to a set of data points (xi, fi) for
i = 0, . . . n− 1. The breakpoints of the spline are the abscissas. The program enforces
periodic endpoint conditions. This means that the spline s satisfies s(a) = s(b),
s ′ (a) = s ′ (b), and s′′ (a) = s′′ (b), where a is the leftmost abscissa and b is the rightmost
abscissa. If the ordinate values corresponding to a and b are not equal, then a warning
message is issued. The ordinate value at b is set equal to the ordinate value at a and the
interpolant is computed.
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If the data points arise from the values of a smooth (say C4) periodic function f, i.e.
fi = f(xi), then the error will behave in a predictable fashion. Let ξ be the breakpoint
vector for the above spline interpolant. Then, the maximum absolute error satisfies

|f − s|[ξ0,ξn−1] ≤ C|f (4)|[ξ0,ξn−1]|ξ|4

where
|ξ| := max

i=1,...,n−1
|ξi − ξi−1|

For more details, see de Boor (1978, pages 320-322).

Declaration

public class com.imsl.math.CsPeriodic
extends com.imsl.math.Spline (page 51)

Constructor

• CsPeriodic
public CsPeriodic( double[] xData, double[] yData )

– Description
Constructs a cubic spline that interpolates the given data points with periodic
boundary conditions.

– Parameters
∗ xData – A double array containing the x-coordinates of the data. There

must be at least 4 data points and values must be distinct.
∗ yData – A double array containing the y-coordinates of the data. The

arrays xData and yData must have the same length.

Example: The cubic spline interpolant with periodic boundary conditions

A cubic spline interpolant to a function is computed. The value of the spline at point 0.23
is printed.
import com.imsl.math.*;

public class CsPeriodicEx1 {
public static void main(String args[]) {

int n = 11;
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double x[] = new double[n];

double y[] = new double[n];

double h = 2.*Math.PI/15./10.;

for (int k = 0; k < n; k++) {
x[k] = h * (double)(k);

y[k] = Math.sin(15.0*x[k]);

}

CsPeriodic cs = new CsPeriodic(x, y);

double csv = cs.value(0.23);

System.out.println("The computed cubic spline value at point .23 is "

+ csv);

}
}

Output

The computed cubic spline value at point .23 is -0.3034014726064514

class CsShape

Extension of the Spline class to interpolate data points consistent with the concavity of
the data.

Class CsShape computes a cubic spline interpolant to n data points xi, fi for
i = 0, . . . , n− 1. For ease of explanation, we will assume that xi < xi+1, although it is not
necessary for the user to sort these data values. If the data are strictly convex, then the
computed spline is convex, C2, and minimizes the expression

∫ xn

x1

(
g′′
)2

over all convex C1 functions that interpolate the data. In the general case when the data
have both convex and concave regions, the convexity of the spline is consistent with the
data and the above integral is minimized under the appropriate constraints. For more
information on this interpolation scheme, we refer the reader to Micchelli et al. (1985) and
Irvine et al. (1986).

One important feature of the splines produced by this class is that it is not possible, a
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priori, to predict the number of breakpoints of the resulting interpolant. In most cases,
there will be breakpoints at places other than data locations. The method is nonlinear;
and although the interpolant is a piecewise cubic, cubic polynomials are not reproduced.
(However, linear polynomials are reproduced.) This routine should be used when it is
important to preserve the convex and concave regions implied by the data.

Declaration

public class com.imsl.math.CsShape
extends com.imsl.math.Spline (page 51)

Inner Class

class CsShape.TooManyIterationsException

Too many iterations.

Declaration

public static class com.imsl.math.CsShape.TooManyIterationsException
extends com.imsl.IMSLException (page 1240)

Constructors

• CsShape.TooManyIterationsException
public CsShape.TooManyIterationsException( )

• CsShape.TooManyIterationsException
public CsShape.TooManyIterationsException( java.lang.Object[]
arguments )

• CsShape.TooManyIterationsException
public CsShape.TooManyIterationsException( java.lang.String key,
java.lang.Object[] arguments )

Constructor
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• CsShape
public CsShape( double[] xData, double[] yData ) throws
com.imsl.math.CsShape.TooManyIterationsException,
com.imsl.math.SingularMatrixException

– Description
Construct a cubic spline interpolant which is consistent with the concavity of
the data.

– Parameters
∗ xData – A double array containing the x-coordinates of the data. Values

must be distinct.
∗ yData – A double array containing the y-coordinates of the data. The

arrays xData and yData must have the same length.

Example: The shape preserving cubic spline interpolant

A cubic spline interpolant to a function is computed consistent with the concavity of the
data. The spline value at 0.05 is printed.
import com.imsl.math.*;

public class CsShapeEx1 {
public static void main(String args[]) throws com.imsl.IMSLException {

double x[] = {0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.80, 1.00};
double y[] = {0.00, 0.90, 0.95, 0.90, 0.10, 0.05, 0.05, 0.20, 1.00};

CsShape cs = new CsShape(x, y);

double csv = cs.value(0.05);

System.out.println("The computed cubic spline value at point .05 is "

+ csv);

}
}

Output

The computed cubic spline value at point .05 is 0.5582312228648201

class CsSmooth

Extension of the Spline class to construct a smooth cubic spline from noisy data points.
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Class CsSmooth is designed to produce a C2 cubic spline approximation to a data set in
which the function values are noisy. This spline is called a smoothing spline. It is a natural
cubic spline with knots at all the data abscissas x = xData, but it does not interpolate the
data (xi, fi). The smoothing spline S is the unique C2 function that minimizes

b∫
a

S′′ (x)2 dx

subject to the constraint

n−1∑
i=0

|(S (xi)− fi)wi|2 ≤ σ

where σ is the smoothing parameter. The reader should consult Reinsch (1967) for more
information concerning smoothing splines. CsSmooth solves the above problem when the
user provides the smoothing parameter σ. CsSmoothC2 attempts to find the “optimal”
smoothing parameter using the statistical technique known as cross-validation. This
means that (in a very rough sense) one chooses the value of σ so that the smoothing spline
(Sσ) best approximates the value of the data at xI , if it is computed using all the data
except the i-th; this is true for all i = 0, . . . , n− 1. For more information on this topic, we
refer the reader to Craven and Wahba (1979).

Declaration

public class com.imsl.math.CsSmooth
extends com.imsl.math.Spline (page 51)

Constructors

• CsSmooth
public CsSmooth( double[] xData, double[] yData )

– Description
Constructs a smooth cubic spline from noisy data using cross-validation to
estimate the smoothing parameter. All of the points have equal weights.

– Parameters
∗ xData – A double array containing the x-coordinates of the data. Values

must be distinct.
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∗ yData – A double array containing the y-coordinates of the data. The
arrays xData and yData must have the same length.

• CsSmooth
public CsSmooth( double[] xData, double[] yData, double[] weight )

– Description
Constructs a smooth cubic spline from noisy data using cross-validation to
estimate the smoothing parameter. Weights are supplied by the user.

– Parameters
∗ xData – A double array containing the x-coordinates of the data. Values

must be distinct.
∗ yData – A double array containing the y-coordinates of the data. The

arrays xData and yData must have the same length.
∗ weight – A double array containing the relative weights. This array must

have the same length as xData.

Example: The cubic spline interpolant to noisy data

A cubic spline interpolant to noisy data is computed using cross-validation to estimate the
smoothing parameter. The value of the spline at point 0.3010 is printed.
import com.imsl.math.*;

import com.imsl.stat.*;

public class CsSmoothEx1 {
public static void main(String args[]) {

int n = 300;

double x[]= new double[n];

double y[]= new double[n];

for (int k = 0; k < n; k++) {
x[k] = (3.0*k)/(n-1);

y[k] = 1.0/(0.1 + Math.pow(3.0*(x[k]-1.0),4));

}

// Seed the random number generator

Random rn = new Random();

rn.setSeed(1234579L);

rn.setMultiplier(16807);

// Contaminate the data

for (int i = 0; i < n; i++) {
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y[i] += 2.0 * rn.nextFloat() - 1.0;

}

// Smooth the data

CsSmooth cs = new CsSmooth(x, y);

double csv = cs.value(0.3010);

System.out.println("The computed cubic spline value at point .3010 is "

+ csv);

}
}

Output

The computed cubic spline value at point .3010 is 0.1078582256142388

class CsSmoothC2

Extension of the Spline class used to construct a spline for noisy data points using an
alternate method.

Class CsSmoothC2 is designed to produce a C2 cubic spline approximation to a data set in
which the function values are noisy. This spline is called a smoothing spline. It is a
natural cubic spline with knots at all the data abscissas x, but it does not interpolate the
data (xi, fi). The smoothing spline Sσ is the unique C2 function that minimizes

b∫
a

s′′σ (x)2 dx

subject to the constraint

n−1∑
i=0

|sσ (xi)− fi|2 ≤ σ

.

Recommended values for σ depend on the weights, w. If an estimate for the standard
deviation of the error in the y-values is availiable, then wi should be set to this value and
the smoothing parameter should be choosen in the confidence interval corresponding to
the left side of the above inequality. That is,

n−
√

2n ≤ σ ≤ n+
√

2n
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CsSmoothC2 is based on an algorithm of Reinsch (1967). This algorithm is also discussed in
de Boor (1978, pages 235-243).

Declaration

public class com.imsl.math.CsSmoothC2
extends com.imsl.math.Spline (page 51)

Constructors

• CsSmoothC2
public CsSmoothC2( double[] xData, double[] yData, double sigma )

– Description
Constructs a smooth cubic spline from noisy data using an algorithm based on
Reinsch (1967). All of the points have equal weights.

– Parameters
∗ xData – A double array containing the x-coordinates of the data. Values

must be distinct.
∗ yData – A double array containing the y-coordinates of the data. The

arrays xData and yData must have the same length.
∗ sigma – A double value specifying the smoothing parameter. Sigma must

not be negative.

• CsSmoothC2
public CsSmoothC2( double[] xData, double[] yData, double[]
weight, double sigma )

– Description
Constructs a smooth cubic spline from noisy data using an algorithm based on
Reinsch (1967) with weights supplied by the user.

– Parameters
∗ xData – A double array containing the x-coordinates of the data. Values

must be distinct.
∗ yData – A double array containing the y-coordinates of the data. The

arrays xData and yData must have the same length.
∗ weight – A double array containing the weights. The arrays xData and

weight must have the same length.
∗ sigma – A double value specifying the smoothing parameter. Sigma must

not be negative.
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Example: The cubic spline interpolant to noisy data with supplied
weights

A cubic spline interpolant to noisy data is computed using supplied weights and
smoothing parameter. The value of the spline at point 0.3010 is printed.
import com.imsl.math.*;

import com.imsl.stat.*;

public class CsSmoothC2Ex1 {
public static void main(String args[]) {

// Set up a grid

int n = 300;

double x[]= new double[n];

double y[]= new double[n];

for (int k = 0; k < n; k++) {
x[k] = 3. * ((double)(k)/(double)(n-1));

y[k] = 1./(.1 + Math.pow(3.*(x[k]-1.),4));

}

// Seed the random number generator

Random rn = new Random();

rn.setSeed(1234579);

rn.setMultiplier(16807);

// Contaminate the data

for (int i = 0; i < n; i++) {
y[i] = y[i] + 2. * rn.nextFloat() - 1.;

}

// Set the weights

double sdev = 1./Math.sqrt(3.);

double weights[]= new double[n];

for (int i = 0; i < n; i++) {
weights[i] = sdev;

}

// Set the smoothing parameter

double smpar = (double)n;

// Smooth the data

CsSmoothC2 cs = new CsSmoothC2(x, y, weights, smpar);

double csv = cs.value(0.3010);
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System.out.println("The computed cubic spline value at point .3010 is "

+ csv);

}
}

Output

The computed cubic spline value at point .3010 is 0.06458434076781128

class BsInterpolate

Extension of the BSpline class to interpolate data points.

Given the data points x = xData, f = yData, and n the number of elements in xData and
yData, the default action of BsInterpolate computes a cubic (order = 4) spline interpolant
s to the data using a default “not-a-knot” knot sequence. Constructors are also provided
that allow the order and knot sequence to be specified. This algorithm is based on the
routine SPLINT by de Boor (1978, p. 204).

First, the xData vector is sorted and the result is stored in x. The elements of yData are
permuted appropriately and stored in f, yielding the equivalent data (xi, fi) for i = 0 to
n-1. The following preliminary checks are performed on the data, with k = order. We
verify that

xi < xi+1 for i = 0, . . . , n− 2

ti < ti+k for i = 0, . . . , n− 1

ti < ti+1 for i = 0, . . . , n+ k − 2

The first test checks to see that the abscissas are distinct. The second and third
inequalities verify that a valid knot sequence has been specified.

In order for the interpolation matrix to be nonsingular, we also check tk−1 ≤ xi ≤ tn for i
= 0 to n-1. This first inequality in the last check is necessary since the method used to
generate the entries of the interpolation matrix requires that the k possibly nonzero
B-splines at xi, Bj−k+1, ..., Bj where j satisfies tj ≤ xi < tj+1 be well-defined (that is,
j − k + 1 ≥ 0).

Declaration

public class com.imsl.math.BsInterpolate
extends com.imsl.math.BSpline
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Constructors

• BsInterpolate
public BsInterpolate( double[] xData, double[] yData )

– Description
Constructs a B-spline that interpolates the given data points. The computed
B-spline will be order 4 (cubic) and have a default “not-a-knot” spline knot
sequence.

– Parameters
∗ xData – A double array containing the x-coordinates of the data. Values

must be distinct.
∗ yData – A double array containing the y-coordinates of the data. The

arrays xData and yData must have the same length.

• BsInterpolate
public BsInterpolate( double[] xData, double[] yData, int order )

– Description
Constructs a B-spline that interpolates the given data points and order, using a
default “not-a-knot” spline knot sequence.

– Parameters
∗ xData – A double array containing the x-coordinates of the data. Values

must be distinct.
∗ yData – A double array containing the y-coordinates of the data.The

arrays xData and yData must have the same length.
∗ order – An int denoting the order of the B-spline.

• BsInterpolate
public BsInterpolate( double[] xData, double[] yData, int order,
double[] knot )

– Description
Constructs a B-spline that interpolates the given data points, using the
specified order and knots.

– Parameters
∗ xData – A double array containing the x-coordinates of the data. Values

must be distinct.
∗ yData – A double array containing the y-coordinates of the data.The

arrays xData and yData must have the same length.
∗ order – An int denoting the order of the spline.
∗ knot – A double array containing the knot sequence for the B-spline.
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Example: The B-spline interpolant

A B-Spline interpolant to data is computed. The value of the spline at point .23 is printed.
import com.imsl.math.*;

public class BsInterpolateEx1 {
public static void main(String args[]) {

int n = 11;

double x[] = new double[n];

double y[] = new double[n];

double h = 2.*Math.PI/15./10.;

for (int k = 0; k < n; k++) {
x[k] = h * (double)(k);

y[k] = Math.sin(15.0*x[k]);

}

BsInterpolate bs = new BsInterpolate(x, y);

double bsv = bs.value(0.23);

System.out.println("The computed B-spline value at point .23 is "

+ bsv);

}
}

Output

The computed B-spline value at point .23 is -0.3034183992767692

class BsLeastSquares

Extension of the BSpline class to compute a least squares spline approximation to data
points.

Let’s make the identifications

n = xData.length

x = xData

f = yData

m = nCoef
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k = order

For convenience, we assume that the sequence x is increasing, although the class does not
require this.

By default, k = 4, and the knot sequence we select equally distributes the knots through
the distinct xi

′s. In particular, the m + k knots will be generated in [x1, xn] with k knots
stacked at each of the extreme values. The interior knots will be equally spaced in the
interval.

Once knots t and weights w are determined, then the spline least-squares fit to the data is
computed by minimizing over the linear coefficients aj

n−1∑
i=0

wi

[
fi −

m∑
j=1

ajBj(xi)
]2

where the Bj , j = 1, ...,m are a (B-spline) basis for the spline subspace.

This algorithm is based on the routine L2APPR by deBoor (1978, p. 255).

Declaration

public class com.imsl.math.BsLeastSquares
extends com.imsl.math.BSpline

Fields

• protected int nCoef

– Number of B-spline coefficients.

• protected double[] weight

– The weight array of length n, where n is the number of data points fit.

Constructors

• BsLeastSquares
public BsLeastSquares( double[] xData, double[] yData, int nCoef )
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– Description
Constructs a least squares B-spline approximation to the given data points.

– Parameters
∗ xData – A double array containing the x-coordinates of the data.
∗ yData – A double array containing the y-coordinates of the data. The

arrays xData and yData must have the same length.
∗ nCoef – An int denoting the linear dimension of the spline subspace. It

should be smaller than the number of data points and greater than or
equal to the order of the spline (whose default value is 4).

• BsLeastSquares
public BsLeastSquares( double[] xData, double[] yData, int nCoef,
int order )

– Description
Constructs a least squares B-spline approximation to the given data points.

– Parameters
∗ xData – A double array containing the x-coordinates of the data.
∗ yData – A double array containing the y-coordinates of the data. The

arrays xData and yData must have the same length.
∗ nCoef – An int denoting the linear dimension of the spline subspace. It

should be smaller than the number of data points and greater than or
equal to the order of the spline.
∗ order – An int denoting the order of the spline.

• BsLeastSquares
public BsLeastSquares( double[] xData, double[] yData, int nCoef,
int order, double[] weight, double[] knot )

– Description
Constructs a least squares B-spline approximation to the given data points.

– Parameters
∗ xData – A double array containing the x-coordinates of the data.
∗ yData – A double array containing the y-coordinates of the data. The

arrays xData and yData must have the same length.
∗ nCoef – An int denoting the linear dimension of the spline subspace. It

should be smaller than the number of data points and greater than or
equal to the order of the spline.
∗ order – An int denoting the order of the spline.
∗ weight – A double array containing the weights for the data. The arrays

xData, yData and weights must have the same length.
∗ knot – A double array containing the knot sequence for the spline.
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Example: The B-spline least squares fit

A B-Spline least squares fit to data is computed. The value of the spline at point 4.5 is
printed.
import com.imsl.math.*;

public class BsLeastSquaresEx1 {
public static void main(String args[]) {

int n = 11;

double x[] = {0, 1, 2, 3, 4, 5, 8, 9, 10};
double y[] = {1.0, 0.8, 2.4, 3.1, 4.5, 5.8, 6.2, 4.9, 3.7};

BsLeastSquares bs = new BsLeastSquares(x, y, 5);

double bsv = bs.value(4.5);

System.out.println("The computed B-spline value at point 4.5 is "

+ bsv);

}
}

Output

The computed B-spline value at point 4.5 is 5.228554323596942

class RadialBasis

RadialBasis computes a least-squares fit to scattered data in Rd, where d is the
dimension. More precisely, we are given data points

x0, . . . , xn−1 ∈ Rd

and function values
f0, . . . , fn−1 ∈ R1

The radial basis fit to the data is a function F which approximates the above data in the
sense that it minimizes the sum-of-squares error

n−1∑
i=0

wi (F (xi)− fi)
2
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where w are the weights. Of course, we must restrict the functional form of F. Here we
assume it is a linear combination of radial functions:

F (x) ≡
m−1∑
j=0

αjφ(‖x− cj‖)

The cj are the centers.

A radial function, φ(r), maps [0,∞) into R1. The default radial function is the Hardy
multiquadric,

φ(r) ≡
√
r2 + δ2

with δ = 1. An alternate radial function is the Gaussian, e−ax2
.

By default, the centers are points in a Faure sequence, scaled to cover the box containing
the data.

Declaration

public class com.imsl.math.RadialBasis
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Classes

interface RadialBasis.Function

Public interface for the user supplied function to the RadialBasis object.

Declaration

public static interface com.imsl.math.RadialBasis.Function

Methods

• f
double f( double x )

– Description
A radial basis function.
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– Parameters
∗ x – a double, the point at which the function is to be evaluated

– Returns – a double, the value of the function at x

• g
double g( double x )

– Description
The derivative of the radial basis function.

– Parameters
∗ x – a double, the point at which the function is to be evaluated

– Returns – a double, the value of the function at x

class RadialBasis.HardyMultiquadric

The Hardy multiquadric basis function,
√
r2 + δ2.

Declaration

public static class com.imsl.math.RadialBasis.HardyMultiquadric
extends java.lang.Object
implements RadialBasis.Function

Constructor

• RadialBasis.HardyMultiquadric
public RadialBasis.HardyMultiquadric( double delta )

– Description
Creates a Hardy multiquadric basis function.

– Parameters
∗ delta – is the parameter in the function definition.

Methods

• f
double f( double x )
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– Description copied from RadialBasis.Function (page 74)
A radial basis function.

– Parameters
∗ x – a double, the point at which the function is to be evaluated

– Returns – a double, the value of the function at x

• g
double g( double x )

– Description copied from RadialBasis.Function (page 74)
The derivative of the radial basis function.

– Parameters
∗ x – a double, the point at which the function is to be evaluated

– Returns – a double, the value of the function at x

class RadialBasis.Gaussian

The Gaussian basis function, e−ax2
.

Declaration

public static class com.imsl.math.RadialBasis.Gaussian
extends java.lang.Object
implements RadialBasis.Function

Constructor

• RadialBasis.Gaussian
public RadialBasis.Gaussian( double a )

Methods

• f
double f( double x )

– Description copied from RadialBasis.Function (page 74)
A radial basis function.
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– Parameters
∗ x – a double, the point at which the function is to be evaluated

– Returns – a double, the value of the function at x

• g
double g( double x )

– Description copied from RadialBasis.Function (page 74)
The derivative of the radial basis function.

– Parameters
∗ x – a double, the point at which the function is to be evaluated

– Returns – a double, the value of the function at x

Constructor

• RadialBasis
public RadialBasis( int nDim, int nCenters )

– Description
Creates a new instance of RadialBasis.

– Parameters
∗ nDim – is the number of dimensions.
∗ nCenters – is the number of centers.

Methods

• getANOVA
public com.imsl.stat.ANOVA getANOVA( )

– Description
Returns the ANOVA statistics from the linear regression.

– Returns – an ANOVA table and related statistics

• getRadialFunction
public RadialBasis.Function getRadialFunction( )

– Description
Returns the radial function.

– Returns – the current radial function.
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• gradient
public double[] gradient( double[] x )

– Description
Returns the gradient of the radial basis approximation at a point.

– Parameters
∗ x – is a double array containing the locations of the data point at which

the approximation’s gradient is to be computed.
– Returns – a double array, of length nDim containing the value of the gradient

of the radial basis approximation at x.

• setRadialFunction
public void setRadialFunction( RadialBasis.Function radialFunction )

– Description
Sets the radial function.

– Parameters
∗ radialFunction – is the radial function.

• update
public void update( double[][] x, double[] f )

– Description
Adds a set of data points, all with weight = 1.

– Parameters
∗ x – is a double matrix of size n by nDim containing the locations of the

data points for each dimension.
∗ f – is a double array containing the function values at the data points.

• update
public void update( double[][] x, double[] f, double[] w )

– Description
Adds a set of data points with user-specified weights.

– Parameters
∗ x – is a double matrix of size n by nDim containing the locations of the

data points for each dimension.
∗ f – is a double array containing the function values at the data points.
∗ w – is a double array containing the weights associated with the data points.

• update
public void update( double[] x, double f )
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– Description
Adds a data point with weight = 1.

– Parameters
∗ x – is a double array containing the locations of the data point.
∗ f – is a double containing the function value at the data point.

• update
public void update( double[] x, double f, double w )

– Description
Adds a data point with a specified weight.

– Parameters
∗ x – is a double array containing the locations of the data point.
∗ f – is a double containing the function value at the data point.
∗ w – is a double containing the weight of this data point.

• value
public double value( double[] x )

– Description
Returns the value of the radial basis approximation at a point.

– Parameters
∗ x – is a double array containing the locations of the data point at which

the approximation is to be computed.
– Returns – the value of the radial basis approximation at x.

• value
public double[] value( double[][] x )

– Description
Returns the value of the radial basis at a point.

– Parameters
∗ x – a double[], the point at which the radial basis is to be evaluated

– Returns – a double giving the value of the radial basis at the point x

Example: Radial Basis Function Approximation

The function
e−‖~x‖

2/d

where d is the dimension, is evaluated at a set of randomly choosen points. Random noise
is added to the values and a radial basis approximated to the noisy data is computed. The
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radial basis fit is then compared to the original function at another set of randomly
choosen points. Both the average error and the maximum error are computed and printed.

In this example, the dimension d=10. The function is sampled at 200 random points, in
the [−1, 1]d cube, to which what noise in the range [-0.2,0.2] is added. The error is
computed at 1000 random points, also from the [−1, 1]d cube. The compute errors are less
than the added noise.
import com.imsl.math.*;

import java.util.Random;

public class RadialBasisEx1 {

public static void main(String args[]) {
int nDim = 10;

// Sample, with noise, the function at 100 randomly choosen points

int nData = 200;

double xData[][] = new double[nData][nDim];

double fData[] = new double[nData];

Random rand = new Random(234567L);

for (int k = 0; k < nData; k++) {
for (int i = 0; i < nDim; i++) {

xData[k][i] = 2.0*rand.nextDouble() - 1.0;

}
// noisy sample

fData[k] = fcn(xData[k]) + 0.20*(2.0*rand.nextDouble()-1.0);

}

// Compute the radial basis approximation using 25 centers

int nCenters = 25;

RadialBasis rb = new RadialBasis(nDim, nCenters);

rb.update(xData, fData);

// Compute the error at a randomly selected set of points

int nTest = 1000;

double maxError = 0.0;

double aveError = 0.0;

double x[] = new double[nDim];

for (int k = 0; k < nTest; k++) {
for (int i = 0; i < nDim; i++) {

x[i] = 2.0*rand.nextDouble() - 1.0;

}
double error = Math.abs(fcn(x)-rb.value(x));
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aveError += error;

maxError = Math.max(error, maxError);

double f = fcn(x);

}
aveError /= nTest;

System.out.println("average error is "+aveError);

System.out.println("maximum error is "+maxError);

}

// The function to approximate

static double fcn(double x[]) {
double sum = 0.0;

for (int k = 0; k < x.length; k++) {
sum += x[k]*x[k];

}
sum /= x.length;

return Math.exp(-sum);

}
}

Output

average error is 0.02619296746295321

maximum error is 0.13197595135821727
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Chapter 4

Quadrature

Classes
Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Quadrature is a general-purpose integrator that uses a globally adaptive
scheme in order to reduce the absolute error.

HyperRectangleQuadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
HyperRectangleQuadrature integrates a function over a hypercube.

Usage Notes

Univariate Quadrature

Class Quadrature computes approximations to integrals of the form

∫ b

c
f (x)dx

Quadrature computes an estimated answer R. An optional value ErrorEstimate = E
estimates the error. These numbers are related as follows:

∣∣∣∣∣∣
b∫

a

f(x) dx−R

∣∣∣∣∣∣ ≤ E ≤ max

ε, ρ
∣∣∣∣∣∣

b∫
a

f(x) dx

∣∣∣∣∣∣


One situation that occasionally arises in univariate quadrature concerns the
approximation of integrals when only tabular data are given. The functions described
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above do not directly address this question. However, the standard method for handling
this problem is first to interpolate the data, and then to integrate the interpolant. This
can be accomplished by using a JMSL spline interpolation class derived from
com.imsl.math.Spline and the method com.imsl.Spline.integral (a,b)

Multivariate Quadrature

The class HypercubeQuadrature computes an approximation to the integral of a function
of n variables over a hyper-rectangle.

∫ b1

a1

...

∫ bn

an

f (x1, ... , xn)dxn... dx1

class Quadrature

Quadrature is a general-purpose integrator that uses a globally adaptive scheme in order to
reduce the absolute error. It subdivides the interval [A, B] and uses a
(2k + 1)-point Gauss-Kronrod rule to estimate the integral over each subinterval. The
error for each subinterval is estimated by comparison with the k-point Gauss quadrature
rule. The subinterval with the largest estimated error is then bisected and the same
procedure is applied to both halves. The bisection process is continued until either the
error criterion is satisfied, roundoff error is detected, the subintervals become too small, or
the maximum number of subintervals allowed is reached. The Class Quadrature is based
on the subroutine QAG by Piessens et al. (1983).

Declaration

public class com.imsl.math.Quadrature
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Class

interface Quadrature.Function

Public interface function for the Quadrature class.
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Declaration

public static interface com.imsl.math.Quadrature.Function

Method

• f
double f( double x )

– Description
Returns the value of the function at the given point.

– Parameters
∗ x – a double specifying the point at which the function is to be evaluated

– Returns – a double specifying the value of the function at x

Constructor

• Quadrature
public Quadrature( )

– Description
Constructs a Quadrature object.

Methods

• eval
public synchronized double eval( Quadrature.Function objectF, double
a, double b )

– Description
Returns the value of the integral from a to b.

– Parameters
∗ objectF – an implementation of Function containing the function to be

integrated
∗ a – a double specifying the lower limit of integration
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∗ b – a double specifying the upper limit of integration, either or both of a
and b can be Double.POSITIVE INFINITY or
Double.NEGATIVE INFINITY

• getErrorEstimate
public double getErrorEstimate( )

– Description
Returns an estimate of the relative error in the computed result.

– Returns – a double specifying an estimate of the relative error in the
computed result

• getErrorStatus
public int getErrorStatus( )

– Description
Returns the non-fatal error status.

– Returns – an int specifying the non-fatal error status:
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Status Meaning
1 Maximum number of subdivisions al-

lowed has been achieved. One can
allow more subdivisions by using set-
MaxSubintervals. If this yields no im-
provement it is advised to analyze the
integrand in order to determine the
integration difficulties. If the position
of a local difficulty can be determined
(e.g. singularity, discontinuity within
the interval) one will probably gain
from splitting up the interval at this
point and calling the integrator on the
subranges. If possible, an appropriate
special-purpose integrator should be
used, which is designed for handling
the type of difficulty involved.

2 The occurrence of roundoff error is de-
tected, which prevents the requested
tolerance from being achieved. The
error may be under-estimated.

3 Extremely bad integrand behavior oc-
curs at some points of the integration
interval.

5 The algorithm does not converge.
Roundoff error is detected in the ex-
trapolation table. It is presumed
that the requested tolerance cannot
be achieved, and that the returned re-
sult is the best that can be obtained.

6 The integral is probably divergent, or
slowly convergent. It must be noted
that divergence can occur with any
other status value.

• setAbsoluteError
public synchronized void setAbsoluteError( double errorAbsolute )

– Description
Sets the absolute error tolerance.

– Parameters
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∗ errorAbsolute – a double scalar value specifying the absolute error

• setExtrapolation
public synchronized void setExtrapolation( boolean doExtrapolation )

– Description
If true, the epsilon-algorithm for extrapolation is enabled. The default is false
(extrapolation is not used).

– Parameters
∗ doExtrapolation – a boolean, true if the epsilon-algorithm for

extrapolation is to be enabled, false otherwise

• setMaxSubintervals
public synchronized void setMaxSubintervals( int maxSubintervals )

– Description
Sets the maximum number of subintervals allowed. The default value is 500.

– Parameters
∗ maxSubintervals – an int specifying the maximum number of subintervals

to be allowed. The default is 500.

• setRelativeError
public synchronized void setRelativeError( double errorRelative )

– Description
Sets the relative error tolerance.

– Parameters
∗ errorRelative – a double scalar value specifying the relative error

• setRule
public synchronized void setRule( int rule )

– Description
Set the Gauss-Kronrod rule.
Rule Data points used
1 7 - 15
2 10 - 21
3 15 - 31
4 20 - 41
5 25 - 51
6 30 - 61
The default is rule 3.

– Parameters
∗ rule – an int specifying the rule to be used. The default is 3.
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Example 1: Integral
∫ 3

1
e2x dx

The integral
∫ 3
1 e

2x dx is computed and compared to its expected value.
import com.imsl.math.*;

public class QuadratureEx1 {
public static void main(String args[]) {

Quadrature.Function fcn = new Quadrature.Function() {
public double f(double x) {

return Math.exp(2.*x);

}
};

Quadrature q = new Quadrature();

double result = q.eval(fcn, 1.0, 3.0);

double expect = (Math.exp(6)-Math.exp(2))/2.;

System.out.println("result = "+result);

System.out.println("expect = "+expect);

}
}

Output

result = 198.01986869690225

expect = 198.01986869690222

Example 2: Integral
∫∞

0
e−x dx

The integral
∫∞
0 e−x dx is computed and compared to its expected value.

import com.imsl.math.*;

public class QuadratureEx2 {
public static void main(String args[]) {

Quadrature.Function fcn = new Quadrature.Function() {
public double f(double x) {

return Math.exp(-x);

}
};
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Quadrature q = new Quadrature();

double result = q.eval(fcn, 0.0, Double.POSITIVE INFINITY);

double expect = 1.;

System.out.println("result = "+result);

System.out.println("expect = "+expect);

}
}

Output

result = 0.999999999999999

expect = 1.0

Example 3: Integral of the entire real line

The integral
∫∞
−∞

x
4ex+9e−x dx is computed and compared to its expected value. This

integral is evaluated in Gradshteyn and Ryzhik (equation 3.417.1).
import com.imsl.math.*;

public class QuadratureEx3 {
public static void main(String args[]) {

Quadrature.Function fcn = new Quadrature.Function() {
public double f(double x) {

return x / (4*Math.exp(x)+9*Math.exp(-x));

}
};

Quadrature q = new Quadrature();

double result = q.eval(fcn, Double.NEGATIVE INFINITY,

Double.POSITIVE INFINITY);

double expect = Math.PI*Math.log(1.5)/12.;

System.out.println("result = "+result);

System.out.println("expect = "+expect);

}
}
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Output

result = 0.10615051707662819

expect = 0.10615051707663337

Reference

Gradshteyn, I. S. and I. M. Ryzhik (1965), Table of Integrals, Series, and Products,
Academic Press, New York.

Example 4: Integral of an oscillatory function

The integral of cos(ax) for a = 104 is computed and compared to its expected value.
Because the function is highly oscillatory, the quadrature rule is set to 6. The relative
error tolerance is also set.
import com.imsl.math.*;

public class QuadratureEx4 {
public static void main(String args[]) {

final double a = 1.0e4;

Quadrature.Function fcn = new Quadrature.Function() {
public double f(double x) {

return Math.cos(a*x);

}
};

Quadrature q = new Quadrature();

q.setRule(6);

q.setRelativeError(1.e-10);

double result = q.eval(fcn, 0.0, 1.0);

double expect = Math.sin(a)/a;

System.out.println("result = "+result);

System.out.println("expect = "+expect);

System.out.println("relative error = "+(expect-result)/expect);

System.out.println("relative error estimate = "+q.getErrorEstimate());

}
}
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Output

result = -3.05614388902526E-5

expect = -3.056143888882521E-5

relative error = -4.670545934003717E-11

relative error estimate = 1.0488375541870691E-8

class HyperRectangleQuadrature

HyperRectangleQuadrature integrates a function over a hypercube. This class is used to
evaluate integrals of the form:∫ bn−1

an−1

· · ·
∫ b0

a0

f(x0, . . . , xn−1) dx0 . . . dxn−1

Integration of functions over hypercubes by Monte Carlo, in which the integral is
evaluated as the value of the function averaged over a sequence of randomly chosen points.
Under mild assumptions on the function, this method will converge like 1/

√
n, where n is

the number of points at which the function is evaluated.

It is possible to improve on the performance of Monte Carlo by carefully choosing the
points at which the function is to be evaluated. Randomly distributed points tend to be
non-uniformly distributed. The alternative to a sequence of random points is a
low-discrepancy sequence. A low-discrepancy sequence is one that is highly uniform.

This function is based on the low-discrepancy Faure sequence as computed by
com.imsl.stat.FaureSequence.

Declaration

public class com.imsl.math.HyperRectangleQuadrature
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Class

interface HyperRectangleQuadrature.Function

Public interface function for the HyperRectangleQuadrature class.
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Declaration

public static interface com.imsl.math.HyperRectangleQuadrature.Function

Method

• f
double f( double[] x )

– Description
Returns the value of the function at the given point.

– Parameters
∗ x – a double array specifying the point at which the function is to be

evaluated
– Returns – a double specifying the value of the function at x

Constructors

• HyperRectangleQuadrature
public HyperRectangleQuadrature( int dim )

– Description
Constructs a HyperRectangleQuadrature object.

• HyperRectangleQuadrature
public HyperRectangleQuadrature( com.imsl.stat.RandomSequence
sequence )

– Description
Constructs a HyperRectangleQuadrature object.

Methods

• eval
public double eval( HyperRectangleQuadrature.Function objectF )

– Description
Returns the value of the integral over the unit cube.
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– Parameters
∗ objectF – Function containing the function to be integrated

• eval
public double eval( HyperRectangleQuadrature.Function objectF,
double[] a, double[] b )

– Description
Returns the value of the integral over a cube.

– Parameters
∗ objectF – Function containing the function to be integrated
∗ a – is a double specifying the lower limit of integration. If null all of the

lower limits default to 0.
∗ b – is a double specifying the upper limit of integration. If null all of the

upper limits default to 1.

• getErrorEstimate
public double getErrorEstimate( )

– Description
Returns an estimate of the relative error in the computed result.

– Returns – a double specifying an estimate of the relative error in the
computed result

• setAbsoluteError
public synchronized void setAbsoluteError( double errorAbsolute )

– Description
Sets the absolute error tolerance.

– Parameters
∗ errorAbsolute – a double scalar value specifying the absolute error

• setRelativeError
public synchronized void setRelativeError( double errorRelative )

– Description
Sets the relative error tolerance.

– Parameters
∗ errorRelative – a double scalar value specifying the relative error
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Example: HyperRectangle Quadrature

This example evaluates the following multidimensional integral, with n=10.

∫ bn−1

an−1

· · ·
∫ b0

a0

 n∑
i=0

(−1)i
i∏

j=0

xj

 dx0 . . . dxn−1 =
1
3

[
1−

(
−1

2

)n]

import com.imsl.math.*;

public class HyperRectangleQuadratureEx1 {
public static void main(String args[]) {

HyperRectangleQuadrature.Function fcn =

new HyperRectangleQuadrature.Function() {
public double f(double x[]) {

int sign = 1;

double sum = 0.0;

for (int i = 0; i < x.length; i++) {
double prod = 1.0;

for (int j = 0; j <= i; j++) {
prod *= x[j];

}
sum += sign * prod;

sign = -sign;

}
return sum;

}
};

HyperRectangleQuadrature q = new HyperRectangleQuadrature(10);

double result = q.eval(fcn);

System.out.println("result = "+result);

}
}

Output

result = 0.3331253832089543
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Chapter 5

Differential Equations

Classes
OdeRungeKutta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Solves an initial-value problem for ordinary differential equations using the
Runge-Kutta-Verner fifth-order and sixth-order method.

Usage Notes

Ordinary Differential Equations

An ordinary differential equation is an equation involving one or more dependent variables
called yi, one independent variable, t, and derivatives of the yi with respect to t.

In the initial-value problem (IVP), the initial or starting values of the dependent variables
yi at a known value t = t0 are given. Values of yi(t) for t > 0 or t < t0 are required.

The OdeRungeKutta class solves the IVP for ODEs of the form

dyi

dt
= y′i = fi (t, y1, ... , yN ) i = 1, ... , N

with yi = (t = t0) specified. Here, fi is a user-supplied function that must be evaluated at
any set of values (t, y1, . . . , yN ), i = 1, . . . , N .

This problem statement is abbreviated by writing it as a system of first-order ODEs,

y (t) [y1 (t) , . . . , yN (t)]T , [f1 (t, y) , . . . , fN (t, y)]T
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, so that the problem becomes y′ = f (t, y)with initial values y(t0).

The system

dy

dt
= y′ = f (t, y)

is said to be stiff if some of the eigenvalues of the Jacobian matrix

{
∂y′i/∂yj

}
are large and negative. This is frequently the case for differential equations modeling the
behavior of physical systems, such as chemical reactions proceeding to equilibrium where
subspecies effectively complete their reactions in different epochs. An alternate model
concerns discharging capacitors such that different parts of the system have widely
varying decay rates (or time constants).

Users typically identify stiff systems by the fact that numerical differential equation
solvers such as OdeRungeKutta are inefficient, or else completely fail. Special methods are
often required. The most common inefficiency is that a large number of evaluations of f(t,
y) (and hence an excessive amount of computer time) are required to satisfy the accuracy
and stability requirements of the software.

class OdeRungeKutta

Solves an initial-value problem for ordinary differential equations using the
Runge-Kutta-Verner fifth-order and sixth-order method.

Class OdeRungeKutta finds an approximation to the solution of a system of first-order
differential equations of the form y0 = f(t, y) with given initial data. The routine
attempts to keep the global error proportional to a user-specified tolerance. This routine
is efficient for nonstiff systems where the derivative evaluations are not expensive.

OdeRungeKutta is based on a code designed by Hull, Enright and Jackson (1976, 1977). It
uses Runge-Kutta formulas of order five and six developed by J. H. Verner.

Declaration

public class com.imsl.math.OdeRungeKutta
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable
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Inner Classes

interface OdeRungeKutta.Function

Public interface for user supplied function to OdeRungeKutta object.

Declaration

public static interface com.imsl.math.OdeRungeKutta.Function

Method

• f
void f( double x, double[] y, double[] yprime )

– Description
Returns the value of the function at the given point.

– Parameters
∗ x – a double, the point at which the function is to be evaluated
∗ y – a double array which contains the dependent variable values
∗ yprime – a double array which contains the value of the function at (x,y)

class OdeRungeKutta.ToleranceTooSmallException

Tolerance is too small.

Declaration

public static class com.imsl.math.OdeRungeKutta.ToleranceTooSmallException
extends com.imsl.IMSLException (page 1240)

Constructor

• OdeRungeKutta.ToleranceTooSmallException
public OdeRungeKutta.ToleranceTooSmallException( java.lang.String
key, java.lang.Object[] arguments )
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class OdeRungeKutta.DidNotConvergeException

The iteration did not converge.

Declaration

public static class com.imsl.math.OdeRungeKutta.DidNotConvergeException
extends com.imsl.IMSLException (page 1240)

Constructors

• OdeRungeKutta.DidNotConvergeException
public OdeRungeKutta.DidNotConvergeException( java.lang.String
message )

• OdeRungeKutta.DidNotConvergeException
public OdeRungeKutta.DidNotConvergeException( java.lang.String
key, java.lang.Object[] arguments )

Fields

• public static final int BEFORE STEP

– Used by method examineStep to indicate examining before the next step

• public static final int AFTER SUCCESSFUL STEP

– Used by method examineStep to indicate examining after a successful step

• public static final int AFTER UNSUCCESSFUL STEP

– Used by method examineStep to indicate examining after an unsuccessful step

Constructor

• OdeRungeKutta
public OdeRungeKutta( OdeRungeKutta.Function function )
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– Description
Constructs an ODE solver to solve the initial value problem dy/dx = f(x,y)

– Parameters
∗ function – Implementation of interface Function that defines the

right-hand side function f(x,y)

Methods

• examineStep
protected void examineStep( int state, double x, double[] y )

– Description
Called before and after each internal step.

– Parameters
∗ state – an int, one of BEFORE STEP, AFTER SUCCESSFUL STEP or

AFTER UNSUCCESSFUL STEP.
∗ x – double representing the indepenent variable.
∗ y – double array containing the dependent variables.

• setFloor
public synchronized void setFloor( double floor )

– Description
Sets the value used in the norm computation.

– Parameters
∗ floor – double used in the norm computation, default value is 1.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if floor is less than or

equal to zero.

• setInitialStepsize
public synchronized void setInitialStepsize( double stepsize )

– Description
Sets the initial internal step size.

– Parameters
∗ stepsize – double specifying the initial internal step size.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if stepsize is less

than or equal to zero.
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• setMaximumStepsize
public synchronized void setMaximumStepsize( double stepsize )

– Description
Sets the maximum internal step size.

– Parameters
∗ stepsize – Maximum internal step size. Default value is 2.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if stepsize is less

than or equal to 0.

• setMaxSteps
public synchronized void setMaxSteps( int maxSteps )

– Description
Sets the maximum number of internal steps allowed.

– Parameters
∗ maxSteps – int specifying the maximum number of internal steps allowed,

default value is 500
– Throws
∗ java.lang.IllegalArgumentException – is thrown if maxSteps is less

than or equal to zero.

• setMinimumStepsize
public synchronized void setMinimumStepsize( double stepsize )

– Description
Sets the minimum internal step size.

– Parameters
∗ stepsize – Minimum internal step size. Default value is 0.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if stepsize is less

than or equal to 0.

• setNorm
public synchronized void setNorm( int normMethod )

– Description
Sets the switch for determining the error norm.

– Parameters
∗ normMethod – int specifying the switch for determining the error norm,

default value is 0. In the following, ei is the absolute value fo an estimate
of the error in yi(t)
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norm Constraint
0 Minimum of the absolute error and

the relative error, equals the maxi-
mum of ei/max(|yi(t)|, 1)

1 Absolute error, equals max(ei)
2 Maximum of ei/max(|yi(t)|, f loor)

– Throws
∗ java.lang.IllegalArgumentException – is thrown if norm is is not 0, 1,

or 2.

• setScale
public synchronized void setScale( double scale )

– Description
Sets the scaling factor.

– Parameters
∗ scale – double specifying the scaling factor, default value is 1.e0

– Throws
∗ java.lang.IllegalArgumentException – is thrown if scale is less than or

equal to 0.

• setTolerance
public synchronized void setTolerance( double tolerance )

– Description
Sets the error tolerance.

– Parameters
∗ tolerance – double specifying the error tolerance. Default value is 1.0e-6.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if tolerance less than

or equal 0.

• solve
public synchronized void solve( double x, double xEnd, double[] y )
throws com.imsl.math.OdeRungeKutta.ToleranceTooSmallException,
com.imsl.math.OdeRungeKutta.DidNotConvergeException

– Description
Integrates the ODE system from x to xEnd. On all but the first call to solve,
the value of x must equal the value of xEnd for the previous call.

– Parameters
∗ x – double specifying the independent variable
∗ xEnd – double specifying the value of x at which the solution is desired
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∗ y – On input, double array containing the initial values. On output, double
array containing the approximate solution.

– Throws
∗ com.imsl.math.OdeRungeKutta.DidNotConvergeException – is thrown if

the number of internal steps exceeds maxSteps (default 500). This can be
an indication that the ODE system is stiff. This exception can also be
thrown if the error tolerance condition could not be met.
∗ com.imsl.math.OdeRungeKutta.ToleranceTooSmallException – is

thrown if the computation does not converge on some step.

• vnorm
protected double vnorm( double[] v, double[] y, double[] ymax )

– Description
Returns the norm of a vector.

– Parameters
∗ v – double array containing the vector whose norm is to be computed
∗ y – double array containing the values of the dependent variable
∗ ymax – double array containing the maximum y values computed thus far

– Returns – double scalar value representing the norm of the vector v

Example: Runge-Kutta-Verner ordinary differential equation solver

An ordinary differential equation problem is solved using a solver which implements the
Runge-Kutta-Verner method. The solution at time t=10 is printed.
import com.imsl.math.*;

public class OdeRungeKuttaEx1 {
public static void main(String args[]) throws com.imsl.IMSLException {

OdeRungeKutta.Function fcn = new OdeRungeKutta.Function() {
public void f(double t, double y[], double yprime[]) {

yprime[0] = 2. * y[0] * (1-y[1]);

yprime[1] = -y[1] * (1-y[0]);

}
};

double y[] = {1,3};
OdeRungeKutta q = new OdeRungeKutta(fcn);

int nsteps = 10;

for (int k = 0; k < nsteps; k++) {
q.solve(k, k+1, y);

}
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System.out.println("Result = {"+y[0]+","+y[1]+"}");
}

}

Output

Result = {3.1443416765160768,0.3488265985196999}
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Chapter 6

Transforms

Classes
FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

FFT functions.
ComplexFFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Complex FFT.

Usage Notes

Fast Fourier Transforms

A fast Fourier transform (FFT) is simply a discrete Fourier transform that is computed
efficiently. Basically, the straightforward method for computing the Fourier transform
takes approximately n2 operations where n is the number of points in the transform, while
the FFT (which computes the same values) takes approximately
n log n operations. The algorithms in this chapter are modeled on the Cooley-Tukey
(1965) algorithm. Hence, these functions are most efficient for integers that are highly
composite; that is, integers that are a product of small primes.

For the two classes, FFT and ComplexFFT, a single instance can be used to transform
multiple sequences of the same length. In this situation, the constructor computes the
initial setup once. This may result in substantial computational savings. For more
information on the use of these classes consult the documentation under the appropriate
class name.
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Continuous Versus Discrete Fourier Transform

There is, of course, a close connection between the discrete Fourier transform and the
continuous Fourier transform. Recall that the continuous Fourier transform is defined
(Brigham 1974) as

f̂ (ω) = (=f) (ω) =
∫ ∞

−∞
f (t)e−2πiωtdt

We begin by making the following approximation:

f̂ (ω) ≈
∫ T/2

−T/2
f (t)e−2πiωtdt

=
∫ T

0
f (t− T/2)e−2πiω(t−T/2)dt

= eπiωT

∫ T

0
f (t− T/2)e−2πiωtdt

If we approximate the last integral using the rectangle rule with spacing h = T/n , we have

f̂ (ω) ≈ eπiωTh
n−1∑
k=0

e−2πiωkhf (kh− T/2)

Finally, setting ω = j/T for j = 0, . . . , n− 1 yields

f̂ (j/T ) ≈ eπijh
n−1∑
k=0

e−2πijk/nf (kh− T/2) = (−1)j
n−1∑
k=0

e−2πijk/nfh
k

where the vector fh = (f(−T/2), . . . , f((n− 1)h− T/2)) . Thus, after scaling the
components by (−1)h , the discrete Fourier transform, as computed in ComplexFFT (with
input fh) is related to an approximation of the continuous Fourier transform by the above
formula.

class FFT

FFT functions.
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Class FFT computes the discrete Fourier transform of a real vector of size n. The method
used is a variant of the Cooley-Tukey algorithm, which is most efficient when n is a
product of small prime factors. If n satisfies this condition, then the computational effort
is proportional to n log n.

The forward method computes the forward transform. If n is even, then the forward
transform is

q2m−1 =
n−1∑
k=0

pk cos
2πkm
n

m = 1, . . . , n/2

q2m−2 = −
n−1∑
k=0

pk sin
2πkm
n

m = 1, . . . , n/2− 1

q0 =
n−1∑
k=0

pk

If n is odd, qm is defined as above for m from 1 to (n - 1)/2.

Let f be a real valued function of time. Suppose we sample f at n equally spaced time
intervals of length δ seconds starting at time t0. That is, we have

pi := f (t0 + i∆) i = 0, 1, . . . , n− 1

We will assume that n is odd for the remainder of this discussion. The class FFT treats this
sequence as if it were periodic of period n. In particular, it assumes that
f (t0) = f (t0 + n∆). Hence, the period of the function is assumed to be T = n∆. We can
invert the above transform for p as follows:

pm =
1
n

q0 + 2
(n−3)/2∑

k=0

q2k+1 cos
2πkm
n
− 2

(n−3)/2∑
k=0

q2k+2 sin
2πkm
n


This formula is very revealing. It can be interpreted in the following manner. The
coefficients q produced by FFT determine an interpolating trigonometric polynomial to the
data. That is, if we define

g (t) =
1
n

q0 + 2
(n−3)/2∑

k=0

q2k+1 cos
2πk (t− t0)

n∆
− 2

(n−3)/2∑
k=0

q2k+2 sin
2πk (t− t0)

n∆
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=
1
n

q0 + 2
(n−3)/2∑

k=0

q2k+1 cos
2πk (t− t0)

T
− 2

(n−3)/2∑
k=0

q2k+2 sin
2πk (t− t0)

T


then we have

f (t0 + (i− 1) ∆) = g (t0 + (i− 1))∆

Now suppose we want to discover the dominant frequencies, forming the vector P of
length (n + 1)/2 as follows:

P0 := |q0|

Pk :=
√
q22k−2 + q22k−1 k = 1, 2, . . . , (n− 1) /2

These numbers correspond to the energy in the spectrum of the signal. In particular, Pk

corresponds to the energy level at frequency

k

T
=

k

n∆
k = 0, 1, . . . ,

n− 1
2

Furthermore, note that there are only (n+ 1)/2 ≈ T/(2∆) resolvable frequencies when n
observations are taken. This is related to the Nyquist phenomenon, which is induced by
discrete sampling of a continuous signal. Similar relations hold for the case when n is even.

If the backward method is used, then the backward transform is computed. If n is even,
then the backward transform is

qm = p0 + (−1)m pn−1 + 2
n/2−1∑
k=0

p2k+1 cos
2πkm
n
− 2

n/2−2∑
k=0

p2k+2 sin
2πkm
n

If n is odd,

qm = p0 + 2
(n−3)/2∑

k=0

p2k+1 cos
2πkm
n
− 2

(n−3)/2∑
k=0

p2k+2 sin
2πkm
n

The backward Fourier transform is the unnormalized inverse of the forward Fourier
transform.

FFT is based on the real FFT in FFTPACK, which was developed by Paul Swarztrauber at
the National Center for Atmospheric Research.
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Declaration

public class com.imsl.math.FFT
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Constructor

• FFT
public FFT( int n )

– Description
Constructs an FFT object.

– Parameters
∗ n – is the length of the sequence to be transformed

Methods

• backward
public double[] backward( double[] coef )

– Description
Compute the real periodic sequence from its Fourier coefficients.

– Parameters
∗ coef – a double array containing the Fourier coefficients

– Returns – a double array containing the periodic sequence

• forward
public double[] forward( double[] seq )

– Description
Compute the Fourier coefficients of a real periodic sequence.

– Parameters
∗ seq – a double array containing the sequence to be transformed

– Returns – a double array containing the transformed sequence
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Example: Fast Fourier Transform

The Fourier coefficients of a periodic sequence are computed. The coefficients are then
used to reproduce the periodic sequence.
import com.imsl.math.*;

public class FFTEx1 {
public static void main(String args[]) {

double x[] = {1, 2, 3, 4, 5, 6, 7, 8};
FFT fft = new FFT(x.length);

double y[] = fft.forward(x);

double z[] = fft.backward(y);

for (int i = 0; i < x.length; i++) {
z[i] = z[i] / x.length;

}

new PrintMatrix("x").print(x);

new PrintMatrix("y").print(y);

new PrintMatrix("z").print(z);

}
}

Output

x

0

0 1

1 2

2 3

3 4

4 5

5 6

6 7

7 8

y

0

0 36

1 -4

2 9.657
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3 -4

4 4

5 -4

6 1.657

7 -4

z

0

0 1

1 2

2 3

3 4

4 5

5 6

6 7

7 8

class ComplexFFT

Complex FFT.

Class ComplexFFT computes the discrete complex Fourier transform of a complex vector of
size N. The method used is a variant of the Cooley-Tukey algorithm, which is most
efficient when N is a product of small prime factors. If N satisfies this condition, then the
computational effort is proportional to N log N. This considerable savings has historically
led people to refer to this algorithm as the “fast Fourier transform” or FFT.

Specifically, given an N-vector x, method forward returns

cm =
N−1∑
n=0

xne
−2πinm/N

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

√
NS
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Finally, note that we can invert the Fourier transform as follows:

xn =
1
N

N−1∑
j=0

cme
2πinj/N

This formula reveals the fact that, after properly normalizing the Fourier coefficients, one
has the coefficients for a trigonometric interpolating polynomial to the data. An
unnormalized inverse is implemented in backward. ComplexFFT is based on the complex
FFT in FFTPACK. The package, FFTPACK was developed by Paul Swarztrauber at the
National Center for Atmospheric Research.

Specifically, given an N-vector c, backward returns

sm =
N∑

n=0

cne
2πinm/N

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

√
NS

Finally, note that we can invert the inverse Fourier transform as follows:

cn =
1
N

N−1∑
m=0

sme
−2πinm/N

This formula reveals the fact that, after properly normalizing the Fourier coefficients, one
has the coefficients for a trigonometric interpolating polynomial to the data. backward is
based on the complex inverse FFT in FFTPACK. The package, FFTPACK was developed
by Paul Swarztrauber at the National Center for Atmospheric Research.

Declaration

public class com.imsl.math.ComplexFFT
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Constructor
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• ComplexFFT
public ComplexFFT( int n )

– Description
Constructs a complex FFT object.

– Parameters
∗ n – is the array size that this object can handle.

Methods

• backward
public Complex[] backward( Complex[] coef )

– Description
Compute the complex periodic sequence from its Fourier coefficients.

– Parameters
∗ coef – Complex array of Fourier coefficients

– Returns – Complex array containing the periodic sequence

• forward
public Complex[] forward( Complex[] seq )

– Description
Compute the Fourier coefficients of a complex periodic sequence.

– Parameters
∗ seq – is the Complex array containing the sequence to be transformed.

– Returns – a Complex array containing the transformed sequence.

Example: Complex FFT

The Fourier coefficients of a complex periodic sequence are computed. Then the
coefficients are used to try to reproduce the periodic sequence.
import com.imsl.math.*;

public class ComplexFFTEx1 {
public static void main(String args[]) {

Complex x[] = {
new Complex(1,8),

new Complex(2,7),

new Complex(3,6),
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new Complex(4,5),

new Complex(5,4),

new Complex(6,3),

new Complex(7,2),

new Complex(8,1)

};
ComplexFFT fft = new ComplexFFT(x.length);

Complex y[] = fft.forward(x);

Complex z[] = fft.backward(y);

for (int i = 0; i < x.length; i++) {
z[i] = Complex.divide(z[i], x.length);

}

new PrintMatrix("x").print(x);

new PrintMatrix("y").print(y);

new PrintMatrix("z").print(z);

}
}

Output

x

0

0 1+8i

1 2+7i

2 3+6i

3 4+5i

4 5+4i

5 6+3i

6 7+2i

7 8+1i

y

0

0 36+36i

1 5.657+13.657i

2 +8i

3 -2.343+5.657i

4 -4+4i

5 -5.657+2.343i
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6 -8

7 -13.657-5.657i

z

0

0 1+8i

1 2+7i

2 3+6i

3 4+5i

4 5+4i

5 6+3i

6 7+2i

7 8+1i
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Chapter 7

Nonlinear Equations

Classes
ZeroPolynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

The ZeroPolynomial class computes the zeros of a polynomial with complex
coefficients, Aberth’s method.

ZeroFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Muller’s method to find the zeros of a univariate function, f(x).

ZeroSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
Solves a system of n nonlinear equations f(x) = 0 using a modified Powell
hybrid algorithm.

Usage Notes

Zeros of a Polynomial

A polynomial function of degree n can be expressed as follows:

p(z) = anz
nn+ an−1z

n−1 + · · ·+ a1z + a0

where an 6= 0. The class finds zeros of a polynomial with real or complex coefficients using
Aberth’s method.

Zeros of a Function

The class uses Muller’s method to find the real zeros of a real-valued function.
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Root of System of Equations

A system of equations can be stated as follows:

fi(x) = 0, for i = 1, 2, . . . , n

where x ∈ Rn, and fi : Rn → R. The ZeroSystem class uses a modified hybrid method due
to M.J.D. Powell to find the zero of a system of nonlinear equations.

class ZeroPolynomial

The ZeroPolynomial class computes the zeros of a polynomial with complex coefficients,
Aberth’s method. This class is a Java translation of a Fortran code written by Dario
Andrea Bini, University of Pisa, Italy (bini@dm.unipi.it). Numerical computation of
polynomial zeros by means of Aberth’s method, Numerical Algorithms, 13 (1996), pp.
179-200. The original Fortran code includes the following notice.

All the software contained in this library is protected by copyright Permission to use,
copy, modify, and distribute this software for any purpose without fee is hereby granted,
provided that this entire notice is included in all copies of any software which is or
includes a copy or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED “AS IS”, WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. IN NO EVENT, NEITHER THE AUTHORS, NOR THE
PUBLISHER, NOR ANY MEMBER OF THE EDITORIAL BOARD OF THE
JOURNAL “NUMERICAL ALGORITHMS”, NOR ITS EDITOR-IN-CHIEF, BE
LIABLE FOR ANY ERROR IN THE SOFTWARE, ANY MISUSE OF IT OR ANY
DAMAGE ARISING OUT OF ITS USE. THE ENTIRE RISK OF USING THE
SOFTWARE LIES WITH THE PARTY DOING SO. ANY USE OF THE SOFTWARE
CONSTITUTES ACCEPTANCE OF THE TERMS OF THE ABOVE STATEMENT.

Declaration

public class com.imsl.math.ZeroPolynomial
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable
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Inner Class

class ZeroPolynomial.DidNotConvergeException

The iteration did not converge

Declaration

public static class com.imsl.math.ZeroPolynomial.DidNotConvergeException
extends com.imsl.IMSLException (page 1240)

Constructors

• ZeroPolynomial.DidNotConvergeException
public ZeroPolynomial.DidNotConvergeException( java.lang.String
message )

• ZeroPolynomial.DidNotConvergeException
public ZeroPolynomial.DidNotConvergeException( java.lang.String
key, java.lang.Object[] arguments )

Field

• public static final double EPSILON SMALL

– The smallest relative spacing for doubles.

Constructor

• ZeroPolynomial
public ZeroPolynomial( )

– Description
Creates an instance of the solver.
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Methods

• computeRoots
public synchronized Complex[] computeRoots( Complex[] coef ) throws
com.imsl.math.ZeroPolynomial.DidNotConvergeException

– Description
Computes the roots of the polynomial with Complex coefficients.

p(x) = coef[n]× xn + coef[n− 1]× xn−1 + . . .+ coef[0]

– Parameters
∗ coef – a Complex array containing the polynomial coefficients.

– Returns – a Complex array containing the roots of the polynomial.

• computeRoots
public synchronized Complex[] computeRoots( double[] coef ) throws
com.imsl.math.ZeroPolynomial.DidNotConvergeException

– Description
Computes the roots of the polynomial with real coefficients.

p(x) = coef[n]× xn + coef[n− 1]× xn−1 + . . .+ coef[0]

– Parameters
∗ coef – a double array containing the polynomial coefficients

– Returns – a Complex array containing the roots of the polynomial

• getRadius
public double getRadius( int index )

– Description
Returns an a-posteriori absolute error bound on the root.

– Parameters
∗ index – an int specifying the (0-based) index of the root whose error

bound is to be returned
– Returns – a double representing the error bound on the index-th root. NaN is

returned if the corresponding root cannot be represented as floating point due
to overflow or underflow or if the roots have not yet been computed.

• getRoot
public Complex getRoot( int index )
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– Description
Returns a zero of the polynomial.

– Parameters
∗ index – an int which specifies the (0-based) index of the root to be

returned
– Returns – a Complex which represents the index-th root of the polynomial

• getRoots
public Complex[] getRoots( )

– Description
Returns the zeros of the polynomial.

– Returns – a Complex array containing the roots of the polynomial

• getStatus
public boolean getStatus( int index )

– Description
Returns the error status of a root.

– Parameters
∗ index – an int representing the (0-based) index of the root whose error

status is to be returned
– Returns – a boolean representing the error status on the index-th root. It is

false if the approximation of the index-th root has been carried out successfully,
for example, the computed approximation can be viewed as the exact root of a
slightly perturbed polynomial. It is true if more iterations are needed for the
index-th root.

• setMaxIterations
public synchronized void setMaxIterations( int maxIterations )

– Description
Sets the maximum number of iterations allowed. The default value is 30.

– Parameters
∗ maxIterations – an int which specifies the maximum number of iterations

allowed
– Throws
∗ java.lang.IllegalArgumentException – is thrown if maxIterations is

less than or equal to zero.
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Example 1: Zeros of a Polynomial

The zeros of a polynomial with real coefficients are computed.
import com.imsl.math.*;

public class ZeroPolynomialEx1 {
public static void main(String args[]) throws

ZeroPolynomial.DidNotConvergeException {
double coef[] = {-2, 4, -3, 1};

ZeroPolynomial zp = new ZeroPolynomial();

Complex root[] = zp.computeRoots(coef);

for (int k = 0; k < root.length; k++) {
System.out.println("root = " + root[k]);

System.out.println(" radius = "+ zp.getRadius(k));

System.out.println(" status = "+ zp.getStatus(k));

}
}

}

Output

root = 0.9999999999999999-0.9999999999999997i

radius = 1.9197212602501468E-14

status = false

root = 1.0000000000000004+1.0000000000000002i

radius = 1.9618522761623435E-14

status = false

root = 1.0000000000000002-3.3087224502121107E-24i

radius = 2.5512925105887074E-14

status = false

Example 2: Zeros of a Polynomial with Complex Coefficients

The zeros of a polynomial with Complex coefficients are computed.
import com.imsl.math.*;

public class ZeroPolynomialEx2 {
public static void main(String args[]) throws
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ZeroPolynomial.DidNotConvergeException {
// Find zeros of z∧3-(3+6i)*z∧2+(-8+12i)*z+10
Complex coef[] = {

new Complex(10),

new Complex(-8, 12),

new Complex(-3, -6),

new Complex(1)

};

ZeroPolynomial zp = new ZeroPolynomial();

Complex root[] = zp.computeRoots(coef);

for (int k = 0; k < root.length; k++) {
System.out.println("root = " + root[k]);

System.out.println(" radius = "+ zp.getRadius(k));

System.out.println(" status = "+ zp.getStatus(k));

}
}

}

Output

root = 1.0+1.0i

radius = 6.105673569140261E-14

status = false

root = 1.0000000000000002+2.0000000000000004i

radius = 1.9846776908049295E-13

status = false

root = 0.9999999999999992+2.999999999999999i

radius = 1.5275632034267045E-13

status = false

class ZeroFunction

Muller’s method to find the zeros of a univariate function, f(x).

ZeroFunction computes n real zeros of a real function f. Given a user-supplied function
f(x) and an n-vector of initial guesses x1, x2, . . . , xn, the routine uses Muller’s method to
locate n real zeros of f, that is, n real values of x for which f(x) = 0. The routine has two
convergence criteria: the first requires that
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|f (xm
i )|

be less than errorAbsolute, specified by the setAbsoluteError method; the second
requires that the relative change of any two successive approximations to an xi be less
than ErrorRelative, specified by the setAbsoluteError method.

Here,

xm
i

is the m-th approximation to xi. Let errorAbsolute be ε1, and errorRelative be ε2. The
criteria may be stated mathematically as follows:

Criterion 1:

|f (xm
i )| < ε1

Criterion 2:

∣∣∣∣xm+1
i − xm

i

xm
i

∣∣∣∣ < ε2

“Convergence” is the satisfaction of either criterion.

Declaration

public class com.imsl.math.ZeroFunction
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Class

interface ZeroFunction.Function

Public interface for the user supplied function to ZeroFunction.

Declaration

public static interface com.imsl.math.ZeroFunction.Function
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Method

• f
double f( double x )

– Description
Returns the value of the function at the given point.

– Parameters
∗ x – a double specifying the point at which the function is to be evaluated

– Returns – a double specifying the value of the function at x

Constructor

• ZeroFunction
public ZeroFunction( )

– Description
Creates an instance of the solver.

Methods

• allConverged
public synchronized boolean allConverged( )

– Description
Returns true if the iterations for all of the roots have converged.

• computeZeros
public synchronized double[] computeZeros( ZeroFunction.Function
objectF, double[] guess )

– Description
Returns the zeros of a univariate function.

– Parameters
∗ objectF – contains the function for which the zeros will be found.
∗ guess – a double array containing an initial guess of the zeros. A zero will

be found for each point in guess.
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• getIterations
public synchronized int getIterations( int nRoot )

– Description
Returns the number of iterations used to compute a root.

– Parameters
∗ nRoot – an int specifying the index of the root

• setAbsoluteError
public synchronized void setAbsoluteError( double errorAbsolute )

– Description
Sets first stopping criterion. A zero x[i] is accepted if |f(x[i])| is less than this
tolerance. Its default value is about 1.0e-8.

– Parameters
∗ errorAbsolute – a double value specifying the first stopping criterion

– Throws
∗ java.lang.IllegalArgumentException – is thrown if errorAbsolute is

less than 0

• setMaxIterations
public synchronized void setMaxIterations( int maxIterations )

– Description
Sets the maximum number of iterations allowed per root. Its default value is
100.

– Parameters
∗ maxIterations – an int specifying the maximum number of iterations

allowed per root
– Throws
∗ java.lang.IllegalArgumentException – is thrown if maxIterations is

less than zero.

• setRelativeError
public synchronized void setRelativeError( double errorRelative )

– Description
Sets second stopping criterion is the relative error. A zero x[i] is accepted if the
relative change of two successive approximations to x[i] is less than this
tolerance. Its default value is about 1.0e-8.

– Parameters
∗ errorRelative – a double value specifying the second stopping criterion

– Throws
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∗ java.lang.IllegalArgumentException – is thrown if errorRelative is less
than 0 or greater than 1

• setSpread
public synchronized void setSpread( double spread )

– Description
Sets the spread. See setSpreadTolerance.

– Parameters
∗ spread – is the new spread. Its default value is 1.0.

• setSpreadTolerance
public synchronized void setSpreadTolerance( double spreadTolerance )

– Description
Sets the spread criteria for multiple zeros. If the zero x[i] has been computed
and |x[i]− x[j]| < spreadTolerance, where x[j] is a previously computed zero,
then the computation is restarted with a guess equal to x[i]+spread. The
default value for spreadTolerance is 1.0e-5.

– Parameters
∗ spreadTolerance – a double value specifying the spread tolerance

– Throws
∗ java.lang.IllegalArgumentException – is thrown if spreadTolerance is

less than zero.

Example: Zeros of a Univariate Function

In this example 3 zeros of the sin function are found.
import com.imsl.math.*;

public class ZeroFunctionEx1 {
public static void main(String args[]) {

ZeroFunction.Function fcn = new ZeroFunction.Function() {
public double f(double x) {

return Math.sin(x);

}
};

ZeroFunction zf = new ZeroFunction();

double guess[] = {5, 18, -6};
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double zeros[] = zf.computeZeros(fcn, guess);

for (int k = 0; k < zeros.length; k++) {
System.out.println(zeros[k]+" = "+(zeros[k]/Math.PI) + " pi");

}
}

}

Output

6.283185307179564 = 1.999999999999993 pi

18.84955592156295 = 6.0000000000077 pi

-6.283185307179641 = -2.0000000000000173 pi

class ZeroSystem

Solves a system of n nonlinear equations f(x) = 0 using a modified Powell hybrid
algorithm.

ZeroSystem is based on the MINPACK subroutine HYBRD1, which uses a modification of
M.J.D. Powell’s hybrid algorithm. This algorithm is a variation of Newton’s method,
which uses a finite-difference approximation to the Jacobian and takes precautions to avoid
large step sizes or increasing residuals. For further description, see More et al. (1980).

A finite-difference method is used to estimate the Jacobian. Whenever the exact Jacobian
can be easily provided, objectF should implement ZeroSystem.Jacobian.

Declaration

public class com.imsl.math.ZeroSystem
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Classes

class ZeroSystem.DidNotConvergeException

The iteration did not converge.
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Declaration

public static class com.imsl.math.ZeroSystem.DidNotConvergeException
extends com.imsl.IMSLException (page 1240)

Constructors

• ZeroSystem.DidNotConvergeException
public ZeroSystem.DidNotConvergeException( java.lang.String
message )

• ZeroSystem.DidNotConvergeException
public ZeroSystem.DidNotConvergeException( java.lang.String key,
java.lang.Object[] arguments )

interface ZeroSystem.Function

Public interface for user supplied function to ZeroSystem object.

Declaration

public static interface com.imsl.math.ZeroSystem.Function

Method

• f
void f( double[] x, double[] f )

– Description
Returns the value of the function at the given point.

– Parameters
∗ x – a double array which contains the point at which the function is to be

evaluated. The contents of this array must not be altered by this function.
∗ f – a double array which contains the value of the function at x.

interface ZeroSystem.Jacobian

Public interface for user supplied function to ZeroSystem object.
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Declaration

public static interface com.imsl.math.ZeroSystem.Jacobian
implements ZeroSystem.Function

Method

• jacobian
void jacobian( double[] x, double[][] jac )

– Description
Returns the value of the Jacobian at the given point.

– Parameters
∗ x – a double array which contains the point at which the Jacobian is to be

evaluated. The contents of this array must not be altered by this function.
∗ jac – a double matrix which contains the value of the Jacobian at x. The

value of jac[i][j] is the derivative of f[i] with respect to x[j].

class ZeroSystem.ToleranceTooSmallException

Tolerance too small

Declaration

public static class com.imsl.math.ZeroSystem.ToleranceTooSmallException
extends com.imsl.IMSLException (page 1240)

Constructor

• ZeroSystem.ToleranceTooSmallException
public ZeroSystem.ToleranceTooSmallException( java.lang.String key,
java.lang.Object[] arguments )

class ZeroSystem.TooManyIterationsException

Too many iterations.
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Declaration

public static class com.imsl.math.ZeroSystem.TooManyIterationsException
extends com.imsl.IMSLException (page 1240)

Constructors

• ZeroSystem.TooManyIterationsException
public ZeroSystem.TooManyIterationsException( )

• ZeroSystem.TooManyIterationsException
public ZeroSystem.TooManyIterationsException( java.lang.Object[]
arguments )

• ZeroSystem.TooManyIterationsException
public ZeroSystem.TooManyIterationsException( java.lang.String key,
java.lang.Object[] arguments )

Constructor

• ZeroSystem
public ZeroSystem( int n )

– Description
Creates an object to find the zeros of a system of n equations.

– Parameters
∗ n – is the number of equations that the solver handles

Methods

• setGuess
public void setGuess( double[] xguess )

– Description
Sets the initial guess for the array x. The default is to set x to all zeros.

– Parameters
∗ xguess – a double array containing the initial guess
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• setMaxIterations
public synchronized void setMaxIterations( int maxIterations )

– Description
Sets the maximum number of iterations allowed. The default value is 200.

– Parameters
∗ maxIterations – an int specifying the maximum number of iterations

allowed
– Throws
∗ java.lang.IllegalArgumentException – is thrown if maxIterations is

less than or equal to zero.

• setRelativeError
public synchronized void setRelativeError( double errorRelative )

– Description
Sets the relative error tolerance. The root is accepted if the relative error
between two successive approximations to this root is within errorRelative. The
default is the square root of the precision, about 1.0e-08.

– Parameters
∗ errorRelative – a double specifying the relative error tolerance

– Throws
∗ java.lang.IllegalArgumentException – is thrown if errorRelative is

less than 0 or greater than 1.

• solve
public synchronized double[] solve( ZeroSystem.Function objectF )
throws com.imsl.math.ZeroSystem.TooManyIterationsException,
com.imsl.math.ZeroSystem.ToleranceTooSmallException,
com.imsl.math.ZeroSystem.DidNotConvergeException

– Description
Solve a system of nonlinear equations using the Levenberg-Marquardt algorithm

– Parameters
∗ objectF – defines the function whose zero is to be found. If objectF

implements a Jacobian then its Jacobian is used. Otherwise a finite
difference is computed.

– Returns – a double array containing the solution
– Throws
∗ com.imsl.math.ZeroSystem.TooManyIterationsException – is thrown if

the maximum number of iterations is exceeded
∗ com.imsl.math.ZeroSystem.ToleranceTooSmallException – is thrown if

the error tolerance is too small
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∗ com.imsl.math.ZeroSystem.DidNotConvergeException – is thrown if the
algorithm does not converge

Example: Solve a System of Nonlinear Equations

A system of nonlinear equations is solved.
import com.imsl.math.*;

public class ZeroSystemEx1 {
public static void main(String args[]) throws com.imsl.IMSLException {

ZeroSystem.Function fcn = new ZeroSystem.Function() {
public void f(double x[], double f[]) {

f[0] = x[0] + Math.exp(x[0]-1.0) +

(x[1]+x[2])*(x[1]+x[2]) - 27.0;

f[1] = Math.exp(x[1]-2.0)/x[0] + x[2]*x[2] - 10.0;

f[2] = x[2] + Math.sin(x[1]-2.0) + x[1]*x[1] - 7.0;

}
};

ZeroSystem zf = new ZeroSystem(3);

double guess[] = {4, 4, 4};
zf.setGuess(guess);

new PrintMatrix("zeros").print(zf.solve(fcn));

}
}

Output

zeros

0

0 1

1 2

2 3

Nonlinear Equations ZeroSystem • 135



136 • ZeroSystem JMSL



Chapter 8

Optimization

Classes
MinUncon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Unconstrained minimization.
MinUnconMultiVar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

Unconstrained multivariate minimization.
NonlinLeastSquares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Nonlinear least squares.
LinearProgramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Linear programming problem using the revised simplex algorithm.
QuadraticProgramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Solves the convex quadratic programming problem subject to equality or in-
equality constraints.

MinConGenLin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Minimizes a general objective function subject to linear equality/inequality
constraints.

BoundedLeastSquares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Solves a nonlinear least-squares problem subject to bounds on the variables
using a modified Levenberg-Marquardt algorithm.

MinConNLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
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Usage Notes

Unconstrained Minimization

The unconstrained minimization problem can be stated as follows:

min
x ∈ Rn

f (x)

where f : Rn → R is continuous and has derivatives of all orders required by the
algorithms. The functions for unconstrained minimization are grouped into three
categories: univariate functions, multivariate functions, and nonlinear least-squares
functions.

For the univariate functions, it is assumed that the function is unimodal within the
specified interval. For discussion on unimodality, see Brent (1973).

The class MinUnconMultiVar finds the minimum of a multivariate function using a
quasi-Newton method. The default is to use a finite-difference approximation of the
gradient of f(x). Here, the gradient is defined to be the vector

∇f (x) =
[
∂f (x)
∂x1

,
∂f (x)
∂x2

, ... ,
∂f (x)
∂xn

]
However, when the exact gradient can be easily provided, the gradient should be provided
by implementing the interface MinUnconMultiVar.Gradient.

The nonlinear least-squares function uses a modified Levenberg-Marquardt algorithm.
The most common application of the function is the nonlinear data-fitting problem where
the user is trying to fit the data with a nonlinear model.

These functions are designed to find only a local minimum point. However, a function
may have many local minima. Try different initial points and intervals to obtain a better
local solution.

Linearly Constrained Minimization

The linearly constrained minimization problem can be stated as follows:

min
x ∈ Rn

f (x)

subject to A1x = b1

where f : Rn → R, A1 and A2 are coefficient matrices, and b1 and b2 are vectors. If f(x) is
linear, then the problem is a linear programming problem. If f(x) is quadratic, the
problem is a quadratic programming problem.
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The class LinearProgramming uses a revised simplex method to solve small- to
medium-sized linear programming problems. No sparsity is assumed since the coefficients
are stored in full matrix form.

The class QuadraticProgramming is designed to solve convex quadratic programming
problems using a dual quadratic programming algorithm. If the given Hessian is not
positive definite, then QuadraticProgramming modifies it to be positive definite. In this
case, output should be interpreted with care because the problem has been changed
slightly. Here, the Hessian of f(x) is defined to be the n x n matrix

∇2f (x) =
[

∂2

∂xi∂xj
f (x)

]

Nonlinearly Constrained Minimization

The nonlinearly constrained minimization problem can be stated as follows:

min
x ∈ Rn

f (x)

subject to gi (x) = 0 for i = 1, 2, . . . , m1

gi (x) ≥ 0 for i = m1 + 1, . . . , m

where f : Rn → R and gi : Rn → R, for i = 1, 2, . . . ,m.

The class MinConNLP uses a sequential equality constrained quadratic programming
algorithm to solve this problem. A more complete discussion of this algorithm can be
found in the documentation.

class MinUncon

Unconstrained minimization.

MinUncon uses two separate algorithms to compute the minimum depending on what the
user supplies as the function f.

If f defines the function whose minimum is to be found MinUncon uses a safeguarded
quadratic interpolation method to find a minimum point of a univariate function. Both
the code and the underlying algorithm are based on the routine ZXLSF written by M.J.D.
Powell at the University of Cambridge.

MinUncon finds the least value of a univariate function, f, where f implements
MinUnconFunction f. Optional data include an initial estimate of the solution, and a
positive number bound, specified by the setBound method. Let x0 = xguess where xguess
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is specified by the setGuess method and b = bound, then x is restricted to the interval
[x0 − b, x0 + b]. Usually, the algorithm begins the search by moving from x0 to x = x0 + s,
where s = step. step is set by the setStep method. If setStep is not called then step is set
to 0.1. step may be positive or negative. The first two function evaluations indicate the
direction to the minimum point, and the search strides out along this direction until a
bracket on a minimum point is found or until x reaches one of the bounds x0 ± b. During
this stage, the step length increases by a factor of between two and nine per function
evaluation; the factor depends on the position of the minimum point that is predicted by
quadratic interpolation of the three most recent function values.

When an interval containing a solution has been found, we will have three points, x1, x2,
and x3, with x1 < x2 < x3 and f(x2) ≤ f(x1) and f(x2) ≤ f(x3). There are three main
ingredients in the technique for choosing the new x from these three points. They are (i)
the estimate of the minimum point that is given by quadratic interpolation of the three
function values, (ii) a tolerance parameter ε, that depends on the closeness of f to a
quadratic, and (iii) whether x2 is near the center of the range between x1 and x3 or is
relatively close to an end of this range. In outline, the new value of x is as near as possible
to the predicted minimum point, subject to being at least ε from x2, and subject to being
in the longer interval between x1 and x2 or x2 and x3 when x2 is particularly close to x1

or x3. There is some elaboration, however, when the distance between these points is close
to the required accuracy; when the distance is close to the machine precision; or when ε is
relatively large.

The algorithm is intended to provide fast convergence when f has a positive and
continuous second derivative at the minimum and to avoid gross inefficiencies in
pathological cases, such as

f (x) = x+ 1.001 |x|

The algorithm can make ε large automatically in the pathological cases. In this case, it is
usual for a new value of x to be at the midpoint of the longer interval that is adjacent to
the least calculated function value. The midpoint strategy is used frequently when changes
to f are dominated by computer rounding errors, which will almost certainly happen if the
user requests an accuracy that is less than the square root of the machine precision. In
such cases, the routine claims to have achieved the required accuracy if it knows that
there is a local minimum point within distance δ of x, where δ = xacc, specified by the
setAccuracy method even though the rounding errors in f may cause the existence of other
local minimum points nearby. This difficulty is inevitable in minimization routines that
use only function values, so high precision arithmetic is recommended.

If f implements MinUnconDerivative then MinUncon uses a descent method with either the
secant method or cubic interpolation to find a minimum point of a univariate function. It
starts with an initial guess and two endpoints. If any of the three points is a local
minimum point and has least function value, the routine terminates with a solution.
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Otherwise, the point with least function value will be used as the starting point.

From the starting point, say xc, the function value fc = f(xc), the derivative value
gc = g(xc), and a new point xn defined by xn = xc − gc are computed. The function
fn = f(xn), and the derivative gn = g(xn) are then evaluated. If either fn ≥ fc or gn has
the opposite sign of gc, then there exists a minimum point between xc and xn; and an
initial interval is obtained. Otherwise, since xc is kept as the point that has lowest
function value, an interchange between xn and xc is performed. The secant method is
then used to get a new point

xs = xc − gc(
gn − gc

xn − xc
)

Let xn ← xs and repeat this process until an interval containing a minimum is found or
one of the convergence criteria is satisfied. The convergence criteria are as follows:
Criterion 1:

|xc − xn| ≤ εc

Criterion 2:

|gc| ≤ εg

where εc = max {1.0, |xc|} ε, ε is a relative error tolerance and εc is a gradient tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new
point. Function and derivative are then evaluated at that point; and accordingly, a smaller
interval that contains a minimum point is chosen. A safeguarded method is used to ensure
that the interval reduces by at least a fraction of the previous interval. Another cubic
interpolation is then performed, and this procedure is repeated until one of the stopping
criteria is met.

Declaration

public class com.imsl.math.MinUncon
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable
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Inner Classes

interface MinUncon.Function

Public interface for the user supplied function to the MinUncon object.

Declaration

public static interface com.imsl.math.MinUncon.Function

Method

• f
double f( double x )

– Description
Public interface for the smooth function of a single variable to be minimized.

– Parameters
∗ x – a double, the point at which the function is to be evaluated

– Returns – a double, the value of the function at x

interface MinUncon.Derivative

Public interface for the user supplied function to the MinUncon object.

Declaration

public static interface com.imsl.math.MinUncon.Derivative
implements MinUncon.Function

Method

• g
double g( double x )

– Description
Public interface for the smooth function of a single variable to be minimized.
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– Parameters
∗ x – a double, the point at which the derivative of the function is to be

evaluated
– Returns – a double, the value of the derivative of the function at x

Constructor

• MinUncon
public MinUncon( )

– Description
Unconstrained minimum constructor for a smooth function of a single variable
of type double.

Methods

• computeMin
public double computeMin( MinUncon.Function F )

– Description
Return the minimum of a smooth function of a single variable of type double

using function values only or using function values and derivatives.
– Parameters
∗ F – defines the function whose minimum is to be found. If F implements

Derivative then derivatives are used. Otherwise, an attempt to find the
minimum is made using function values only.

– Returns – a double scalar value containing the minimum of the input function

• setAccuracy
public void setAccuracy( double xacc )

– Description
Set the required absolute accuracy in the final value returned by member
function computeMin. If this member function is not called, the required
accuracy is set to 1.0e-8.

– Parameters
∗ xacc – a doublescalar value specifying the required absolute accuracy in

the final value returned by member function computeMin.
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• setBound
public void setBound( double bound )

– Description
Set the amount by which X may be changed from its initial value, xguess. If
this member function is not called, bound is set to 100.

– Parameters
∗ bound – a double scalar value specifying the amount by which X may be

changed from its initial value. In other words, X is restricted to the interval
[xguess-bound, xguess+bound].

• setDerivtol
public void setDerivtol( double gtol )

– Description
Set the derivative tolerance used by member function computeMin to decide if
the current point is a local minimum. This is the second stopping criterion. x is
returned as a solution when G(x) is less than or equal to gtol. gtol should be
nonnegative, otherwise zero will be used. If this member function is not called,
the derivative tolerance is set to 1.0e-8.

– Parameters
∗ gtol – a doublescalar value specifying the derivative tolerance used by

member function computeMin.

• setGuess
public void setGuess( double xguess )

– Description
Set the initial guess of the minimum point of the input function. If this
member function is not called, an initial guess of 0.0 is used.

– Parameters
∗ xguess – a double scalar value specifying the initial guess of the minimum

point of the input function

• setStep
public void setStep( double step )

– Description
Set the stepsize to use when changing x. If this member function is not called,
step is set to 0.1.

– Parameters
∗ step – a double scalar value specifying the order of magnitude estimate of

the required change in x when stepping towards the minimum
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Example 1: Minimum of a smooth function

The minimum of ex − 5x is found using function evaluations only.
import com.imsl.math.*;

public class MinUnconEx1 {
public static void main(String args[]) {

MinUncon zf = new MinUncon();

zf.setGuess(0.0);

zf.setAccuracy(0.001);

MinUncon.Function fcn = new MinUncon.Function() {
public double f(double x) {

return Math.exp(x) - 5.*x;

}
};
System.out.println("Minimum is " + zf.computeMin(fcn));

}
}

Output

Minimum is 1.6094175999200253

Example 2: Minimum of a smooth function

The minimum of ex − 5x is found using function evaluations and first derivative
evaluations.
import com.imsl.math.*;

public class MinUnconEx2 implements MinUncon.Derivative {
public double f(double x) {

return Math.exp(x) - 5.*x;

}

public double g(double x) {
return Math.exp(x) - 5.;

}

public static void main(String args[]) {
int n = 1;
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double xinit = 0.;

double x[] = {0.};
MinUncon zf = new MinUncon();

zf.setGuess(xinit);

zf.setAccuracy(.001);

MinUnconEx2 fcn = new MinUnconEx2();

x[0] = zf.computeMin(fcn);

for (int k = 0; k < n; k++) {
System.out.println("x["+k+"] = "+x[k]);

}
}

}

Output

x[0] = 1.6100113162270329

class MinUnconMultiVar

Unconstrained multivariate minimization.

Class MinUnconMultivar uses a quasi-Newton method to find the minimum of a function
f(x) of n variables. The problem is stated as follows:

min
x ∈ Rn

f (x)

Given a starting point xc, the search direction is computed according to the formula

d = −B−1gc

where B is a positive definite approximation of the Hessian, and gc is the gradient
evaluated at xc. A line search is then used to find a new point

xn = xc + λd, λ > 0

such that

f (xn) ≤ f (xc) + αgTd, α ∈ (0, 0.5)
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Finally, the optimality condition ||g(x)|| ≤ ε where ε is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula

B ← B − BssTB

sTBs
+
yyT

yT s

where s = xn − xc and y = gn − gc. Another search direction is then computed to begin
the next iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

In this implementation, the first stopping criterion for MinUnconMultivar occurs when the
norm of the gradient is less than the given gradient tolerance gradientTolerance. The
second stopping criterion for MinUnconMultivar occurs when the scaled distance between
the last two steps is less than the step tolerance stepTolerance.

Since by default, a finite-difference method is used to estimate the gradient for some single
precision calculations, an inaccurate estimate of the gradient may cause the algorithm to
terminate at a noncritical point. Supply gradient for a more accurate gradient evaluation
(setGradient).

Declaration

public class com.imsl.math.MinUnconMultiVar
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Classes

interface MinUnconMultiVar.Function

Public interface for the user supplied function to the MinUnconMultiVar object.

Declaration

public static interface com.imsl.math.MinUnconMultiVar.Function

Method

• f
double f( double[] x )
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– Description
Public interface for the multivariate function to be minimized.

– Parameters
∗ x – a double array, the point at which the function is to be evaluated

– Returns – a double, the value of the function at x

interface MinUnconMultiVar.Gradient

Public interface for the user supplied gradient to the MinUnconMultiVar object.

Declaration

public static interface com.imsl.math.MinUnconMultiVar.Gradient
implements MinUnconMultiVar.Function

Method

• gradient
void gradient( double[] x, double[] gradient )

– Description
Public interface for the gradient of the multivariate function to be minimized.

– Parameters
∗ x – a double array, the point at which the gradient of the function is to be

evaluated
∗ gradient – a double array, the value of the gradient of the function at x

class MinUnconMultiVar.ApproximateMinimumException

Scaled step tolerance satisfied; the current point may be an approximate local solution, or
the algorithm is making very slow progress and is not near a solution, or the scaled step
tolerance is too big.

Declaration

public static class com.imsl.math.MinUnconMultiVar.ApproximateMinimumException
extends com.imsl.IMSLException (page 1240)
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Constructors

• MinUnconMultiVar.ApproximateMinimumException
public MinUnconMultiVar.ApproximateMinimumException(
java.lang.String message )

• MinUnconMultiVar.ApproximateMinimumException
public MinUnconMultiVar.ApproximateMinimumException(
java.lang.String key, java.lang.Object[] arguments )

class MinUnconMultiVar.FalseConvergenceException

False convergence error; the iterates appear to be converging to a noncritical point.
Possibly incorrect gradient information is used, or the function is discontinuous, or the
other stopping tolerances are too tight.

Declaration

public static class com.imsl.math.MinUnconMultiVar.FalseConvergenceException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinUnconMultiVar.FalseConvergenceException
public MinUnconMultiVar.FalseConvergenceException(
java.lang.String message )

• MinUnconMultiVar.FalseConvergenceException
public MinUnconMultiVar.FalseConvergenceException(
java.lang.String key, java.lang.Object[] arguments )

class MinUnconMultiVar.MaxIterationsException

Maximum number of iterations exceeded.

Declaration

public static class com.imsl.math.MinUnconMultiVar.MaxIterationsException
extends com.imsl.IMSLException (page 1240)
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Constructors

• MinUnconMultiVar.MaxIterationsException
public MinUnconMultiVar.MaxIterationsException( java.lang.String
message )

• MinUnconMultiVar.MaxIterationsException
public MinUnconMultiVar.MaxIterationsException( java.lang.String
key, java.lang.Object[] arguments )

class MinUnconMultiVar.UnboundedBelowException

Five consecutive steps of the maximum allowable stepsize have been taken, either the
function is unbounded below, or has a finite asymptote in some direction or the maximum
allowable step size is too small.

Declaration

public static class com.imsl.math.MinUnconMultiVar.UnboundedBelowException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinUnconMultiVar.UnboundedBelowException
public MinUnconMultiVar.UnboundedBelowException(
java.lang.String message )

• MinUnconMultiVar.UnboundedBelowException
public MinUnconMultiVar.UnboundedBelowException(
java.lang.String key, java.lang.Object[] arguments )

Constructor

• MinUnconMultiVar
public MinUnconMultiVar( int n )
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– Description
Unconstrained minimum constructor for a function of n variables of type
double.

– Parameters
∗ n – An int scalar value which defines the number of variables of the

function whose minimum is to be found.

Methods

• computeMin
public double[] computeMin( MinUnconMultiVar.Function F ) throws
com.imsl.math.MinUnconMultiVar.FalseConvergenceException,
com.imsl.math.MinUnconMultiVar.MaxIterationsException,
com.imsl.math.MinUnconMultiVar.UnboundedBelowException

– Description
Return the minimum point of a function of n variables of type double using a
finite-difference gradient or using a user-supplied gradient.

– Parameters
∗ F – defines the function whose minimum is to be found. F can be used to

supply a gradient of the function. If F implements Gradient then the
user-supplied gradient is used. Otherwise, an attempt to find the minimum
is made using a finite-difference gradient.

– Returns – a double array containing the point at which the minimum of the
input function occurs.

• getErrorStatus
public int getErrorStatus( )

– Description
Returns the non-fatal error status.

– Returns – an int specifying the non-fatal error status:
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Status Meaning
1 The last global step failed to locate a

lower point than the current x value.
The current x may be an approximate
local minimizer and no more accuracy
is possible or the step tolerance may
be too large.

2 Relative function convergence; both
the actual and predicted relative re-
ductions in the function are less than
or equal to the relative function con-
vergence tolerance.

3 Scaled step tolerance satisfied; the
current point may be an approximate
local solution, or the algorithm is
making very slow progress and is not
near a solution, or the step tolerance
is too big.

• getIterations
public synchronized int getIterations( )

– Description
Returns the number of iterations used to compute a minimum.

– Returns – an int specifying the number of iterations used to compute the
minimum.

• setDigits
public void setDigits( double fdigit )

– Description
Set the number of good digits in the function. If this member function is not
called, fdigit is set to 15.0.

– Parameters
∗ fdigit – a double scalar value specifying the number of good digits in the

user supplied function
– Throws
∗ java.lang.IllegalArgumentException – is thrown if fdigit is less than

or equal to 0

• setFalseConvergenceTolerance
public void setFalseConvergenceTolerance( double
falseConvergenceTolerance )
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– Description
Set the false convergence tolerance. If this member function is not called,
2.22044604925031308e-14 is used as the false convergence tolerance.

– Parameters
∗ falseConvergenceTolerance – a double scalar value specifying the false

convergence tolerance
– Throws
∗ java.lang.IllegalArgumentException – is thrown if

falseConvergenceTolerance is less than or equal to 0

• setFscale
public void setFscale( double fscale )

– Description
Set the function scaling value for scaling the gradient. If this member function
is not called, the value of this scalar is set to 1.0.

– Parameters
∗ fscale – a double scalar specifying the function scaling value for scaling

the gradient
– Throws
∗ java.lang.IllegalArgumentException – is thrown if fscale is less than

or equal to 0.

• setGradientTolerance
public void setGradientTolerance( double gradientTolerance )

– Description
Sets the gradient tolerance. This first stopping criterion for this optimizer is
that the norm of the gradient be less than the gradient tolerance. If this
member function is not called, the cube root of machine precision squared is
used to compute the gradient.

– Parameters
∗ gradientTolerance – a double specifying the gradient tolerance used to

compute the gradient
– Throws
∗ java.lang.IllegalArgumentException – is thrown if gradientTolerance

is less than or equal to 0

• setGuess
public void setGuess( double[] xguess )

– Description
Set the initial guess of the minimum point of the input function. If this
member function is not called, the elements of this array are set to 0.0..
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– Parameters
∗ xguess – a double array specifying the initial guess of the minimum point

of the input function

• setIhess
public void setIhess( int ihess )

– Description
Set the Hessian initialization parameter. If this member function is not called,
ihess is set to 0.0 and the Hessian is initialized to the identity matrix. If this
member function is called and ihess is set to anything other than 0.0, the
Hessian is initialized to the diagonal matrix containing
max(abs(f(xguess)),fscale)*xscale*xscale

– Parameters
∗ ihess – an int scalar value specifying the Hessian initialization parameter.

If ihess = 0.0 the Hessian is initialized to the identity matrix. Otherwise,
the Hessian is initialized to the diagonal matrix containing
max(abs(f(xguess)),fscale)*xscale*xscale where xguess is the initial guess of
the computed solution and xscale is the scaling vector for the variables.

• setMaximumStepsize
public void setMaximumStepsize( double maximumStepsize )

– Description
Set the maximum allowable stepsize to use. If this member function is not
called, maximum stepsize is set to a default value based on a scaled xguess.

– Parameters
∗ maximumStepsize – a nonnegative double value specifying the maximum

allowable stepsize
– Throws
∗ java.lang.IllegalArgumentException – is thrown if maximumStepsize

is less than or equal to 0

• setMaxIterations
public void setMaxIterations( int maxIterations )

– Description
Set the maximum number of iterations allowed. If this member function is not
called, the maximum number of iterations is set to 100.

– Parameters
∗ maxIterations – an int specifying the maximum number of iterations

allowed
– Throws
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∗ java.lang.IllegalArgumentException – is thrown if maxIterations is
less than or equal to 0

• setRelativeTolerance
public void setRelativeTolerance( double relativeTolerance )

– Description
Set the relative function tolerance. If this member function is not called,
3.66685e-11 is used as the relative function tolerance.

– Parameters
∗ relativeTolerance – a double scalar value specifying the relative function

tolerance
– Throws
∗ java.lang.IllegalArgumentException – is thrown if relativeTolerance is

less than or equal to 0

• setStepTolerance
public void setStepTolerance( double stepTolerance )

– Description
Set the scaled step tolerance to use when changing x. If this member function
is not called, the scaled step tolerance is set to 3.66685e-11.
The second stopping criterion for this optimizer is that the scaled distance
between the last two steps be less than the step tolerance.

– Parameters
∗ stepTolerance – a double scalar value specifying the scaled step tolerance.

The i-th component of the scaled step between two points x and y is
computed as abs(x(i)-y(i))/max(abs(x(i)),1/xscale(i)) where xscale is the
scaling vector for the variables.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if stepTolerance is

less than or equal to 0

• setXscale
public void setXscale( double[] xscale )

– Description
Set the diagonal scaling matrix for the variables. If this member function is not
called, the elements of this array are set to 1.0..

– Parameters
∗ xscale – a double array specifying the diagonal scaling matrix for the

variables
– Throws
∗ java.lang.IllegalArgumentException – is thrown if any of the elements

of xscale is less than or equal to 0
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Example 1: Minimum of a multivariate function

The minimum of 100(x2 − x2
1)

2 + (1− x1)2 is found using function evaluations only.
import com.imsl.math.*;

public class MinUnconMultiVarEx1 {
public static void main(String args[]) throws Exception {

MinUnconMultiVar solver = new MinUnconMultiVar(2);

solver.setGuess(new double[]{-1.2, 1.0});
double x[] = solver.computeMin(new MinUnconMultiVar.Function() {

public double f(double[] x) {
return 100.*((x[1] - x[0] * x[0]) * (x[1] - x[0] * x[0])) +

(1. - x[0]) * (1. - x[0]);

}
});
System.out.println("Minimum point is (" +x[0] +", "+x[1]+")");

}
}

Output

Minimum point is (0.9999999672651304, 0.9999999330452095)

Example 2: Minimum of a multivariate function

The minimum of 100(x2 − x2
1)

2 + (1− x1)2 is found using function evaluations and a user
supplied gradient.
import com.imsl.math.*;

public class MinUnconMultiVarEx2 {

static class MyFunction implements MinUnconMultiVar.Gradient {
public double f(double[] x) {

return 100.*((x[1] - x[0] * x[0]) * (x[1] - x[0] * x[0])) +

(1. - x[0]) * (1. - x[0]);

}
public void gradient(double[] x, double[] gp) {

gp[0] = -400. * (x[1] - x[0] * x[0]) * x[0] - 2. * (1. - x[0]);

gp[1] = 200. * (x[1] - x[0]*x[0]);

}
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}

public static void main(String args[]) throws Exception {
MinUnconMultiVar solver = new MinUnconMultiVar(2);

solver.setGuess(new double[]{-1.2, 1.0});
double x[] = solver.computeMin(new MyFunction());

System.out.println("Minimum point is (" +x[0] +", "+x[1]+")");

}
}

Output

Minimum point is (0.9999999668823014, 0.9999999322542452)

class NonlinLeastSquares

Nonlinear least squares.

NonlinLeastSquares is based on the MINPACK routine LMDIF by Mor et al. (1980). It uses
a modified Levenberg-Marquardt method to solve nonlinear least squares problems. The
problem is stated as follows:

min
x∈Rn

1
2
F (x)T F (x) =

1
2

m∑
i=1

fi (x)
2

where m ≥ n, F : Rn → Rm, and fi(x) is the i-th component function of F(x). From a
current point, the algorithm uses the trust region approach:

min
xn∈Rn

‖F (xc) + J (xc) (xn − xc)‖2

subject to

‖xn − xc‖2 ≤ δc

to get a new point xn, which is computed as

xn = xc −
(
J (xc)

T J (xc) + µcI
)−1

J (xc)
T F (xc)
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where µc = 0 if δc ≥
∥∥∥∥(J (xc)

T J (xc)
)−1

J (xc)
T F (xc)

∥∥∥∥
2

and µc > 0 otherwise. F (xc)

and J(xc) are the function values and the Jacobian evaluated at the current point xc.
This procedure is repeated until the stopping criteria are satisfied. For more details, see
Levenberg (1944), Marquardt (1963), or Dennis and Schnabel (1983, Chapter 10).

A finite-difference method is used to estimate the Jacobian when the user supplied
function, f, defines the least-squares problem. Whenever the exact Jacobian can be easily
provided, f should implement NonlinLeastSquares.Jacobian.

Declaration

public class com.imsl.math.NonlinLeastSquares
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Classes

class NonlinLeastSquares.FalseConvergenceException

The iterates appear to be converging to a non-critical point.

Declaration

public static class com.imsl.math.NonlinLeastSquares.FalseConvergenceException
extends com.imsl.IMSLException (page 1240)

Constructors

• NonlinLeastSquares.FalseConvergenceException
public NonlinLeastSquares.FalseConvergenceException(
java.lang.String message )

• NonlinLeastSquares.FalseConvergenceException
public NonlinLeastSquares.FalseConvergenceException(
java.lang.String key, java.lang.Object[] arguments )
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class NonlinLeastSquares.RelativeFunctionConvergenceException

The scaled and predicted reductions in the function are less than or equal to the relative
function convergence tolerance.

Declaration

public static class com.imsl.math.NonlinLeastSquares.RelativeFunctionConvergenceException
extends com.imsl.IMSLException (page 1240)

Constructors

• NonlinLeastSquares.RelativeFunctionConvergenceException
public NonlinLeastSquares.RelativeFunctionConvergenceException(
java.lang.String message )

• NonlinLeastSquares.RelativeFunctionConvergenceException
public NonlinLeastSquares.RelativeFunctionConvergenceException(
java.lang.String key, java.lang.Object[] arguments )

class NonlinLeastSquares.StepToleranceException

Various possible errors involving the step tolerance.

Declaration

public static class com.imsl.math.NonlinLeastSquares.StepToleranceException
extends com.imsl.IMSLException (page 1240)

Constructors

• NonlinLeastSquares.StepToleranceException
public NonlinLeastSquares.StepToleranceException( java.lang.String
message )

• NonlinLeastSquares.StepToleranceException
public NonlinLeastSquares.StepToleranceException( java.lang.String
key, java.lang.Object[] arguments )
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class NonlinLeastSquares.StepMaxException

Either the function is unbounded below, has a finite asymptote in some direction, or the
maximum stepsize is too small.

Declaration

public static class com.imsl.math.NonlinLeastSquares.StepMaxException
extends com.imsl.IMSLException (page 1240)

Constructors

• NonlinLeastSquares.StepMaxException
public NonlinLeastSquares.StepMaxException( java.lang.String
message )

• NonlinLeastSquares.StepMaxException
public NonlinLeastSquares.StepMaxException( java.lang.String key,
java.lang.Object[] arguments )

class NonlinLeastSquares.TooManyIterationsException

Too many iterations.

Declaration

public static class com.imsl.math.NonlinLeastSquares.TooManyIterationsException
extends com.imsl.IMSLException (page 1240)

Constructors

• NonlinLeastSquares.TooManyIterationsException
public NonlinLeastSquares.TooManyIterationsException( )

• NonlinLeastSquares.TooManyIterationsException
public NonlinLeastSquares.TooManyIterationsException(
java.lang.Object[] arguments )
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• NonlinLeastSquares.TooManyIterationsException
public NonlinLeastSquares.TooManyIterationsException(
java.lang.String key, java.lang.Object[] arguments )

interface NonlinLeastSquares.Function

Public interface for the user supplied function to the NonlinLeastSquares object.

Declaration

public static interface com.imsl.math.NonlinLeastSquares.Function

Method

• f
void f( double[] x, double[] f )

– Description
Public interface for the nonlinear least-squares function.

– Parameters
∗ x – a double array containing the point at which the function is to be

evaluated. The contents of this array must not be altered by this function.
∗ f – a double array containing the returned value of the function at x.

interface NonlinLeastSquares.Jacobian

Public interface for the user supplied function to the NonlinLeastSquares object.

Declaration

public static interface com.imsl.math.NonlinLeastSquares.Jacobian
implements NonlinLeastSquares.Function

Method
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• jacobian
void jacobian( double[] x, double[][] jacobian )

– Description
Public interface for the nonlinear least squares function.

– Parameters
∗ x – is a double array containing the point at which the Jacobian of the

function is to be evaluated
∗ jacobian – is a double matrix containing the returned value of the

Jacobian of the function at x

Constructor

• NonlinLeastSquares
public NonlinLeastSquares( int m, int n )

– Description
Creates an object to solve a nonlinear least squares problem.

– Parameters
∗ m – is the number of functions
∗ n – is the number of variables. n must be less than or equal to m.

Methods

• getErrorStatus
public int getErrorStatus( )

– Description
Get information about the performance of NonlinLeastSquares.
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– Returns – an int specifying information about convergence.
value meaning
0 All convergence tests were met.
1 Scaled step tolerance was satisfied.

The current point may be an approx-
imate local solution, or the algorithm
is making very slow progress and is
not near a solution, or StepTolerance
is too big.

2 Scaled actual and predicted reduc-
tions in the function are less than or
equal to the relative function conver-
gence tolerance RelativeTolerance.

3 Iterates appear to be converging to a
noncritical point. Incorrect gradient
information, a discontinuous function,
or stopping tolerances being too tight
may be the cause.

4 Five consecutive steps with the maxi-
mum stepsize have been taken. Either
the function is unbounded below, or
has a finite asymptote in some direc-
tion, or the maximum stepsize is too
small.

• setAbsoluteTolerance
public void setAbsoluteTolerance( double absoluteTolerance )

– Description
Set the absolute function tolerance. If this member function is not called,
1.0e-32 is used as the absolute function tolerance.

– Parameters
∗ absoluteTolerance – a double scalar value specifying the absolute

function tolerance
– Throws
∗ java.lang.IllegalArgumentException – is thrown if absoluteTolerance

is less than or equal to 0

• setDigits
public void setDigits( int ngood )

– Description
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Set the number of good digits in the function. If this member function is not
called, the number of good digits is set to 7.

– Parameters
∗ ngood – an int specifying the number of good digits in the user supplied

function which defines the least-squares problem
– Throws
∗ java.lang.IllegalArgumentException – is thrown if ngood is less than

or equal to 0

• setFalseConvergenceTolerance
public void setFalseConvergenceTolerance( double
falseConvergenceTolerance )

– Description
Set the false convergence tolerance. If this member function is not called,
100.0e-16 is used as the false convergence tolerance.

– Parameters
∗ falseConvergenceTolerance – a double scalar value specifying the false

convergence tolerance
– Throws
∗ java.lang.IllegalArgumentException – is thrown if

falseConvergenceTolerance is less than or equal to 0

• setFscale
public void setFscale( double[] fscale )

– Description
Set the diagonal scaling matrix for the functions. If this member function is not
called, the identity is used.

– Parameters
∗ fscale – a double array specifying the diagonal scaling matrix for the

functions
– Throws
∗ java.lang.IllegalArgumentException – is thrown if any of the elements

of fscale is less than or equal to 0

• setGradientTolerance
public void setGradientTolerance( double gradientTolerance )

– Description
Set the gradient tolerance used to compute the gradient. If this member
function is not called, the cube root of machine precision squared is used to
compute the gradient.
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– Parameters
∗ gradientTolerance – a double specifying the gradient tolerance used to

compute the gradient
– Throws
∗ java.lang.IllegalArgumentException – is thrown if gradientTolerance

is less than or equal to 0

• setGuess
public void setGuess( double[] xguess )

– Description
Set the initial guess of the minimum point of the input function. If this
member function is not called, an initial guess of 0.0 is used.

– Parameters
∗ xguess – a double array specifying the initial guess of the minimum point

of the input function

• setInitialTrustRegion
public void setInitialTrustRegion( double initialTrustRegion )

– Description
Set the initial trust region radius. If this member function is not called, a
default is set based on the initial scaled Cauchy step.

– Parameters
∗ initialTrustRegion – a double scalar value specifying the initial trust

region radius
– Throws
∗ java.lang.IllegalArgumentException – is thrown if initialTrustRegion

is less than or equal to 0

• setMaximumStepsize
public void setMaximumStepsize( double maximumStepsize )

– Description
Set the maximum allowable stepsize to use. If this member function is not
called, maximum stepsize is set to a default value based on a scaled xguess.

– Parameters
∗ maximumStepsize – a nonnegative double value specifying the maximum

allowable stepsize
– Throws
∗ java.lang.IllegalArgumentException – is thrown if maximumStepsize

is less than or equal to 0
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• setMaxIterations
public void setMaxIterations( int maxIterations )

– Description
Set the maximum number of iterations allowed. If this member function is not
called, the maximum number of iterations is set to 100.

– Parameters
∗ maxIterations – an int specifying the maximum number of iterations

allowed
– Throws
∗ java.lang.IllegalArgumentException – is thrown if maxIterations is

less than or equal to 0

• setRelativeTolerance
public void setRelativeTolerance( double relativeTolerance )

– Description
Set the relative function tolerance. If this member function is not called,
1.0e-20 is used as the relative function tolerance.

– Parameters
∗ relativeTolerance – a double scalar value specifying the relative function

tolerance
– Throws
∗ java.lang.IllegalArgumentException – is thrown if relativeTolerance is

less than or equal to 0

• setStepTolerance
public void setStepTolerance( double stepTolerance )

– Description
Set the step tolerance used to step between two points. If this member function
is not called, the cube root of machine precision is used as the step tolerance.

– Parameters
∗ stepTolerance – a double scalar value specifying the step tolerance used

to step between two points
– Throws
∗ java.lang.IllegalArgumentException – is thrown if stepTolerance is

less than or equal to 0

• setXscale
public void setXscale( double[] xscale )

166 • NonlinLeastSquares JMSL



– Description
Set the diagonal scaling matrix for the variables. If this member function is not
called, the identity is used.

– Parameters
∗ xscale – a double array specifying the diagonal scaling matrix for the

variables
– Throws
∗ java.lang.IllegalArgumentException – is thrown if any of the elements

of xscale is less than or equal to 0

• solve
public double[] solve( NonlinLeastSquares.Function F ) throws
com.imsl.math.NonlinLeastSquares.TooManyIterationsException

– Description
Solve a nonlinear least-squares problem using a modified Levenberg-Marquardt
algorithm and a Jacobian.

– Parameters
∗ F – User supplied function that defines the least-squares problem. If F

implements Jacobian then its Jacobian is used. Otherwise, a finite
difference Jacobian is used.

– Returns – a double array of length n containing the approximate solution
– Throws
∗ com.imsl.math.NonlinLeastSquares.TooManyIterationsException – is

thrown if the number of iterations exceeds MaxIterations. MaxIterations is
set to 100 by default.

Example 1: Nonlinear least-squares problem

A nonlinear least-squares problem is solved using a finite-difference Jacobian.
import com.imsl.math.*;

public class NonlinLeastSquaresEx1 {
public static void main(String args[]) throws

NonlinLeastSquares.TooManyIterationsException {
NonlinLeastSquares.Function zsf = new NonlinLeastSquares.Function() {

public void f(double x[], double f[]) {
f[0] = 10. * (x[1] - x[0]*x[0]);

f[1] = 1. - x[0];

}
};
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int m = 2;

int n = 2;

double xguess[] = {-1.2, 1.};
double xscale[] = {1., 1.};
double fscale[] = {1., 1.};
double x[] = new double[2];

NonlinLeastSquares zs = new NonlinLeastSquares(m,n);

zs.setGuess(xguess);

zs.setXscale(xscale);

zs.setFscale(fscale);

x = zs.solve(zsf);

for (int k = 0; k < n; k++) {
System.out.println("x["+k+"] = "+x[k]);

}
}

}

Output

x[0] = 1.0

x[1] = 1.0

Example 2: Nonlinear least-squares problem

A nonlinear least-squares problem is solved using a user-supplied Jacobian.
import com.imsl.math.*;

public class NonlinLeastSquaresEx2 {
public static void main(String args[]) throws

NonlinLeastSquares.TooManyIterationsException {

NonlinLeastSquares.Jacobian zsj = new NonlinLeastSquares.Jacobian() {
public void f(double x[], double f[]) {

f[0] = 10. * (x[1] - x[0]*x[0]);

f[1] = 1. - x[0];

}
public void jacobian(double x[], double fjac[][]) {

fjac[0][0] = -20.*x[0];

fjac[1][0] = 10.;
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fjac[0][1] = -1.;

fjac[1][1] = 0.;

}
};

int m = 2;

int n = 2;

double xguess[] = {-1.2, 1.};
double xscale[] = {1., 1.};
double fscale[] = {1., 1.};
double x[] = new double[2];

NonlinLeastSquares zs = new NonlinLeastSquares(m,n);

zs.setGuess(xguess);

zs.setXscale(xscale);

zs.setFscale(fscale);

x = zs.solve(zsj);

for (int k = 0; k < n; k++) {
System.out.println("x["+k+"] = "+x[k]);

}
}

}

Output

x[0] = 1.0

x[1] = 1.0

class LinearProgramming

Linear programming problem using the revised simplex algorithm.

Class LinearProgramming uses a revised simplex method to solve linear programming
problems, i.e., problems of the form

min
x ∈ Rn

cTx

subject to
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bl ≤ Ax ≤ bu

xl ≤ x ≤ xu

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl,
bu, xl, and xu are the lower and upper bounds on the constraints and the variables,
respectively.

For a complete description of the revised simplex method, see Murtagh (1981) or Murty
(1983).

Declaration

public class com.imsl.math.LinearProgramming
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Classes

class LinearProgramming.WrongConstraintTypeException

Declaration

public static class com.imsl.math.LinearProgramming.WrongConstraintTypeException
extends com.imsl.IMSLException (page 1240)

Deprecated

The values for the type of constraint must be either 0, 1 or 2.

Constructors

• LinearProgramming.WrongConstraintTypeException
public LinearProgramming.WrongConstraintTypeException(
java.lang.String message )

• LinearProgramming.WrongConstraintTypeException
public LinearProgramming.WrongConstraintTypeException(
java.lang.String key, java.lang.Object[] arguments )
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class LinearProgramming.BoundsInconsistentException

The bounds given are inconsistent.

Declaration

public static class com.imsl.math.LinearProgramming.BoundsInconsistentException
extends com.imsl.IMSLException (page 1240)

Constructors

• LinearProgramming.BoundsInconsistentException
public LinearProgramming.BoundsInconsistentException(
java.lang.String message )

• LinearProgramming.BoundsInconsistentException
public LinearProgramming.BoundsInconsistentException(
java.lang.String key, java.lang.Object[] arguments )

class LinearProgramming.NumericDifficultyException

Numerical difficulty occurred. (Moved to a vertex that is poorly condidtioned).

Declaration

public static class com.imsl.math.LinearProgramming.NumericDifficultyException
extends com.imsl.IMSLException (page 1240)

Constructors

• LinearProgramming.NumericDifficultyException
public LinearProgramming.NumericDifficultyException(
java.lang.String message )

• LinearProgramming.NumericDifficultyException
public LinearProgramming.NumericDifficultyException(
java.lang.String key, java.lang.Object[] arguments )
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class LinearProgramming.ProblemInfeasibleException

The problem is not feasible. The constraints are inconsistent.

Declaration

public static class com.imsl.math.LinearProgramming.ProblemInfeasibleException
extends com.imsl.math.LinearProgramming.NumericDifficultyException (page 171)

Constructors

• LinearProgramming.ProblemInfeasibleException
public LinearProgramming.ProblemInfeasibleException( )

• LinearProgramming.ProblemInfeasibleException
public LinearProgramming.ProblemInfeasibleException(
java.lang.String message )

class LinearProgramming.ProblemUnboundedException

The problem is unbounded.

Declaration

public static class com.imsl.math.LinearProgramming.ProblemUnboundedException
extends com.imsl.math.LinearProgramming.NumericDifficultyException (page 171)

Constructors

• LinearProgramming.ProblemUnboundedException
public LinearProgramming.ProblemUnboundedException( )

• LinearProgramming.ProblemUnboundedException
public LinearProgramming.ProblemUnboundedException(
java.lang.String message )
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Constructor

• LinearProgramming
public LinearProgramming( double[][] a, double[] b, double[] c )

– Description
Constructor variables of type double.

– Parameters
∗ a – A double matrix with coefficients of the constraints
∗ b – A double array containing the right-hand side of the constraints.
∗ c – A double array containing the coefficients of the objective function.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if the dimensions of a,

b.length, and c.length are not consistent.

Methods

• clone
public java.lang.Object clone( )

– Description
Creates and returns a copy of this object.

• getDualSolution
public double[] getDualSolution( )

– Description
Returns the dual solution.

– Returns – a double array containing the dual solution of the linear
programming problem.

• getOptimalValue
public double getOptimalValue( )

– Description
Returns the optimal value of the objective function.

– Returns – a double scalar containing the optimal value of the objective
function.

• getPrimalSolution
public double[] getPrimalSolution( )
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– Description
Returns the solution x of the linear programming problem.

– Returns – a double array containing the solution x of the linear programming
problem.

• setConstraintType
public void setConstraintType( int[] constraintType )

– Description
Sets the types of general constraints in the matrix a.

– Parameters
∗ constraintType – a int array containing the types of general constraints.

constraintType Constraint
0 ri = bi

1 ri ≤ bui

2 ri ≥ bi

3 bi ≤ ri ≤ bui

• setLowerBound
public void setLowerBound( double[] lowerBound )

– Description
Sets the lower bound on the variables. If there is no lower bound on a variable,
then 1.0e30 should be set as the lower bound.

– Parameters
∗ lowerBound – a double array containing the lower bound on the variables.

• setMaximumIteration
public void setMaximumIteration( int iterations )

– Description
Sets the maximum number of iterations. Default is set to 10000.

– Parameters
∗ iterations – a int scalar specifying the maximum number of iterations.

• setUpperBound
public void setUpperBound( double[] upperBound )

– Description
Sets the upper bound on the variables. If there is no upper bound on a
variable, then -1.0e30 should be set as the upper bound.

– Parameters
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∗ upperBound – a double array containing the upper bound on the variables.

• setUpperLimit
public void setUpperLimit( double[] upperLimit )

– Description
Sets the upper limit of the constraints.

– Parameters
∗ upperLimit – a double array containing the upper limit of the constraints

that have both the lower and the upper bounds.

• solve
public final void solve( ) throws
com.imsl.math.LinearProgramming.BoundsInconsistentException,
com.imsl.math.LinearProgramming.NumericDifficultyException,
com.imsl.math.LinearProgramming.ProblemInfeasibleException,
com.imsl.math.LinearProgramming.ProblemUnboundedException,
com.imsl.math.SingularMatrixException

– Description
Solves the program using the revised simplex algorithm.

– Throws
∗ com.imsl.math.LinearProgramming.BoundsInconsistentException – is

thrown if the bounds are inconsistent.
∗ com.imsl.math.LinearProgramming.ProblemInfeasibleException – is

thrown if there is no feasible solution to the problem.
∗ com.imsl.math.LinearProgramming.ProblemUnboundedException – is

thrown if there is no finite solution to the problem.
∗ com.imsl.math.LinearProgramming.NumericDifficultyException – is

thrown if there is a numerical problem during the solution.

Example 1: Linear Programming

The linear programming problem in the standard form

min f(x) = −x1 − 3x2

subject to:

x1 + x2 + x3 = 1.5
x1 + x2 − x4 = 0.5
x1 + x5 = 1.0
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x2 + x6 = 1.0
xi ≥ 0, for i = 1, . . . , 6

is solved.
import com.imsl.math.*;

public class LinearProgrammingEx1 {
public static void main(String args[]) throws Exception {

double[][] a = {
{1.0, 1.0, 1.0, 0.0, 0.0, 0.0},
{1.0, 1.0, 0.0, -1.0, 0.0, 0.0},
{1.0, 0.0, 0.0, 0.0, 1.0, 0.0},
{0.0, 1.0, 0.0, 0.0, 0.0, 1.0}

};
double[] b = {1.5, 0.5, 1.0, 1.0};
double[] c = {-1.0, -3.0, 0.0, 0.0, 0.0, 0.0};

LinearProgramming zf = new LinearProgramming(a, b, c);

zf.solve();

new PrintMatrix("Solution").print(zf.getPrimalSolution());

}
}

Output

Solution

0

0 0.5

1 1

2 0

3 1

4 0.5

5 0
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Example 2: Linear Programming

The linear programming problem

min f(x) = −x1 − 3x2

subject to:

0.5 ≤ x1 + x2 ≤ 1.5
0 ≤ x1 ≤ 1.0
0 ≤ x2 ≤ 1.0

is solved.
import com.imsl.math.*;

public class LinearProgrammingEx2 {
public static void main(String args[]) throws Exception {

int[] constraintType = {3};
double[] upperBound = {1.0, 1.0};
double[][] a = {{1.0, 1.0}};
double[] b = {0.5};
double[] upperLimit = {1.5};
double[] c = {-1.0, -3.0};

LinearProgramming zf = new LinearProgramming(a, b, c);

zf.setUpperLimit(upperLimit);

zf.setConstraintType(constraintType);

zf.setUpperBound(upperBound);

zf.solve();

new PrintMatrix("Solution").print(zf.getPrimalSolution());

new PrintMatrix("Dual Solution").print(zf.getDualSolution());

System.out.println("Optimal Value = " + zf.getOptimalValue());

}
}

Output

Solution

0

0 0.5

1 1
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Dual Solution

0

0 -1

Optimal Value = -3.5

class QuadraticProgramming

Solves the convex quadratic programming problem subject to equality or inequality
constraints.

Class QuadraticProgramming is based on M.J.D. Powell’s implementation of the Goldfarb
and Idnani dual quadratic programming (QP) algorithm for convex QP problems subject
to general linear equality/inequality constraints (Goldfarb and Idnani 1983); i.e., problems
of the form

min
x∈Rn

gTx+
1
2
xTHx

subject to

A1x = b1

A2x ≥ b2

given the vectors b1, b2, and g, and the matrices H, A1, and A2. H is required to be
positive definite. In this case, a unique x solves the problem or the constraints are
inconsistent. If H is not positive definite, a positive definite perturbation of H is used in
place of H. For more details, see Powell (1983, 1985).

If a perturbation of H, H + αI, is used in the QP problem, then H + αI also should be
used in the definition of the Lagrange multipliers.
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Declaration

public class com.imsl.math.QuadraticProgramming
extends java.lang.Object

Inner Class

class QuadraticProgramming.InconsistentSystemException

Inconsistent system.

Declaration

public static class com.imsl.math.QuadraticProgramming.InconsistentSystemException
extends com.imsl.IMSLException (page 1240)

Constructor

• QuadraticProgramming.InconsistentSystemException
public QuadraticProgramming.InconsistentSystemException( )

Field

• public static final double EPSILON SMALL

– The smallest relative spacing for doubles.

Constructor

• QuadraticProgramming
public QuadraticProgramming( double[][] h, double[] g, double[][]
aEquality, double[] bEquality, double[][] aInequality, double[]
bInequality ) throws
com.imsl.math.QuadraticProgramming.InconsistentSystemException

– Description
Solve a quadratic programming problem.
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– Parameters
∗ h – is square array containing the Hessian. It must be positive definite.
∗ g – contains the coefficients of the linear term of the objective function.
∗ aEquality – is a rectangular matrix containing the equality constraints. It

can be null if there are no equality constraints.
∗ bEquality – contains the right-side of the equality constraints. It can be

null if there are no equality constraints.
∗ aInequality – is a rectangular matrix containing the inequality

constraints. It can be null if there are no inequality constraints.
∗ bInequality – contains the right-side of the inequality constraints. It can

be null if there are no inequality constraints.

Methods

• getDual
public double[] getDual( )

– Description
Returns the dual (Lagrange multipliers).

• getSolution
public double[] getSolution( )

– Description
Returns the solution.

• isNoMoreProgress
public boolean isNoMoreProgress( )

– Description
Returns true if due to computer rounding error, a change in the variables fail to
improve the objective function. Usually the solution is close to optimum.

Example 1: Solve a Quadratic Programming Problem

The quadratic programming problem is to minimize

x2
0 + x2

1 + x2
2 + x2

3 + x2
4 − 2x1x2 − 2x3x4 − 2x0

subject to

180 • QuadraticProgramming JMSL



x0 + x1 + x2 + x3 + x4 = 5

x2 − 2x3 − 2x4 = −3

import com.imsl.math.*;

public class QuadraticProgrammingEx1 {
public static void main(String args[]) throws

QuadraticProgramming.InconsistentSystemException {
double h[][] = {

{2, 0, 0, 0, 0},
{0, 2,-2, 0, 0},
{0,-2, 2, 0, 0},
{0, 0, 0, 2,-2},
{0, 0, 0,-2, 2},

};
double aeq[][] = {

{ 1, 1, 1, 1, 1},
{ 0, 0, 1,-2,-2}

};
double beq[] = {5, -3};
double g[] = {-2, 0, 0, 0, 0};

QuadraticProgramming qp =

new QuadraticProgramming(h, g, aeq, beq, null, null);

// Print the solution and its dual

new PrintMatrix("x").print(qp.getSolution());

new PrintMatrix("dual").print(qp.getDual());

}
}

Output

x

0

0 1

1 1

2 1
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3 1

4 1

dual

0

0 0

1 -0

2 0

3 0

4 0

Example 2: Solve a Quadratic Programming Problem

The quadratic programming problem is to minimize

x2
0 + x2

1 + x2
2

subject to

x0 + 2x1 − x2 = 4

x0 − x1 + x2 = −2

import com.imsl.math.*;

public class QuadraticProgrammingEx2 {
public static void main(String args[]) throws

QuadraticProgramming.InconsistentSystemException {
double h[][] = {

{2, 0, 0},
{0, 2, 0},
{0, 0, 2}

};
double aeq[][] = {{1, 2,-1}, {1,-1, 1}};
double beq[] = {4, -2};
double g[] = {0, 0, 0};

QuadraticProgramming qp =
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new QuadraticProgramming(h, g, aeq, beq, null, null);

// Print the solution and its dual

new PrintMatrix("x").print(qp.getSolution());

new PrintMatrix("dual").print(qp.getDual());

}
}

Output

x

0

0 0.286

1 1.429

2 -0.857

dual

0

0 1.143

1 -0.571

2 0

class MinConGenLin

Minimizes a general objective function subject to linear equality/inequality constraints.

The class MinConGenLin is based on M.J.D. Powell’s TOLMIN, which solves linearly
constrained optimization problems, i.e., problems of the form

min f(x)

subject to

A1x = b1

A2x ≤ b2

Optimization MinConGenLin • 183



xl ≤ x ≤ xu

given the vectors b1, b2, xl, and xu and the matrices A1 and A2.

The algorithm starts by checking the equality constraints for inconsistency and
redundancy. If the equality constraints are consistent, the method will revise x0, the
initial guess, to satisfy

A1x = b1

Next, x0 is adjusted to satisfy the simple bounds and inequality constraints. This is done
by solving a sequence of quadratic programming subproblems to minimize the sum of the
constraint or bound violations.

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality
constraints that have small residuals. Here, the simple bounds are treated as inequality
constraints. Let Ik be the set of indices of active constraints. The following quadratic
programming problem

min f
(
xk
)

+ dT∇ f
(
xk
)

+
1
2
dTBkd

subject to

ajd = 0, j ∈ Ik

ajd ≤ 0, j ∈ Jk

is solved to get (dk, λk) where aj is a row vector representing either a constraint in A1 or
A2 or a bound constraint on x. In the latter case, the aj = ej for the bound constraint
xi ≤ (xu)i and aj = −ei for the constraint −xi ≤ (xl)i. Here, ei is a vector with 1 as the
i-th component, and zeros elsewhere. Variables λk are the Lagrange multipliers, and Bk is
a positive definite approximation to the second derivative ∇2f(xk).

After the search direction dk is obtained, a line search is performed to locate a better
point. The new point xk+1 = xk + αkdk has to satisfy the conditions

f(xk + αkdk) ≤ f(xk) + 0.1αk(dk)T∇f(xk)

and

(dk)T∇f(xk + αkdk) ≥ 0.7(dk)T∇f(xk)
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The main idea in forming the set Jk is that, if any of the equality constraints restricts the
step-length αk, then its index is not in Jk. Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation BK , is updated by the BFGS formula, if the
condition

(
dK
)T ∇f (xk + αkdk

)
−∇f

(
xk
)
> 0

holds. Let xk ← xk+1, and start another iteration.

The iteration repeats until the stopping criterion

∥∥∥∇f(xk)−AkλK
∥∥∥

2
≤ τ

is satisfied. Here τ is the supplied tolerance. For more details, see Powell (1988, 1989).

Declaration

public class com.imsl.math.MinConGenLin
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Classes

interface MinConGenLin.Function

Public interface for the user-supplied function to evaluate the function to be minimized.

Declaration

public static interface com.imsl.math.MinConGenLin.Function

Method

• f
double f( double[] x )

– Description
Public interface for the function to be minimized.
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– Parameters
∗ x – a double array, the point at which the function is evaluated. x.length

equals the number of variables.
– Returns – a double scalar, the function value at x

interface MinConGenLin.Gradient

Public interface for the user-supplied function to compute the gradient.

Declaration

public static interface com.imsl.math.MinConGenLin.Gradient
implements MinConGenLin.Function

Method

• gradient
void gradient( double[] x, double[] g )

– Description
Public interface for the user-supplied function to compute the gradient at point
x.

– Parameters
∗ x – a double array, the point at which the gradient is evaluated. x.length

equals the number of variables.
∗ g – a double array, the values of the gradient of the objective function.

class MinConGenLin.ConstraintsInconsistentException

The equality constraints are inconsistent.

Declaration

public static class com.imsl.math.MinConGenLin.ConstraintsInconsistentException
extends com.imsl.IMSLException (page 1240)
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Constructors

• MinConGenLin.ConstraintsInconsistentException
public MinConGenLin.ConstraintsInconsistentException(
java.lang.String message )

• MinConGenLin.ConstraintsInconsistentException
public MinConGenLin.ConstraintsInconsistentException(
java.lang.String key, java.lang.Object[] arguments )

class MinConGenLin.VarBoundsInconsistentException

The equality constraints and the bounds on the variables are found to be inconsistent.

Declaration

public static class com.imsl.math.MinConGenLin.VarBoundsInconsistentException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinConGenLin.VarBoundsInconsistentException
public MinConGenLin.VarBoundsInconsistentException(
java.lang.String message )

• MinConGenLin.VarBoundsInconsistentException
public MinConGenLin.VarBoundsInconsistentException(
java.lang.String key, java.lang.Object[] arguments )

class MinConGenLin.ConstraintsNotSatisfiedException

No vector x satisfies all of the constraints.

Declaration

public static class com.imsl.math.MinConGenLin.ConstraintsNotSatisfiedException
extends com.imsl.IMSLException (page 1240)
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Constructors

• MinConGenLin.ConstraintsNotSatisfiedException
public MinConGenLin.ConstraintsNotSatisfiedException(
java.lang.String message )

• MinConGenLin.ConstraintsNotSatisfiedException
public MinConGenLin.ConstraintsNotSatisfiedException(
java.lang.String key, java.lang.Object[] arguments )

class MinConGenLin.EqualityConstraintsException

the variables are determined by the equality constraints.

Declaration

public static class com.imsl.math.MinConGenLin.EqualityConstraintsException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinConGenLin.EqualityConstraintsException
public MinConGenLin.EqualityConstraintsException( java.lang.String
message )

• MinConGenLin.EqualityConstraintsException
public MinConGenLin.EqualityConstraintsException( java.lang.String
key, java.lang.Object[] arguments )

Constructor

• MinConGenLin
public MinConGenLin( MinConGenLin.Function fcn, int nvar, int ncon,
int neq, double[] a, double[] b, double[] lowerBound, double[]
upperBound )

– Description
Constructor for MinConGenLin.
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– Parameters
∗ fcn – A Function object, user-supplied function to evaluate the function to

be minimized.
∗ nvar – A int scalar containing the number of variables.
∗ ncon – A int scalar containing the number of linear constraints (excluding

simple bounds).
∗ neq – A int scalar containing the number of linear equality constraints.
∗ a – A double array containing the equality constraint gradients in the first

neq rows followed by the inequality constraint gradients. a.length = ncon *
nvar

∗ b – A double array containing the right-hand sides of the linear constraints.
∗ lowerBound – A double array containing the lower bounds on the variables.

Choose a very large negative value if a component should be unbounded
below or set lowerBound[i] = upperBound[i] to freeze the i-th variable.
lowerBound.length = nvar
∗ upperBound – A double array containing the upper bounds on the

variables. Choose a very large positive value if a component should be
unbounded above. upperBound.length = nvar

– Throws
∗ java.lang.IllegalArgumentException – is thrown if the dimensions of

nvar, ncon, neq, a.length , b.length, lowerBound.length and
upperBound.length are not consistent.

Methods

• getFinalActiveConstraints
public int[] getFinalActiveConstraints( )

– Description
Returns the indices of the final active constraints.

– Returns – a int array containing the indices of the final active constraints.

• getFinalActiveConstraintsNum
public int getFinalActiveConstraintsNum( )

– Description
Returns the final number of active constraints.

– Returns – a int scalar containing the final number of active constraints.

• getLagrangeMultiplerEst
public double[] getLagrangeMultiplerEst( )
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Deprecated

Method name misspelled. Replaced by method getLagrangeMultiplierEst. Returns
the Lagrange multiplier estimates of the final active constraints.

– Returns – a double array containing the Lagrange multiplier estimates of the
final active constraints.

• getLagrangeMultiplierEst
public double[] getLagrangeMultiplierEst( )

– Description
Returns the Lagrange multiplier estimates of the final active constraints.

– Returns – a double array containing the Lagrange multiplier estimates of the
final active constraints.

• getObjectiveValue
public double getObjectiveValue( )

– Description
Returns the value of the objective function.

– Returns – a double scalar containing the value of the objective function.

• getSolution
public double[] getSolution( )

– Description
Returns the computed solution.

– Returns – a double array containing the computed solution.

• setGuess
public void setGuess( double[] guess )

– Description
Sets an initial guess of the solution.

– Parameters
∗ guess – a double array containing an initial guess.

• setTolerance
public void setTolerance( double tolerance )

– Description
Sets the nonnegative tolerance on the first order conditions at the calculated
solution.

– Parameters
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∗ tolerance – a double scalar containing the tolerance.

• solve
public final void solve( ) throws
com.imsl.math.MinConGenLin.ConstraintsInconsistentException,
com.imsl.math.MinConGenLin.VarBoundsInconsistentException,
com.imsl.math.MinConGenLin.ConstraintsNotSatisfiedException,
com.imsl.math.MinConGenLin.EqualityConstraintsException

– Description
Minimizes a general objective function subject to linear equality/inequality
constraints.

Example 1: Linear Constrained Optimization

The problem

min f(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 2x2x3 − 2x4x5 − 2x1

subject to

x1 + x2 + x3 + x4 + x5 = 5

x3 − 2x4 − 2x5 = −3

0 ≤ x ≤ 10

is solved.
import com.imsl.math.*;

public class MinConGenLinEx1 {
public static void main(String args[]) throws Exception {

int neq = 2;

int ncon = 2;

int nvar = 5;

double a[] = {1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, -2.0, -2.0};
double b[] = {5.0, -3.0};
double xlb[] = {0.0, 0.0, 0.0, 0.0, 0.0};
double xub[] = {10.0, 10.0, 10.0, 10.0, 10.0};
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MinConGenLin.Function fcn = new MinConGenLin.Function() {
public double f(double[] x) {

return x[0]*x[0] + x[1]*x[1] + x[2]*x[2] + x[3]*x[3] +

x[4]*x[4] - 2.0*x[1]*x[2] - 2.0*x[3] * x[4] - 2.0*x[0];

}
};

MinConGenLin zf =

new MinConGenLin(fcn, nvar, ncon, neq, a, b, xlb, xub);

zf.solve();

new PrintMatrix("Solution").print(zf.getSolution());

}
}

Output

Solution

0

0 1

1 1

2 1

3 1

4 1

Example 2: Linear Constrained Optimization

The problem

min f(x) = −x0x1x2

subject to
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−x0 − 2x1 − 2x2 ≤ 0

x0 + 2x1 + 2x2 ≤ 72

0 ≤ x0 ≤ 20

0 ≤ x1 ≤ 11

0 ≤ x2 ≤ 42

is solved with an initial guess of x0 = 10, x1 = 10 and x2 = 10.
import com.imsl.math.*;

public class MinConGenLinEx2 {

public static void main(String args[]) throws Exception {
int neq = 0;

int ncon = 2;

int nvar = 3;

double a[] = {-1.0, -2.0, -2.0, 1.0, 2.0, 2.0};
double xlb[] = {0.0, 0.0, 0.0};
double xub[] = {20.0, 11.0, 42.0};
double xguess[] = {10.0, 10.0, 10.0};
double b[] = {0.0, 72.0};

MinConGenLin.Gradient grad = new MinConGenLin.Gradient() {
public double f(double[] x) {

return -x[0] * x[1] * x[2];

}
public void gradient(double[] x, double[] g) {

g[0] = -x[1]*x[2];

g[1] = -x[0]*x[2];

g[2] = -x[0]*x[1];

}
};
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MinConGenLin zf =

new MinConGenLin(grad, nvar, ncon, neq, a, b, xlb, xub);

zf.setGuess(xguess);

zf.solve();

new PrintMatrix("Solution").print(zf.getSolution());

System.out.println("Objective value = " + zf.getObjectiveValue());

}
}

Output

Solution

0

0 20

1 11

2 15

Objective value = -3300.0

class BoundedLeastSquares

Solves a nonlinear least-squares problem subject to bounds on the variables using a
modified Levenberg-Marquardt algorithm.

Class BoundedLeastSquares uses a modified Levenberg-Marquardt method and an active
set strategy to solve nonlinear least-squares problems subject to simple bounds on the
variables. The problem is stated as follows:

min
1
2
F (x)T F (x) =

1
2

m∑
i=1

fi (x)
2

subject to
l ≤ x ≤ u

where m ≥ n, F : Rn → Rm, and fi(x) is the i-th component function of F(x). From a
given starting point, an active set IA, which contains the indices of the variables at their
bounds, is built. A variable is called a “free variable” if it is not in the active set. The
routine then computes the search direction for the free variables according to the formula
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d = −
(
JTJ + µI

)−1
JTF

where µ is the Levenberg-Marquardt parameter, F = F(x), and J is the Jacobian with
respect to the free variables. The search direction for the variables in IA is set to zero.
The trust region approach discussed by Dennis and Schnabel (1983) is used to find the
new point. Finally, the optimality conditions are checked. The conditions are:

‖g (xi)‖ ≤ ε, li < xi < ui

g (xi) < 0, xi = ui

g (xi) > 0, xi = li

where ε is a gradient tolerance. This process is repeated until the optimality criterion is
achieved.

The active set is changed only when a free variable hits its bounds during an iteration or
the optimality condition is met for the free variables but not for all variables in IA, the
active set. In the latter case, a variable that violates the optimality condition will be
dropped out of IA. For more details on the Levenberg-Marquardt method, see Levenberg
(1944) or Marquardt (1963). For more detail on the active set strategy, see Gill and
Murray (1976).

Declaration

public class com.imsl.math.BoundedLeastSquares
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Classes

interface BoundedLeastSquares.Function

Public interface for the user-supplied function to evaluate the function that defines the
least-squares problem.

Declaration

public static interface com.imsl.math.BoundedLeastSquares.Function
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Method

• compute
void compute( double[] x, double[] f )

– Description
Public interface for the user-supplied function to evaluate the function that
defines the least-squares problem.

– Parameters
∗ x – a double array containing the point at which the function is to

evaluated. x.length = nVariables
∗ f – a double array which contains the function values at point x. f.length

= mFunctions

interface BoundedLeastSquares.Jacobian

Public interface for the user-supplied function to compute the Jacobian.

Declaration

public static interface com.imsl.math.BoundedLeastSquares.Jacobian

Method

• compute
void compute( double[] x, double[] fjac )

– Description
Public interface for the user-supplied function to compute the Jacobian.

– Parameters
∗ x – a double array, the point at which the Jacobian is to evaluated.

x.length = nVariables
∗ fjac – a double array, the computed Jacobian at the point x. point x.

fjac.length = mFunctions x nVariables

class BoundedLeastSquares.FalseConvergenceException

False convergence - The iterates appear to be converging to a noncritical point.
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Declaration

public static class com.imsl.math.BoundedLeastSquares.FalseConvergenceException
extends com.imsl.IMSLException (page 1240)

Constructors

• BoundedLeastSquares.FalseConvergenceException
public BoundedLeastSquares.FalseConvergenceException(
java.lang.String message )

– Description
Constructs an FalseConvergenceException with the specified detail message. A
detail message is a String that describes this particular exception.

– Parameters
∗ message – the detail message

• BoundedLeastSquares.FalseConvergenceException
public BoundedLeastSquares.FalseConvergenceException(
java.lang.String key, java.lang.Object[] arguments )

– Description
Constructs an FalseConvergenceException with the specified detail message.
The error message string is in a resource bundle, ErrorMessages.

– Parameters
∗ key – the key of the error message in the resource bundle
∗ arguments – an array containing arguments used within the error message

string

Constructor

• BoundedLeastSquares
public BoundedLeastSquares( BoundedLeastSquares.Function function,
int mFunctions, int nVariables, int boundType, double[]
lowerBound, double[] upperBound )

– Description
Constructor for BoundedLeastSquares.

– Parameters
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∗ function – a Function object, user-supplied function to evaluate the
function
∗ mFunctions – a int scalar containing the number of functions
∗ nVariables – a int scalar containing the number of variables
∗ boundType – a int scalar containing the types of bounds on the variable

boundType Action
0 User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on

first variable, all other variables will
have the same bounds.

∗ lowerBound – a double array containing the lower bounds on the variables
∗ upperBound – a double array containing the upper bounds on the variables

– Throws
∗ java.lang.IllegalArgumentException – is thrown if the dimensions of

mFunctions, nVariables, boundType, lowerBound.length and
upperBound.length are not consistent

Methods

• getJacobian
public double[][] getJacobian( )

– Description
Returns the Jacobian at the approximate solution.

– Returns – a mFunctions x nVariables double matrix containing the Jacobian
at the approximate solution

• getResiduals
public double[] getResiduals( )

– Description
Returns the residuals at the approximate solution.

– Returns – a double array containing the residuals at the approximate solution

• getSolution
public double[] getSolution( )

– Description
Returns the solution.
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– Returns – a double array containing the computed solution

• setAbsoluteFcnTol
public void setAbsoluteFcnTol( double absoluteFcnTol )

– Description
Sets the absolute function tolerance. If this member function is not called, a
value of Math.max(1.0e-10, Math.pow(2.2204460492503131e-16, 2.0/3.0)), is
used.

– Parameters
∗ absoluteFcnTol – a double scalar containing the absolute function

tolerance

• setDiagonalScalingMatrix
public void setDiagonalScalingMatrix( double[] diagonalScalingMatrix
)

– Description
Sets the diagonal scaling matrix for the functions. The i-th component of the
array is a positive scalar specifying the reciprocal magnitude of the i-th
component function of the problem. If this member function is not called, an
initial scaling of 1.0 is used.

– Parameters
∗ diagonalScalingMatrix – a double array containing the diagonal scaling

for the functions

• setGoodDigit
public void setGoodDigit( int goodDigit )

– Description
Sets the number of good digits in the function. If this member function is not
called, a value of (int)(-Sfun.log10(2.2204460492503131e-16) + 0.1e0) is used.

– Parameters
∗ goodDigit – a int scalar containing the number of good digits

• setGradientTol
public void setGradientTol( double gradientTol )

– Description
Sets the scaled gradient tolerance. If this member function is not called, a value
of Math.pow(2.2204460492503131e-16, 1.0e0/3.0e0) is used.

– Parameters
∗ gradientTol – a double scalar containing the scaled gradient tolerance
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• setGuess
public void setGuess( double[] guess )

– Description
Sets the initial guess of the solution. If this member function is not called, an
initial scaling of 1.0 is used.

– Parameters
∗ guess – a double array containing an initial guess

• setInternalScale
public void setInternalScale( )

– Description
Sets the internal variable scaling option. With this option, scaling for the
variables is set internally.

• setJacobian
public void setJacobian( BoundedLeastSquares.Jacobian jacobian )

– Description
Sets the Jacobian.

– Parameters
∗ jacobian – a Jacobian object to compute the Jacobian.

• setMaximumFunctionEvals
public void setMaximumFunctionEvals( int evaluations )

– Description
Sets the maximum number of function evaluations. If this member function is
not called, a value of 400 is used.

– Parameters
∗ evaluations – a int scalar containing the maximum number of function

evaluations

• setMaximumIteration
public void setMaximumIteration( int iterations )

– Description
Sets the maximum number of iterations. If this member function is not called,
a value of 100 is used.

– Parameters
∗ iterations – a int scalar containing the maximum number of iterations
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• setMaximumJacobianEvals
public void setMaximumJacobianEvals( int evaluations )

– Description
Sets the maximum number of Jacobian evaluations. If this member function is
not called, a value of 400 is used.

– Parameters
∗ evaluations – a int scalar containing the maximum number of Jacobian

evaluations

• setMaximumStepSize
public void setMaximumStepSize( double stepSize )

– Description
Sets the maximum allowable step size.

– Parameters
∗ stepSize – a double scalar containing the maximum allowable step size

• setRelativeFcnTol
public void setRelativeFcnTol( double relativeFcnTol )

– Description
Sets the relative function tolerance. If this member function is not called, a
value of Math.pow(2.2204460492503131e-16, 2.0e0/3.0e0) is used.

– Parameters
∗ relativeFcnTol – a double scalar containing the relative function

tolerance

• setScaledStepTol
public void setScaledStepTol( double scaledStepTol )

– Description
Sets the scaled step tolerance. If this member function is not called, a value of
Math.max(1.0e-10, Math.pow(2.2204460492503131e-16, 2.0e0/3.0e0) is used.

– Parameters
∗ scaledStepTol – a double scalar containing the scaled step tolerance

• setScalingVector
public void setScalingVector( double[] scalingVector )

– Description
Sets the scaling vector for the variables. If this member function is not called,
an initial scaling of 1.0 is used.

– Parameters
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∗ scalingVector – a double array containing the scaling vector for the
variables

• setTrustRegion
public void setTrustRegion( double trustRegion )

– Description
Sets the size of initial trust region radius. If this member function is not called,
the value is based on the initial scaled Cauchy step.

– Parameters
∗ trustRegion – a double scalar containing the initial trust region radius

• solve
public final void solve( ) throws
com.imsl.math.BoundedLeastSquares.FalseConvergenceException

– Description
Solves a nonlinear least-squares problem subject to bounds on the variables
using a modified Levenberg-Marquardt algorithm.

Example 1: Bounded Least Squares

The nonlinear least-squares problem

min
1
2

1∑
i=0

fi (x)
2

−2 ≤ x0 ≤ 0.5

−1 ≤ x1 ≤ 2

where

f0(x) = 10(x1 − x2
0) and f1(x) = (1− x0)

is solved.
import com.imsl.math.*;

public class BoundedLeastSquaresEx1 {
public static void main(String args[]) throws Exception {
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int m = 2;

int n = 2;

int ibtype = 0;

double[] xlb = {-2.0, -1.0};
double[] xub = {0.5, 2.0};

BoundedLeastSquares.Function rosbck =

new BoundedLeastSquares.Function() {
public void compute(double[] x, double[] f) {

f[0] = 10.0*(x[1] - x[0]*x[0]);

f[1] = 1.0 - x[0];

}
};

BoundedLeastSquares zf =

new BoundedLeastSquares(rosbck, m, n, ibtype, xlb, xub);

zf.solve();

new PrintMatrix("Solution").print(zf.getSolution());

}
}

Output

Solution

0

0 0.5

1 0.25

Example 2: Bounded Least Squares

The nonlinear least-squares problem

min
1
2

1∑
i=0

fi (x)
2

−2 ≤ x0 ≤ 0.5
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−1 ≤ x1 ≤ 2

where

f0(x) = 10(x1 − x2
0) and f1(x) = (1− x0)

is solved. An initial guess (-1.2, 1.0) is supplied, as well as the analytic Jacobian. The
residual at the approximate solution is returned.
import com.imsl.math.*;

public class BoundedLeastSquaresEx2 {
public static void main(String args[]) throws Exception {

int m = 2;

int n = 2;

int ibtype = 0;

double[] xlb = {-2.0, -1.0};
double[] xub = {0.5, 2.0};
double[] xguess = {-1.2, 1.0};

BoundedLeastSquares.Function rosbck =

new BoundedLeastSquares.Function() {
public void compute(double[] x, double[] f) {

f[0] = 10.0*(x[1] - x[0]*x[0]);

f[1] = 1.0 - x[0];

}
};

BoundedLeastSquares.Jacobian jacob =

new BoundedLeastSquares.Jacobian() {
public void compute(double[] x, double[] fjac) {

fjac[0] = -20.0*x[0];

fjac[1] = 10.0;

fjac[2] = -1.0;

fjac[3] = 0.0;

}
};

BoundedLeastSquares zf =

new BoundedLeastSquares(rosbck, m, n, ibtype, xlb, xub);

zf.setJacobian(jacob);
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zf.setGuess(xguess);

zf.solve();

new PrintMatrix("Solution").print(zf.getSolution());

new PrintMatrix("Residuals").print(zf.getResiduals());

}
}

Output

Solution

0

0 0.5

1 0.25

Residuals

0

0 0

1 0.5

class MinConNLP

General nonlinear programming solver.

MinConNLP is based on the FORTRAN subroutine, DONLP2, by Peter Spellucci and licensed
from TU Darmstadt. MinConNLP uses a sequential equality constrained quadratic
programming method with an active set technique, and an alternative usage of a fully
regularized mixed constrained subproblem in case of nonregular constraints (i.e. linear
dependent gradients in the “working sets”). It uses a slightly modified version of the
Pantoja-Mayne update for the Hessian of the Lagrangian, variable dual scaling and an
improved Armjijo-type stepsize algorithm. Bounds on the variables are treated in a
gradient-projection like fashion. Details may be found in the following two papers:

P. Spellucci: An SQP method for general nonlinear programs using only equality
constrained subproblems. Math. Prog. 82, (1998), 413-448.

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth.
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of Oper. Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany).

The problem is stated as follows:

min
x ∈ Rn

f (x)

subject to

gj (x) = 0, for j = 1, . . . , me

gj (x) ≥ 0, for j = me + 1, . . . , m

xl ≤ x ≤ xu

where all problem functions are assumed to be continuously differentiable. Although
default values are provided for optional input arguments, it may be necessary to adjust
these values for some problems. Through the use of member functions, MinConNLP allows
for several parameters of the algorithm to be adjusted to account for specific
characteristics of problems. The provides detailed descriptions of these parameters as well
as strategies for maximizing the performance of the algorithm. In addition, the following
are a number of guidelines to consider when using MinConNLP:

• A good initial starting point is very problem specific and should be provided by the
calling program whenever possible. See method setGuess.

• Gradient approximation methods can have an effect on the success of MinConNLP.
Selecting a higher order approximation method may be necessary for some problems.
See method setDifferentiationType.

• If a two sided constraint li ≤ gi (x) ≤ ui is transformed into two constraints,
g2i (x) ≥ 0 and g2i+1 (x) ≥ 0, then choose del0 < 1/2 (ui − li) /max {1, ‖∇gi (x) ‖},
or at least try to provide an estimate for that value. This will increase the efficiency
of the algorithm. See method setBindingThreshold.

• The parameter ierr provided in the interface to the user supplied function FCN can
be very useful in cases when evaluation is requested at a point that is not possible or
reasonable. For example, if evaluation at the requested point would result in a
floating point exception, then setting ierr to true and returning without performing
the evaluation will avoid the exception. MinConNLP will then reduce the stepsize and
try the step again. Note, if ierr is set to true for the initial guess, then an error is
issued.
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Note that one can use the JDK 1.4 JAVA Logging API to generate intermediate output
for the solver. Accumulated levels of detail correspond to JAVA’s CONFIG, FINE,
FINER, and FINEST logging levels with CONFIG yielding the smallest amount of
information and FINEST yielding the most. The levels of output yield the following:
Level Output
CONFIG One line of intermediate results is printed

with each iteration. A summary report is
printed upon completion.

FINE Lines of intermediate results giving the
most important data for each step are
printed after each step. A summary report
is printed upon completion.

FINER Lines of detailed intermediate results show-
ing all primal and dual variables, the rele-
vant values from the working set, progress
in the backtracking, etc. are printed. A
summary report is printed upon comple-
tion.

FINEST Lines of detailed intermediate results show-
ing all primal and dual variables, the rele-
vant values from the working set, progress
in the backtracking, the gradients in the
working set, the quasi-Newton updated,
etc. are printed. A summary report is
printed upon completion.

Declaration

public class com.imsl.math.MinConNLP
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Classes

interface MinConNLP.Function

Public interface for the user supplied function to the MinConNLP object.
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Declaration

public static interface com.imsl.math.MinConNLP.Function

Method

• f
double f( double[] x, int iact, boolean[] ierr )

– Description
Compute the value of the function at the given point.

– Parameters
∗ x – an input double array, the point at which the objective function or

constraint is to be evaluated
∗ iact – an input int value indicating whether evaluation of the objective

function is requested or evaluation of a constraint is requested. If iact is
zero, then an objective function evaluation is requested. If iact is nonzero
then the value of iact indicates the index of the constraint to evaluate. (1
indicates the first constraint, 2 indicates the second, etc.)
∗ ierr – an input/output boolean array of length 1. On input ierr[0] is set to

false. If an error or other undesirable condition occurs during evaluation,
then ierr[0] should be set to true. Setting ierr[0] to true will result in the
step size being reduced and the step being tried again. (If ierr[0] is set to
true for xguess, then an error is issued.)

– Returns – a double. If iact is zero, then the value of the objective function at
x is returned. If iact is nonzero, then the computed constraint value at the
point x is returned.

interface MinConNLP.Gradient

Public interface for the user supplied function to compute the gradient for MinConNLP

object.

Declaration

public static interface com.imsl.math.MinConNLP.Gradient
implements MinConNLP.Function
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Method

• gradient
void gradient( double[] x, int iact, double[] result )

– Description
Computes the value of the gradient of the function at the given point.

– Parameters
∗ x – an input double array, the point at which the gradient of the objective

function or gradient of a constraint is to be evaluated
∗ iact – an input int value indicating whether evaluation of the objective

function gradient is requested or evaluation of a constraint gradient is
requested. If iact is zero, then an objective function gradient evaluation is
requested. If iact is nonzero then the value of iact indicates the index of
the constraint gradient to evaluate. (1 indicates the first constraint, 2
indicates the second, etc.)
∗ result – a double array. If iact is zero, then the value of the objective

function gradient at x is returned in result. If iact is nonzero, then the
computed gradient of the requested constraint value at the point x is
returned in result.

class MinConNLP.ConstraintEvaluationException

Constraint evaluation returns an error with current point.

Declaration

public static class com.imsl.math.MinConNLP.ConstraintEvaluationException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinConNLP.ConstraintEvaluationException
public MinConNLP.ConstraintEvaluationException( java.lang.String
message )

• MinConNLP.ConstraintEvaluationException
public MinConNLP.ConstraintEvaluationException( java.lang.String
key, java.lang.Object[] arguments )
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class MinConNLP.ObjectiveEvaluationException

Objective evaluation returns an error with current point.

Declaration

public static class com.imsl.math.MinConNLP.ObjectiveEvaluationException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinConNLP.ObjectiveEvaluationException
public MinConNLP.ObjectiveEvaluationException( java.lang.String
message )

• MinConNLP.ObjectiveEvaluationException
public MinConNLP.ObjectiveEvaluationException( java.lang.String
key, java.lang.Object[] arguments )

class MinConNLP.NoAcceptableStepsizeException

No acceptable stepsize in [SIGMA,SIGLA].

Declaration

public static class com.imsl.math.MinConNLP.NoAcceptableStepsizeException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinConNLP.NoAcceptableStepsizeException
public MinConNLP.NoAcceptableStepsizeException( java.lang.String
message )

• MinConNLP.NoAcceptableStepsizeException
public MinConNLP.NoAcceptableStepsizeException( java.lang.String
key, java.lang.Object[] arguments )
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class MinConNLP.WorkingSetSingularException

Working set is singular in dual extended QP.

Declaration

public static class com.imsl.math.MinConNLP.WorkingSetSingularException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinConNLP.WorkingSetSingularException
public MinConNLP.WorkingSetSingularException( java.lang.String
message )

• MinConNLP.WorkingSetSingularException
public MinConNLP.WorkingSetSingularException( java.lang.String
key, java.lang.Object[] arguments )

class MinConNLP.QPInfeasibleException

QP problem seemingly infeasible.

Declaration

public static class com.imsl.math.MinConNLP.QPInfeasibleException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinConNLP.QPInfeasibleException
public MinConNLP.QPInfeasibleException( java.lang.String message )

• MinConNLP.QPInfeasibleException
public MinConNLP.QPInfeasibleException( java.lang.String key,
java.lang.Object[] arguments )
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class MinConNLP.PenaltyFunctionPointInfeasibleException

Penalty function point infeasible.

Declaration

public static class com.imsl.math.MinConNLP.PenaltyFunctionPointInfeasibleException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinConNLP.PenaltyFunctionPointInfeasibleException
public MinConNLP.PenaltyFunctionPointInfeasibleException(
java.lang.String message )

• MinConNLP.PenaltyFunctionPointInfeasibleException
public MinConNLP.PenaltyFunctionPointInfeasibleException(
java.lang.String key, java.lang.Object[] arguments )

class MinConNLP.LimitingAccuracyException

Limiting accuracy reached for a singular problem.

Declaration

public static class com.imsl.math.MinConNLP.LimitingAccuracyException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinConNLP.LimitingAccuracyException
public MinConNLP.LimitingAccuracyException( java.lang.String
message )

• MinConNLP.LimitingAccuracyException
public MinConNLP.LimitingAccuracyException( java.lang.String key,
java.lang.Object[] arguments )
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class MinConNLP.TooManyIterationsException

Maximum number of iterations exceeded.

Declaration

public static class com.imsl.math.MinConNLP.TooManyIterationsException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinConNLP.TooManyIterationsException
public MinConNLP.TooManyIterationsException( java.lang.String
message )

• MinConNLP.TooManyIterationsException
public MinConNLP.TooManyIterationsException( java.lang.String
key, java.lang.Object[] arguments )

class MinConNLP.BadInitialGuessException

Penalty function point infeasible for original problem. Try new initial guess.

Declaration

public static class com.imsl.math.MinConNLP.BadInitialGuessException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinConNLP.BadInitialGuessException
public MinConNLP.BadInitialGuessException( java.lang.String
message )

• MinConNLP.BadInitialGuessException
public MinConNLP.BadInitialGuessException( java.lang.String key,
java.lang.Object[] arguments )
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class MinConNLP.IllConditionedException

Problem is singular or ill-conditioned.

Declaration

public static class com.imsl.math.MinConNLP.IllConditionedException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinConNLP.IllConditionedException
public MinConNLP.IllConditionedException( java.lang.String message
)

• MinConNLP.IllConditionedException
public MinConNLP.IllConditionedException( java.lang.String key,
java.lang.Object[] arguments )

class MinConNLP.SingularException

Problem is singular.

Declaration

public static class com.imsl.math.MinConNLP.SingularException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinConNLP.SingularException
public MinConNLP.SingularException( java.lang.String message )

• MinConNLP.SingularException
public MinConNLP.SingularException( java.lang.String key,
java.lang.Object[] arguments )
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class MinConNLP.LinearlyDependentGradientsException

Working set gradients are linearly dependent.

Declaration

public static class com.imsl.math.MinConNLP.LinearlyDependentGradientsException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinConNLP.LinearlyDependentGradientsException
public MinConNLP.LinearlyDependentGradientsException(
java.lang.String message )

• MinConNLP.LinearlyDependentGradientsException
public MinConNLP.LinearlyDependentGradientsException(
java.lang.String key, java.lang.Object[] arguments )

class MinConNLP.TerminationCriteriaNotSatisfiedException

Termination criteria are not satisfied.

Declaration

public static class com.imsl.math.MinConNLP.TerminationCriteriaNotSatisfiedException
extends com.imsl.IMSLException (page 1240)

Constructors

• MinConNLP.TerminationCriteriaNotSatisfiedException
public MinConNLP.TerminationCriteriaNotSatisfiedException(
java.lang.String message )

• MinConNLP.TerminationCriteriaNotSatisfiedException
public MinConNLP.TerminationCriteriaNotSatisfiedException(
java.lang.String key, java.lang.Object[] arguments )
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class MinConNLP.Formatter

Simple formatter for MinConNLP logging

Declaration

public static class com.imsl.math.MinConNLP.Formatter
extends java.util.logging.Formatter

Constructor

• MinConNLP.Formatter
public MinConNLP.Formatter( )

Method

• format
public abstract java.lang.String format( java.util.logging.LogRecord )

Constructor

• MinConNLP
public MinConNLP( int mTotalConstraints, int
mEqualityConstraints, int nVariables ) throws
java.lang.IllegalArgumentException

– Description
Nonlinear programming solver constructor.

– Parameters
∗ mTotalConstraints – An int scalar value which defines the total number

of constraints
∗ mEqualityConstraints – An int scalar value which defines the number of

equality constraints
∗ nVariables – An int scalar value which defines the number of variables.
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Methods

• getConstraintResiduals
public double[] getConstraintResiduals( )

– Description
Returns the constraint residuals.

– Returns – a double array containing the constraint residuals.

• getLagrangeMultiplierEst
public double[] getLagrangeMultiplierEst( )

– Description
Returns the Lagrange multiplier estimates of the constraints.

– Returns – a double array containing the Lagrange multiplier estimates of the
constraints.

• getLogger
public java.util.logging.Logger getLogger( )

– Description
Returns the logger object. Logger support requires JDK1.4. Use with earlier
versions returns null.

– Returns – the logger object, if present, or null.

• setBindingThreshold
public void setBindingThreshold( double del0 )

– Description
Set the binding threshold for constraints. In the initial phase of minimization a
constraint is considered binding if gi(x)

max(1,‖∇gi(x)‖) ≤ del0 i = Me + 1, . . . ,M
Good values are between .01 and 1.0. If del0 is chosen too small then
identification of the correct set of binding constraints may be delayed.
Contrary, if del0 is too large, then the method will often escape to the full
regularized SQP method, using individual slack variables for any active
constraint, which is quite costly. For well scaled problems del0 = 1.0 is
reasonable. If this member function is not called, del0 is set to .5 * tau0.

– Parameters
∗ del0 – a double scalar value specifying the binding threshold for

constraints.
– Throws
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∗ java.lang.IllegalArgumentException – is thrown if del0 is less than or
equal to 0.0

• setBoundViolationBound
public void setBoundViolationBound( double taubnd )

– Description
Set the amount by which bounds may be violated during numerical
differentiation. If this member function is not called, taubnd is set to 1.0.

– Parameters
∗ taubnd – a double scalar value specifying the amount by which bounds

may be violated during numerical differentiation.
– Throws
∗ java.lang.IllegalArgumentException – is thrown if taubnd is less than

or equal to 0.0

• setDifferentiationType
public void setDifferentiationType( int idtype )

– Description
Set the type of numerical differentiation to be used.

– Parameters
∗ idtype – an int scalar value specifying the type of numerical differentiation

to be used. If this member function is not called, idtype is set to 1.
idtype Action
1 Use a forward difference quo-

tient with discretization stepsize
0.1
(
epsfcn1/2

)
componentwise rela-

tive. This is the default value used.
2 Use the symmetric difference quo-

tient with discretization stepsize
0.1
(
epsfcn1/3

)
componentwise rel-

ative.
3 Use the sixth order approximation

computing a Richardson extrapola-
tion of three symmetric difference
quotient values. This uses a dis-
cretization stepsize 0.01

(
epsfcn1/7

)
– Throws
∗ java.lang.IllegalArgumentException – is thrown if idtype is less than

or equal to 0 or greater than or equal to 4.

218 • MinConNLP JMSL



• setFunctionPrecision
public void setFunctionPrecision( double epsfcn )

– Description
Set the relative precision of the function evaluation routine. If this member
function is not called, epsfcn is set to 2.2e-16.

– Parameters
∗ epsfcn – a double scalar value specifying the relative precision of the

function evaluation routine.
– Throws
∗ java.lang.IllegalArgumentException – is thrown if epsfcn is less than

or equal to 0.0

• setGradientPrecision
public void setGradientPrecision( double epsdif )

– Description
Set the relative precision in gradients. If this member function is not called,
epsdif is set to 2.2e-16.

– Parameters
∗ epsdif – a double scalar value specifying the relative precision in gradients.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if epsdif is less than

or equal to 0.0

• setGuess
public void setGuess( double[] xguess )

– Description
Set the initial guess of the minimum point of the input function. If this
member function is not called, the elements of this array are set to x, (with the
smallest value of ‖x‖2) that satisfies the bounds.

– Parameters
∗ xguess – a double array specifying the initial guess of the minimum point

of the input function

• setMaxIterations
public void setMaxIterations( int maxIterations )

– Description
Set the maximum number of iterations allowed. If this member function is not
called, the maximum number of iterations is set to 200.

– Parameters
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∗ maxIterations – an int specifying the maximum number of iterations
allowed

– Throws
∗ java.lang.IllegalArgumentException – is thrown if maxIterations is

less than or equal to 0

• setMultiplierError
public void setMultiplierError( double smallw )

– Description
Set the error allowed in the multipliers. A negative multiplier of an inequality
constraint is accepted (as zero) if its absolute value is less than smallw. If this
member function is not called, it is set to e2 log ε/3.

– Parameters
∗ smallw – a double scalar value specifying the error allowed in the

multipliers.
– Throws
∗ java.lang.IllegalArgumentException – is thrown if smallw is less than

or equal to 0.0

• setPenaltyBound
public void setPenaltyBound( double tau0 )

– Description
Set the universal bound for describing how much the unscaled penalty-term
may deviate from zero. A small tau0 diminishes the efficiency of the solver
because the iterates then will follow the boundary of the feasible set closely.
Conversely, a large tau0 may degrade the reliability of the code. If this member
function is not called, tau0 is set to 1.0.

– Parameters
∗ tau0 – a double scalar value specifying the universal bound for describing

how much the unscaled penalty-term may deviate from zero.
– Throws
∗ java.lang.IllegalArgumentException – is thrown if tau0 is less than or

equal to 0.0

• setScalingBound
public void setScalingBound( double scbnd )

– Description
Set the scaling bound for the internal automatic scaling of the objective
function. If this member function is not called, scbnd is set to 1.0e4.

– Parameters
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∗ scbnd – a double scalar value specifying the scaling variable for the
problem function.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if scbnd is less than

or equal to 0.0

• setViolationBound
public void setViolationBound( double delmin )

– Description
Set the scalar which defines allowable constraint violations of the final accepted
result. Constraints are satisfied if |gi(x)| ≤ delmin, and gi(x) ≥ −delmin
respectively. If this member function is not called, delmin is set to
min(del0/10,max(epsdif,min(del0/10,max((1.e− 6)del0, smallw))).

– Parameters
∗ delmin – a double scalar value specifying the allowable constraint

violations of the final accepted result.
– Throws
∗ java.lang.IllegalArgumentException – is thrown if delmin is less than

or equal to 0.0

• setXlowerBound
public void setXlowerBound( double[] xlb )

– Description
Set the lower bounds on the variables. If this member function is not called,
the elements of this array are set to -1.79e308.

– Parameters
∗ xlb – a double array specifying the lower bounds on the variables

• setXscale
public void setXscale( double[] xscale )

– Description
Set the internal scaling of the variables. The initial value given and the
objective function and gradient evaluations, however, are always given in the
original unscaled variables. The first internal variable is obtained by dividing
the values x[i] by xscale[i]. If this member function is not called, xscale[i] is set
to 1.0.

– Parameters
∗ xscale – a double array specifying the internal scaling of the variables.

– Throws
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∗ java.lang.IllegalArgumentException – is thrown if xscale is less than
or equal to 0.0

• setXupperBound
public void setXupperBound( double[] xub )

– Description
Set the upper bounds on the variables. If this member function is not called,
the elements of this array are set to 1.79e308.

– Parameters
∗ xub – a double array specifying the upper bounds on the variables

• solve
public double[] solve( MinConNLP.Function F ) throws
com.imsl.math.MinConNLP.ConstraintEvaluationException,
com.imsl.math.MinConNLP.ObjectiveEvaluationException,
com.imsl.math.MinConNLP.WorkingSetSingularException,
com.imsl.math.MinConNLP.QPInfeasibleException,
com.imsl.math.MinConNLP.PenaltyFunctionPointInfeasibleException,
com.imsl.math.MinConNLP.LimitingAccuracyException,
com.imsl.math.MinConNLP.TooManyIterationsException,
com.imsl.math.MinConNLP.BadInitialGuessException,
com.imsl.math.MinConNLP.IllConditionedException,
com.imsl.math.MinConNLP.SingularException,
com.imsl.math.MinConNLP.LinearlyDependentGradientsException,
com.imsl.math.MinConNLP.NoAcceptableStepsizeException,
com.imsl.math.MinConNLP.TerminationCriteriaNotSatisfiedException

– Description
Solve a general nonlinear programming problem using the successive quadratic
programming algorithm with a finite-difference gradient or with a user-supplied
gradient.

– Parameters
∗ F – defines the user-supplied function to evaluate the function at a given

point. F can be used to supply a gradient of the function. If F implements
Gradient the user-supplied gradient is used. Otherwise,an attempt to solve
the problem is made using a finite-difference gradient.

– Returns – a double array containing the solution of the nonlinear
programming problem.
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Example 1: Solving a general nonlinear programming problem

A general nonlinear programming problem is solved using a finite difference gradient.
import com.imsl.math.*;

public class MinConNLPEx1 implements MinConNLP.Function{

public double f(double[] x, int iact, boolean[] ierr){
double result;

ierr[0] = false;

if(iact == 0){
result = (x[0]-2.e0)*(x[0]-2.e0) + (x[1]-1.e0)*(x[1]-1.e0);

return result;

} else {
switch (iact) {

case 1:

result = (x[0]-2.e0*x[1] + 1.e0);

return result;

case 2:

result = (-(x[0]*x[0])/4.e0 - (x[1]*x[1]) + 1.e0);

return result;

default:

ierr[0] = true;

return 0.e0;

}
}

}

public static void main(String args[]) throws Exception {
int m = 2;

int me = 1;

int n = 2;

double xinit[] = {2., 2.};
double x[] = {0.};
MinConNLP minconnon = new MinConNLP(m, me, n);

minconnon.setGuess(xinit);

MinConNLPEx1 fcn = new MinConNLPEx1();

x = minconnon.solve(fcn);

System.out.println("x is "+x[0] +" "+x[1]);

}
}
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Output

x is 0.8228756555325116 0.9114378277662559

Example 2: Solving a general nonlinear programming problem

A general nonlinear programming problem is solved using a user-supplied gradient.
import com.imsl.math.*;

public class MinConNLPEx2 implements MinConNLP.Gradient{

public double f(double[] x, int iact, boolean[] ierr){
double result;

ierr[0] = false;

if(iact == 0){
result = (x[0]-2.e0)*(x[0]-2.e0) + (x[1]-1.e0)*(x[1]-1.e0);

return result;

} else {
switch (iact) {

case 1:

result = (x[0]-2.e0*x[1] + 1.e0);

return result;

case 2:

result = (-(x[0]*x[0])/4.e0 - (x[1]*x[1]) + 1.e0);

return result;

default:

ierr[0] = true;

return 0.e0;

}
}

}

public void gradient(double[] x, int iact, double[] result){
if(iact == 0){

result[0] = 2.e0*(x[0]-2.e0);

result[1] = 2.e0*(x[1]-1.e0);

return;

} else {
switch (iact) {

case 1:

224 • MinConNLP JMSL



result[0] = 1.e0;

result[1] = -2.e0;

return;

case 2:

result[0] = -0.5e0*x[0];

result[1] = -2.e0*x[1];

return;

}
}

}

public static void main(String args[]) throws Exception {
int m = 2;

int me = 1;

int n = 2;

MinConNLP minconnon = new MinConNLP(m, me, n);

minconnon.setGuess(new double[]{2.,2.});
MinConNLPEx2 grad = new MinConNLPEx2();

double x[] = minconnon.solve(grad);

System.out.println("x is "+x[0] +" "+x[1]);

}
}

Output

x is 0.8228756555325117 0.9114378277662558

Example 3: Solving a general nonlinear programming problem with
logging

A general nonlinear programming problem is solved using a finite difference gradient.
Intermediate output is captured in a file named MinConNLPlog.txt. The level of output
requested is FINE.
import com.imsl.math.*;

import com.imsl.Messages;

import com.imsl.IMSLException;

import java.util.logging.Logger;

import java.util.logging.LogRecord;

import java.util.logging.Level;

import java.util.logging.Handler;
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public class MinConNLPEx3 implements MinConNLP.Function{

public double f(double[] x, int iact, boolean[] ierr){
double result;

ierr[0] = false;

if(iact == 0){
result = (x[0]-2.e0)*(x[0]-2.e0) + (x[1]-1.e0)*(x[1]-1.e0);

return result;

} else {
switch (iact) {

case 1:

result = (x[0]-2.e0*x[1] + 1.e0);

return result;

case 2:

result = (-(x[0]*x[0])/4.e0 - (x[1]*x[1]) + 1.e0);

return result;

default:

ierr[0] = true;

return 0.e0;

}
}

}

public static void main(String args[]) throws Exception {
int m = 2;

int me = 1;

int n = 2;

double xinit[] = {2., 2.};
double x[] = {0.};
MinConNLP minconnon = new MinConNLP(m, me, n);

minconnon.setGuess(xinit);

MinConNLPEx3 fcn = new MinConNLPEx3();

Logger logger = minconnon.getLogger();

Handler h = new java.util.logging.FileHandler("MinConNLPlog.txt");

logger.addHandler(h);

logger.setLevel(Level.FINE);

h.setFormatter(new MinConNLP.Formatter());

x = minconnon.solve(fcn);

System.out.println("x is "+x[0] +" "+x[1]);

}
}
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Output

x is 0.8228756555325116 0.9114378277662559

Contents of the file MinConNLPlog.txt after execution:

ITSTEP= 1 FX= 0.0 UPSI= 5.0 B2N=-1.0 UMI= 0.0 NR= 2 SI= -1

ITSTEP= 2 FX= 0.47222222222222204 UPSI= 0.8055555555555558 B2N=7.447602459741819E-16 UMI= 0.0 NR= 2 SI= -1

ITSTEP= 3 FX= 1.2261822533163689 UPSI= 0.09653353175869195 B2N=3.3306690738754696E-16 UMI= 0.0 NR= 2 SI= -1

ITSTEP= 4 FX= 1.393242278445973 UPSI= 1.2061157826948055E-4 B2N=1.336885555457667E-15 UMI= 0.0 NR= 2 SI= -1

N= 2 M= 2 ME= 1

EPSX= 1.0E-5 SIGSM= 1.4901161193847656E-8

STARTVALUE

0.02.0

EPS= 2.220446049250313E-16 TOL= 2.2250738585072014E-308 DEL0= 0.5 DELM= 5.0E-7 TAU0= 1.0

TAU= 0.1 SD= 0.1 SW= 5.4782007307014466E-33 RHO= 1.0E-6 RHO1=1.0E-10

SCFM= 10000.0 C1D= 0.01 EPDI= 2.220446049250313E-16

NRE= 2 ANAL= false

VBND= 1.0 EFCN= 2.220446049250313E-16 DIFF= 1

TERMINATION REASON:

KT-CONDITIONS SATISFIED, NO FURTHER CORRECTION COMPUTED

EVALUATIONS OF F 18

EVALUATIONS OF GRAD F 0

EVALUATIONS OF CONSTRAINTS 48

EVALUATIONS OF GRADS OF CONSTRAINTS 0

FINAL SCALING OF OBJECTIVE 1.0

NORM OF GRAD(F) 2.360902457120518

LAGRANGIAN VIOLATION 9.992007221626409E-16

FEASIBILITY VIOLATION 2.866595849582154E-13

DUAL FEASIBILITY VIOLATION 0.0

OPTIMIZER RUNTIME SEC S
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OPTIMAL VALUE OF F = 1.3934649806887736

OPTIMAL SOLUTION X =

0.8228756555325116 0.9114378277662559

MULTIPLIERS ARE RELATIVE TO SCF=1

NR. CONSTRAINT NORMGRAD (OR 1) MULTIPLIER

1 -2.220446049250313E-16 2.23606797749979 -1.5944911588359063

2 -2.864375403532904E-13 1.8687312653198707 1.8465915320074269

EVALUATIONS OF RESTRICTIONS AND THEIR GRADIENTS

( 24.0, 0.0 )

( 24.0, 0.0 )

LAST ESTIMATE OF CONDITION OF ACTIVE GRADIENTS 1.958467797854007

LAST ESTIMATE OF CONDITION OF APPROX. HESSIAN 1.3588763739672172

ITERATIVE STEPS TOTAL 4

# OF RESTARTS 0

# OF FULL REGULAR UPDATES 3

# OF UPDATES 3

# OF FULL REGULARIZED SQP-STEPS 0

FX= 1 SCF= 5.0 PSI= 1.8687312653198707 UPS= 1.8465915320074269

DEL= 5.0E-5 B20= 0.0 B2N= -1.0 NR= 2

SI= -1 U-= 0.0 C-R= 1.5365907428821477 C-D= 1.0

XN= 2.8284271247461903 DN= 1.0671873729054746 PHA= -1 CL= 0

SKM= 0.0 SIG= 1.0 CF+= 0.0 DIR= -5.0

DSC= 0.0 COS= 1.0 VIO= 0.0

UPD= 0 TK= 0.0 XSI= 0.0

FX= 2 SCF= 0.8055555555555558 PSI= 0.0 UPS= 0

DEL= 0.05 B20= 0.0 B2N= 7.447602459741819E-16 NR= 2

SI= -1 U-= 0.0 C-R= 1.4798927762262672 C-D= 1.0

XN= 1.7716909687891085 DN= 0.49125734684608885 PHA= 1 CL= 1

SKM= 1.4727272299765986 SIG= 1.0 CF+= 1.0 DIR= -0.6737373565183514

DSC= 1.4727272299765986 COS= 1.0 VIO= 0.9079593845004515

UPD= 1 TK= 0.24133378083025844 XSI= 0.0

FX= 3 SCF= 0.09653353175869195 PSI= 0.0 UPS= 0

DEL= 0.05 B20= 0.0 B2N= 3.3306690738754696E-16 NR= 2

SI= -1 U-= 0.0 C-R= 1.9355267257931226 C-D= 1.4591929871177434

XN= 1.302259296758884 DN= 0.07742644541830818 PHA= 1 CL= 1

SKM= 3.4500000422411627 SIG= 1.0 CF+= 2.0 DIR= -0.17617369749845635

DSC= 3.4500000422411627 COS= 1.0 VIO= 1.0000000000000002

UPD= 1 TK= 0.005994854450114255 XSI= 0.0

FX= 4 SCF= 1.2061157826948055E-4 PSI= 0.0 UPS= 0

DEL= 0.05 B20= 0.0 B2N= 1.336885555457667E-15 NR= 2
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SI= -1 U-= 0.0 C-R= 1.958467797854007 C-D= 1.3588763739672172

XN= 1.2280376253662906 DN= 1.0192836585976224E-4 PHA= 2 CL= 1

SKM= 3.892584026079591 SIG= 1.0 CF+= 2.0 DIR= -2.468065092929623E-4

DSC= 3.892584026079591 COS= 1.0 VIO= 1.0000000000000002

UPD= 1 TK= 1.0389391766841544E-8 XSI= 0.0
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Chapter 9

Special Functions

Classes
Sfun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Collection of special functions.
Bessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Collection of Bessel functions.
JMath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251

Pure Java implementation of the standard java.lang.Math class.
IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Pure Java implementation of the IEEE 754 functions as specified in IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-
1985 (IEEE, New York).

Hyperbolic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Pure Java implementation of the hyperbolic functions and their inverses.

class Sfun

Collection of special functions.

Declaration

public class com.imsl.math.Sfun
extends java.lang.Object
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Fields

• public static final double EPSILON SMALL

– The smallest relative spacing for doubles.

• public static final double EPSILON LARGE

– The largest relative spacing for doubles.

Methods

• beta
public static double beta( double a, double b )

– Description
Returns the value of the Beta function. The beta function is defined to be

β(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

=
∫ 1

0
ta−1(1− t)b−1dt

See gamma for the definition of Γ (x).
The method beta requires that both arguments be positive.

– Parameters
∗ a – a double value
∗ b – a double value

– Returns – a double value specifying the Beta function

• betaIncomplete
public static double betaIncomplete( double x, double p, double q )

– Description
Returns the incomplete Beta function ratio. The incomplete beta function is
defined to be

Ix(p, q) =
βx(p, q)
β(p, q)

=
1

β(p, q)

∫ x

0
tp−1(1− t)q−1dt for 0 ≤ x ≤ 1, p > 0, q > 0

See beta for the definition of β (p, q).
The parameters p and q must both be greater than zero. The argument x must
lie in the range 0 to 1. The incomplete beta function can underflow for
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sufficiently small x and large p; however, this underflow is not reported as an
error. Instead, the value zero is returned as the function value.
The method betaIncomplete is based on the work of Bosten and Battiste
(1974).

– Parameters
∗ x – a double value specifying the upper limit of integration It must be in

the interval [0,1] inclusive.
∗ p – a double value specifying the first Beta parameter. It must be positive.
∗ q – a double value specifying the second Beta parameter. It must be

positive.
– Returns – a double value specifying the incomplete Beta function ratio

• cot
public static double cot( double x )

– Description
Returns the cotangent of a double.

– Parameters
∗ x – a double value

– Returns – a double value specifying the cotangent of x. If x is NaN, the result
is NaN.

• erf
public static double erf( double x )

– Description
Returns the error function of a double.
The error function method, erf(x), is defined to be

erf (x) =
2√
π

∫ x

0
e−t2dt

All values of x are legal.
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Error FunctionError Function
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– Parameters
∗ x – a double value

– Returns – a double value specifying the error function of x

• erfc
public static double erfc( double x )

– Description
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Returns the complementary error function of a double.
The complementary error function method, erfc (x), is defined to be

erfc (x) =
2√
π

∫ ∞

x
e−t2dt

The argument x must not be so large that the result underflows.
Approximately, x should be less than[

−ln
(√
πs
)]1/2

where s = Double.MIN VALUE is the smallest representable positive
floating-point number.
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Complementary Error Function Complementary Error Function 
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– Parameters
∗ x – a double value

– Returns – a double value specifying the complementary error function of x

• erfcInverse
public static double erfcInverse( double x )

– Description
Returns the inverse of the complementary error function.

236 • Sfun JMSL



The erfcinverse(x) method computes the inverse of the complementary error
function erfc x, defined in erfc.
erfcinverse(x) is defined for 0 < x < 2. If xmax < x < 2, then the answer will
be less accurate than half precision. Very approximately,

xmax ≈ 2−
√
ε/(4π)

where ε = machine precision (approximately 1.11e-16).

Inverse Complementary Error FunctionInverse Complementary Error Function
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– Parameters
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∗ x – a double value, 0 ≤ x ≤ 2.
– Returns – a double value specifying the inverse of the error function of x.

• erfInverse
public static double erfInverse( double x )

– Description
Returns the inverse of the error function.
erfInverse(X) method computes the inverse of the error function erf x, defined
in erf.
The method erfInverse(X) is defined for xmax < |x| < 1, then the answer will
be less accurate than half precision. Very approximately,

xmax ≈ 1−
√
ε/ (4π)

where ε is the machine precision (approximately 1.11e-16).
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Inverse Error FunctionInverse Error Function

-1.00 -0.60 -0.20 0.20 0.60 1.00
x

-5.00

-3.00

-1.00

1.00

3.00

5.00

er
fI

n
ve

rs
e(

x)

– Parameters
∗ x – a double value

– Returns – a double value specifying the inverse of the error function of x

• fact
public static double fact( int n )

– Description
Returns the factorial of an integer.
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– Parameters
∗ n – an int value

– Returns – a double value specifying the factorial of n, n!. If x is negative, the
result is NaN.

• gamma
public static double gamma( double x )

– Description
Returns the Gamma function of a double.
The gamma function, Γ(x), is defined to be

Γ (x) =
∫ ∞

0
tx−1e−tdt for x > 0

For x < 0, the above definition is extended by analytic continuation.
The gamma function is not defined for integers less than or equal to zero. Also,
the argument x must be greater than −170.56 so that Γ(x) does not underflow,
and x must be less than 171.64 so that Γ(x) does not overflow. The underflow
limit occurs first for arguments that are close to large negative half integers.
Even though other arguments away from these half integers may yield
machine-representable values of Γ(x), such arguments are considered illegal.
Users who need such values should use the log gamma. Finally, the argument
should not be so close to a negative integer that the result is less accurate than
half precision.
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– Parameters
∗ x – a double value

– Returns – a double value specifying the Gamma function of x. If x is a
negative integer, the result is NaN.

• log10
public static double log10( double x )

– Description
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Returns the common (base 10) logarithm of a double.
– Parameters
∗ x – a double value

– Returns – a double value specifying the common logarithm of x

• logBeta
public static double logBeta( double a, double b )

– Description
Returns the logarithm of the Beta function.
Method logBeta computes lnβ (a, b) = lnβ (b, a). See beta for the definition of
β (a, b).
logBeta is defined for a >0 and b >0. It returns accurate results even when a
or b is very small. It can overflow for very large arguments; this error condition
is not detected except by the computer hardware.

– Parameters
∗ a – a double value
∗ b – a double value

– Returns – a double value specifying the natural logarithm of the Beta function

• logGamma
public static double logGamma( double x )

– Description
Returns the logarithm of the Gamma function of the absolute value of a double.
Method logGamma computes ln |Γ(x)|. See gamma for the definition of Γ(x).
The gamma function is not defined for integers less than or equal to zero. Also,
|x| must not be so large that the result overflows. Neither should x be so close
to a negative integer that the accuracy is worse than half precision.
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Log Gamma FunctionLog Gamma Function
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– Parameters
∗ x – a double value

– Returns – a double value specifying the natural logarithm of the Gamma
function of |x|. If x is a negative integer, the result is NaN.

• poch
public static double poch( double a, double x )

– Description
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Returns a generalization of Pochhammer’s symbol.
Method poch evaluates Pochhammer’s symbol (a)n = (a)(a− 1) . . . (a− n+ 1)
for n a nonnegative integer. Pochhammer’s generalized symbol is defined to be

(a)x =
Γ (a+ x)

Γ (a)

See gamma for the definition of Γ(x).
Note that a straightforward evaluation of Pochhammer’s generalized symbol
with either gamma or log gamma functions can be especially unreliable when a
is large or x is small.
Substantial loss can occur if a + x or a are close to a negative integer unless |x|
is sufficiently small. To insure that the result does not overflow or underflow,
one can keep the arguments a and a + x well within the range dictated by the
gamma function method gamma or one can keep |x| small whenever a is large.
poch also works for a variety of arguments outside these rough limits, but any
more general limits that are also useful are difficult to specify.

– Parameters
∗ a – a double value specifying the first argument
∗ x – a double value specifying the second, differential argument

– Returns – a double value specifying the generalized Pochhammer symbol,
gamma(a+x)/gamma(a)

• r9lgmc
public static double r9lgmc( double x )

– Description
Returns the log gamma correction term for argument values greater than or
equal to 10.0.

– Parameters
∗ x – a double value

– Returns – a double value specifying the log gamma correction term.

• sign
public static double sign( double x, double y )

– Description
Returns the value of x with the sign of y.

– Parameters
∗ x – a double value
∗ y – a double value

– Returns – a double value specifying the absolute value of x and the sign of y
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Example: The Special Functions

Various special functions are exercised. Their use in this example typifies the manner in
which other special functions in the Sfun class would be used.
import com.imsl.math.*;

public class SfunEx1 {
public static void main(String args[]) {

double result;

// Log base 10 of x

double x = 100.;

result = Sfun.log10(x);

System.out.println("The log base 10 of 100. is "+result);

// Factorial of 10

int n = 10;

result = Sfun.fact(n);

System.out.println("10 factorial is "+result);

// Gamma of 5.0

double x1 = 5.;

result = Sfun.gamma(x1);

System.out.println("The Gamma function at 5.0 is "+result);

// LogGamma of 1.85

double x2 = 1.85;

result = Sfun.logGamma(x2);

System.out.println("The logarithm of the absolute value of the " +

"Gamma function \n at 1.85 is " + result);

// Beta of (2.2, 3.7)

double a = 2.2;

double b = 3.7;

result = Sfun.beta(a, b);

System.out.println("Beta(2.2, 3.7) is "+result);

// LogBeta of (2.2, 3.7)

double a1 = 2.2;

double b1 = 3.7;

result = Sfun.logBeta(a1, b1);

System.out.println("logBeta(2.2, 3.7) is "+result + "\n");
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}
}

Output

The log base 10 of 100. is 2.0

10 factorial is 3628800.0

The Gamma function at 5.0 is 24.0

The logarithm of the absolute value of the Gamma function

at 1.85 is -0.05592381301965721

Beta(2.2, 3.7) is 0.045375983484708095

logBeta(2.2, 3.7) is -3.0927723120378947

class Bessel

Collection of Bessel functions.

Declaration

public class com.imsl.math.Bessel
extends java.lang.Object

Methods

• I
public static double[] I( double xnu, double x, int n )

– Description
Evaluates a sequence of modified Bessel functions of the first kind with real
order and real argument. The Bessel function Iv(x), is defined to be

Iν(x) =
1
π

∫ π

0
ex cos θ cos(νθ)d θ − sin(νπ)

π

∫ ∞

0
e−x cosh t−vtdt

Here, argument xnu is represented by ν in the above equation.
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The input x must be nonnegative and less than or equal to log(b) (b is the
largest representable number). The argument ν= xnu must satisfy 0 ≤ ν ≤ 1.
This function is based on a code due to Cody (1983), which uses backward
recursion.

– Parameters
∗ xnu – a double representing the lowest order desired. xnu must be at least

zero and less than 1
∗ x – a double representing the argument of the Bessel functions to be

evaluated
∗ n – is the int order of the last element in the sequence

– Returns – a double array of length n+1 containing the values of the function
through the series. Bessel.I[i] contains the value of the Bessel function of
order i+xnu.

• I
public static double[] I( double x, int n )

– Description
Evaluates a sequence of modified Bessel functions of the first kind with integer
order and real argument. The Bessel function In(x) is defined to be

In (x) =
1
π

∫ π

0
ex cos θ cos (n θ) d θ

The input x must satisfy |x| ≤ log(b) where b is the largest representable
floating-point number. The algorithm is based on a code due to Sookne
(1973b), which uses backward recursion.

– Parameters
∗ x – a double representing the argument of the Bessel functions to be

evaluated
∗ n – is the int order of the last element in the sequence

– Returns – a double array of length n+1 containing the values of the function
through the series. Bessel.I[i] contains the value of the Bessel function of
order i.

• J
public static double[] J( double xnu, double x, int n )

– Description
Evaluate a sequence of Bessel functions of the first kind with real order and real
positive argument. The Bessel function Jv(x), is defined to be

Jν(x) =
(x/2)ν

√
πΓ(ν + 1/2)

∫ π

0
cos (x cos θ) sin2ν θ d θ
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This code is based on the work of Gautschi (1964) and Skovgaard (1975). It
uses backward recursion.

– Parameters
∗ xnu – a double representing the lowest order desired. xnu must be at least

zero and less than 1.
∗ x – a double representing the argument for which the sequence of Bessel

functions is to be evaluated
∗ n – an int representing the order of the last element in the sequence. If

order is the highest order desired, set n to int(order).
– Returns – a double array of length n+1 containing the values of the function

through the series. Bessel.J[I] contains the value of the Bessel function of
order I+v at x for I=0 to n.

• J
public static double[] J( double x, int n )

– Description
Evaluates a sequence of Bessel functions of the first kind with integer order and
real argument. The Bessel function Jn(x), is defined to be

Jn (x) =
1
π

∫ π

0
cos (x sin θ − n θ) d θ

The algorithm is based on a code due to Sookne (1973b) that uses backward
recursion with strict error control.

– Parameters
∗ x – a double representing the argument for which the sequence of Bessel

functions is to be evaluated
∗ n – an int which specifies the order of the last element in the sequence

– Returns – a double array of length n+1 containing the values of the function
through the series. Bessel.J[i] contains the value of the Bessel function of
order i at x for i=0 to n.

• K
public static double[] K( double xnu, double x, int n )

– Description
Evaluates a sequence of modified Bessel functions of the third kind with
fractional order and real argument. The Bessel function Kv(x) is defined to be

Kν(x) =
π

2
eνπi/2 [i Jν(ix)− Yν(ix)] for− π < arg x ≤ π

2
Currently, xnu (represented by ν in the above equation) is restricted to be less
than one in absolute value. A total of n values is stored in the result, K.

248 • Bessel JMSL



K[0] = Kv(x), K[1] = Kv+1(x), . . ., K[n− 1] = Kv+n−1(x).
This method is based on the work of Cody (1983).

– Parameters
∗ xnu – a double representing the fractional order of the function. xnu must

be less than one in absolute value.
∗ x – a double representing the argument for which the sequence of Bessel

functions is to be evaluated.
∗ n – an int representing the order of the last element in the sequence. If

order is the highest order desired, set n to int(order).
– Returns – a double array of length n+1 containing the values of the function

through the series. Bessel.K[I] contains the value of the Bessel function of order
I+v at x for I=0 to n.

• K
public static double[] K( double x, int n )

– Description
Evaluates a sequence of modified Bessel functions of the third kind with integer
order and real argument. This function uses exKν+k−1 for k = 1, . . . , n and
ν = 0. For the definition of Kv(x), see above.

– Parameters
∗ x – a double representing the argument for which the sequence of Bessel

functions is to be evaluated
∗ n – an int which specifies the order of the last element in the sequence

– Returns – a double array of length n+1 containing the values of the function
through the series

• scaledK
public static double[] scaledK( double v, double x, int n )

– Description
Evaluate a sequence of exponentially scaled modified Bessel functions of the
third kind with fractional order and real argument. This function evaluates
exKv+i−1(x), for i=1,...,n where K is the modified Bessel function of the third
kind. Currently, v is restricted to be less than 1 in absolute value. A total of
|n|+ 1 elements are returned in the array. This code is particularly useful for
calculating sequences for large x provided n = x. (Overflow becomes a problem
if n << x.) n must not be zero, and x must be greater than zero. |v|must be
less than 1. Also, when |n| is large compared with x, |v + n| must not be so
large that

exKν+n(x) ≈ ex Γ(|ν + n|
2(x/2)|ν+n|

overflows. The code is based on work of Cody (1983).
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– Parameters
∗ v – a double representing the fractional order of the function. v must be

less than one in absolute value.
∗ x – a double representing the argument for which the sequence of Bessel

functions is to be evaluated.
∗ n – an int representing the order of the last element in the sequence. If

order is the highest order desired, set n to int(order).
– Returns – a double array of length n+1 containing the values of the function

through the series. If n is positive, Bessel.K[I] contains ex times the value of
the Bessel function of order I+v at x for I=0 to n. If n is negative, Bessel.K[I]
contains ex times the value of the Bessel function of order v-I at x for I=0 to n.

• Y
public static double[] Y( double xnu, double x, int n )

– Description
Evaluate a sequence of Bessel functions of the second kind with real nonnegative
order and real positive argument. The Bessel function Yv(x) is defined to be

Yν(x) =
1
π

∫ π

0
cos(x sin θ − νθ)d θ

− 1
π

∫ ∞

0

[
eνt + e−νt cos (νπ)

]
e−x sinh t dt

The variable xnu (represented by νin the above equation) must satisfy
0 ≤ ν < 1. If this condition is not met, then Y is set to NaN. In addition, x must
be in [xm, xM ] where xm = 6(16−32) and xm = 169. If x < xm, then the largest
representable number is returned; and if x < xM , then zero is returned.
The algorithm is based on work of Cody and others, (see Cody et al. 1976;
Cody 1969; NATS FUNPACK 1976). It uses a special series expansion for
small arguments. For moderate arguments, an analytic continuation in the
argument based on Taylor series with special rational minimax approximations
providing starting values is employed. An asymptotic expansion is used for
large arguments.

– Parameters
∗ xnu – a double representing the lowest order desired. xnu must be at least

zero and less than 1
∗ x – a double representing the argument for which the sequence of Bessel

functions is to be evaluated
∗ n – an int such that n+1 elements will be evaluated in the sequence

– Returns – a double array of length n+1 containing the values of the function
through the series. Bessel.K[I] contains the value of the Bessel function of
order I+v at x for I=0 to n.
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Example: The Bessel Functions

The Bessel functions I, J, and K are exercised for orders 0, 1, 2, and 3 at argument 10.e0.
import com.imsl.math.*;

public class BesselEx1 {
public static void main(String args[]) {

double x = 10.e0;

int hiorder = 4;

// Exercise some of the Bessel functions with argument 10.0

double bi[] = Bessel.I(x, hiorder);

double bj[] = Bessel.J(x, hiorder);

double bk[] = Bessel.K(x, hiorder);

System.out.println("Order Bessel.I Bessel.J" +

" Bessel.K");

for(int i = 0; i < 4; i++) {
System.out.println(i+" "+bi[i]+" "+bj[i]+" "+bk[i]);

}
System.out.println();

}
}

Output

Order Bessel.I Bessel.J Bessel.K

0 2815.7166284662553 -0.24593576445134832 1.7780062316167654E-5

1 2670.9883037012555 0.043472746168861535 1.8648773453825585E-5

2 2281.5189677260046 0.2546303136851206 2.150981700693277E-5

3 1758.3807166108538 0.05837937930518672 2.725270025659869E-5

class JMath

Pure Java implementation of the standard java.lang.Math class. This Java code is based
on C code in the package fdlibm, which can be obtained from www.netlib.org.
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Declaration

public final class com.imsl.math.JMath
extends java.lang.Object

Fields

• public static final double PI

• public static final double E

Methods

• abs
public static double abs( double x )

– Description
Returns the absolute value of a double.

– Parameters
∗ x – a double

– Returns – a double representing |x|.

• abs
public static float abs( float x )

– Description
Returns the absolute value of a float.

– Parameters
∗ x – a float

– Returns – a float representing |x|.

• abs
public static int abs( int x )

– Description
Returns the absolute value of an int.

– Parameters
∗ x – an int

252 • JMath JMSL



– Returns – an int representing |x|.

• abs
public static long abs( long x )

– Description
Returns the absolute value of a long.

– Parameters
∗ x – a long

– Returns – a long representing |x|.

• acos
public static double acos( double x )

– Description
Returns the inverse (arc) cosine of a double.

– Parameters
∗ x – a double

– Returns – a double representing the angle, in radians, whose cosine is x. It is
in the range [0, π].

• asin
public static double asin( double x )

– Description
Returns the inverse (arc) sine of a double.

– Parameters
∗ x – a double

– Returns – a double representing the angle, in radians, whose sine is x. It is in
the range [−π/2, π/2].

• atan
public static double atan( double x )

– Description
Returns the inverse (arc) tangent of a double.

– Parameters
∗ x – a double

– Returns – a double representing the angle, in radians, whose tangent is x. It is
in the range [−π/2, π/2].

• atan2
public static double atan2( double y, double x )
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– Description
Returns the angle corresponding to a Cartesian point.

– Parameters
∗ x – a double, the first argument
∗ y – a double, the second argument

– Returns – a double representing the angle, in radians, the the line from (0,0)
to (x,y) makes with the x-axis. It is in the range [−π, π].

• ceil
public static double ceil( double x )

– Description
Returns the value of a double rounded toward positive infinity to an integral
value.

– Parameters
∗ x – a double

– Returns – the smallest double, not less than x, that is an integral value

• cos
public static double cos( double x )

– Description
Returns the cosine of a double.

– Parameters
∗ x – a double, assumed to be in radians

– Returns – a double, the cosine of x

• exp
public static double exp( double x )

– Description
Returns the exponential of a double. Special cases: e∞ is ∞, eNaN is NaN; e−∞

is 0, and for finite argument, only e0 = 1 is exact.
– Parameters
∗ x – a double.

– Returns – a double representing ex.

• floor
public static double floor( double x )

– Description
Returns the value of a double rounded toward negative infinity to an integral
value.
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– Parameters
∗ x – a double

– Returns – the smallest double, not greater than x, that is an integral value

• IEEEremainder
public static double IEEEremainder( double x, double p )

– Description
Returns the IEEE remainder from x divided by p. The IEEE remainder is
x%p = x− [x/p]× p as if in infinite precise arithmetic, where [x/p] is the
(infinite bit) integer nearest x/p (in half way case choose the even one).

– Parameters
∗ x – a double, the dividend
∗ p – a double, the divisor

– Returns – a double representing the remainder computed according to the
IEEE 754 standard.

• log
public static double log( double x )

– Description
Returns the natural logarithm of a double.

– Parameters
∗ x – a double

– Returns – a double representing the natural (base e) logarithm of x

• max
public static double max( double x, double y )

– Description
Returns the larger of two doubles.

– Parameters
∗ x – a double
∗ y – a double

– Returns – a double, the larger of x and y. This function considers -0.0 to be
less than 0.0.

• max
public static float max( float x, float y )

– Description
Returns the larger of two floats.

– Parameters
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∗ x – a float
∗ y – a float

– Returns – a float, the larger of x and y. This function considers -0.0f to be
less than 0.0f.

• max
public static int max( int x, int y )

– Description
Returns the larger of two ints.

– Parameters
∗ x – an int
∗ y – an int

– Returns – an int, the larger of x and y

• max
public static long max( long x, long y )

– Description
Returns the larger of two longs.

– Parameters
∗ x – a long
∗ y – a long

– Returns – a long, the larger of x and y

• min
public static double min( double x, double y )

– Description
Returns the smaller of two doubles.

– Parameters
∗ x – a double
∗ y – a double

– Returns – a double, the smaller of x and y. This function considers -0.0 to be
less than 0.0.

• min
public static float min( float x, float y )

– Description
Returns the smaller of two floats.

– Parameters
∗ x – a float
∗ y – a float
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– Returns – a float, the smaller of x and y. This function considers -0.0f to be
less than 0.0f.

• min
public static int min( int x, int y )

– Description
Returns the smaller of two ints.

– Parameters
∗ x – an int
∗ y – an int

– Returns – an int representing the smaller of x and y

• min
public static long min( long x, long y )

– Description
Returns the smaller of two longs.

– Parameters
∗ x – a long
∗ y – a long

– Returns – a long, the smaller of x and y

• pow
public static double pow( double x, double y )

– Description
Returns x to the power y.

– Parameters
∗ x – a double, the base
∗ y – a double, the exponent

– Returns – a double, x to the power y

• random
public static synchronized double random( )

– Description
Returns a random number from a uniform distribution.

– Returns – a double representing a random number from a uniform distribution

• rint
public static double rint( double x )

– Description
Returns the value of a double rounded toward the closest integral value.
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– Parameters
∗ x – a double

– Returns – the double closest to x that is an integral value

• round
public static long round( double x )

– Description
Returns the long closest to a given double.

– Parameters
∗ x – a double

– Returns – the long closest to x

• round
public static int round( float x )

– Description
Returns the integer closest to a given float.

– Parameters
∗ x – a float

– Returns – the int closest to x

• sin
public static double sin( double x )

– Description
Returns the sine of a double.

– Parameters
∗ x – a double, assumed to be in radians

– Returns – a double, the sine of x

• sqrt
public static double sqrt( double x )

– Description
Returns the square root of a double.

– Parameters
∗ x – a double

– Returns – a double representing the square root of x

• tan
public static double tan( double x )
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– Description
Returns the tangent of a double.

– Parameters
∗ x – a double, assumed to be in radians

– Returns – a double, the tangent of x

class IEEE

Pure Java implementation of the IEEE 754 functions as specified in IEEE Standard for
Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New York).

This Java code is based on C code in the package fdlibm, which can be obtained from
www.netlib.org. The original fdlibm C code contains the following notice.

Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
Developed at SunSoft, a Sun Microsystems, Inc. business. Permission to use, copy, modify,
and distribute this software is freely granted, provided that this notice is preserved.

Declaration

public class com.imsl.math.IEEE
extends java.lang.Object

Methods

• copysign
public static double copysign( double x, double y )

– Description
Returns a value with the magnitude of x and with the sign bit of y. If y is NaN
then |x| is returned.

– Parameters
∗ x – a double from which the magnitude will be gleaned
∗ y – a double from which the sign will be gleaned

– Returns – a double value with magnitude x and sign of y

• finite
public static boolean finite( double x )
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– Description
Finite number test on an argument of type double.

– Parameters
∗ x – the double which is to be tested

– Returns – true if x is a finite number, false if x is a NaN or an infinity

• ilogb
public static int ilogb( double x )

– Description
Return the binary exponent of non-zero x.

– Parameters
∗ x – a double

– Returns – an int representing the binary exponent of x. Special cases
ilogb(0) = -Integer.MAX VALUE and
ilogb(∞) = ilogb(−∞) = ilogb(NaN) = Integer.MAX VALUE.

• isNaN
public static boolean isNaN( double x )

– Description
NaN test on an argument of type double.

– Parameters
∗ x – the double which is to be tested

– Returns – true if x is a NaN, false otherwise

• nextAfter
public static double nextAfter( double x, double y )

– Description
Returns the next machine floating-point number next to x in the direction
toward y.

– Parameters
∗ x – a double
∗ y – a double

– Returns – a double which represents the value which is closest to x in the
interval bounded by x and y

• scalbn
public static double scalbn( double x, int n )

– Description
Returns 2n computed by exponent manipulation rather than by actually
performing an exponentiation or a multiplication.
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– Parameters
∗ x – a double
∗ n – an int representing the power to which 2 is raised

– Returns – a double representing x2n.

• unordered
public static boolean unordered( double x, double y )

– Description
Unordered test on a pair of doubles. Tests whether either of a pair of doubles is
a NaN.

– Parameters
∗ x – a double
∗ y – a double

– Returns – true if either x or y is a NaN, false otherwise

class Hyperbolic

Pure Java implementation of the hyperbolic functions and their inverses.

This Java code is based on C code in the package fdlibm, which can be obtained from
www.netlib.org. The original fdlibm C code contains the following notice.

Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.

Developed at SunSoft, a Sun Microsystems, Inc. business. Permission to use, copy, modify,
and distribute this software is freely granted, provided that this notice is preserved.

Declaration

public class com.imsl.math.Hyperbolic
extends java.lang.Object

Methods

• acosh
public static double acosh( double x )
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– Description
Returns the inverse hyperbolic cosine of its argument. Specifically,
acosh(1) returns +0
acosh(±∞) returns +∞
acosh(x) returns NaN, if |x| < 1.

– Parameters
∗ x – a double value representing the argument.

– Returns – a double value representing the number whose hyperbolic cosine is
x.

• asinh
public static double asinh( double x )

– Description
Returns the inverse hyperbolic sine of its argument. Specifically,
asinh(±0) returns ±∞
asinh(±∞) returns ±∞

– Parameters
∗ x – a double value representing the argument.

– Returns – a double value representing the number whose hyperbolic sine is x.

• atanh
public static double atanh( double x )

– Description
Returns the inverse hyperbolic tangent of its argument. Specifically,
atanh(±0) returns ±0
atanh(±1) returns +∞
atanh(x) returns NaN, if |x| > 1.

– Parameters
∗ x – a double value representing the argument.

– Returns – a double value representing the number whose hyperbolic tangent is
x.

• cosh
public static double cosh( double x )

– Description
Returns the hyperbolic cosine of its argument. Specifically,
cosh(±0) returns 1.
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cosh(±∞) returns +∞

– Parameters
∗ x – a double value representing the argument.

– Returns – a double value representing the hyperbolic cosine of x.

• expm1
public static double expm1( double x )

– Description
Returns exp(x)-1, the exponential of x minus 1. Specifically,
expm1(±0) returns ±0
expm1(+∞) returns ±∞
expm1(−∞) returns -1.

– Parameters
∗ x – a double specifying the argument.

– Returns – a double value representing exp(x)-1.

• log1p
public static double log1p( double x )

– Description
Returns log(1+x), the logarithm of (x plus 1). Specifically,
log1p(±0) returns ±0
log1p(−1) returns −∞
log1p(x) returns NaN, if x < −1.
log1p(±∞) returns ±∞

– Parameters
∗ x – a double value representing the argument.

– Returns – a double value representing log(1+x).

• sinh
public static double sinh( double x )

– Description
Returns the hyperbolic sine of its argument. Specifically,
sinh(±0) returns ±0
sinh(±∞) returns ±∞

– Parameters
∗ x – a double value representing the argument.
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– Returns – a double value representing the hyperbolic sine of x.

• tanh
public static double tanh( double x )

– Description
Returns the hyperbolic tangent of its argument. Specifically,
tanh(±0) returns ±0
tanh(±∞) returns ±1.

– Parameters
∗ x – a double value representing the argument.

– Returns – a double value representing the hyperbolic tangent of x.

Example: The Hyperbolic Functions

The Hyperbolic functions are exercised with argument 0.
import com.imsl.math.*;

public class HyperbolicEx1 {
public static void main(String args[]) {

// Exercise the hyperbolic functions with argument 0.0

System.out.println("sinh(0.) is "+Hyperbolic.sinh(0.));

System.out.println("cosh(0.) is "+Hyperbolic.cosh(0.));

System.out.println("tanh(0.) is "+Hyperbolic.tanh(0.));

System.out.println("asinh(0.) is "+Hyperbolic.asinh(0.));

System.out.println("acosh(0.) is "+Hyperbolic.acosh(0.));

System.out.println("atanh(0.) is "+Hyperbolic.atanh(0.));

}
}

Output

sinh(0.) is 0.0

cosh(0.) is 1.0

tanh(0.) is 0.0

asinh(0.) is 0.0

acosh(0.) is NaN

atanh(0.) is 0.0
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Chapter 10

Miscellaneous

Classes
Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Set of mathematical functions for complex numbers.
Physical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284

Return the value of various mathematical and physical constants.
EpsilonAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

The class is used to determine the limit of a sequence of approximations, by
means of the Epsilon algorithm of P.

class Complex

Set of mathematical functions for complex numbers. It provides the basic operations
(addition, subtraction, multiplication, division) as well as a set of complex functions. The
binary operations have the form, where op is add, subtract, multiply or divide.
public static Complex op(Complex x, Complex y) // x op y

public static Complex op(Complex x, double y) // x op y

public static Complex op(double x, Complex y) // x op y

Complex objects are immutable. Once created there is no way to change their value. The
functions in this class follow the rules for complex arithmetic as defined C9x Annex G:
IEC 559-compatible complex arithmetic. The API is not the same, but handling of
infinities, NaNs, and positive and negative zeros is intended to follow the same rules.
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Declaration

public class com.imsl.math.Complex
extends java.lang.Number
implements java.io.Serializable, java.lang.Cloneable

Fields

• public static final Complex i

– The imaginary unit. This constant is set to new Complex(0,1).

• public static java.lang.String suffix

– String used in converting Complex to String. Default is i, but sometimes j is
desired. Note that this is set for the class, not for a particular instance of a
Complex.

Constructors

• Complex
public Complex( )

– Description
Constructs a Complex equal to zero.

• Complex
public Complex( Complex z )

– Description
Constructs a Complex equal to the argument.

– Parameters
∗ z – a Complex object

– Throws
∗ java.lang.NullPointerException – is thrown if z is null

• Complex
public Complex( double re )

– Description
Constructs a Complex with a zero imaginary part.
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– Parameters
∗ re – a double value equal to the real part of the Complex object

• Complex
public Complex( double re, double im )

– Description
Constructs a Complex with real and imaginary parts given by the input
arguments.

– Parameters
∗ re – a double value equal to the real part of the Complex object
∗ im – a double value equal to the imaginary part of the Complex object

Methods

• abs
public static double abs( Complex z )

– Description
Returns the absolute value (modulus) of a Complex, |z|.

– Parameters
∗ z – a Complex object

– Returns – a double value equal to the absolute value of the argument

• acos
public static Complex acos( Complex z )

– Description
Returns the inverse cosine (arc cosine) of a Complex, with branch cuts outside
the interval [-1,1] along the real axis.
Specifically, if z = x+iy,
acos(z̄) = acos(z).
acos(±0 + i0) returns π/2− i0.
acos(−∞+ i∞) returns 3π/4− i∞.
acos(+∞+ i∞) returns π/4− i∞.
acos(x+ i∞) returns π/2− i∞, for finite x.
acos(−∞+ iy) returns π − i∞, for positive-signed finite y.
acos(+∞+ iy) returns +0− i∞, for positive-signed finite y.
acos(±∞+ iNaN) returns NaN± i∞ (where the sign of the imaginary part of
the result is unspecified).
acos(±0 + iNaN) returns π/2 + iNaN.
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acos(NaN + i∞) returns NaN− i∞.
acos(x+ iNaN) returns NaN + iNaN, for nonzero finite x.
acos(NaN + iy) returns NaN + iNaN, for finite y.
acos(NaN + iNaN) returns NaN + iNaN.

– Parameters
∗ z – a Complex object

– Returns – A newly constructed Complex initialized to the inverse (arc) cosine
of the argument. The real part of the result is in the interval [0, π].

• acosh
public static Complex acosh( Complex z )

– Description
Returns the inverse hyperbolic cosine (arc cosh) of a Complex, with a branch cut
at values less than one along the real axis.
Specifically, if z = x+iy,
acosh(z̄) = acosh(z).
acosh(±0 + i0) returns +0 + iπ/2.
acosh(−∞+ i∞) returns +∞+ i3π/4.
acosh(+∞+ i∞) returns +∞+ iπ/4.
acosh(x+ i∞) returns +∞+ iπ/2, for finite x.
acosh(−∞+ iy) returns +∞+ iπ, for positive-signed finite y.
acosh(+∞+ iy) returns +∞+ i0, for positive-signed finite y.
acosh(NaN + i∞) returns +∞+ iNaN.
acosh(±∞+ iNaN) returns +∞+ iNaN.
acosh(x+ iNaN) returns NaN + iNaN, for finite x.
acosh(NaN + iy) returns NaN + iNaN, for finite y.
acosh(NaN + iNaN) returns NaN + iNaN.

– Parameters
∗ z – a Complex object

– Returns – A newly constructed Complex initialized to the inverse (arc)
hyperbolic cosine of the argument. The real part of the result is non-negative
and its imaginary part is in the interval [−iπ, iπ].

• add
public static Complex add( Complex x, Complex y )

– Description
Returns the sum of two Complex objects, x+y.

– Parameters
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∗ x – a Complex object
∗ y – a Complex object

– Returns – a newly constructed Complex initialized to x+y

• add
public static Complex add( Complex x, double y )

– Description
Returns the sum of a Complex and a double, x+y.

– Parameters
∗ x – a Complex object
∗ y – a double value

– Returns – a newly constructed Complex initialized to x+y

• add
public static Complex add( double x, Complex y )

– Description
Returns the sum of a double and a Complex, x+y.

– Parameters
∗ x – a double value
∗ y – a Complex object

– Returns – a newly constructed Complex initialized to x+y

• argument
public static double argument( Complex z )

– Description
Returns the argument (phase) of a Complex, in radians, with a branch cut along
the negative real axis.

– Parameters
∗ z – a Complex object

– Returns – A double value equal to the argument (or phase) of a Complex. It is
in the interval [−π, π].

• asin
public static Complex asin( Complex z )

– Description
Returns the inverse sine (arc sine) of a Complex, with branch cuts outside the
interval [-1,1] along the real axis. The value of asin is defined in terms of the
function asinh, by asin(z) = −i asinh(iz).

– Parameters

Miscellaneous Complex • 269



∗ z – a Complex object
– Returns – A newly constructed Complex initialized to the inverse (arc) sine of

the argument. The real part of the result is in the interval [−π/2,+π/2].

• asinh
public static Complex asinh( Complex z )

– Description
Returns the inverse hyperbolic sine (arc sinh) of a Complex, with branch cuts
outside the interval [-i,i].
Specifically, if z = x+iy,
asinh(z̄) = asinh(z) and asinh is odd.
asinh(+0 + i0) returns 0 + i0.
asinh(∞+ i∞) returns +∞+ iπ/4.
asinh(x+ i∞) returns +∞+ iπ/2 for positive-signed finite x.
asinh(+∞+ iy) returns +∞+ i0 for positive-signed finite y.
asinh(NaN + i∞) returns ±∞+ iNaN (where the sign of the real part of the
result is unspecified).
asinh(+∞+ iNaN) returns +∞+ iNaN.
asinh(NaN + i0) returns NaN + i0.
asinh(NaN + iy) returns NaN + iNaN, for finite nonzero y.
asinh(x+ iNaN) returns NaN + iNaN, for finite x.
asinh(NaN + iNaN) returns NaN + iNaN.

– Parameters
∗ z – a Complex object

– Returns – A newly constructed Complex initialized to the inverse (arc)
hyperbolic sine of the argument. Its imaginary part is in the interval
[−iπ/2, iπ/2].

• atan
public static Complex atan( Complex z )

– Description
Returns the inverse tangent (arc tangent) of a Complex, with branch cuts
outside the interval [-i,i] along the imaginary axis. The value of atan is defined
in terms of the function atanh, by atan(z) = −i atanh(iz).

– Parameters
∗ z – a Complex object

– Returns – A newly constructed Complex initialized to the inverse (arc) tangent
of the argument. Its real part is in the interval [−π/2, π/2].
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• atanh
public static Complex atanh( Complex z )

– Description
Returns the inverse hyperbolic tangent (arc tanh) of a Complex, with branch
cuts outside the interval [-1,1] on the real axis.
Specifically, if z = x+iy,
atanh(z̄) = atanh(z) and atanh is odd.
atanh(+0 + i0) returns +0 + i0.
atanh(+∞+ i∞) returns +0 + iπ/2.
atanh(+∞+ iy) returns +0 + iπ/2, for finite positive-signed y.
atanh(x+ i∞) returns +0 + iπ/2, for finite positive-signed x.
atanh(+0 + iNaN) returns +0 + iNaN.
atanh(NaN + i∞) returns ±0 + ipi/2 (where the sign of the real part of the
result is unspecified).
atanh(+∞+ iNaN) returns +0 + iNaN.
atanh(NaN + iy) returns NaN + iNaN, for finite y.
atanh(x+ iNaN) returns NaN + iNaN, for nonzero finite x.
atanh(NaN + iNaN) returns NaN + iNaN.

– Parameters
∗ z – a Complex object

– Returns – A newly constructed Complex initialized to the inverse (arc)
hyperbolic tangent of the argument. The imaginary part of the result is in the
interval [−iπ/2, iπ/2].

• byteValue
public byte byteValue( )

– Description
Returns the value of the real part as a byte.

– Returns – a byte representing the value of the real part of a Complex object

• compareTo
public int compareTo( Complex z )

– Description
Compares two Complex objects.
A lexagraphical ordering is used. First the real parts are compared in the sense
of Double.compareTo. If the real parts are unequal this is the return value. If
the return parts are equal then the comparison of the imaginary parts is
returned.

– Parameters
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∗ z – a Complex to be compared
– Returns – The value 0 if z is equal to this Complex; a value less than 0 if this

Complex is less than z; and a value greater than 0 if this Complex is greater than
z.

• compareTo
public int compareTo( java.lang.Object obj )

– Description
Compares this Complex to another Object. If the Object is a Complex, this
function behaves like compareTo(Complex). Otherwise, it throws a
ClassCastException (as Complex objects are comparable only to other Complex

objects).
– Parameters
∗ obj – an Object to be compared

– Returns – an int, 0 if obj is equal to this Complex; a value less than 0 if this
Complex is less than obj; and a value greater than 0 if this Complex is greater
than obj.

– Throws
∗ java.lang.ClassCastException – is thrown if obj is not a Complex object

• conjugate
public static Complex conjugate( Complex z )

– Description
Returns the complex conjugate of a Complex object.

– Parameters
∗ z – a Complex object

– Returns – a newly constructed Complex initialized to the complex conjugate of
Complex argument, z

• cos
public static Complex cos( Complex z )

– Description
Returns the cosine of a Complex. The value of cos is defined in terms of the
function cosh, by cos(z) = cosh(iz).

– Parameters
∗ z – a Complex object

– Returns – a newly constructed Complex initialized to the cosine of the
argument
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• cosh
public static Complex cosh( Complex z )

– Description
Returns the hyperbolic cosh of a Complex.
If z = x+iy,
cosh(z̄) = cosh(z) and cosh is even.
cosh(+0 + i0) returns 1 + i0.
cosh(+0 + i∞) returns NaN± i0 (where the sign of the imaginary part of the
result is unspecified).
cosh(+∞+ i0) returns +∞+ i0.
cosh(+∞+ i∞) returns +∞+ iNaN.
cosh(x+ i∞) returns NaN + iNaN, for finite nonzero x.
cosh(+∞+ iy) returns +∞[cos(y) + i sin(y)], for finite nonzero y.
cosh(+0 + iNaN) returns NaN± i0 (where the sign of the imaginary part of the
result is unspecified).
cosh(+∞+ iNaN) returns +∞+ iNaN.
cosh(x+ iNaN) returns NaN + iNaN, for finite nonzero x.
cosh(NaN + i0) returns NaN± i0 (where the sign of the imaginary part of the
result is unspecified).
cosh(NaN + iy) returns NaN + iNaN, for all nonzero numbers y.
cosh(NaN + iNaN) returns NaN + iNaN.

– Parameters
∗ z – a Complex object

– Returns – a newly constructed Complex initialized to the hyperbolic cosine of
the argument

• divide
public static Complex divide( Complex x, Complex y )

– Description
Returns the result of a Complex object divided by a Complex object, x/y.

– Parameters
∗ x – a Complex object representing the numerator
∗ y – a Complex object representing the denominator

– Returns – a newly constructed Complex initialized to x/y

• divide
public static Complex divide( Complex x, double y )

– Description
Returns the result of a Complex object divided by a double, x/y.
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– Parameters
∗ x – a Complex object representing the numerator
∗ y – a double representing the denominator

– Returns – a newly constructed Complex initialized to x/y

• divide
public static Complex divide( double x, Complex y )

– Description
Returns the result of a double divided by a Complex object, x/y.

– Parameters
∗ x – a double value
∗ y – a Complex object representing the denominator

– Returns – a newly constructed Complex initialized to x/y

• doubleValue
public double doubleValue( )

– Description
Returns the value of the real part as a double.

– Returns – a double representing the value of the real part of a Complex object

• equals
public boolean equals( Complex z )

– Description
Compares with another Complex.
Note: To be useful in hashtables this method considers two NaN double values
to be equal. This is not according to IEEE specification.

– Parameters
∗ z – a Complex object

– Returns – true if the real and imaginary parts of this object are equal to their
counterparts in the argument; false, otherwise

• equals
public boolean equals( java.lang.Object obj )

– Description
Compares this object against the specified object.
Note: To be useful in hashtables this method considers two NaN double values
to be equal. This is not according to IEEE specification

– Parameters
∗ obj – the object to compare with
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– Returns – true if the objects are the same; false otherwise

• exp
public static Complex exp( Complex z )

– Description
Returns the exponential of a Complex z, exp(z).
Specifically, if z = x+iy,
exp(z̄) = exp(z).
exp(±0 + i0) returns 1 + i0.
exp(+∞+ i0) returns +∞+ i0.
exp(−∞+ i∞) returns ±0± i0 (where the signs of the real and imaginary parts
of the result are unspecified).
exp(+∞+ i∞) returns ±∞+ iNaN (where the sign of the real part of the
result is unspecified).
exp(x+ i∞) returns NaN + iNaN, for finite x.
exp(−∞+ iy) returns +0[cos(y) + i sin(y)], for finite y.
exp(+∞+ iy) returns +∞[cos(y) + i sin(y)], for finite nonzero y.
exp(−∞+ iNaN) returns ±0± i0 (where the signs of the real and imaginary
parts of the result are unspecified).
exp(+∞+ iNaN) returns ±∞+ iNaN (where the sign of the real part of the
result is unspecified).
exp(NaN + i0) returns NaN + i0.
exp(NaN + iy) returns NaN + iNaN, for all non-zero numbers y.
exp(x+ iNaN) returns NaN + iNaN, for finite x.

– Parameters
∗ z – a Complex object

– Returns – a newly constructed Complex initialized to the exponential of the
argument

• floatValue
public float floatValue( )

– Description
Returns the value of the real part as a float.

– Returns – a float representing the value of the real part of a Complex object

• hashCode
public int hashCode( )

– Description
Returns a hashcode for this Complex.
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– Returns – a hash code value for this object

• imag
public double imag( )

– Description
Returns the imaginary part of a Complex object.

– Returns – a double representing the imaginary part of a Complex object, z

• imag
public static double imag( Complex z )

– Description
Returns the imaginary part of a Complex object.

– Parameters
∗ z – a Complex object

– Returns – a double representing the imaginary part of the Complex object, z

• intValue
public int intValue( )

– Description
Returns the value of the real part as an int.

– Returns – an int representing the value of the real part of a Complex object

• log
public static Complex log( Complex z )

– Description
Returns the logarithm of a Complex z, with a branch cut along the negative real
axis.
Specifically, if z = x+iy,
log(z̄) = log(z).
log(0 + i0) returns −∞+ iπ.
log(+0 + i0) returns −∞+ i0.
log(−∞+ i∞) returns +∞+ i3π/4.
log(+∞+ i∞) returns +∞+ iπ/4.
log(x+ i∞) returns +∞+ iπ/2, for finite x.
log(−∞+ iy) returns +∞+ iπ, for finite positive-signed y.
log(+∞+ iy) returns +∞+ i0, for finite positive-signed y.
log(±∞+ iNaN) returns +∞+ iNaN.
log(NaN + i∞) returns +∞+ iNaN.
log(x+ iNaN) returns NaN + iNaN, for finite x.
log(NaN + iy) returns NaN + iNaN, for finite y.
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log(NaN + iNaN) returns NaN + iNaN.

– Parameters
∗ z – a Complex object

– Returns – A newly constructed Complex initialized to the logarithm of the
argument. Its imaginary part is in the interval [−iπ, iπ].

• longValue
public long longValue( )

– Description
Returns the value of the real part as a long.

– Returns – a long representing the value of the real part of a Complex object

• multiply
public static Complex multiply( Complex x, Complex y )

– Description
Returns the product of two Complex objects, x * y.

– Parameters
∗ x – a Complex object
∗ y – a Complex object

– Returns – a newly constructed Complex initialized to x× y

• multiply
public static Complex multiply( Complex x, double y )

– Description
Returns the product of a Complex object and a double, x * y.

– Parameters
∗ x – a Complex object
∗ y – a double value

– Returns – a newly constructed Complex initialized to x× y

• multiply
public static Complex multiply( double x, Complex y )

– Description
Returns the product of a double and a Complex object, x * y.

– Parameters
∗ x – a double value
∗ y – a Complex object

– Returns – a newly constructed Complex initialized to x× y
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• multiplyImag
public static Complex multiplyImag( Complex x, double y )

– Description
Returns the product of a Complex object and a pure imaginary double, x * iy.

– Parameters
∗ x – a Complex object
∗ y – a double value representing a pure imaginary

– Returns – a newly constructed Complex initialized to x * iy

• multiplyImag
public static Complex multiplyImag( double x, Complex y )

– Description
Returns the product of a pure imaginary double and a Complex object, ix * y.

– Parameters
∗ x – a double value representing a pure imaginary
∗ y – a Complex object

– Returns – a newly constructed Complex initialized to ix× y.

• negate
public static Complex negate( Complex z )

– Description
Returns the negative of a Complex object, -z.

– Parameters
∗ z – a Complex object

– Returns – a newly constructed Complex initialized to the negative of the
Complex argument, z

• pow
public static Complex pow( Complex x, Complex y )

– Description
Returns the Complex x raised to the Complex y power. The value of pow is
defined in terms of the functions exp and log, by pow(x, y) = exp(y log(x)).

– Parameters
∗ x – a Complex object
∗ y – a Complex object

– Returns – a newly constructed Complex initialized to xy.

• pow
public static Complex pow( Complex z, double x )
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– Description
Returns the Complex z raised to the x power, with a branch cut for the first
parameter (z) along the negative real axis.

– Parameters
∗ z – a Complex object
∗ x – a double value

– Returns – a newly constructed Complex initialized to z to the power x

• real
public double real( )

– Description
Returns the real part of a Complex object.

– Returns – a double representing the real part of a Complex object, z

• real
public static double real( Complex z )

– Description
Returns the real part of a Complex object.

– Parameters
∗ z – a Complex object

– Returns – a double representing the real part of the Complex object, z

• shortValue
public short shortValue( )

– Description
Returns the value of the real part as a short.

– Returns – a short representing the value of the real part of a Complex object

• sin
public static Complex sin( Complex z )

– Description
Returns the sine of a Complex. The value of sin is defined in terms of the
function sinh, by sin(z) = −i sinh(iz).

– Parameters
∗ z – a Complex object

– Returns – a newly constructed Complex initialized to the sine of the argument

• sinh
public static Complex sinh( Complex z )
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– Description
Returns the hyperbolic sine of a Complex.
If z = x+iy,
sinh(z̄) = sinh(z) and sinh is odd.
sinh(+0 + i0) returns +0 + i0.
sinh(+0 + i∞) returns ±0 + iNaN (where the sign of the real part of the result
is unspecified).
sinh(+∞+ i0) returns +∞+ i0.
sinh(+∞+ i∞) returns ±∞+ iNaN (where the sign of the real part of the
result is unspecified).
sinh(+∞+ iy) returns +∞[cos(y) + i sin(y)], for positive finite y.
sinh(x+ i∞) returns NaN + iNaN, for positive finite x.
sinh(+0 + iNaN) returns ±0 + iNaN (where the sign of the real part of the
result is unspecified).
sinh(+∞+ iNaN) returns ±∞+ iNaN (where the sign of the real part of the
result is unspecified).
sinh(x+ iNaN) returns NaN + iNaN, for finite nonzero x.
sinh(NaN + i0) returns NaN + i0.
sinh(NaN + iy) returns NaN + iNaN, for all nonzero numbers y.
sinh(NaN + iNaN) returns NaN + iNaN.

– Parameters
∗ z – a Complex object

– Returns – a newly constructed Complex initialized to the hyperbolic sine of the
argument

• sqrt
public static Complex sqrt( Complex z )

– Description
Returns the square root of a Complex, with a branch cut along the negative real
axis.
Specifically, if z = x+iy,
sqrt(z̄) = sqrt(z).
sqrt(±0 + i0) returns +0 + i0.
sqrt(−∞+ iy) returns +0 + i∞, for finite positive-signed y.
sqrt(+∞+ iy) returns +∞+ i0, for finite positive-signed y.
sqrt(x+ i∞) returns +∞+ i∞, for all x (including NaN).
sqrt(−∞+ iNaN) returns NaN± i∞ (where the sign of the imaginary part of
the result is unspecified).
sqrt(+∞+ iNaN) returns +∞+ iNaN.
sqrt(x+ iNaN) returns NaN + iNaN and optionally raises the invalid exception,
for finite x.
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sqrt(NaN + iy) returns NaN + iNaN and optionally raises the invalid exception,
for finite y.
sqrt(NaN + iNaN) returns NaN + iNaN.

– Parameters
∗ z – a Complex object

– Returns – A newly constructed Complex initialized to square root of z.

• subtract
public static Complex subtract( Complex x, Complex y )

– Description
Returns the difference of two Complex objects, x-y.

– Parameters
∗ x – a Complex object
∗ y – a Complex object

– Returns – a newly constructed Complex initialized to x-y

• subtract
public static Complex subtract( Complex x, double y )

– Description
Returns the difference of a Complex object and a double, x-y.

– Parameters
∗ x – a Complex object
∗ y – a double value

– Returns – a newly constructed Complex initialized to x-y

• subtract
public static Complex subtract( double x, Complex y )

– Description
Returns the difference of a double and a Complex object, x-y.

– Parameters
∗ x – a double value
∗ y – a Complex object

– Returns – a newly constructed Complex initialized to x-y

• tan
public static Complex tan( Complex z )

– Description
Returns the tangent of a Complex. The value of tan is defined in terms of the
function tanh, by tan(z) = −i tanh(iz).
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– Parameters
∗ z – a Complex object

– Returns – a newly constructed Complex initialized to the tangent of the
argument

• tanh
public static Complex tanh( Complex z )

– Description
Returns the hyperbolic tanh of a Complex.
If z = x+iy,
tanh(z̄) = tanh(z) and tanh is odd.
tanh(+0 + i0) returns +0 + i0.
tanh(+∞+ iy) returns 1 + i0, for all positive-signed numbers y.
tanh(x+ i∞) returns NaN + iNaN, for finite x.
tanh(+∞+ iNaN) returns 1± i0 (where the sign of the imaginary part of the
result is unspecified).
tanh(NaN + i0) returns NaN + i0.
tanh(NaN + iy) returns NaN + iNaN, for all nonzero numbers y.
tanh(x+ iNaN) returns NaN + iNaN, for finite x.
tanh(NaN + iNaN) returns NaN + iNaN.

– Parameters
∗ z – a Complex object

– Returns – a newly constructed Complex initialized to the hyperbolic tangent of
the argument

• toString
public java.lang.String toString( )

– Description
Returns a String representation for the specified Complex.

– Returns – a String representation for this object

• valueOf
public static Complex valueOf( java.lang.String s ) throws
java.lang.NumberFormatException

– Description
Parses a String into a Complex.

– Parameters
∗ s – the String to be parsed
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– Returns – a newly constructed Complex initialized to the value represented by
the String argument

– Throws
∗ java.lang.NumberFormatException – if the string does not contain a

parsable Complex number
∗ java.lang.NullPointerException – if the input argument is null

Example: LU Decomposition of a Complex Matrix

The Complex class is used to convert a real matrix to a Complex matrix. An LU
decomposition of the matrix is performed and the determinant and condition number of
the matrix are obtained.
import com.imsl.math.*;

public class ComplexEx1 {
public static void main(String args[]) throws SingularMatrixException {

double ar[][] = {
{1, 3, 3},
{1, 3, 4},
{1, 4, 3}

};
double br[] = {12, 13, 14};

Complex a[][] = new Complex[3][3];

Complex b[] = new Complex[3];

for (int i = 0; i < 3; i++){
b[i] = new Complex(br[i]);

for (int j = 0; j < 3; j++) {
a[i][j] = new Complex(ar[i][j]);

}
}

// Compute the LU factorization of A

ComplexLU clu = new ComplexLU(a);

// Solve Ax = b

Complex x[] = clu.solve(b);

System.out.println("The solution is:");

System.out.println(" ");

new PrintMatrix("x").print(x);
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// Find the condition number of A.

double condition = clu.condition(a);

System.out.println("The condition number = "+condition);

System.out.println();

// Find the determinant of A.

Complex determinant = clu.determinant();

System.out.println("The determinant = "+determinant);

}
}

Output

The solution is:

x

0

0 3

1 2

2 1

The condition number = 0.014886731391585757

The determinant = -0.9999999999999998

class Physical

Return the value of various mathematical and physical constants. The case of the String

specifying the name of the physical constant does not matter. The names ‘PI’, ‘Pi’, ‘pI’
and ‘pi’ are equivalent. The units of the physical constants are in SI units,
(meter-kilogram-second). The names allowed are as follows:
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Name Description Value Reference
AMU Atomic mass unit 1.6605402E-27 kg [1]
ATM Standard atm pres-

sure
1.01325E+5 N/m2 E[2]

AU Astronomical unit 1.496E+11 m [ ]
Avogadro Avogadro’s number 6.0221367E+23

1/mole
[1]

Boltzman Boltzman’s constant 1.380658E-23 J/K [1]
C Speed of light 2.997924580E+8 m/s E[1]
Catalan Catalan’s constant 0.915965... E[3]
E Base of natural logs 2.718... E[3]
ElectronCharge Electron change 1.60217733E-19 C [1]
ElectronMass Electron mass 9.1093897E-31 kg [1]
ElectronVolt Electron volt 1.60217733E-19 J [1]
Euler Euler’s constant

gamma
0.577... E[3]

Faraday Faraday constant 9.6485309E+4
C/mole

[1]

FineStructure Fine structure 7.29735308E-3 [1]
Gamma Euler’s constant 0.577... E[3]
Gas Gas constant 8.314510 J/mole/K [1]
Gravity Gravitational con-

stant
6.67259E-11
Nm2/kg2

[1]

Hbar Planck constant / 2
pi

1.05457266E-34 J*s [1]

PerfectGasVolume Std vol ideal gas 2.241383E-2
m3/mole

[*]

Pi Pi 3.141... E[3]
Planck Planck’s constant h 6.6260755E-34 J*s [1]
ProtonMass Proton mass 1.6726231E-27 kg [1]
Rydberg Rydberg’s constant 1.0973731534E+7

/m
[1]

SpeedLight Speed of light 2.997924580E+8 m/s E[1]
StandardGravity Standard g 9.80665 m/s2 E[2]
StandardPressure Standard atm pres-

sure
1.01325E+5 N/m2 E[2]

StefanBoltzmann Stefan-Boltzman 5.67051E-8
W/K4/m2

[1]

WaterTriple Triple point of water 2.7316E+2 K E[2]
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1. Units strings have the form U1*U2*...*Um/V1/.../Vn, where Ui and Vi are the
names of basic units or are the names of basic units raised to a power. Examples
are, ‘METER*KILOGRAM/SECOND’, ‘M*KG/S’, ‘METER’, or ‘M/KG2‘. These
strings are case insensitive.

2. The basic unit names allowed are as follows.

Units of time
day, hour = hr, min = minute, s = sec = second, year

Units of frequency
Hertz = Hz

Units of mass
AMU, g = gram, lb = pound, ounce = oz, slug

Units of distance
Angstrom, AU, ft = feet = foot, in = inch, m = meter = metre, micron, mile, mill,
parsec, yard

Units of area
acre

Units of volume
l = liter = litre

Units of force
dyne, N = Newton, poundal

Units of energy
BTU(thermochemical), Erg, J = Joule

Units of work
W = watt

Units of pressure
ATM = atomosphere, bar, Pascal

Units of temperature
degC = Celsius, degF = Fahrenheit, degK = Kelvin

Units of viscosity
poise, stoke

Units of charge
Abcoulomb, C = Coulomb, statcoulomb

Units of current
A = ampere, abampere, statampere

Units of voltage
Abvolt, V = volt
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Units of magnetic induction
T = Tesla, Wb = Weber

Other units
1, farad, mole, Gauss, Henry, Maxwell, Ohm

The following metric prefixes may be used with the above units. Note that the one
or two letter prefixes may only be used with one letter unit abbreviations.

A = atto = 1.E-18
F = femto = 1.E-15
P = pico = 1.E-12
N = nano = 1.E-9
U = micro = 1.E-6
M = milli = 1.E-3
C = centi = 1.E-2
D = deci = 1.E-1
DK = deca = 1.E+1
K = kilo = 1.E+3
myria = 1.E+4 (no single letter prefix; M means milli)
mega = 1.E+6 (no single letter prefix; M means milli)
G = giga = 1.E+9
T = tera = 1.E+12

Declaration

public class com.imsl.math.Physical
extends java.lang.Number
implements java.io.Serializable, java.lang.Cloneable

Fields

• protected double value

• protected int[] dim

• protected static final int LENGTH

• protected static final int MASS

• protected static final int TIME
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• protected static final int CURRENT

• protected static final int TEMPERATURE

Constructors

• Physical
public Physical( )

– Description
Constructs a new 0-valued, dimensionless object.

• Physical
public Physical( double value, int length, int mass, int time, int
current, int temperature )

– Description
Constructs a new Physical object and initializes this object to a double value
along with int values for length, mass, time, current, and temperature.

– Parameters
∗ value – double value to which this object is initialized
∗ length – int value assigned to this object’s length
∗ mass – int value assigned to this object’s mass
∗ time – int value assigned to this object’s time
∗ current – int value assigned to this object’s current
∗ temperature – int value assigned to this object’s temperature

• Physical
public Physical( double value, java.lang.String units )

– Description
Constructs a new Physical object and initializes this object to a double value.

– Parameters
∗ value – double value to which the copy of the object is initialized
∗ units – String specifying the unit

• Physical
public Physical( Physical copy )

– Description
Constructs a copy of a Physical object.

– Parameters
∗ copy – Physical object from which a copy is made
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Methods

• add
public static Physical add( Physical x, Physical y )

– Description
Add two compatible Physical objects.

– Parameters
∗ x – Physical object which is to be added
∗ y – Physical object which is to be added

– Returns – Physical object which is the sum of x + y
– Throws
∗ java.lang.IllegalArgumentException – is thrown if x and y are not

compatible

• checkCompatibility
public static void checkCompatibility( Physical x, Physical y )

– Description
Checks the compatibility of two Physical objects.

– Parameters
∗ x – a Physical object
∗ y – a Physical object to be checked against x

– Throws
∗ java.lang.IllegalArgumentException – is thrown if the two Physical

objects are incompatible

• constant
public static Physical constant( java.lang.String name )

– Description
Returns the value of a constant, given its name.

– Parameters
∗ name – is a String representing the name of the constant to be returned

– Returns – the Physical object containing the value of the constant, in its
default units

– Throws
∗ java.lang.IllegalArgumentException – is thrown when the name given

is undefined
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• constant
public static double constant( java.lang.String name,
java.lang.String units )

– Description
Returns the value of a constant, given its name, in the specified units.

– Parameters
∗ name – is a String representing the name of the constant to be returned.
∗ units – is a String representing the units in which the constant is to be

returned.
– Returns – a double containing the value of the constant in the specified units
– Throws
∗ java.lang.IllegalArgumentException – is thrown if the constant name

is undefined

• convert
public static Physical convert( Physical pOld, java.lang.String
unitsNew )

– Description
Converts a value to a different set of units.

– Parameters
∗ pOld – a Physical object specifying the value to be converted
∗ unitsNew – a String specifying the units to which pOld is to be converted

– Returns – a Physical object containing the value of pOld converted to the new
units

– Throws
∗ java.lang.IllegalArgumentException – is thrown if the new and old

units are incompatible

• defineConstant
public static void defineConstant( java.lang.String name, Physical
value )

– Description
Defines a new constant.

– Parameters
∗ name – a String specifying the name of the constant to be defined
∗ value – a Physical object defining the value of the new constant

• definePrefix
public static void definePrefix( java.lang.String name, double value )
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– Description
Defines a new prefix.

– Parameters
∗ name – a String specifying the name of the prefix to be defined
∗ value – is the double value of the prefix

• defineUnit
public static void defineUnit( java.lang.String name, Physical value
)

– Description
Defines a new unit.

– Parameters
∗ name – a String specifying the name of the unit to be defined
∗ value – a Physical object defining the value of one unit in terms of SI units

• divide
public static Physical divide( double x, Physical y )

– Description
Divide a double by a Physical object.

– Parameters
∗ x – double which is the numerator
∗ y – Physical object which is the divisor

– Returns – Physical object which is the result of x/y

• divide
public static Physical divide( Physical x, double y )

– Description
Divide a Physical object by a double.

– Parameters
∗ x – Physical object which is the numerator
∗ y – double object which is the divisor

– Returns – Physical object which is the result of x/y

• divide
public static Physical divide( Physical x, Physical y )

– Description
Divide two Physical objects.

– Parameters
∗ x – Physical object which is the numerator
∗ y – Physical object which is the divisor
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– Returns – Physical object which is the result of x/y

• doubleValue
public double doubleValue( )

– Description
Returns the value of this dimensionless object.

– Returns – the double value of the dimensionless object
– Throws
∗ java.lang.IllegalArgumentException – is thrown if the this object is

not dimensionless

• floatValue
public float floatValue( )

– Description
Returns the value of this dimensionless object.

– Returns – the float value of the dimensionless object
– Throws
∗ java.lang.IllegalArgumentException – is thrown if the this object is

not dimensionless

• intValue
public int intValue( )

– Description
Returns the value of this dimensionless object.

– Returns – the int value of the dimensionless object
– Throws
∗ java.lang.IllegalArgumentException – is thrown if the this object is

not dimensionless

• longValue
public long longValue( )

– Description
Returns the value of this dimensionless object.

– Returns – the long value of the dimensionless object
– Throws
∗ java.lang.IllegalArgumentException – is thrown if the this object is

not dimensionless

• multiply
public static Physical multiply( double x, Physical y )
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– Description
Multiply a double and a Physical object

– Parameters
∗ x – double which is to be multiplied
∗ y – Physical object which is to be multiplied

– Returns – Physical object which is the product of x and y

• multiply
public static Physical multiply( Physical x, double y )

– Description
Multiply a Physical object and a double

– Parameters
∗ x – Physical object which is to be multiplied
∗ y – double which is to be multiplied

– Returns – Physical object which is the product of x and y

• multiply
public static Physical multiply( Physical x, Physical y )

– Description
Multiply two Physical objects.

– Parameters
∗ x – Physical object which is to be multiplied
∗ y – Physical object which is to be multiplied

– Returns – Physical object which is the product of x and y

• negate
public static Physical negate( Physical x )

– Description
Negate a Physical object.

– Parameters
∗ x – Physical object which is to be negated

– Returns – Physical object which has been negated

• subtract
public static Physical subtract( Physical x, Physical y )

– Description
Subtract two compatible Physical objects.

– Parameters
∗ x – Physical object
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∗ y – Physical object which is to be subtracted from x
– Returns – Physical object which is the result of x - y
– Throws
∗ java.lang.IllegalArgumentException – is thrown if x and y are not

compatible

• toString
public java.lang.String toString( )

– Description
Returns a String containing the value and units, if any.

– Returns – a String specifying the value and units, if any, of this Physical

object

• unitsString
public java.lang.String unitsString( )

– Description
Returns a String containing the units only.

– Returns – a String specifying the units of this Physical object

Example: The Physical Constants

The value of the physical constant PI is printed.
import com.imsl.math.*;

public class PhysicalEx1 {
public static void main(String args[]) {

System.out.println("The value of the physical constant PI is " +

Physical.constant("PI"));

}
}

Output

The value of the physical constant PI is 3.141592653589793
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class EpsilonAlgorithm

The class is used to determine the limit of a sequence of approximations, by means of the
Epsilon algorithm of P. Wynn. An estimate of the absolute error is also given. The
condensed Epsilon table is computed. Only those elements needed for the computation of
the next diagonal are preserved.

Declaration

public class com.imsl.math.EpsilonAlgorithm
extends java.lang.Object

Constructors

• EpsilonAlgorithm
public EpsilonAlgorithm( )

– Description
Initializes an EpsilonAlgorithm with a maximum table size of 50.

• EpsilonAlgorithm
public EpsilonAlgorithm( int maxTableSize )

– Description
Initializes an EpsilonAlgorithm.

– Parameters
∗ maxTableSize – The maximum table size.

Methods

• extrapolate
public double extrapolate( double x )

– Description
Extrapolates the convergence limit of a sequence.

– Parameters
∗ x – is the next point in the original series.
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– Returns – an estimate of the limit of the series.

• getErrorEstimate
public double getErrorEstimate( )

– Description
Returns the current error estimate.
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Chapter 11

Printing Functions

Classes
PrintMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Matrix printing utilities.
PrintMatrixFormat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

This class can be used to customize the actions of PrintMatrix.

class PrintMatrix

Matrix printing utilities.

Declaration

public class com.imsl.math.PrintMatrix
extends java.lang.Object

Fields

• public static final int FULL

– This flag as the argument to setMatrixType, indicates that the full matrix is to
be printed.
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• public static final int UPPER TRIANGULAR

– This flag as the argument to setMatrixType, indicates that only the upper
triangular elements of the matrix are to be printed. The matrix still must be a
rectangular matrix.

• public static final int LOWER TRIANGULAR

– This flag as the argument to setMatrixType, indicates that only the lower
triangular elements of the matrix are to be printed. The matrix still must be a
rectangular matrix.

• public static final int STRICT UPPER TRIANGULAR

– This flag as the argument to setMatrixType, indicates that only the strict
upper triangular elements of the matrix are to be printed. The matrix still
must be a rectangular matrix.

• public static final int STRICT LOWER TRIANGULAR

– This flag as the argument to setMatrixType, indicates that only the strict lower
triangular elements of the matrix are to be printed. The matrix still must be a
rectangular matrix.

Constructors

• PrintMatrix
public PrintMatrix( )

– Description
Creates an instance of the PrintMatrix class.

• PrintMatrix
public PrintMatrix( java.io.PrintStream out )

– Description
Creates an instance of the PrintMatrix class with the specified PrintStream.

– Parameters
∗ out – a PrintStream

• PrintMatrix
public PrintMatrix( java.io.PrintStream out, java.lang.String title )

– Description
Creates a PrintMatrix object with the specified PrintStream and sets its title.
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– Parameters
∗ out – a PrintStream
∗ title – a String specifying the title

• PrintMatrix
public PrintMatrix( java.lang.String title )

– Description
Creates a PrintMatrix object and sets its title.

– Parameters
∗ title – a String specifying the title

Methods

• print
public void print( java.lang.Object array )

– Description
Prints an nRows by nColumns matrix with specified format.

– Parameters
∗ array – a two-dimensional, non-empty, rectangular array

• print
public void print( PrintMatrixFormat pmf, java.lang.Object array )

– Description
Prints an nRows by nColumns matrix with specified format.

– Parameters
∗ pmf – a PrintMatrixFormat matrix format
∗ array – a two-dimensional, non-empty, rectangular array

• print
protected void print( java.lang.String string )

– Description
Print a string. This function can be overridden to print to something other
than a PrintStream.

– Parameters
∗ string – the String to be printed
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• printHTML
public void printHTML( PrintMatrixFormat pmf, java.lang.Object
array, int nRows, int nColumns )

– Description
Prints an nRows by nColumns matrix with specified format for HTML output.

– Parameters
∗ pmf – a PrintMatrixFormat matrix format
∗ nRows – an int specifying the number of rows in the matrix
∗ nColumns – an int specifying the number of columns in the matrix

• println
protected void println( )

– Description
Print a newline. This function can be overridden to print to something other
than a PrintStream.

• setColumnSpacing
public PrintMatrix setColumnSpacing( int columnSpacing )

– Description
Sets the number of spaces between columns. The default value is 2.

– Parameters
∗ columnSpacing – an int specifying the number of spaces between columns,

default is 2
– Returns – the PrintMatrix object

• setEqualColumnWidths
public PrintMatrix setEqualColumnWidths( boolean
equalColumnWidths )

– Description
Force all of the columns to have the same width.

– Parameters
∗ equalColumnWidths – a boolean which specifies that all column widths will

be equal
– Returns – the PrintMatrix object

• setMatrixType
public PrintMatrix setMatrixType( int matrixType )

– Description
Set matrix type.
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– Parameters
∗ matrixType – int specifying the matrix type. Values for matrixType are:

0 FULL
1 UPPER TRIANGULAR
2 LOWER TRIANGULAR
3 STRICT UPPER TRIANGULAR
4 STRICT LOWER TRIANGULAR

– Returns – the PrintMatrix object

• setPageWidth
public PrintMatrix setPageWidth( int pageWidth )

– Description
Sets the page width. The default value is the largest possible integer.

– Parameters
∗ pageWidth – an int specifying the page width, default is the largest

possible integer
– Returns – the PrintMatrix object

• setTitle
public PrintMatrix setTitle( java.lang.String title )

– Description
Sets matrix title

– Parameters
∗ title – a String specifying the title of the matrix

– Returns – the PrintMatrix object

Example: Matrix and PrintMatrix

The 1 norm of a matrix is found using a method from the Matrix class. The matrix is
printed using the PrintMatrix class.
import com.imsl.math.*;

public class PrintMatrixEx1 {
public static void main(String args[]) {

double nrm1;

double a[][] = {
{0., 1., 2., 3.},
{4., 5., 6., 7.},
{8., 9., 8., 1.},
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{6., 3., 4., 3.}
};

// Get the 1 norm of matrix a

nrm1 = Matrix.oneNorm(a);

// Construct a PrintMatrix object with a title

PrintMatrix p = new PrintMatrix("A Simple Matrix");

// Print the matrix and its 1 norm

p.print(a);

System.out.println("The 1 norm of the matrix is "+nrm1);

}
}

Output

A Simple Matrix

0 1 2 3

0 0 1 2 3

1 4 5 6 7

2 8 9 8 1

3 6 3 4 3

The 1 norm of the matrix is 20.0

class PrintMatrixFormat

This class can be used to customize the actions of PrintMatrix. By default, entries are
formatted using the default NumberFormat for the current default locale. As of JDK1.3,
none of these NumberFormat objects support scientific notation. To enable scientific
notation, set the NumberFormat property to null. There is no way to simultaneously
support scientific notation and locale-correct formatting.

Declaration

public class com.imsl.math.PrintMatrixFormat
extends java.lang.Object
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Fields

• public static final int BEGIN MATRIX

– This flag as the type argument to format, indicates that the formatting string
for beginning a matrix is to be returned.

• public static final int END MATRIX

– This flag as the type argument to format, indicates that the formatting string
for ending a matrix is to be returned.

• public static final int BEGIN COLUMN LABELS

– This flag as the type argument to format, indicates that the formatting string
for beginning a column label row is to be returned.

• public static final int END COLUMN LABELS

– This flag as the type argument to format, indicates that the formatting string
for ending a column label row is to be returned.

• public static final int BEGIN COLUMN LABEL

– This flag as the type argument to format, indicates that the formatting string
for ending a column label is to be returned.

• public static final int COLUMN LABEL

– This flag as the type argument to format, indicates that the formatted string
for a given column label is to be returned.

• public static final int END COLUMN LABEL

– This flag as the type argument to format, indicates that the formatting string
for ending a column label is to be returned.

• public static final int BEGIN ROW

– This flag as the type argument to format, indicates that the formatting string
for beginning a row is to be returned.

• public static final int END ROW

– This flag as the type argument to format, indicates that the formatting string
for ending a row is to be returned.

• public static final int BEGIN ROW LABEL

– This flag as the type argument to format, indicates that the formatting string
for beginning a row label is to be returned.
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• public static final int ROW LABEL

– This flag as the type argument to format, indicates that the formatted string
for a given row label is to be returned.

• public static final int END ROW LABEL

– This flag as the type argument to format, indicates that the formatting string
for ending a row label is to be returned.

• public static final int BEGIN ENTRY

– This flag as the type argument to format, indicates that the formatted string
for beginning an entry is to be returned.

• public static final int ENTRY

– This flag as the type argument to format, indicates that the formatted string
for a given entry is to be returned.

• public static final int END ENTRY

– This flag as the type argument to format, indicates that the formatted string
for ending an entry is to be returned.

• protected java.text.NumberFormat numberFormat

– The NumberFormat to be used in formatting double and Complex entries.

Constructor

• PrintMatrixFormat
public PrintMatrixFormat( )

– Description
Constructs a PrintMatrixFormat object.

Methods

• format
public java.lang.String format( int type, java.lang.Object entry, int
row, int col, java.text.ParsePosition pos )

– Description
Returns a formatted string.
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– Parameters
∗ type – is the type of string requested.

type return value
BEGIN MATRIX Tag for the beginning of the matrix.
END MATRIX Tag for the end of the matrix.
BEGIN COLUMN LABELS Tag for the beginning of the column

labels row.
END COLUMN LABELS Tag for the end of the column labels

row.
BEGIN COLUMN LABEL Tag for the beginning of a column

label.
END COLUMN LABEL Tag for the end of a column label.
COLUMN LABEL The label of the specified column.
BEGIN ROW Tag for the beginning of a row.
END ROW Tag for the end of a row.
BEGIN ROW LABEL Tag for the beginning of a row label.
END ROW LABEL Tag for the end of a row label.
ROW LABEL The label of the specified row.
ENTRY The row-col entry of the matrix

∗ entry – is the entry to be formatted. This is only used if type equals
ENTRY. For other values of type, this can be set to null.
∗ row – is the (0-based) row number of the element to be formatted. This is

-1 if there is no row number associated with this request.
∗ col – is the (0-based) column number of the element to be formatted. This

is -1 if there is no column number associated with this request.
∗ pos – is a ParsePosition object used to indicate the alignment center of the

return string. This is used only if type==ENTRY. If the entry is a double

then the index is the position of the decimal point. If the entry is an int

then the index is the position of the end of the formatted integer.
– Returns – is the String to be put into the printed table.

• getNumberFormat
public java.text.NumberFormat getNumberFormat( )

– Description
Returns the NumberFormat to be used in formatting double and Complex
entries.

• setColumnLabels
public void setColumnLabels( java.lang.String[] columnLabels )

– Description
Turns on column labeling using the given labels.
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– Parameters
∗ columnLabels – is an array of Strings to be used as column labels. If there

are more columns than labels, the labels are reused.

• setFirstColumnNumber
public void setFirstColumnNumber( int firstColumnNumber )

– Description
Turns on column labeling with index numbers and sets the index for the label
of the first column.

– Parameters
∗ firstColumnNumber – is the number for the first column label. This is

usually 0 or 1. The default is 0.

• setFirstRowNumber
public void setFirstRowNumber( int firstRowNumber )

– Description
Turns on row labeling with index numbers and sets the index for the label of
the first row.

– Parameters
∗ firstRowNumber – is the number for the first row label. This is usually 0

or 1. The default is 0.

• setNoColumnLabels
public void setNoColumnLabels( )

– Description
Turns off column labels.

• setNoRowLabels
public void setNoRowLabels( )

– Description
Turns off row labels.

• setNumberFormat
public void setNumberFormat( java.text.NumberFormat numberFormat
)

– Description
Sets the NumberFormat to be used in formatting double and Complex entries.

– Parameters
∗ numberFormat – a NumberFormat or null. If null then numbers will be

formatted using toString(int), or toString().
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Example: Matrix Formatting

A simple matrix is printed using the default format with the PrintMatrix class. The
PrintMatrixFormat class is then used to change the default format.
import com.imsl.math.*;

import java.text.*;

public class PrintMatrixFormatEx1 {
public static void main(String args[]) {

double a[][] = {
{0., 1., 2., 3.},
{4., 5., 6., 7.},
{8., 9., 8., 1.},
{6., 3., 4., 3.}

};

// Construct a PrintMatrix object with a title

PrintMatrix p = new PrintMatrix("A Simple Matrix");

// Print the matrix

p.print(a);

// Turn row and column labels off

PrintMatrixFormat mf = new PrintMatrixFormat();

mf.setNoRowLabels();

mf.setNoColumnLabels();

// Print the matrix

p.print(mf, a);

}
}

Output

A Simple Matrix

0 1 2 3

0 0 1 2 3

1 4 5 6 7

2 8 9 8 1

3 6 3 4 3
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A Simple Matrix

0 1 2 3

4 5 6 7

8 9 8 1

6 3 4 3
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Chapter 12

Basic Statistics

Classes
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Computes basic univariate statistics.
Covariances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320

Computes the sample variance-covariance or correlation matrix.
NormOneSample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330

Computes statistics for mean and variance inferences using a sample from
a normal population.

NormTwoSample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Computes statistics for mean and variance inferences using samples from
two normal populations.

Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
A collection of sorting functions.

Ranks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Compute the ranks, normal scores, or exponential scores for a vector of
observations.

TableOneWay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Tallies observations into a one-way frequency table.

TableTwoWay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Tallies observations into a two-way frequency table.

TableMultiWay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
Tallies observations into a multi-way frequency table.
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Usage Notes

The methods/classes for the computations of basic statistics generally have relatively
simple arguments. Most of the methods/classes in this chapter allow for missing values.
Missing value codes can be set by using Double.NaN.

Several methods/classes in this chapter perform statistical tests. These methods in the
classes generally return a “p-value“ for the test. The p-value is between 0 and 1 and is the
probability of observing data that would yield a test statistic as extreme or more extreme
under the assumption of the null hypothesis. Hence, a small p-value is evidence for the
rejection of the null hypothesis.

class Summary

Computes basic univariate statistics.

For the data in x. Summary computes the sample mean, variance, minimum, maximum, and
ther basic statistics. It also computes confidence intervals for the mean and variance if the
sample is assumed to be from a normal population.

Missing values, that is, values equal to NaN (not a number), are excluded from the
computations. The sum of the weights is used only in computing the mean (of course,
then the weighted mean is used in computing the central moments). The definitions of
some of the statistics are given below in terms of a single variable x. The i-th datum is xi,
with corresponding weight wi. If weights are not specified, the wi are identically one. The
summation in each case is over the set of valid observations, based on the presence of
missing values in the data.

Number of nonmissing observations,

n =
∑

fi

Mean,

x̄w =
∑
fiwixi∑
fiwi

Variance,

s2w =
∑
fiwi (xi − x̄w)2

n− 1

Skewness,
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∑
fiwi (xi − x̄w)3 /n

[
∑
fiwi (xi − x̄w)2 /n]3/2

Excess or Kurtosis,

∑
fiwi (xi − x̄w)4 /n

[
∑
fiwi (xi − x̄w)2 /n]2

− 3

Minimum,

xmin = min(xi)

Maximum,

xmax = max(xi)

Declaration

public class com.imsl.stat.Summary
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Constructor

• Summary
public Summary( )

– Description
Constructs a new summary statistics object.

Methods

• confidenceMean
public double[] confidenceMean( double p )

– Description
Returns the confidence interval for the mean (assuming normality).
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– Parameters
∗ p – a double, the confidence level desired, usually 0.90, 0.95 or 0.99.

– Returns – a double array of length 2 which contains the lower and upper
confidence limits for the mean

• confidenceVariance
public double[] confidenceVariance( double p )

– Description
Returns the confidence interval for the variance (assuming normality).

– Parameters
∗ p – a double, the confidence level desired, usually 0.90, 0.95 or 0.99.

– Returns – a double array of length 2 which contains the lower and upper
confidence limits for the variance

• getKurtosis
public double getKurtosis( )

– Description
Returns the kurtosis.

– Returns – a double representing the kurtosis

• getMaximum
public double getMaximum( )

– Description
Returns the maximum.

– Returns – a double representing the maximum

• getMean
public double getMean( )

– Description
Returns the population mean.

– Returns – a double representing the population mean

• getMinimum
public double getMinimum( )

– Description
Returns the minimum.

– Returns – a double representing the minimum
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• getSampleStandardDeviation
public double getSampleStandardDeviation( )

– Description
Returns the sample standard deviation.

– Returns – a double representing the sample standard deviation

• getSampleVariance
public double getSampleVariance( )

– Description
Returns the sample variance.

– Returns – a double representing the sample variance

• getSkewness
public double getSkewness( )

– Description
Returns the skewness.

– Returns – a double representing the skewness

• getStandardDeviation
public double getStandardDeviation( )

– Description
Returns the population standard deviation.

– Returns – a double representing the population standard deviation

• getVariance
public double getVariance( )

– Description
Returns the population variance.

– Returns – a double representing the population variance

• kurtosis
public static double kurtosis( double[] x )

– Description
Returns the kurtosis of the given data set.

– Parameters
∗ x – a double array containing the data set whose kurtosis is to be found

– Returns – a double, the kurtosis of the given data set
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• kurtosis
public static double kurtosis( double[] x, double[] weight )

– Description
Returns the kurtosis of the given data set and associated weights.

– Parameters
∗ x – a double array containing the data set whose kurtosis is to be found
∗ weight – a double array containing the weights associated with the data

points x
– Returns – a double, the kurtosis of the given data set

• maximum
public static double maximum( double[] x )

– Description
Returns the maximum of the given data set.

– Parameters
∗ x – a double array containing the data set whose maximum is to be found

– Returns – a double, the maximum of the given data set

• mean
public static double mean( double[] x )

– Description
Returns the mean of the given data set.

– Parameters
∗ x – a double array containing the data set whose mean is to be found

– Returns – a double, the mean of the given data set

• mean
public static double mean( double[] x, double[] weight )

– Description
Returns the mean of the given data set with associated weights.

– Parameters
∗ x – a double array containing the data set whose mean is to be found
∗ weight – a double array containing the weights associated with the data

points x
– Returns – a double, the mean of the given data set

• median
public static double median( double[] x )
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– Description
Returns the median of the given data set.

– Parameters
∗ x – a double array containing the data set whose median is to be found

– Returns – a double, the median of the given data set

• minimum
public static double minimum( double[] x )

– Description
Returns the minimum of the given data set.

– Parameters
∗ x – a double array containing the data set whose minimum is to be found

– Returns – a double, the minimum of the given data set

• mode
public static double mode( double[] x )

– Description
Returns the mode of the given data set. Ties are broken at random.

– Parameters
∗ x – a double array containing the data set whose mode is to be found

– Returns – a double, the mode of the given data set

• sampleStandardDeviation
public static double sampleStandardDeviation( double[] x )

– Description
Returns the sample standard deviation of the given data set.

– Parameters
∗ x – a double array containing the data set whose sample standard

deviation is to be found
– Returns – a double, the sample standard deviation of the given data set

• sampleStandardDeviation
public static double sampleStandardDeviation( double[] x, double[]
weight )

– Description
Returns the sample standard deviation of the given data set and associated
weights.

– Parameters
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∗ x – a double array containing the data set whose sample standard
deviation is to be found

∗ weight – a double array containing the weights associated with the data
points x.

– Returns – a double, the sample standard deviation of the given data set

• sampleVariance
public static double sampleVariance( double[] x )

– Description
Returns the sample variance of the given data set.

– Parameters
∗ x – a double array containing the data set whose sample variance is to be

found
– Returns – a double, the sample variance of the given data set

• sampleVariance
public static double sampleVariance( double[] x, double[] weight )

– Description
Returns the sample variance of the given data set and associated weights.

– Parameters
∗ x – a double array containing the data set whose sample variance is to be

found
∗ weight – a double array containing the weights associated with the data

points x
– Returns – a double, the sample variance of the given data set

• skewness
public static double skewness( double[] x )

– Description
Returns the skewness of the given data set.

– Parameters
∗ x – a double array containing the data set whose skewness is to be found

– Returns – a double, the skewness of the given data set

• skewness
public static double skewness( double[] x, double[] weight )

– Description
Returns the skewness of the given data set and associated weights.

– Parameters
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∗ x – a double array containing the data set whose skewness is to be found
∗ weight – a double array containing the weights associated with the data

points x
– Returns – a double, the skewness of the given data set

• standardDeviation
public static double standardDeviation( double[] x )

– Description
Returns the population standard deviation of the given data set.

– Parameters
∗ x – a double array containing the data set whose standard deviation is to

be found
– Returns – a double, the population standard deviation of the given data set

• standardDeviation
public static double standardDeviation( double[] x, double[] weight )

– Description
Returns the population standard deviation of the given data set and associated
weights.

– Parameters
∗ x – a double array containing the data set whose standard deviation is to

be found
∗ weight – a double array containing the weights associated with the data

points x
– Returns – a double, the population standard deviation of the given data set

• update
public synchronized void update( double x )

– Description
Adds an observation to the Summary object.

– Parameters
∗ x – a double, the data observation to be added

• update
public synchronized void update( double[] x )

– Description
Adds a set of observations to the Summary object.

– Parameters
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∗ x – a double array of data observations to be added

• update
public synchronized void update( double[] x, double[] weight )

– Description
Adds a set of observations and associated weights to the Summary object.

– Parameters
∗ x – a double array of data observations to be added
∗ weight – a double array of weights associated with the observations

• update
public synchronized void update( double x, double weight )

– Description
Adds an observation and associated weight to the Summary object.

– Parameters
∗ x – a double, the data observation to be added
∗ weight – a double, the weight associated with the observation

• variance
public static double variance( double[] x )

– Description
Returns the population variance of the given data set.

– Parameters
∗ x – a double array containing the data set whose population variance is to

be found
– Returns – a double, the population variance of the given data set

• variance
public static double variance( double[] x, double[] weight )

– Description
Returns the population variance of the given data set and associated weights.

– Parameters
∗ x – a double array containing the data set whose population variance is to

be found
∗ weight – a double array containing the weights associated with the data

points x
– Returns – a double, the population variance of the given data set
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Example: Summary Statistics

Summary statistics for a small data set are computed.
import com.imsl.stat.*;

public class SummaryEx1 {
static final double data1[] = {3, 6.4, 2, 1.6, -8, 12, -7,

6.4, 22, 1, 0, -3.2};

public static void main(String args[]) {
Summary summary = new Summary();

summary.update(data1);

System.out.println("The minimum is "+summary.getMinimum());

System.out.println();

System.out.println("The maximum is "+summary.getMaximum());

System.out.println();

System.out.println("The mean is "+summary.getMean());

System.out.println();

System.out.println("The variance is "+summary.getVariance());

System.out.println();

System.out.println("The sample variance is " +

summary.getSampleVariance());

System.out.println();

System.out.println("The standard deviation is " +

summary.getStandardDeviation());

System.out.println();

System.out.println("The skewness is "+summary.getSkewness());

System.out.println();

System.out.println("The kurtosis is "+summary.getKurtosis());

System.out.println();

double confmn[] = new double[2];

confmn = summary.confidenceMean(0.95);

System.out.println("The confidence Mean is {" + confmn[0] +
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", " + confmn[1]+"}");
System.out.println();

double confvr[] = new double[2];

confvr = summary.confidenceVariance(0.95);

System.out.println("The confidence Variance is {" + confvr[0] +

", " + confvr[1]+"}");
}

}

Output

The minimum is -8.0

The maximum is 22.0

The mean is 3.016666666666666

The variance is 61.70972222222223

The sample variance is 67.31969696969698

The standard deviation is 7.855553591073148

The skewness is 0.8632224134285833

The kurtosis is 0.5677060483851211

The confidence Mean is {-2.1964514686012353, 8.229784801934567}

The confidence Variance is {33.78261872720627, 194.0685332772439}

class Covariances

Computes the sample variance-covariance or correlation matrix.

Class covariances computes estimates of correlations, covariances, or sums of squares and
crossproducts for a data matrix x. Weights and frequencies are allowed but not required.

The means, (corrected) sums of squares, and (corrected) sums of crossproducts are
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computed using the method of provisional means. Let xki denote the mean based on i
observations for the k-th variable, fi denote the frequency of the i-th observation, wi

denote the weight of the i-th observations, and cjki denote the sum of crossproducts (or
sum of squares if j = k) based on i observations. Then the method of provisional means
finds new means and sums of crossproducts as shown in the example below.

The means and crossproducts are initialized as follows:

xk0 = 0.0 for k = 1, . . . , p

cjk0 = 0.0 for j, k = 1, . . . , p

where p denotes the number of variables. Letting xk,i+1 denote the k-th variable of
observation i + 1, each new observation leads to the following updates for xki and cjki

using the update constant ri+1:

ri+1 =
fi+1wi+1

i+1∑
l=1

flwl

x̄k, i+1 = x̄ki + (xk, i+1 − x̄ki) ri+1

cjk, i+1 = cjki + fi+1wi+1 (xj, i+1 − x̄ji) (xk, i+1 − x̄ki) (1− ri+1)

The default value for weights and frequencies is 1. Means and variances are computed
based on the valid data for each variable or, if required, based on all the valid data for
each pair of variables.

Declaration

public class com.imsl.stat.Covariances
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Classes

class Covariances.NonnegativeFreqException

Frequencies must be nonnegative.
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Declaration

public static class com.imsl.stat.Covariances.NonnegativeFreqException
extends com.imsl.IMSLException (page 1240)

Constructors

• Covariances.NonnegativeFreqException
public Covariances.NonnegativeFreqException( java.lang.String
message )

• Covariances.NonnegativeFreqException
public Covariances.NonnegativeFreqException( java.lang.String key,
java.lang.Object[] arguments )

class Covariances.NonnegativeWeightException

Weights must be nonnegative.

Declaration

public static class com.imsl.stat.Covariances.NonnegativeWeightException
extends com.imsl.IMSLException (page 1240)

Constructors

• Covariances.NonnegativeWeightException
public Covariances.NonnegativeWeightException( java.lang.String
message )

• Covariances.NonnegativeWeightException
public Covariances.NonnegativeWeightException( java.lang.String key,
java.lang.Object[] arguments )

class Covariances.TooManyObsDeletedException

More observations have been deleted than were originally entered (the sum of frequencies
has become negative).
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Declaration

public static class com.imsl.stat.Covariances.TooManyObsDeletedException
extends com.imsl.IMSLException (page 1240)

Constructors

• Covariances.TooManyObsDeletedException
public Covariances.TooManyObsDeletedException( java.lang.String
message )

• Covariances.TooManyObsDeletedException
public Covariances.TooManyObsDeletedException( java.lang.String
key, java.lang.Object[] arguments )

class Covariances.MoreObsDelThanEnteredException

More observations are being deleted from the output covariance matrix than were
originally entered (the corresponding row, column of the incidence matrix is less than
zero).

Declaration

public static class com.imsl.stat.Covariances.MoreObsDelThanEnteredException
extends com.imsl.IMSLException (page 1240)

Constructors

• Covariances.MoreObsDelThanEnteredException
public Covariances.MoreObsDelThanEnteredException(
java.lang.String message )

• Covariances.MoreObsDelThanEnteredException
public Covariances.MoreObsDelThanEnteredException(
java.lang.String key, java.lang.Object[] arguments )

class Covariances.DiffObsDeletedException

Different observations are being deleted from return matrix than were originally entered.
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Declaration

public static class com.imsl.stat.Covariances.DiffObsDeletedException
extends com.imsl.IMSLException (page 1240)

Constructors

• Covariances.DiffObsDeletedException
public Covariances.DiffObsDeletedException( java.lang.String message
)

• Covariances.DiffObsDeletedException
public Covariances.DiffObsDeletedException( java.lang.String key,
java.lang.Object[] arguments )

Fields

• public static final int VARIANCE COVARIANCE MATRIX

– Indicates variance-covariance matrix.

• public static final int CORRECTED SSCP MATRIX

– Indicates corrected sums of squares and crossproducts matrix.

• public static final int CORRELATION MATRIX

– Indicates correlation matrix.

• public static final int STDEV CORRELATION MATRIX

– Indicates correlation matrix except for the diagonal elements which are the
standard deviations

Constructor

• Covariances
public Covariances( double[][] x )

– Description
Constructor for Covariances.
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– Parameters
∗ x – A double matrix containing the data.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if x.length, and

x[0].length are equal to 0.

Methods

• compute
public final double[][] compute( int matrixType ) throws
com.imsl.stat.Covariances.NonnegativeFreqException,
com.imsl.stat.Covariances.NonnegativeWeightException,
com.imsl.stat.Covariances.TooManyObsDeletedException,
com.imsl.stat.Covariances.MoreObsDelThanEnteredException,
com.imsl.stat.Covariances.DiffObsDeletedException

– Description
Computes the matrix.

– Parameters
∗ matrixType – An int scalar indicating the type of matrix to compute.

Uses class member VARIANCE COVARIANCE MATRIX, CORRECTED SSCP MATRIX,
CORRELATION MATRIX, STDEV CORRELATION MATRIX for matrixType.

– Returns – A double matrix containing computed result.
– Throws
∗ com.imsl.stat.Covariances.NonnegativeFreqException – is thrown if

the frequencies are negative.
∗ com.imsl.stat.Covariances.NonnegativeWeightException – is thrown

if the weights sre negative.
∗ com.imsl.stat.Covariances.TooManyObsDeletedException – is thrown

if more observations have been deleted than were originally entered, i.e. the
sum of frequencies has become negative.
∗ com.imsl.stat.Covariances.MoreObsDelThanEnteredException – is

thrown if more observations are being deleted from “variance-covariance”
matrix than were originally entered. The corresponding row,column of the
incidence matrix is less than zero.
∗ com.imsl.stat.Covariances.DiffObsDeletedException – is thrown if

different observations are being deleted than were originally entered.

• getIncidenceMatrix
public int[][] getIncidenceMatrix( )
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– Description
Returns the incidence matrix.

– Returns – An int matrix containing the incidence matrix. If method is 0,
incidence matrix is 1× 1 and contains the number of valid observations;
otherwise, incidence matrix is x [0] .length× x [0] .length and contains the
number of pairs of valid observations used in calculating the crossproducts for
covariance.

• getMeans
public double[] getMeans( )

– Description
Returns the means of the variables in x.

– Returns – A double array containing the means of the variables in x. The
components of the array correspond to the columns of x.

• getNumRowMissing
public int getNumRowMissing( )

– Description
Returns the total number of observations that contain any missing values
(Double.NaN).

– Returns – An int scalar containing the total number of observations that
contain any missing values (Double.NaN).

• getObservations
public int getObservations( )

– Description
Returns the sum of the frequencies.

– Returns – An int scalar containing the sum of the frequencies. If
missingValueMethod = 0, observations with missing values are not included;
otherwise, all observations are included except for observations with missing
values for the weight or the frequency.

• getSumOfWeights
public double getSumOfWeights( )

– Description
Returns the sum of the weights of all observations.

– Returns – A double scalar containing the sum of the weights of all
observations. If missingValueMethod = 0, observations with missing values are
not included. Otherwise, all observations are included except for observations
with missing values for the weight or the frequency.
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• setFrequencies
public void setFrequencies( double[] frequencies )

– Description
Sets the frequency for each observation.

– Parameters
∗ frequencies – A double array of size x.length containing the frequency

for each observation. Default: frequencies[] = 1.

• setMissingValueMethod
public void setMissingValueMethod( int missingValueMethod )

– Description
Sets the method used to exclude missing values in x from the computations,
where Double.NaN is interpreted as the missing value code.

– Parameters
∗ missingValueMethod – An int scalar indicating the method to use. The

methods are as follows:
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missingValueMethod Action
0 The exclusion is listwise, default.

(The entire row of x is excluded if
any of the values of the row is equal
to the missing value code.)

1 Raw crossproducts are computed
from all valid pairs and means,
and variances are computed from
all valid data on the individual
variables. Corrected crossproducts,
covariances, and correlations are
computed using these quantities.

2 Raw crossproducts, means, and
variances are computed as in the
case of method = 1. However,
corrected crossproducts and covari-
ances are computed only from the
valid pairs of data. Correlations are
computed using these covariances
and the variances from all valid
data.

3 Raw crossproducts, means, vari-
ances, and covariances are com-
puted as in the case of method =
2. Correlations are computed using
these covariances, but the variances
used are computed from the valid
pairs of data.

• setWeights
public void setWeights( double[] weights )

– Description
Sets the weight for each observation.

– Parameters
∗ weights – A double array of size x.length containing the weight for each

observation. Default: weights[] = 1.
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Example: Covariances

This example illustrates the use of Covariances class for the first 50 observations in the
Fisher iris data (Fisher 1936). Note that the first variable is constant over the first 50
observations.

import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

import com.imsl.math.PrintMatrixFormat;

public class CovariancesEx1 {
public static void main(String args[]) throws Exception {

double[][] x = {
{1.0, 5.1, 3.5, 1.4, .2}, {1.0, 4.9, 3.0, 1.4, .2},
{1.0, 4.7, 3.2, 1.3, .2}, {1.0, 4.6, 3.1, 1.5, .2},
{1.0, 5.0, 3.6, 1.4, .2}, {1.0, 5.4, 3.9, 1.7, .4},
{1.0, 4.6, 3.4, 1.4, .3}, {1.0, 5.0, 3.4, 1.5, .2},
{1.0, 4.4, 2.9, 1.4, .2}, {1.0, 4.9, 3.1, 1.5, .1},
{1.0, 5.4, 3.7, 1.5, .2}, {1.0, 4.8, 3.4, 1.6, .2},
{1.0, 4.8, 3.0, 1.4, .1}, {1.0, 4.3, 3.0, 1.1, .1},
{1.0, 5.8, 4.0, 1.2, .2}, {1.0, 5.7, 4.4, 1.5, .4},
{1.0, 5.4, 3.9, 1.3, .4}, {1.0, 5.1, 3.5, 1.4, .3},
{1.0, 5.7, 3.8, 1.7, .3}, {1.0, 5.1, 3.8, 1.5, .3},
{1.0, 5.4, 3.4, 1.7, .2}, {1.0, 5.1, 3.7, 1.5, .4},
{1.0, 4.6, 3.6, 1.0, .2}, {1.0, 5.1, 3.3, 1.7, .5},
{1.0, 4.8, 3.4, 1.9, .2}, {1.0, 5.0, 3.0, 1.6, .2},
{1.0, 5.0, 3.4, 1.6, .4}, {1.0, 5.2, 3.5, 1.5, .2},
{1.0, 5.2, 3.4, 1.4, .2}, {1.0, 4.7, 3.2, 1.6, .2},
{1.0, 4.8, 3.1, 1.6, .2}, {1.0, 5.4, 3.4, 1.5, .4},
{1.0, 5.2, 4.1, 1.5, .1}, {1.0, 5.5, 4.2, 1.4, .2},
{1.0, 4.9, 3.1, 1.5, .2}, {1.0, 5.0, 3.2, 1.2, .2},
{1.0, 5.5, 3.5, 1.3, .2}, {1.0, 4.9, 3.6, 1.4, .1},
{1.0, 4.4, 3.0, 1.3, .2}, {1.0, 5.1, 3.4, 1.5, .2},
{1.0, 5.0, 3.5, 1.3, .3}, {1.0, 4.5, 2.3, 1.3, .3},
{1.0, 4.4, 3.2, 1.3, .2}, {1.0, 5.0, 3.5, 1.6, .6},
{1.0, 5.1, 3.8, 1.9, .4}, {1.0, 4.8, 3.0, 1.4, .3},
{1.0, 5.1, 3.8, 1.6, .2}, {1.0, 4.6, 3.2, 1.4, .2},
{1.0, 5.3, 3.7, 1.5, .2}, {1.0, 5.0, 3.3, 1.4, .2}

};
Covariances co = new Covariances(x);
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PrintMatrix pm =

new PrintMatrix("Sample Variances-covariances Matrix");

NumberFormat nf = NumberFormat.getInstance();

nf.setMinimumFractionDigits(4);

PrintMatrixFormat pmf = new PrintMatrixFormat();

pmf.setNumberFormat(nf);

pm.setMatrixType(PrintMatrix.UPPER TRIANGULAR);

pm.print(pmf, co.compute(Covariances.VARIANCE COVARIANCE MATRIX));

}
}

Output

Sample Variances-covariances Matrix

0 1 2 3 4

0 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.1242 0.0992 0.0164 0.0103

2 0.1437 0.0117 0.0093

3 0.0302 0.0061

4 0.0111

class NormOneSample

Computes statistics for mean and variance inferences using a sample from a normal
population.

The statistics for mean and variance inferences are computed by using a sample from a
normal population, including methods for the confidence intervals and tests for both mean
and variance. The definitions of mean and variance are given below. The summation in
each case is over the set of valid observations, based on the presence of missing values in
the data.

Method getMean, returns value

x̄ =
∑
xi

n

330 • NormOneSample JMSL



∆d
sZt

Method getStandardDeviation, returns value

s =

√∑
(xi − x̄)2

n− 1

The method getTTestStat returns the t statistic for the two-sided test concerning the
population mean which is given by

t =
x̄− µ0

s/
√
n

where s and x̄ are given above. This quantity has a T distribution with n - 1 degrees of
freedom. The method getTTestDF returns the degree of freedom.

The method getChiSquaredTestStat returns the chi-squared statistic for the two-sided test
concerning the population variance which is given by

χ2 =
(n− 1) s2

σ2
0

where s is given above. This quantity has a χ2 distribution with n - 1 degrees of freedom.
The method getChiSquaredTestDF returns the degrees of freedom.

Declaration

public class com.imsl.stat.NormOneSample
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Constructor

• NormOneSample
public NormOneSample( double[] x )

– Description
Constructor to compute statistics for mean and variance inferences using a
sample from a normal population.

– Parameters
∗ x – is a one-dimension double array containing the observations.
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Methods

• getChiSquaredTest
public double getChiSquaredTest( )

– Description
Returns the test statistic associated with the chi-squared test for variances.
The chi-squared test is a test of the hypothesis ω2 = ω2

0 where ω2
0 is the null

hypothesis value as described in setChiSquaredTestNull.
– Returns – a double containing the test statistic for the chi-squared test.

• getChiSquaredTestDF
public int getChiSquaredTestDF( )

– Description
Returns the degrees of freedom associated with the chi-squared test for
variances. The chi-squared test is a test of the hypothesis ω2 = ω2

0 where ω2
0 is

the null hypothesis value as described in setChiSquaredTestNull.
– Returns – an int the degrees of freedom for the chi-squared test.

• getChiSquaredTestP
public double getChiSquaredTestP( )

– Description
Returns the probability of a larger chi-squared associated with the chi-squared
test for variances. The chi-squared test is a test of the hypothesis ω2 = ω2

0

where ω2
0 is the null hypothesis value as described in setChiSquaredTestNull.

– Returns – a double containing the probability of a larger chi-squared for the
chi-squared test for variances.

• getLowerCIMean
public double getLowerCIMean( )

– Description
Returns the lower confidence limit for the mean.

– Returns – a double containing the lower confidence limit for the mean.

• getLowerCIVariance
public double getLowerCIVariance( )

– Description
Returns the lower confidence limits for the variance.

– Returns – a double containing the lower confidence limits for the variance.
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• getMean
public double getMean( )

– Description
Returns the mean of the sample.

– Returns – a double containing the mean.

• getStdDev
public double getStdDev( )

– Description
Returns the standard deviation of the sample.

– Returns – a double containing the standard deviation of the sample.

• getTTest
public double getTTest( )

– Description
Returns the test statistic associated with the t test. The t test is a test, against
a two-sided alternative, of the null hypothesis value described in setTTestNull.

– Returns – a double containing the test statistic for the t test.

• getTTestDF
public int getTTestDF( )

– Description
Returns the degrees of freedom associated with the t test for the mean. The t
test is a test, against a two-sided alternative, of the null hypothesis value
described in setTTestNull.

– Returns – an int containing the degrees of freedom for the t test.

• getTTestP
public double getTTestP( )

– Description
Returns the probability associated with the t test of a larger t in absolute value.
The t test is a test, against a two-sided alternative, of the null hypothesis value
described in setTTestNull.

– Returns – a double containing the probability for the t test.

• getUpperCIMean
public double getUpperCIMean( )

Basic Statistics NormOneSample • 333



– Description
Returns the upper confidence limit for the mean.

– Returns – a double containing the upper confidence limit for the mean.

• getUpperCIVariance
public double getUpperCIVariance( )

– Description
Returns the upper confidence limits for the variance.

– Returns – a double the upper confidence limits for the variance.

• setChiSquaredTestNull
public void setChiSquaredTestNull( double chiSqrTestNull )

– Description
Sets the null hypothesis value for the chi-squared test. The default is 1.0.

– Parameters
∗ chiSqrTestNull – double containing the null hypothesis value for the

chi-squared test.

• setConfidenceMean
public void setConfidenceMean( double confidenceMean )

– Description
Sets the confidence level (in percent) for a two-sided interval estimate of the
mean. Argument confidenceMean must be between 0.0 and 1.0 and is often
0.90, 0.95 or 0.99. For a one-sided confidence interval with confidence level c
(at least 50 percent), set confidenceMean=1.0-2.0 * (1.0 - c). If the confidence
mean is not specified, a 95-percent confidence interval is computed.

– Parameters
∗ confidenceMean – double containing the confidence level of the mean.

• setConfidenceVariance
public void setConfidenceVariance( double confidenceVariance )

– Description
Sets the confidence level (in percent) for two-sided interval estimate of the
variances. Argument confidenceVariance must be between 0.0 and 1.0 and is
often 0.90, 0.95 or 0.99. For a one-sided confidence interval with confidence
level c (at least 50 percent), set confidenceVariance=1.0-2.0 * (1.0 - c). If the
confidence mean is not specified, a 95-percent confidence interval is computed.

– Parameters
∗ confidenceVariance – double containing the confidence level of the

variance.
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• setTTestNull
public void setTTestNull( double meanHypothesis )

– Description
Sets the Null hypothesis value for t test for the mean. meanHypothesis=0.0 by
default.

– Parameters
∗ meanHypothesis – double containing the hypothesis value.

Example 1: NormOneSample

This example uses data from Devore (1982, p335), which is based on data published in the
Journal of Materials. There are 15 observations. The hypothesis H0 : µ = 20.0 is tested.
The extremely large t value and the correspondingly small p-value provide strong evidence
to reject the null hypothesis.
import com.imsl.stat.*;

public class NormOneSampleEx1 {
public static void main(String args[]) {

double mean, stdev, lomean, upmean;

int df;

double t, pvalue;

double[] x = {
26.7, 25.8, 24.0, 24.9, 26.4,

25.9, 24.4, 21.7, 24.1, 25.9,

27.3, 26.9, 27.3, 24.8, 23.6

};

/* Perform Analysis*/

NormOneSample n1samp = new NormOneSample(x);

mean = n1samp.getMean();

stdev = n1samp.getStdDev();

lomean = n1samp.getLowerCIMean();

upmean = n1samp.getUpperCIMean();

n1samp.setTTestNull(20.0);

df = n1samp.getTTestDF();

t = n1samp.getTTest();

pvalue = n1samp.getTTestP();
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/* Print results */

System.out.println("Sample Mean = "+ mean);

System.out.println("Sample Standard Deviation = "+ stdev);

System.out.println("95% CI for the mean is "+ lomean +" "+ upmean);

System.out.println("T Test results");

System.out.println("df = " + df);

System.out.println("t = " + t);

System.out.println("pvalue = " + pvalue);

System.out.println("");

/* CI variance */

double ciLoVar = n1samp.getLowerCIVariance();

double ciUpVar = n1samp.getUpperCIVariance();

System.out.println("CI variance is "+ciLoVar+" "+ciUpVar);

/*chi-squared test */

df = n1samp.getChiSquaredTestDF();

t = n1samp.getChiSquaredTest();

pvalue = n1samp.getChiSquaredTestP();

System.out.println("Chi-squared Test results");

System.out.println("Chi-squared df = " + df);

System.out.println("Chi-squared t = " + t);

System.out.println("Chi-squared pvalue = " + pvalue);

}
}

Output

Sample Mean = 25.313333333333336

Sample Standard Deviation = 1.5788181233652814

95% CI for the mean is 24.43901299970965 26.187653666957022

T Test results

df = 14

t = 13.03408619922945

pvalue = 3.2147173811836183E-9

CI variance is 1.3360926049992239 6.199863467239496
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Chi-squared Test results

Chi-squared df = 14

Chi-squared t = 34.89733333333332

Chi-squared pvalue = 0.0015223176141822004

class NormTwoSample

Computes statistics for mean and variance inferences using samples from two normal
populations.

Class NormTwoSample computes statistics for making inferences about the means and
variances of two normal populations, using independent samples in x1 and x2. For
inferences concerning parameters of a single normal population, see class NormOneSample.

Let µ1 and σ2
1 be the mean and variance of the first population, and let µ2 and σ2

2 be the
corresponding quantities of the second population. The function contains test confidence
intervals for difference in means, equality of variances, and the pooled variance.

The means and variances for the two samples are as follows:

x̄1 =
(∑

x1i/n1

)
, x̄2 =

(∑
x2i

)
/n2

and

s21 =
∑

(x1i − x̄1)
2/ (n1 − 1) , s22 =

∑
(x2i − x̄2)

2/ (n2 − 1)

Inferences about the Means

The test that the difference in means equals a certain value, for example, µ0, depends on
whether or not the variances of the two populations can be considered equal. If the
variances are equal and meanHypothesis equals 0, the test is the two-sample t-test, which is
equivalent to an analysis-of-variance test. The pooled variance for the difference-in-means
test is as follows:

s2 =
(n1 − 1) s1 + (n2 − 1) s2

n1 + n2 − 2

The t statistic is as follows:

t =
x̄1 − x̄2 − µ0

s
√

(1/n1) + (1/n2)
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Also, the confidence interval for the difference in means can be obtained by first assigning
the unequal variances flag to false. This can be done by calling the setUnequalVariances

method. The confidence interval can then be obtained by the getLowerCIDiff and
getUpperCIDiff methods.

If the population variances are not equal, the ordinary t statistic does not have a t
distribution and several approximate tests for the equality of means have been proposed.
(See, for example, Anderson and Bancroft 1952, and Kendall and Stuart 1979.) One of the
earliest tests devised for this situation is the Fisher-Behrens test, based on Fisher’s
concept of fiducial probability. A procedure used in the getTTest, getLowerCIDiff and
getUpperCIDiff methods assuming unequal variances are specified is the Satterthwaite’s
procedure, as suggested by H.F. Smith and modified by F.E. Satterthwaite (Anderson and
Bancroft 1952, p. 83). Use setUnequalVariances true to obtain results assuming unequal
variances.

The test statistic is

t′ = (x̄1 − x̄2 − µ0) /sd

where

sd =
√(

s21/n1

)
+
(
s22/n2

)
Under the null hypothesis of µ1 − µ2 = c, this quantity has an approximate t distribution
with degrees of freedom df, given by the following equation:

df =
s4d

(s2
1/n1)2

n1−1 + (s2
2/n2)2

n2−1

Inferences about Variances

The F statistic for testing the equality of variances is given by F = s2max/s
2
min, where s2max

is the larger of s21 and s22. If the variances are equal, this quantity has an F distribution
with n1 − 1 and n2 − 1 degrees of freedom.

It is generally not recommended that the results of the F test be used to decide whether
to use the regular t-test or the modified t′ on a single set of data. The modified t′

(Satterthwaite’s procedure) is the more conservative approach to use if there is doubt
about the equality of the variances.
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Declaration

public class com.imsl.stat.NormTwoSample
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Constructor

• NormTwoSample
public NormTwoSample( double[] x, double[] y )

– Description
Constructor to compute statistics for mean and variance inferences using
samples from two normal populations.

– Parameters
∗ x – is a double array containing the first sample.
∗ y – is a double array containing the second sample.

Methods

• downdateX
public void downdateX( double[] x )

– Description
Removes the observations in x from the first sample.

– Parameters
∗ x – is a double array containing the values to remove from the first sample.

• downdateY
public void downdateY( double[] y )

– Description
Removes the observations in y from the second sample.

– Parameters
∗ y – is a double array containing the values to remove from the second

sample.

• getChiSquaredTest
public double getChiSquaredTest( )
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– Description
Returns the test statistic associated with the chi-squared test for common, or
pooled, variances. The chi-squared test is a test of the hypothesis ω2 = ω2

0

where ω2
0 is the null hypothesis value as described in setChiSquaredTestNull.

– Returns – a double containing the test statistic for the chi-squared test.

• getChiSquaredTestDF
public int getChiSquaredTestDF( )

– Description
Returns the degrees of freedom associated with the chi-squared test for the
common, or pooled, variances. The chi-squared test is a test of the hypothesis
ω2 = ω2

0 where ω2
0 is the null hypothesis value as described in

setChiSquaredTestNull.
– Returns – an int containing the degrees of freedom for the chi-squared test.

• getChiSquaredTestP
public double getChiSquaredTestP( )

– Description
Returns the probability of a larger chi-squared associated with the chi-squared
test for common, or pooled, variances. The chi-squared test is a test of the
hypothesis ω2 = ω2

0 where ω2
0 is the null hypothesis value as described in

setChiSquaredTestNull.
– Returns – a double containing the probability of a larger chi-squared for the

chi-squared test for variances.

• getDiffMean
public double getDiffMean( )

– Description
Returns the difference in means, mean of x - mean of y.

– Returns – a double containing the difference in mean.

• getFTest
public double getFTest( )

– Description
Returns the F test value of the F test for equality of variances.

– Returns – a double containing the F test value of the F test for equality of
variances.

• getFTestDFdenominator
public int getFTestDFdenominator( )
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– Description
Returns the denominator degrees of freedom of the F test for equality of
variances.

– Returns – a int containing the denominator degrees of freedom.

• getFTestDFnumerator
public int getFTestDFnumerator( )

– Description
Returns the numerator degrees of freedom of the F test for equality of variances.

– Returns – a int containing the numerator degrees of freedom.

• getFTestP
public double getFTestP( )

– Description
Returns the probability of a larger F in absolute value for the F test for
equality of variances, assuming equal variances.

– Returns – a double containing the probability of a larger F in absolute value,
assuming equal variances.

• getLowerCICommonVariance
public double getLowerCICommonVariance( )

– Description
Returns the lower confidence limits for the common, or pooled, variance.

– Returns – a double containing the lower confidence limits for the variance.

• getLowerCIDiff
public double getLowerCIDiff( )

– Description
Returns the lower confidence limit for the mean of the first population minus
the mean of the second for equal or unequal variances depending on the value
set by setUnequalVariances. setUnequalVariances

– Returns – a double containing the lower confidence limit for the mean of the
first sample minus the mean of the second sample.

• getLowerCIRatioVariance
public double getLowerCIRatioVariance( )

– Description
Returns the approximate lower confidence limit for the ratio of the variance of
the first population to the second.
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– Returns – a double containing the approximate lower confidence limit
variance.

• getMeanX
public double getMeanX( )

– Description
Returns the mean of the first sample, x.

– Returns – a double containing the mean.

• getMeanY
public double getMeanY( )

– Description
Returns the mean of the second sample, y.

– Returns – a double containing the mean.

• getPooledVariance
public double getPooledVariance( )

– Description
Returns the Pooled variance for the two samples.

– Returns – a double containing the Pooled variance for the two samples.

• getStdDevX
public double getStdDevX( )

– Description
Returns the standard deviation of the first sample.

– Returns – a double containing the standard deviation of the first sample.

• getStdDevY
public double getStdDevY( )

– Description
Returns the standard deviation of the second sample.

– Returns – a double containing the standard deviation of the second sample.

• getTTest
public double getTTest( )

– Description
Returns the test statistic for the Satterthwaite’s approximation. The value
returned will be based on assumption of equal or unequal variances based on
the the value set by setUnequalVariances. setUnequalVariances
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– Returns – a double containing the test statistic for the t-test.

• getTTestDF
public double getTTestDF( )

– Description
Returns the degrees of freedom for the Satterthwaite’s approximation for t-test
for either equal or unequal variances, depending on the value set by
setUnequalVariances. setUnequalVariances

– Returns – an double containing the degrees of freedom for the t-test.

• getTTestP
public double getTTestP( )

– Description
Returns the approximate probability of a larger t for the Satterthwaite’s
approximation for equal or unequal variances. setUnequalVariances

– Returns – a double containing the probability for the t-test.

• getUpperCICommonVariance
public double getUpperCICommonVariance( )

– Description
Returns the upper confidence limits for the common, or pooled, variance.

– Returns – a double containing the upper confidence limits for the variance.

• getUpperCIDiff
public double getUpperCIDiff( )

– Description
Returns the upper confidence limit for the mean of the first population minus
the mean of the second for equal or unequal variances depending on the value
set by setUnequalVariances. setUnequalVariances

– Returns – a double containing the upper confidence limit for the mean of the
first sample minus the mean of the second sample.

• getUpperCIRatioVariance
public double getUpperCIRatioVariance( )

– Description
Returns the approximate upper confidence limit for the ratio of the variance of
the first population to the second.

– Returns – a double containing the approximate upper confidence limit
variance.
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• setChiSquaredTestNull
public void setChiSquaredTestNull( double varianceHypothesisValue )

– Description
Sets the null hypothesis value for the chi-squared test. The default is 1.0.

– Parameters
∗ varianceHypothesisValue – a double containing the null hypothesis value

for the chi-squared test.

• setConfidenceMean
public void setConfidenceMean( double confidenceMean )

– Description
Sets the confidence level (in percent) for a two-sided interval estimate of the
mean of x - the mean of y, in percent. Argument confidenceMean must be
between 0.0 and 1.0 and is often 0.90, 0.95 or 0.99. For a one-sided confidence
interval with confidence level c (at least 50 percent), set
confidenceMean = 1.0− 2.0(1.0− c). If the confidence mean is not specified, a
95-percent confidence interval is computed. Default: confidenceMean = .95

– Parameters
∗ confidenceMean – double containing the confidence level of the mean.

• setConfidenceVariance
public void setConfidenceVariance( double confidenceVariance )

– Description
Sets the confidence level (in percent) for two-sided interval estimate of the
variances. Under the assumption of equal variances, the pooled variance is used
to obtain a two-sided confidenceVariance percent confidence interval for the
common variance with getLowerCICommonVariance or
getUpperCICommonVariance. Without making the assumption of equal
variances, setUnequalVariances , the ratio of the variances is of interest. A
two-sided confidenceVariance percent confidence interval for the ratio of the
variance of the first sample to that of the second sample is given by the
getLowerCIRatioVariance and getUpperCIRatioVariance. See
setUnequalVariances and getUpperCIRatioVariance. The confidence intervals
are symmetric in probability. Argument confidenceVariance must be between
0.0 and 1.0 and is often 0.90, 0.95 or 0.99. The default is 0.95.

– Parameters
∗ confidenceVariance – double containing the confidence level of the

variance.
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• setTTestNull
public void setTTestNull( double meanHypothesis )

– Description
Sets the Null hypothesis value for t-test for the mean. meanHypothesis=0.0 by
default.

– Parameters
∗ meanHypothesis – double containing the hypothesis value.

• setUnequalVariances
public void setUnequalVariances( boolean eqVar )

– Description
Specifies whether to return statistics based on equal or unequal variances. The
default is to return statistics for equal variances. if eqVar is True then statistics
for unequal variances will be returned.

– Parameters
∗ eqVar – a boolean containing a true or false value. A value of true will

cause results for unequal variances to be returned. A value of false will
cause results for equal variances to be returned.

• update
public void update( double[] x, double[] y )

– Description
Concatenates samples x and y to the samples provided in the constructor.

– Parameters
∗ x – is a double array containing updates to the first sample.
∗ y – is a double array containing updates to the second sample.

• updateX
public void updateX( double[] x )

– Description
Concatenates the values in x to the first sample provided in the constructor.

– Parameters
∗ x – is a double array containing updates for the first sample.

• updateY
public void updateY( double[] y )

– Description
Concatenates the values in y to the second sample provided in the constructor.

– Parameters
∗ y – is a double array containing updates for the second sample.
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Example 1: NormTwoSample

This example taken from Conover and Iman(1983, p294), involves scores on arithmetic
tests of two grade-school classes.
Scores for Standard Group Scores for Experimental Group
72 111
75 118
77 128
80 138
104 140
110 150
125 163

164
169

The question is whether a group taught by an experimental method has a higher mean
score. The difference in means and the t test are ouput. The variances of the two
populations are assumed to be equal. It is seen from the output that there is strong
reason to believe that the two means are different (t value of -4.804). Since the lower
97.5-percent confidence limit does not include 0, the null hypothesis is that µ1 ≤ µ2 would
be rejected at the 0.05 significance level. (The closeness of the values of the sample
variances provides some qualitative substantiation of the assumption of equal variances.)
import com.imsl.stat.*;

public class NormTwoSampleEx1 {
public static void main(String args[]) {

double mean;

double x1[] = {72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0 };
double x2[] = {111.0, 118.0, 128.0, 138.0, 140.0, 150.0,

163.0, 164.0, 169.0 };

/* Perform Analysis for one sample x2*/

NormTwoSample n2samp = new NormTwoSample(x1,x2);

mean = n2samp.getDiffMean();

System.out.println("x1mean-x2mean = "+mean);

System.out.println("X1 mean ="+n2samp.getMeanX() );

System.out.println("X2 mean ="+n2samp.getMeanY() );

double pVar = n2samp.getPooledVariance();

System.out.println("pooledVar = " + pVar);
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double loCI = n2samp.getLowerCIDiff();

double upCI = n2samp.getUpperCIDiff();

System.out.println("95% CI for the mean is " +

loCI + " " + upCI);

loCI = n2samp.getLowerCIDiff();

upCI = n2samp.getUpperCIDiff();

System.out.println("95% CI for the ueq mean is " +

loCI + " " + upCI);

System.out.println("T Test Results");

double tDF = n2samp.getTTestDF();

double tT = n2samp.getTTest();

double tPval = n2samp.getTTestP();

System.out.println("T default = "+tDF);

System.out.println("t = "+tT);

System.out.println("p-value = "+tPval);

double stdevX = n2samp.getStdDevX();

double stdevY = n2samp.getStdDevY();

System.out.println("stdev x1 ="+stdevX);

System.out.println("stdev x2 ="+stdevY);

}
}

Output

x1mean-x2mean = -50.476190476190496

X1 mean =91.85714285714285

X2 mean =142.33333333333334

pooledVar = 434.6326530612244

95% CI for the mean is -73.01001962529507 -27.942361327085916

95% CI for the ueq mean is -73.01001962529507 -27.942361327085916

T Test Results

T default = 14.0

t = -4.8043615047163355

p-value = 2.8025836567727923E-4

stdev x1 =20.87605144201182

stdev x2 =20.826665599658526
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class Sort

A collection of sorting functions.

Class Sort contains ascending and descending methods for sorting elements of an array or
a matrix. The array ascending method sorts the elements of an array, A, into ascending
order by algebraic value. The array A is divided into two parts by picking a central
element T of the array. The first and last elements of A are compared with T and
exchanged until the three values appear in the array in ascending order. The elements of
the array are rearranged until all elements greater than or equal to the central element
appear in the second part of the array and all those less than or equal to the central
element appear in the first part. The upper and lower subscripts of one of the segments
are saved, and the process continues iteratively on the other segment. When one segment
is finally sorted, the process begins again by retrieving the subscripts of another unsorted
portion of the array. On completion, Aj ≤ Ai for j < i. For more details, see Singleton
(1969), Griffin and Redish (1970), and Petro (1970).

The matrix ascending method sorts the rows of real matrix x using a particular row in x

as the keys. The sort is algebraic with the first key as the most significant, the second key
as the next most significant, etc. When x is sorted in ascending order, the resulting sorted
array is such that the following is true:

• For i = 0, 1, . . . ,n observations− 2, x[i][indices keys [0]] ≤ x[i+ 1][indices keys[0]]

• For k = 1, . . . ,n keys− 1, ifx[i][indices keys[j]] = x[i + 1][indices keys[j]] for
j = 0, 1, . . . , k − 1, then x[i][indices keys[k]] = x[i+ 1][indices keys[k]]

The observations also can be sorted in descending order.The rows of x containing the
missing value code NaN in at least one of the specified columns are considered as an
additional group. These rows are moved to the end of the sorted x. The sorting algorithm
is based on a quicksort method given by Singleton (1969) with modifications by Griffen
and Redish (1970) and Petro (1970).

All other methods in this class work off of the ascending methods.

Declaration

public class com.imsl.stat.Sort
extends java.lang.Object

Constructor
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• Sort
public Sort( )

Methods

• ascending
public static void ascending( double[] ra )

– Description
Sort an array into ascending order.

– Parameters
∗ ra – double array to be sorted into ascending order

• ascending
public static void ascending( double[][] ra, int nKeys )

– Description
Sort a matrix into ascending order by specified keys.

– Parameters
∗ ra – double matrix to be sorted into ascending order.
∗ nKeys – int containing the first nKeys columns of ra to be used as the

sorting keys.

• ascending
public static void ascending( double[][] ra, int[] indkeys )

– Description
Sort a matrix into ascending order by specified keys.

– Parameters
∗ ra – double matrix to be sorted into ascending order.
∗ indkeys – int array containing the order the columns of ra are to be

sorted.

• ascending
public static void ascending( double[][] ra, int[] indkeys, int[]
iperm )

– Description
Sort a matrix into ascending order by specified keys.

– Parameters
∗ ra – double matrix to be sorted into ascending order.
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∗ indkeys – int array containing the order the columns of ra are to be
sorted.
∗ iperm – int array to be sorted using the same permutations applied to ra.

Typically, you would initialize this to 0, 1, ...

• ascending
public static void ascending( double[][] ra, int nKeys, int[] iperm
)

– Description
Sort an array into ascending order by specified keys.

– Parameters
∗ ra – double array to be sorted into ascending order.
∗ nKeys – int containing the first nKeys columns of ra to be used as the

sorting keys.
∗ iperm – int array to be sorted using the same permutations applied to ra.

Typically, you would initialize this to 0, 1, ...

• ascending
public static void ascending( double[] ra, int[] iperm )

– Description
Sort an array into ascending order.

– Parameters
∗ ra – double array to be sorted into ascending order
∗ iperm – int array to be sorted using the same permutations applied to ra.

Typically, you would initialize this to 0, 1, ...

• ascending
public static void ascending( int[] ra )

– Description
Function to sort an integer array into ascending order.

– Parameters
∗ ra – int array to be sorted into ascending order

• ascending
public static void ascending( int[] ra, int[] iperm )

– Description
Sort an array into ascending order.

– Parameters
∗ ra – int array to be sorted into ascending order
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∗ iperm – int array to be sorted using the same permutations applied to ra.
Typically, you would initialize this to 0, 1, ...

• descending
public static void descending( double[] ra )

– Description
Sort an array into descending order.

– Parameters
∗ ra – double array to be sorted into descending order

• descending
public static void descending( double[][] ra, int nKeys )

– Description
Function to sort a matrix into descending order by specified keys.

– Parameters
∗ ra – double matrix to be sorted into descending order.
∗ nKeys – int containing the first nKeys columns of ra to be used as the

sorting keys.

• descending
public static void descending( double[][] ra, int[] indkeys )

– Description
Function to sort a matrix into descending order by specified keys.

– Parameters
∗ ra – double matrix to be sorted into descending order.
∗ indkeys – int array containing the order the columns of ra are to be

sorted.

• descending
public static void descending( double[][] ra, int[] indkeys, int[]
iperm )

– Description
Function to sort a matrix into descending order by specified keys.

– Parameters
∗ ra – double matrix to be sorted into descending order.
∗ indkeys – int array containing the order the columns of ra are to be

sorted.
∗ iperm – int array to be sorted using the same permutations applied to ra.

Typically, you would initialize this to 0, 1, ...
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• descending
public static void descending( double[][] ra, int nKeys, int[] iperm
)

– Description
Function to sort an array into descending order by specified keys.

– Parameters
∗ ra – double array to be sorted into descending order.
∗ nKeys – int containing the first nKeys columns of ra to be used as the

sorting keys.
∗ iperm – int array to be sorted using the same permutations applied to ra.

Typically, you would initialize this to 0, 1, ...

• descending
public static void descending( double[] ra, int[] iperm )

– Description
Sort an array into descending order.

– Parameters
∗ ra – double array to be sorted into descending order
∗ iperm – an int array to be sorted using the same permutations applied to

ra. Typically, you would initialize this to 0, 1, ...

Example 1: Sorting

An array is sorted by increasing value. A permutation array is also computed. Note that
the permutation array begins at 0 in this example.
import com.imsl.math.*;

import com.imsl.stat.*;

public class SortEx1 {
public static void main(String args[]) {

double ra[] = { 10., -9., 8., -7., 6., 5., 4., -3., -2., -1.};
int iperm[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

PrintMatrix pm = new PrintMatrix("The Input Array");

PrintMatrixFormat mf = new PrintMatrixFormat();

mf.setNoRowLabels();

mf.setNoColumnLabels();

// Print the array

pm.print(mf, ra);

System.out.println();
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// Sort the array

Sort.ascending(ra, iperm);

pm = new PrintMatrix("The Sorted Array - Lowest to Highest");

mf = new PrintMatrixFormat();

mf.setNoRowLabels();

mf.setNoColumnLabels();

// Print the array

pm.print(mf, ra);

pm = new PrintMatrix("The Resulting Permutation Array");

mf = new PrintMatrixFormat();

mf.setNoRowLabels();

mf.setNoColumnLabels();

// Print the array

pm.print(mf, iperm);

}
}

Output

The Input Array

10

-9

8

-7

6

5

4

-3

-2

-1

The Sorted Array - Lowest to Highest

-9

-7

-3
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-2

-1

4

5

6

8

10

The Resulting Permutation Array

1

3

7

8

9

6

5

4

2

0

Example 2: Sorting

The rows of a 10 x 3 matrix x are sorted in ascending order using Columns 0 and 1 as the
keys. There are two missing values (NaNs) in the keys. The observations containing these
values are moved to the end of the sorted array.
import com.imsl.math.*;

import com.imsl.stat.*;

public class SortEx2 {
public static void main(String args[]) {

int nKeys=2;

double x[][] = {{1.0, 1.0, 1.0},
{2.0, 1.0, 2.0},
{1.0, 1.0, 3.0},
{1.0, 1.0, 4.0},
{2.0, 2.0, 5.0},
{1.0, 2.0, 6.0},
{1.0, 2.0, 7.0},
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{1.0, 1.0, 8.0},
{2.0, 2.0, 9.0},
{1.0, 1.0, 9.0}};

int iperm[] = {0, 1, 2, 3, 4, 5, 6, 7,8,9};
x[4][1] = Double.NaN;

x[6][0] = Double.NaN;

PrintMatrix pm = new PrintMatrix("The Input Array");

PrintMatrixFormat mf = new PrintMatrixFormat();

mf.setNoRowLabels();

mf.setNoColumnLabels();

// Print the array

pm.print(mf, x);

System.out.println();

try {
Sort.ascending(x, nKeys, iperm);

} catch (Exception e) {

}

pm = new PrintMatrix("The Sorted Array - Lowest to Highest");

mf = new PrintMatrixFormat();

mf.setNoRowLabels();

mf.setNoColumnLabels();

// Print the array

pm.print(mf, x);

pm = new PrintMatrix("The permutation array");

mf = new PrintMatrixFormat();

mf.setNoRowLabels();

mf.setNoColumnLabels();

pm.print(mf, iperm);

}
}
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Output

The Input Array

1 1 1

2 1 2

1 1 3

1 1 4

2 ? 5

1 2 6

? 2 7

1 1 8

2 2 9

1 1 9

The Sorted Array - Lowest to Highest

1 1 1

1 1 9

1 1 3

1 1 4

1 1 8

1 2 6

2 1 2

2 2 9

? 2 7

2 ? 5

The permutation array

0

9

2

3

7

5

1

8

6

4
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class Ranks

Compute the ranks, normal scores, or exponential scores for a vector of observations.

The class Ranks can be used to compute the ranks, normal scores, or exponential scores of
the data in X. Ties in the data can be resolved in four different ways, as specified by
member function setTieBreaker. The type of values returned can vary depending on the
member function called:

GetRanks: Ordinary Ranks

For this member function, the values output are the ordinary ranks of the data in X. If
X[i] has the smallest value among those in X and there is no other element in X with this
value, then getRanks(i) = 1. If both X[i] and X[j] have the same smallest value, then

if TieBreaker = 0, Ranks[i] = getRanks([j] = 1.5
if TieBreaker = 1, Ranks[i] = Ranks[j] = 2.0
if TieBreaker = 2, Ranks[i] = Ranks[j] = 1.0
if TieBreaker = 3, Ranks[i] = 1.0 and Ranks[j] = 2.0
or Ranks[i] = 2.0 and Ranks[j] = 1.0.

When the ties are resolved by use of function setRandom, different results may occur when
running the same program at different times unless the “seed” of the random number
generator is set explicitly by use of Random method setSeed. Ordinarily, there is no need to
call the routine to set the seed, even if there are ties in the data.

getBlomScores: Normal Scores, Blom Version

Normal scores are expected values, or approximations to the expected values, of order
statistics from a normal distribution. The simplest approximations are obtained by
evaluating the inverse cumulative normal distribution function, inverseNormal, at the
ranks scaled into the open interval (0, 1). In the Blom version (see Blom 1958), the
scaling transformation for the rank ri(1 ≤ ri ≤ n, where n is the sample size is
(ri − 3/8)/(n+ 1/4). The Blom normal score corresponding to the observation with rank
ri is

Φ−1

(
ri − 3/8
n+ 1/4

)
where Φ(·) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation. That is, if X[i]
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equals X[j] (within fuzz) and their value is the k-th smallest in the data set, the Blom
normal scores are determined for ranks of k and k + 1, and then these normal scores are
averaged or selected in the manner specified by TieBreaker, which is set by the method
setTieBreaker. (Whether the transformations are made first or ties are resolved first
makes no difference except when averaging is done.)

getTukeyScores: Normal Scores, Tukey Version

In the Tukey version (see Tukey 1962), the scaling transformation for the rank ri is
(ri − 1/3)/(n+ 1/3). The Tukey normal score corresponding to the observation with rank
ri is

Φ−1

(
ri − 1/3
n+ 1/3

)
Ties are handled in the same way as discussed above for the Blom normal scores.

getVanDerWaerdenScores: Normal Scores, Van der Waerden Version

In the Van der Waerden version (see Lehmann 1975, page 97), the scaling transformation
for the rank ri is ri/(n+ 1). The Van der Waerden normal score corresponding to the
observation with rank ri is

Φ−1

(
ri

n+ 1

)
Ties are handled in the same way as discussed above for the Blom normal scores.

getNormalScores: Expected Value of Normal Order Statistics

The method getNormalScores returns the expected values of the normal order statistics. If
the value in X[i] is the k-th smallest, then the value getNormalScores[i] is E(Zk), where
E(·) is the expectation operator and Zk is the k-th order statistic in a sample of size NOBS

from a standard normal distribution. Ties are handled in the same way as discussed above
for the Blom normal scores.

getSavageScores: Savage Scores

The method getSavageScores returns the expected values of the exponential order
statistics. These values are called Savage scores because of their use in a test discussed by
Savage (1956) (see Lehman 1975). If the value in X[i] is the k-th smallest, then the i-th
output value output is E(Yk), where Yk is the k-th order statistic in a sample of size n
from a standard exponential distribution. The expected value of the k-th order statistic
from an exponential sample of size n is

1
n

+
1

n− 1
+ . . .+

1
n− k + 1
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Ties are handled in the same way as discussed above for the Blom normal scores.

Declaration

public class com.imsl.stat.Ranks
extends java.lang.Object

Fields

• public static final int TIE AVERAGE

– In case of ties, use the average of the scores of the tied observations.

• public static final int TIE HIGHEST

– In case of ties, use the highest score in the group of ties.

• public static final int TIE LOWEST

– In case of ties, use the lowest score in the group of ties.

• public static final int TIE RANDOM

– In case of ties, use one of the group of ties chosen at random.

Constructor

• Ranks
public Ranks( )

– Description
Constructor for the Ranks class.

Methods

• expectedNormalOrderStatistic
public static double expectedNormalOrderStatistic( int i, int n )

– Description
Returns the expected value of a normal order statistic.
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– Parameters
∗ i – an int, the rank of the order statistic
∗ n – an int, the sample size

– Returns – a double, the expected value of the i-th order statistic in a sample
of size n from the standard normal distribution

• getBlomScores
public double[] getBlomScores( double[] x )

– Description
Gets the Blom version of normal scores for each observation.

– Parameters
∗ x – a double array which contains the observations to be ranked

– Returns – a double array which contains the Blom version of normal scores for
each observation in x

• getNormalScores
public double[] getNormalScores( double[] x )

– Description
Gets the expected value of normal order statistics (for tied observations, the
average of the expected normal scores).

– Parameters
∗ x – a double array which contains the observations

– Returns – a double array which contains the expected value of normal order
statistics for the observations in x (for tied observations, the average of the
expected normal scores)

• getRanks
public double[] getRanks( double[] x )

– Description
Gets the rank for each observation.

– Parameters
∗ x – a double array which contains the observations to be ranked

– Returns – a double array which contains the rank for each observation in x

• getSavageScores
public double[] getSavageScores( double[] x )

– Description
Gets the Savage scores (the expected value of exponential order statistics).

– Parameters
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∗ x – a double array which contains the observations
– Returns – a double array which contains the Savage scores for the

observations in x. (the expected value of exponential order statistics)

• getTukeyScores
public double[] getTukeyScores( double[] x )

– Description
Gets the Tukey version of normal scores for each observation.

– Parameters
∗ x – a double array which contains the observations to be ranked

– Returns – a double array which contains the Tukey version of normal scores
for each observation in x

• getVanDerWaerdenScores
public double[] getVanDerWaerdenScores( double[] x )

– Description
Gets the Van der Waerden version of normal scores for each observation.

– Parameters
∗ x – a double array which contains the observations to be ranked

– Returns – a double array which contains the Van der Waerden version of
normal scores for each observation in x

• setFuzz
public void setFuzz( double fuzz )

– Description
Sets the fuzz factor used in determining ties.

– Parameters
∗ fuzz – a double which represents the fuzz factor

• setRandom
public void setRandom( java.util.Random random )

– Description
Sets the Random object.

– Parameters
∗ random – a Random object used in breaking ties

• setTieBreaker
public void setTieBreaker( int iTie )
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– Description
Sets the tie breaker for Ranks.

– Parameters
∗ iTie – an int which represents the tie breaker

Example: Ranks

In this data from Hinkley (1977) note that the fourth and sixth observations are tied and
that the third and twentieth are tied.
import com.imsl.stat.*;

import com.imsl.math.*;

public class RanksEx1 {
public static void main(String args[]) {

double x[] = {
0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,

3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,

1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,

4.75, 2.48, 0.96, 1.89, 0.90, 2.05};

PrintMatrixFormat mf = new PrintMatrixFormat();

mf.setNoRowLabels();

mf.setNoColumnLabels();

Ranks ranks = new Ranks();

double score[] = ranks.getRanks(x);

new PrintMatrix("The Ranks of the Observations - " +

"Ties Averaged").print(mf, score);

System.out.println();

ranks = new Ranks();

ranks.setTieBreaker(ranks.TIE HIGHEST);

score = ranks.getBlomScores(x);

new PrintMatrix("The Blom Scores of the Observations - " +

"Highest Score used in Ties").print(mf, score);

System.out.println();

ranks = new Ranks();

ranks.setTieBreaker(ranks.TIE LOWEST);

score = ranks.getTukeyScores(x);

new PrintMatrix("The Tukey Scores of the Observations - " +

"Lowest Score used in Ties").print(mf, score);
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System.out.println();

ranks = new Ranks();

ranks.setTieBreaker(ranks.TIE RANDOM);

Random random = new Random();

random.setSeed(123457);

random.setMultiplier(16807);

ranks.setRandom(random);

score = ranks.getVanDerWaerdenScores(x);

new PrintMatrix("The Van Der Waerden Scores of the " +

"Observations - Ties untied by Random").print(mf, score);

}
}

Output

The Ranks of the Observations - Ties Averaged

5

18

6.5

11.5

21

11.5

2

15

29

24

27

28

16

23

3

17

13

1

4

6.5

26

19

10
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14

30

25

9

20

8

22

The Blom Scores of the Observations - Highest Score used in Ties

-1.024

0.209

-0.776

-0.294

0.473

-0.294

-1.61

-0.041

1.61

0.776

1.176

1.361

0.041

0.668

-1.361

0.125

-0.209

-2.04

-1.176

-0.776

1.024

0.294

-0.473

-0.125

2.04

0.893

-0.568

0.382

-0.668

0.568
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The Tukey Scores of the Observations - Lowest Score used in Ties

-1.02

0.208

-0.89

-0.381

0.471

-0.381

-1.599

-0.041

1.599

0.773

1.171

1.354

0.041

0.666

-1.354

0.124

-0.208

-2.015

-1.171

-0.89

1.02

0.293

-0.471

-0.124

2.015

0.89

-0.566

0.381

-0.666

0.566

The Van Der Waerden Scores of the Observations - Ties untied by Random

-0.989

0.204

-0.753

-0.287

0.46
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-0.372

-1.518

-0.04

1.518

0.753

1.131

1.3

0.04

0.649

-1.3

0.122

-0.204

-1.849

-1.131

-0.865

0.989

0.287

-0.46

-0.122

1.849

0.865

-0.552

0.372

-0.649

0.552

class TableOneWay

Tallies observations into a one-way frequency table.

Declaration

public class com.imsl.stat.TableOneWay
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable
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Constructor

• TableOneWay
public TableOneWay( double[] x, int nIntervals )

– Description
Constructor for TableOneWay.

– Parameters
∗ x – A double array containing the observations.
∗ nIntervals – An int scalar containing the number of intervals (bins).

Methods

• getFrequencyTable
public double[] getFrequencyTable( )

– Description
Returns the one-way frequency table. nIntervals intervals of equal length are
used with the initial interval starting with the minimum value in x and the last
interval ending with the maximum value in x. The initial interval is closed on
the left and the right. The remaining intervals are open on the left and the
closed on the right. Each interval is of length (max-min)/nIntervals, where max

is the maximum value of x and min is the minimum value of x.
– Returns – double array containing the one-way frequency table.

• getFrequencyTable
public double[] getFrequencyTable( double lower bound, double
upper bound )

– Description
Returns a one-way frequency table using known bounds. The one-way
frequency table is computed using two semi-infinite intervals as the initial and
last intervals. The initial interval is closed on the right and includes lower bound

as its right endpoint. The last interval is open on the left and includes all values
greater than upper bound. The remaining nIntervals - 2 intervals are each of
length (upper bound - lower bound)/ (nIntervals - 2) and are open on the
left and closed on the right. nIntervals must be greater than or equal to 3.

– Parameters
∗ lower bound – double specifies the right endpoint.
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∗ upper bound – double specifies the left endpoint.
– Returns – double array containing the one-way frequency table.

• getFrequencyTableUsingClassmarks
public double[] getFrequencyTableUsingClassmarks( double[]
classmarks )

– Description
Returns the one-way frequency table using class marks. Equally spaced class
marks in ascending order must be provided in the array classmarks of length
nIntervals. The class marks are the midpoints of each of the nIntervals. Each
interval is assumed to have length classmarks[1] - classmarks[0]. nIntervals

must be greater than or equal to 2.
– Parameters
∗ classmarks – double array containing either the cutpoints or the class

marks.
– Returns – double array containing the one-way frequency table.

• getFrequencyTableUsingCutpoints
public double[] getFrequencyTableUsingCutpoints( double[] cutpoints
)

– Description
Returns the one-way frequency table using cutpoints. The cutpoints are
boundaries that must be provided in the array cutpoints of length
nIntervals-1. This option allows unequal interval lengths. The initial interval
is closed on the right and includes the initial cutpoint as its right endpoint.
The last interval is open on the left and includes all values greater than the last
cutpoint. The remaining nIntervals-2 intervals are open on the left and closed
on the right. Argument nIntervals must be greater than or equal to 3 for this
option.

– Parameters
∗ cutpoints – double array containing the cutpoints.

– Returns – double array containing the one-way frequency table.

• getMaximum
public double getMaximum( )

– Description
Returns maximum value of x.

– Returns – a double containing the maximum data bound.
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• getMinimum
public double getMinimum( )

– Description
Returns the minimum value of x.

– Returns – a double containing the minimum data bound.

Example: TableOneWay

The data for this example is from Hinkley (1977) and Belleman and Hoaglin (1981). The
measurement (in inches) are for precipitation in Minneapolis/St. Paul during the month
of March for 30 consecutive years.

The first test uses the default tally method which may be appropriate when the range of
data is unknown. The minimum and maximum data bounds are displayed.

The second test computes the table usings known bounds, where the lower bound is 0.5
and the upper bound is 4.5. The eight interior intervals each have width (4.5 - 0.5)/(10-2)
= 0.5. The 10 intervals are (−∞, 0.5], (0.5,1.0],...,(4.0,4.5], and (4.5,∞].

In the third test, 10 class marks, 0.25, 0.75, 1.25,...,4.75, are input. This defines the class
intervals (0.0,0.5],(0.5,1.0],...,(4.0,4.5],(4.5,5.0]. Note that unlike the previous test, the
initial and last intervals are the same length as the remaining intervals.

In the fourth test, cutpoints, 0.5,1.0, 1.5, 2.0, ...,4.5, are input to define the same 10
intervals as in the second test. Here again, the initial and last intervals are semi- infinite
intervals.
import com.imsl.stat.*;

public class TableOneWayEx1 {
public static void main(String args[]) {

int nIntervals=10;

double table[];

double[] x={
0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,

2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,

0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,

1.89, 0.9, 2.05

};
double cutPoints[] = { 0.5, 1.0, 1.5, 2.0, 2.5,

3.0, 3.5, 4.0, 4.5};
double classMarks[] = {0.25, 0.75, 1.25, 1.75, 2.25,
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2.75, 3.25, 3.75, 4.25, 4.75};

TableOneWay fTbl = new TableOneWay(x, nIntervals);

//double[] table = new double[nIntervals];

table = fTbl.getFrequencyTable();

System.out.println("Example 1 ");

for (int i=0; i < table.length; i++)

System.out.println(i+" "+table[i]);

System.out.println("--------------------------");

System.out.println("Lower bounds= "+fTbl.getMinimum());

System.out.println("Upper bounds= "+fTbl.getMaximum());

System.out.println("--------------------------");

/* getFrequencyTable using a set of known bounds */

table = fTbl.getFrequencyTable(0.5, 4.5);

for (int i=0; i < table.length; i++)

System.out.println(i+" "+table[i]);

System.out.println("---------------------");

table = fTbl.getFrequencyTableUsingClassmarks(classMarks);

for (int i=0; i < table.length; i++)

System.out.println(i+" "+table[i]);

System.out.println("--------------------");

table = fTbl.getFrequencyTableUsingCutpoints(cutPoints);

for (int i=0; i < table.length; i++)

System.out.println(i+" "+table[i]);

}
}

Output

Example 1

0 4.0

1 8.0

2 5.0

3 5.0

4 3.0
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5 1.0

6 3.0

7 0.0

8 0.0

9 1.0

--------------------------

Lower bounds= 0.32

Upper bounds= 4.75

--------------------------

0 2.0

1 7.0

2 6.0

3 6.0

4 4.0

5 2.0

6 2.0

7 0.0

8 0.0

9 1.0

---------------------

0 2.0

1 7.0

2 6.0

3 6.0

4 4.0

5 2.0

6 2.0

7 0.0

8 0.0

9 1.0

--------------------

0 2.0

1 7.0

2 6.0

3 6.0

4 4.0

5 2.0

6 2.0

7 0.0

8 0.0

9 1.0
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class TableTwoWay

Tallies observations into a two-way frequency table.

Declaration

public class com.imsl.stat.TableTwoWay
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Constructor

• TableTwoWay
public TableTwoWay( double[] x, int xIntervals, double[] y, int
yIntervals )

– Description
Constructor for TableTwoWay.

– Parameters
∗ x – A double array containing the data for the first variable.
∗ xIntervals – An int scalar containing the number of intervals (bins) for

variable x.
∗ y – A double array containing the data for the second variable.
∗ yIntervals – An int scalar containing the number of intervals (bins) for

variable y.

Methods

• getFrequencyTable
public double[][] getFrequencyTable( )

– Description
Returns the two-way frequency table. Intervals of equal length are used. Let
xmin and xmax be the minimum and maximum values in x, respectively, with
similiar meanings for ymin and ymax. Then, the first row of the output table is
the tally of observations with the x value less than or equal to xmin + (xmax -

xmin)/xIntervals, and the y value less than or equal to ymin + (ymax -

ymin)/yIntervals.
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– Returns – A two-dimensional double array containing the two-way frequency
table.

• getFrequencyTable
public double[][] getFrequencyTable( double xLowerBound, double
xUpperBound, double yLowerBound, double yUpperBound )

– Description
Compute a two-way frequency table using intervals of equal length and user
supplied upper and lower bounds, xLowerBound, xUpperBound, yLowerBound,

yUpperBound. The first and last intervals for both variables are semi-infinite in
length. xIntervals and yIntervals must be greater than or equal to 3.

– Parameters
∗ xLowerBound – double specifies the right endpoint for x.
∗ xUpperBound – double specifies the left endpoint for x.
∗ yLowerBound – double specifies the right endpoint for y.
∗ yUpperBound – double specifies the left endpoint for y.

– Returns – A two dimensional double array containing the two-way frequency
table.

• getFrequencyTableUsingClassmarks
public double[][] getFrequencyTableUsingClassmarks( double[] cx,
double[] cy )

– Description
Returns the two-way frequency table using either cutpoints or class marks.
Cutpoints are boundaries and class marks are the midpoints of xIntervals and
yIntervals. Equally spaced class marks in ascending order must be provided in
the arrays cx and cy. The class marks are the midpoints of each interval. Each
interval is taken to have length cx[1] - cx[0] in the x direction and cy[1] -

cy[0] in the y direction. The total number of elements in the output table may
be less than the number of observations of input data. Arguments xIntervals

and yIntervals must be greater than or equal to 2 for this option.
– Parameters
∗ cx – double array containing either the cutpoints or the class marks for x.
∗ cy – double array containing either the cutpoints or the class marks for y.

– Returns – A two dimensional double array containing the two-way frequency
table.

• getFrequencyTableUsingCutpoints
public double[][] getFrequencyTableUsingCutpoints( double[] cx,
double[] cy )
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– Description
Returns the two-way frequency table using cutpoints. The cutpoints
(boundaries) must be provided in the arrays cx and cy, of length (xIntervals-1)
and (yIntervals-1) respectively. The first row of the output table is the tally of
observations for which the x value is less than or equal to cx[0], and the y
value is less than or equal to cy[0]. This option allows unequal interval lengths.
Arguments cx and cy must be greater than or equal to 2.

– Parameters
∗ cx – double array containing either the cutpoints or the class marks for x.
∗ cy – double array containing either the cutpoints or the class marks for y.

– Returns – A two dimensional double array containing the two-way frequency
table.

• getMaximumX
public double getMaximumX( )

– Description
Returns the maximum value of x.

– Returns – a double containing the maximum data bound for x.

• getMaximumY
public double getMaximumY( )

– Description
Returns the maximum value of y.

– Returns – a double containing the maximum data bound for y.

• getMinimumX
public double getMinimumX( )

– Description
Returns the minimum value of x.

– Returns – a double containing the minimum data bound for x.

• getMinimumY
public double getMinimumY( )

– Description
Returns the minimum value of y.

– Returns – a double containing the minimum data bound for y.
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Example: TableTwoWay

The data for x in this example is from Hinkley (1977) and Belleman and Hoaglin (1981).
The measurement (in inches) are for precipitation in Minneapolis/St. Paul during the
month of March for 30 consecutive years. The data for y were created by adding small
integers to the data in x.

The first test uses the default tally method which may be appropriate when the range of
data is unknown. The minimum and maximum data bounds are displayed.

The second test computes the table using known bounds, where the x lower, x upper, y
lower, y upper bounds are chosen so that the intervals will be 0 to 1, 1 to 2, and so on for
x and 1 to 2, 2 to 3 and so on for y.

In the third test, the class boundaries are input as the same intervals as in the second test.
The first element of cmx and cmy specify the first cutpoint between classes.

The fourth test uses the cutpoints tally option with cutpoints such that the intervals are
specified as in the previous tests.
import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

public class TableTwoWayEx1 {
public static void main(String args[]) {

int nx=5;

int ny=6;

double table[][];

double[] x={
0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,

2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,

0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9,

2.05

};
double y[] = {

1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,

3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 1.59,

2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 2.89, 2.9,

5.05

};

TableTwoWay fTbl = new TableTwoWay(x, nx, y, ny);
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table = fTbl.getFrequencyTable();

System.out.println("Example 1 ");

System.out.println("Use Min and Max for bounds");

new PrintMatrix("counts").print(table);

System.out.println("--------------------------");

System.out.println("Lower xbounds= "+fTbl.getMinimumX());

System.out.println("Upper xbounds= "+fTbl.getMaximumX());

System.out.println("Lower ybounds= "+fTbl.getMinimumY());

System.out.println("Upper ybounds= "+fTbl.getMaximumY());

System.out.println("--------------------------");

double xlo = 1.0;

double xhi = 4.0;

double ylo = 2.0;

double yhi = 6.0;

System.out.println("");

System.out.println("Use Known bounds");

table = fTbl.getFrequencyTable(xlo, xhi,ylo, yhi);

new PrintMatrix("counts").print(table);

double cmx[] = { 0.5, 1.5, 2.5,3.5, 4.5};
double cmy[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5};
table = fTbl.getFrequencyTableUsingClassmarks(cmx, cmy);

System.out.println("");

System.out.println("Use Class Marks");

new PrintMatrix("counts").print(table);

double cpx[] = {1,2,3,4};
double cpy[] = {2,3,4,5,6};
table = fTbl.getFrequencyTableUsingCutpoints(cpx, cpy);

System.out.println("");

System.out.println("Use Cutpoints");

new PrintMatrix("counts").print(table);

}
}
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Output

Example 1

Use Min and Max for bounds

counts

0 1 2 3 4 5

0 4 2 4 2 0 0

1 0 4 3 2 1 0

2 0 0 1 2 0 1

3 0 0 0 0 1 2

4 0 0 0 0 0 1

--------------------------

Lower xbounds= 0.32

Upper xbounds= 4.75

Lower ybounds= 1.47

Upper ybounds= 6.37

--------------------------

Use Known bounds

counts

0 1 2 3 4 5

0 3 2 4 0 0 0

1 0 5 5 2 0 0

2 0 0 1 3 2 0

3 0 0 0 0 0 2

4 0 0 0 0 1 0

Use Class Marks

counts

0 1 2 3 4 5

0 3 2 4 0 0 0

1 0 5 5 2 0 0

2 0 0 1 3 2 0

3 0 0 0 0 0 2
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4 0 0 0 0 1 0

Use Cutpoints

counts

0 1 2 3 4 5

0 3 2 4 0 0 0

1 0 5 5 2 0 0

2 0 0 1 3 2 0

3 0 0 0 0 0 2

4 0 0 0 0 1 0

class TableMultiWay

Tallies observations into a multi-way frequency table.

The TableMultiWay class determines the distinct values in multivariate data and computes
frequencies for the data. This class accepts the data in the matrix x, but performs
computations only for the variables (columns) in the first nKeys columns of x or by the
variables specified in indkeys. In general, the variables for which frequencies should be
computed are discrete; they should take on a relatively small number of different values.
Variables that are continuous can be grouped first. TableMultiWay can be used to group
variables and determine the frequencies of groups.

When method getBalancedTable is called, the inner class BalancedTable fills the vector
values with the unique values in the vector of the variables and tallies the number of
unique values of each variable table. Each combination of one value from each variable
forms a cell in a multi-way table. The frequencies of these cells are entered in a table so
that the first variable cycles through its values exactly once, and the last variable cycles
through its values most rapidly. Some cells cannot correspond to any observations in the
data; in other words, “missing cells” are included in table and have a value of 0. The
frequency table is returned by the BalancedTable method getTable.

When method getUnbalancedTable is called, an instance of inner class UnbalancedTable is
created, the frequency of each cell is entered in the unbalanced table so that the first
variable cycles through its values exactly once and the last variable cycles through its
values most rapidly. table is returned by UnbalancedTable method getTable. All cells
have a frequency of at least 1, i.e., there is no “missing cell.” The array listCells,
returned by method getListCells can be considered “parallel” to table because row i of
listCells is the set of nKeys values that describes the cell for which row i of table
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contains the corresponding frequency.

Declaration

public class com.imsl.stat.TableMultiWay
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Classes

class TableMultiWay.BalancedTable

Tallies the number of unique values of each variable.

Declaration

public class com.imsl.stat.TableMultiWay.BalancedTable
extends java.lang.Object

Methods

• getNvalues
public int[] getNvalues( )

– Description
Returns an array of length nKeys containing in its i-th element
(i=0,1,...nKeys-1), the number of levels or categories of the i-th classification
variable (column).

– Returns – an int array containing the number of levels or for each variable
(column) in x.

• getTable
public double[] getTable( )

– Description
Returns an array containing the frequencies for each variable. The array is of
length nValues[0] x nValues[1] x ... x nValues[nKeys] containing the
frequencies in the cells of the table to be fit, where nValues contains the result
from getNValues.
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Empty cells are included in table, and each element of table is nonnegative.
The cells of table are sequenced so that the first variable cycles through its
nValues[0] categories one time, the second variable cycles through its
nValues[1] categories nValues[0] times, the third variable cycles through its
nValues[2] categories nValues[0] * nValues[1] times, etc., up to the nKeys-th
variable, which cycles through its nValues[nKeys - 1] categories nValues[0] *

nValues[1] * ... * nValues[nKeys - 2] times.
– Returns – a double array containing the frequencies for each variable in x.

• getValues
public double[] getValues( )

– Description
Returns the values of the classification variables. getValues returns an array of
length nValues[0] + nValues[1] + ... + nValues[nKeys - 1] The first
nValues[0] elements contain the values for the first classification variable. The
next nValues[1] contain the values for the second variable. The last
nValues[nKeys - 1] positions contain the values for the last classification
variable, where nValues contains the result from getNValues.

– Returns – a double array containing the values of the classification variables.

class TableMultiWay.UnbalancedTable

Tallies the frequency of each cell in x.

Declaration

public class com.imsl.stat.TableMultiWay.UnbalancedTable
extends java.lang.Object

Methods

• getListCells
public double[] getListCells( )

– Description
Returns for each row, a list of the levels of nKeys corresponding classification
variables that describe a cell.

– Returns – double array containing the list of levels of nKeys corresponding
classification variables that describe a cell.
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• getNCells
public int getNCells( )

– Description
Returns the number of non-empty cells.

– Returns – an int containing the number of non-empty cells.

• getTable
public double[] getTable( )

– Description
Returns the frequency for each cell.

– Returns – double array containing the frequency for each cell.

Constructors

• TableMultiWay
public TableMultiWay( double[][] x, int nKeys )

– Description
Constructor for TableMultiWay.

– Parameters
∗ x – A double matrix containing the observations and variables.
∗ nKeys – int array containing the variables(columns) for which

computations are to be performed.

• TableMultiWay
public TableMultiWay( double[][] x, int[] indkeys )

– Description
Constructor for TableMultiWay.

– Parameters
∗ x – A double matrix containing the observations and variables.
∗ indkeys – int array containing the variables(columns) for which

computations are to be performed.

Methods
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• getBalancedTable
public TableMultiWay.BalancedTable getBalancedTable( )

– Description
Returns an object containing the balanced table.

– Returns – a TableBalanced object.

• getGroups
public int[] getGroups( )

– Description
Returns the number of observations (rows) in each group. The number of
groups is the length of the returned array. A group contains observations in x

that are equal with respect to the method of comparison. If n contains the
returned integer array, then the first n[0] rows of the sorted x are group
number 1. The next n[1] rows of the sorted x are group number 2, etc. The
last n[n.length - 1] rows of the sorted x are group number n.length.

– Returns – an int array containing the number of observations (row) in each
group.

• getUnbalancedTable
public TableMultiWay.UnbalancedTable getUnbalancedTable( )

– Description
Returns an object containing the unbalanced table.

– Returns – a TableUnBalanced object.

• setFrequencies
public void setFrequencies( double[] frequencies )

Example 1: TableMultiWay

The same data as used in SortEx2 is used in this example. It is a 10 x 3 matrix using
Columns 0 and 1 as keys. There are two missing values (NaNs) in the keys. NaN is
displayed as a ?. Table MultiWay determines the number of groups of different
observations.
import com.imsl.stat.*;

import com.imsl.math.*;

public class TableMultiWayEx1 {
public static void main (String args[]) {

int nKeys=2;

double x[][] = {{1.0, 1.0, 1.0},
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{2.0, 1.0, 2.0},
{1.0, 1.0, 3.0},
{1.0, 1.0, 4.0},
{2.0, 2.0, 5.0},
{1.0, 2.0, 6.0},
{1.0, 2.0, 7.0},
{1.0, 1.0, 8.0},
{2.0, 2.0, 9.0},
{1.0, 1.0, 9.0}};

x[4][1] = Double.NaN;

x[6][0] = Double.NaN;

PrintMatrix pm = new PrintMatrix("The Input Array");

PrintMatrixFormat mf = new PrintMatrixFormat();

mf.setNoRowLabels();

mf.setNoColumnLabels();

// Print the array

pm.print(mf, x);

System.out.println();

TableMultiWay tbl = new TableMultiWay(x,nKeys);

int ngroups[] = tbl.getGroups();

System.out.println(" ngroups");

for (int i=0; i < ngroups.length; i++)

System.out.print(ngroups[i] + " ");

}
}

Output

The Input Array

1 1 1

2 1 2

1 1 3

1 1 4

2 ? 5

1 2 6

? 2 7

1 1 8
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2 2 9

1 1 9

ngroups

5 1 1 1

Example 2: TableMultiWay

The table of frequencies for a data matrix of size 30 x 2 is output.
import com.imsl.stat.*;

import com.imsl.math.*;

import java.text.MessageFormat;

public class TableMultiWayEx2 {

public static void main(String args[]) {
int indkeys[]={0,1};
double x[][] = {

{0.5, 1.5}, {1.5, 3.5}, {0.5, 3.5}, {1.5, 2.5}, {1.5, 3.5},
{1.5, 4.5}, {0.5, 1.5}, {1.5, 3.5}, {3.5, 6.5}, {2.5, 3.5},
{2.5, 4.5}, {3.5, 6.5}, {1.5, 2.5}, {2.5, 4.5}, {0.5, 3.5},
{1.5, 2.5}, {1.5, 3.5}, {0.5, 3.5}, {0.5, 1.5}, {0.5, 2.5},
{2.5, 5.5}, {1.5, 2.5}, {1.5, 3.5}, {1.5, 4.5}, {4.5, 5.5},
{2.5, 4.5}, {0.5, 3.5}, {1.5, 2.5}, {0.5, 2.5}, {2.5, 5.5}

};

TableMultiWay tbl = new TableMultiWay(x,indkeys);

int nvalues[] = tbl.getBalancedTable().getNvalues();

double values[] = tbl.getBalancedTable().getValues();

System.out.println(" row values");

for (int i=0; i< nvalues[0]; i++)

System.out.print(values[i]+" ");

System.out.println("");

System.out.println("");

System.out.println(" column values");

for (int i=0; i< nvalues[1]; i++)

System.out.print(values[i+nvalues[0]]+" ");
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double table[] = tbl.getBalancedTable().getTable();

System.out.println("");

System.out.println("");

System.out.println(" Table");

System.out.print(" ");

for (int i=0; i< nvalues[1]; i++)

System.out.print(values[i+nvalues[0]]+ " ");

System.out.println("");

for (int i=0; i< nvalues[0]; i++) {
System.out.print(values[i]+ " ");

for (int j=0; j<nvalues[1]; j++)

System.out.print(table[j +(nvalues[1]*i)]+ " ");

System.out.println(" ");

}
}

}

Output

row values

0.5 1.5 2.5 3.5 4.5

column values

1.5 2.5 3.5 4.5 5.5 6.5

Table

1.5 2.5 3.5 4.5 5.5 6.5

0.5 3.0 2.0 4.0 0.0 0.0 0.0

1.5 0.0 5.0 5.0 2.0 0.0 0.0

2.5 0.0 0.0 1.0 3.0 2.0 0.0

3.5 0.0 0.0 0.0 0.0 0.0 2.0

4.5 0.0 0.0 0.0 0.0 1.0 0.0
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Example 3: TableMultiWay

The unbalanced table of frequencies for a data matrix of size 4 x 3 is output.
import com.imsl.stat.*;

import com.imsl.math.*;

public class TableMultiWayEx3 {
public static void main(String args[]) {

int indkeys[] = {0,1};
double x[][] = {

{2.0, 5.0, 1.0}, {1.0, 5.0, 2.0},
{1.0, 6.0, 3.0}, {2.0, 6.0, 4.0}

};
double frq[] = {1.0, 2.0, 3.0, 4.0};

TableMultiWay tbl = new TableMultiWay(x,indkeys);

tbl.setFrequencies(frq);

int ncells = tbl.getUnbalancedTable().getNCells();

double listCells[] = tbl.getUnbalancedTable().getListCells();

double table[] = tbl.getUnbalancedTable().getTable();

PrintMatrix pm = new PrintMatrix("List Cells");

PrintMatrixFormat mf = new PrintMatrixFormat();

mf.setNoRowLabels();

mf.setNoColumnLabels();

// Print the array

pm.print(mf, listCells);

System.out.println();

pm = new PrintMatrix("Unbalanced Table");

mf = new PrintMatrixFormat();

mf.setNoRowLabels();

mf.setNoColumnLabels();

// Print the array

pm.print(mf, table);

System.out.println();

}
}
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Output

List Cells

1

5

1

6

2

5

2

6

Unbalanced Table

2

3

1

4
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Chapter 13

Regression

Classes
LinearRegression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .389

Fits a multiple linear regression model with or without an intercept.
NonlinearRegression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .395

Fits a multivariate nonlinear regression model using least squares.
UserBasisRegression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413

Generates summary statistics using user supplied functions in a nonlinear
regression model

RegressionBasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Public interface for user supplied function to UserBasisRegression object.

SelectionRegression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .416
Selects the best multiple linear regression models.

StepwiseRegression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
Builds multiple linear regression models using forward selection, backward
selection, or stepwise selection.

class LinearRegression

Fits a multiple linear regression model with or without an intercept. If the constructor
argument hasIntercept is true, the multiple linear regression model is

yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + εi i = 1, 2, . . . , n
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where the observed values of the yi‘s constitute the responses or values of the dependent
variable, the xi1‘s, xi2‘s, . . . , xik‘s are the settings of the independent variables,
β0, β1, . . . , βk are the regression coefficients, and the ei‘s are independently distributed
normal errors each with mean zero and variance σ2. If hasIntercept is false, β0 is not
included in the model.

LinearRegression computes estimates of the regression coefficients by minimizing the sum
of squares of the deviations of the observed response yi from the fitted response

ŷi

for the observations. This minimum sum of squares (the error sum of squares) is in the
ANOVA output and denoted by

SSE =
n∑

i=1

wi(yi − ŷi)2

In addition, the total sum of squares is output in the ANOVA table. For the case,
hasIntercept is true; the total sum of squares is the sum of squares of the deviations of yi

from its mean

ȳ

–the so-called corrected total sum of squares; it is denoted by

SST =
n∑

i=1

wi(yi − ȳ)2

For the case hasIntercept is false, the total sum of squares is the sum of squares of yi–the
so-called uncorrected total sum of squares; it is denoted by

SST =
n∑

i=1

y2
i

See Draper and Smith (1981) for a good general treatment of the multiple linear
regression model, its analysis, and many examples.

In order to compute a least-squares solution, LinearRegression performs an orthogonal
reduction of the matrix of regressors to upper triangular form. Givens rotations are used
to reduce the matrix. This method has the advantage that the loss of accuracy resulting
from forming the crossproduct matrix used in the normal equations is avoided, while not
requiring the storage of the full matrix of regressors. The method is described by Lawson
and Hanson, pages 207-212.
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Declaration

public class com.imsl.stat.LinearRegression
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Class

class LinearRegression.CoefficientTTests

CoefficientTTests contains statistics related to the regression coefficients.

Declaration

public class com.imsl.stat.LinearRegression.CoefficientTTests
extends java.lang.Object
implements java.io.Serializable

Methods

• getCoefficient
public double getCoefficient( int i )

– Description
Returns the estimate for a coefficient.

– Parameters
∗ i – is the index of the coefficient whose estimate is to be returned.

– Returns – the estimate for the i-th coefficient.

• getPValue
public double getPValue( int i )

– Description
Returns the p-value for the two-sided test.

– Parameters
∗ i – is the index of the coefficient whose p-value is to be returned.

– Returns – the p-value for the i-th coefficient estimate.

• getStandardError
public double getStandardError( int i )

Regression LinearRegression • 391



– Description
Returns the estimated standard error for a coefficient estimate.

– Parameters
∗ i – is the index of the coefficient whose stardard error estimate is to be

returned.
– Returns – the estimated standard error for the i-th coefficient estimate.

• getTStatistic
public double getTStatistic( int i )

– Description
Returns the t-statistic for the test that the i-th coefficient is zero.

– Parameters
∗ i – is the index of the coefficient whose stardard error estimate is to be

returned.
– Returns – the estimated standard error for the i-th coefficient estimate.

Constructor

• LinearRegression
public LinearRegression( int nVariables, boolean hasIntercept )

– Description
Constructs a new linear regression object.

– Parameters
∗ nVariables – int number of variables in the regression
∗ hasIntercept – int boolean which indicates whether or not an intercept is

in this regression model

Methods

• getANOVA
public synchronized ANOVA getANOVA( )

– Description
Get an analysis of variance table and related statistics.

– Returns – an ANOVA table and related statistics
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• getCoefficients
public synchronized double[] getCoefficients( )

– Description
Returns the regression coefficients.

– Returns – A double array containing the regression coefficients. If
hasIntercept is false its length is equal to the number of variables. If
hasIntercept is true then its length is the number of variables plus one and the
0-th entry is the value of the intercept.

– Throws
∗ SingularMatrixException – is thrown when the regression matrix is

singular.

• getCoefficientTTests
public LinearRegression.CoefficientTTests getCoefficientTTests( )

– Description
Returns statistics relating to the regression coefficients.

• getR
public synchronized double[][] getR( )

– Description
Returns a copy of the R matrix. R is the upper triangular matrix containing
the R matrix from a QR decomposition of the matrix of regressors.

– Returns – a double matrix containing a copy of the R matrix

• getRank
public int getRank( )

– Description
Returns the rank of the matrix.

– Returns – the int rank of the matrix

• update
public void update( double[][] x, double[] y )

– Description
Updates the regression object with a new set of observations.

– Parameters
∗ x – a double matrix containing the independent (explanatory) variables.

The number of rows in x must equal the length of y and the number of
columns must be equal to the number of variables set in the constructor.

∗ y – a double array containing the dependent (response) variables.
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• update
public void update( double[][] x, double[] y, double[] w )

– Description
Updates the regression object with a new set of observations and weights.

– Parameters
∗ x – a double matrix containing the independent (explanatory) variables.

The number of rows in x must equal the length of y and the number of
columns must be equal to the number of variables set in the constructor.

∗ y – a double array containing the dependent (response) variables.
∗ w – a double array representing the weights

• update
public void update( double[] x, double y )

– Description
Updates the regression object with a new observation.

– Parameters
∗ x – a double array containing the independent (explanatory) variables. Its

length must be equal to the number of variables set in the constructor.
∗ y – a double representing the dependent (response) variable

• update
public synchronized void update( double[] x, double y, double w )

– Description
Updates the regression object with a new observation and weight.

– Parameters
∗ x – a double array containing the independent (explanatory) variables. Its

length must be equal to the number of variables set in the constructor.
∗ y – a double representing the dependent (response) variable
∗ w – a double representing the weight

Example: Linear Regression

The coefficients of a simple linear regression model, without an intercept, are computed.
import com.imsl.stat.*;

public class LinearRegressionEx1 {
public static void main(String args[]) {

// y = 4*x0 + 3*x1

LinearRegression r = new LinearRegression(2, false);
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double c[] = {4, 3};
double x[][] = {{1, 5},{0, 2},{-1, 4}};

r.update(x[0], 1*c[0]+5*c[1]);

r.update(x[1], 0*c[0]+2*c[1]);

r.update(x[2], -1*c[0]+4*c[1]);

double coef[] = r.getCoefficients();

System.out.println("The computed regression coefficients are {" +

coef[0] + ", " + coef[1] + "}");
}

}

Output

The computed regression coefficients are {4.0, 3.0}

class NonlinearRegression

Fits a multivariate nonlinear regression model using least squares. The nonlinear
regression model is

yi = f(xi; θ) + εi i = 1, 2, . . . , n

where the observed values of the yi constitute the responses or values of the dependent
variable, the known xi are vectors of values of the independent (explanatory) variables, θ
is the vector of p regression parameters, and the εi are independently distributed normal
errors each with mean zero and variance σ2. For this model, a least squares estimate of θ
is also a maximum likelihood estimate of θ.

The residuals for the model are

ei(θ) = yi − f(xi; θ) i = 1, 2, . . . , n

A value of θ that minimizes
n∑

i=1

[ei(θ)]2

is the least-squares estimate of θ calculated by this class. NonlinearRegression accepts
these residuals one at a time as input from a user-supplied function. This allows
NonlinearRegression to handle cases where n is so large that data cannot reside in an
array but must reside in a secondary storage device.
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NonlinearRegression is based on MINPACK routines LMDIF and LMDER by More’ et al.
(1980). NonlinearRegression uses a modified Levenberg-Marquardt method to generate a
sequence of approximations to the solution. Let θ̂c be the current estimate of θ. A new
estimate is given by

θ̂c + sc

where sc is a solution to

(J(θ̂c)TJ(θ̂c) + µcI)sc = J(θ̂c)T e(θ̂c)

Here, J(θ̂c) is the Jacobian evaluated at θ̂c.

The algorithm uses a “trust region” approach with a step bound of δ̂c. A solution of the
equations is first obtained for µc = 0. If ||sc||2 < δc, this update is accepted; otherwise, µc

is set to a positive value and another solution is obtained. The method is discussed by
Levenberg (1944), Marquardt (1963), and Dennis and Schnabel (1983, pages 129 - 147,
218 - 338).

Forward finite differences are used to estimate the Jacobian numerically unless the user
supplied function computes the derivatives. In this case the Jacobian is computed
analytically via the user-supplied function.

NonlinearRegression does not actually store the Jacobian but uses fast Givens
transformations to construct an orthogonal reduction of the Jacobian to upper triangular
form. The reduction is based on fast Givens transformations (see Golub and Van Loan
1983, pages 156-162, Gentleman 1974). This method has two main advantages: (1) the
loss of accuracy resulting from forming the crossproduct matrix used in the equations for
sc is avoided, and (2) the n x p Jacobian need not be stored saving space when n > p.

A weighted least squares fit can also be performed. This is appropriate when the variance
of εi in the nonlinear regression model is not constant but instead is σ2/wi. Here, wi are
weights input via the user supplied function. For the weighted case, NonlinearRegression
finds the estimate by minimizing a weighted sum of squares error.

Programming Notes

Nonlinear regression allows users to specify the model’s functional form. This added
flexibility can cause unexpected convergence problems for users who are unaware of the
limitations of the algorithm. Also, in many cases, there are possible remedies that may
not be immediately obvious. The following is a list of possible convergence problems and
some remedies. There is not a one-to-one correspondence between the problems and the
remedies. Remedies for some problems may also be relevant for the other problems.

1. A local minimum is found. Try a different starting value. Good starting values often

396 • NonlinearRegression JMSL



can be obtained by fitting simpler models. For example, for a nonlinear function

f(x; θ) = θ1e
θ2x

good starting values can be obtained from the estimated linear regression coefficients
β̂0 and β̂1 from a simple linear regression of ln y on ln x. The starting values for the
nonlinear regression in this case would be

θ1 = eβ̂0 and θ2 = β̂1

If an approximate linear model is unclear, then simplify the model by reducing the
number of nonlinear regression parameters. For example, some nonlinear parameters
for which good starting values are known could be set to these values. This
simplifies the approach to computing starting values for the remaining parameters.

2. The estimate of θ is incorrectly returned as the same or very close to the initial
estimate.

• The scale of the problem may be orders of magnitude smaller than the assumed
default of 1 causing premature stopping. For example, if the sums of squares
for error is less than approximately (2.22e−16)2, the routine stops. See Example
3, which shows how to shut down some of the stopping criteria that may not be
relevant for your particular problem and which also shows how to improve the
speed of convergence by the input of the scale of the model parameters.
• The scale of the problem may be orders of magnitude larger than the assumed

default causing premature stopping. The information with regard to the input
of the scale of the model parameters in Example 3 is also relevant here. In
addition, the maximum allowable step size (setMaxStepsize) in Example 3 may
need to be increased.

• The residuals are input with accuracy much less than machine accuracy causing
premature stopping because a local minimum is found. Again see Example 3 to
see generally how to change some default tolerances. If you cannot improve the
precision of the computations of the residual, you need to use method setDigits
to indicate the actual number of good digits in the residuals.

3. The model is discontinuous as a function of θ. There may be a mistake in the
user-supplied function. Note that the function f(x; θ) can be a discontinuous
function of x.

4. The R matrix returned by getR is inaccurate. If only a function is supplied try
providing the com.imsl.stat.NonlinearRegression.Derivative. If the derivative is
supplied try providing only com.imsl.stat.NonlinearRegression.Function.

5. Overflow occurs during the computations. Make sure the user-supplied functions do
not overflow at some value of θ.

6. The estimate of θ is going to infinity. A parameterization of the problem in terms of
reciprocals may help.
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7. Some components of θ are outside known bounds. This can sometimes be handled
by making a function that produces artificially large residuals outside of the bounds
(even though this introduces a discontinuity in the model function).

Note that the solve method must be called prior to calling the “get” member functions,
otherwise a null is returned.

Declaration

public class com.imsl.stat.NonlinearRegression
extends java.lang.Object

Inner Classes

class NonlinearRegression.NegativeFreqException

A negative frequency was encountered.

Declaration

public static class com.imsl.stat.NonlinearRegression.NegativeFreqException
extends com.imsl.IMSLException (page 1240)

Constructor

• NonlinearRegression.NegativeFreqException
public NonlinearRegression.NegativeFreqException( int rowIndex, int
invocation, double value )

– Description
Constructs a NegativeFreqException.

– Parameters
∗ rowIndex – An int which specifies the row index of X for which the

frequency is negative.
∗ invocation – An int which specifies the invocation number at which the

error occurred. A 3 would indicate that the error occurred on the third
invocation.
∗ value – An double which represents the value of the frequency encountered.
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class NonlinearRegression.NegativeWeightException

A negative weight was encountered.

Declaration

public static class com.imsl.stat.NonlinearRegression.NegativeWeightException
extends com.imsl.IMSLException (page 1240)

Constructor

• NonlinearRegression.NegativeWeightException
public NonlinearRegression.NegativeWeightException( int rowIndex,
int invocation, double value )

– Description
Constructs a NegativeWeightException.

– Parameters
∗ rowIndex – An int which specifies the row index of X for which the weight

is negative.
∗ invocation – An int which specifies the invocation number at which the

error occurred. A 3 would indicate that the error occurred on the third
invocation.
∗ value – An double which represents the value of the weight encountered.

class NonlinearRegression.TooManyIterationsException

The number of iterations has exceeded the maximum allowed.

Declaration

public static class com.imsl.stat.NonlinearRegression.TooManyIterationsException
extends com.imsl.IMSLException (page 1240)

Constructor

• NonlinearRegression.TooManyIterationsException
public NonlinearRegression.TooManyIterationsException( )
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– Description
Constructs a TooManyIterationsException.

interface NonlinearRegression.Function

Public interface for the user supplied function for NonlinearRegression.

Declaration

public static interface com.imsl.stat.NonlinearRegression.Function

Method

• f
boolean f( double[] theta, int iobs, double[] frq, double[] wt,
double[] e )

– Description
Computes the weight, frequency, and residual given the parameter vector theta

for a single observation.
– Parameters
∗ theta – An input double array containing the parameter values of the

model. The length of theta corresponds to the number of unknown
parameters in the model.

∗ iobs – An input int value indicating the observation index. The function
is evaluated at observation y[iobs].
∗ frq – An output double array of length 1 containing the frequency for

observation y[iobs].
∗ wt – An output double array of length 1 containing the weight for

observation y[iobs]. Use wt = 1.0 for equal weighting (unweighted least
squares).
∗ e – An output double array of length 1 which contains the error (residual)

for observation y[iobs].
– Returns – A boolean value representing the completion indicator. true

indicates iobs is less than the number of observations. false indicates iobs is
greater than or equal to the number of observations and wt, freq, and e are not
output.

400 • NonlinearRegression JMSL



interface NonlinearRegression.Derivative

Public interface for the user supplied function to compute the derivative for
NonlinearRegression.

Declaration

public static interface com.imsl.stat.NonlinearRegression.Derivative
implements NonlinearRegression.Function

Method

• derivative
boolean derivative( double[] theta, int iobs, double[] frq, double[]
wt, double[] de )

– Description
Computes the weight, frequency, and partial derivatives of the residual given
the parameter vector theta for a single observation.

– Parameters
∗ theta – An input double array which contains the parameter values of the

regression function. The length of theta corresponds to the number of
unknown parameters in the regression function.

∗ iobs – An input int value indicating the observation index. The function
is evaluated at observation y[iobs].
∗ frq – An output double array of length 1 containing the frequency for

observation y[iobs].
∗ wt – An output double array of length 1 containing the weight for the

observation y[iobs]. Use wt = 1.0 for equal weighting (unweighted least
squares).
∗ de – An output double array containing the partial derivatives of the error

(residual) for observation y[iobs]. The length of de corresponds to the
number of unknown parameters in the regression function.

– Returns – A boolean value representing the completion indicator. true

indicates iobs is less than the number of observations. false indicates iobs is
greater than or equal to the number of observations and wt, freq, and de are
not output.

Constructor
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• NonlinearRegression
public NonlinearRegression( int nparm )

– Description
Constructs a new nonlinear regression object.

– Parameters
∗ nparm – An int which specifies the number of unknown parameters in the

regression.

Methods

• getCoefficient
public double getCoefficient( int i )

– Description
Returns the estimate for a coefficient.

– Parameters
∗ i – An int which specifies the index of a coefficient whose estimate is to be

returned.
– Returns – A double which contains the estimate for the i-th coefficient or null

if solve has not been called.

• getCoefficients
public double[] getCoefficients( )

– Description
Returns the regression coefficients.

– Returns – A double array containing the regression coefficients or null if
solve has not been called.

• getDFError
public double getDFError( )

– Description
Returns the degrees of freedom for error.

– Returns – A double which specifies the degrees of freedom for error or null if
solve has not been called.

• getErrorStatus
public int getErrorStatus( )
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– Description
Gets information about the performance of NonlinearRegression.

– Returns – An int specifying information about convergence.
Value Description
0 All convergence tests were met.
1 Scaled step tolerance was satisfied.

The current point may be an approx-
imate local solution, or the algorithm
is making very slow progress and is
not near a solution, or StepTolerance

is too big.
2 Scaled actual and predicted reduc-

tions in the function are less than or
equal to the relative function conver-
gence tolerance RelativeTolerance.

3 Iterates appear to be converging to a
noncritical point. Incorrect gradient
information, a discontinuous function,
or stopping tolerances being too tight
may be the cause.

4 Five consecutive steps with the maxi-
mum stepsize have been taken. Either
the function is unbounded below, or
has a finite asymptote in some direc-
tion, or the maxStepsize is too small.

• getR
public double[][] getR( )

– Description
Returns a copy of the R matrix. R is the upper triangular matrix containing the
R matrix from a QR decomposition of the matrix of regressors.

– Returns – A two dimensional double array containing a copy of the R matrix
or null if solve has not been called.

• getRank
public int getRank( )

– Description
Returns the rank of the matrix.

– Returns – An int which specifies the rank of the matrix or null if solve has
not been called.
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• getSSE
public double getSSE( )

– Description
Returns the sums of squares for error.

– Returns – A double which contains the sum of squares for error or null if
solve has not been called.

• setAbsoluteTolerance
public void setAbsoluteTolerance( double absoluteTolerance )

– Description
Sets the absolute function tolerance.

– Parameters
∗ absoluteTolerance – A double scalar value specifying the absolute

function tolerance. The tolerance must be greater than or equal to zero.
The default value is 4.93e-32.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if absoluteTolerance

is less than 0

• setDigits
public void setDigits( int nGood )

– Description
Sets the number of good digits in the residuals.

– Parameters
∗ nGood – An int specifying the number of good digits in the residuals. The

number of digits must be greater than zero. The default value is 15.
– Throws
∗ java.lang.IllegalArgumentException – is thrown if ngood is less than or

equal to 0

• setFalseConvergenceTolerance
public void setFalseConvergenceTolerance( double
falseConvergenceTolerance )

– Description
Sets the false convergence tolerance.

– Parameters
∗ falseConvergenceTolerance – A double scalar value specifying the false

convergence tolerance. The tolerance must be greater than or equal to
zero. The default value is 2.22e-14.
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– Throws
∗ java.lang.IllegalArgumentException – is thrown if

falseConvergenceTolerance is less than 0

• setGradientTolerance
public void setGradientTolerance( double gradientTolerance )

– Description
Sets the gradient tolerance used to compute the gradient.

– Parameters
∗ gradientTolerance – A double specifying the gradient tolerance used to

compute the gradient. The tolerance must be greater than or equal to zero.
The default value is 6.055e-6.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if gradientTolerance

is less than 0

• setGuess
public void setGuess( double[] thetaGuess )

– Description
Sets the initial guess of the parameter values

– Parameters
∗ thetaGuess – A double array of initial values for the parameters. The

default value is an array of zeroes.

• setInitialTrustRegion
public void setInitialTrustRegion( double initialTrustRegion )

– Description
Sets the initial trust region radius.

– Parameters
∗ initialTrustRegion – A double scalar value specifying the initial trust

region radius. The initial trust radius must be greater than zero. If this
member function is not called, a default is set based on the initial scaled
Cauchy step.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if initialTrustRegion

is less than or equal to 0

• setMaxIterations
public void setMaxIterations( int maxIterations )

Regression NonlinearRegression • 405



– Description
Sets the maximum number of iterations allowed during optimization

– Parameters
∗ maxIterations – An int specifying the maximum number of iterations

allowed during optimization. The value must be greater than 0. The
default value is 100.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if maxIterations is

less than or equal to 0

• setMaxStepsize
public void setMaxStepsize( double maxStepsize )

– Description
Sets the maximum allowable stepsize.

– Parameters
∗ maxStepsize – A nonnegative double value specifying the maximum

allowable stepsize. The maximum allowable stepsize must be greater than
zero. If this member function is not called, maximum stepsize is set to a
default value based on a scaled theta.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if maxStepsize is less

than or equal to 0

• setRelativeTolerance
public void setRelativeTolerance( double relativeTolerance )

– Description
Sets the relative function tolerance

– Parameters
∗ relativeTolerance – A double scalar value specifying the relative

function tolerance. The relative function tolerance must be greater than or
equal to zero. The default value is 1.0e-20.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if relativeTolerance

is less than 0

• setScale
public void setScale( double[] scale )

– Description
Sets the scaling array for theta.

– Parameters
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∗ scale – A double array containing the scaling values for the parameters
(theta). The elements of the scaling array must be greater than zero.
scale is used mainly in scaling the gradient and the distance between
points. If good starting values of thetaGuess are known and are nonzero,
then a good choice is scale[i]=1.0/thetaGuess[i]. Otherwise, if theta is
known to be in the interval (-10.e5, 10.e5), set scale[i]=10.e-5. By
default, the elements of the scaling array are set to 1.0.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if any of the elements

of scale is less than or equal to 0

• setStepTolerance
public void setStepTolerance( double stepTolerance )

– Description
Sets the step tolerance used to step between two points.

– Parameters
∗ stepTolerance – A double scalar value specifying the step tolerance used

to step between two points. The step tolerance must be greater than or
equal to zero. The default value is 3.667e-11.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if stepTolerance is

less than 0

• solve
public double[] solve( NonlinearRegression.Function F ) throws
com.imsl.stat.NonlinearRegression.TooManyIterationsException,
com.imsl.stat.NonlinearRegression.NegativeFreqException,
com.imsl.stat.NonlinearRegression.NegativeWeightException

– Description
Solves the least squares problem and returns the regression coefficients.

– Parameters
∗ F – A NonlinearRegression.Function whose coefficients are to be computed.

– Returns – A double array containing the regression coefficients.
– Throws
∗ com.imsl.stat.NonlinearRegression.TooManyIterationsException –

is thrown when the number of allowed iterations is exceeded
∗ com.imsl.stat.NonlinearRegression.NegativeFreqException – is

thrown when the specified frequency is negative
∗ com.imsl.stat.NonlinearRegression.NegativeWeightException – is

thrown when the weight is negative
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Example 1: Nonlinear Regression using Finite Differences

In this example a nonlinear model is fitted. The derivatives are obtained by finite
differences.
import com.imsl.stat.*;

import com.imsl.math.*;

public class NonlinearRegressionEx1 {
public static void main(String args[])

throws NonlinearRegression.TooManyIterationsException,

NonlinearRegression.NegativeFreqException,

NonlinearRegression.NegativeWeightException {
NonlinearRegression.Function f = new NonlinearRegression.Function() {

public boolean f(double theta[], int iobs, double frq[],

double wt[], double e[]){

double ydata[] = {54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0,

16.0, 18.0, 13.0, 8.0, 11.0, 8.0, 4.0, 6.0};
double xdata[] = {2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0,

34.0, 38.0, 45.0, 52.0, 53.0, 60.0, 65.0};
boolean iend;

int nobs = 15;

if(iobs < nobs){
wt[0] = 1.0;

frq[0] = 1.0;

iend = true;

e[0] = ydata[iobs] - theta[0] * Math.exp(theta[1]

* xdata[iobs]);

} else {
iend = false;

}
return iend;

}
};

int nparm = 2;

double theta[] = {60.0, -0.03};
NonlinearRegression regression = new NonlinearRegression(nparm);

regression.setGuess(theta);

double coef[] = regression.solve(f);
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System.out.println("The computed regression coefficients are {" +

coef[0] + ", " + coef[1] + "}");
int rank = regression.getRank();

System.out.println("The computed rank is "+rank);

double dfe = regression.getDFError();

System.out.println("The degrees of freedom for error are "+dfe);

double sse = regression.getSSE();

System.out.println("The sums of squares for error is "+sse);

double r[][] = regression.getR();

new PrintMatrix("R from the QR decomposition ").print(r);

}
}

Output

The computed regression coefficients are {58.606562944502656, -0.0395864473118334}
The computed rank is 2

The degrees of freedom for error are 13.0

The sums of squares for error is 49.45929986247174

R from the QR decomposition

0 1

0 1.874 1,139.928

1 0 1,139.798

Example 2: Nonlinear Regression with User-supplied Derivatives

In this example a nonlinear model is fitted. The derivatives are supplied by the user.
import com.imsl.stat.*;

import com.imsl.math.*;

public class NonlinearRegressionEx2 {
public static void main(String args[])

throws NonlinearRegression.TooManyIterationsException,

NonlinearRegression.NegativeFreqException,

NonlinearRegression.NegativeWeightException {

NonlinearRegression.Derivative deriv =

new NonlinearRegression.Derivative() {
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double ydata[] = {54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0,

18.0, 13.0, 8.0, 11.0, 8.0, 4.0, 6.0};
double xdata[] = {2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0,

38.0, 45.0, 52.0, 53.0, 60.0, 65.0};
boolean iend;

int nobs = 15;

public boolean f(double theta[], int iobs, double frq[], double wt[],

double e[]){

if(iobs < nobs){
wt[0] = 1.0;

frq[0] = 1.0;

iend = true;

e[0] = ydata[iobs] - theta[0] * Math.exp(theta[1]

* xdata[iobs]);

} else {
iend = false;

}
return iend;

}

public boolean derivative(double theta[], int iobs, double frq[],

double wt[], double de[]){
if(iobs < nobs){

wt[0] = 1.0;

frq[0] = 1.0;

iend = true;

de[0] = -Math.exp(theta[1]*xdata[iobs]);

de[1] = -theta[0] * xdata[iobs] * Math.exp(theta[1]

* xdata[iobs]);

} else {
iend = false;

}
return iend;

}
};

int nparm = 2;

double theta[] = {60.0, -0.03};
NonlinearRegression regression = new NonlinearRegression(nparm);
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regression.setGuess(theta);

double coef[] = regression.solve(deriv);

System.out.println("The computed regression coefficients are {" +

coef[0] + ", " + coef[1] + "}");
int rank = regression.getRank();

System.out.println("The computed rank is "+rank);

double dfe = regression.getDFError();

System.out.println("The degrees of freedom for error are "+dfe);

double sse = regression.getSSE();

System.out.println("The sums of squares for error is "+sse);

double r[][] = regression.getR();

new PrintMatrix("R from the QR decomposition ").print(r);

}
}

Output

The computed regression coefficients are {58.60656292541919, -0.039586447277524736}
The computed rank is 2

The degrees of freedom for error are 13.0

The sums of squares for error is 49.45929986247219

R from the QR decomposition

0 1

0 1.874 1,139.928

1 0 1,139.798

Example 3: Nonlinear Regression using Set Methods

In this example some nondefault tolerances and scales are used to fit a nonlinear model.
The data is 1.e-10 times the data of example 1. In order to fit this model without
rescaling the data we first set the absolute function tolerance to 0.0. The default value
would have caused the program to terminate after one iteration because the residual sum
of squares is roughly 1.e-19. We also set the relative function tolerance to 0.0. The
gradient tolerance is properly scaled for this problem so we leave it at \ its default value.
Finally, we set the elements of scale to be the absolute value of the recipricol of the
starting value.The derivatives are obtained by finite differences.
import com.imsl.stat.*;
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public class NonlinearRegressionEx3 {
public static void main(String args[])

throws NonlinearRegression.TooManyIterationsException,

NonlinearRegression.NegativeFreqException,

NonlinearRegression.NegativeWeightException {

NonlinearRegression.Function f = new NonlinearRegression.Function() {

public boolean f(double theta[], int iobs, double frq[], double wt[],

double e[]){

double ydata[] = {54.e-10, 50.e-10, 45.e-10, 37.e-10, 35.e-10,

25.e-10, 20.e-10, 16.e-10, 18.e-10, 13.e-10, 8.e-10, 11.e-10,

8.e-10, 4.e-10, 6.e-10};
double xdata[] = {2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0,

34.0, 38.0, 45.0, 52.0, 53.0, 60.0, 65.0};
boolean iend;

int nobs = 15;

if(iobs < nobs){
wt[0] = 1.0;

frq[0] = 1.0;

iend = true;

e[0] = ydata[iobs] - theta[0] * Math.exp(theta[1]

* xdata[iobs]);

} else {
iend = false;

}
return iend;

}
};
int nparm = 2;

double theta[] = {6.e-9, -0.03};
double scale[] = new double[nparm];

double r[][] = new double[nparm][nparm];

NonlinearRegression regression = new NonlinearRegression(nparm);

regression.setGuess(theta);

regression.setAbsoluteTolerance(0.0);

regression.setRelativeTolerance(0.0);

scale[0] = 1.0/Math.abs(theta[0]);

scale[1] = 1.0/Math.abs(theta[1]);

regression.setScale(scale);

double coef[] = regression.solve(f);

412 • NonlinearRegression JMSL



System.out.println("The computed regression coefficients are {" +

coef[0] + ", " + coef[1] + "}");
int rank = regression.getRank();

System.out.println("The computed rank is "+rank);

double dfe = regression.getDFError();

System.out.println("The degrees of freedom for error are "+dfe);

double sse = regression.getSSE();

System.out.println("The sums of squares for error is "+sse);

r = regression.getR();

System.out.println("R from the QR decomposition is "

+ r[0][0] + " " + r[0][1]);

System.out.println(" "

+ r[1][0] + " " + r[1][1]);

}
}

Output

The computed regression coefficients are {5.7837836210879824E-9, -0.0396252538296399}
The computed rank is 2

The degrees of freedom for error are 13.0

The sums of squares for error is 5.166376610434158E-19

R from the QR decomposition is 1.873105632124423 5.7473458654105505E-9

0.0 5.837139910539398E-11

class UserBasisRegression

Generates summary statistics using user supplied functions in a nonlinear regression model

Declaration

public class com.imsl.stat.UserBasisRegression
extends java.lang.Object

Constructor
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• UserBasisRegression
public UserBasisRegression( RegressionBasis basis, int nBasis, boolean
hasIntercept )

– Description
Constructs a UserBasisRegression object

– Parameters
∗ basis – a RegressionBasis basis function supplied by the user
∗ nBasis – an int which specifies the number of basis functions
∗ hasIntercept – a boolean which specifies whether or not the model has an

intercept

Methods

• getANOVA
public ANOVA getANOVA( )

– Description
Get an analysis of variance table and related statistics.

– Returns – an ANOVA table and related statistics

• getCoefficients
public double[] getCoefficients( )

– Description
Returns the regression coefficients.

– Returns – A double array containing the regression coefficients. If
hasIntercept is false its length is equal to the number of variables. If
hasIntercept is true then its length is the number of variables plus one and the
0-th entry is the value of the intercept.

– Throws
∗ SingularMatrixException – is thrown when the regression matrix is

singular.

• update
public void update( double x, double y, double w )

– Description
Adds a new observation and associated weight to the RegressionBasis object.

– Parameters
∗ x – a double containing the independent (explanatory) variable.
∗ y – a double containing the dependent (response) variable.
∗ w – a double representing the weight

414 • UserBasisRegression JMSL



Example: Regression with User-supplied Basis Functions

In this example, we fit the function 1 + sin(x) + 7 * sin(3x) with no error introduced.
The function is evaluated at 90 equally spaced points on the interval [0, 6]. Four basis
functions are used, sin(kx) for k = 1,...,4 with no intercept.
import com.imsl.stat.*;

import com.imsl.math.*;

public class UserBasisRegressionEx1 {
public static void main(String args[]) {

class Basis1 implements RegressionBasis {
public double basis(int index, double x) {

return Math.sin((index+1)*x);

}
}

double coef[] = new double[4];

UserBasisRegression ubr =

new UserBasisRegression(new Basis1(), 4, false);

for (int k = 0; k < 90; k++) {
double x = 6.0*k/89.0;

double y = 1.0 + Math.sin(x) + 7.0*Math.sin(3.0*x);

ubr.update(x, y, 1.0);

}
coef = ubr.getCoefficients();

new PrintMatrix("The regression coefficients are:").print(coef);

}
}

Output

The regression coefficients are:

0

0 1.01

1 0.02

2 7.029

3 0.037
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interface RegressionBasis

Public interface for user supplied function to UserBasisRegression object.

Declaration

public interface com.imsl.stat.RegressionBasis

Method

• basis
double basis( int index, double x )

– Description
Public interface for the nonlinear least-squares function.

– Parameters
∗ index – an int which specifies the index of the basis function to be

evaluated at x
∗ x – a double, the point at which the function is to be evaluated

– Returns – a double, the returned value of the function at x

class SelectionRegression

Selects the best multiple linear regression models.

Class SelectionRegression finds the best subset regressions for a regression problem with
three or more independent variables. Typically, the intercept is forced into all models and
is not a candidate variable. In this case, a sum of squares and crossproducts matrix for
the independent and dependent variables corrected for the mean is computed internally.
Optionally, SelectionRegression supports user-calculated sum-of-squares and
crossproducts matrices; see the description of the compute method.

“Best” is defined by using one of the following three criteria:

• R2 (in percent)

R2 = 100(1− SSEp

SST
)
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• R2
a (adjusted R2)

R2
a = 100[1− (

n− 1
n− p

)
SSEp

SST
]

Note that maximizing the R2
a is equivalent to minimizing the residual mean squared

error:
SSEp

(n− p)
• Mallow’s Cp statistic

Cp =
SSEp

s2k
+ 2p− n

Here, n is equal to the sum of the frequencies (or the number of rows in x if frequencies are
not specified in the compute method), and SST is the total sum of squares. k is the number
of candidate or independent variables, represented as the nCandidate argument in the
SelectionRegression constructor. SSEp is the error sum of squares in a model containing
p regression parameters including β0 (or p - 1 of the k candidate variables). Variable

S2
k

is the error mean square from the model with all k variables in the model. Hocking (1972)
and Draper and Smith (1981, pp. 296-302) discuss these criteria.

Class SelectionRegression is based on the algorithm of Furnival and Wilson (1974). This
algorithm finds the maximum number of good saved candidate regressions for each
possible subset size. For more details, see method setMaximumGoodSaved. These
regressions are used to identify a set of best regressions. In large problems, many
regressions are not computed. They may be rejected without computation based on results
for other subsets; this yields an efficient technique for considering all possible regressions.

There are cases when the user may want to input the variance-covariance matrix rather
than allow it to be calculated. This can be accomplished using the appropriate compute

method. Three situations in which the user may want to do this are as follows:

1. The intercept is not in the model. A raw (uncorrected) sum of squares and
crossproducts matrix for the independent and dependent variables is required.
Argument nObservations must be set to 1 greater than the number of observations.
Form ATA, where A = [A, Y], to compute the raw sum of squares and
crossproducts matrix.

2. An intercept is a candidate variable. A raw (uncorrected) sum of squares and
crossproducts matrix for the constant regressor (= 1.0), independent, and dependent
variables is required for cov . In this case, cov contains one additional row and
column corresponding to the constant regressor. This row and column contain the
sum of squares and crossproducts of the constant regressor with the independent
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and dependent variables. The remaining elements in cov are the same as in the
previous case. Argument nObservations must be set to 1 greater than the number of
observations.

3. There are m variables that must be forced into the models. A sum of squares and
crossproducts matrix adjusted for the m variables is required (calculated by
regressing the candidate variables on the variables to be forced into the model).
Argument nObservations must be set to m less than the number of observations.

Programming Notes

SelectionRegression can save considerable CPU time over explicitly computing all
possible regressions. However, the function has some limitations that can cause
unexpected results for users who are unaware of the limitations of the software.

1. For k + 1 > − log2(ε), where ε is the largest relative spacing for double precision,
some results can be incorrect. This limitation arises because the possible models
indicated (the model numbers 1, 2, ..., 2k) are stored as floating-point values; for
sufficiently large k, the model numbers cannot be stored exactly. On many
computers, this means SelectionRegression (for k > 49) can produce incorrect
results.

2. SelectionRegression eliminates some subsets of candidate variables by obtaining
lower bounds on the error sum of squares from fitting larger models. First, the full
model containing all independent variables is fit sequentially using a forward
stepwise procedure in which one variable enters the model at a time, and criterion
values and model numbers for all the candidate variables that can enter at each step
are stored. If linearly dependent variables are removed from the full model, a
warning “SelectionRegression.VariablesDeleted”) is issued. In this case, some
submodels that contain variables removed from the full model because of linear
dependency can be overlooked if they have not already been identified during the
initial forward stepwise procedure. If this warning is issued and you want the
variables that were removed from the full model to be considered in smaller models,
you can rerun the program with a set of linearly independent variables.

Declaration

public class com.imsl.stat.SelectionRegression
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable
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Inner Classes

class SelectionRegression.NoVariablesException

No Variables can enter the model.

Declaration

public static class com.imsl.stat.SelectionRegression.NoVariablesException
extends com.imsl.IMSLException (page 1240)

Constructor

• SelectionRegression.NoVariablesException
public SelectionRegression.NoVariablesException( )

– Description
Constructs a NoVariablesException.

class SelectionRegression.Statistics

Statistics contains statistics related to the regression coefficients.

Declaration

public class com.imsl.stat.SelectionRegression.Statistics
extends java.lang.Object
implements java.io.Serializable

Methods

• getCoefficientStatistics
public double[][] getCoefficientStatistics( int regressionIndex )

– Description
Returns the coefficients statistics for each of the best regressions found for each
subset considered.
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The value set by method setMaximumBestFound determines the total number
of best regressions to find. The number of best regression is equal to (maxSubset
x maxFound), if criterion R SQUARED CRITERION is specified or it is equal to
maxFound if either MALLOWS CP CRITERION or ADJUSTED R SQUARED CRITERION is
specified.
Each row contains statistics related to the regression coefficients of the best
models. The regressions are ordered so that the better regressions appear first.
The statistic in the columns are as follows (inferences are conditional on the
selected model):
Column Description
0 variable number
1 coefficient estimate
2 estimated standard error of the esti-

mate
3 t-statistic for the test that the coeffi-

cient is 0
4 p-value for the two-sided t test

– Parameters
∗ regressionIndex – An int which specifies the index of the best regression

statistics to return. There will be 0 to (maxSubset x maxFound - 1) best
regressions if R SQUARED CRITERION is specified or 0 to (maxFound - 1) if
either MALLOWS CP CRITERION or ADJUSTED R SQUARED CRITERION is specified.

– Returns – A two-dimensional double array containing the regression statistics.

• getCriterionValues
public double[] getCriterionValues( int numVariables )

– Description
Returns an array containing the values of the best criterion for the number of
variables considered.

– Parameters
∗ numVariables – An int which specifies the number of variables considered.

– Returns – A double array with maxSubset rows and nCandidate columns
containing the criterion values.

• getIndependentVariables
public int[][] getIndependentVariables( int numVariables )

– Description
Returns the identification numbers for the independent variables for the
number of variables considered and in the same order as the criteria returned
by getCriterionValues.
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– Parameters
∗ numVariables – An int which specifies the number of variables considered.

– Returns – An int matrix containing the identification numbers for the
independent variables considered.

Fields

• public static final int R SQUARED CRITERION

– Indicates R2 criterion regression.

• public static final int ADJUSTED R SQUARED CRITERION

– Indicates R2
a (adjusted R2) criterion regression.

• public static final int MALLOWS CP CRITERION

– Indicates Mallow’s Cp criterion regression.

Constructor

• SelectionRegression
public SelectionRegression( int nCandidate )

– Description
Constructs a new SelectionRegression object.

– Parameters
∗ nCandidate – An int containing the number of candidate variables

(independent variables). nCandidate must be greater than 2.

Methods

• compute
public void compute( double[][] x, double[] y ) throws
com.imsl.stat.SelectionRegression.NoVariablesException,
com.imsl.stat.Covariances.TooManyObsDeletedException,
com.imsl.stat.Covariances.MoreObsDelThanEnteredException,
com.imsl.stat.Covariances.DiffObsDeletedException
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– Description
Computes the best multiple linear regression models.

– Parameters
∗ x – A double matrix containing the observations of the candidate

(independent) variables. The number of columns in x must be equal to the
number of variables set in the constructor.

∗ y – A double array containing the observations of the dependent variable.
– Throws
∗ com.imsl.stat.SelectionRegression.NoVariablesException – if no

variables can enter any model
∗ com.imsl.stat.Covariances.TooManyObsDeletedException – more

observations have been deleted than were originally entered
∗ com.imsl.stat.Covariances.MoreObsDelThanEnteredException – more

observations are being deleted from the output covariance matrix than
were originally entered
∗ com.imsl.stat.Covariances.DiffObsDeletedException – different

observations are being deleted from return matrix than were originally
entered

• compute
public void compute( double[][] x, double[] y, double[] weights )
throws com.imsl.stat.SelectionRegression.NoVariablesException,
com.imsl.stat.Covariances.NonnegativeWeightException,
com.imsl.stat.Covariances.TooManyObsDeletedException,
com.imsl.stat.Covariances.MoreObsDelThanEnteredException,
com.imsl.stat.Covariances.DiffObsDeletedException

– Description
Computes the best weighted multiple linear regression models.

– Parameters
∗ x – A double matrix containing the observations of the candidate

(independent) variables. The number of columns in x must be equal to the
number of variables set in the constructor.

∗ y – A double array containing the observations of the dependent variable.
∗ weights – A double array containing the weight for each of the

observations.
– Throws
∗ com.imsl.stat.SelectionRegression.NoVariablesException – if no

variables can enter any model
∗ com.imsl.stat.Covariances.NonnegativeWeightException – weights

must be nonnegative
∗ com.imsl.stat.Covariances.TooManyObsDeletedException – more

observations have been deleted than were originally entered

422 • SelectionRegression JMSL



∗ com.imsl.stat.Covariances.MoreObsDelThanEnteredException – more
observations are being deleted from the output covariance matrix than
were originally entered
∗ com.imsl.stat.Covariances.DiffObsDeletedException – different

observations are being deleted from return matrix than were originally
entered

• compute
public void compute( double[][] x, double[] y, double[] weights,
double[] frequencies ) throws
com.imsl.stat.SelectionRegression.NoVariablesException,
com.imsl.stat.Covariances.NonnegativeFreqException,
com.imsl.stat.Covariances.NonnegativeWeightException,
com.imsl.stat.Covariances.TooManyObsDeletedException,
com.imsl.stat.Covariances.MoreObsDelThanEnteredException,
com.imsl.stat.Covariances.DiffObsDeletedException

– Description
Computes the best weighted multiple linear regression models using frequencies
for each observation.

– Parameters
∗ x – A double matrix containing the observations of the candidate

(independent) variables. The number of columns in x must be equal to the
number of variables set in the constructor.

∗ y – A double array containing the observations of the dependent variable.
∗ weights – A double array containing the weight for each of the

observations.
∗ frequencies – A double array containing the frequency for each of the

observations of x.
– Throws
∗ com.imsl.stat.SelectionRegression.NoVariablesException – if no

variables can enter any model
∗ com.imsl.stat.Covariances.NonnegativeFreqException – frequencies

must be nonnegative
∗ com.imsl.stat.Covariances.NonnegativeWeightException – weights

must be nonnegative
∗ com.imsl.stat.Covariances.TooManyObsDeletedException – more

observations have been deleted than were originally entered
∗ com.imsl.stat.Covariances.MoreObsDelThanEnteredException – more

observations are being deleted from the output covariance matrix than
were originally entered
∗ com.imsl.stat.Covariances.DiffObsDeletedException – different

observations are being deleted from return matrix than were originally
entered
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• compute
public void compute( double[][] cov, int nObservations ) throws
com.imsl.stat.SelectionRegression.NoVariablesException

– Description
Computes the best multiple linear regression models using a user-supplied
covariance matrix.

– Parameters
∗ cov – A double matrix containing a variance-covariance or sum of squares

and crossproducts matrix, in which the last column must correspond to the
dependent variable. cov can be computed using the Covariances class.
∗ nObservations – An int containing the number of observations used to

compute cov.
– Throws
∗ com.imsl.stat.SelectionRegression.NoVariablesException – if no

variables can enter any model

• getCriterionOption
public int getCriterionOption( )

– Description
Returns the criterion option used to calculate the regression estimates.

– Returns – An int containing the criterion option.

• getStatistics
public SelectionRegression.Statistics getStatistics( )

– Description
Returns a new Statistics object.

– Returns – A Statistics object containing the Coefficient statistics.

• setCriterionOption
public void setCriterionOption( int criterionOption )

– Description
Sets the Criterion to be used. By default for all criteria, subset size 1,2, ..., k =
nCandidate are considered. However, for R2 the maximum number of subsets
can be restricted to maxSubset in the setMaximumSubsetSize method.

424 • SelectionRegression JMSL



Criterion Option Description
R SQUARED CRITERION For R2, subset sizes 1, 2, ..., maxSubset

are examined. This is the default with
maxSubset = nCandidate.

ADJUSTED R SQUARED CRITERIONFor Adjusted R2, subset sizes 1, 2, ...,
nCandidate are examined.

MALLOWS CP CRITERION For Mallow’s Cp Subset sizes 1, 2, ...,
nCandidate are examined.

– Parameters
∗ criterionOption – An int containing the criterion option used for the

best subset regression selection.

• setMaximumBestFound
public void setMaximumBestFound( int maxFound )

– Description
Sets the maximum number of best regressions to be found.
If the R2 criterion option is selected, the maxFound best regressions for each
subset size examined are reported. If the adjusted R2 or Mallow’s Cp criteria
are selected, the maxFound among all possible regressions are found.

– Parameters
∗ maxFound – An int containing the maximum number of best regressions to

be reported. Default: maxFound = 1.

• setMaximumGoodSaved
public void setMaximumGoodSaved( int maxSaved )

– Description
Sets the maximum number of good regressions for each subset size saved.
Argument maxSaved must be greater than or equal to maxFound. Normally,
maxSaved should be less than or equal to 10. It should never need be larger than
maxSubset, the maximum number of subsets for any subset size. Computing
time required is inversely related to maxSaved.

– Parameters
∗ maxSaved – An int containing the maximum number of good regressions

saved for each subset size. Default: maxSaved = maximum(10,maxSubset).

• setMaximumSubsetSize
public void setMaximumSubsetSize( int maxSubset )

– Description
Sets the maximum subset size if R2 criterion is used.

– Parameters
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∗ maxSubset – An int containing the maximum subset size when R2

criterion is used. Default: maxSubset = nCandidate.

Example 1: SelectionRegression

This example uses a data set from Draper and Smith (1981, pp. 629*630). Class
SelectionRegression is invoked to find the best regression for each subset size using the
R2 criterion.
import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

import com.imsl.math.PrintMatrixFormat;

public class SelectionRegressionEx1 {

public static void main(String[] args) throws Exception {
double x[][] = { {7., 26., 6., 60.}, {1., 29., 15., 52.},

{11., 56., 8., 20.}, {11., 31., 8., 47.}, {7., 52., 6., 33.},
{11., 55., 9., 22.}, {3., 71., 17., 6.}, {1., 31., 22., 44.},
{2., 54., 18., 22.}, {21., 47., 4., 26}, {1., 40., 23., 34.},
{11., 66., 9., 12.}, {10.0, 68., 8., 12.}};

double y[] = { 78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1,

115.9, 83.8, 113.3, 109.4};

String criterionOption;

MessageFormat critMsg =

new MessageFormat("Regressions with {0} variable(s) ({1})");
MessageFormat critLabel =

new MessageFormat(" Criterion Variables");

MessageFormat coefMsg =

new MessageFormat("Best Regressions with {0} variable(s) ({1})");
MessageFormat coefLabel = new MessageFormat("Variable Coefficient" +

" Standard Error t-statistic p-value");

MessageFormat critData = new MessageFormat("{0} {1} {2} {3}" +

" {4} {5}");

SelectionRegression sr = new SelectionRegression(4);

sr.compute(x, y);

SelectionRegression.Statistics stats =

sr.getStatistics();
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criterionOption = new String("R-squared");

for (int i=1; i <= 4 ; i++) {
double[] tmpCrit = stats.getCriterionValues(i);

int[][] indvar = stats.getIndependentVariables(i);

Object p[] = {new Integer(i), criterionOption};
System.out.println(critMsg.format(p));

Object p1[] = {null};
System.out.println(critLabel.format(p1));

for (int j=0; j< tmpCrit.length; j++) {
System.out.print(" "+tmpCrit[j]+" ");

for (int k = 0; k < indvar[j].length ; k++) {
System.out.print(indvar[j][k]+" ");

}
System.out.println("");

}
System.out.println("");

}

for (int i=0; i < 4; i++) {
System.out.println("");

Object p[] = {new Integer(i+1), criterionOption};
System.out.println(coefMsg.format(p));

Object p2[] = {null};
System.out.println(coefLabel.format(p2));

double[][] tmpCoef= stats.getCoefficientStatistics(i);

PrintMatrix pm = new PrintMatrix();

pm.setColumnSpacing(10);

PrintMatrixFormat tst = new PrintMatrixFormat();

tst.setNoColumnLabels();

tst.setNoRowLabels();

pm.print(tst, tmpCoef);

System.out.println("");

System.out.println("");

}
}

}
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Output

Regressions with 1 variable(s) (R-squared)

Criterion Variables

67.45419641316093 4

66.6268257633294 2

53.39480238350336 1

28.587273122981173 3

Regressions with 2 variable(s) (R-squared)

Criterion Variables

97.86783745356321 1 2

97.24710477169315 1 4

93.52896406158075 3 4

68.00604079500503 2 4

54.81667488448235 1 3

Regressions with 3 variable(s) (R-squared)

Criterion Variables

98.23354512004268 1 2 4

98.22846792190867 1 2 3

98.12810925873437 1 3 4

97.28199593862732 2 3 4

Regressions with 4 variable(s) (R-squared)

Criterion Variables

98.23756204076803 1 2 3 4

Best Regressions with 1 variable(s) (R-squared)

Variable Coefficient Standard Error t-statistic p-value

4 -0.738 0.155 -4.775 0.001

Best Regressions with 2 variable(s) (R-squared)

Variable Coefficient Standard Error t-statistic p-value

1 1.468 0.121 12.105 0

428 • SelectionRegression JMSL



2 0.662 0.046 14.442 0

Best Regressions with 3 variable(s) (R-squared)

Variable Coefficient Standard Error t-statistic p-value

1 1.452 0.117 12.41 0

2 0.416 0.186 2.242 0.052

4 -0.237 0.173 -1.365 0.205

Best Regressions with 4 variable(s) (R-squared)

Variable Coefficient Standard Error t-statistic p-value

1 1.551 0.745 2.083 0.071

2 0.51 0.724 0.705 0.501

3 0.102 0.755 0.135 0.896

4 -0.144 0.709 -0.203 0.844

Example 2: SelectionRegression

This example uses the same data set as the first example, but Mallow’s Cp statistic is used
as the criterion rather than R2. Note that when Mallow’s Cp statistic (or adjusted R2) is
specified, the method setMaximumBestFound is used to indicate the total number of “best”
regressions (rather than indicating the number of best regressions per subset size, as in the
case of the R2 criterion). In this example, the three best regressions are found to be (1, 2),
(1, 2, 4), and (1, 2, 3).
import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

import com.imsl.math.PrintMatrixFormat;

public class SelectionRegressionEx2 {
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public static void main(String[] args) throws Exception {
double x[][] = {

{7., 26., 6., 60.},
{1., 29., 15., 52.},
{11., 56., 8., 20.},
{11., 31., 8., 47.},
{7., 52., 6., 33.},
{11., 55., 9., 22.},
{3., 71., 17., 6.},
{1., 31., 22., 44.},
{2., 54., 18., 22.},
{21., 47., 4., 26},
{1., 40., 23., 34.},
{11., 66., 9., 12.},
{10.0, 68., 8., 12.}};

double y[] = {
78.5,

74.3,

104.3,

87.6,

95.9,

109.2,

102.7,

72.5,

93.1,

115.9,

83.8,

113.3,

109.4};

String criterionOption;

MessageFormat critMsg =

new MessageFormat("Regressions with {0} variable(s) ({1})");
MessageFormat critLabel =

new MessageFormat(" Criterion Variables");

MessageFormat coefMsg = new MessageFormat("Best Regressions with" +

" {0} variable(s) ({1})");
MessageFormat coefLabel = new MessageFormat("Variable Coefficient" +

" Standard Error t-statistic p-value");

MessageFormat critData = new MessageFormat("{0} {1} {2} {3}" +

" {4} {5}");
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SelectionRegression sr = new SelectionRegression(4);

sr.setCriterionOption(sr.MALLOWS CP CRITERION);

sr.setMaximumBestFound(3);

sr.compute(x, y);

SelectionRegression.Statistics stats = sr.getStatistics();

criterionOption = new String("R-squared");

for (int i=1; i <= 4; i++) {
double[] tmpCrit = stats.getCriterionValues(i);

int[][] indvar = stats.getIndependentVariables(i);

Object p[] = {new Integer(i), criterionOption};
System.out.println(critMsg.format(p));

Object p1[] = {null};
System.out.println(critLabel.format(p1));

for (int j=0; j< tmpCrit.length; j++) {
System.out.print(" "+tmpCrit[j]+" ");

for (int k = 0; k < indvar[j].length ; k++) {
System.out.print(indvar[j][k]+" ");

}
System.out.println("");

}
System.out.println("");

}

String tmp;

for (int i=0; i < 3; i++) {
System.out.println("");

double[][] tmpCoef= stats.getCoefficientStatistics(i);

Object p[] = {new Integer(tmpCoef.length), criterionOption};
System.out.println(coefMsg.format(p));

Object p2[] = {null};
System.out.println(coefLabel.format(p2));

PrintMatrix pm = new PrintMatrix();

pm.setColumnSpacing(10);

NumberFormat nf = NumberFormat.getInstance();
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nf.setMinimumFractionDigits(4);

PrintMatrixFormat tst = new PrintMatrixFormat();

tst.setNoColumnLabels();

tst.setNoRowLabels();

tst.setNumberFormat(nf);

pm.print(tst, tmpCoef);

System.out.println("");

System.out.println("");

}
}

}

Output

Regressions with 1 variable(s) (R-squared)

Criterion Variables

138.73083349167865 4

142.48640693696262 2

202.54876912345225 1

315.15428414008386 3

Regressions with 2 variable(s) (R-squared)

Criterion Variables

2.6782415983184293 1 2

5.4958508247586515 1 4

22.373111964697628 3 4

138.2259197546432 2 4

198.09465256959135 1 3

Regressions with 3 variable(s) (R-squared)

Criterion Variables

3.0182334734873457 1 2 4

3.041279723064166 1 2 3

3.4968244423484762 1 3 4

7.337473995655984 2 3 4

Regressions with 4 variable(s) (R-squared)

Criterion Variables

5.0 1 2 3 4
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Best Regressions with 2 variable(s) (R-squared)

Variable Coefficient Standard Error t-statistic p-value

1.0000 1.4683 0.1213 12.1047 0.0000

2.0000 0.6623 0.0459 14.4424 0.0000

Best Regressions with 3 variable(s) (R-squared)

Variable Coefficient Standard Error t-statistic p-value

1.0000 1.4519 0.1170 12.4100 0.0000

2.0000 0.4161 0.1856 2.2418 0.0517

4.0000 -0.2365 0.1733 -1.3650 0.2054

Best Regressions with 3 variable(s) (R-squared)

Variable Coefficient Standard Error t-statistic p-value

1.0000 1.6959 0.2046 8.2895 0.0000

2.0000 0.6569 0.0442 14.8508 0.0000

3.0000 0.2500 0.1847 1.3536 0.2089

class StepwiseRegression

Builds multiple linear regression models using forward selection, backward selection, or
stepwise selection.

Class StepwiseRegression builds a multiple linear regression model using forward
selection, backward selection, or forward stepwise (with a backward glance) selection.

Levels of priority can be assigned to the candidate independent variables using the
setLevels method. All variables with a priority level of 1 must enter the model before
variables with a priority level of 2. Similarly, variables with a level of 2 must enter before
variables with a level of 3, etc. Variables also can be forced into the model (setForce).
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Note that specifying “force” without also specifying the levels will result in all variables
being forced into the model.

Typically, the intercept is forced into all models and is not a candidate variable. In this
case, a sum-of-squares and crossproducts matrix for the independent and dependent
variables corrected for the mean is required. Other possibilities are as follows:

1. The intercept is not in the model. A raw (uncorrected) sum-of-squares and
crossproducts matrix for the independent and dependent variables is required as
input in cov. Argument nObservations must be set to one greater than the number
of observations.

2. An intercept is a candidate variable. A raw (uncorrected) sum-of-squares and
crossproducts matrix for the constant regressor (=1), independent and dependent
variables are required for cov. In this case, cov contains one additional row and
column corresponding to the constant regressor. This row/column contains the
sum-of-squares and crossproducts of the constant regressor with the independent
and dependent variables. The remaining elements in cov are the same as in the
previous case. Argument nObservations must be set to one greater than the number
of observations.

The stepwise regression algorithm is due to Efroymson (1960). StepwiseRegression uses
sweeps of the covariance matrix (input in cov, if the covariance matrix is specified, or
generated internally) to move variables in and out of the model (Hemmerle 1967, Chapter
3). The SWEEP operator discussed in Goodnight (1979) is used. A description of the
stepwise algorithm is also given by Kennedy and Gentle (1980, pp. 335-340). The
advantage of stepwise model building over all possible regression
(com.imsl.stat.SelectionRegression) is that it is less demanding computationally when the
number of candidate independent variables is very large. However, there is no guarantee
that the model selected will be the best model (highest R2) for any subset size of
independent variables.

Declaration

public class com.imsl.stat.StepwiseRegression
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Classes

class StepwiseRegression.CyclingIsOccurringException

Cycling is occurring.
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Declaration

public static class com.imsl.stat.StepwiseRegression.CyclingIsOccurringException
extends com.imsl.IMSLException (page 1240)

Constructor

• StepwiseRegression.CyclingIsOccurringException
public StepwiseRegression.CyclingIsOccurringException( int nStep )

– Description
Constructs a CyclingIsOccurringException.

– Parameters
∗ nStep – An int which specifies the number of steps taken.

class StepwiseRegression.NoVariablesEnteredException

No Variables can enter the model.

Declaration

public static class com.imsl.stat.StepwiseRegression.NoVariablesEnteredException
extends com.imsl.IMSLException (page 1240)

Constructor

• StepwiseRegression.NoVariablesEnteredException
public StepwiseRegression.NoVariablesEnteredException( )

– Description
Constructs a NoVariablesEnteredException.

class StepwiseRegression.CoefficientTTests

CoefficientTTests contains statistics related to the student-t test, for each regression
coefficient.
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Declaration

public class com.imsl.stat.StepwiseRegression.CoefficientTTests
extends java.lang.Object
implements java.io.Serializable

Methods

• getCoefficient
public double getCoefficient( int index )

– Description
Returns the estimate for a coefficient of the independent variable.

– Parameters
∗ index – An int which specifies the index of the coefficient whose estimate

is to be returned. index must be between 1 and the number of independent
variables.

– Returns – A double which contains the estimate for the coefficient.

• getPValue
public double getPValue( int index )

– Description
Returns the p-value for the two-sided test H0 : β = 0 vs. H1 : β 6= 0.

– Parameters
∗ index – An int which specifies the index of the coefficient whose p-value is

to be returned. index must be between 1 and the number of independent
variables.

– Returns – A double which contains the estimated p-value for the coefficient.

• getStandardError
public double getStandardError( int index )

– Description
Returns the estimated standard error for a coefficient estimate.

– Parameters
∗ index – An int which specifies the index of the coefficient whose standard

error estimate is to be returned. index must be between 1 and the number
of independent variables.

– Returns – A double which contains the estimated standard error for the
coefficient.
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• getTStatistic
public double getTStatistic( int index )

– Description
Returns the student-t test statistic for testing the i-th coefficient equal to zero
(βindex = 0).

– Parameters
∗ index – An int which specifies the index of the coefficient whose t-test

statistic is to be returned. index must be between 1 and the number of
independent variables.

– Returns – A double which contains the estimated t-test statistic for the
coefficient.

Fields

• public static final int FORWARD REGRESSION

– Indicates forward regression. An attempt is made to add a variable to the
model. A variable is added if its p-value is less than pValueIn. During
intitialization, only forced variables enter the model.

• public static final int BACKWARD REGRESSION

– Indicates backward regression. An attempt is made to remove a variable from
the model. A variable is removed if its p-value exceeds pValueOut. During
initialization, all candidate independent variables enter the model.

• public static final int STEPWISE REGRESSION

– Indicates stepwise regression. A backward step is attempted. After the
backward step, a forward step is attempted. This is a stepwise step. Any forced
variables enter the model during initialization.

Constructors

• StepwiseRegression
public StepwiseRegression( double[][] x, double[] y ) throws
com.imsl.stat.Covariances.TooManyObsDeletedException,
com.imsl.stat.Covariances.MoreObsDelThanEnteredException,
com.imsl.stat.Covariances.DiffObsDeletedException
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– Description
Creates a new instance of StepwiseRegression.

– Parameters
∗ x – A double matrix of nObs by nVars, where nObs is the number of

observations and nVars is the number of independent variables.
∗ y – A double array containing the observations of the dependent variable.

– Throws
∗ com.imsl.stat.Covariances.TooManyObsDeletedException – is thrown

if more observations have been deleted than were originally entered, i.e. the
sum of frequencies has become negative
∗ com.imsl.stat.Covariances.MoreObsDelThanEnteredException – is

thrown if more observations are being deleted from “variance-covariance”
matrix than were originally entered. The corresponding row,column of the
incidence matrix is less than zero.
∗ com.imsl.stat.Covariances.DiffObsDeletedException – is thrown if

different observations are being deleted than were originally entered

• StepwiseRegression
public StepwiseRegression( double[][] x, double[] y, double[] weights
) throws com.imsl.stat.Covariances.NonnegativeWeightException,
com.imsl.stat.Covariances.TooManyObsDeletedException,
com.imsl.stat.Covariances.MoreObsDelThanEnteredException,
com.imsl.stat.Covariances.DiffObsDeletedException

– Description
Creates a new instance of weighted StepwiseRegression.

– Parameters
∗ x – A double matrix of nObs by nVars, where nObs is the number of

observations and nVars is the number of independent variables.
∗ y – A double array containing the observations of the dependent variable.
∗ weights – A double array containing the weight for each observation of x.

– Throws
∗ com.imsl.stat.Covariances.NonnegativeWeightException – is thrown

if the weights are negative
∗ com.imsl.stat.Covariances.TooManyObsDeletedException – is thrown

if more observations have been deleted than were originally entered, i.e. the
sum of frequencies has become negative
∗ com.imsl.stat.Covariances.MoreObsDelThanEnteredException – is

thrown if more observations are being deleted from “variance-covariance”
matrix than were originally entered. The corresponding row,column of the
incidence matrix is less than zero.
∗ com.imsl.stat.Covariances.DiffObsDeletedException – is thrown if

different observations are being deleted than were originally entered
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• StepwiseRegression
public StepwiseRegression( double[][] x, double[] y, double[]
weights, double[] frequencies ) throws
com.imsl.stat.Covariances.NonnegativeFreqException,
com.imsl.stat.Covariances.NonnegativeWeightException,
com.imsl.stat.Covariances.TooManyObsDeletedException,
com.imsl.stat.Covariances.MoreObsDelThanEnteredException,
com.imsl.stat.Covariances.DiffObsDeletedException

– Description
Creates a new instance of weighted StepwiseRegression using observation
frequencies.

– Parameters
∗ x – A double matrix of nObs by nVars, where nObs is the number of

observations and nVars is the number of independent variables.
∗ y – A double array containing the observations of the dependent variable.
∗ weights – A double array containing the weight for each observation of x.
∗ frequencies – A double array containing the frequency for each row of x.

– Throws
∗ com.imsl.stat.Covariances.NonnegativeFreqException – is thrown if

the frequencies are negative
∗ com.imsl.stat.Covariances.NonnegativeWeightException – is thrown

if the weights are negative
∗ com.imsl.stat.Covariances.TooManyObsDeletedException – is thrown

if more observations have been deleted than were originally entered, i.e. the
sum of frequencies has become negative
∗ com.imsl.stat.Covariances.MoreObsDelThanEnteredException – is

thrown if more observations are being deleted from “variance-covariance”
matrix than were originally entered. The corresponding row,column of the
incidence matrix is less than zero.
∗ com.imsl.stat.Covariances.DiffObsDeletedException – is thrown if

different observations are being deleted than were originally entered

• StepwiseRegression
public StepwiseRegression( double[][] cov, int nObservations )

– Description
Creates a new instance of StepwiseRegression from a user-supplied
variance-covariance matrix.

– Parameters
∗ cov – A double matrix containing a variance-covariance or sum of squares

and crossproducts matrix, in which the last column must correspond to the
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dependent variable. cov can be computed using the
com.imsl.stat.Covariances class.
∗ nObservations – An int containing the number of observations associated

with cov.

Methods

• compute
public void compute( ) throws
com.imsl.stat.StepwiseRegression.NoVariablesEnteredException,
com.imsl.stat.StepwiseRegression.CyclingIsOccurringException

– Description
Builds the multiple linear regression models using forward selection, backward
selection, or stepwise selection.

– Throws
∗ com.imsl.stat.StepwiseRegression.NoVariablesEnteredException –

is thrown if no variables entered the model. All elements of
com.imsl.stat.ANOVA table are set to NaN
∗ com.imsl.stat.StepwiseRegression.CyclingIsOccurringException –

is thrown if cycling occurs

• getANOVA
public synchronized ANOVA getANOVA( ) throws
com.imsl.stat.StepwiseRegression.NoVariablesEnteredException,
com.imsl.stat.StepwiseRegression.CyclingIsOccurringException

– Description
Get an analysis of variance table and related statistics.

– Returns – An com.imsl.stat.ANOVA table and related statistics.

• getCoefficientTTests
public StepwiseRegression.CoefficientTTests getCoefficientTTests( )
throws com.imsl.stat.StepwiseRegression.NoVariablesEnteredException,
com.imsl.stat.StepwiseRegression.CyclingIsOccurringException

– Description
Returns the student-t test statistics for the regression coefficients.

– Returns – A com.imsl.stat.StepwiseRegression.CoefficientTTests object
containing statistics relating to the regression coefficients.
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• getCoefficientVIF
public double[] getCoefficientVIF( ) throws
com.imsl.stat.StepwiseRegression.NoVariablesEnteredException,
com.imsl.stat.StepwiseRegression.CyclingIsOccurringException

– Description
Returns the variance inflation factors for the final model in this invocation.
The elements are in the same order as the independent variables in x (or, if the
covariance matrix is specified, the elements are in the same order as the
variables in cov). Each element corresponding to a variable not in the model
contains statistics for a model which includes the variables of the final model
and the variables corresponding to the element in question.
The square of the multiple correlation coefficient for the i-th regressor after all
others can be obtained from the i-th element for the returned array by the
following formula:

1.0− 1.0
V IF

– Returns – A double array containing the variance inflation factors for the final
model in this invocation.

• getCovariancesSwept
public double[][] getCovariancesSwept( ) throws
com.imsl.stat.StepwiseRegression.NoVariablesEnteredException,
com.imsl.stat.StepwiseRegression.CyclingIsOccurringException

– Description
Returns the results after cov has been swept for the columns corresponding to
the variables in the model.

– Returns – A double matrix containing the results after cov has been swept on
the columns corresponding to the variables in the model. The estimated
variance-covariance matrix of the estimated regression coefficients in the final
model can be obtained by extracting the rows and columns corresponding to
the independent variables in the final model and multiplying the elements of
this matrix by the error mean square.

• getHistory
public double[] getHistory( ) throws
com.imsl.stat.StepwiseRegression.NoVariablesEnteredException,
com.imsl.stat.StepwiseRegression.CyclingIsOccurringException

– Description
Returns the stepwise regression history for the independent variables.
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– Returns – A double array containing the recent history of the independent
variables. The last element corresponds to the dependent variable.
history[i] Status of i-th Variable
0.0 This variable has never been added to

the model.
0.5 This variable was added into the

model during initialization.
k> 0.0 This variable was added to the model

during the k-th step.
k< 0.0 This variable was deleted from model

during the k-th step

• getSwept
public double[] getSwept( ) throws
com.imsl.stat.StepwiseRegression.NoVariablesEnteredException,
com.imsl.stat.StepwiseRegression.CyclingIsOccurringException

– Description
Returns an array containing information indicating whether or not a particular
variable is in the model.

– Returns – A double array with information to indicate the independent
variables in the model. The last element corresponds to the dependent variable.
A +1 in the i-th position indicates that the variable is in the selected model. A
-1 indicates that the variable is not in the selected model.

• setForce
public void setForce( int force )

– Description
Forces independent variables into the model based on their level assigned from
setlevels.

– Parameters
∗ force – An int specifying the upper bound on the variables forced into the

model. Variables with levels 1, 2, ..., force are forced into the model as
independent variables.

• setLevels
public void setLevels( int[] levels )

– Description
Sets the levels of priority for variables entering and leaving the regression. Each
variable is assigned a positive value which indicates its level of entry into the
model. A variable can enter the model only after all variables with smaller
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nonzero levels of entry have entered. Similarly, a variable can only leave the
model after all variables with higher levels of entry have left. Variables with the
same level of entry compete for entry (deletion) at each step. Argument
levels[i]=0 means the i-th variable never enters the model. Argument
levels[i]=-1 means the i-th variable is the dependent variable. The last
element in levels must correspond to the dependent variable, except when the
variance-covariance or sum of squares and crossproducts matrix is supplied.

– Parameters
∗ levels – An int array containing the levels of entry into the model for

each variable. Default: 1, 1, ..., 1, -1 where -1 corresponds to the
dependent variable.

• setMethod
public void setMethod( int method )

– Description
Specifies the stepwise selection method, forward, backward, or stepwise
Regression.

– Parameters
∗ method – An int value between -1 and 1 specifying the stepwise selection

method. Fields FORWARD REGRESSION, BACKWARD REGRESSION, and
STEPWISE REGRESSION should be used. Default: STEPWISE REGRESSION.

• setPValueIn
public void setPValueIn( double pValueIn )

– Description
Defines the largest p-value for variables entering the model. Variables with
p-value less than pValueIn may enter the model. Backward regression does not
use this value.

– Parameters
∗ pValueIn – A double containing the largest p-value for variables entering

the model. Default: pValueIn = 0.05.

• setPValueOut
public void setPValueOut( double pValueOut )

– Description
Defines the smallest p-value for removing variables. Variables with p-values
greater than pValueOut may leave the model. pValueOut must be greater than
or equal to pValueIn. A common choice for pValueOut is 2*pValueIn. Forward
regression does not use this value.

– Parameters
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∗ pValueOut – A double containing the smallest p-value for removing
variables from the model. Default: pValueOut = 0.10.

• setTolerance
public void setTolerance( double tolerance )

– Description
The tolerance used to detect linear dependence among the independent
variables.

– Parameters
∗ tolerance – A double containing the tolerance used for detecting linear

dependence. Default: tolerance = 2.2204460492503e-16.

Example 1: StepwiseRegression

This example uses a data set from Draper and Smith (1981, pp. 629-630). Method
compute is invoked to find the best regression for each subset size using the R2 criterion.
By default, stepwise regression is performed.
import java.text.*;

import com.imsl.stat.*;

import com.imsl.IMSLException.*;

import com.imsl.math.PrintMatrix;

import com.imsl.math.PrintMatrixFormat;

public class StepwiseRegressionEx1 {

public static void main(String[] args) throws Exception {
double x[][] = {
{7., 26., 6., 60.},
{1., 29., 15., 52.},
{11., 56., 8., 20.},
{11., 31., 8., 47.},
{7., 52., 6., 33.},
{11., 55., 9., 22.},
{3., 71., 17., 6.},
{1., 31., 22., 44.},
{2., 54., 18., 22.},
{21., 47., 4., 26},
{1., 40., 23., 34.},
{11., 66., 9., 12.},
{10.0, 68., 8., 12.}};
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double y[] = {
78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7,

72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

StepwiseRegression sr = new StepwiseRegression(x,y);

sr.compute();

PrintMatrix pm = new PrintMatrix();

pm.setTitle("*** ANOVA *** "); pm.print(sr.getANOVA().getArray());

StepwiseRegression.CoefficientTTests coefT =

sr.getCoefficientTTests();

double coef[][] = new double[4][4];

for (int i=0; i<4; i++) {
coef[i][0] = coefT.getCoefficient(i);

coef[i][1] = coefT.getStandardError(i);

coef[i][2] = coefT.getTStatistic(i);

coef[i][3] = coefT.getPValue(i);

}
pm.setTitle("*** Coef *** "); pm.print(coef);

pm.setTitle("*** Swept *** "); pm.print(sr.getSwept());

pm.setTitle("*** History *** "); pm.print(sr.getHistory());

pm.setTitle("*** VIF *** "); pm.print(sr.getCoefficientVIF());

pm.setTitle("*** CovS *** "); pm.print(sr.getCovariancesSwept());

}
}

Output

*** ANOVA ***

0

0 2

1 10

2 12

3 2,641.001

4 74.762

5 2,715.763

6 1,320.5

7 7.476

8 176.627

9 0
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10 97.247

11 96.697

12 2.734

13 ?

14 ?

*** Coef ***

0 1 2 3

0 1.44 0.138 10.403 0

1 0.416 0.186 2.242 0.052

2 -0.41 0.199 -2.058 0.07

3 -0.614 0.049 -12.621 0

*** Swept ***

0

0 1

1 -1

2 -1

3 1

4 -1

*** History ***

0

0 2

1 0

2 0

3 1

4 0

*** VIF ***

0

0 1.064

1 18.78

2 3.46

3 1.064

*** CovS ***

0 1 2 3 4

0 0.003 -0.029 -0.946 0 1.44

1 -0.029 154.72 -142.8 0.907 64.381

2 -0.946 -142.8 142.302 0.07 -58.35

3 0 0.907 0.07 0 -0.614
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4 1.44 64.381 -58.35 -0.614 74.762
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Chapter 14

Analysis of Variance

Classes
ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .450

Analysis of Variance table and related statistics.
ANOVAFactorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .456

Analyzes a balanced factorial design with fixed effects.
MultipleComparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .467

Performs Student-Newman-Keuls multiple comparisons test.

Usage Notes

The classes described in this chapter are for commonly-used experimental designs.
Typically, responses are stored in the input vector y in a pattern that takes advantage of
the balanced design structure. Consequently, the full set of model subscripts is not needed
to identify each response. The classes assume the usual pattern, which requires that the
last model subscript change most rapidly, followed by the model subscript next in line,
and so forth, with the first subscript changing at the slowest rate. This pattern is referred
to as lexicographical ordering.

ANOVA class allows missing responses if confidence interval information is not requested.
Double.NaN (Not a Number) is the missing value code used by these classes. Any element
of y that is missing must be set to NaN. Other classes described in this chapter do not
allow missing responses because the classes generally deal with balanced designs.

As a diagnostic tool for determination of the validity of a model, classes in this chapter
typically perform a test for lack of fit when n(n > 1) responses are available in each cell of
the experimental design.
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class ANOVA

Analysis of Variance table and related statistics.

Declaration

public class com.imsl.stat.ANOVA
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Constructors

• ANOVA
public ANOVA( double[][] y )

– Description
Analyzes a one-way classification model.

– Parameters
∗ y – is a two-dimension double array containing the responses. The rows in

y correspond to observation groups. Each row of y can contain a different
number of observations.

• ANOVA
public ANOVA( double dfr, double ssr, double dfe, double sse, double
gmean )

– Description
Construct an analysis of variance table and related statistics. Intended for use
by the LinearRegression class.

– Parameters
∗ dfr – a double scalar value representing the degrees of freedom for model
∗ ssr – a double scalar value representing the sum of squares for model
∗ dfe – a double scalar value representing the degrees of freedom for error
∗ sse – a double scalar value representing the sum of squares for error
∗ gmean – a double scalar value representing the grand mean. If the grand

mean is not known it may be set to not-a-number.

Methods

450 • ANOVA JMSL



• getAdjustedRSquared
public double getAdjustedRSquared( )

– Description
Returns the adjusted R-squared (in percent).

– Returns – a double scalar value representing the adjusted R-squared (in
percent)

• getArray
public double[] getArray( )

– Description
Returns the ANOVA values as an array.

– Returns – a double[15] array containing the following values:
index Value
0 Degrees of freedom for model
1 Degrees of freedom for error
2 Total degrees of freedom
3 Sum of squares for model
4 Sum of squares for error
5 Total sum of squares
6 Model mean square
7 Error mean square
8 F statistic
9 p-value
10 R-squared (in percent)
11 Adjusted R-squared (in percent)
12 Estimated standard deviation of the

model error
13 Mean of the response (dependent vari-

able)
14 Coefficient of variation (in percent)

• getCoefficientOfVariation
public double getCoefficientOfVariation( )

– Description
Returns the coefficient of variation (in percent).

– Returns – a double scalar value representing the coefficient of variation (in
percent)

• getDegreesOfFreedomForError
public double getDegreesOfFreedomForError( )
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– Description
Returns the degrees of freedom for error.

– Returns – a double scalar value representing the degrees of freedom for error

• getDegreesOfFreedomForModel
public double getDegreesOfFreedomForModel( )

– Description
Returns the degrees of freedom for model.

– Returns – a double scalar value representing the degrees of freedom for model

• getDunnSidak
public double getDunnSidak( int i, int j )

– Description
Computes the confidence interval of i-th mean - j-th mean, using the
Dunn-Sidak method.

– Parameters
∗ i – is a int indicating the i-th member of the pair, µi

∗ j – is a int indicating the j-th member of the pair, µj

– Returns – the confidence intervals of i-th mean - j-th mean using the
Dunn-Sidak method

• getErrorMeanSquare
public double getErrorMeanSquare( )

– Description
Returns the error mean square.

– Returns – a double scalar value representing the error mean square

• getF
public double getF( )

– Description
Returns the F statistic.

– Returns – a double scalar value representing the F statistic

• getGroupInformation
public double[][] getGroupInformation( )

– Description
Returns information concerning the groups.
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– Returns – a two-dimension double array containing information concerning
the groups. Row i contains information pertaining to the i-th group. The
information in the columns is as follows:
Column Information
0 Group Number
1 Number of nonmissing observations
2 Group Mean
3 Group Standard Deviation

• getMeanOfY
public double getMeanOfY( )

– Description
Returns the mean of the response (dependent variable).

– Returns – a double scalar value representing the mean of the response
(dependent variable)

• getModelErrorStdev
public double getModelErrorStdev( )

– Description
Returns the estimated standard deviation of the model error.

– Returns – a double scalar value representing the estimated standard deviation
of the model error

• getModelMeanSquare
public double getModelMeanSquare( )

– Description
Returns the model mean square.

– Returns – a double scalar value representing the model mean square

• getP
public double getP( )

– Description
Returns the p-value.

– Returns – a double scalar value representing the p-value

• getRSquared
public double getRSquared( )

– Description
Returns the R-squared (in percent).
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– Returns – a double scalar value representing the R-squared (in percent)

• getSumOfSquaresForError
public double getSumOfSquaresForError( )

– Description
Returns the sum of squares for error.

– Returns – a double scalar value representing the sum of squares for error

• getSumOfSquaresForModel
public double getSumOfSquaresForModel( )

– Description
Returns the sum of squares for model.

– Returns – a double scalar value representing the sum of squares for model

• getTotalDegreesOfFreedom
public double getTotalDegreesOfFreedom( )

– Description
Returns the total degrees of freedom.

– Returns – a double scalar value representing the total degrees of freedom

• getTotalMissing
public int getTotalMissing( )

– Description
Returns the total number of missing values.

– Returns – an int scalar value representing the total number of missing values
(NaN) in input Y. Elements of Y containing NaN (not a number) are omitted
from the computations.

• getTotalSumOfSquares
public double getTotalSumOfSquares( )

– Description
Returns the total sum of squares.

– Returns – a double scalar value representing the total sum of squares
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Example: ANOVA

This example computes a one-way analysis of variance for data discussed by Searle (1971,
Table 5.1, pages 165-179). The responses are plant weights for 6 plants of 3 different types
- 3 normal, 2 off-types, and 1 aberrant. The 3 normal plant weights are 101, 105, and 94.
The 2 off-type plant weights are 84 and 88. The 1 aberrant plant weight is 32. Note in the
results that for the group with only one response, the standard deviation is undefined and
is set to NaN (not a number).
import com.imsl.stat.*;

import com.imsl.math.*;

public class ANOVAEx1 {
public static void main(String args[]) {

double y[][] = {
{101, 105, 94},
{84, 88},
{32}

};
ANOVA anova = new ANOVA(y);

double aov[] = anova.getArray();

System.out.println("Degrees Of Freedom For Model = "+ aov[0]);

System.out.println("Degrees Of Freedom For Error = "+ aov[1]);

System.out.println("Total (Corrected) Degrees Of Freedom = "+ aov[2]);

System.out.println("Sum Of Squares For Model = "+ aov[3]);

System.out.println("Sum Of Squares For Error = "+ aov[4]);

System.out.println("Total (Corrected) Sum Of Squares = "+ aov[5]);

System.out.println("Model Mean Square = "+ aov[6]);

System.out.println("Error Mean Square = "+ aov[7]);

System.out.println("F statistic = "+ aov[8]);

System.out.println("P value= "+ aov[9]);

System.out.println("R Squared (in percent) = "+ aov[10]);

System.out.println("Adjusted R Squared (in percent) = "+ aov[11]);

System.out.println("Model Error Standard deviation = "+ aov[12]);

System.out.println("Mean Of Y = "+ aov[13]);

System.out.println("Coefficient Of Variation (in percent) = "+ aov[14]);

System.out.println("Total number of missing values = " +

anova.getTotalMissing());

PrintMatrixFormat pmf = new PrintMatrixFormat();

String labels[] = { "Group", "N", "Mean", "Std. Deviation"};
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pmf.setColumnLabels(labels);

pmf.setNumberFormat(null);

new PrintMatrix("Group Information").print(pmf,

anova.getGroupInformation());

}
}

Output

Degrees Of Freedom For Model = 2.0

Degrees Of Freedom For Error = 3.0

Total (Corrected) Degrees Of Freedom = 5.0

Sum Of Squares For Model = 3480.0

Sum Of Squares For Error = 70.0

Total (Corrected) Sum Of Squares = 3550.0

Model Mean Square = 1740.0

Error Mean Square = 23.333333333333332

F statistic = 74.57142857142857

P value= 0.0027688825253497917

R Squared (in percent) = 98.02816901408451

Adjusted R Squared (in percent) = 96.71361502347418

Model Error Standard deviation = 4.83045891539648

Mean Of Y = 84.0

Coefficient Of Variation (in percent) = 5.750546327852952

Total number of missing values = 0

Group Information

Group N Mean Std. Deviation

0 0.0 3.0 100.0 5.5677643628300215

1 1.0 2.0 86.0 2.8284271247461903

2 2.0 1.0 32.0 NaN

class ANOVAFactorial

Analyzes a balanced factorial design with fixed effects.

Class ANOVAFactorial performs an analysis for an n-way classification design with
balanced data. For balanced data, there must be an equal number of responses in each cell
of the n-way layout. The effects are assumed to be fixed effects. The model is an
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extension of the two-way model to include n factors. The interactions (two-way, three-way,
up to n-way) can be included in the model, or some of the higher-way interactions can be
pooled into error. setModelOrder specifies the number of factors to be included in the
highest-way interaction. For example, if three-way and higher-way interactions are to be
pooled into error, specify modelOrder = 2. (By default, modelOrder = nSubscripts - 1

with the last subscript being the error subscript.) PURE ERROR indicates there are repeated
responses within the n-way cell; POOL INTERACTIONS indicates otherwise.

Class ANOVAFactorial requires the responses as input into a single vector y in
lexicographical order, so that the response subscript associated with the first factor varies
least rapidly, followed by the subscript associated with the second factor, and so forth.
Hemmerle (1967, Chapter 5) discusses the computational method.

Declaration

public class com.imsl.stat.ANOVAFactorial
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Fields

• public static final int PURE ERROR

– Indicates factor nSubscripts is error.

• public static final int POOL INTERACTIONS

– Indicates factor nSubscripts is not error.

Constructor

• ANOVAFactorial
public ANOVAFactorial( int nSubscripts, int[] nLevels, double[] y )

– Description
Constructor for ANOVAFactorial.

– Parameters
∗ nSubscripts – an int scalar containing the number of subscripts. Number

of factors in the model + 1 (for the error term).
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∗ nLevels – an int array of length nSubscripts containing the number of
levels for each of the factors for the first nSubscripts-1 elements.
nLevels[nSubscripts-1] is the number of observations per cell.
∗ y – a double array of length nLevels[0] * nLevels[1] * ... *

nLevels[nSubscripts-1] containing the responses. y must not contain NaN
for any of its elements, i.e., missing values are not allowed.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if nLevels.length,

and y.length are not consistent

Methods

• compute
public final double compute( )

– Description
Analyzes a balanced factorial design with fixed effects.

– Returns – a double scalar containing the p-value for the overall F test

• getANOVATable
public double[] getANOVATable( )

– Description
Returns the analysis of variance table.

– Returns – a double array containing the analysis of variance table. The
analysis of variance statistics are given as follows:
Element Analysis of Variance Statistics
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square
8 overall F-statistic
9 p-value
10 R2 (in percent)
11 adjusted R2 (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)
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• getMeans
public double[] getMeans( )

– Description
Returns the subgroup means.

– Returns – a double array containing the subgroup means

• getTestEffects
public double[][] getTestEffects( )

– Description
Returns statistics relating to the sums of squares for the effects in the model.

– Returns – a double matrix containing statistics relating to the sums of squares
for the effects in the model. Here,

NEF =
(
n

1

)
+
(
n

2

)
+ · · ·+

(
n

min(n, |model order|)

)
where n is given by nSubscripts if ANOVAFactorial.POOL INTERACTIONS is
specified; otherwise, nSubscripts - 1. Suppose the factors are A, B, C, and
error. With modelOrder = 3, rows 0 through NEF-1 would correspond to A, B,
C, AB, AC, BC, and ABC, respectively.
The columns of the output matrix are as follows:
Column Description
0 degrees of freedom
1 sum of squares
2 F-statistic
3 p-value

• setErrorIncludeType
public void setErrorIncludeType( int type )

– Description
Sets error included type.

– Parameters
∗ type – an int scalar. ANOVAFactorial.PURE ERROR, the default option,

indicates factor nSubscripts is error. Its main effect and all its interaction
effects are pooled into the error with the other (modelOrder + 1)-way and
higher-way interactions. ANOVAFactorial.POOL INTERACTIONS indicates
factor nSubscripts is not error. Only (modelOrder + 1)-way and higher-way
interactions are included in the error.
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• setModelOrder
public void setModelOrder( int modelOrder )

– Description
Sets the number of factors to be included in the highest-way interaction in the
model.

– Parameters
∗ modelOrder – an int scalar containing the number of factors to be

included in the highest-way interaction in the model. modelOrder must be
in the interval [1, nSubscripts - 1 ]. For example, a modelOrder of 1
indicates that a main effect model will be analyzed, and a modelOrder of 2
indicates that two-way interactions will be included in the model. Default:
modelOrder = nSubscripts - 1

Example 1: Two-way Analysis of Variance

A two-way analysis of variance is performed with balanced data discussed by Snedecor
and Cochran (1967, Table 12.5.1, p. 347). The responses are the weight gains (in grams)
of rats that were fed diets varying in the source (A) and level (B) of protein. The model is

yijk = µ+ αi + βj + γij + εijk i = 1, 2; j = 1, 2, 3; k = 1, 2, ... , 10

where

2∑
i=1

αi = 0;
3∑

j=1

βj = 0;
2∑

i=1

γij = 0 for j = 1, 2, 3;

and

3∑
j=1

γij = 0 for j = 1, 2

The first responses in each cell in the two-way layout are given in the following table:
Protein Source
(A)

Protein Level (B) Beef Cereal Pork
High 73, 102, 118, 104, 81,

107, 100, 87, 117, 111
98, 74, 56, 111, 95,
88, 82, 77, 86, 92

94, 79, 96, 98, 102,
102, 108, 91, 120, 105

Low 90, 76, 90, 64, 86, 51,
72, 90, 95, 78

107, 95, 97, 80, 98,
74, 74, 67, 89, 58

49, 82, 73, 86, 81, 97,
106, 70, 61, 82
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import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

import com.imsl.math.PrintMatrixFormat;

public class ANOVAFactorialEx1 {
public static void main(String args[]) {

int nSubscripts = 3;

int[] nLevels = {3, 2, 10};
double[] y = {

73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0, 117.0, 111.0,

90.0, 76.0, 90.0, 64.0, 86.0, 51.0, 72.0, 90.0, 95.0, 78.0,

98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0, 77.0, 86.0, 92.0,

107.0, 95.0, 97.0, 80.0, 98.0, 74.0, 74.0, 67.0, 89.0, 58.0,

94.0, 79.0, 96.0, 98.0, 102.0, 102.0, 108.0, 91.0, 120.0, 105.0,

49.0, 82.0, 73.0, 86.0, 81.0, 97.0, 106.0, 70.0, 61.0, 82.0

};
NumberFormat nf = NumberFormat.getInstance();

nf.setMaximumFractionDigits(6);

ANOVAFactorial af = new ANOVAFactorial(nSubscripts, nLevels, y);

System.out.println("P-value = " + nf.format(af.compute()));

}
}

Output

P-value = 0.002299

Example 2: Two-way Analysis of Variance

In this example, the same model and data is fit as in the example 1, but additional
information is printed.
import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

import com.imsl.math.PrintMatrixFormat;

public class ANOVAFactorialEx2 {
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public static void main(String args[]) {
int nSubscripts = 3, i;

int[] nLevels = {3, 2, 10};
double[] y = {

73.0, 102.0, 118.0, 104.0, 81.0, 107.0, 100.0, 87.0, 117.0, 111.0,

90.0, 76.0, 90.0, 64.0, 86.0, 51.0, 72.0, 90.0, 95.0, 78.0,

98.0, 74.0, 56.0, 111.0, 95.0, 88.0, 82.0, 77.0, 86.0, 92.0,

107.0, 95.0, 97.0, 80.0, 98.0, 74.0, 74.0, 67.0, 89.0, 58.0,

94.0, 79.0, 96.0, 98.0, 102.0, 102.0, 108.0, 91.0, 120.0, 105.0,

49.0, 82.0, 73.0, 86.0, 81.0, 97.0, 106.0, 70.0, 61.0, 82.0

};
String[] labels = {

"degrees of freedom for the model ",

"degrees of freedom for error ",

"total (corrected) degrees of freedom ",

"sum of squares for the model ",

"sum of squares for error ",

"total (corrected) sum of squares ",

"model mean square ",

"error mean square ",

"F-statistic ",

"p-value ",

"R-squared (in percent) ",

"Adjusted R-squared (in percent) ",

"est. standard deviation of the model error ",

"overall mean of y ",

"coefficient of variation (in percent) "

};
String[] rlabels = {"A", "B", "A*B"};
String[] mlabels = {

"grand mean ", "A1 ", "A2 ",

"A3 ", "B1 ", "B2 ",

"A1*B1 ", "A1*B2 ", "A2*B1 ",

"A2*B2 ", "A3*B1 ", "A3*B2 "

};
NumberFormat nf = NumberFormat.getInstance();

ANOVAFactorial af = new ANOVAFactorial(nSubscripts, nLevels, y);

nf.setMinimumFractionDigits(6);

System.out.println("P-value = " + nf.format(af.compute()));

nf.setMaximumFractionDigits(4);
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System.out.println("\n * * * Analysis of Variance * * *");

double[] anova = af.getANOVATable();

for (i = 0; i < anova.length; i++) {
System.out.println(labels[i] + " " + nf.format(anova[i]));

}

System.out.println("\n * * * Variation Due to the " +

"Model * * *");

System.out.println("Source\tDF\tSum of Squares\tMean Square" +

"\tProb. of Larger F");

double[][] te = af.getTestEffects();

for (i = 0; i < te.length; i++) {
System.out.println(rlabels[i] + "\t" + nf.format(te[i][0]) + "\t" +

nf.format(te[i][1]) + "\t" + nf.format(te[i][2]) + "\t\t" +

nf.format(te[i][3]));

}

System.out.println("\n* * * Subgroup Means * * *");

double[] means = af.getMeans();

for (i = 0; i < means.length; i++) {
System.out.println(mlabels[i] + " " + nf.format(means[i]));

}
}

}

Output

P-value = 0.002299

* * * Analysis of Variance * * *

degrees of freedom for the model 5.0000

degrees of freedom for error 54.0000

total (corrected) degrees of freedom 59.0000

sum of squares for the model 4,612.9333

sum of squares for error 11,586.0000

total (corrected) sum of squares 16,198.9333

model mean square 922.5867

error mean square 214.5556

F-statistic 4.3000

p-value 0.0023
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R-squared (in percent) 28.4768

Adjusted R-squared (in percent) 21.8543

est. standard deviation of the model error 14.6477

overall mean of y 87.8667

coefficient of variation (in percent) 16.6704

* * * Variation Due to the Model * * *

Source DF Sum of Squares Mean Square Prob. of Larger F

A 2.0000 266.5333 0.6211 0.5411

B 1.0000 3,168.2667 14.7666 0.0003

A*B 2.0000 1,178.1333 2.7455 0.0732

* * * Subgroup Means * * *

grand mean 87.8667

A1 89.6000

A2 84.9000

A3 89.1000

B1 95.1333

B2 80.6000

A1*B1 100.0000

A1*B2 79.2000

A2*B1 85.9000

A2*B2 83.9000

A3*B1 99.5000

A3*B2 78.7000

Example 3: Three-way Analysis of Variance

This example performs a three-way analysis of variance using data discussed by John
(1971, pp. 91 92). The responses are weights (in grams) of roots of carrots grown with
varying amounts of applied nitrogen (A), potassium (B), and phosphorus (C). Each cell of
the three-way layout has one response. Note that the ABC interactions sum of squares,
which is 186, is given incorrectly by John (1971, Table 5.2.) The three-way layout is given
in the following table:

A0

B0 B1 B2

C0 88.76 91.41 97.85
C1 87.45 98.27 95.85
C2 86.01 104.20 90.09
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A1

B0 B1 B2

C0 94.83 100.49 99.75
C1 84.57 97.20 112.30
C2 81.06 120.80 108.77

A2

B0 B1 B2

C0 99.90 100.23 104.50
C1 92.98 107.77 110.94
C2 94.72 118.39 102.87

import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

import com.imsl.math.PrintMatrixFormat;

public class ANOVAFactorialEx3 {
public static void main(String args[]) {

int nSubscripts = 3, i;

int[] nLevels = {3, 3, 3};
double[] y = {88.76, 87.45, 86.01, 91.41, 98.27, 104.2, 97.85, 95.85,

90.09, 94.83, 84.57, 81.06, 100.49, 97.2, 120.8, 99.75, 112.3, 108.77,

99.9, 92.98, 94.72, 100.23, 107.77, 118.39, 104.51, 110.94, 102.87};
String[] labels = {

"degrees of freedom for the model ",

"degrees of freedom for error ",

"total (corrected) degrees of freedom ",

"sum of squares for the model ",

"sum of squares for error ",

"total (corrected) sum of squares ",

"model mean square ",

"error mean square ",

"F-statistic ",

"p-value ",

"R-squared (in percent) ",

"Adjusted R-squared (in percent) ",

"est. standard deviation of the model error ",

"overall mean of y ",
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"coefficient of variation (in percent) "

};
String[] rlabels = {"A", "B", "C", "A*B", "A*C", "B*C"};
NumberFormat nf = NumberFormat.getInstance();

ANOVAFactorial af = new ANOVAFactorial(nSubscripts, nLevels, y);

af.setErrorIncludeType(ANOVAFactorial.POOL INTERACTIONS);

nf.setMinimumFractionDigits(6);

System.out.println("P-value = " + nf.format(af.compute()));

nf.setMaximumFractionDigits(4);

System.out.println("\n * * * Analysis of Variance * * *");

double[] anova = af.getANOVATable();

for (i = 0; i < anova.length; i++) {
System.out.println(labels[i] + " " + nf.format(anova[i]));

}

System.out.println("\n * * * Variation Due to the " +

"Model * * *");

System.out.println("Source\tDF\tSum of Squares\tMean Square" +

"\tProb. of Larger F");

double[][] te = af.getTestEffects();

for (i = 0; i < te.length; i++) {
StringBuffer sb = new StringBuffer(rlabels[i]);

int len = sb.length();

for(int j = 0; j < (8-len); j++) sb.append(’ ’);

sb.append(nf.format(te[i][0]));

len = sb.length();

for(int j = 0; j < (16-len); j++) sb.append(’ ’);

sb.append(nf.format(te[i][1]));

len = sb.length();

for(int j = 0; j < (32-len); j++) sb.append(’ ’);

sb.append(nf.format(te[i][2]));

len = sb.length();

for(int j = 0; j < (48-len); j++) sb.append(’ ’);

sb.append(nf.format(te[i][3]));
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System.out.println(sb.toString());

}
}

}

Output

P-value = 0.008299

* * * Analysis of Variance * * *

degrees of freedom for the model 18.0000

degrees of freedom for error 8.0000

total (corrected) degrees of freedom 26.0000

sum of squares for the model 2,395.7290

sum of squares for error 185.7763

total (corrected) sum of squares 2,581.5052

model mean square 133.0961

error mean square 23.2220

F-statistic 5.7315

p-value 0.0083

R-squared (in percent) 92.8036

Adjusted R-squared (in percent) 76.6116

est. standard deviation of the model error 4.8189

overall mean of y 98.9619

coefficient of variation (in percent) 4.8695

* * * Variation Due to the Model * * *

Source DF Sum of Squares Mean Square Prob. of Larger F

A 2.0000 488.3675 10.5152 0.0058

B 2.0000 1,090.6564 23.4832 0.0004

C 2.0000 49.1485 1.0582 0.3911

A*B 4.0000 142.5853 1.5350 0.2804

A*C 4.0000 32.3474 0.3482 0.8383

B*C 4.0000 592.6238 6.3800 0.0131

class MultipleComparisons

Performs Student-Newman-Keuls multiple comparisons test.

Class MultipleComparisons performs a multiple comparison analysis of means using the
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Student-Newman-Keuls method. The null hypothesis is equality of all possible ordered
subsets of a set of means. This null hypothesis is tested using the Studentized range of
each of the corresponding subsets of sample means. The method is discussed in many
elementary statistics texts, e.g., Kirk (1982, pp. 123-125).

Declaration

public class com.imsl.stat.MultipleComparisons
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Constructor

• MultipleComparisons
public MultipleComparisons( double[] means, int df, double stdError
)

– Description
Constructor for MultipleComparisons.

– Parameters
∗ means – A double array containing the means.
∗ df – An int scalar containing the degrees of freedom associated with

stdError.
∗ stdError – A double scalar containing the effective estimated standard

error of a mean. In fixed effects models, stdError equals the estimated
standard error of a mean. For example, in a one-way model
stdError =

√
s2/n where s2 is the estimate of σ2 and n is the number of

responses in a sample mean. In models with random components, use
stdError = sedif/

√
2 where sedif is the estimated standard error of the

difference of two means.

Methods

• compute
public final int[] compute( )

– Description
Performs Student-Newman-Keuls multiple comparisons test.
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– Returns – An int array , call it equalMeans indicating the size of the groups of
means declared to be equal. Value equalMeans[I] = J indicates the I-th
smallest mean and the next J-1 larger means are declared equal. Value
equalMeans[I] = 0 indicates no group of means starts with the I-th smallest
mean.

• setAlpha
public void setAlpha( double alpha )

– Description
Sets the significance level of the test

– Parameters
∗ alpha – A double scalar containing the significance level of test. alpha

must be in the interval [0.01, 0.10]. Default: alpha = 0.01

Example: Multiple Comparisons Test

A multiple-comparisons analysis is performed using data discussed by Kirk (1982, pp.
123-125). The results show that there are three groups of means with three separate sets
of values: (36.7, 40.3, 43.4), (40.3, 43.4, 47.2), and (43.4, 47.2, 48.7).
import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

public class MultipleComparisonsEx1 {
public static void main(String args[]) {

double[] means = {36.7, 48.7, 43.4, 47.2, 40.3};

/* Perform multiple comparisons tests */

MultipleComparisons mc = new MultipleComparisons(means, 45, 1.6970563);

new PrintMatrix("Size of Groups of Means").print(mc.compute());

}
}

Output

Size of Groups of Means

0

0 3

1 3

2 3
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3 0
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Chapter 15

Categorical and Discrete Data
Analysis

Classes
ContingencyTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .472

Performs a chi-squared analysis of a two-way contingency table.
CategoricalGenLinModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

Analyzes categorical data using logistic, probit, Poisson, and other linear
models.

Usage Notes

The ContingencyTable class computes many statistics of interest in a two-way table.
Statistics computed by this routine include the usual chi-squared statistics, measures of
association, Kappa, and many others.

The CategoricalGenLinModel class is concerned with generalized linear models in discrete
data. This routine may be used to compute estimates and associated statistics in probit,
logistic, minimum extreme value, Poisson, negative binomial (with known number of
successes), and logarithmic models. Classification variables as well as weights, frequencies,
and additive constants may be used so that quite general linear models can be fit.
Residuals, a measure of influence, the coefficient estimates, and other statistics are
returned for each model fit. When infinite parameter estimates are required, extended
maximum likelihood estimation may be used. Log-linear models may be fit through the
use of Poisson regression models. Results from Poisson regression models involving
structural and sampling zeros will be identical to the results obtained from the log-linear
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model but will be fit by a quasi-Newton algorithm rather than through iterative
proportional fitting.

class ContingencyTable

Performs a chi-squared analysis of a two-way contingency table.

Class ContingencyTable computes statistics associated with an r × c contingency table.
The function computes the chi-squared test of independence, expected values,
contributions to chi-squared, row and column marginal totals, some measures of
association, correlation, prediction, uncertainty, the McNemar test for symmetry, a test
for linear trend, the odds and the log odds ratio, and the kappa statistic (if the
appropriate optional arguments are selected).

Notation

Let xij denote the observed cell frequency in the ij cell of the table and n denote the total
count in the table. Let pij = pi•pj• denote the predicted cell probabilities under the null
hypothesis of independence, where pi• and pj• are the row and column marginal relative
frequencies. Next, compute the expected cell counts as eij = npij .

Also required in the following are auv and buv for u, v = 1, . . . , n. Let (rs, cs) denote the
row and column response of observation s. Then, auv = 1, 0, or -1, depending on whether
ru < rv, ru = rv, or ru > rv, respectively. The buv are similarly defined in terms of the cs
variables.

Chi-squared Statistic

For each cell in the table, the contribution to χ2 is given as (xij − eij)2/eij . The Pearson
chi-squared statistic (denoted χ2) is computed as the sum of the cell contributions to
chi-squared. It has (r - 1) (c - 1) degrees of freedom and tests the null hypothesis of
independence, i.e., H0 : pij = pi•pj•. The null hypothesis is rejected if the computed value
of χ2 is too large.

The maximum likelihood equivalent of χ2, G2 is computed as follows:

G2 = −2
∑
i,j

xij ln (xij/npij)

G2 is asymptotically equivalent to χ2 and tests the same hypothesis with the same degrees
of freedom.

Measures Related to Chi-squared (Phi, Contingency Coefficient, and Cramer’s
V)

There are three measures related to chi-squared that do not depend on sample size:
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phi, φ=
√
χ2/n

contingency coefficient, P=
√
χ2/ (n+ χ2)

Cramer′sV , V =
√
χ2/ (nmin (r, c))

Since these statistics do not depend on sample size and are large when the hypothesis of
independence is rejected, they can be thought of as measures of association and can be
compared across tables with different sized samples. While both P and V have a range
between 0.0 and 1.0, the upper bound of P is actually somewhat less than 1.0 for any
given table (see Kendall and Stuart 1979, p. 587). The significance of all three statistics is
the same as that of the χ2 statistic, return value from the getChiSquared method.

The distribution of the χ2 statistic in finite samples approximates a chi-squared
distribution. To compute the exact mean and standard deviation of the χ2 statistic,
Haldane (1939) uses the multinomial distribution with fixed table marginals. The exact
mean and standard deviation generally differ little from the mean and standard deviation
of the associated chi-squared distribution.

Standard Errors and p-values for Some Measures of Association

In Columns 1 through 4 of statistics, estimated standard errors and asymptotic p-values
are reported. Estimates of the standard errors are computed in two ways. The first
estimate, in Column 1 of the return matrix from the getStatistics method, is
asymptotically valid for any value of the statistic. The second estimate, in Column 2 of
the array, is only correct under the null hypothesis of no association. The z-scores in
Column 3 of statistics are computed using this second estimate of the standard errors.
The p-values in Column 4 are computed from this z-score. See Brown and Benedetti
(1977) for a discussion and formulas for the standard errors in Column 2.

Measures of Association for Ranked Rows and Columns

The measures of association, φ, P, and V, do not require any ordering of the row and
column categories. Class ContingencyTable also computes several measures of association
for tables in which the rows and column categories correspond to ranked observations.
Two of these tests, the product-moment correlation and the Spearman correlation, are
correlation coefficients computed using assigned scores for the row and column categories.
The cell indices are used for the product-moment correlation, while the average of the tied
ranks of the row and column marginals is used for the Spearman rank correlation. Other
scores are possible.

Gamma, Kendall’s τb, Stuart’s τc, and Somers’ D are measures of association that are
computed like a correlation coefficient in the numerator. In all these measures, the
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numerator is computed as the “covariance” between the auv variables and buv variables
defined above, i.e., as follows:

∑
u

∑
v

auvbuv

Recall that auv and buv can take values -1, 0, or 1. Since the product auvbuv = 1 only if
auv and buv are both 1 or are both -1, it is easy to show that this “covariance” is twice the
total number of agreements minus the number of disagreements, where a disagreement
occurs when auvbuv = −1.

Kendall’s τb is computed as the correlation between the auv variables and the buv variables
(see Kendall and Stuart 1979, p. 593). In a rectangular table (r 6= c), Kendall’s τb cannot
be 1.0 (if all marginal totals are positive). For this reason, Stuart suggested a modification
to the denominator of τ in which the denominator becomes the largest possible value of
the “covariance.” This maximizing value is approximately n2m/(m− 1), where m = min
(r, c). Stuart’s τc uses this approximate value in its denominator. For large
n, τc ≈ mτb/(m− 1).

Gamma can be motivated in a slightly different manner. Because the “covariance” of the
auv variables and the buv variables can be thought of as twice the number of agreements
minus the disagreements, 2(A - D), where A is the number of agreements and D is the
number of disagreements, Gamma is motivated as the probability of agreement minus the
probability of disagreement, given that either agreement or disagreement occurred. This is
shown as γ = (A−D)/(A+D).

Two definitions of Somers’ D are possible, one for rows and a second for columns. Somers’
D for rows can be thought of as the regression coefficient for predicting auv from buv.
Moreover, Somer’s D for rows is the probability of agreement minus the probability of
disagreement, given that the column variable, buv, is not 0. Somers’ D for columns is
defined in a similar manner.

A discussion of all of the measures of association in this section can be found in Kendall
and Stuart (1979, p. 592).

Measures of Prediction and Uncertainty

Optimal Prediction Coefficients: The measures in this section do not require any
ordering of the row or column variables. They are based entirely upon probabilities. Most
are discussed in Bishop et al. (1975, p. 385).

Consider predicting (or classifying) the column for a given row in the table. Under the
null hypothesis of independence, choose the column with the highest column marginal
probability for all rows. In this case, the probability of misclassification for any row is 1
minus this marginal probability. If independence is not assumed within each row, choose
the column with the highest row conditional probability. The probability of
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misclassification for the row becomes 1 minus this conditional probability.

Define the optimal prediction coefficient λc|r for predicting columns from rows as the
proportion of the probability of misclassification that is eliminated because the random
variables are not independent. It is estimated by

λc | r =
(1− p•m)− (1−

∑
i
pim)

1− p•m

where m is the index of the maximum estimated probability in the row (pim) or row
margin (p•m). A similar coefficient is defined for predicting the rows from the columns.
The symmetric version of the optimal prediction λ is obtained by summing the
numerators and denominators of λr|c and λc|r then dividing. Standard errors for these
coefficients are given in Bishop et al. (1975, p. 388).

A problem with the optimal prediction coefficients λ is that they vary with the marginal
probabilities. One way to correct this is to use row conditional probabilities. The optimal
prediction λ∗ coefficients are defined as the corresponding λ coefficients in which first the
row (or column) marginals are adjusted to the same number of observations. This yields

λ∗c | r =

∑
i

maxj pj | i −maxj(
∑
i
pj | i)

R−maxj(
∑
i
pj | i)

where i indexes the rows, j indexes the columns, and pj|i is the (estimated) probability of
column j given row i.

λ∗r | c

is similarly defined.

Goodman and Kruskal τ : A second kind of prediction measure attempts to explain the
proportion of the explained variation of the row (column) measure given the column (row)
measure. Define the total variation in the rows as follows:

n/2− (
∑

i

x2
i•)/ (2n)

Note that this is 1/(2n) times the sums of squares of the auv variables.

With this definition of variation, the Goodman and Kruskal τ coefficient for rows is
computed as the reduction of the total variation for rows accounted for by the columns,
divided by the total variation for the rows. To compute the reduction in the total
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variation of the rows accounted for by the columns, note that the total variation for the
rows within column j is defined as follows:

qj = x•j/2− (
∑

i

x2
ij)/ (2xi•)

The total variation for rows within columns is the sum of the qj variables. Consistent with
the usual methods in the analysis of variance, the reduction in the total variation is given
as the difference between the total variation for rows and the total variation for rows
within the columns.

Goodman and Kruskal’s τ for columns is similarly defined. See Bishop et al. (1975, p.
391) for the standard errors.

Uncertainty Coefficients: The uncertainty coefficient for rows is the increase in the
log-likelihood that is achieved by the most general model over the independence model,
divided by the marginal log-likelihood for the rows. This is given by the following
equation:

Ur|c =

∑
i,j
xij log (xi•x•j/nxij)∑
i
xi• log (xi•/n)

The uncertainty coefficient for columns is similarly defined. The symmetric uncertainty
coefficient contains the same numerator as Ur|c and Uc|rbut averages the denominators of
these two statistics. Standard errors for U are given in Brown (1983).

Kruskal-Wallis: The Kruskal-Wallis statistic for rows is a one-way
analysis-of-variance-type test that assumes the column variable is monotonically ordered.
It tests the null hypothesis that no row populations are identical, using average ranks for
the column variable. The Kruskal-Wallis statistic for columns is similarly defined.
Conover (1980) discusses the Kruskal-Wallis test.

Test for Linear Trend: When there are two rows, it is possible to test for a linear trend
in the row probabilities if it is assumed that the column variable is monotonically ordered.
In this test, the probabilities for row 1 are predicted by the column index using weighted
simple linear regression. This slope is given by

β̂ =

∑
j
x•j (x1j/x•j − x1•/n) (j − j̄)∑

j
x•j (j − j̄)2

where

476 • ContingencyTable JMSL



j̄ =
∑

j

x•jj/n

is the average column index. An asymptotic test that the slope is 0 may then be obtained
(in large samples) as the usual regression test of zero slope.

In two-column data, a similar test for a linear trend in the column probabilities is
computed. This test assumes that the rows are monotonically ordered.

Kappa: Kappa is a measure of agreement computed on square tables only. In the kappa
statistic, the rows and columns correspond to the responses of two judges. The judges
agree along the diagonal and disagree off the diagonal. Let

p0 =
∑

i

xii/n

denote the probability that the two judges agree, and let

pc =
∑

i

eii/n

denote the expected probability of agreement under the independence model. Kappa is
then given by (p0 − pc)/(1− pc).

McNemar Tests: The McNemar test is a test of symmetry in a square contingency
table. In other words, it is a test of the null hypothesis H0 : θij = θji. The multiple
degrees-of-freedom version of the McNemar test with r (r - 1)/2 degrees of freedom is
computed as follows: ∑

i<j

(xij − xji)
2

(xij + xji)

The single degree-of-freedom test assumes that the differences, xij − xji, are all in one
direction. The single degree-of-freedom test will be more powerful than the multiple
degrees-of-freedom test when this is the case. The test statistic is given as follows:

(∑
i<j

(xij − xji)

)2

∑
i<j

(xij + xji)

The exact probability can be computed by the binomial distribution.
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Declaration

public class com.imsl.stat.ContingencyTable
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Constructor

• ContingencyTable
public ContingencyTable( double[][] table )

– Description
Constructs and performs a chi-squared analysis of a two-way contingency table.

– Parameters
∗ table – A double matrix containing the observed counts in the

contingency table.

Methods

• getChiSquared
public double getChiSquared( )

– Description
Returns the Pearson chi-squared test statistic.

– Returns – A double scalar containing the Pearson chi-squared test statistic.

• getContingencyCoef
public double getContingencyCoef( )

– Description
Returns contingency coefficient.

– Returns – A double scalar containing the contingency coefficient based on
Pearson chi-squared statistic.

• getContributions
public double[][] getContributions( )

– Description
Returns the contributions to chi-squared for each cell in the table.
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– Returns – A double matrix of size (table.length+1) * (table[0].length+1)
containing the contributions to chi-squared for each cell in the table. The last
row and column contain the total contribution to chi-squared for that row or
column.

• getCramersV
public double getCramersV( )

– Description
Returns Cramer’s V.

– Returns – A double scalar containing the Cramer’s V based on Pearson
chi-squared statistic.

• getDegreesOfFreedom
public int getDegreesOfFreedom( )

– Description
Returns the degrees of freedom for the chi-squared tests associated with the
table.

– Returns – An int scalar containing the degrees of freedom for the chi-squared
tests associated with the table.

• getExactMean
public double getExactMean( )

– Description
Returns exact mean.

– Returns – A double scalar containing the exact mean based on Pearson’s
chi-square statistic.

• getExactStdev
public double getExactStdev( )

– Description
Returns exact standard deviation.

– Returns – A double scalar containing the exact standard deviation based on
Pearson’s chi-square statistic.

• getExpectedValues
public double[][] getExpectedValues( )

– Description
Returns the expected values of each cell in the table.
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– Returns – A double matrix of size (table.length+1) * (table[0].length+1)
containing the expected values of each cell in the table, under the null
hypothesis. The marginal totals are in the last row and column.

• getGSquared
public double getGSquared( )

– Description
Returns the likelihood ratio G2 (chi-squared).

– Returns – A double scalar containing the likelihood ratio G2 (chi-squared).

• getGSquaredP
public double getGSquaredP( )

– Description
Returns the probability of a larger G2 (chi-squared).

– Returns – A double scalar containing the probability of a larger G2

(chi-squared).

• getP
public double getP( )

– Description
Returns the Pearson chi-squared p-value for independence of rows and columns.

– Returns – A double scalar containing the Pearson chi-squared p-value for
independence of rows and columns.

• getPhi
public double getPhi( )

– Description
Returns phi.

– Returns – A double scalar containing the phi based on Pearson chi-squared
statistic.

• getStatistics
public double[][] getStatistics( )

– Description
Returns the statistics associated with this table.

– Returns – A double matrix of size 23 * 5 containing statistics associated with
this table. Each row corresponds to a statistic.
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Row Statistics
0 gamma
1 Kendall’s τb
2 Stuart’s τc
3 Somers’ D for rows (given columns)
4 Somers’ D for columns (given rows)
5 product moment correlation
6 Spearman rank correlation
7 Goodman and Kruskal τ for rows

(given columns)
8 Goodman and Kruskal τ for columns

(given rows)
9 uncertainty coefficient U (symmetric)
10 uncertainty Ur|c (rows)
11 uncertainty Uc|r (columns)
12 optimal prediction λ (symmetric)
13 optimal prediction λr|c (rows)
14 optimal prediction λc|r (columns)
15 optimal prediction λ∗r|c (rows)
16 optimal prediction λ∗c|r (columns)
17 test for linear trend in row prob-

abilities if table.length = 2. If
table.length is not 2, a test for lin-
ear trend in column probabilities if ta-
ble[0].length = 2.

18 Kruskal-Wallis test for no row effect
19 Kruskal-Wallis test for no column ef-

fect
20 kappa (square tables only)
21 McNemar test of symmetry (square

tables only)
22 McNemar one degree of freedom test

of symmetry (square tables only)

If a statistic cannot be computed, or if some value is not relevant for the
computed statistic, the entry is NaN (Not a Number).
The columns are as follows:
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Column Value
0 estimated statistic
1 standard error for any parameter

value
2 standard error under the null hypoth-

esis
3 t value for testing the null hypothesis
4 p-value of the test in column 3
In the McNemar tests, column 0 contains the statistic, column 1 contains the

chi-squared degrees of freedom, column 3 contains the exact p-value (1 degree
of freedom only), and column 4 contains the chi-squared asymptotic p-value.
The Kruskal-Wallis test is the same except no exact p-value is computed.

Example 1: Contingency Table

The following example is taken from Kendall and Stuart (1979) and involves the distance
vision in the right and left eyes.

import com.imsl.stat.*;

public class ContingencyTableEx1 {
public static void main(String args[]) {

double[][] table = {
{821, 112, 85, 35},
{116, 494, 145, 27},
{72, 151, 583, 87},
{43, 34, 106, 331}

};
ContingencyTable ct = new ContingencyTable(table);

System.out.println("P-value = " + ct.getP());

}
}

Output

P-value = 0.0
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Example 2: Contingency Table

The following example, which illustrates the use of Kappa and McNemar tests, uses the
same distance vision data as in Example 1.

import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.*;

public class ContingencyTableEx2 {
public static void main(String args[]) {

double[][] table = {
{821.0, 112.0, 85.0, 35.0},
{116.0, 494.0, 145.0, 27.0},
{72.0, 151.0, 583.0, 87.0},
{43.0, 34.0, 106.0, 331.0}

};
String[] rlabels = {"Gamma", "Tau B", "Tau C", "D-Row", "D-Column",

"Correlation", "Spearman", "GK tau rows", "GK tau cols.", "U - sym.",

"U - rows", "U - cols.", "Lambda-sym.", "Lambda-row", "Lambda-col.",

"l-star-rows", "l-star-col.", "Lin. trend", "Kruskal row",

"Kruskal col.", "Kappa", "McNemar", "McNemar df=1"};
ContingencyTable ct = new ContingencyTable(table);

NumberFormat nf = NumberFormat.getInstance();

nf.setMinimumFractionDigits(4);

System.out.println("Pearson chi-squared statistic = " +

nf.format(ct.getChiSquared()));

System.out.println("p-value for Pearson chi-squared = " +

nf.format(ct.getP()));

System.out.println("degrees of freedom = " + ct.getDegreesOfFreedom());

System.out.println("G-squared statistic = " +

nf.format(ct.getGSquared()));

System.out.println("p-value for G-squared = " +

nf.format(ct.getGSquaredP()));

System.out.println("degrees of freedom = " + ct.getDegreesOfFreedom());

nf.setMaximumFractionDigits(2);

nf.setMinimumFractionDigits(2);

PrintMatrix pm = new PrintMatrix("\n* * * Table Values * * *");

PrintMatrixFormat pmf = new PrintMatrixFormat();

pmf.setNumberFormat(nf);
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pm.print(pmf, table);

pm.setTitle("* * * Expected Values * * *");

pm.print(pmf, ct.getExpectedValues());

nf.setMinimumFractionDigits(4);

pmf.setNumberFormat(nf);

pm.setTitle("* * * Contributions to Chi-squared* * *");

pm.print(pmf, ct.getContributions());

nf.setMinimumFractionDigits(4);

System.out.println("* * * Chi-square Statistics * * *");

System.out.println("Exact mean = " + nf.format(ct.getExactMean()));

System.out.println("Exact standard deviation = " +

nf.format(ct.getExactStdev()));

System.out.println("Phi = " + nf.format(ct.getPhi()));

System.out.println("P = " + nf.format(ct.getContingencyCoef()));

System.out.println("Cramer’s V = " + nf.format(ct.getCramersV()));

System.out.println("\n stat. std. err. " +

"std. err.(Ho) t-value(Ho) p-value");

double[][] stat = ct.getStatistics();

for (int i = 0; i < stat.length; i++) {
StringBuffer sb = new StringBuffer(rlabels[i]);

int len = sb.length();

for(int j = 0; j < (13-len); j++) sb.append(’ ’);

sb.append(nf.format(stat[i][0]));

len = sb.length();

for(int j = 0; j < (24-len); j++) sb.append(’ ’);

sb.append(nf.format(stat[i][1]));

len = sb.length();

for(int j = 0; j < (36-len); j++) sb.append(’ ’);

sb.append(nf.format(stat[i][2]));

len = sb.length();

for(int j = 0; j < (50-len); j++) sb.append(’ ’);

sb.append(nf.format(stat[i][3]));

len = sb.length();
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for(int j = 0; j < (63-len); j++) sb.append(’ ’);

sb.append(nf.format(stat[i][4]));

System.out.println(sb.toString());

}
}

}

Output

Pearson chi-squared statistic = 3,304.3684

p-value for Pearson chi-squared = 0.0000

degrees of freedom = 9

G-squared statistic = 2,781.0190

p-value for G-squared = 0.0000

degrees of freedom = 9

* * * Table Values * * *

0 1 2 3

0 821.00 112.00 85.00 35.00

1 116.00 494.00 145.00 27.00

2 72.00 151.00 583.00 87.00

3 43.00 34.00 106.00 331.00

* * * Expected Values * * *

0 1 2 3 4

0 341.69 256.92 298.49 155.90 1,053.00

1 253.75 190.80 221.67 115.78 782.00

2 289.77 217.88 253.14 132.21 893.00

3 166.79 125.41 145.70 76.10 514.00

4 1,052.00 791.00 919.00 480.00 3,242.00

* * * Contributions to Chi-squared* * *

0 1 2 3 4

0 672.3626 81.7416 152.6959 93.7612 1,000.5613

1 74.7802 481.8351 26.5189 68.0768 651.2109

2 163.6605 20.5287 429.8489 15.4625 629.5006

3 91.8743 66.6263 10.8183 853.7768 1,023.0957

4 1,002.6776 650.7317 619.8819 1,031.0772 3,304.3684

* * * Chi-square Statistics * * *
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Exact mean = 9.0028

Exact standard deviation = 4.2402

Phi = 1.0096

P = 0.7105

Cramer’s V = 0.5829

stat. std. err. std. err.(Ho) t-value(Ho) p-value

Gamma 0.7757 0.0123 0.0149 52.1897 0.0000

Tau B 0.6429 0.0122 0.0123 52.1897 0.0000

Tau C 0.6293 0.0121 ? 52.1897 0.0000

D-Row 0.6418 0.0122 0.0123 52.1897 0.0000

D-Column 0.6439 0.0122 0.0123 52.1897 0.0000

Correlation 0.6926 0.0128 0.0172 40.2669 0.0000

Spearman 0.6939 0.0127 0.0127 54.6614 0.0000

GK tau rows 0.3420 0.0123 ? ? ?

GK tau cols. 0.3430 0.0122 ? ? ?

U - sym. 0.3171 0.0110 ? ? ?

U - rows 0.3178 0.0110 ? ? ?

U - cols. 0.3164 0.0110 ? ? ?

Lambda-sym. 0.5373 0.0124 ? ? ?

Lambda-row 0.5374 0.0126 ? ? ?

Lambda-col. 0.5372 0.0126 ? ? ?

l-star-rows 0.5506 0.0136 ? ? ?

l-star-col. 0.5636 0.0127 ? ? ?

Lin. trend ? ? ? ? ?

Kruskal row 1,561.4859 3.0000 ? ? 0.0000

Kruskal col. 1,563.0303 3.0000 ? ? 0.0000

Kappa 0.5744 0.0111 0.0106 54.3583 0.0000

McNemar 4.7625 6.0000 ? ? 0.5746

McNemar df=1 0.9487 1.0000 ? 0.3459 0.3301

class CategoricalGenLinModel

Analyzes categorical data using logistic, probit, Poisson, and other linear models.

Reweighted least squares is used to compute (extended) maximum likelihood estimates in
some generalized linear models involving categorized data. One of several models,
including probit, logistic, Poisson, logarithmic, and negative binomial models, may be fit
for input point or interval observations. (In the usual case, only point observations are
observed.)
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Let
γi = wi + xT

i β = wi + ηi

be the linear response where xi is a design column vector obtained from a row of x, β is
the column vector of coefficients to be estimated, and wi is a fixed parameter that may be
input in x. When some of the γi are infinite at the supremum of the likelihood, then
extended maximum likelihood estimates are computed. Extended maximum likelihood are
computed as the finite (but nonunique) estimates β̂ that optimize the likelihood
containing only the observations with finite γ̂i. These estimates, when combined with the
set of indices of the observations such that γ̂i is infinite at the supremum of the likelihood,
are called extended maximum estimates. When none of the optimal γ̂i are infinite,
extended maximum likelihood estimates are identical to maximum likelihood estimates.
Extended maximum likelihood estimation is discussed in more detail by Clarkson and
Jennrich (1991). In CategoricalGenLinModel, observations with potentially infinite

η̂i = xT
i β̂

are detected and removed from the likelihood if infin = 0. See below.

The models available in CategoricalGenLinModel are:
Model Name Parameterization Response PDF
MODEL0 (Poisson) λ = N × ew+η f(y) = λye−λ/y!
MODEL1 (Negative Bino-
mial)

θ = ew+η

1+ew+η f(y) =(
S + y − 1

y − 1

)
θS(1− θ)y

MODEL2 (Logarithmic) θ = ew+η

1+ew+η f(y) = (1− θ)y/(y ln θ)

MODEL3 (Logistic) θ = ew+η

1+ew+η f(y) =
(
N
y

)
θy(1− θ)N−y

MODEL4 (Probit) θ = Φ(w + η) f(y) =
(
N
y

)
θy(1− θ)N−y

MODEL5 (Log-log) θ = 1− e−ew+η
f(y) =

(
N
y

)
θy(1− θ)N−y

Here Φ denotes the cumulative normal distribution, N and S are known parameters
specified for each observation via column ipar of x, and w is an optional fixed parameter
specified for each observation via column ifix of x. (By default N is taken to be 1 for
model = 0, 3, 4 and 5 and S is taken to be 1 for model = 1. By default w is taken to be 0.)
Since the log-log model (model = 5) probabilities are not symmetric with respect to 0.5,
quantitatively, as well as qualitatively, different models result when the definitions of
“success” and “failure” are interchanged in this distribution. In this model and all other
models involving θ, θ is taken to be the probability of a “success.”

Note that each row vector in the data matrix can represent a single observation; or,
through the use of column ifrq of the matrix x, each vector can represent several
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observations. Also note that classification variables and their products are easily
incorporated into the models via the usual regression-type specifications.

Computational Details

For interval observations, the probability of the observation is computed by summing the
probability distribution function over the range of values in the observation interval. For
right-interval observations, Pr(Y ≥ y) is computed as a sum based upon the equality
Pr(Y ≥ y) = 1− Pr(Y < y). Derivatives are computed similarly. CategoricalGenLinModel

allows three types of interval observations. In full interval observations, both the lower
and the upper endpoints of the interval must be specified. For right-interval observations,
only the lower endpoint need be given while for left-interval observations, only the upper
endpoint is given.

The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

2. Estimates of the means of the “independent” or design variables are computed. The
frequency of the observation in all but binomial distribution model is taken from
column ifrq of the data matrix x. In binomial distribution models, the frequency is
taken as the product of n = x[i][ipar] and x[i][ifrq]. In all cases these values
default to 1. Means are computed as

x̄ =
Σifixi

Σifi

3. If init = 0, initial estimates of the coefficients are obtained (based upon the
observation intervals) as multiple regression estimates relating transformed
observation probabilities to the observation design vector. For example, in the
binomial distribution models, θ for point observations may be estimated as

θ̂ = x[i][irt]/x[i][ipar]

and, when model = 3, the linear relationship is given by(
ln(θ̂/(1− θ̂)) ≈ xβ

)
while if model = 4, (

Φ−1(θ̂) = xβ
)

For bounded interval observations, the midpoint of the interval is used for
x[i][irt]. Right-interval observations are not used in obtaining initial estimates
when the distribution has unbounded support (since the midpoint of the interval is
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not defined). When computing initial estimates, standard modifications are made to
prevent illegal operations such as division by zero.

Regression estimates are obtained at this point, as well as later, by use of linear
regression.

4. Newton-Raphson iteration for the maximum likelihood estimates is implemented via
iteratively reweighted least squares. Let

Ψ(xT
i β)

denote the log of the probability of the i-th observation for coefficients β. In the
least-squares model, the weight of the i-th observation is taken as the absolute value
of the second derivative of

Ψ(xT
i β)

with respect to
γi = xT

i β

(times the frequency of the observation), and the dependent variable is taken as the
first derivative Ψ with respect to γi, divided by the square root of the weight times
the frequency. The Newton step is given by

∆β =

(∑
i

|Ψ′′
(γi)|xix

T
i

)−1∑
i

Ψ
′
(γi)xi

where all derivatives are evaluated at the current estimate of γ, and βn+1 = βn−∆β.
This step is computed as the estimated regression coefficients in the least-squares
model. Step halving is used when necessary to ensure a decrease in the criterion.

5. Convergence is assumed when the maximum relative change in any coefficient
update from one iteration to the next is less than eps or when the relative change in
the log-likelihood from one iteration to the next is less than eps/100. Convergence is
also assumed after maxIterations or when step halving leads to a step size of less
than .0001 with no increase in the log-likelihood.

6. For interval observations, the contribution to the log-likelihood is the log of the sum
of the probabilities of each possible outcome in the interval. Because the
distributions are discrete, the sum may involve many terms. The user should be
aware that data with wide intervals can lead to expensive (in terms of computer
time) computations.

7. If setInfiniteEstimateMethod set to 0, then the methods of Clarkson and Jennrich
(1991) are used to check for the existence of infinite estimates in

ηi = xT
i β

As an example of a situation in which infinite estimates can occur, suppose that
observation j is right censored with tj > 15 in a logistic model. If design matrix x is
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is such that xjm = 1 and xim = 0 for all i 6= j, then the optimal estimate of βm

occurs at
β̂m =∞

leading to an infinite estimate of both βm and ηj . In CategoricalGenLinModel, such
estimates may be “computed.”

In all models fit by CategoricalGenLinModel , infinite estimates can only occur when
the optimal estimated probability associated with the left- or right-censored
observation is 1. If setInfiniteEstimateMethod set to 0, left- or right- censored
observations that have estimated probability greater than 0.995 at some point during
the iterations are excluded from the log-likelihood, and the iterations proceed with a
log-likelihood based upon the remaining observations. This allows convergence of
the algorithm when the maximum relative change in the estimated coefficients is
small and also allows for the determination of observations with infinite

ηi = xT
i β

At convergence, linear programming is used to ensure that the eliminated
observations have infinite ηi. If some (or all) of the removed observations should not
have been removed (because their estimated ηi′s must be finite), then the iterations
are restarted with a log-likelihood based upon the finite ηi observations. See
Clarkson and Jennrich (1991) for more details.

When setInfiniteEstimateMethod is set to 1, no observations are eliminated during
the iterations. In this case, when infinite estimates occur, some (or all) of the
coefficient estimates β̂ will become large, and it is likely that the Hessian will
become (numerically) singular prior to convergence.

When infinite estimates for the η̂i are detected, linear regression (see Chapter 2,
Regression;) is used at the convergence of the algorithm to obtain unique estimates
β̂. This is accomplished by regressing the optimal η̂i or the observations with finite η
against xβ, yielding a unique β̂ (by setting coefficients β̂ that are linearly related to
previous coefficients in the model to zero). All of the final statistics relating to β̂ are
based upon these estimates.

8. Residuals are computed according to methods discussed by Pregibon (1981). Let
`i(γi) denote the log-likelihood of the i-th observation evaluated at γi. Then, the
standardized residual is computed as

ri =
`
′
i(γ̂i)√
`
′′
i (γ̂i)

where γ̂i is the value of γi when evaluated at the optimal β̂ and the derivatives here
(and only here) are with respect to γ rather than with respect to β. The
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denominator of this expression is used as the “standard error of the residual” while
the numerator is the “raw” residual.

Following Cook and Weisberg (1982), we take the influence of the i-th observation to
be

`
′
i(γ̂i)T `

′′
(γ̂)−1`

′
(γ̂i)

This quantity is a one-step approximation to the change in the estimates when the
i-th observation is deleted. Here, the partial derivatives are with respect to β.

Programming Notes

1. Classification variables are specified via setClassificationVariableColumn .
Indicator or dummy variables are created for the classification variables.

2. To enhance precision “centering” of covariates is performed if setModelIntercept is
set to 1 and (number of observations) - (number of rows in x missing one or more
values) >1. In doing so, the sample means of the design variables are subtracted
from each observation prior to its inclusion in the model. On convergence the
intercept, its variance and its covariance with the remaining estimates are
transformed to the uncentered estimate values.

3. Two methods for specifying a binomial distribution model are possible. In the first
method, x[i][ifrq] contains the frequency of the observation while x[i][irt] is 0
or 1 depending upon whether the observation is a success or failure. In this case, N
= x[i][ipar] is always 1. The model is treated as repeated Bernoulli trials, and
interval observations are not possible.

A second method for specifying binomial models is to use x[i][irt] to represent the
number of successes in the x[i][ipar] trials. In this case, x[i][ifrq] will usually be 1,
but it may be greater than 1, in which case interval observations are possible.

Note that the solve method must be called prior to calling the “get” member functions,
otherwise a null is returned.

Declaration

public class com.imsl.stat.CategoricalGenLinModel
extends java.lang.Object

Inner Classes

class CategoricalGenLinModel.ClassificationVariableException

The ClassificationVariable vector has not been initialized.
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Declaration

public static class com.imsl.stat.CategoricalGenLinModel.ClassificationVariableException
extends com.imsl.IMSLException (page 1240)

Constructor

• CategoricalGenLinModel.ClassificationVariableException
public CategoricalGenLinModel.ClassificationVariableException( )

– Description
Constructs a ClassificationVariableException.

class CategoricalGenLinModel.ClassificationVariableLimitException

The Classification Variable limit set by the user through setUpperBound has been exceeded.

Declaration

public static class com.imsl.stat.CategoricalGenLinModel.ClassificationVariableLimitException
extends com.imsl.IMSLException (page 1240)

Constructor

• CategoricalGenLinModel.ClassificationVariableLimitException
public CategoricalGenLinModel.ClassificationVariableLimitException(
int maxcl )

– Description
Constructs a ClassificationVariableLimitException.

– Parameters
∗ maxcl – An int which specifies the upper bound.

class CategoricalGenLinModel.ClassificationVariableValueException

The number of distinct values for each Classification Variable must be greater than 1.
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Declaration

public static class com.imsl.stat.CategoricalGenLinModel.ClassificationVariableValueException
extends com.imsl.IMSLException (page 1240)

Constructor

• CategoricalGenLinModel.ClassificationVariableValueException
public CategoricalGenLinModel.ClassificationVariableValueException(
int index, int value )

– Description
Constructs a ClassificationVariableValueException.

– Parameters
∗ index – An int which specifies the index of a classification variable.
∗ value – An int which specifies the number of distinct values that can be

taken by this classification variable.

class CategoricalGenLinModel.DeleteObservationsException

The number of observations to be deleted (set by setObservationMax) has grown too large.

Declaration

public static class com.imsl.stat.CategoricalGenLinModel.DeleteObservationsException
extends com.imsl.IMSLException (page 1240)

Constructor

• CategoricalGenLinModel.DeleteObservationsException
public CategoricalGenLinModel.DeleteObservationsException( int
nmax )

– Description
Constructs a DeleteObservationsException.

– Parameters
∗ nmax – An int which specifies the maximum number of observations that

can be handled in the linear programming as set by setObservationMax.
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Fields

• public static final int MODEL0

– Indicates an exponential function is used to model the distribution parameter.
The distribution of the response variable is Poisson. The lower bound of the
response variable is 0.

• public static final int MODEL1

– Indicates a logistic function is used to model the distribution parameter. The
distribution of the response variable is negative Binomial. The lower bound of
the response variable is 0.

• public static final int MODEL2

– Indicates a logistic function is used to model the distribution parameter. The
distribution of the response variable is Logarithmic. The lower bound of the
response variable is 1.

• public static final int MODEL3

– Indicates a logistic function is used to model the distribution parameter. The
distribution of the response variable is Binomial. The lower bound of the
response variable is 0.

• public static final int MODEL4

– Indicates a probit function is used to model the distribution parameter. The
distribution of the response variable is Binomial. The lower bound of the
response variable is 0.

• public static final int MODEL5

– Indicates a log-log function is used to model the distribution parameter. The
distribution of the response variable is Binomial. The lower bound of the
response variable is 0.

Constructor

• CategoricalGenLinModel
public CategoricalGenLinModel( double[][] x, int model )

– Description
Constructs a new CategoricalGenLinModel.
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– Parameters
∗ x – A double input matrix containing the data where the number of rows

in the matrix is equal to the number of observations.
∗ model – An int scalar which specifies the distribution of the response

variable and the function used to model the distribution parameter. Use
one of the class members from the following table. The lower bound given
in the table is the minimum possible value of the response variable:
Model Distribution Function Lower-bound
0 Poisson Exponential 0
1 Negative Bino-

mial
Logistic 0

2 Logarithmic Logistic 1
3 Binomial Logistic 0
4 Binomial Probit 0
5 Binomial Log-log 0
Let γ be the dot product of a row in the design matrix with the

parameters (plus the fixed parameter, if used). Then, the functions used to
model the distribution parameter are given by:
Name Function
Exponential eγ

Logistic eγ/(1 + eγ)
Probit Φ(γ) (where Φ is the normal cdf)
Log-log 1− e−γ

Methods

• getCaseAnalysis
public double[][] getCaseAnalysis( )

– Description
Returns the case analysis.

– Returns – A double matrix containing the case analysis or null if solve has
not been called. The matrix is nobs× 5 where nobs is the number of
observations. The matrix contains:
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Column Statistic
0 Prediction.
1 The residual.
2 The estimated standard error of the

residual.
3 The estimated influence of the obser-

vation.
4 The standardized residual.
Case studies are computed for all observations except where missing values

prevent their computation. The prediction in column 0 depends upon the
model used as follows:
Model Prediction
0 The predicted mean for the observa-

tion.
1-4 The probability of a success on a sin-

gle trial.

• getClassificationVariableCounts
public int[] getClassificationVariableCounts( ) throws
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableException

– Description
Returns the number of values taken by each classification variable.

– Returns – An int array of length nclvar containing the number of values
taken by each classification variable where nclvar is the number of classification
variables or null if solve has not been called.

– Throws
∗
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableException
– is thrown when the number of values taken by each classification variable
has been set by the user to be less than or equal to 1

• getClassificationVariableValues
public double[] getClassificationVariableValues( ) throws
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableException

– Description
Returns the distinct values of the classification variables in ascending order.

– Returns – A double array of length
∑nclvar

k=0 nclval[k] containing the distinct
values of the classification variables in ascending order where nclvar is the
number of classification variables and nclval[i] is the number of values taken by
the i-th classification variable. A null is returned if solve has not been called
prior to calling this method.
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– Throws
∗
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableException
– is thrown when the number of values taken by each classification variable
has been set by the user to be less than or equal to 1

• getCovarianceMatrix
public double[][] getCovarianceMatrix( )

– Description
Returns the estimated asymptotic covariance matrix of the coefficients.

– Returns – A double matrix containing the estimated asymptotic covariance
matrix of the coefficients or null if solve has not been called. The covariance
matrix is nCoef by nCoef where nCoef is the number of coefficients in the model.

• getDesignVariableMeans
public double[] getDesignVariableMeans( )

– Description
Returns the means of the design variables.

– Returns – A double array of length nCoef containing the means of the design
variables where nCoef is the number of coefficients in the model or null if solve
has not been called.

• getExtendedLikelihoodObservations
public int[] getExtendedLikelihoodObservations( )

– Description
Returns a vector indicating which observations are included in the extended
likelihood.

– Returns – An int array of length nobs indicating which observations are
included in the extended likelihood where nobs is the number of observations.
The values within the array are interpreted as:
Value Status of observation
0 Observation i is in the likelihood.
1 Observation i cannot be in the likeli-

hood because it contains at least one
missing value in x.

2 Observation i is not in the likelihood.
Its estimated parameter is infinite.

A null is returned if solve has not been called prior to calling this method.
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• getHessian
public double[][] getHessian( ) throws
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableException,
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableLimitException,
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableValueException,
com.imsl.stat.CategoricalGenLinModel.DeleteObservationsException

– Description
Returns the Hessian computed at the initial parameter estimates.

– Returns – A double matrix containing the Hessian computed at the input
parameter estimates. The Hessian matrix is nCoef by nCoef where nCoef is the
number of coefficients in the model. This member function will call solve to
get the Hessian if the Hessian has not already been computed.

– Throws
∗
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableException
– is thrown when the number of values taken by each classification variable
has been set by the user to be less than or equal to 1
∗
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableLimitException
– is thrown when the sum of the number of distinct values taken on by
each classification variable exceeds the maximum allowed, maxcl
∗
com.imsl.stat.CategoricalGenLinModel.DeleteObservationsException
– is thrown if the number of observations to be deleted has grown too large

• getLastParameterUpdates
public double[] getLastParameterUpdates( )

– Description
Returns the last parameter updates (excluding step halvings).

– Returns – A double array of length nCoef containing the last parameter
updates (excluding step halvings) or null if solve has not been called.

• getNRowsMissing
public int getNRowsMissing( )

– Description
Returns the number of rows of data in x that contain missing values in one or
more specific columns of x.

– Returns – An int scalar representing the number of rows of data in x that
contain missing values in one or more specific columns of x or null if solve has
not been called. The columns of x included in the count are the columns
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containing the upper or lower endpoints of full interval, left interval, or right
interval observations. Also included are the columns containing the frequency
responses, fixed parameters, optional distribution parameters, and interval type
for each observation. Columns containing classification variables and columns
associated with each effect in the model are also included.

• getOptimizedCriterion
public double getOptimizedCriterion( )

– Description
Returns the optimized criterion.

– Returns – A double scalar representing the optimized criterion or null if solve
has not been called. The criterion to be maximized is a constant plus the
log-likelihood.

• getParameters
public double[][] getParameters( )

– Description
Returns the parameter estimates and associated statistics.

– Returns – An nCoef row by 4 column double matrix containing the parameter
estimates and associated statistics or null if solve has not been called. Here,
nCoef is the number of coefficients in the model. The statistics returned are as
follows:
Column Statistic
0 Coefficient estimate.
1 Estimated standard deviation of the

estimated coefficient.
2 Asymptotic normal score for testing

that the coefficient is zero.
3 ρ - value associated with the normal

score in column 2.

• getProduct
public double[] getProduct( ) throws
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableException,
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableLimitException,
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableValueException,
com.imsl.stat.CategoricalGenLinModel.DeleteObservationsException

– Description
Returns the inverse of the Hessian times the gradient vector computed at the
input parameter estimates.
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– Returns – A double array of length nCoef containing the inverse of the
Hessian times the gradient vector computed at the input parameter estimates.
nCoef is the number of coefficients in the model. This member function will call
solve to get the product if the product has not already been computed.

– Throws
∗
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableException
– is thrown when the number of values taken by each classification variable
has been set by the user to be less than or equal to 1
∗
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableLimitException
– is thrown when the sum of the number of distinct values taken on by
each classification variable exceeds the maximum allowed, maxcl
∗
com.imsl.stat.CategoricalGenLinModel.DeleteObservationsException
– is thrown if the number of observations to be deleted has grown too large

• setCensorColumn
public void setCensorColumn( int icen )

– Description
Sets the column number in x which contains the interval type for each
observation.

– Parameters
∗ icen – An int scalar which indicates the column number x which contains

the interval type code for each observation. The valid codes are interpreted
as:
x[i][icen] Censoring
0 Point observation. The response is

unique and is given by x[i][irt].
1 Right interval. The response is

greater than or equal to x[i][irt]

and less than or equal to the upper
bound, if any, of the distribution.

2 Left interval. The response is less
than or equal to x[i][ilt] and
greater than or equal to the lower
bound of the distribution.

3 Full interval. The response is
greater than or equal to x[i][irt]

but less than or equal to x[i][ilt].

If this member function is not called a censoring code of 0 is assumed.
– Throws
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∗ java.lang.IllegalArgumentException – is thrown when icen is less than
0 or greater than or equal to the number of columns of x

• setClassificationVariableColumn
public void setClassificationVariableColumn( int[] indcl )

– Description
Initializes an index vector to contain the column numbers in x that are
classification variables.

– Parameters
∗ indcl – An int vector which contains the column numbers in x that are

classification variables. By default this vector is not referenced.
– Throws
∗ java.lang.IllegalArgumentException – is thrown when an element of

indcl is less than 0 or greater than or equal to the number of columns of x

• setConvergenceTolerance
public void setConvergenceTolerance( double eps )

– Description
Set the convergence criterion.

– Parameters
∗ eps – A double scalar specifying the convergence criterion. Convergence is

assumed when the maximum relative change in any coefficient estimate is
less than eps from one iteration to the next or when the relative change in
the log-likelihood, getOptimizedCriterion, from one iteration to the next is
less than eps/100. eps must be greater than 0. If this member function is
not called, eps = .001 is assumed.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if eps is or equal to 0

• setEffects
public void setEffects( int[] indef, int[] nvef )

– Description
Initializes an index vector to contain the column numbers in x associated with
each effect.

– Parameters
∗ indef – An int vector of length

∑nef−1
k=0 nvef[k] where nef is the number of

effects in the model. indef contains the column numbers in x that are
associated with each effect. Member function setEffects(int [], nvef [])

sets the number of variables associated with each effect in the model. The
first nvef[0] elements of indef give the column numbers of the variables in
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the first effect. The next nvef[0] elements give the column numbers of the
variables in the second effect, etc. By default this vector is not referenced.
∗ nvef – An int vector of length nef where nef is the number of effects in the

model. nvef contains the number of variables associated with each effect in
the model. By default this vector is not referenced.

– Throws
∗ java.lang.IllegalArgumentException – is thrown when an element of

indef is less than 0 or greater than or equal to the number of columns of x
or if an element of nvef is less than or equal to 0

• setExtendedLikelihoodObservations
public void setExtendedLikelihoodObservations( int[] iadds )

– Description
Initializes a vector indicating which observations are to be included in the
extended likelihood.

– Parameters
∗ iadds – An int array of length nobs indicating which observations are

included in the extended likelihood where nobs is the number of
observations. The values within the array are interpreted as:
Value Status of observation
0 Observation i is in the likelihood.
1 Observation i cannot be in the like-

lihood because it contains at least
one missing value in x .

2 Observation i is not in the likeli-
hood. Its estimated parameter is in-
finite.

If this member function is not called, iadds is set to all zeroes.
– Throws
∗ java.lang.IllegalArgumentException – is thrown when an element of

iadds is not in the range [0,2]

• setFixedParameterColumn
public void setFixedParameterColumn( int ifix )

– Description
Sets the column number in x that contains a fixed parameter for each
observation that is added to the linear response prior to computing the model
parameter.

– Parameters
∗ ifix – An int scalar which indicates the column number in x that contains

a fixed parameter for each observation that is added to the linear response
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prior to computing the model parameter. The “fixed” parameter allows
one to test hypothesis about the parameters via the log-likelihoods. By
default the fixed parameter is assumed to be zero.

– Throws
∗ java.lang.IllegalArgumentException – is thrown when ifix is less than

0 or greater than or equal to the number of columns of x

• setFrequencyColumn
public void setFrequencyColumn( int ifrq )

– Description
Sets the column number in x that contains the frequency of response for each
observation.

– Parameters
∗ ifrq – An int scalar which indicates the column number in x that contains

the frequency of response for each observation. By default a frequency of 1
for each observation is assumed.

– Throws
∗ java.lang.IllegalArgumentException – is thrown when ifrq is less than

0 or greater than or equal to the number of columns of x

• setInfiniteEstimateMethod
public void setInfiniteEstimateMethod( int infin )

– Description
Sets the method to be used for handling infinite estimates.

– Parameters
∗ infin – An int scalar which indicates the method to be used for handling

infinite estimates. The method value is interpreted as follows:
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infin Method
0 Remove a right or left-censored

observation from the log-likelihood
whenever the probability of the ob-
servation exceeds 0.995. At conver-
gence, use linear programming to
check that all removed observations
actually have an estimated linear re-
sponse that is infinite. Set iadds[i]

for observation i to 2 if the linear
response is infinite. If not all re-
moved observations have infinite lin-
ear response, recompute the esti-
mates based upon the observations
with estimated linear response that
is finite. This option is valid only
for censoring codes 1 and 2.

1 Iterate without checking for infinite
estimates.

By default infin = 1.
– Throws
∗ java.lang.IllegalArgumentException – is thrown when infin is less

than 0 or greater than 1

• setInitialEstimates
public void setInitialEstimates( int init, double[] estimates )

– Description
Sets the initial parameter estimates option.

– Parameters
∗ init – An input int indicating the desired initialization method for the

initial estimates of the parameters. If this method is not called, init is set
to 0.
init Action
0 Unweighted linear regression is used

to obtain initial estimates.
1 The nCoef, number of coefficients,

elements of estimates contain initial
estimates of the parameters. Use
of this option requires that the user
know nCoef beforehand.

∗ estimates – An input double array of length nCoef containing the initial
estimates of the parameters where nCoef is the number of estimated
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coefficients in the model. (Used if init = 1.) If this member function is not
called, unweighted linear regression is used to obtain the initial estimates.

– Throws
∗ java.lang.IllegalArgumentException – is thrown when init is not in

the range [0,1]

• setLowerEndpointColumn
public void setLowerEndpointColumn( int irt )

– Description
Sets the column number in x that contains the lower endpoint of the
observation interval for full interval and right interval observations.

– Parameters
∗ irt – An int scalar which indicates the column number in x that contains

the lower endpoint of the observation interval for full interval and right
interval observations. By default all observations are treated as “point”
observations and x[i][irt] contains the observation point. If this member
function is not called, the last column of x is assumed to contain the
“point” observations.

– Throws
∗ java.lang.IllegalArgumentException – is thrown when irt is less than

0 or greater than or equal to the number of columns of x

• setMaxIterations
public void setMaxIterations( int maxIterations )

– Description
Set the maximum number of iterations allowed.

– Parameters
∗ maxIterations – An int specifying the maximum number of iterations

allowed. maxIterations must be greater than 0. If this member function is
not called, the maximum number of iterations is set to 30.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if maxIterations is

less than or equal to 0

• setModelIntercept
public void setModelIntercept( int intcep )

– Description
Sets the intercept option.

– Parameters
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∗ intcep – An int scalar which indicates whether or not the model has an
intercept. Input intcep is interpreted as follows:
Value Action
0 No intercept is in the model (unless

otherwise provided for by the user).
1 Intercept is automatically included

in the model.
By default intcep = 1.

– Throws
∗ java.lang.IllegalArgumentException – is thrown when intcep is less

than 0 or greater than 1

• setObservationMax
public void setObservationMax( int nmax )

– Description
Sets the maximum number of observations that can be handled in the linear
programming.

– Parameters
∗ nmax – An int scalar which sets the maximum number of observations that

can be handled in the linear programming. An illegal argument exception
is thrown if nmax is less than 0. If this member function is not called, nmax
is set to the number of observations.

– Throws
∗ java.lang.IllegalArgumentException – is thrown when nmax is less than

0

• setOptionalDistributionParameterColumn
public void setOptionalDistributionParameterColumn( int ipar )

– Description
Sets the column number in x that contains an optional distribution parameter
for each observation.

– Parameters
∗ ipar – An int scalar which indicates the column number in x that contains

an optional distribution parameter for each observation. The distribution
parameter values are interpreted as follows depending on the model chosen:
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Model Meaning of x[i][ipar]

0 The Poisson parameter is given by
x[i][ipar]× eρ.

1 The number of successes required in
the negative binomial is given by
x[i][ipar].

2 x[i][ipar] is not used.

3-5 The number of trials in the binomial
distribution is given by x[i][ipar].

By default the distribution parameter is assumed to be 1.
– Throws
∗ java.lang.IllegalArgumentException – is thrown when ipar is less than

0 or greater than or equal to the number of columns of x

• setUpperBound
public void setUpperBound( int maxcl )

– Description
Sets the upper bound on the sum of the number of distinct values taken on by
each classification variable.

– Parameters
∗ maxcl – An int scalar specifying the upper bound on the sum of the

number of distinct values taken on by each classification variable. If this
member function is not called, an upper bound of 1 is used.

– Throws
∗ java.lang.IllegalArgumentException – is thrown when maxcl is less

than 1 and the number of classification variables is greater than 0

• setUpperEndpointColumn
public void setUpperEndpointColumn( int ilt )

– Description
Sets the column number in x that contains the upper endpoint of the
observation interval for full interval and left interval observations.

– Parameters
∗ ilt – An int scalar which indicates the column number in x that contains

the upper endpoint of the observation interval for full interval and left
interval observations. By default all observations are treated as “point”
observations.

– Throws
∗ java.lang.IllegalArgumentException – is thrown when ilt is less than

0 or greater than or equal to the number of columns of x
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• solve
public double[][] solve( ) throws
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableException,
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableLimitException,
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableValueException,
com.imsl.stat.CategoricalGenLinModel.DeleteObservationsException

– Description
Returns the parameter estimates and associated statistics for a
CategoricalGenLinModel object.

– Returns – An nCoef row by 4 column double matrix containing the parameter
estimates and associated statistics. Here, nCoef is the number of coefficients in
the model. The statistics returned are as follows:
Column Statistic
0 Coefficient estimate.
1 Estimated standard deviation of the

estimated coefficient.
2 Asymptotic normal score for testing

that the coefficient is zero.
3 ρ - value associated with the normal

score in column 2.

– Throws
∗
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableException
– is thrown when the number of values taken by each classification variable
has been set by the user to be less than or equal to 1
∗
com.imsl.stat.CategoricalGenLinModel.ClassificationVariableLimitException
– is thrown when the sum of the number of distinct values taken on by
each classification variable exceeds the maximum allowed, maxcl
∗
com.imsl.stat.CategoricalGenLinModel.DeleteObservationsException
– is thrown if the number of observations to be deleted has grown too large

Example: Mortality of beetles.

The first example is from Prentice (1976) and involves the mortality of beetles after
exposure to various concentrations of carbon disul-
phide. Both a logit and a probit fit are produced for linear model µ+βx. The data is given as
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Covariate(x) N y
1.755 62 18
1.784 56 28
1.811 63 52
1.836 59 53
1.861 62 61
1.883 60 60

import java.io.*;

import com.imsl.stat.*;

import com.imsl.math.*;

public class CategoricalGenLinModelEx1 {
public static void main(String argv[]) throws Exception {

// Set up a PrintMatrix object for later use.

PrintMatrixFormat mf;

PrintMatrix p;

p = new PrintMatrix();

mf = new PrintMatrixFormat();

mf.setNoRowLabels();

mf.setNoColumnLabels();

double[][] x = {
{1.69, 59.0, 6.0},
{1.724, 60.0, 13.0},
{1.755, 62.0, 18.0},
{1.784, 56.0, 28.0},
{1.811, 63.0, 52.0},
{1.836, 59.0, 53.0},
{1.861, 62.0, 61.0},
{1.883, 60.0, 60.0},

};
CategoricalGenLinModel CATGLM3, CATGLM4;

// MODEL3

CATGLM3 = new CategoricalGenLinModel(x,

CategoricalGenLinModel.MODEL3);

CATGLM3.setLowerEndpointColumn(2);

CATGLM3.setOptionalDistributionParameterColumn(1);

CATGLM3.setInfiniteEstimateMethod(1);

CATGLM3.setModelIntercept(1);

int[] nvef = {1};
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int[] indef = {0};
CATGLM3.setEffects(indef, nvef);

CATGLM3.setUpperBound(1);

System.out.println("MODEL3");

p.setTitle("Coefficient Statistics");

p.print(CATGLM3.solve());

System.out.println("Log likelihood " +

CATGLM3.getOptimizedCriterion());

p.setTitle("Asymptotic Coefficient Covariance");

p.setMatrixType(1);

p.print(CATGLM3.getCovarianceMatrix());

p.setMatrixType(0);

p.setTitle("Case Analysis");

p.print(CATGLM3.getCaseAnalysis());

p.setTitle("Last Coefficient Update");

p.print(CATGLM3.getLastParameterUpdates());

p.setTitle("Covariate Means");

p.print(CATGLM3.getDesignVariableMeans());

p.setTitle("Observation Codes");

p.print(CATGLM3.getExtendedLikelihoodObservations());

System.out.println("Number of Missing Values " +

CATGLM3.getNRowsMissing());

// MODEL4

CATGLM4 = new CategoricalGenLinModel(x,

CategoricalGenLinModel.MODEL4);

CATGLM4.setLowerEndpointColumn(2);

CATGLM4.setOptionalDistributionParameterColumn(1);

CATGLM4.setInfiniteEstimateMethod(1);

CATGLM4.setModelIntercept(1);

CATGLM4.setEffects(indef, nvef);

CATGLM4.setUpperBound(1);

CATGLM4.solve();

System.out.println("MODEL4");

System.out.println("Log likelihood " +

CATGLM4.getOptimizedCriterion());

p.setTitle("Coefficient Statistics");

p.print(CATGLM4.getParameters());

}
}
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Output

MODEL3

Coefficient Statistics

0 1 2 3

0 -60.757 5.188 -11.712 0

1 34.299 2.916 11.761 0

Log likelihood -18.77817904233396

Asymptotic Coefficient Covariance

0 1

0 26.912 -15.124

1 8.505

Case Analysis

0 1 2 3 4

0 0.058 2.593 1.792 0.267 1.448

1 0.164 3.139 2.871 0.347 1.093

2 0.363 -4.498 3.786 0.311 -1.188

3 0.606 -5.952 3.656 0.232 -1.628

4 0.795 1.89 3.202 0.269 0.59

5 0.902 -0.195 2.288 0.238 -0.085

6 0.956 1.743 1.619 0.198 1.077

7 0.979 1.278 1.119 0.138 1.143

Last Coefficient Update

0

0 0

1 0

Covariate Means

0

0 1.793

1 0

Observation Codes

0

0 0

1 0

2 0

3 0
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4 0

5 0

6 0

7 0

Number of Missing Values 0

MODEL4

Log likelihood -18.232354574384562

Coefficient Statistics

0 1 2 3

0 -34.944 2.641 -13.231 0

1 19.737 1.485 13.289 0

Example: Poisson Model.

In this example, the following data illustrate the Poisson model when all types of interval
data are present. The example also illustrates the use of classification variables and the
detection of potentially infinite estimates (which turn out here to be finite). These
potential estimates lead to the two iteration summaries. The input data is
ilt irt icen Class 1 Class 2
0 5 0 1 0
9 4 3 0 0
0 4 1 0 0
9 0 2 1 1
0 1 0 0 1

A linear model µ+ β1x1 + β2x2 is fit where x1 = 1 if the Class 1 variable is 0, x1 = 1,
otherwise, and the x2 variable is similarly defined
import java.io.*;

import com.imsl.stat.*;

import com.imsl.math.*;

public class CategoricalGenLinModelEx2 {
public static void main(String argv[]) throws Exception {

// Set up a PrintMatrix object for later use.

PrintMatrixFormat mf;

PrintMatrix p;

p = new PrintMatrix();

mf = new PrintMatrixFormat();
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mf.setNoRowLabels();

mf.setNoColumnLabels();

double[][] x = {
{0.0, 5.0, 0.0, 1.0, 0.0},
{9.0, 4.0, 3.0, 0.0, 0.0},
{0.0, 4.0, 1.0, 0.0, 0.0},
{9.0, 0.0, 2.0, 1.0, 1.0},
{0.0, 1.0, 0.0, 0.0, 1.0},

};
CategoricalGenLinModel CATGLM;

CATGLM = new CategoricalGenLinModel(x,

CategoricalGenLinModel.MODEL0);

CATGLM.setUpperEndpointColumn(0);

CATGLM.setLowerEndpointColumn(1);

CATGLM.setOptionalDistributionParameterColumn(1);

CATGLM.setCensorColumn(2);

CATGLM.setInfiniteEstimateMethod(0);

CATGLM.setModelIntercept(1);

int[] indcl = {3, 4};
CATGLM.setClassificationVariableColumn(indcl);

int[] nvef = {1, 1};
int[] indef = {3, 4};
CATGLM.setEffects(indef, nvef);

CATGLM.setUpperBound(4);

p.setTitle("Coefficient Statistics");

p.print(CATGLM.solve());

System.out.println("Log likelihood " +

CATGLM.getOptimizedCriterion());

p.setTitle("Asymptotic Coefficient Covariance");

p.setMatrixType(1);

p.print(CATGLM.getCovarianceMatrix());

p.setMatrixType(0);

p.setTitle("Case Analysis");

p.print(CATGLM.getCaseAnalysis());

p.setTitle("Last Coefficient Update");

p.print(CATGLM.getLastParameterUpdates());

p.setTitle("Covariate Means");

p.print(CATGLM.getDesignVariableMeans());

p.setTitle("Distinct Values For Each Class Variable");
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p.print(CATGLM.getClassificationVariableValues());

System.out.println("Number of Missing Values " +

CATGLM.getNRowsMissing());

}
}

Output

Coefficient Statistics

0 1 2 3

0 -0.549 1.171 -0.469 0.64

1 0.549 0.61 0.9 0.368

2 0.549 1.083 0.507 0.612

Log likelihood -3.1146384925784414

Asymptotic Coefficient Covariance

0 1 2

0 1.372 -0.372 -1.172

1 0.372 0.172

2 1.172

Case Analysis

0 1 2 3 4

0 5 -0 2.236 1 -0

1 6.925 -0.412 2.108 0.764 -0.196

2 6.925 0.412 1.173 0.236 0.351

3 0 0 0 0 ?

4 1 -0 1 1 -0

Last Coefficient Update

0

0 -0

1 0

2 0

Covariate Means

0

0 0.6

1 0.6

2 0
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Distinct Values For Each Class Variable

0

0 0

1 1

2 0

3 1

Number of Missing Values 0
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Chapter 16

Nonparametric Statistics

Classes
SignTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

Performs a sign test.
WilcoxonRankSum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

Performs a Wilcoxon rank sum test.

Usage Notes

Much of what is considered nonparametric statistics is included in other chapters. Topics
of possible interest in other chapters are: nonparametric measures of location and scale
(see “Basic Statistics”), nonparametric measures in a contingency table (see “Categorical
and Discrete Data Analysis”) and tests of goodness of fit and randomness (see “Tests of
Goodness of Fit and Randomness”).

Missing Values

Most classes described in this chapter automatically handle missing values (NaN, “Not a
Number”; see Double.NaN).

Tied Observations

The WilcoxonRankSum class described in this chapter contains a set method, setFuzz.
Observations that are within fuzz of each other in absolute value are said to be tied. If
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fuzz = 0.0, observations must be identically equal before they are considered to be tied.
Other positive values of fuzz allow for numerical imprecision or roundoff error.

class SignTest

Performs a sign test.

Class SignTest tests hypotheses about the proportion p of a population that lies below a
value q, where p corresponds to percentage and q corresponds to percentile in the
setPercentage and setPercentile methods, respectively. In continuous distributions, this
can be a test that q is the 100 p-th percentile of the population from which x was obtained.
To carry out testing, SignTest tallies the number of values above q in the number of
positive differences x[j − 1]− percentile for j = 1, 2, . . . , x.length. The binomial probability
of the number of values above q in the number of positive differences x[j − 1]− percentile
for j = 1, 2, . . . , . . . , x.length or more values above q is then computed using the
proportion p and the sample size in x (adjusted for the missing observations and ties).

Hypothesis testing is performed as follows for the usual null and alternative hypotheses:

• H0 : Pr(x ≤ q) ≥ p (the p-th quantile is at least q)
H1 : Pr(x ≤ q) < p
Reject H0 if probability is less than or equal to the significance level

• H0 : Pr(x ≤ q) ≤ p (the p-th quantile is at least q)
H1 : Pr(x ≤ q) > p
Reject H0 if probability is greater than or equal to 1 minus the significance level

• H0 : Pr(x = q) = p (the p-th quantile is q)
H1 : Pr((x ≤ q) < p) or Pr((x ≤ q) > p)
Reject H0 if probability is less than or equal to half the significance level or greater
than or equal to 1 minus half the significance level

The assumptions are as follows:

1. They are independent and identically distributed.

2. Measurement scale is at least ordinal; i.e., an ordering less than, greater than, and
equal to exists in the observations.

Many uses for the sign test are possible with various values of p and q. For example, to
perform a matched sample test that the difference of the medians of y and z is 0.0, let p =
0.5, q = 0.0, and xi = yi − zi in matched observations y and z. To test that the median
difference is c, let q = c.
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Declaration

public class com.imsl.stat.SignTest
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Constructor

• SignTest
public SignTest( double[] x )

– Description
Constructor for SignTest.

– Parameters
∗ x – A double array containing the data.

Methods

• compute
public final double compute( )

– Description
Performs a sign test.

– Returns – A double scalar containing the Binomial probability of
getNumPositiveDev or more positive differences in x.length - number of zero
differences trials. Call this value probability. If using default values, the null
hypothesis is that the median equals 0.0.

• getNumPositiveDev
public int getNumPositiveDev( )

– Description
Returns the number of positive differences.

– Returns – An int scalar containing the number of positive differences
x[j-1]-percentile for j = 1, 2, ..., x.length.

• getNumZeroDev
public int getNumZeroDev( )
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– Description
Returns the number of zero differences.

– Returns – An int scalar containing the number of zero differences (ties)
x[j-1]-percentile for j = 1, 2, ..., x.length.

• setPercentage
public void setPercentage( double percentage )

– Description
Sets the percentage percentile of the population.

– Parameters
∗ percentage – A double scalar containing the value in the range (0, 1).

percentile is the 100 * percentage percentile of the population. Default:
percentage = 0.5.

• setPercentile
public void setPercentile( double percentile )

– Description
Sets the hypothesized percentile of the population.

– Parameters
∗ percentile – A double scalar containing the hypothesized percentile of the

population from which x was drawn. Default: percentile = 0.0

Example 1: Sign Test

This example tests the hypothesis that at least 50 percent of a population is negative.
Because 0.18 < 0.95, the null hypothesis at the 5-percent level of significance is not
rejected.

import java.text.*;

import com.imsl.stat.*;

public class SignTestEx1 {
public static void main(String args[]) {

double[] x = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0, -25.0, -4.0,

22.0, 2.0, 41.0, 13.0, 8.0, 33.0, 45.0, -33.0, -45.0, -12.0};
SignTest st = new SignTest(x);

NumberFormat nf = NumberFormat.getInstance();

nf.setMaximumFractionDigits(6);

System.out.println("Probability = " + nf.format(st.compute()));
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}
}

Output

Probability = 0.179642

Example 2: Sign Test

This example tests the null hypothesis that at least 75 percent of a population is negative.
Because 0.923 < 0.95, the null hypothesis at the 5-percent level of significance is rejected.

import java.text.*;

import com.imsl.stat.*;

public class SignTestEx2 {
public static void main(String args[]) {

double[] x = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0, -25.0, -4.0,

22.0, 2.0, 41.0, 13.0, 8.0, 33.0, 45.0, -33.0, -45.0, -12.0};
SignTest st = new SignTest(x);

NumberFormat nf = NumberFormat.getInstance();

nf.setMaximumFractionDigits(6);

st.setPercentage(0.75);

st.setPercentile(0.0);

System.out.println("Probability = " + nf.format(st.compute()));

System.out.println("Number of positive deviations = " +

st.getNumPositiveDev());

System.out.println("Number of ties = " + st.getNumZeroDev());

}
}

Output

Probability = 0.922543

Number of positive deviations = 12

Number of ties = 0
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class WilcoxonRankSum

Performs a Wilcoxon rank sum test.

Class WilcoxonRankSum performs the Wilcoxon rank sum test for identical population
distribution functions. The Wilcoxon test is a linear transformation of the Mann-Whitney
U test. If the difference between the two populations can be attributed solely to a
difference in location, then the Wilcoxon test becomes a test of equality of the population
means (or medians) and is the nonparametric equivalent of the two-sample t-test. Class
WilcoxonRankSum obtains ranks in the combined sample after first eliminating missing
values from the data. The rank sum statistic is then computed as the sum of the ranks in
the x sample. Three methods for handling ties are used. (A tie is counted when two
observations are within fuzz of each other.) Method 1 uses the largest possible rank for
tied observations in the smallest sample, while Method 2 uses the smallest possible rank
for these observations. Thus, the range of possible rank sums is obtained.

Method 3 for handling tied observations between samples uses the average rank of the tied
observations. Asymptotic standard normal scores are computed for the W score (based on
a variance that has been adjusted for ties) when average ranks are used (see Conover
1980, p. 217), and the probability associated with the two-sided alternative is computed.

Hypothesis Tests

In each of the following tests, the first line gives the hypothesis (and its alternative) under
the assumptions 1 to 3 below, while the second line gives the hypothesis when assumption
4 is also true. The rejection region is the same for both hypotheses and is given in terms
of Method 3 for handling ties. If another method for handling ties is desired, another
output statistic, stat[0] or stat[3],should be used, where stat is the array containing the
statistics returned from the getStatistics method.
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Test Null Hypothesis Alternative Hy-
pothesis

Action

1
H0 : Pr(x1 < x2) = 0.5
H0 : E(x1) = E(x2)

H1 : Pr(x1 < x2) 6= 0.5
H1 : E(x1) 6= E(x2)

Reject if stat[9] is
less than the signif-
icance level of the
test. Alternatively,
reject the null hy-
pothesis if stat[6]

is too large or too
small.

2
H0 : Pr(x1 < x2) ≤ 0.5
H0 : E(x1) ≥ E(x2)

H1 : Pr(x1 < x2) 6= 0.5
H1 : E(x1) < E(x2)

Reject if stat[6] is
too small

3
H0 : Pr(x1 < x2) ≥ 0.5
H0 : E(x1) ≤ E(x2)

H1 : Pr(x1 < x2) < 0.5
H1 : E(x1) > E(x2)

Reject if stat[6] is
too large

Assumptions

1. x and y contain random samples from their respective populations.

2. All observations are mutually independent.

3. The measurement scale is at least ordinal (i.e., an ordering less than, greater than,
or equal to exists among the observations).

4. If f(x) and g(y) are the distribution functions of x and y, then g(y) = f(x + c) for
some constant c(i.e., the distribution of y is, at worst, a translation of the
distribution of x).

The p-value is calculated using the large-sample normal approximation. This approximate
calculation is only valid when the size of one or both samples is greater than 50. For
smaller samples, see the exact tables for the Wilcoxon Rank Sum Test.

Declaration

public class com.imsl.stat.WilcoxonRankSum
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Constructor

• WilcoxonRankSum
public WilcoxonRankSum( double[] x, double[] y )
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– Description
Constructor for WilcoxonRankSum.

– Parameters
∗ x – A double array containing the first sample.
∗ y – A double array containing the second sample.

Methods

• compute
public final double compute( )

– Description
Performs a Wilcoxon rank sum test.

– Returns – A double scalar containing the two-sided p-value for the Wilcoxon
rank sum statistic that is computed with average ranks used in the case of ties.

• getStatistics
public double[] getStatistics( )

– Description
Returns the statistics.

– Returns – A double array of length 10 containing the following statistics:
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Row Statistics
0 Wilcoxon W statistic (the sum of the

ranks of the x observations) adjusted
for ties in such a manner that W is as
small as possible

1 2 x E(W) - W, where E(W) is the ex-
pected value of W

2 probability of obtaining a statistic less
than or equal to min{W, 2 x E(W) -
W}

3 W statistic adjusted for ties in such a
manner that W is as large as possible

4 2 x E(W) - W, where E(W) is the ex-
pected value of W, adjusted for ties in
such a manner that W is as large as
possible

5 probability of obtaining a statistic less
than or equal to min{W, 2 x E(W) -
W}, adjusted for ties in such a manner
that W is as large as possible

6 W statistic with average ranks used in
case of ties

7 estimated standard error of Row 6 un-
der the null hypothesis of no differ-
ence

8 standard normal score associated with
Row 6

9 two-sided p-value associated with
Row 8

• setFuzz
public void setFuzz( double fuzz )

– Description
Sets the nonnegative constant used to determine ties in computing ranks in the
combined samples.

– Parameters
∗ fuzz – A double scalar containing the nonnegative constant used to

determine ties in computing ranks in the combined samples. A tie is
declared when two observations in the combined sample are within fuzz of
each other. Default:
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fuzz = 100× 2.2204460492503131e− 16×max(|xi1|, |xj2|)

Example 1: Wilcoxon Rank Sum Test

The following example is taken from Conover (1980, p. 224). It involves the mixing time
of two mixing machines using a total of 10 batches of a certain kind of batter, five batches
for each machine. The null hypothesis is not rejected at the 5-percent level of significance.

import java.text.*;

import com.imsl.*;

import com.imsl.stat.*;

public class WilcoxonRankSumEx1 {
public static void main(String args[]) {

double[] x = {7.3, 6.9, 7.2, 7.8, 7.2};
double[] y = {7.4, 6.8, 6.9, 6.7, 7.1};

WilcoxonRankSum wilcoxon = new WilcoxonRankSum(x, y);

NumberFormat nf = NumberFormat.getInstance();

nf.setMaximumFractionDigits(4);

// Trun off printing of warning messages.

Warning.setOut(null);

System.out.println("p-value = " + nf.format(wilcoxon.compute()));

}
}

Output

p-value = 0.1412

Example 2: Wilcoxon Rank Sum Test

The following example uses the same data as in example 1. Now, all the statistics are
displayed.

import java.text.*;

import com.imsl.*;
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import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

public class WilcoxonRankSumEx2 {
public static void main(String args[]) {

double[] x = {7.3, 6.9, 7.2, 7.8, 7.2};
double[] y = {7.4, 6.8, 6.9, 6.7, 7.1};
String[] labels = {

"Wilcoxon W statistic ......................",

"2*E(W) - W ................................",

"p-value ................................... ",

"Adjusted Wilcoxon statistic ...............",

"Adjusted 2*E(W) - W .......................",

"Adjusted p-value .......................... ",

"W statistics for averaged ranks............",

"Standard error of W (averaged ranks) ...... ",

"Standard normal score of W (averaged ranks) ",

"Two-sided p-value of W (averaged ranks) ... "

};

WilcoxonRankSum wilcoxon = new WilcoxonRankSum(x, y);

NumberFormat nf = NumberFormat.getInstance();

nf.setMinimumFractionDigits(3);

// Trun off printing of warning messages.

Warning.setOut(null);

wilcoxon.compute();

double[] stat = wilcoxon.getStatistics();

for (int i = 0; i < 10; i++) {
System.out.println(labels[i] + " " + nf.format(stat[i]));

}
}

}

Output

Wilcoxon W statistic ...................... 34.000

2*E(W) - W ................................ 21.000

p-value ................................... 0.110

Adjusted Wilcoxon statistic ............... 35.000
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Adjusted 2*E(W) - W ....................... 20.000

Adjusted p-value .......................... 0.075

W statistics for averaged ranks............ 34.500

Standard error of W (averaged ranks) ...... 4.758

Standard normal score of W (averaged ranks) 1.471

Two-sided p-value of W (averaged ranks) ... 0.141
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Chapter 17

Tests of Goodness of Fit

Classes
ChiSquaredTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

Chi-squared goodness-of-fit test.
NormalityTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .536

Performs a test for normality.

Usage Notes

The classes in this chapter are used to test for goodness of fit. The goodness-of-fit tests are
described in Conover (1980). There is a goodness-of-fit test for general distributions and a
chi-squared test. The user supplies the hypothesized cumulative distribution function for
the test. There is a class that can be used to test specifically for the normal distribution.

The chi-squared goodness-of-fit test may be used with discrete as well as continuous
distributions. The chi-squared goodness-of-fit test allows for missing values (NaN, not a
number) in the input data.

class ChiSquaredTest

Chi-squared goodness-of-fit test.

ChiSquaredTest performs a chi-squared goodness-of-fit test that a random sample of
observations is distributed according to a specified theoretical cumulative distribution.
The theoretical distribution, which may be continuous, discrete, or a mixture of discrete
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and continuous distributions, is specified via a user-defined function F where F
implements CdfFuntion. Because the user is allowed to specify a range for the observations
in the setRange method, a test that is conditional upon the specified range is performed.

ChiSquaredTest can be constructed in two different ways. The intervals can be specified
via the array cutpoints. Otherwise, the number of cutpoints can be given and
equiprobable intervals computed by the constructor. The observations are divided into
these intervals. Regardless of the method used to obtain them, the intervals are such that
the lower endpoint is not included in the interval while the upper endpoint is always
included. The user should determine the cutpoints when the cumulative distribution
function has discrete elements since ChiSquaredTest cannot determine them in this case.

By default, the lower and upper endpoints of the first and last intervals are −∞ and +∞,
respectively. The method setRange can be used to change the range.

A tally of counts is maintained for the observations in x as follows:

If the cutpoints are specified by the user, the tally is made in the interval to which xi

belongs, using the user-specified endpoints.

If the cutpoints are determined by the class then the cumulative probability at xi, F (xi),
is computed using cdf.

The tally for xi is made in interval number bmF (x) + 1c, where m is the number of
categories and b.c is the function that takes the greatest integer that is no larger than the
argument of the function. If the cutpoints are specified by the user, the tally is made in
the interval to which xi belongs using the endpoints specified by the user. Thus, if the
computer time required to calculate the cumulative distribution function is large,
user-specified cutpoints may be preferred in order to reduce the total computing time.

If the expected count in any cell is less than 1, then a rule of thumb is that the
chi-squared approximation may be suspect. A warning message to this effect is issued in
this case, as well as when an expected value is less than 5.

Declaration

public class com.imsl.stat.ChiSquaredTest
extends java.lang.Object

Inner Classes

class ChiSquaredTest.NotCDFException

The function is not a Cumulative Distribution Function (CDF).
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Declaration

public static class com.imsl.stat.ChiSquaredTest.NotCDFException
extends com.imsl.IMSLRuntimeException (page 1242)

Constructor

• ChiSquaredTest.NotCDFException
public ChiSquaredTest.NotCDFException( java.lang.String key,
java.lang.Object[] arguments )

class ChiSquaredTest.NoObservationsException

There are no observations.

Declaration

public static class com.imsl.stat.ChiSquaredTest.NoObservationsException
extends com.imsl.IMSLRuntimeException (page 1242)

Constructor

• ChiSquaredTest.NoObservationsException
public ChiSquaredTest.NoObservationsException( java.lang.String
key, java.lang.Object[] arguments )

class ChiSquaredTest.DidNotConvergeException

The iteration did not converge

Declaration

public static class com.imsl.stat.ChiSquaredTest.DidNotConvergeException
extends com.imsl.IMSLException (page 1240)
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Constructors

• ChiSquaredTest.DidNotConvergeException
public ChiSquaredTest.DidNotConvergeException( java.lang.String
message )

• ChiSquaredTest.DidNotConvergeException
public ChiSquaredTest.DidNotConvergeException( java.lang.String
key, java.lang.Object[] arguments )

Constructors

• ChiSquaredTest
public ChiSquaredTest( CdfFunction cdf, double[] cutpoints, int
nParameters ) throws com.imsl.stat.ChiSquaredTest.NotCDFException

– Description
Constructor for the Chi-squared goodness-of-fit test.

– Parameters
∗ cdf – a CdfFunction object that implements the CdfFunction interface
∗ cutpoints – a double array containing the cutpoints
∗ nParameters – an int which specifies the number of parameters estimated

in computing the Cdf

• ChiSquaredTest
public ChiSquaredTest( CdfFunction cdf, int nCutpoints, int
nParameters ) throws com.imsl.stat.ChiSquaredTest.NotCDFException,
com.imsl.stat.InverseCdf.DidNotConvergeException

– Description
Constructor for the Chi-squared goodness-of-fit test

– Parameters
∗ cdf – a CdfFunction object that implements the CdfFunction interface
∗ nCutpoints – an int, the number of cutpoints
∗ nParameters – an int which specifies the number of parameters estimated

in computing the Cdf
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Methods

• getCellCounts
public double[] getCellCounts( )

– Description
Returns the cell counts.

– Returns – a double array which contains the number of actual observations in
each cell.

• getChiSquared
public double getChiSquared( ) throws
com.imsl.stat.ChiSquaredTest.NotCDFException

– Description
Returns the chi-squared statistic.

– Returns – a double, the chi-squared statistic

• getCutpoints
public double[] getCutpoints( )

– Description
Returns the cutpoints.

– Returns – a double array which contains the cutpoints

• getDegreesOfFreedom
public double getDegreesOfFreedom( ) throws
com.imsl.stat.ChiSquaredTest.NotCDFException

– Description
Returns the degrees of freedom in chi-squared.

– Returns – a double, the degrees of freedom in the chi-squared statistic

• getExpectedCounts
public double[] getExpectedCounts( )

– Description
Returns the expected counts.

– Returns – a double array which contains the number of expected observations
in each cell.
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• getP
public double getP( ) throws
com.imsl.stat.ChiSquaredTest.NotCDFException

– Description
Returns the p-value for the chi-squared statistic.

– Returns – a double, the p-value for the chi-squared statistic

• setCutpoints
public void setCutpoints( double[] cutpoints )

– Description
Sets the cutpoints. The intervals defined by the cutpoints are such that the
lower endpoint is not included while the upper endpoint is included in the
interval.

– Parameters
∗ cutpoints – a double array which contains the cutpoints

• setRange
public void setRange( double lower, double upper ) throws
com.imsl.stat.ChiSquaredTest.NotCDFException

– Description
Sets endpoints of the range of the distribution. Points outside of the range are
ignored so that distributions conditional on the range can be used. In this case,
the point lower is excluded from the first interval, but the point upper is
included in the last interval. By default, a range on the whole real line is used.

– Parameters
∗ lower – a double, the lower range limit
∗ upper – a double, the upper range limit

• update
public void update( double[] x, double[] freq ) throws
com.imsl.stat.ChiSquaredTest.NotCDFException

– Description
Adds new observations to the test.

– Parameters
∗ x – a double array which contains the new observations to be added to the

test
∗ freq – a double array which contains the frequencies of the corresponding

new observations in x
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• update
public synchronized void update( double x, double freq ) throws
com.imsl.stat.ChiSquaredTest.NotCDFException

– Description
Adds a new observation to the test.

– Parameters
∗ x – a double, the new observation to be added to the test
∗ freq – a double, the frequency of the new observation, x

Example: The Chi-squared Goodness-of-fit Test

In this example, a discrete binomial random sample of size 1000 with binomial parameter
p = 0.3 and binomial sample size 5 is generated via Random.nextBinomial.
Random.setSeed is first used to set the seed. After the ChiSquaredTest constructor is
called, the random observations are added to the test one at a time to simulate streaming
data. The Chi-squared statistic, p-value, and Degrees of freedom are then computed and
printed.
import com.imsl.stat.*;

public class ChiSquaredTestEx1 {
public static void main(String args[]) {

// Seed the random number generator

Random rn = new Random();

rn.setSeed(123457);

rn.setMultiplier(16807);

// Construct a ChiSquaredTest object

CdfFunction bindf = new CdfFunction() {
public double cdf(double x) {

return Cdf.binomial((int)x, 5, 0.3);

}
};

double cutp[] = {0.5, 1.5, 2.5, 3.5, 4.5};
int nParameters = 0;

ChiSquaredTest cst = new ChiSquaredTest(bindf, cutp, nParameters);

for (int i = 0; i < 1000; i++) {
cst.update(rn.nextBinomial(5, 0.3), 1.0);

}

// Print goodness-of-fit test statistics
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System.out.println("The Chi-squared statistic is "

+ cst.getChiSquared());

System.out.println("The P-value is "+cst.getP());

System.out.println("The Degrees of freedom are "

+ cst.getDegreesOfFreedom());

}
}

Output

The Chi-squared statistic is 4.79629666357389

The P-value is 0.44124295720552564

The Degrees of freedom are 5.0

Warning com.imsl.stat.ChiSquaredTest: An expected value is less than five.

class NormalityTest

Performs a test for normality.

Three methods are provided for testing normality: the Shapiro-Wilk W test, the Lilliefors
test, and the chi-squared test.

Shapiro-Wilk W Test

The Shapiro-Wilk W test is thought by D’Agostino and Stevens (1986, p. 406) to be one
of the best omnibus tests of normality. The function is based on the approximations and
code given by Royston (1982a, b, c). It can be used in samples as large as 2,000 or as
small as 3. In the Shapiro and Wilk test, W is given by

W =
(∑

aix(i)

)2
/
(∑

(xi − x̄)2
)

where x(i) is the i-th largest order statistic and x is the sample mean. Royston (1982)
gives approximations and tabled values that can be used to compute the coefficients
ai, i = 1, . . . , n, and obtains the significance level of the W statistic.

Lilliefors Test

This function computes Lilliefors test and its p-values for a normal distribution in which
both the mean and variance are estimated. The one-sample, two-sided
Kolmogorov-Smirnov statistic D is first computed. The p-values are then computed using
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an analytic approximation given by Dallal and Wilkinson (1986). Because Dallal and
Wilkinson give approximations in the range (0.01, 0.10) if the computed probability of a
greater D is less than 0.01, the p-value is set to 0.50. Note that because parameters are
estimated, p-values in Lilliefors test are not the same as in the Kolmogorov-Smirnov Test.

Observations should not be tied. If tied observations are found, an informational message
is printed. A general reference for the Lilliefors test is Conover (1980). The original
reference for the test for normality is Lilliefors (1967).

Chi-Squared Test

This function computes the chi-squared statistic, its p-value, and the degrees of freedom of
the test. Argument n finds the number of intervals into which the observations are to be
divided. The intervals are equiprobable except for the first and last interval, which are
infinite in length.

If more flexibility is desired for the specification of intervals, the same test can be
performed with class ChiSquaredTest.

Declaration

public class com.imsl.stat.NormalityTest
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Class

class NormalityTest.NoVariationInputException

There is no variation in the input data.

Declaration

public static class com.imsl.stat.NormalityTest.NoVariationInputException
extends com.imsl.IMSLException (page 1240)

Constructors

• NormalityTest.NoVariationInputException
public NormalityTest.NoVariationInputException( java.lang.String
message )
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• NormalityTest.NoVariationInputException
public NormalityTest.NoVariationInputException( java.lang.String
key, java.lang.Object[] arguments )

Constructor

• NormalityTest
public NormalityTest( double[] x )

– Description
Constructor for NormalityTest.

– Parameters
∗ x – A double array containing the observations. x.length must be in the

range from 3 to 2,000, inclusive, for the Shapiro-Wilk W test and must be
greater than 4 for the Lilliefors test.

Methods

• ChiSquaredTest
public final double ChiSquaredTest( int n ) throws
com.imsl.stat.NormalityTest.NoVariationInputException,
com.imsl.stat.InverseCdf.DidNotConvergeException

– Description
Performs the chi-squared goodness-of-fit test.

– Parameters
∗ n – An int scalar containing the number of cells into which the

observations are to be tallied.
– Returns – A double scalar containing the p-value for the chi-squared

goodness-of-fit test.
– Throws
∗ com.imsl.stat.NormalityTest.NoVariationInputException – is thrown

if there is no variation in the input data.
∗ DidNotConvergeException – is thrown if the iteration did not converge.

• getChiSquared
public double getChiSquared( )
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– Description
Returns the chi-square statistic for the chi-squared goodness-of-fit test.

– Returns – A double scalar containing the chi-square statistic. Returns
Double.NaN for other tests.

• getDegreesOfFreedom
public double getDegreesOfFreedom( )

– Description
Returns the degrees of freedom for the chi-squared goodness-of-fit test.

– Returns – A double scalar containing the degrees of freedom. Returns
Double.NaN for other tests.

• getMaxDifference
public double getMaxDifference( )

– Description
Returns the maximum absolute difference between the empirical and the
theoretical distributions for the Lilliefors test.

– Returns – A double scalar containing the maximum absolute difference
between the empirical and the theoretical distributions. Returns Double.NaN for
other tests.

• getShapiroWilkW
public double getShapiroWilkW( )

– Description
Returns the Shapiro-Wilk W statistic for the Shapiro-Wilk W test.

– Returns – A double scalar containing the Shapiro-Wilk W statistic. Returns
Double.NaN for other tests.

• LillieforsTest
public final double LillieforsTest( ) throws
com.imsl.stat.NormalityTest.NoVariationInputException,
com.imsl.stat.InverseCdf.DidNotConvergeException

– Description
Performs the Lilliefors test.

– Returns – A double scalar containing the p-value for the Lilliefors test.
Probabilities less than 0.01 are reported as 0.01, and probabilities greater than
0.10 for the normal distribution are reported as 0.5. Otherwise, an approximate
probability is computed.

– Throws
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∗ com.imsl.stat.NormalityTest.NoVariationInputException – is thrown
if there is no variation in the input data.
∗ DidNotConvergeException – is thrown if the iteration did not converge.

• ShapiroWilkWTest
public final double ShapiroWilkWTest( ) throws
com.imsl.stat.NormalityTest.NoVariationInputException,
com.imsl.stat.InverseCdf.DidNotConvergeException

– Description
Performs the Shapiro-Wilk W test.

– Returns – A double scalar containing the p-value for the Shapiro-Wilk W test.
– Throws
∗ com.imsl.stat.NormalityTest.NoVariationInputException – is thrown

if there is no variation in the input data.
∗ DidNotConvergeException – is thrown if the iteration did not converge.

Example: Shapiro-Wilk W Test

The following example is taken from Conover (1980, pp. 195, 364). The data consists of
50 two-digit numbers taken from a telephone book. The W test fails to reject the null
hypothesis of normality at the .05 level of significance.

import java.text.*;

import com.imsl.*;

import com.imsl.stat.*;

public class NormalityTestEx1 {
public static void main(String args[]) throws Exception {

double x[] = {23.0, 36.0, 54.0, 61.0, 73.0, 23.0, 37.0, 54.0, 61.0,

73.0, 24.0, 40.0, 56.0, 62.0, 74.0, 27.0, 42.0, 57.0, 63.0, 75.0, 29.0,

43.0, 57.0, 64.0, 77.0, 31.0, 43.0, 58.0, 65.0, 81.0, 32.0, 44.0, 58.0,

66.0, 87.0, 33.0, 45.0, 58.0, 68.0, 89.0, 33.0, 48.0, 58.0, 68.0, 93.0,

35.0, 48.0, 59.0, 70.0, 97.0};

NormalityTest nt = new NormalityTest(x);

NumberFormat nf = NumberFormat.getInstance();

nf.setMaximumFractionDigits(4);

System.out.println("p-value = " + nf.format(nt.ShapiroWilkWTest()));

System.out.println("Shapiro Wilk W Statistic = " +

nf.format(nt.getShapiroWilkW()));

540 • NormalityTest JMSL



}
}

Output

p-value = 0.2309

Shapiro Wilk W Statistic = 0.9642
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Chapter 18

Time Series and Forecasting

Classes
AutoCorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

Computes the sample autocorrelation function of a stationary time series.
CrossCorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

Computes the sample cross-correlation function of two stationary time se-
ries.

MultiCrossCorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
Computes the multichannel cross-correlation function of two mutually sta-
tionary multichannel time series.

ARMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
Computes least-square estimates of parameters for an ARMA model.

Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .613
Differences a seasonal or nonseasonal time series.

GARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
Computes estimates of the parameters of a GARCH(p,q) model.

KalmanFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
Performs Kalman filtering and evaluates the likelihood function for the state-
space model.

Usage Notes

The classes in this chapter assume the time series does not contain any missing
observations. If missing values are present, they should be set to NaN (see Double.NaN),
and the classes will return an appropriate error message. To enable fitting of the model,
the missing values must be replaced by appropriate estimates.
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General Methodology

A major component of the model identification step concerns determining if a given time
series is stationary. The sample correlation functions computed by the AutoCorrelation
class methods getAutoCorrelations and getPartialAutoCorrelations may be used to
diagnose the presence of nonstationarity in the data, as well as to indicate the type of
transformation required to induce stationarity.

The “raw” data and sample correlation functions provide insight into the nature of the
underlying model. Typically, this information is displayed in graphical form via time
series plots, plots of the lagged data, and various correlation function plots.

ARIMA Model (Autoregressive Integrated Moving Average)

A small, yet comprehensive, class of stationary time-series models consists of the
nonseasonal ARMA processes defined by

φ (B) (Wt − µ) = θ (B)At, t ∈ Z

where Z = . . . ,−2,−1, 0, 1, 2, . . . denotes the set of integers, B is the backward shift
operator defined by BkWt = Wt−k, µ is the mean of Wt, and the following equations are
true:

φ(B) = 1− φ1B − φ2B
2 − · · · − φpB

p, p ≥ 0

θ(B) = 1− θ1B − θ2B2 − · · · − θqB
q, q ≥ 0

The model is of order (p, q) and is referred to as an ARMA (p, q) model.

An equivalent version of the ARMA (p, q) model is given by

φ(B)Wt = θ0 + θ(B)Ai, t ∈ Z

where θ0 is an overall constant defined by the following:

θ0 = µ

(
1−

p∑
i=1

φi

)

See Box and Jenkins (1976, pp. 92-93) for a discussion of the meaning and usefulness of
the overall constant.
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If the “raw” data, {Zt}, are homogeneous and nonstationary, then differencing using the
Difference class induces stationarity, and the model is called ARIMA (AutoRegressive
Integrated Moving Average). Parameter estimation is performed on the stationary time
series Wt,= ∆dZt, where ∆d = (1−B)d is the backward difference operator with period 1
and order d, d > 0.

Typically, the method of moments includes use of METHOD OF MOMENTS in a call to the
compute method in the ARMA class for preliminary parameter estimates. These estimates
can be used as initial values into the least-squares procedure by using LEAST SQUARES in a
call to the compute method in the ARMA class. Other initial estimates provided by the
user can be used. The least-squares procedure can be used to compute conditional or
unconditional least-squares estimates of the parameters, depending on the choice of the
backcasting length. The parameter estimates from either the method of moments or
least-squares procedures can be used in the forecast method. The functions for
preliminary parameter estimation, least-squares parameter estimation, and forecasting
follow the approach of Box and Jenkins (1976, Programs 2-4, pp. 498-509).

class AutoCorrelation

Computes the sample autocorrelation function of a stationary time series.

AutoCorrelation estimates the autocorrelation function of a stationary time series given a
sample of n observations {Xt} for t = 1, 2, . . . ,n.

Let
µ̂ = xmean

be the estimate of the mean µ of the time series {Xt} where

µ̂ =

pa µ for µ known
1
n

n∑
t=1

Xt for µ unknown

The autocovariance function σ(k) is estimated by

σ̂ (k) =
1
n

n−k∑
t=1

(Xt − µ̂) (Xt+k − µ̂) , k=0,1,. . . ,K

where K = maximum lag. Note that σ̂(0) is an estimate of the sample variance. The
autocorrelation function ρ(k) is estimated by

ρ̂(k) =
σ̂(k)
σ̂(0)

, k = 0, 1, . . . ,K
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Note that ρ̂(0) ≡ 1 by definition.

The standard errors of sample autocorrelations may be optionally computed according to
the getStandardErrors method argument stderrMethod. One method (Bartlett 1946) is
based on a general asymptotic expression for the variance of the sample autocorrelation
coefficient of a stationary time series with independent, identically distributed normal
errors. The theoretical formula is

var{ρ̂(k)} =
1
n

∞∑
i=−∞

[
ρ2(i) + ρ(i− k)ρ(i+ k)− 4ρ(i)ρ(k)ρ(i− k) + 2ρ2(i)ρ2(k)

]
where ρ̂(k) assumes µ is unknown. For computational purposes, the autocorrelations ρ(k)
are replaced by their estimates ρ̂(k) for |k| ≤ K, and the limits of summation are bounded
because of the assumption that ρ(k) = 0 for all k such that |k| > K.

A second method (Moran 1947) utilizes an exact formula for the variance of the sample
autocorrelation coefficient of a random process with independent, identically distributed
normal errors. The theoretical formula is

var{ρ̂(k)} =
n− k

n(n+ 2)

where µ is assumed to be equal to zero. Note that this formula does not depend on the
autocorrelation function.

The method getPartialAutoCorrelations estimates the partial autocorrelations of the
stationary time series given K = maximum lag sample autocorrelations ρ̂(k) for k=0,1,...,K.
Consider the AR(k) process defined by

Xt = φk1Xt−1 + φk2Xt−2 + · · ·+ φkkXt−k +At

where φkj denotes the j-th coefficient in the process. The set of estimates {φ̂kk} for k = 1,
..., K is the sample partial autocorrelation function. The autoregressive parameters {φ̂kj}
for j = 1, ..., k are approximated by Yule-Walker estimates for successive AR(k) models
where k = 1, ..., K. Based on the sample Yule-Walker equations

ρ̂(j) = φ̂k1ρ̂(j − 1) + φ̂k2ρ̂(j − 2) + · · ·+ φ̂kkρ̂(j − k), j = 1,2,. . . ,k

a recursive relationship for k=1, ..., K was developed by Durbin (1960). The equations are
given by

φ̂kk =


ρ̂(1) for k = 1

ρ̂(k) −
k−1∑
j=1

φ̂k−1,j ρ̂(k−j)

1 −
k−1∑
j=1

φ̂k−1,j ρ̂(j)

for k = 2, . . . ,K

546 • AutoCorrelation JMSL



and

φ̂kj =
{
φ̂k−1,j − φ̂kkφ̂k−1,k−j for j = 1, 2, . . . , k− 1
φ̂kk for j = k

This procedure is sensitive to rounding error and should not be used if the parameters are
near the nonstationarity boundary. A possible alternative would be to estimate {φkk} for
successive AR(k) models using least or maximum likelihood. Based on the hypothesis that
the true process is AR(p), Box and Jenkins (1976, page 65) note

var{φ̂kk} '
1
n

k ≥ p + 1

See Box and Jenkins (1976, pages 82-84) for more information concerning the partial
autocorrelation function.

Declaration

public class com.imsl.stat.AutoCorrelation
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Class

class AutoCorrelation.NonPosVariancesException

The problem is ill-conditioned.

Declaration

public static class com.imsl.stat.AutoCorrelation.NonPosVariancesException
extends com.imsl.IMSLException (page 1240)

Constructors

• AutoCorrelation.NonPosVariancesException
public AutoCorrelation.NonPosVariancesException( java.lang.String
message )

– Description
Constructs an NonPosVariancesException with the specified detail message. A
detail message is a String that describes this particular exception.

Time Series and Forecasting AutoCorrelation • 547



– Parameters
∗ message – the detail message

• AutoCorrelation.NonPosVariancesException
public AutoCorrelation.NonPosVariancesException( java.lang.String
key, java.lang.Object[] arguments )

– Description
Constructs an NonPosVariancesException with the specified detail message.
The error message string is in a resource bundle, ErrorMessages.

– Parameters
∗ key – the key of the error message in the resource bundle
∗ arguments – an array containing arguments used within the error message

string

Fields

• public static final int BARTLETTS FORMULA

– Indicates standard error computation using Bartlett’s formula.

• public static final int MORANS FORMULA

– Indicates standard error computation using Moran’s formula.

Constructor

• AutoCorrelation
public AutoCorrelation( double[] x, int maximum lag )

– Description
Constructor to compute the sample autocorrelation function of a stationary
time series.

– Parameters
∗ x – a one-dimensional double array containing the stationary time series
∗ maximum lag – an int containing the maximum lag of autocovariance,

autocorrelations, and standard errors of autocorrelations to be computed.
maximum lag must be greater than or equal to 1 and less than the number of
observations in x
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Methods

• getAutoCorrelations
public double[] getAutoCorrelations( )

– Description
Returns the autocorrelations of the time series x.

– Returns – a double array of length maximum lag +1 containing the
autocorrelations of the time series x. The 0-th element of this array is 1. The
k-th element of this array contains the autocorrelation of lag k where k = 1, ...,
maximum lag.

• getAutoCovariances
public double[] getAutoCovariances( ) throws
com.imsl.stat.AutoCorrelation.NonPosVariancesException

– Description
Returns the variance and autocovariances of the time series x.

– Returns – a double array of length maximum lag +1 containing the variances
and autocovariances of the time series x. The 0-th element of the array contains
the variance of the time series x. The k-th element contains the autocovariance
of lag k where k = 1, ..., maximum lag.

– Throws
∗ com.imsl.stat.AutoCorrelation.NonPosVariancesException – is

thrown if the problem is ill-conditioned

• getMean
public double getMean( )

– Description
Returns the mean of the time series x.

– Returns – a double containing the mean

• getPartialAutoCorrelations
public double[] getPartialAutoCorrelations( )

– Description
Returns the sample partial autocorrelation function of the stationary time
series x.

– Returns – a double array of length maximum lag containing the partial
autocorrelations of the time series x.
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• getStandardErrors
public double[] getStandardErrors( int stderrMethod )

– Description
Returns the standard errors of the autocorrelations of the time series x.
Method of computation for standard errors of the autocorrelation is chosen by
the stderrMethod parameter. If stderrMethod is set to BARTLETTS FORMULA,
Bartlett’s formula is used to compute the standard errors of autocorrelations. If
stderrMethod is set to MORANS FORMULA, Moran’s formula is used to compute the
standard errors of autocorrelations.

– Parameters
∗ stderrMethod – an int specifying the method to compute the standard

errors of autocorrelations of the time series x

– Returns – a double array of length maximum lag containing the standard errors
of the autocorrelations of the time series x

• getVariance
public double getVariance( )

– Description
Returns the variance of the time series x.

– Returns – a double containing the variance of the time series x

• setMean
public void setMean( double mean )

– Description
Estimate mean of the time series x.

– Parameters
∗ mean – a double containing the estimate mean of the time series x.

Example 1: AutoCorrelation

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of
sunspots observed each year from 1749 through 1924. The data set for this example
consists of the number of sunspots observed from 1770 through 1869. This example
computes the estimated autocovariances, estimated autocorrelations, and estimated
standard errors of the autocorrelations using both Bartletts and Moran formulas.
import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;
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public class AutoCorrelationEx1 {
public static void main(String args[]) throws Exception {

double[] x = {100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,

154.4, 125.9, 84.8, 68.1, 38.5, 22.8, 10.2, 24.1, 82.9,

132, 130.9, 118.1, 89.9, 66.6, 60, 46.9, 41, 21.3, 16,

6.4, 4.1, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,

8.1, 2.5, 0, 1.4, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,

23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5,

67, 71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,

85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5,

124.3, 95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8,

54.8, 93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3,

37.3, 73.9};

AutoCorrelation ac = new AutoCorrelation(x, 20);

new PrintMatrix("AutoCovariances are: ").print

(ac.getAutoCovariances());

System.out.println();

new PrintMatrix("AutoCorrelations are: ").print

(ac.getAutoCorrelations());

System.out.println("Mean = "+ac.getMean());

System.out.println();

new PrintMatrix("Standard Error using Bartlett are: ").print

(ac.getStandardErrors(ac.BARTLETTS FORMULA));

System.out.println();

new PrintMatrix("Standard Error using Moran are: ").print

(ac.getStandardErrors(ac.MORANS FORMULA));

System.out.println();

new PrintMatrix("Partial AutoCovariances: ").print

(ac.getPartialAutoCorrelations());

ac.setMean(50);

new PrintMatrix("AutoCovariances are: ").print

(ac.getAutoCovariances());

System.out.println();

new PrintMatrix("AutoCorrelations are: ").print

(ac.getAutoCorrelations());

System.out.println();

new PrintMatrix("Standard Error using Bartlett are: ").print

(ac.getStandardErrors(ac.BARTLETTS FORMULA));
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}
}

Output

AutoCovariances are:

0

0 1,382.908

1 1,115.029

2 592.004

3 95.297

4 -235.952

5 -370.011

6 -294.255

7 -60.442

8 227.633

9 458.381

10 567.841

11 546.122

12 398.937

13 197.757

14 26.891

15 -77.281

16 -143.733

17 -202.048

18 -245.372

19 -230.816

20 -142.879

AutoCorrelations are:

0

0 1

1 0.806

2 0.428

3 0.069

4 -0.171

5 -0.268

6 -0.213

7 -0.044

8 0.165
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9 0.331

10 0.411

11 0.395

12 0.288

13 0.143

14 0.019

15 -0.056

16 -0.104

17 -0.146

18 -0.177

19 -0.167

20 -0.103

Mean = 46.976000000000006

Standard Error using Bartlett are:

0

0 0.035

1 0.096

2 0.157

3 0.206

4 0.231

5 0.229

6 0.209

7 0.178

8 0.146

9 0.134

10 0.151

11 0.174

12 0.191

13 0.195

14 0.196

15 0.196

16 0.196

17 0.199

18 0.205

19 0.209

Standard Error using Moran are:

0

0 0.099
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1 0.098

2 0.098

3 0.097

4 0.097

5 0.096

6 0.095

7 0.095

8 0.094

9 0.094

10 0.093

11 0.093

12 0.092

13 0.092

14 0.091

15 0.091

16 0.09

17 0.09

18 0.089

19 0.089

Partial AutoCovariances:

0

0 0.806

1 -0.635

2 0.078

3 -0.059

4 -0.001

5 0.172

6 0.109

7 0.11

8 0.079

9 0.079

10 0.069

11 -0.038

12 0.081

13 0.033

14 -0.035

15 -0.131

16 -0.155

17 -0.119

18 -0.016
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19 -0.004

AutoCovariances are:

0

0 1,392.053

1 1,126.524

2 604.162

3 106.754

4 -225.882

5 -361.026

6 -286.57

7 -53.76

8 235.966

9 470.786

10 584.014

11 564.764

12 418.363

13 216.104

14 43.125

15 -63.468

16 -131.501

17 -189.063

18 -229.689

19 -212.156

20 -121.569

AutoCorrelations are:

0

0 1

1 0.809

2 0.434

3 0.077

4 -0.162

5 -0.259

6 -0.206

7 -0.039

8 0.17

9 0.338

10 0.42

11 0.406

12 0.301
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13 0.155

14 0.031

15 -0.046

16 -0.094

17 -0.136

18 -0.165

19 -0.152

20 -0.087

Standard Error using Bartlett are:

0

0 0.034

1 0.097

2 0.159

3 0.21

4 0.236

5 0.233

6 0.212

7 0.18

8 0.147

9 0.134

10 0.148

11 0.172

12 0.19

13 0.197

14 0.198

15 0.198

16 0.198

17 0.201

18 0.207

19 0.21

class CrossCorrelation

Computes the sample cross-correlation function of two stationary time series.

CrossCorrelation estimates the cross-correlation function of two jointly stationary time
series given a sample of n = x.length observations {Xt} and {Yt} for t = 1,2, ..., n.
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Let
µ̂x = xmean

be the estimate of the mean µX of the time series {Xt} where

µ̂X =

 µX for µX known
1
n

n∑
t=1

Xt for µX unknown

The autocovariance function of {Xt}, σX(k), is estimated by

σ̂X (k) =
1
n

n−k∑
t=1

(Xt − µ̂X) (Xt+k − µ̂X) , k=0,1,. . . ,K

where K = maximum lag. Note that σ̂X(0) is equivalent to the sample variance of x
returned by method getVarianceX. The autocorrelation function ρX(k) is estimated by

ρ̂X(k) =
σ̂X(k)
σ̂X(0)

, k = 0, 1, . . . ,K

Note that ρ̂x(0) ≡ 1 by definition. Let

µ̂Y = ymean, σ̂Y (k), andρ̂Y (k)

be similarly defined.

The cross-covariance function σXY (k) is estimated by

σ̂XY (k) =


1
n

n−k∑
t=1

(Xt − µ̂X)(Yt+k − µ̂Y ) k = 0, 1, . . . ,K

1
n

n∑
t=1−k

(Xt − µ̂X)(Yt+k − µ̂Y ) k = −1,−2, . . . ,−K

The cross-correlation function ρXY (k) is estimated by

ρ̂XY (k) =
σ̂XY (k)

[σ̂X(0)σ̂Y (0)]
1
2

k = 0,±1, . . . ,±K

The standard errors of the sample cross-correlations may be optionally computed
according to the getStandardErrors method argument stderrMethod. One method is based
on a general asymptotic expression for the variance of the sample cross-correlation
coefficient of two jointly stationary time series with independent, identically distributed
normal errors given by Bartlet (1978, page 352). The theoretical formula is

var {ρ̂XY (k)} = 1
n−k

∞∑
i=−∞

[ ρX(i) + ρXY (i− k)ρXY (i+ k)

−2ρXY (k){ρX(i)ρXY (i+ k) + ρXY (−i)ρY (i+ k)}
+ρ2

XY (k){ρX(i) + 1
2ρ

2
X(i) + 1

2ρ
2
Y (i)} ]
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For computational purposes, the autocorrelations ρX(k) and ρY (k) and the
cross-correlations ρXY (k) are replaced by their corresponding estimates for |k| ≤ K, and
the limits of summation are equal to zero for all k such that |k| > K.

A second method evaluates Bartlett’s formula under the additional assumption that the
two series have no cross-correlation. The theoretical formula is

var{ρ̂XY (k)} =
1

n− k

∞∑
i=−∞

ρX(i)ρY (i) k ≥ 0

For additional special cases of Bartlett’s formula, see Box and Jenkins (1976, page 377).

An important property of the cross-covariance coefficient is σXY (k) = σY X(−k) for k ≥ 0.
This result is used in the computation of the standard error of the sample
cross-correlation for lag k < 0. In general, the cross-covariance function is not symmetric
about zero so both positive and negative lags are of interest.

Declaration

public class com.imsl.stat.CrossCorrelation
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Class

class CrossCorrelation.NonPosVariancesException

The problem is ill-conditioned.

Declaration

public static class com.imsl.stat.CrossCorrelation.NonPosVariancesException
extends com.imsl.IMSLException (page 1240)

Constructors

• CrossCorrelation.NonPosVariancesException
public CrossCorrelation.NonPosVariancesException( java.lang.String
message )
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• CrossCorrelation.NonPosVariancesException
public CrossCorrelation.NonPosVariancesException( java.lang.String
key, java.lang.Object[] arguments )

Fields

• public static final int BARTLETTS FORMULA

– Indicates standard error computation using Bartlett’s formula.

• public static final int BARTLETTS FORMULA NOCC

– Indicates standard error computation using Bartlett’s formula with the
assumption of no cross-correlation.

Constructor

• CrossCorrelation
public CrossCorrelation( double[] x, double[] y, int maximum lag )

– Description
Constructor to compute the sample cross-correlation function of two stationary
time series.

– Parameters
∗ x – A one-dimensional double array containing the first stationary time

series.
∗ y – A one-dimensional double array containing the second stationary time

series.
∗ maximum lag – An int containing the maximum lag of the cross-covariance

and cross-correlations to be computed. maximum lag must be greater than
or equal to 1 and less than the minimum of the number of observations of x
and y.

Methods

• getAutoCorrelationX
public double[] getAutoCorrelationX( ) throws
com.imsl.stat.CrossCorrelation.NonPosVariancesException
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– Description
Returns the autocorrelations of the time series x.

– Returns – A double array of length maximum lag +1 containing the
autocorrelations of the time series x. The 0-th element of this array is 1. The
k-th element of this array contains the autocorrelation of lag k where k = 1, ...,
maximum lag.

• getAutoCorrelationY
public double[] getAutoCorrelationY( ) throws
com.imsl.stat.CrossCorrelation.NonPosVariancesException

– Description
Returns the autocorrelations of the time series y.

– Returns – A double array of length maximum lag +1 containing the
autocorrelations of the time series y. The 0-th element of this array is 1. The
k-th element of this array contains the autocorrelation of lag k where k = 1, ...,
maximum lag.

• getAutoCovarianceX
public double[] getAutoCovarianceX( ) throws
com.imsl.stat.CrossCorrelation.NonPosVariancesException

– Description
Returns the autocovariances of the time series x.

– Returns – A double array of length maximum lag +1 containing the variances
and autocovariances of the time series x. The 0-th element of the array contains
the variance of the time series x. The k-th element contains the autocovariance
of lag k where k = 1, ..., maximum lag.

• getAutoCovarianceY
public double[] getAutoCovarianceY( ) throws
com.imsl.stat.CrossCorrelation.NonPosVariancesException

– Description
Returns the autocovariances of the time series y.

– Returns – A double array of length maximum lag +1 containing the variances
and autocovariances of the time series y. The 0-th element of the array contains
the variance of the time series x. The k-th element contains the autocovariance
of lag k where k = 1, ..., maximum lag.

• getCrossCorrelation
public double[] getCrossCorrelation( ) throws
com.imsl.stat.CrossCorrelation.NonPosVariancesException
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– Description
Returns the cross-correlations between the time series x and y.

– Returns – A double array of length 2 * maximum lag +1 containing the
cross-correlations between the time series x and y. The cross-correlation
between x and y at lag k, where k = -maximum lag ,..., 0, 1,...,maximum lag,
corresponds to output array indices 0, 1,..., (2*maximum lag).

• getCrossCovariance
public double[] getCrossCovariance( )

– Description
Returns the cross-covariances between the time series x and y.

– Returns – A double array of length 2 * maximum lag +1 containing the
cross-covariances between the time series x and y. The cross-covariance between
x and y at lag k, where k = -maximum lag ,..., 0, 1,...,maximum lag, corresponds to
output array indices 0, 1,..., (2*maximum lag).

• getMeanX
public double getMeanX( )

– Description
Returns the mean of the time series x.

– Returns – A double containing the mean of the time series x.

• getMeanY
public double getMeanY( )

– Description
Returns the mean of the time series y.

– Returns – A double containing the mean of the time series y.

• getStandardErrors
public double[] getStandardErrors( int stderrMethod ) throws
com.imsl.stat.CrossCorrelation.NonPosVariancesException

– Description
Returns the standard errors of the cross-correlations between the time series x

and y. Method of computation for standard errors of the cross-correlation is
determined by the stderrMethod parameter. If stderrMethod is set to
BARTLETTS FORMULA, Bartlett’s formula is used to compute the standard
errors of cross-correlations. If stderrMethod is set to
BARTLETTS FORMULA NOCC, Bartlett’s formula is used to compute the
standard errors of cross-correlations, with the assumption of no
cross-correlation.
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– Parameters
∗ stderrMethod – An int specifying the method to compute the standard

errors of cross-correlations between the time series x and y.
– Returns – A double array of length 2 * maximum lag + 1 containing the

standard errors of the cross-correlations between the time series x and y. The
standard error of cross-correlations between x and y at lag k, where k =
-maximum lag,..., 0, 1,..., maximum lag, corresponds to output array indices 0,
1,..., (2*maximum lag).

• getVarianceX
public double getVarianceX( ) throws
com.imsl.stat.CrossCorrelation.NonPosVariancesException

– Description
Returns the variance of time series x.

– Returns – A double containing the variance of the time series x.

• getVarianceY
public double getVarianceY( ) throws
com.imsl.stat.CrossCorrelation.NonPosVariancesException

– Description
Returns the variance of time series y.

– Returns – A double containing the variance of the time series y.

• setMeanX
public void setMeanX( double mean )

– Description
Estimate of the mean of time series x.

– Parameters
∗ mean – A double containing the estimate mean of the time series x.

• setMeanY
public void setMeanY( double mean )

– Description
Estimate of the mean of time series y.

– Parameters
∗ mean – A double containing the estimate mean of the time series y.
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Example 1: CrossCorrelation

Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532-533) where X is the
input gas rate in cubic feet/minute and Y is the percent CO2 in the outlet gas. The
CrossCorrelation methods getCrossCovariance and getCrossCorrelation are used to
compute the cross-covariances and cross-correlations between time series X and Y with
lags from -maximum lag = -10 through lag maximum lag = 10. In addition, the estimated
standard errors of the estimated cross-correlations are computed. In the first invocation of
method getStandardErrors stderrMethod = BARTLETTS FORMULA, the standard
errors are based on the assumption that autocorrelations and cross-correlations for lags
greater than maximum lag or less than -maximum lag are zero, In the second invocation of
method getStandardErrors with stderrMethod = BARTLETTS FORMULA NOCC, the
standard errors are based on the additional assumption that all cross-correlations for X

and Y are zero.
import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

public class CrossCorrelationEx1 {

public static void main(String args[]) throws Exception {
double[] x2 = {100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,

154.4, 125.9, 84.8, 68.1, 38.5, 22.8, 10.2, 24.1, 82.9,

132, 130.9, 118.1, 89.9, 66.6, 60, 46.9, 41, 21.3, 16,

6.4, 4.1, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,

8.1, 2.5, 0, 1.4, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,

23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5,

67, 71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,

85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5,

124.3, 95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8,

54.8, 93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3,

37.3, 73.9};

double[] x = {-0.109, 0.0, 0.178, 0.339, 0.373, 0.441, 0.461,

0.348, 0.127, -0.18, -0.588, -1.055, -1.421, -1.52, -1.302,

-0.814, -0.475, -0.193, 0.088, 0.435, 0.771, 0.866, 0.875,

0.891, 0.987, 1.263, 1.775, 1.976, 1.934, 1.866, 1.832,

1.767, 1.608, 1.265, 0.79, 0.36, 0.115, 0.088, 0.331,

0.645, 0.96, 1.409, 2.67, 2.834, 2.812, 2.483, 1.929,

1.485, 1.214, 1.239, 1.608, 1.905, 2.023, 1.815, 0.535,

0.122, 0.009, 0.164, 0.671, 1.019, 1.146, 1.155,

1.112, 1.121, 1.223, 1.257, 1.157, 0.913, 0.62, 0.255,

Time Series and Forecasting CrossCorrelation • 563



-0.28, -1.08, -1.551, -1.799, -1.825, -1.456, -0.944,

-0.57, -0.431, -0.577, -0.96, -1.616, -1.875, -1.891,

-1.746, -1.474, -1.201, -0.927, -0.524, 0.04, 0.788, 0.943,

0.93, 1.006, 1.137, 1.198, 1.054, 0.595, -0.08, -0.314,

-0.288, -0.153, -0.109, -0.187, -0.255, -0.229, -0.007,

0.254, 0.33, 0.102, -0.423,

-1.139, -2.275, -2.594, -2.716, -2.51, -1.79, -1.346,

-1.081, -0.91, -0.876, -0.885, -0.8, -0.544, -0.416,

-0.271, 0.0, 0.403, 0.841, 1.285, 1.607, 1.746, 1.683,

1.485, 0.993, 0.648, 0.577, 0.577, 0.632, 0.747, 0.9,

0.993, 0.968, 0.79, 0.399, -0.161, -0.553, -0.603, -0.424,

-0.194, -0.049, 0.06, 0.161, 0.301, 0.517, 0.566, 0.56,

0.573, 0.592, 0.671, 0.933, 1.337, 1.46, 1.353, 0.772,

0.218,-0.237, -0.714, -1.099, -1.269, -1.175, -0.676,

0.033, 0.556, 0.643, 0.484, 0.109, -0.31, -0.697, -1.047,

-1.218, -1.183, -0.873, -0.336, 0.063, 0.084, 0.0, 0.001,

0.209, 0.556, 0.782, 0.858, 0.918, 0.862, 0.416, -0.336,

-0.959, -1.813, -2.378, -2.499, -2.473, -2.33, -2.053,

-1.739, -1.261, -0.569, -0.137, -0.024, -0.05, -0.135,

-0.276, -0.534, -0.871, -1.243, -1.439, -1.422, -1.175,

-0.813, -0.634, -0.582, -0.625, -0.713,

-0.848, -1.039, -1.346, -1.628, -1.619, -1.149,

-0.488, -0.16, -0.007, -0.092, -0.62, -1.086, -1.525,

-1.858, -2.029, -2.024, -1.961, -1.952, -1.794, -1.302,

-1.03, -0.918, -0.798, -0.867, -1.047, -1.123, -0.876,

-0.395, 0.185, 0.662, 0.709, 0.605, 0.501, 0.603, 0.943,

1.223, 1.249, 0.824, 0.102, 0.025, 0.382,

0.922, 1.032, 0.866, 0.527, 0.093, -0.458, -0.748,

-0.947, -1.029, -0.928, -0.645, -0.424, -0.276, -0.158,

-0.033, 0.102, 0.251, 0.28, 0.0, -0.493, -0.759, -0.824,

-0.74, -0.528, -0.204, 0.034, 0.204, 0.253, 0.195, 0.131,

0.017, -0.182, -0.262};
double[] y = {53.8, 53.6, 53.5, 53.5, 53.4, 53.1, 52.7, 52.4, 52.2,

52.0, 52.0, 52.4, 53.0, 54.0, 54.9, 56.0, 56.8, 56.8, 56.4,

55.7, 55.0, 54.3, 53.2, 52.3, 51.6, 51.2, 50.8, 50.5, 50.0,

49.2, 48.4, 47.9, 47.6, 47.5, 47.5, 47.6, 48.1, 49.0, 50.0,

51.1, 51.8, 51.9, 51.7, 51.2, 50.0, 48.3, 47.0, 45.8, 45.6,

46.0, 46.9, 47.8, 48.2, 48.3, 47.9, 47.2, 47.2,

48.1, 49.4, 50.6, 51.5, 51.6, 51.2, 50.5, 50.1, 49.8, 49.6,

49.4, 49.3, 49.2, 49.3, 49.7, 50.3, 51.3, 52.8, 54.4, 56.0,

56.9, 57.5, 57.3, 56.6, 56.0, 55.4, 55.4, 56.4, 57.2, 58.0,

58.4, 58.4, 58.1, 57.7, 57.0, 56.0, 54.7, 53.2, 52.1, 51.6,
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51.0, 50.5,50.4, 51.0, 51.8, 52.4, 53.0, 53.4, 53.6, 53.7,

53.8, 53.8, 53.8, 53.3, 53.0, 52.9, 53.4, 54.6, 56.4, 58.0,

59.4, 60.2, 60.0, 59.4, 58.4, 57.6, 56.9, 56.4, 56.0, 55.7,

55.3, 55.0, 54.4, 53.7, 52.8, 51.6, 50.6, 49.4, 48.8, 48.5,

48.7, 49.2, 49.8, 50.4, 50.7, 50.9, 50.7, 50.5, 50.4, 50.2,

50.4, 51.2, 52.3, 53.2, 53.9, 54.1, 54.0, 53.6, 53.2, 53.0,

52.8, 52.3,51.9, 51.6, 51.6, 51.4, 51.2, 50.7, 50.0, 49.4, 49.3,

49.7, 50.6, 51.8, 53.0, 54.0, 55.3, 55.9, 55.9, 54.6, 53.5,

52.4, 52.1, 52.3, 53.0, 53.8, 54.6, 55.4, 55.9, 55.9, 55.2,

54.4, 53.7, 53.6, 53.6, 53.2, 52.5, 52.0, 51.4, 51.0, 50.9,

52.4, 53.5, 55.6, 58.0, 59.5, 60.0, 60.4, 60.5, 60.2, 59.7,

59.0, 57.6, 56.4, 55.2, 54.5, 54.1, 54.1, 54.4,

55.5, 56.2, 57.0, 57.3, 57.4, 57.0, 56.4, 55.9, 55.5, 55.3,

55.2, 55.4, 56.0, 56.5, 57.1, 57.3, 56.8, 55.6, 55.0, 54.1,

54.3, 55.3, 56.4, 57.2, 57.8, 58.3, 58.6, 58.8, 58.8, 58.6,

58.0, 57.4, 57.0, 56.4, 56.3, 56.4, 56.4, 56.0, 55.2, 54.0,

53.0, 52.0,51.6, 51.6, 51.1, 50.4, 50.0, 50.0, 52.0, 54.0,

55.1, 54.5, 52.8, 51.4, 50.8, 51.2, 52.0, 52.8, 53.8, 54.5,

54.9, 54.9, 54.8, 54.4, 53.7, 53.3, 52.8, 52.6, 52.6, 53.0,

54.3, 56.0, 57.0, 58.0, 58.6, 58.5, 58.3, 57.8, 57.3, 57.0};
CrossCorrelation cc;

System.out.println("*****************************");

cc = new CrossCorrelation(x, y,10);

System.out.println("Mean = "+cc.getMeanX());

System.out.println("Mean = "+cc.getMeanY());

System.out.println("Xvariance = "+cc.getVarianceX());

System.out.println("Yvariance = "+cc.getVarianceY());

new PrintMatrix("CrossCovariances are: ").print

(cc.getCrossCovariance());

new PrintMatrix("CrossCorrelations are: ").print

(cc.getCrossCorrelation());

new PrintMatrix("Standard Errors using Bartlett are: ").print

(cc.getStandardErrors(cc.BARTLETTS FORMULA));

new PrintMatrix("Standard Errors using Bartlett #2 are: ").print

(cc.getStandardErrors(cc.BARTLETTS FORMULA NOCC));

new PrintMatrix("AutoCovariances of X are: ").print

(cc.getAutoCovarianceX());

new PrintMatrix("AutoCovariances of Y are: ").print

(cc.getAutoCovarianceY());

new PrintMatrix("AutoCorrelations of X are: ").print

(cc.getAutoCorrelationX());
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new PrintMatrix("AutoCorrelations of Y are: ").print

(cc.getAutoCorrelationY());

}

}

Output

*****************************

Mean = -0.05683445945945951

Mean = 53.50912162162156

Xvariance = 1.1469379016503833

Yvariance = 10.218937066289259

CrossCovariances are:

0

0 -0.405

1 -0.508

2 -0.614

3 -0.705

4 -0.776

5 -0.831

6 -0.891

7 -0.981

8 -1.125

9 -1.347

10 -1.659

11 -2.049

12 -2.482

13 -2.885

14 -3.165

15 -3.253

16 -3.131

17 -2.839

18 -2.453

19 -2.053

20 -1.695

CrossCorrelations are:

0

0 -0.118

1 -0.149
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2 -0.179

3 -0.206

4 -0.227

5 -0.243

6 -0.26

7 -0.286

8 -0.329

9 -0.393

10 -0.484

11 -0.598

12 -0.725

13 -0.843

14 -0.925

15 -0.95

16 -0.915

17 -0.829

18 -0.717

19 -0.6

20 -0.495

Standard Errors using Bartlett are:

0

0 0.158

1 0.156

2 0.153

3 0.149

4 0.145

5 0.141

6 0.138

7 0.136

8 0.132

9 0.124

10 0.108

11 0.087

12 0.064

13 0.047

14 0.044

15 0.048

16 0.049

17 0.048

18 0.053

19 0.072
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20 0.094

Standard Errors using Bartlett #2 are:

0

0 0.163

1 0.162

2 0.162

3 0.162

4 0.162

5 0.161

6 0.161

7 0.161

8 0.161

9 0.16

10 0.16

11 0.16

12 0.161

13 0.161

14 0.161

15 0.161

16 0.162

17 0.162

18 0.162

19 0.162

20 0.163

AutoCovariances of X are:

0

0 1.147

1 1.092

2 0.957

3 0.782

4 0.609

5 0.467

6 0.365

7 0.298

8 0.261

9 0.244

10 0.239

AutoCovariances of Y are:

0
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0 10.219

1 9.92

2 9.157

3 8.099

4 6.949

5 5.871

6 4.961

7 4.252

8 3.736

9 3.376

10 3.132

AutoCorrelations of X are:

0

0 1

1 0.952

2 0.834

3 0.682

4 0.531

5 0.408

6 0.318

7 0.26

8 0.228

9 0.213

10 0.208

AutoCorrelations of Y are:

0

0 1

1 0.971

2 0.896

3 0.793

4 0.68

5 0.574

6 0.485

7 0.416

8 0.366

9 0.33

10 0.307
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class MultiCrossCorrelation

Computes the multichannel cross-correlation function of two mutually stationary
multichannel time series.

MultiCrossCorrelation estimates the multichannel cross-correlation function of two
mutually stationary multichannel time series. Define the multichannel time series X by

X = (X1, X2, . . . , Xp)

where
Xj = (X1j , X2j , . . . , Xnj)

T , j = 1, 2, . . . , p

with n = x.length and p = x[0].length. Similarly, define the multichannel time series Y
by

Y = (Y1, Y2, . . . , Yq)

where
Yj = (Y1j , Y2j , . . . , Ymj)

T , j = 1, 2, . . . , q

with m = y.length and q = y[0].length. The columns of X and Y correspond to
individual channels of multichannel time series and may be examined from a univariate
perspective. The rows of X and Y correspond to observations of p-variate and q-variate
time series, respectively, and may be examined from a multivariate perspective. Note that
an alternative characterization of a multivariate time series X considers the columns to be
observations of the multivariate time series while the rows contain univariate time series.
For example, see Priestley (1981, page 692) and Fuller (1976, page 14).

Let µ̂X = xmean be the row vector containing the means of the channels of X. In particular,

µ̂X = (µ̂X1 , µ̂X2 , . . . , µ̂Xp)

where for j = 1, 2, ..., p

µ̂Xj =

 µXj for µXj known
1
n

n∑
t=1

Xtj for µXj unknown

Let µ̂Y = ymean be similarly defined. The cross-covariance of lag k between channel i of X
and channel j of Y is estimated by

σ̂XiYj (k) =


1
N

∑
t

(Xti − µ̂Xi)(Yt+k,j − µ̂Yj ) k = 0, 1, . . . ,K
1
N

∑
t

(Xti − µ̂Xi)(Yt+k,j − µ̂Yj ) k = −1,−2, . . . ,−K

where i = 1, ..., p, j = 1, ..., q, and K = maximum lag. The summation on t extends over all
possible cross-products with N equal to the number of cross-products in the sum.
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Let σ̂X(0) = xvar, where xvar is the variance of X, be the row vector consisting of
estimated variances of the channels of X. In particular,

σ̂X(0) = (σ̂X1(0), σ̂X2(0), . . . , σ̂Xp(0))

where

σ̂Xj (0) =
1
n

n∑
t=1

(
Xtj − µ̂Xj

)2
, j=0,1,. . . ,p

Let σ̂Y (0) = yvar, where yvar is the variance of Y, be similarly defined. The
cross-correlation of lag k between channel i of X and channel j of Y is estimated by

ρ̂XjYj (k) =
σ̂XjYj(k)

[σ̂Xi(0)σ̂Xj (0)]
1
2

k = 0,±1, . . . ,±K

Declaration

public class com.imsl.stat.MultiCrossCorrelation
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Class

class MultiCrossCorrelation.NonPosVariancesException

The problem is ill-conditioned.

Declaration

public static class com.imsl.stat.MultiCrossCorrelation.NonPosVariancesException
extends com.imsl.IMSLException (page 1240)

Constructors

• MultiCrossCorrelation.NonPosVariancesException
public MultiCrossCorrelation.NonPosVariancesException(
java.lang.String message )

• MultiCrossCorrelation.NonPosVariancesException
public MultiCrossCorrelation.NonPosVariancesException(
java.lang.String key, java.lang.Object[] arguments )
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Constructor

• MultiCrossCorrelation
public MultiCrossCorrelation( double[][] x, double[][] y, int
maximum lag )

– Description
Constructor to compute the multichannel cross-correlation function of two
mutually stationary multichannel time series.

– Parameters
∗ x – A two-dimensional double array containing the first multichannel

stationary time series. Each row of x corresponds to an observation of a
multivariate time series and each column of x corresponds to a univariate
time series.

∗ y – A two-dimensional double array containing the second multichannel
stationary time series. Each row of y corresponds to an observation of a
multivariate time series and each column of y corresponds to a univariate
time series.

∗ maximum lag – An int containing the maximum lag of the cross-covariance
and cross-correlations to be computed. maximum lag must be greater than
or equal to 1 and less than the minimum number of observations of x and y.

Methods

• getCrossCorrelation
public double[][][] getCrossCorrelation( ) throws
com.imsl.stat.MultiCrossCorrelation.NonPosVariancesException

– Description
Returns the cross-correlations between the channels of x and y.

– Returns – A double array of size 2 * maximum lag +1 by x[0].length by
y[0].length containing the cross-correlations between the time series x and y.
The cross-correlation between channel i of the x series and channel j of the y

series at lag k, where k = -maximum lag, ..., 0, 1, ..., maximum lag, corresponds to
output array element with index [k][i][j] where k= 0,1,...,(2*maximum lag), i = 1,
..., x[0].length, and j = 1, ..., y[0].length.

• getCrossCovariance
public double[][][] getCrossCovariance( ) throws
com.imsl.stat.MultiCrossCorrelation.NonPosVariancesException
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– Description
Returns the cross-covariances between the channels of x and y.

– Returns – A double array of size 2 * maximum lag +1 by x[0].length by
y[0].length containing the cross-covariances between the time series x and y.
The cross-covariances between channel i of the x series and channel j of the y

series at lag k where k = -maximum lag, ..., 0, 1, ..., maximum lag, corresponds to
output array element with index [k][i][j] where k= 0,1,...,(2*maximum lag), i = 1,
..., x[0].length, and j = 1, ..., y[0].length.

• getMeanX
public double[] getMeanX( )

– Description
Returns the mean of each channel of x.

– Returns – A one-dimensional double containing the mean of each channel in
the time series x.

• getMeanY
public double[] getMeanY( )

– Description
Returns the mean of each channel of y.

– Returns – A one-dimensional double containing the estimate mean of each
channel in the time series y.

• getVarianceX
public double[] getVarianceX( ) throws
com.imsl.stat.MultiCrossCorrelation.NonPosVariancesException

– Description
Returns the variances of the channels of x.

– Returns – A one-dimensional double containing the variances of each channel
in the time series x.

• getVarianceY
public double[] getVarianceY( ) throws
com.imsl.stat.MultiCrossCorrelation.NonPosVariancesException

– Description
Returns the variances of the channels of y.

– Returns – A one-dimensional double containing the variances of each channel
in the time series y.
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• setMeanX
public void setMeanX( double[] mean )

– Description
Estimate of the mean of each channel of x.

– Parameters
∗ mean – A one-dimensional double containing the estimate of the mean of

each channel in time series x.

• setMeanY
public void setMeanY( double[] mean )

– Description
Estimate of the mean of each channel of y.

– Parameters
∗ mean – A one-dimensional double containing the estimate of the mean of

each channel in the time series y.

Example 1: MultiCrossCorrelation

Consider the Wolfer Sunspot Data (Y ) (Box and Jenkins 1976, page 530) along with data
on northern light activity (X1) and earthquake activity (X2) (Robinson 1967, page 204) to
be a three-channel time series. Methods getCrossCovariance and getCrossCorrelation are
used to compute the cross-covariances and cross-correlations between X1 and Y and
between X2 and Y with lags from -maximum lag = -10 through lag maximum lag = 10.
import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

import com.imsl.math.Matrix;

public class MultiCrossCorrelationEx1 {

public static void main(String args[]) throws Exception {
int i;

double x[][] = {{ 155.0, 66.0},
{ 113.0, 62.0},
{ 3.0, 66.0},
{ 10.0, 197.0},
{ 0.0, 63.0},
{ 0.0, 0.0},
{ 12.0, 121.0},
{ 86.0, 0.0},
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{ 102.0, 113.0},
{ 20.0, 27.0},
{ 98.0, 107.0},
{ 116.0, 50.0},
{ 87.0, 122.0},
{ 131.0, 127.0},
{ 168.0, 152.0},
{ 173.0, 216.0},
{ 238.0, 171.0},
{ 146.0, 70.0},
{ 0.0, 141.0},
{ 0.0, 69.0},
{ 0.0, 160.0},
{ 0.0, 92.0},
{ 12.0, 70.0},
{ 0.0, 46.0},
{ 37.0, 96.0},
{ 14.0, 78.0},
{ 11.0, 110.0},
{ 28.0, 79.0},
{ 19.0, 85.0},
{ 30.0, 113.0},
{ 11.0, 59.0},
{ 26.0, 86.0},
{ 0.0, 199.0},
{ 29.0, 53.0},
{ 47.0, 81.0},
{ 36.0, 81.0},
{ 35.0, 156.0},
{ 17.0, 27.0},
{ 0.0, 81.0},
{ 3.0, 107.0},
{ 6.0, 152.0},
{ 18.0, 99.0},
{ 15.0, 177.0},
{ 0.0, 48.0},
{ 3.0, 70.0},
{ 9.0, 158.0},
{ 64.0, 22.0},
{ 126.0, 43.0},
{ 38.0, 102.0},
{ 33.0, 111.0},
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{ 71.0, 90.0},
{ 24.0, 86.0},
{ 20.0, 119.0},
{ 22.0, 82.0},
{ 13.0, 79.0},
{ 35.0, 111.0},
{ 84.0, 60.0},
{ 119.0, 118.0},
{ 86.0, 206.0},
{ 71.0, 122.0},
{ 115.0, 134.0},
{ 91.0, 131.0},
{ 43.0, 84.0},
{ 67.0, 100.0},
{ 60.0, 99.0},
{ 49.0, 99.0},
{ 100.0, 69.0},
{ 150.0, 67.0},
{ 178.0, 26.0},
{ 187.0, 106.0},
{ 76.0, 108.0},
{ 75.0, 155.0},
{ 100.0, 40.0},
{ 68.0, 75.0},
{ 93.0, 99.0},
{ 20.0, 86.0},
{ 51.0, 127.0},
{ 72.0, 201.0},
{ 118.0, 76.0},
{ 146.0, 64.0},
{ 101.0, 31.0},
{ 61.0, 138.0},
{ 87.0, 163.0},
{ 53.0, 98.0},
{ 69.0, 70.0},
{ 46.0, 155.0},
{ 47.0, 97.0},
{ 35.0, 82.0},
{ 74.0, 90.0},
{ 104.0, 122.0},
{ 97.0, 70.0},
{ 106.0, 96.0},
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{ 113.0, 111.0},
{ 103.0, 42.0},
{ 68.0, 97.0},
{ 67.0, 91.0},
{ 82.0, 64.0},
{ 89.0, 81.0},
{ 102.0, 162.0},
{ 110.0, 137.0}};

double y[][] = {{ 101.0},
{ 82.0},
{ 66.0},
{ 35.0},
{ 31.0},
{ 7.0},
{ 20.0},
{ 92.0},
{ 154.0},
{ 126.0},
{ 85.0},
{ 68.0},
{ 38.0},
{ 23.0},
{ 10.0},
{ 24.0},
{ 83.0},
{ 132.0},
{ 131.0},
{ 118.0},
{ 90.0},
{ 67.0},
{ 60.0},
{ 47.0},
{ 41.0},
{ 21.0},
{ 16.0},
{ 6.0},
{ 4.0},
{ 7.0},
{ 14.0},
{ 34.0},
{ 45.0},
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{ 43.0},
{ 48.0},
{ 42.0},
{ 28.0},
{ 10.0},
{ 8.0},
{ 2.0},
{ 0.0},
{ 1.0},
{ 5.0},
{ 12.0},
{ 14.0},
{ 35.0},
{ 46.0},
{ 41.0},
{ 30.0},
{ 24.0},
{ 16.0},
{ 7.0},
{ 4.0},
{ 2.0},
{ 8.0},
{ 17.0},
{ 36.0},
{ 50.0},
{ 62.0},
{ 67.0},
{ 71.0},
{ 48.0},
{ 28.0},
{ 8.0},
{ 13.0},
{ 57.0},
{ 122.0},
{ 138.0},
{ 103.0},
{ 86.0},
{ 63.0},
{ 37.0},
{ 24.0},
{ 11.0},
{ 15.0},
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{ 40.0},
{ 62.0},
{ 98.0},
{ 124.0},
{ 96.0},
{ 66.0},
{ 64.0},
{ 54.0},
{ 39.0},
{ 21.0},
{ 7.0},
{ 4.0},
{ 23.0},
{ 55.0},
{ 94.0},
{ 96.0},
{ 77.0},
{ 59.0},
{ 44.0},
{ 47.0},
{ 30.0},
{ 16.0},
{ 7.0},
{ 37.0},
{ 74.0}};

MultiCrossCorrelation mcc = new MultiCrossCorrelation(x, y, 10);

new PrintMatrix("Mean of X : ").print(mcc.getMeanX());

new PrintMatrix("Variance of X : ").print(mcc.getVarianceX());

new PrintMatrix("Mean of Y : ").print(mcc.getMeanY());

new PrintMatrix("Variance of Y : ").print(mcc.getVarianceY());

double[][][] ccv = new double[21][2][1];

double[][][] cc = new double[21][2][1];

ccv = mcc.getCrossCovariance();

System.out.println("Multichannel cross-covariance between X and Y");

for (i=0; i<21; i++) {
System.out.println("Lag K = "+(i-10));

new PrintMatrix("CrossCovariances : ").print(ccv[i]);
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}
cc = mcc.getCrossCorrelation();

System.out.println("Multichannel cross-correlation between X and Y");

for (i=0; i<21; i++) {
System.out.println("Lag K = "+(i-10));

new PrintMatrix("CrossCorrelations : ").print(cc[i]);

}
}

}

Output

Mean of X :

0

0 63.43

1 97.97

Variance of X :

0

0 2,643.685

1 1,978.429

Mean of Y :

0

0 46.94

Variance of Y :

0

0 1,383.756

Multichannel cross-covariance between X and Y

Lag K = -10

CrossCovariances :

0

0 -20.512

1 70.713

Lag K = -9

CrossCovariances :

0
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0 65.024

1 38.136

Lag K = -8

CrossCovariances :

0

0 216.637

1 135.578

Lag K = -7

CrossCovariances :

0

0 246.794

1 100.362

Lag K = -6

CrossCovariances :

0

0 142.128

1 44.968

Lag K = -5

CrossCovariances :

0

0 50.697

1 -11.809

Lag K = -4

CrossCovariances :

0

0 72.685

1 32.693

Lag K = -3

CrossCovariances :

0

0 217.854

1 -40.119

Lag K = -2

CrossCovariances :

0
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0 355.821

1 -152.649

Lag K = -1

CrossCovariances :

0

0 579.653

1 -212.95

Lag K = 0

CrossCovariances :

0

0 821.626

1 -104.752

Lag K = 1

CrossCovariances :

0

0 810.131

1 55.16

Lag K = 2

CrossCovariances :

0

0 628.385

1 84.775

Lag K = 3

CrossCovariances :

0

0 438.272

1 75.963

Lag K = 4

CrossCovariances :

0

0 238.793

1 200.383

Lag K = 5

CrossCovariances :

0
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0 143.621

1 282.986

Lag K = 6

CrossCovariances :

0

0 252.974

1 234.393

Lag K = 7

CrossCovariances :

0

0 479.468

1 223.034

Lag K = 8

CrossCovariances :

0

0 724.912

1 124.457

Lag K = 9

CrossCovariances :

0

0 924.971

1 -79.517

Lag K = 10

CrossCovariances :

0

0 922.759

1 -279.286

Multichannel cross-correlation between X and Y

Lag K = -10

CrossCorrelations :

0

0 -0.011

1 0.043

Lag K = -9

CrossCorrelations :
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0

0 0.034

1 0.023

Lag K = -8

CrossCorrelations :

0

0 0.113

1 0.082

Lag K = -7

CrossCorrelations :

0

0 0.129

1 0.061

Lag K = -6

CrossCorrelations :

0

0 0.074

1 0.027

Lag K = -5

CrossCorrelations :

0

0 0.027

1 -0.007

Lag K = -4

CrossCorrelations :

0

0 0.038

1 0.02

Lag K = -3

CrossCorrelations :

0

0 0.114

1 -0.024

Lag K = -2

CrossCorrelations :
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0

0 0.186

1 -0.092

Lag K = -1

CrossCorrelations :

0

0 0.303

1 -0.129

Lag K = 0

CrossCorrelations :

0

0 0.43

1 -0.063

Lag K = 1

CrossCorrelations :

0

0 0.424

1 0.033

Lag K = 2

CrossCorrelations :

0

0 0.329

1 0.051

Lag K = 3

CrossCorrelations :

0

0 0.229

1 0.046

Lag K = 4

CrossCorrelations :

0

0 0.125

1 0.121

Lag K = 5

CrossCorrelations :
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0

0 0.075

1 0.171

Lag K = 6

CrossCorrelations :

0

0 0.132

1 0.142

Lag K = 7

CrossCorrelations :

0

0 0.251

1 0.135

Lag K = 8

CrossCorrelations :

0

0 0.379

1 0.075

Lag K = 9

CrossCorrelations :

0

0 0.484

1 -0.048

Lag K = 10

CrossCorrelations :

0

0 0.482

1 -0.169

class ARMA

Computes least-square estimates of parameters for an ARMA model.

Class ARMA computes estimates of parameters for a nonseasonal ARMA model given a
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sample of observations, {Wt}, for t = 1, 2, . . . , n, where n = z.length.

Two methods of parameter estimation, method of moments and least squares, are
provided. The user can choose a method using the setMethod method. If the user wishes
to use the least-squares algorithm, the preliminary estimates are the method of moments
estimates by default. Otherwise, the user can input initial estimates by using the
setInitialEstimates method. The following table lists the appropriate methods for both
the method of moments and least-squares algorithm:
Least Squares Both Method of Moment and Least

Squares
setCenter

setARLags setMethod

setMALags setRelativeError

setBackcasting setMaxIterations

setConvergenceTolerance setMeanEstimate

setInitialEstimates getMeanEstimate

getResidual getAutocovariance

getSSResidual getVariance

getParamEstimatesCovariance getConstant

getAR

getMA

Method of Moments Estimation

Suppose the time series {Zt} is generated by an ARMA (p, q) model of the form

φ(B)Zt = θ0 + θ(B)At

for t ∈ {0,±1,±2, . . .}

Let µ̂ = zMean be the estimate of the mean µ of the time series {Zt}, where µ̂ equals the
following:

µ̂ =

 µ for µ known
1
n

n∑
t=1

Zt for µ unknown

The autocovariance function is estimated by

σ̂ (k) =
1
n

n−k∑
t=1

(Zt − µ̂) (Zt+k − µ̂)
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for k = 0, 1, . . . ,K, where K = p + q. Note that σ̂(0) is an estimate of the sample variance.

Given the sample autocovariances, the function computes the method of moments
estimates of the autoregressive parameters using the extended Yule-Walker equations as
follows:

Σ̂φ̂ = σ̂

where

φ̂ =
(
φ̂1, . . . , φ̂p

)T

Σ̂ij = σ̂ (|q + i− j|) , i, j = 1, . . . , p

σ̂i = σ̂ (q + i) , i = 1, . . . , p

The overall constant θ0 is estimated by the following:

θ̂0 =


µ̂ for p = 0

µ̂

(
1−

p∑
i=1

φ̂i

)
for p > 0

The moving average parameters are estimated based on a system of nonlinear equations
given K = p + q + 1 autocovariances, σ(k) for k = 1, . . . ,K, and p autoregressive
parameters φi for i = 1, . . . , p.

Let Z ′t = φ(B)Zt. The autocovariances of the derived moving average process Z ′t = θ(B)At

are estimated by the following relation:

σ̂′ (k) =


σ̂ (k) for p = 0
p∑

i=0

p∑
j=0

φ̂iφ̂j (σ̂ (|k + i− j|)) for p ≥ 1, φ̂0 ≡ −1

The iterative procedure for determining the moving average parameters is based on the
relation

σ (k) =
{ (

1 + θ2
1 + . . . + θ2

q

)
σ2

A for k = 0
(−θk + θ1θk+1 + . . . + θq−kθq)σ2

A for k ≥ 1

where σ(k) denotes the autocovariance function of the original Zt process.
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Let τ = (τ0, τ1, . . . , τq)T and f = (f0, f1, . . . , fq)T , where

τj =
{
σA for j = 0
−θj/τ0 for j = 1, . . . , q

and

fj =
q−j∑
i=0

τiτi+j − σ̂′ (j) for j = 0, 1, . . . , q

Then, the value of τ at the (i + 1)-th iteration is determined by the following:

τ i+1 = τ i −
(
T i
)−1

f i

The estimation procedure begins with the initial value

τ0 = (
√
σ̂′ (0) , 0, . . . , 0)T

and terminates at iteration i when either
∥∥f i
∥∥ is less than relativeError or i equals

iterations. The moving average parameter estimates are obtained from the final estimate
of τ by setting

θ̂j = −τj/τ0 for j = 1, . . . , q

The random shock variance is estimated by the following:

σ̂2
A =

 σ̂(0)−
p∑

i=1
φ̂iσ̂(i) for q = 0

τ2
0 for q ≥ 0

See Box and Jenkins (1976, pp. 498-500) for a description of a function that performs
similar computations.

Least-squares Estimation

Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the form,

φ(B)(Zt − µ) = θ(B)At for t ∈ {0,±1,±2, . . .}

where B is the backward shift operator, µ is the mean of Zt, and
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φ (B) = 1− φ1B
lφ(1) − φ2B

lφ(2) − ... − φpB
lφ(p) for p ≥ 0

θ (B) = 1− θ1Blθ(1) − θ2Blθ(2) − ... − θqB
lθ(q) for q ≥ 0

with p autoregressive and q moving average parameters. Without loss of generality, the
following is assumed:

1 ≤ lφ(1) ≤ lφ(2) ≤ . . . ≤ lφ(p)

1 ≤ lθ(1) ≤ lθ(2) ≤ . . . ≤ lθ(q)

so that the nonseasonal ARMA model is of order (p′, q′), where p′ = lθ(p) and q′ = lθ(q).
Note that the usual hierarchical model assumes the following:

lφ(i) = i, 1 ≤ i ≤ p

lθ(j) = j, 1 ≤ j ≤ q

Consider the sum-of-squares function

ST (µ, φ, θ) =
n∑

−T+1

[At]
2

where

[At] = E [At |(µ, φ, θ, Z) ]

and T is the backward origin. The random shocks {At} are assumed to be independent
and identically distributed

N
(
0, σ2

A

)
random variables. Hence, the log-likelihood function is given by

l (µ, φ, θ, σA) = f (µ, φ, θ)− n ln (σA)− ST (µ, φ, θ)
2σ2

A
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where f(µ, φ, θ) is a function of µ, φ, and θ.

For T = 0, the log-likelihood function is conditional on the past values of both Zt and At

required to initialize the model. The method of selecting these initial values usually
introduces transient bias into the model (Box and Jenkins 1976, pp. 210-211). For
T =∞, this dependency vanishes, and estimation problem concerns maximization of the
unconditional log-likelihood function. Box and Jenkins (1976, p. 213) argue that

S∞ (µ, φ, θ) /
(
2σ2

A

)
dominates

l
(
µ, φ, θ, σ2

A

)
The parameter estimates that minimize the sum-of-squares function are called
least-squares estimates. For large n, the unconditional least-squares estimates are
approximately equal to the maximum likelihood-estimates.

In practice, a finite value of T will enable sufficient approximation of the unconditional
sum-of-squares function. The values of [AT ] needed to compute the unconditional sum of
squares are computed iteratively with initial values of Zt obtained by back forecasting.
The residuals (including backcasts), estimate of random shock variance, and covariance
matrix of the final parameter estimates also are computed. ARIMA parameters can be
computed by using Difference with ARMA.

Forecasting

The Box-Jenkins forecasts and their associated probability limits for a nonseasonal
ARMA model are computed given a sample of n = z.length, {Zt} for t = 1, 2, . . . , n.

Suppose the time series Zt is generated by a nonseasonal ARMA model of the form

φ(B)Zt = θ0 + θ(B)At

for t ∈ {0,±1, ±2, . . .}, where B is the backward shift operator, θ0 is the constant, and

φ (B) = 1− φ1B
lφ(1) − φ2B

lφ(2) − . . . − φpB
lφ(p)

θ (B) = 1− θ1Blθ(1) − θ2Blθ(2) − . . . − θqB
lθ(q)

with p autoregressive and q moving average parameters. Without loss of generality, the
following is assumed:
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1 ≤ lφ(1) ≤ lφ(2) ≤ . . . lφ(p)

1 ≤ lθ(1) ≤ lθ(2) ≤ . . . ≤ lθ(q)

so that the nonseasonal ARMA model is of order (p′, q′), where p′ = lθ(p) and q′ = lθ(q).
Note that the usual hierarchical model assumes the following:

lφ(i) = i, 1 ≤ i ≤ p

lθ(j) = j, 1 ≤ j ≤ q

The Box-Jenkins forecast at origin t for lead time l of Zt+1 is defined in terms of the
difference equation

Ẑt (l) = θ0 + φ1

[
Zt+l−lφ(1)

]
+ . . . + φp

[
Zt+l−lφ(p)

]

+ [At+l]− θ1
[
At+l−lθ(1)

]
− ... − [At+l]− θ1

[
At+l−lθ(1)

]
− ...− θq

[
At+l−lθ(q)

]
where the following is true:

[Zt+k] =
{
Zt+k for k = 0, −1, −2, . . .
Ẑt (k) for k = 1, 2, . . .

[At+k] =
{
Zt+k − Ẑt+k−1 (1) for k = 0, −1, −2, ...
0 for k = 1, 2, ...

The 100(1− α) percent probability limits for Zt+l are given by

Ẑt (l)± z1/2

1 +
l−1∑
j=1

ψ2
j


1/2

σA

where z(1−α/2) is the 100(1− α/2) percentile of the standard normal distribution

σ2
A

and
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{
ψ2

j

}
are the parameters of the random shock form of the difference equation. Note that the
forecasts are computed for lead times l = 1, 2, . . . , L at origins
t = (n− b), (n− b+ 1), . . . , n, where L = nPredict and b = backwardOrigin.

The Box-Jenkins forecasts minimize the mean-square error

E
[
Zt+l − Ẑt (l)

]2
Also, the forecasts can be easily updated according to the following equation:

Ẑt+1 (l) = Ẑt (l + 1) + ψlAt+1

This approach and others are discussed in Chapter 5 of Box and Jenkins (1976).

Declaration

public class com.imsl.stat.ARMA
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Classes

class ARMA.TooManyCallsException

The number of calls to the function has exceeded the maximum number of iterations.

Declaration

public static class com.imsl.stat.ARMA.TooManyCallsException
extends com.imsl.IMSLException (page 1240)

Constructors

• ARMA.TooManyCallsException
public ARMA.TooManyCallsException( java.lang.String message )
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– Description
Constructs an TooManyCallsException with the specified detail message. A
detail message is a String that describes this particular exception.

– Parameters
∗ message – the detail message

• ARMA.TooManyCallsException
public ARMA.TooManyCallsException( java.lang.String key,
java.lang.Object[] arguments )

– Description
Constructs an TooManyCallsException with the specified detail message. The
error message string is in a resource bundle, ErrorMessages.

– Parameters
∗ key – the key of the error message in the resource bundle
∗ arguments – an array containing arguments used within the error message

string

class ARMA.IncreaseErrRelException

The bound for the relative error is too small.

Declaration

public static class com.imsl.stat.ARMA.IncreaseErrRelException
extends com.imsl.IMSLException (page 1240)

Constructors

• ARMA.IncreaseErrRelException
public ARMA.IncreaseErrRelException( java.lang.String message )

– Description
Constructs an IncreaseErrRelException with the specified detail message. A
detail message is a String that describes this particular exception.

– Parameters
∗ message – the detail message
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• ARMA.IncreaseErrRelException
public ARMA.IncreaseErrRelException( java.lang.String key,
java.lang.Object[] arguments )

– Description
Constructs an IncreaseErrRelException with the specified detail message. The
error message string is in a resource bundle, ErrorMessages.

– Parameters
∗ key – the key of the error message in the resource bundle
∗ arguments – an array containing arguments used within the error message

string

class ARMA.NewInitialGuessException

The iteration has not made good progress.

Declaration

public static class com.imsl.stat.ARMA.NewInitialGuessException
extends com.imsl.IMSLException (page 1240)

Constructors

• ARMA.NewInitialGuessException
public ARMA.NewInitialGuessException( java.lang.String message )

– Description
Constructs an NewInitialGuessException with the specified detail message. A
detail message is a String that describes this particular exception.

– Parameters
∗ message – the detail message

• ARMA.NewInitialGuessException
public ARMA.NewInitialGuessException( java.lang.String key,
java.lang.Object[] arguments )

– Description
Constructs an NewInitialGuessException with the specified detail message.
The error message string is in a resource bundle, ErrorMessages.

– Parameters
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∗ key – the key of the error message in the resource bundle
∗ arguments – an array containing arguments used within the error message

string

class ARMA.MatrixSingularException

The input matrix is singular.

Declaration

public static class com.imsl.stat.ARMA.MatrixSingularException
extends com.imsl.IMSLException (page 1240)

Constructors

• ARMA.MatrixSingularException
public ARMA.MatrixSingularException( java.lang.String message )

– Description
Constructs an MatrixSingularException with the specified detail message. A
detail message is a String that describes this particular exception.

– Parameters
∗ message – the detail message

• ARMA.MatrixSingularException
public ARMA.MatrixSingularException( java.lang.String key,
java.lang.Object[] arguments )

– Description
Constructs an MatrixSingularException with the specified detail message. The
error message string is in a resource bundle, ErrorMessages.

– Parameters
∗ key – the key of the error message in the resource bundle
∗ arguments – an array containing arguments used within the error message

string

class ARMA.TooManyITNException

Maximum number of iterations exceeded.
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Declaration

public static class com.imsl.stat.ARMA.TooManyITNException
extends com.imsl.IMSLException (page 1240)

Constructors

• ARMA.TooManyITNException
public ARMA.TooManyITNException( java.lang.String message )

– Description
Constructs an TooManyITNException with the specified detail message. A detail
message is a String that describes this particular exception.

– Parameters
∗ message – the detail message

• ARMA.TooManyITNException
public ARMA.TooManyITNException( java.lang.String key,
java.lang.Object[] arguments )

class ARMA.TooManyFcnEvalException

Maximum number of function evaluations exceeded.

Declaration

public static class com.imsl.stat.ARMA.TooManyFcnEvalException
extends com.imsl.IMSLException (page 1240)

Constructors

• ARMA.TooManyFcnEvalException
public ARMA.TooManyFcnEvalException( java.lang.String message )

– Description
Constructs an TooManyFcnEvalException with the specified detail message. A
detail message is a String that describes this particular exception.

– Parameters
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∗ message – the detail message

• ARMA.TooManyFcnEvalException
public ARMA.TooManyFcnEvalException( java.lang.String key,
java.lang.Object[] arguments )

– Description
Constructs an TooManyFcnEvalException with the specified detail message. The
error message string is in a resource bundle, ErrorMessages.

– Parameters
∗ key – the key of the error message in the resource bundle
∗ arguments – an array containing arguments used within the error message

string

class ARMA.TooManyJacobianEvalException

Maximum number of Jacobian evaluations exceeded.

Declaration

public static class com.imsl.stat.ARMA.TooManyJacobianEvalException
extends com.imsl.IMSLException (page 1240)

Constructors

• ARMA.TooManyJacobianEvalException
public ARMA.TooManyJacobianEvalException( java.lang.String
message )

– Description
Constructs an TooManyJacobianEvalException with the specified detail message.
A detail message is a String that describes this particular exception.

– Parameters
∗ message – the detail message

• ARMA.TooManyJacobianEvalException
public ARMA.TooManyJacobianEvalException( java.lang.String key,
java.lang.Object[] arguments )
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– Description
Constructs an TooManyJacobianEvalException with the specified detail message.
The error message string is in a resource bundle, ErrorMessages.

– Parameters
∗ key – the key of the error message in the resource bundle
∗ arguments – an array containing arguments used within the error message

string

class ARMA.IllConditionedException

The problem is ill-conditioned.

Declaration

public static class com.imsl.stat.ARMA.IllConditionedException
extends com.imsl.IMSLException (page 1240)

Constructors

• ARMA.IllConditionedException
public ARMA.IllConditionedException( java.lang.String message )

– Description
Constructs an IllConditionedException with the specified detail message. A
detail message is a String that describes this particular exception.

– Parameters
∗ message – the detail message

• ARMA.IllConditionedException
public ARMA.IllConditionedException( java.lang.String key,
java.lang.Object[] arguments )

– Description
Constructs an IllConditionedException with the specified detail message. The
error message string is in a resource bundle, ErrorMessages.

– Parameters
∗ key – the key of the error message in the resource bundle
∗ arguments – an array containing arguments used within the error message

string
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Fields

• public static final int METHOD OF MOMENTS

– Indicates autoregressive and moving average parameters are estimated by a
method of moments procedure.

• public static final int LEAST SQUARES

– Indicates autoregressive and moving average parameters are estimated by a
least-squares procedure.

Constructor

• ARMA
public ARMA( int p, int q, double[] z )

– Description
Constructor for ARMA.

– Parameters
∗ p – an int scalar containing the number of autoregressive (AR) parameters
∗ q – an int scalar containing the number of moving average (MA)

parameters
∗ z – a double array containing the observations

– Throws
∗ java.lang.IllegalArgumentException – is thrown if p, q, and z.length

are not consistent.

Methods

• compute
public final void compute( ) throws
com.imsl.stat.ARMA.MatrixSingularException,
com.imsl.stat.ARMA.TooManyCallsException,
com.imsl.stat.ARMA.IncreaseErrRelException,
com.imsl.stat.ARMA.NewInitialGuessException,
com.imsl.stat.ARMA.IllConditionedException,
com.imsl.stat.ARMA.TooManyITNException,
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com.imsl.stat.ARMA.TooManyFcnEvalException,
com.imsl.stat.ARMA.TooManyJacobianEvalException

– Description
Computes least-square estimates of parameters for an ARMA model.

– Throws
∗ com.imsl.stat.ARMA.MatrixSingularException – is thrown if the input

matrix is singular
∗ com.imsl.stat.ARMA.TooManyCallsException – is thrown if the number

of calls to the function has exceeded
∗ com.imsl.stat.ARMA.IncreaseErrRelException – is thrown if the bound

for the relative error is too small
∗ com.imsl.stat.ARMA.NewInitialGuessException – is thrown if the

iteration has not made good progress
∗ com.imsl.stat.ARMA.IllConditionedException – is thrown if the

problem is ill-conditioned
∗ com.imsl.stat.ARMA.TooManyITNException – is thrown if the maximum

number of iterations exceeded
∗ com.imsl.stat.ARMA.TooManyFcnEvalException – is thrown if the

maximum number of function evaluations exceeded
∗ com.imsl.stat.ARMA.TooManyJacobianEvalException – is thrown if the

maximum number of Jacobian evaluations exceeded

• forecast
public final double[][] forecast( int nPredict )

– Description
Computes forecasts and their associated probability limits for an ARMA model.

– Parameters
∗ nPredict – an int scalar containing the maximum lead time for forecasts.

nPredict must be greater than 0.
– Returns – a double matrix of dimensions of nPredict by backwardOrigin + 1

containing the forecasts. Return NULL if the least-square estimates of
parameters is not computed.

• getAR
public double[] getAR( )

– Description
Returns the final autoregressive parameter estimates.

– Returns – a double array of length p containing the final autoregressive
parameter estimates
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• getAutoCovariance
public double[] getAutoCovariance( )

– Description
Returns the autocovariances of the time series z.

– Returns – a double array containing the autocovariances of lag k, where k =

1, ..., p + q + 1

• getConstant
public double getConstant( )

– Description
Returns the constant parameter estimate.

– Returns – a double scalar containing the constant parameter estimate

• getDeviations
public double[] getDeviations( )

– Description
Returns the deviations from each forecast that give the confidence percent
probability limits.

– Returns – a double array of length nPredict containing the deviations from
each forecast that give the confidence percent probability limits

• getMA
public double[] getMA( )

– Description
Returns the final moving average parameter estimates.

– Returns – a double array of length q containing the final moving average
parameter estimates

• getMeanEstimate
public double getMeanEstimate( )

– Description
Returns an update of the mean of the time series z.

– Returns – a double scalar containing an update of the mean of the time series
z. If the time series is not centered about its mean, and least-squares algorithm
is used, zMean is not used in parameter estimation.

• getParamEstimatesCovariance
public double[][] getParamEstimatesCovariance( )
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– Description
Returns the covariances of parameter estimates.

– Returns – a double matrix of dimensions of np by np, where np = p + q + 1 if
z is centered about zMean, and np = p + q if z is not centered, containing the
covariances of parameter estimates. The ordering of variables is zMean, ar, and
ma.

• getPsiWeights
public double[] getPsiWeights( )

– Description
Returns the psi weights of the infinite order moving average form of the model.

– Returns – a double array of length nPredict containing the psi weights of the
infinite order moving average form of the model.

• getResidual
public double[] getResidual( )

– Description
Returns the residuals.

– Returns – a double array of length z.length - Math.max(arLags[i]) + length

containing the residuals (including backcasts) at the final parameter estimate
point in the first z.length - Math.max(arLags[i]) + nb, where nb is the
number of values backcast. This method is only applicable using least-squares
algorithm.

• getSSResidual
public double getSSResidual( )

– Description
Returns the sum of squares of the random shock.

– Returns – a double scalar containing the sum of squares of the random shock,
residual[0]2 + . . .+ residual[na− 1]2, where residual is the array return from
the getResidual method and na = residual.length . This method is only
applicable using least-squares algorithm.

• getVariance
public double getVariance( )

– Description
Returns the variance of the time series z.

– Returns – a double scalar containing the variance of the time series z
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• setARLags
public void setARLags( int[] arLags )

– Description
Sets the order of the autoregressive parameters.

– Parameters
∗ arLags – an int array of length p containing the order of the

autoregressive parameters. The elements of arLags must be greater than or
equal to 1. Default: arLags = [1, 2, ..., p]

• setBackcasting
public void setBackcasting( int length, double tolerance )

– Description
Sets backcasting option.

– Parameters
∗ length – an int scalar containing the maximum length of backcasting and

must be greater than or equal to 0. Default: length = 10.
∗ tolerance – a double scalar containing the tolerance level used to

determine convergence of the backcast algorithm. Typically, tolerance is
set to a fraction of an estimate of the standard deviation of the time series.
Default: tolerance = 0.01 * standard deviation of z.

• setBackwardOrigin
public void setBackwardOrigin( int backwardOrigin )

– Description
Sets the maximum backward origin.

– Parameters
∗ backwardOrigin – an int scalar specifying the maximum backward origin.

backwardOrigin must be greater than or equal to 0 and less than or equal
to z.length - Math.max(maxar, maxma), where
maxar = Math.max(arLags[i]), maxma = Math.max(maLags[j]), and
forecasts at origins z.length - backwardOrigin through z.length are
generated. Default: backwardOrigin = 0.

• setCenter
public void setCenter( boolean center )

– Description
Sets center option.

– Parameters
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∗ center – a boolean scalar. If false is specified, the time series is not
centered about its mean, zMean. If true is specified, the time series is
centered about its mean. Default: center = true.

• setConfidence
public void setConfidence( double confidence )

– Description
Sets the confidence percent probability limits of the forecasts.

– Parameters
∗ confidence – a double scalar specifying the confidence percent probability

limits of the forecasts. Typical choices for confidence are 0.90, 0.95, and
0.99. confidence must be greater than 0.0 and less than 1.0. Default:
confidence = 0.95.

• setConvergenceTolerance
public void setConvergenceTolerance( double convergenceTolerance )

– Description
Sets the tolerance level used to determine convergence of the nonlinear
least-squares algorithm.

– Parameters
∗ convergenceTolerance – a double scalar containing the tolerance level

used to determine convergence of the nonlinear least-squares algorithm.
convergenceTolerance represents the minimum relative decrease in sum of
squares between two iterations required to determine convergence. Hence,
convergenceTolerance must be greater than or equal to 0. The default
value is max(10−20, eps2/3), where eps = 2.2204460492503131e-16.

• setInitialEstimates
public void setInitialEstimates( double[] ar, double[] ma )

– Description
Sets preliminary estimates.

– Parameters
∗ ar – a double array of length p containing preliminary estimates of the

autoregressive parameters. ar is computed internally if this method is not
used. This method is only applicable using least-squares algorithm.
∗ ma – a double array of length q containing preliminary estimates of the

moving average parameters. ma is computed internally if this method is not
used. This method is only applicable using least-squares algorithm.

• setMALags
public void setMALags( int[] maLags )
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– Description
Sets the order of the moving average parameters.

– Parameters
∗ maLags – an int array of length q containing the order of the moving

average parameters. The maLags elements must be greater than or equal to
1. Default: maLags = [1, 2, ..., q]

• setMaxIterations
public void setMaxIterations( int iterations )

– Description
Sets the maximum number of iterations.

– Parameters
∗ iterations – an int scalar specifying the maximum number of iterations

allowed in the nonlinear equation solver used in both the method of
moments and least-squares algorithms. Default: interations = 200.

• setMeanEstimate
public void setMeanEstimate( double zMean )

– Description
Sets an initial estimate of the mean of the time series z.

– Parameters
∗ zMean – a double scalar containing an initial estimate of the mean of the

time series z. If the time series is not centered about its mean, and
least-squares algorithm is used, zMean is not used in parameter estimation.

• setMethod
public void setMethod( int method )

– Description
Sets the method to be used by the class.

– Parameters
∗ method – an int scalar specifying the method to be use. If

ARMA.METHOD OF MOMENTS is specified, the autoregressive and moving average
parameters are estimated by a method of moments procedure. If
ARMA.LEAST SQUARES is specified, the autoregressive and moving average
parameters are estimated by a least-squares procedure. Default method =

ARMA.METHOD OF MOMENTS.

• setRelativeError
public void setRelativeError( double relativeError )
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– Description
Sets the stopping criterion for use in the nonlinear equation solver.

– Parameters
∗ relativeError – a double scalar containing the stopping criterion for use

in the nonlinear equation solver used in both the method of moments and
least-squares algorithms. Default: relativeError =

2.2204460492503131e-14.

Example 1: ARMA

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of
sunspots observed each year from 1749 through 1924. The data set for this example
consists of the number of sunspots observed from 1770 through 1869. The method of
moments estimates

θ̂0, φ̂1, φ̂2, and θ̂1

for the ARMA(2, 1) model

zt = θ0 + φ1zt−1 + φ2zt−2 − θ1At−1 +At

where the errors At are independently normally distributed with mean zero and variance

σ2
A

import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

public class ARMAEx1 {
public static void main(String args[]) throws Exception {

double[] z = {100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,

154.4, 125.9, 84.8, 68.1, 38.5, 22.8, 10.2, 24.1, 82.9,

132, 130.9, 118.1, 89.9, 66.6, 60, 46.9, 41, 21.3, 16,

6.4, 4.1, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,

8.1, 2.5, 0, 1.4, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,

23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5,

67, 71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,

85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5,

124.3, 95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8,
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54.8, 93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3,

37.3, 73.9};

ARMA arma = new ARMA(2, 1, z);

arma.setRelativeError(0.0);

arma.setMaxIterations(0);

arma.compute();

new PrintMatrix("AR estimates are: ").print(arma.getAR());

System.out.println();

new PrintMatrix("MA estimate is: ").print(arma.getMA());

}
}

Output

AR estimates are:

0

0 1.244

1 -0.575

MA estimate is:

0

0 -0.124

Example 2: ARMA

The data for this example are the same as that for Example 1. Preliminary method of
moments estimates are computed by default, and the method of least squares is used to
find the final estimates. Note that at the end of the output, a warning message appears.
In most cases, this warning message can be ignored. There are three general reasons this
warning can occur:

1. Convergence is declared using the criterion based on tolerance, but the gradient of
the residual sum-of-squares function is nonzero. This occurs in this example. Either
the message can be ignored or tolerance can be reduced to allow more iterations
and a slightly more accurate solution.
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2. Convergence is declared based on the fact that a very small step was taken, but the
gradient of the residual sum-of-squares function was nonzero. This message can
usually be ignored. Sometimes, however, the algorithm is making very slow progress
and is not near a minimum.

3. Convergence is not declared after 100 iterations.

Trying a smaller value for tolerance can help determine what caused the error message.

import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

public class ARMAEx2 {
public static void main(String args[]) throws Exception {

double[] arInit = {1.24426e0, -5.75149e-1};
double[] maInit = {-1.24094e-1};
double[] z = {100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,

154.4, 125.9, 84.8, 68.1, 38.5, 22.8, 10.2, 24.1, 82.9,

132, 130.9, 118.1, 89.9, 66.6, 60, 46.9, 41, 21.3, 16,

6.4, 4.1, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,

8.1, 2.5, 0, 1.4, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,

23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5,

67, 71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,

85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5,

124.3, 95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8,

54.8, 93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3,

37.3, 73.9};

ARMA arma = new ARMA(2, 1, z);

arma.setMethod(arma.LEAST SQUARES);

arma.setInitialEstimates(arInit, maInit);

arma.setConvergenceTolerance(0.125);

arma.setMeanEstimate(46.976);

arma.compute();

new PrintMatrix("AR estimates are: ").print(arma.getAR());

System.out.println();

new PrintMatrix("MA estimate is: ").print(arma.getMA());

}
}
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Output

AR estimates are:

0

0 1.393

1 -0.734

MA estimate is:

0

0 -0.137

Warning com.imsl.stat.ARMA: Relative function convergence - Both the scaled actual and
predicted reductions in the function are less than or equal to the relative function
convergence tolerance “convergence tolerance” = 0.065. com.imsl.stat.ARMA: Least
squares estimation of the parameters has failed to converge. Increase “length” and/or
“tolerance” and/or “convergence tolerance”. The estimates of the parameters at the last
iteration may be used as new starting values.

Example 3: Forecasting

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of
sunspots observed each year from 1749 through 1924. The data set for this example
consists of the number of sunspots observed from 1770 through 1869. Method forecast in
class ARMA computes forecasts and 95-percent probability limits for the forecasts for an
ARMA(2, 1) model fit using the method of moments option. With backward origin = 3,
forecast method provides forecasts given the data through 1866, 1867, 1868, and 1869,
respectively. The deviations from the forecast for computing probability limits, and the
psi weights can be used to update forecasts when more data is available. For example, the
forecast for the 102-nd observation (year 1871) given the data through the 100-th
observation (year 1869) is 77.21; and 95-percent probability limits are given by
77.21± 56.30. After observation 101 ( Z101 for year 1870) is available, the forecast can be
updated by using

Ẑt (l)± zα/2

1 +
l−1∑
j=1

ψ2
j


1/2

σA

with the psi weight (ψ1 = 1.37) and the one-step-ahead forecast error for observation

610 • ARMA JMSL



101(Z101 − 83.72) to give the following:

77.21 + 1.37× (Z101 − 83.72)

Since this updated forecast is one step ahead, the 95-percent probability limits are now
given by the forecast ±33.22.

import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

import com.imsl.math.PrintMatrixFormat;

public class ARMAEx3 {
public static void main(String args[]) throws Exception {

double[] z = {100.8, 81.6, 66.5, 34.8, 30.6, 7, 19.8, 92.5,

154.4, 125.9, 84.8, 68.1, 38.5, 22.8, 10.2, 24.1, 82.9,

132, 130.9, 118.1, 89.9, 66.6, 60, 46.9, 41, 21.3, 16,

6.4, 4.1, 6.8, 14.5, 34, 45, 43.1, 47.5, 42.2, 28.1, 10.1,

8.1, 2.5, 0, 1.4, 5, 12.2, 13.9, 35.4, 45.8, 41.1, 30.4,

23.9, 15.7, 6.6, 4, 1.8, 8.5, 16.6, 36.3, 49.7, 62.5, 67,

71, 47.8, 27.5, 8.5, 13.2, 56.9, 121.5, 138.3, 103.2,

85.8, 63.2, 36.8, 24.2, 10.7, 15, 40.1, 61.5, 98.5, 124.3,

95.9, 66.5, 64.5, 54.2, 39, 20.6, 6.7, 4.3, 22.8, 54.8,

93.8, 95.7, 77.2, 59.1, 44, 47, 30.5, 16.3, 7.3, 37.3,

73.9};
PrintMatrixFormat pmf = new PrintMatrixFormat();

ARMA arma = new ARMA(2, 1, z);

arma.setRelativeError(0.0);

arma.setMaxIterations(0);

arma.compute();

System.out.println("Method of Moments initial estimates:");

new PrintMatrix("AR estimates are: ").print(arma.getAR());

System.out.println();

new PrintMatrix("MA estimate is: ").print(arma.getMA());

arma.setBackwardOrigin(3);

String[] labels = { "Forecast From 1866", "Forecast From 1867",

"Forecast From 1868", "Forecast From 1869"};
pmf.setColumnLabels(labels);

new PrintMatrix("forecasts: ").print(pmf, arma.forecast(12));
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String[] devlabel = {"Dev. for prob. limits"};
pmf.setColumnLabels(devlabel);

new PrintMatrix().print(pmf, arma.getDeviations());

pmf = new PrintMatrixFormat();

String[] psilabel = {"Psi"};
pmf.setColumnLabels(psilabel);

new PrintMatrix().print(pmf, arma.getPsiWeights());

}
}

Output

Method of Moments initial estimates:

AR estimates are:

0

0 1.244

1 -0.575

MA estimate is:

0

0 -0.124

forecasts:

Forecast From 1866 Forecast From 1867 Forecast From 1868 Forecast From 1869

0 18.283 16.615 55.189 83.72

1 28.918 32.019 62.761 77.209

2 41.01 45.827 61.892 63.461

3 49.939 54.15 56.457 50.099

4 54.094 56.562 50.194 41.38

5 54.128 54.778 45.527 38.217

6 51.782 51.17 43.322 39.296

7 48.842 47.707 43.263 42.458

8 46.533 45.474 44.458 45.772

9 45.352 44.686 45.978 48.076

10 45.21 44.991 47.183 49.037

11 45.713 45.823 47.807 48.908

Dev. for prob. limits
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0 33.218

1 56.298

2 67.617

3 70.643

4 70.751

5 71.087

6 71.907

7 72.534

8 72.75

9 72.765

10 72.778

11 72.823

Psi

0 1.368

1 1.127

2 0.616

3 0.118

4 -0.208

5 -0.326

6 -0.286

7 -0.169

8 -0.045

9 0.041

10 0.077

11 0.072

class Difference

Differences a seasonal or nonseasonal time series.

Class Difference performs m = periods.length successive backward differences of period
si = periods[i− 1] and order di = orders[i− 1] for i = 1, . . . ,m on the n = z.length

observations {Zt} for t = 1, 2, . . . , n.

Consider the backward shift operator B given by

BkZt = Zt−k

for all k. Then, the backward difference operator with period s is defined by the following:
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∆sZt = (1−Bs)Zt = Zt − Zt−s for s ≥ 0

Note that BsZt and ∆sZt are defined only for t = (s+ 1), . . . , n. Repeated differencing
with period s is simply

∆d
sZt = (1−Bs)d Zt =

d∑
j=0

d!
j! (d− j)!

(−1)j BsjZt

where d ≥ 0 is the order of differencing. Note that

∆d
sZt

is defined only for t = (sd+ 1), . . . , n.

The general difference formula used in the class Difference is given by

WT =
{

NaN for t = 1, . . . , nL

∆d1
s1

∆d2
s2
. . .∆dm

sm
Zt for t = nL + 1, . . . , n

where nL represents the number of observations “lost” because of differencing and NaN
represents the missing value code. Note that

nL =
∑

j

sjdj

A homogeneous, stationary time series can be arrived at by appropriately differencing a
homogeneous, nonstationary time series (Box and Jenkins 1976, p. 85). Preliminary
application of an appropriate transformation followed by differencing of a series can enable
model identification and parameter estimation in the class of homogeneous stationary
autoregressive moving average models.

Declaration

public class com.imsl.stat.Difference
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Constructor
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• Difference
public Difference( )

– Description
Constructor for Difference.

Methods

• compute
public final double[] compute( double[] z, int[] periods ) throws
java.lang.IllegalArgumentException

– Description
Computes a Difference series.

– Parameters
∗ z – a double array containing the time series.
∗ periods – an int array containing the periods at which z is to be

differenced.
– Returns – a double array containing the differenced series.

• excludeFirst
public void excludeFirst( boolean exclude )

– Description
If set to true, the observations lost due to differencing will be excluded. The
differenced series will be the length of the number of observations minus the
number of observations lost. If set to false, the observations lost due to
differencing will be set to NaN (Not a number) and included in the differenced
series. The default is to set the lost observations to NaN.

– Parameters
∗ exclude – a boolean specifying whether or not to exclude lost observations

due to differencing.

• getObservationsLost
public int getObservationsLost( )

– Description
Returns the number of observations lost because of differencing the time series.

– Returns – an int containing the number of observations lost because of
differencing the time series z.
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• setOrders
public void setOrders( int[] orders )

– Description
Sets the orders for the Difference object

– Parameters
∗ orders – an int array of length equal to length of periods, containing the

order of each difference given in periods. The elements of orders must be
greater than or equal to 0.

Example 1: Difference

This example uses the Airline Data (Box and Jenkins 1976, p. 531) consisting of the
monthly total number of international airline passengers from January 1949 through
December 1960. Difference is used to compute ...

Wt = ∆1∆12Zt = (Zt − Zt−12)− (Zt−1 − Zt−13)

for t= 14, 15, ...,24.
import com.imsl.stat.*;

public class DifferenceEx1 {
public static void main(String args[]) {

int periods[] = {1, 12};
int nLost;

double[] z = {
112.0,118.0,132.0,129.0,121.0,135.0,

148.0,148.0,136.0,119.0,104.0,118.0,

115.0,126.0,141.0,135.0,125.0,149.0,

170.0,170.0,158.00,133.0,114.0,140.0

};

Difference diff = new Difference();

double[] out = diff.compute(z, periods);

nLost = diff.getObservationsLost();

System.out.println("Observations Lost = " + nLost);

for (int i = 0; i < out.length; i++)

System.out.println(out[i]);

616 • Difference JMSL



}
}

Output

Observations Lost = 13

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

5.0

1.0

-3.0

-2.0

10.0

8.0

0.0

0.0

-8.0

-4.0

12.0

Example 2: Difference

This example uses the same data as Example 1. The first number of lost observations are
excluded from W due to differencing, and the number of lost observations is also output.
import com.imsl.stat.*;

public class DifferenceEx2 {
public static void main(String args[]) {
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int periods[] = {1, 12};
int nLost;

double[] z={
112.0,118.0,132.0,129.0,121.0,135.0,

148.0,148.0,136.0,119.0,104.0,118.0,

115.0,126.0,141.0,135.0,125.0,149.0,

170.0,170.0,158.00,133.0,114.0,140.0

};

Difference diff = new Difference();

diff.excludeFirst(true);

double[] out = diff.compute(z, periods);

nLost = diff.getObservationsLost();

System.out.println("The number of observation lost = "

+ nLost);

for (int i=0; i < out.length; i++)

System.out.println(out[i]);

}
}

Output

The number of observation lost = 13

5.0

1.0

-3.0

-2.0

10.0

8.0

0.0

0.0

-8.0

-4.0

12.0
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class GARCH

Computes estimates of the parameters of a GARCH(p,q) model.

The Generalized Autoregressive Conditional Heteroskedastic (GARCH) model is defined
as

yt = ztσt

σ2
t = σ2 +

p∑
i=1

βiσ
2
t−i+

q∑
i=1

αiy
2
t−i

where zt‘s are independent and identically distributed standard normal random variables,

σ > 0, βi ≥ 0, αi ≥ 0

and

p∑
i=1

βi +
q∑

i=1

αi < 1

The above model is denoted as GARCH(p, q). The p is the autoregressive lag and the q is
the moving average lag. When βi = 0, i = 1, 2, . . . , p, the above model reduces to
ARCH(q) which was proposed by Engle (1982). The nonnegativity conditions on the
parameters implied a nonnegative variance and the condition on the sum of the βi‘s and
αi‘s is required for wide sense stationarity.

In the empirical analysis of observed data, GARCH(1,1) or GARCH(1,2) models have
often found to appropriately account for conditional heteroskedasticity (Palm 1996). This
finding is similar to linear time series analysis based on ARMA models.

It is important to notice that for the above models positive and negative past values have
a symmetric impact on the conditional variance. In practice, many series may have strong
asymmetric influence on the conditional variance. To take into account this phenomena,
Nelson (1991) put forward Exponential GARCH (EGARCH). Lai (1998) proposed and
studied some properties of a general class of models that extended linear relationship of
the conditional variance in ARCH and GARCH into nonlinear fashion.

The maximal likelihood method is used in estimating the parameters in GARCH(p,q).
The log-likelihood of the model for the observed series {Yt} with length m is
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log(L) =
m

2
log(2π)− 1

2

m∑
t=1

y2
t /σ

2
t −

1
2

m∑
t=1

log σ2
t ,

where σ2
t = σ2 +

p∑
i=1

βiσ
2
t−i +

q∑
i=1

αiy
2
t−i.

In the model, if q = 0, the model GARCH is singular such that the estimated Hessian
matrix H is singular.

The initial values of the parameter array x[ ] entered in array xguess[ ] must satisfy
certain constraints. The first element of xguess refers to sigma and must be greater than
zero and less than maxSigma. The remaining p+q initial values must each be greater than
or equal to zero but less than one.

To guarantee stationarity in model fitting,

p+q∑
i=1

x(i) < 1,

is checked internally. The initial values should be selected from the values between zero
and one. The value of Akaike Information Criterion is computed by

2× log(L) + 2× (p + q + 1),

where log(L) is the value of the log-likelihood function at the estimated parameters.

In fitting the optimal model, the class com.imsl.math.MinConGenLin, is modified to find
the maximal likelihood estimates of the parameters in the model. Statistical inferences
can be performed outside of the class GARCH based on the output of the log-likelihood
function (getlogLikelihood method), the Akaike Information Criterion (getAkaike
method), and the variance-covariance matrix (getVarCovarMatrix method).

Declaration

public class com.imsl.stat.GARCH
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable
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Inner Classes

class GARCH.VarsDeterminedException

The variables are determined by the equality constraints.

Declaration

public static class com.imsl.stat.GARCH.VarsDeterminedException
extends com.imsl.IMSLException (page 1240)

Constructors

• GARCH.VarsDeterminedException
public GARCH.VarsDeterminedException( java.lang.String message )

• GARCH.VarsDeterminedException
public GARCH.VarsDeterminedException( java.lang.String key,
java.lang.Object[] arguments )

class GARCH.TooManyIterationsException

Number of function evaluations exceeded 1000.

Declaration

public static class com.imsl.stat.GARCH.TooManyIterationsException
extends com.imsl.IMSLException (page 1240)

Constructors

• GARCH.TooManyIterationsException
public GARCH.TooManyIterationsException( java.lang.String message
)

• GARCH.TooManyIterationsException
public GARCH.TooManyIterationsException( java.lang.String key,
java.lang.Object[] arguments )
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class GARCH.NoVectorXException

No vector X satisfies all of the constraints.

Declaration

public static class com.imsl.stat.GARCH.NoVectorXException
extends com.imsl.IMSLException (page 1240)

Constructors

• GARCH.NoVectorXException
public GARCH.NoVectorXException( java.lang.String message )

• GARCH.NoVectorXException
public GARCH.NoVectorXException( java.lang.String key,
java.lang.Object[] arguments )

class GARCH.EqConstrInconsistentException

The equality constraints and the bounds on the variables are found to be inconsistent.

Declaration

public static class com.imsl.stat.GARCH.EqConstrInconsistentException
extends com.imsl.IMSLException (page 1240)

Constructors

• GARCH.EqConstrInconsistentException
public GARCH.EqConstrInconsistentException( java.lang.String
message )

• GARCH.EqConstrInconsistentException
public GARCH.EqConstrInconsistentException( java.lang.String key,
java.lang.Object[] arguments )
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class GARCH.ConstrInconsistentException

The equality constraints are inconsistent.

Declaration

public static class com.imsl.stat.GARCH.ConstrInconsistentException
extends com.imsl.IMSLException (page 1240)

Constructors

• GARCH.ConstrInconsistentException
public GARCH.ConstrInconsistentException( java.lang.String message
)

• GARCH.ConstrInconsistentException
public GARCH.ConstrInconsistentException( java.lang.String key,
java.lang.Object[] arguments )

Constructor

• GARCH
public GARCH( int p, int q, double[] y, double[] xguess )

– Description
Constructor for GARCH.

– Parameters
∗ p – An int scalar containing the number of autoregressive (AR)

parameters.
∗ q – An int scalar containing the number of moving average (MA)

parameters.
∗ y – A double array containing the observed time series data.
∗ xguess – A double array of length p + q + 1 containing the initial values

for the parameter array.
– Throws
∗ java.lang.IllegalArgumentException – is thrown if the dimensions of y,

and xguess are not consistent.
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Methods

• compute
public final void compute( ) throws
com.imsl.stat.GARCH.ConstrInconsistentException,
com.imsl.stat.GARCH.EqConstrInconsistentException,
com.imsl.stat.GARCH.NoVectorXException,
com.imsl.stat.GARCH.TooManyIterationsException,
com.imsl.stat.GARCH.VarsDeterminedException

– Description
Computes estimates of the parameters of a GARCH(p,q) model.

– Throws
∗ com.imsl.stat.GARCH.EqConstrInconsistentException – is thrown if

the equality constraints are inconsistent.
∗ com.imsl.stat.GARCH.EqConstrInconsistentException – is thrown if

the equality constraints and the bounds on the variables are found to be
inconsistent.
∗ com.imsl.stat.GARCH.NoVectorXException – is thrown if no vector X

satisfies all of the constraints.
∗ com.imsl.stat.GARCH.TooManyIterationsException – is thrown if the

number of function evaluations exceeded 1000.
∗ com.imsl.stat.GARCH.VarsDeterminedException – is thrown if the

variables are determined by the equality constraints.

• getAkaike
public double getAkaike( )

– Description
Returns the value of Akaike Information Criterion evaluated at the estimated
parameter array.

– Returns – a double scalar containing the value of Akaike Information
Criterion evaluated at the estimated parameter array.

• getAR
public double[] getAR( )

– Description
Returns the estimated values of autoregressive (AR) parameters.

– Returns – a double array of size p containing the estimated values of
autoregressive (AR) parameters.
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• getLogLikelihood
public double getLogLikelihood( )

– Description
Returns the value of Log-likelihood function evaluated at the estimated
parameter array.

– Returns – a double scalar containing the value of Log-likelihood function
evaluated at the estimated parameter array.

• getMA
public double[] getMA( )

– Description
Returns the estimated values of moving average (MA) parameters.

– Returns – a double array of size q containing the estimated values of moving
average (MA) parameters.

• getSigma
public double getSigma( )

– Description
Returns the estimated value of sigma squared.

– Returns – a double scalar containing the estimated value of sigma squared.

• getVarCovarMatrix
public double[][] getVarCovarMatrix( )

– Description
Returns the variance-covariance matrix.

– Returns – a double matrix of size p + q + 1 by p + q + 1 containing the
variance-covariance matrix.

• getX
public double[] getX( )

– Description
Returns the estimated parameter array, x.

– Returns – a double array of size p + q + 1 containing the estimated values of
sigma squared, the AR parameters, and the MA parameters.

• setMaxSigma
public void setMaxSigma( double maxSigma )

– Description
Sets the value of the upperbound on the first element (sigma) of the array of
returned estimated coefficients.
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– Parameters
∗ maxSigma – A double scalar containing the value of the upperbound on the

first element (sigma) of the array of returned estimated coefficients.
Default = 10.

Example: GARCH

The data for this example are generated to follow a GARCH(p,q) process by using a
random number generation function sgarch. The data set is analyzed and estimates of
sigma, the AR parameters, and the MA parameters are returned. The values of the
Log-likelihood function and the Akaike Information Criterion are returned.
import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

public class GARCHEx1 {
static private void sgarch(int p, int q, int m, double[] x, double[] y,

double[] z, double[] y0, double[] sigma) {
int i, j, l;

double s1, s2, s3;

Random rand = new Random(182198625L);

rand.setMultiplier(16807);

for (i = 0; i < m+1000; i++) z[i] = rand.nextNormal();

l = Math.max(p, q);

l = Math.max(l, 1);

for(i =0; i <l; i++) y0[i] = z[i] * x[0];

/* COMPUTE THE INITIAL VALUE OF SIGMA */

s3 = 0.0;

if (Math.max(p, q) >= 1) {
for(i =1; i <(p +q +1); i++) s3 += x[i];

}
for(i =0;i <l;i++) sigma[i] = x[0] / (1.0 - s3);

for(i =l;i <(m +1000); i++) {
s1 = 0.0;

s2 = 0.0;

if (q >= 1) {
for(j =0;j <q;j++) s1+=x[j +1]*y0[i -j -1]*y0[i -j -1];

}
if (p >= 1) {
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for(j =0;j <p;j++) s2+=x[q +1 +j]*sigma[i -j -1];

}
sigma[i] = x[0] + s1 + s2;

y0[i] = z[i] * Math.sqrt(sigma[i]);

}
/*

* DISCARD THE FIRST 1000 SIMULATED OBSERVATIONS

*/

for(i =0;i <m;i++) y[i] = y0[1000 + i];

return;

}

public static void main(String args[]) throws Exception {
int n, p, q, m;

double[] x = {1.3, 0.2, 0.3, 0.4};
double[] xguess = {1.0, 0.1, 0.2, 0.3};
double[] y = new double[1000];

double[] wk1 = new double[2000];

double[] wk2 = new double[2000];

double[] wk3 = new double[2000];

NumberFormat nf = NumberFormat.getInstance();

nf.setMaximumFractionDigits(3);

m = 1000;

p = 2;

q = 1;

n = p+q+1;

sgarch(p, q, m, x, y, wk1, wk2, wk3);

GARCH garch = new GARCH(p, q, y, xguess);

garch.compute();

System.out.println("Sigma estimate is " + nf.format(garch.getSigma()));

System.out.println();

new PrintMatrix("AR estimate is ").print(garch.getAR());

new PrintMatrix("MR estimate is ").print(garch.getMA());

System.out.println("Log-likelihood function value is " +

nf.format(garch.getLogLikelihood()));

System.out.println("Akaike Information Criterion value is " +

nf.format(garch.getAkaike()));
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}
}

Output

Sigma estimate is 1.692

AR estimate is

0

0 0.245

1 0.337

MR estimate is

0

0 0.31

Log-likelihood function value is -2,707.072

Akaike Information Criterion value is 5,422.144

class KalmanFilter

Performs Kalman filtering and evaluates the likelihood function for the state-space model.

Class KalmanFilter is based on a recursive algorithm given by Kalman (1960), which has
come to be known as the Kalman filter. The underlying model is known as the state-space
model. The model is specified stage by stage where the stages generally correspond to
time points at which the observations become available. KalmanFilter avoids many of the
computations and storage requirements that would be necessary if one were to process all
the data at the end of each stage in order to estimate the state vector. This is
accomplished by using previous computations and retaining in storage only those items
essential for processing of future observations.

The notation used here follows that of Sallas and Harville (1981). Let yk (input in y using
method update) be the nk × 1 vector of observations that become available at time k. The
subscript k is used here rather than t, which is more customary in time series, to
emphasize that the model is expressed in stages k = 1, 2, . . . and that these stages need
not correspond to equally spaced time points. In fact, they need not correspond to time
points of any kind. The observation equation for the state-space model is

yk = Zkbk + ek k = 1, 2, . . .
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Here, Zk (input in z using method update) is an nk × q known matrix and bk is the q × 1
state vector. The state vector bk is allowed to change with time in accordance with the
state equation

bk+1 = Tk+1bk + wk+1 k = 1, 2, . . .

starting with b1 = µ1 + w1.

The change in the state vector from time k to k + 1 is explained in part by the transition
matrix Tk+1 (the identity matrix by default, or optionally using method
setTransitionMatrix), which is assumed known. It is assumed that the q-dimensional
wks(k = 1, 2, . . .) are independently distributed multivariate normal with mean vector 0
and variance-covariance matrix σ2Qk, that the nk-dimensional eks(k = 1, 2, . . .) are
independently distributed multivariate normal with mean vector 0 and variance-covariance
matrix σ2Rk, and that the wks and eks are independent of each other. Here, µ1is the
mean of b1 and is assumed known, σ2 is an unknown positive scalar. Qk+1 (input in Q)
and Rk (input in R) are assumed known.

Denote the estimator of the realization of the state vector bk given the observations
y1, y2, . . . , yj by

β̂k|j

By definition, the mean squared error matrix for

β̂k|j

is

σ2Ck|j = E(β̂k|j − bk)(β̂k|j − bk)T

At the time of the k-th invocation, we have

β̂k|k−1

and

Ck|k−1 , which were computed from the k-1-st invocation, input in b and covb, respectively.
During the k-th invocation, KalmanFilter computes the filtered estimate

β̂k|k
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along with Ck|k . These quantities are given by the update equations:

β̂k|k = β̂k|k−1 + Ck|k−1Z
T
k H

−1
k vk

Ck|k = Ck|k−1 − Ck|k−1Z
T
k H

−1
k ZkCk|k−1

where

vk = yk − Zkβ̂k|k−1

and where

Hk = Rk + ZkCk|k−1Z
T
k

Here, vk (stored in getPredictionError) is the one-step-ahead prediction error, and σ2Hk

is the variance-covariance matrix for vk. Hk is obtained from method getCovV. The
“start-up values” needed on the first invocation of KalmanFilter are

β̂1|0 = µ1

and C1|0 = Q1 input via b and covb, respectively. Computations for the k-th invocation
are completed by KalmanFilter computing the one-step-ahead estimate

β̂k+1|k

along with Ck+1|k given by the prediction equations:

β̂k+1|k = Tk+1β̂k|k

Ck+1|k = Tk+1Ck|kT
T
k+1 +Qk+1

If both the filtered estimates and one-step-ahead estimates are needed by the user at each
time point, KalmanFilter can be used twice for each time point-first without methods
SetTransitionMatrix and setQ to produce

β̂k|k

and Ck|k , and second without method update to produce
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β̂k+1|k

and Ck+1|k (Without methods SetTransitionMatrix and setQ, the prediction equations
are skipped. Without method update, the update equations are skipped.).

Often, one desires the estimate of the state vector more than one-step-ahead, i.e., an
estimate of

β̂k|j

is needed where k > j + 1. At time j, KalmanFilter is invoked with method update to
compute

β̂j+1|j

Subsequent invocations of KalmanFilter without method update can compute

β̂j+2|j , β̂j+3|j , . . . , β̂k|j

Computations for

β̂k|j

and Ck|j assume the variance-covariance matrices of the errors in the observation equation
and state equation are known up to an unknown positive scalar multiplier, σ2. The
maximum likelihood estimate of σ2 based on the observations y1, y2, . . . , ym, is given by

σ̂2 = SS/N

where

N =
∑m

k=1
nk and SS =

∑m

k=1
vT
k H

−1
k vk

N and SS are input arguments rank and SumofSquares. Updated values are obtained from
methods getRank and getSumofSquares

If σ2 is known, the Rks and Qks can be input as the variance-covariance matrices exactly.
The earlier discussion is then simplified by letting σ2 = 1.

In practice, the matrices Tk, Qk, and Rk are generally not completely known. They may
be known functions of an unknown parameter vector θ. In this case, KalmanFilter can be
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used in conjunction with an optimization class (see MinUnconMultiVar, JMSL Math
package), to obtain a maximum likelihood estimate of θ. The natural logarithm of the
likelihood function for y1, y2, . . . , ym differs by no more than an additive constant from

L(θ, σ2; y1, y2, . . . , ym) = −1
2
N lnσ2 − 1

2

m∑
k=1

ln[det(Hk)]−
1
2
σ−2

m∑
k=1

vT
k H

−1
k vk

(Harvey 1981, page 14, equation 2.21).

Here,

∑m

k=1
ln[det(Hk)]

(input in logDeterminant, updated by getLogDeterminant) is the natural logarithm of the
determinant of V where σ2V is the variance-covariance matrix of the observations.

Minimization of −2L(θ, σ2; y1, y2, . . . , ym) over all θ and σ2 produces maximum likelihood
estimates. Equivalently, minimization of −2Lc(θ; y1, y2, . . . , ym) where

Lc(θ; y1, y2, . . . , ym) = −1
2
N ln

(
SS

N

)
− 1

2

m∑
k=1

ln[det(Hk)]

produces maximum likelihood estimates

θ̂ and σ̂2 = SS/N

Minimization of −2Lc(θ; y1, y2, . . . , ym) instead of −2L(θ, σ2; y1, y2, . . . , ym), reduces the
dimension of the minimization problem by one. The two optimization problems are
equivalent since

σ̂2(θ) = SS(θ)/N

minimizes −2L(θ, σ2; y1, y2, . . . , ym) for all θ, consequently,

σ̂
2
(θ)

can be substituted for σ2 in L(θ, σ2; y1, y2, . . . , ym) to give a function that differs by no
more than an additive constant from Lc(θ; y1, y2, . . . , ym).

The earlier discussion assumed Hk to be nonsingular. If Hk is singular, a modification for
singular distributions described by Rao (1973, pages 527-528) is used. The necessary
changes in the preceding discussion are as follows:
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1. Replace H−1
k by a generalized inverse.

2. Replace det(Hk) by the product of the nonzero eigenvalues of Hk.

3. Replace N by
∑m

k=1 rank (Hk)

Maximum likelihood estimation of parameters in the Kalman filter is discussed by Sallas
and Harville (1988) and Harvey (1981, pages 111-113).

Declaration

public class com.imsl.stat.KalmanFilter
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Constructor

• KalmanFilter
public KalmanFilter( double[] b, double[] covb, int rank, double
sumOfSquaress, double logDeterminant )

– Description
Constructor for KalmanFilter.

– Parameters
∗ b – A double array containing the estimated state vector. b is the

estimated state vector at time k given the observations through time k-1.
∗ covb – A double array of size b.length by b.length such that covb * σ2 is

the mean squared error matrix for b.
∗ rank – An int scalar containing the rank of the variance-covariance matrix

for all the observations.
∗ sumOfSquaress – A double scalar containing the generalized sum of

squares.
∗ logDeterminant – A double scalar containing the natural log of the

product of the nonzero eigenvalues of P where P * σ2 is the
variance-covariance matrix of the observations.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if the dimensions of b,

and covb are not consistent.

Methods
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• filter
public final void filter( )

– Description
Performs Kalman filtering and evaluates the likelihood function for the
state-space model.

• getCovB
public double[] getCovB( )

– Description
Returns the mean squared error matrix for b divided by sigma squared.

– Returns – a double array of size b.length by b.length such that covb * σ2 is
the mean squared error matrix for b.

• getCovV
public double[][] getCovV( )

– Description
Returns the variance-covariance matrix of v divided by sigma squared.

– Returns – a double matrix containing a y.length by y.length matrix such
that covv * σ2 is the variance-covariance matrix of the one-step-ahead
prediction error, getPredictionError.

• getLogDeterminant
public double getLogDeterminant( )

– Description
Returns the natural log of the product of the nonzero eigenvalues of P where P
* sigma2 is the variance-covariance matrix of the observations.

– Returns – a double scalar containing the natural log of the product of the
nonzero eigenvalues of P where P * σ2 is the variance-covariance matrix of the
observations. In the usual case when P is nonsingular, logDeterminant is the
natural log of the determinant of P.

• getPredictionError
public double[] getPredictionError( )

– Description
Returns the one-step-ahead prediction error.

– Returns – a double array of size y.length containing the one-step-ahead
prediction error.

• getRank
public int getRank( )
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– Description
Returns the rank of the variance-covariance matrix for all the observations.

– Returns – An int scalar containing the rank of the variance-covariance matrix
for all the observations.

• getStateVector
public double[] getStateVector( )

– Description
Returns the estimated state vector at time k + 1 given the observations
through time k.

– Returns – a double array containing the estimated state vector at time k + 1
given the observations through time k.

• getSumOfSquares
public double getSumOfSquares( )

– Description
Returns the generalized sum of squares.

– Returns – a double scalar containing the generalized sum of squares. The
estimate of σ2 is given by sumOfSquares / rank.

• setQ
public void setQ( double[][] q )

– Description
Sets the Q matrix.

– Parameters
∗ q – A double matrix containing the b.length by b.length matrix such that

q * σ2 is the variance-covariance matrix of the error vector in the state
equation. Default: There is no error term in the state equation.

• setTolerance
public void setTolerance( double tolerance )

– Description
Sets the tolerance used in determining linear dependence.

– Parameters
∗ tolerance – A double scalar containing the tolerance used in determining

linear dependence. Default: tolerance = 100.0*2.2204460492503131e-16.

• setTransitionMatrix
public void setTransitionMatrix( double[][] t )
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– Description
Sets the transition matrix.

– Parameters
∗ t – A double matrix containing the b.length by b.length transition

matrix in the state equation. Default: t = identity matrix

• update
public void update( double[] y, double[][] z, double[][] r )

– Description
Performs computation of the update equations.

– Parameters
∗ y – A double array containing the observations.
∗ z – A double matrix containing the y.length by b.length matrix relating

the observations to the state vector in the observation equation.
∗ r – A double matrix containing the y.length by y.length matrix such that

r * σ2 is the variance-covariance matrix of errors in the observation
equation. σ2 is a positive unknown scalar. Only elements in the upper
triangle of r are referenced.

Example: Kalman Filter

KalmanFilter is used to compute the filtered estimates and one-step-ahead estimates for a
scalar problem discussed by Harvey (1981, pages 116-117). The observation equation and
state equation are given by

yk = bk + ek

bk+1 = bk + wk+1

k = 1, 2, 3, 4

where the eks are identically and independently distributed normal with mean 0 and
variance σ2, the wks are identically and independently distributed normal with mean 0
and variance 4σ2, and b1 is distributed normal with mean 4 and variance 16σ2. Two
KalmanFilter objects are needed for each time point in order to compute the filtered
estimate and the one-step-ahead estimate. The first object does not use the methods
SetTransitionMatrix and setQ so that the prediction equations are skipped in the
computations. The update equations are skipped in the computations in the second
object.
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This example also computes the one-step-ahead prediction errors. Harvey (1981, page
117) contains a misprint for the value v4 that he gives as 1.197. The correct value of v4 =
1.003 is computed by KalmanFilter.
import java.text.*;

import com.imsl.stat.*;

import java.text.MessageFormat;

public class KalmanFilterEx1 {
static private final MessageFormat mf =

new MessageFormat("{0}/{1}\t{2}\t{3}\t{4}\t{5}\t{6}\t{7}\t{8}");

public static void main(String args[]) {
int nobs = 4;

int rank = 0;

double logDeterminant = 0.0;

double ss = 0.0;

double[] b = {4};
double[] covb = {16};
double[][] q = {{4}};
double[][] r = {{1}};
double[][] t = {{1}};
double[][] z = {{1}};
double[] ydata = {4.4, 4.0, 3.5, 4.6};

Object argFormat[] =

{"k", "j", "b", "cov(b)", "rank", "ss", "ln(det)", "v", "cov(v)"};
System.out.println(mf.format(argFormat));

for (int i = 0; i < nobs; i++) {
double y[] = {ydata[i]};
KalmanFilter kalman =

new KalmanFilter(b, covb, rank, ss, logDeterminant);

kalman.update(y, z, r);

kalman.filter();

b = kalman.getStateVector();

covb = kalman.getCovB();

rank = kalman.getRank();

ss = kalman.getSumOfSquares();

logDeterminant = kalman.getLogDeterminant();

double v[] = kalman.getPredictionError();

double covv[][] = kalman.getCovV();

argFormat[0] = new Integer(i);
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argFormat[1] = new Integer(i);

argFormat[2] = new Double(b[0]);

argFormat[3] = new Double(covb[0]);

argFormat[4] = new Integer(rank);

argFormat[5] = new Double(ss);

argFormat[6] = new Double(logDeterminant);

argFormat[7] = new Double(v[0]);

argFormat[8] = new Double(covv[0][0]);

System.out.println(mf.format(argFormat));

kalman = new KalmanFilter(b, covb, rank, ss, logDeterminant);

kalman.setTransitionMatrix(t);

kalman.setQ(q);

kalman.filter();

b = kalman.getStateVector();

covb = kalman.getCovB();

rank = kalman.getRank();

ss = kalman.getSumOfSquares();

logDeterminant = kalman.getLogDeterminant();

argFormat[0] = new Integer(i+1);

argFormat[1] = new Integer(i);

argFormat[2] = new Double(b[0]);

argFormat[3] = new Double(covb[0]);

argFormat[4] = new Integer(rank);

argFormat[5] = new Double(ss);

argFormat[6] = new Double(logDeterminant);

argFormat[7] = new Double(v[0]);

argFormat[8] = new Double(covv[0][0]);

System.out.println(mf.format(argFormat));

}
}

}

Output

k/j b cov(b) rank ss ln(det) v cov(v)

0/0 4.376 0.941 1 0.009 2.833 0.4 17

1/0 4.376 4.941 1 0.009 2.833 0.4 17

1/1 4.063 0.832 2 0.033 4.615 -0.376 5.941

2/1 4.063 4.832 2 0.033 4.615 -0.376 5.941

2/2 3.597 0.829 3 0.088 6.378 -0.563 5.832
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3/2 3.597 4.829 3 0.088 6.378 -0.563 5.832

3/3 4.428 0.828 4 0.26 8.141 1.003 5.829

4/3 4.428 4.828 4 0.26 8.141 1.003 5.829
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Chapter 19

Multivariate Analysis

Classes
ClusterKMeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643

Perform a K-means (centroid) cluster analysis.
Dissimilarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

Computes a matrix of dissimilarities (or similarities) between the columns
(or rows) of a matrix.

ClusterHierarchical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663
Performs a hierarchical cluster analysis from a distance matrix.

FactorAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
Performs Principal Component Analysis or Factor Analysis on a covariance
or correlation matrix.

DiscriminantAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
Performs a linear or a quadratic discriminant function analysis among sev-
eral known groups and the use of either reclassification, split sample, or the
leaving-out-one methods in order to evaluate the rule.

Usage Notes

Cluster Analysis

ClusterKMeans performs a K-means cluster analysis. Basic K-means clustering attempts to
find a clustering that minimizes the within-cluster sums-of-squares. In this method of
clustering the data, matrix X is grouped so that each observation (row in X) is assigned to
one of a fixed number, K, of clusters. The sum of the squared difference of each
observation about its assigned cluster’s mean is used as the criterion for assignment. In
the basic algorithm, observations are transferred from one cluster or another when doing
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so decreases the within-cluster sums-of-squared differences. When no transfer occurs in a
pass through the entire data set, the algorithm stops. ClusterKMeans is one
implementation of the basic algorithm.

The usual course of events in K-means cluster analysis is to use ClusterKMeans to obtain
the optimal clustering. The clustering is then evaluated by functions described in “Basic
Statistics,” and/or other chapters in this manual. Often, K-means clustering with more
than one value of K is performed, and the value of K that best fits the data is used.

Clustering can be performed either on observations or variables. The discussion of the
function ClusterKMeans assumes the clustering is to be performed on the observations,
which correspond to the rows of the input data matrix. If variables, rather than
observations, are to be clustered, the data matrix should first be transposed. In the
documentation for ClusterKMeans, the words “observation” and “variable” are
interchangeable.

Principal Components

The idea in principal components is to find a small number of linear combinations of the
original variables that maximize the variance accounted for in the original data. This
amounts to an eigensystem analysis of the covariance (or correlation) matrix. In addition
to the eigensystem analysis, when the principal component model is used, FactorAnalysis
computes standard errors for the eigenvalues. Correlations of the original variables with
the principal component scores also are computed.

Factor Analysis

Factor analysis and principal component analysis, while quite different in assumptions,
often serve the same ends. Unlike principal components in which linear combinations
yielding the highest possible variances are obtained, factor analysis generally obtains
linear combinations of the observed variables according to a model relating the observed
variable to hypothesized underlying factors, plus a random error term called the unique
error or uniqueness. In factor analysis, the unique errors associated with each variable are
usually assumed to be independent of the factors. Additionally, in the common factor
model, the unique errors are assumed to be mutually independent. The factor analysis
model is expressed in the following equation:

x− µ = Λf + e

where x is the p vector of observed values, µ is the p vector of variable means, Λ is the
p× k matrix of factor loadings, f is the k vector of hypothesized underlying random
factors, e is the p vector of hypothesized unique random errors, p is the number of
variables in the observed variables, and k is the number of factors.

Because much of the computation in factor analysis was originally done by hand or was
expensive on early computers, quick (but dirty) algorithms that made the calculations
possible were developed. One result is the many factor extraction methods available
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today. Generally speaking, in the exploratory or model building phase of a factor analysis,
a method of factor extraction that is not computationally intensive (such as principal
components, principal factor, or image analysis) is used. If desired, a computationally
intensive method is then used to obtain the final factors.

Discriminant Analysis

The class DiscriminantAnalysis allows linear or quadratic discrimination and the use of
either reclassification, split sample, or the leaving-out-one methods in order to evaluate
the rule. Moreover, DiscriminantAnalysis can be executed in an online mode, that is, one
or more observations can be added to the rule during each invocation of
DiscriminantAnalysis.

The mean vectors for each group of observations and an estimate of the common
covariance matrix for all groups are input to DiscriminantAnalysis. These estimates can
be computed via routine DiscriminantAnalysis. Output from DiscriminantAnalysis are
linear combinations of the observations, which at most separate the groups. These linear
combinations may subsequently be used for discriminating between the groups. Their use
in graphically displaying differences between the groups is possibly more important,
however.

class ClusterKMeans

Perform a K-means (centroid) cluster analysis.

ClusterKMeans is an implementation of Algorithm AS 136 by Hartigan and Wong (1979).
It computes K-means (centroid) Euclidean metric clusters for an input matrix starting
with initial estimates of the K cluster means. It allows for missing values (coded as NaN,
not a number) and for weights and frequencies.

Let p denote the number of variables to be used in computing the Euclidean distance
between observations. The idea in K-means cluster analysis is to find a clustering (or
grouping) of the observations so as to minimize the total within-cluster sums of squares.
In this case, the total sums of squares within each cluster is computed as the sum of the
centered sum of squares over all nonmissing values of each variable. That is,

φ =
K∑

i=1

p∑
j=1

ni∑
m=1

fνimwνimδνim,j (xνim,j − x̄ij)
2

where νim denotes the row index of the m-th observation in the i-th cluster in the matrix
X; ni is the number of rows of X assigned to group i; f denotes the frequency of the
observation; w denotes its weight; d is zero if the j-th variable on observation νim is
missing, otherwise δ is one; and x̄ij is the average of the nonmissing observations for
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variable j in group i. This method sequentially processes each observation and reassigns it
to another cluster if doing so results in a decrease in the total within-cluster sums of
squares. See Hartigan and Wong (1979) or Hartigan (1975) for details.

Declaration

public class com.imsl.stat.ClusterKMeans
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Classes

class ClusterKMeans.NoConvergenceException

Convergence did not occur within the maximum number of iterations.

Declaration

public static class com.imsl.stat.ClusterKMeans.NoConvergenceException
extends com.imsl.IMSLException (page 1240)

Constructors

• ClusterKMeans.NoConvergenceException
public ClusterKMeans.NoConvergenceException( java.lang.String
message )

• ClusterKMeans.NoConvergenceException
public ClusterKMeans.NoConvergenceException( java.lang.String key,
java.lang.Object[] arguments )

class ClusterKMeans.ClusterNoPointsException

There is a cluster with no points

Declaration

public static class com.imsl.stat.ClusterKMeans.ClusterNoPointsException
extends com.imsl.IMSLException (page 1240)
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Constructors

• ClusterKMeans.ClusterNoPointsException
public ClusterKMeans.ClusterNoPointsException( java.lang.String
message )

• ClusterKMeans.ClusterNoPointsException
public ClusterKMeans.ClusterNoPointsException( java.lang.String
key, java.lang.Object[] arguments )

class ClusterKMeans.NonnegativeFreqException

Frequencies must be nonnegative.

Declaration

public static class com.imsl.stat.ClusterKMeans.NonnegativeFreqException
extends com.imsl.IMSLException (page 1240)

Constructors

• ClusterKMeans.NonnegativeFreqException
public ClusterKMeans.NonnegativeFreqException( java.lang.String
message )

• ClusterKMeans.NonnegativeFreqException
public ClusterKMeans.NonnegativeFreqException( java.lang.String
key, java.lang.Object[] arguments )

class ClusterKMeans.NonnegativeWeightException

Weights must be nonnegative.

Declaration

public static class com.imsl.stat.ClusterKMeans.NonnegativeWeightException
extends com.imsl.IMSLException (page 1240)
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Constructors

• ClusterKMeans.NonnegativeWeightException
public ClusterKMeans.NonnegativeWeightException( java.lang.String
message )

• ClusterKMeans.NonnegativeWeightException
public ClusterKMeans.NonnegativeWeightException( java.lang.String
key, java.lang.Object[] arguments )

Constructor

• ClusterKMeans
public ClusterKMeans( double[][] x, double[][] cs )

– Description
Constructor for ClusterKMeans.

– Parameters
∗ x – A double matrix containing the observations to be clustered.
∗ cs – A double matrix containing the cluster seeds, i.e. estimates for the

cluster centers.
– Throws
∗ java.lang.IllegalArgumentException – is thrown if x.length,

x[0].length are equal 0, or cs.length is less than 1.

Methods

• compute
public final double[][] compute( ) throws
com.imsl.stat.ClusterKMeans.NoConvergenceException,
com.imsl.stat.ClusterKMeans.ClusterNoPointsException

– Description
Computes the cluster means.

– Returns – A double matrix containing computed result.
– Throws
∗ com.imsl.stat.ClusterKMeans.NonnegativeFreqException – is thrown

if a frequency is negative.
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∗ com.imsl.stat.ClusterKMeans.NonnegativeWeightException – is
thrown if a weight is negative.
∗ com.imsl.stat.ClusterKMeans.NoConvergenceException – is thrown if

convergence did not occur within the maximum number of iterations.
∗ com.imsl.stat.ClusterKMeans.ClusterNoPointsException – is thrown

if the cluster seed yields a cluster with no points.

• getClusterCounts
public int[] getClusterCounts( )

– Description
Returns the number of observations in each cluster.

– Returns – An int array containing the number of observations in each cluster.

• getClusterMembership
public int[] getClusterMembership( )

– Description
Returns the cluster membership for each observation.

– Returns – An int array containing the cluster membership for each
observation. Cluster membership 1 indicates the observation belongs to cluster
1, cluster membership 2 indicates the observation belongs to cluster 2, etc.

• getClusterSSQ
public double[] getClusterSSQ( )

– Description
Returns the within sum of squares for each cluster.

– Returns – A double array containing the within sum of squares for each
cluster.

• setFrequencies
public void setFrequencies( double[] frequencies ) throws
com.imsl.stat.ClusterKMeans.NonnegativeFreqException

– Description
Sets the frequency for each observation.

– Parameters
∗ frequencies – A double array of size x.length containing the frequency

for each observation. Default: frequencies[] = 1.

• setMaxIterations
public void setMaxIterations( int iterations )
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– Description
Sets the maximum number of iterations.

– Parameters
∗ iterations – An int scalar specifying the maximum number of iterations.

Default: interations = 30.

• setWeights
public void setWeights( double[] weights ) throws
com.imsl.stat.ClusterKMeans.NonnegativeWeightException

– Description
Sets the weight for each observation.

– Parameters
∗ weights – A double array of size x.length containing the weight for each

observation. Default: weights[] = 1.

Example: K-means Cluster Analysis

This example performs K-means cluster analysis on Fisher’s iris data. The initial cluster
seed for each iris type is an observation known to be in the iris type.

import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.*;

public class ClusterKMeansEx1 {
public static void main(String argv[]) throws Exception {

double[][] x = {
{ 5.100, 3.500, 1.400, 0.200},
{ 4.900, 3.000, 1.400, 0.200},
{ 4.700, 3.200, 1.300, 0.200},
{ 4.600, 3.100, 1.500, 0.200},
{ 5.000, 3.600, 1.400, 0.200},
{ 5.400, 3.900, 1.700, 0.400},
{ 4.600, 3.400, 1.400, 0.300},
{ 5.000, 3.400, 1.500, 0.200},
{ 4.400, 2.900, 1.400, 0.200},
{ 4.900, 3.100, 1.500, 0.100},
{ 5.400, 3.700, 1.500, 0.200},
{ 4.800, 3.400, 1.600, 0.200},
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{ 4.800, 3.000, 1.400, 0.100},
{ 4.300, 3.000, 1.100, 0.100},
{ 5.800, 4.000, 1.200, 0.200},
{ 5.700, 4.400, 1.500, 0.400},
{ 5.400, 3.900, 1.300, 0.400},
{ 5.100, 3.500, 1.400, 0.300},
{ 5.700, 3.800, 1.700, 0.300},
{ 5.100, 3.800, 1.500, 0.300},
{ 5.400, 3.400, 1.700, 0.200},
{ 5.100, 3.700, 1.500, 0.400},
{ 4.600, 3.600, 1.000, 0.200},
{ 5.100, 3.300, 1.700, 0.500},
{ 4.800, 3.400, 1.900, 0.200},
{ 5.000, 3.000, 1.600, 0.200},
{ 5.000, 3.400, 1.600, 0.400},
{ 5.200, 3.500, 1.500, 0.200},
{ 5.200, 3.400, 1.400, 0.200},
{ 4.700, 3.200, 1.600, 0.200},
{ 4.800, 3.100, 1.600, 0.200},
{ 5.400, 3.400, 1.500, 0.400},
{ 5.200, 4.100, 1.500, 0.100},
{ 5.500, 4.200, 1.400, 0.200},
{ 4.900, 3.100, 1.500, 0.200},
{ 5.000, 3.200, 1.200, 0.200},
{ 5.500, 3.500, 1.300, 0.200},
{ 4.900, 3.600, 1.400, 0.100},
{ 4.400, 3.000, 1.300, 0.200},
{ 5.100, 3.400, 1.500, 0.200},
{ 5.000, 3.500, 1.300, 0.300},
{ 4.500, 2.300, 1.300, 0.300},
{ 4.400, 3.200, 1.300, 0.200},
{ 5.000, 3.500, 1.600, 0.600},
{ 5.100, 3.800, 1.900, 0.400},
{ 4.800, 3.000, 1.400, 0.300},
{ 5.100, 3.800, 1.600, 0.200},
{ 4.600, 3.200, 1.400, 0.200},
{ 5.300, 3.700, 1.500, 0.200},
{ 5.000, 3.300, 1.400, 0.200},
{ 7.000, 3.200, 4.700, 1.400},
{ 6.400, 3.200, 4.500, 1.500},
{ 6.900, 3.100, 4.900, 1.500},
{ 5.500, 2.300, 4.000, 1.300},
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{ 6.500, 2.800, 4.600, 1.500},
{ 5.700, 2.800, 4.500, 1.300},
{ 6.300, 3.300, 4.700, 1.600},
{ 4.900, 2.400, 3.300, 1.000},
{ 6.600, 2.900, 4.600, 1.300},
{ 5.200, 2.700, 3.900, 1.400},
{ 5.000, 2.000, 3.500, 1.000},
{ 5.900, 3.000, 4.200, 1.500},
{ 6.000, 2.200, 4.000, 1.000},
{ 6.100, 2.900, 4.700, 1.400},
{ 5.600, 2.900, 3.600, 1.300},
{ 6.700, 3.100, 4.400, 1.400},
{ 5.600, 3.000, 4.500, 1.500},
{ 5.800, 2.700, 4.100, 1.000},
{ 6.200, 2.200, 4.500, 1.500},
{ 5.600, 2.500, 3.900, 1.100},
{ 5.900, 3.200, 4.800, 1.800},
{ 6.100, 2.800, 4.000, 1.300},
{ 6.300, 2.500, 4.900, 1.500},
{ 6.100, 2.800, 4.700, 1.200},
{ 6.400, 2.900, 4.300, 1.300},
{ 6.600, 3.000, 4.400, 1.400},
{ 6.800, 2.800, 4.800, 1.400},
{ 6.700, 3.000, 5.000, 1.700},
{ 6.000, 2.900, 4.500, 1.500},
{ 5.700, 2.600, 3.500, 1.000},
{ 5.500, 2.400, 3.800, 1.100},
{ 5.500, 2.400, 3.700, 1.000},
{ 5.800, 2.700, 3.900, 1.200},
{ 6.000, 2.700, 5.100, 1.600},
{ 5.400, 3.000, 4.500, 1.500},
{ 6.000, 3.400, 4.500, 1.600},
{ 6.700, 3.100, 4.700, 1.500},
{ 6.300, 2.300, 4.400, 1.300},
{ 5.600, 3.000, 4.100, 1.300},
{ 5.500, 2.500, 4.000, 1.300},
{ 5.500, 2.600, 4.400, 1.200},
{ 6.100, 3.000, 4.600, 1.400},
{ 5.800, 2.600, 4.000, 1.200},
{ 5.000, 2.300, 3.300, 1.000},
{ 5.600, 2.700, 4.200, 1.300},
{ 5.700, 3.000, 4.200, 1.200},
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{ 5.700, 2.900, 4.200, 1.300},
{ 6.200, 2.900, 4.300, 1.300},
{ 5.100, 2.500, 3.000, 1.100},
{ 5.700, 2.800, 4.100, 1.300},
{ 6.300, 3.300, 6.000, 2.500},
{ 5.800, 2.700, 5.100, 1.900},
{ 7.100, 3.000, 5.900, 2.100},
{ 6.300, 2.900, 5.600, 1.800},
{ 6.500, 3.000, 5.800, 2.200},
{ 7.600, 3.000, 6.600, 2.100},
{ 4.900, 2.500, 4.500, 1.700},
{ 7.300, 2.900, 6.300, 1.800},
{ 6.700, 2.500, 5.800, 1.800},
{ 7.200, 3.600, 6.100, 2.500},
{ 6.500, 3.200, 5.100, 2.000},
{ 6.400, 2.700, 5.300, 1.900},
{ 6.800, 3.000, 5.500, 2.100},
{ 5.700, 2.500, 5.000, 2.000},
{ 5.800, 2.800, 5.100, 2.400},
{ 6.400, 3.200, 5.300, 2.300},
{ 6.500, 3.000, 5.500, 1.800},
{ 7.700, 3.800, 6.700, 2.200},
{ 7.700, 2.600, 6.900, 2.300},
{ 6.000, 2.200, 5.000, 1.500},
{ 6.900, 3.200, 5.700, 2.300},
{ 5.600, 2.800, 4.900, 2.000},
{ 7.700, 2.800, 6.700, 2.000},
{ 6.300, 2.700, 4.900, 1.800},
{ 6.700, 3.300, 5.700, 2.100},
{ 7.200, 3.200, 6.000, 1.800},
{ 6.200, 2.800, 4.800, 1.800},
{ 6.100, 3.000, 4.900, 1.800},
{ 6.400, 2.800, 5.600, 2.100},
{ 7.200, 3.000, 5.800, 1.600},
{ 7.400, 2.800, 6.100, 1.900},
{ 7.900, 3.800, 6.400, 2.000},
{ 6.400, 2.800, 5.600, 2.200},
{ 6.300, 2.800, 5.100, 1.500},
{ 6.100, 2.600, 5.600, 1.400},
{ 7.700, 3.000, 6.100, 2.300},
{ 6.300, 3.400, 5.600, 2.400},
{ 6.400, 3.100, 5.500, 1.800},
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{ 6.000, 3.000, 4.800, 1.800},
{ 6.900, 3.100, 5.400, 2.100},
{ 6.700, 3.100, 5.600, 2.400},
{ 6.900, 3.100, 5.100, 2.300},
{ 5.800, 2.700, 5.100, 1.900},
{ 6.800, 3.200, 5.900, 2.300},
{ 6.700, 3.300, 5.700, 2.500},
{ 6.700, 3.000, 5.200, 2.300},
{ 6.300, 2.500, 5.000, 1.900},
{ 6.500, 3.000, 5.200, 2.000},
{ 6.200, 3.400, 5.400, 2.300},
{ 5.900, 3.000, 5.100, 1.800}};

double[][] cs = {{ 5.100, 3.500, 1.400, 0.200},
{ 7.000, 3.200, 4.700, 1.400},
{ 6.300, 3.300, 6.000, 2.500}};

ClusterKMeans kmean = new ClusterKMeans(x, cs);

double[][] cm = kmean.compute();

double[] wss = kmean.getClusterSSQ();

int[] ic = kmean.getClusterMembership();

int[] nc = kmean.getClusterCounts();

PrintMatrix pm = new PrintMatrix ("Cluster Means");

PrintMatrixFormat pmf = new PrintMatrixFormat();

NumberFormat nf = NumberFormat.getInstance();

nf.setMinimumFractionDigits(4);

pmf.setNumberFormat(nf);

pm.print (pmf, cm);

new PrintMatrix("Cluster Membership").print(ic);

new PrintMatrix("Sum of Squares").print(wss);

new PrintMatrix("Number of observations").print(nc);

}
}
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Output

Cluster Means

0 1 2 3

0 5.0060 3.4280 1.4620 0.2460

1 5.9016 2.7484 4.3935 1.4339

2 6.8500 3.0737 5.7421 2.0711

Cluster Membership

0

0 1

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1

13 1

14 1

15 1

16 1

17 1

18 1

19 1

20 1

21 1

22 1

23 1

24 1
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25 1

26 1

27 1

28 1

29 1

30 1

31 1

32 1

33 1

34 1

35 1

36 1

37 1

38 1

39 1

40 1

41 1

42 1

43 1

44 1

45 1

46 1

47 1

48 1

49 1

50 2

51 2

52 3

53 2

54 2

55 2

56 2

57 2

58 2

59 2

60 2

61 2

62 2

63 2

64 2

65 2

66 2
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67 2

68 2

69 2

70 2

71 2

72 2

73 2

74 2

75 2

76 2

77 3

78 2

79 2

80 2

81 2

82 2

83 2

84 2

85 2

86 2

87 2

88 2

89 2

90 2

91 2

92 2

93 2

94 2

95 2

96 2

97 2

98 2

99 2

100 3

101 2

102 3

103 3

104 3

105 3

106 2

107 3

108 3
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109 3

110 3

111 3

112 3

113 2

114 2

115 3

116 3

117 3

118 3

119 2

120 3

121 2

122 3

123 2

124 3

125 3

126 2

127 2

128 3

129 3

130 3

131 3

132 3

133 2

134 3

135 3

136 3

137 3

138 2

139 3

140 3

141 3

142 2

143 3

144 3

145 3

146 2

147 3

148 3

149 2
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Sum of Squares

0

0 15.151

1 39.821

2 23.879

Number of observations

0

0 50

1 62

2 38

class Dissimilarities

Computes a matrix of dissimilarities (or similarities) between the columns (or rows) of a
matrix.

Class Dissimilarities computes an upper triangular matrix (excluding the diagonal) of
dissimilarities (or similarities) between the columns or rows of a matrix. Nine different
distance measures can be computed. For the first three measures, three different scaling
options can be employed. The distance matrix computed is generally used as input to
clustering or multidimensional scaling functions.

The following discussion assumes that the distance measure is being computed between
the columns of the matrix. If distances between the rows of the matrix are desired, set
iRow to 1 when calling the Dissimilarities constructor.

For distanceMethod = 0 to 2, each row of x is first scaled according to the value of
distanceScale. The scaling parameters are obtained from the values in the row scaled as
either the standard deviation of the row or the row range; the standard deviation is
computed from the unbiased estimate of the variance. If distanceScale is 0, no scaling is
performed, and the parameters in the following discussion are all 1.0. Once the scaling
value (if any) has been computed, the distance between column i and column j is
computed via the difference vector zk = (xk−yk)

sk
, i = 1, . . . , ndstm, where xk denotes the

k-th element in the i-th column, and yk denotes the corresponding element in the j-th
column. For given zi, the metrics 0 to 2 are defined as:

distanceMethod Metric
0 Euclidean distance (L2norm)
1 Sum of the absolute differences (L1 norm)
2 Maximum difference (L∞ norm)
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Distance measures corresponding to distanceMethod = 3 to 8 do not allow for scaling.

distanceMethod Metric
3 Mahalanobis distance
4 Absolute value of the cosine of the angle

between the vectors
5 Angle in radians (0, pi) between the lines

through the origin defined by the vectors
6 Correlation coefficient
7 Absolute value of the correlation coefficient
8 Number of exact matches, where xi = yi.

For the Mahalanobis distance, any variable used in computing the distance measure that
is (numerically) linearly dependent upon the previous variables in the indexArray vector is
omitted from the distance measure.

Declaration

public class com.imsl.stat.Dissimilarities
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Classes

class Dissimilarities.ScaleFactorZeroException

The computations cannot continue because a scale factor is zero.

Declaration

public static class com.imsl.stat.Dissimilarities.ScaleFactorZeroException
extends com.imsl.IMSLException (page 1240)

Constructor

• Dissimilarities.ScaleFactorZeroException
public Dissimilarities.ScaleFactorZeroException( int index )

– Description
Constructs a ScaleFactorZeroException.

658 • Dissimilarities JMSL



– Parameters
∗ index – An int which specifies the index of the scale factor array at which

scale factor is zero.

class Dissimilarities.ZeroNormException

The computations cannot continue because the Euclidean norm of the column is equal to
zero.

Declaration

public static class com.imsl.stat.Dissimilarities.ZeroNormException
extends com.imsl.IMSLException (page 1240)

Constructor

• Dissimilarities.ZeroNormException
public Dissimilarities.ZeroNormException( int index )

– Description
Constructs a ZeroNormException.

– Parameters
∗ index – An int which specifies the column index for which the norm has

been found to be zero.

class Dissimilarities.NoPositiveVarianceException

No variable has positive variance. The Mahalanobis distances cannot be computed.

Declaration

public static class com.imsl.stat.Dissimilarities.NoPositiveVarianceException
extends com.imsl.IMSLException (page 1240)

Constructor
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• Dissimilarities.NoPositiveVarianceException
public Dissimilarities.NoPositiveVarianceException( )

– Description
Constructs a NoPositiveVarianceException.

Constructors

• Dissimilarities
public Dissimilarities( double[][] x, int distanceMethod, int
distanceScale, int iRow ) throws
com.imsl.stat.Dissimilarities.ScaleFactorZeroException,
com.imsl.stat.Dissimilarities.ZeroNormException,
com.imsl.stat.Dissimilarities.NoPositiveVarianceException

– Description
Constructor for Dissimilarities.

– Parameters
∗ x – A double matrix containing the data input matrix.
∗ distanceMethod – An int identifying the method to be used in computing

the dissimilarities or similarities. Acceptable values of distanceMethod are
1, 2, ..., 8. See above for a description of these methods.

∗ distanceScale – An int containing the scaling option.
distanceScale Method
0 No scaling is performed.
1 Scale each column (row if iRow=1)

by the standard deviation of the col-
umn (row).

2 Scale each column (row if iRow=1) by
the range of the column (row).

∗ iRow – An int identifying whether distances are computed between rows or
columns of x. If iRow = 1, distances are computed between the rows of x.
Otherwise, distances between the columns of x are computed.

– Throws
∗ java.lang.IllegalArgumentException – thrown when the row lengths of

input matrix a are not equal (i.e. the matrix edges are “jagged”)
∗ com.imsl.stat.Dissimilarities.ScaleFactorZeroException – thrown

when computations cannot continue because a scale factor is zero
∗ com.imsl.stat.Dissimilarities.NoPositiveVarianceException –

thrown when no variable has positive variance
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∗ com.imsl.stat.Dissimilarities.ZeroNormException – is thrown when
the Euclidean norm of a column is equal to zero

• Dissimilarities
public Dissimilarities( double[][] x, int distanceMethod, int
distanceScale, int iRow, int[] indexArray ) throws
com.imsl.stat.Dissimilarities.ScaleFactorZeroException,
com.imsl.stat.Dissimilarities.ZeroNormException,
com.imsl.stat.Dissimilarities.NoPositiveVarianceException

– Description
Constructor for Dissimilarities.

– Parameters
∗ x – A double matrix containing the data input matrix.
∗ distanceMethod – An int identifying the method to be used in computing

the dissimilarities or similarities. Acceptable values of distanceMethod are
1, 2, ..., 8. See above for a description of these methods.

∗ distanceScale – An int containing the scaling option.
distanceScale Method
0 No scaling is performed
1 Scale each column (row if iRow=1)

by the standard deviation of the col-
umn (row).

2 Scale each column (row if iRow=1) by
the range of the column (row)

∗ iRow – An int identifying whether distances are computed between rows or
columns of x. If iRow=1, distances are computed between the rows of x.
Otherwise, distances between the columns of x are computed.

∗ indexArray – An int array containing the indices of the rows (columns if
iRow is 1) to be used in computing the distance measure.

– Throws
∗ java.lang.IllegalArgumentException – thrown when the row lengths of

input matrix a are not equal (i.e. the matrix edges are “jagged”)
∗ com.imsl.stat.Dissimilarities.ScaleFactorZeroException – thrown

when computations cannot continue because a scale factor is zero
∗ com.imsl.stat.Dissimilarities.NoPositiveVarianceException –

thrown when no variable has positive variance.
∗ com.imsl.stat.Dissimilarities.ZeroNormException – is thrown when

the Euclidean norm of a column is equal to zero

Method
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• getDistanceMatrix
public final double[][] getDistanceMatrix( )

– Description
Returns the distance matrix.

– Returns – A double matrix containing the distance matrix.

Example: Dissimilarities

The following example illustrates the use of Dissimilarities for computing the Euclidean
distance between the rows of a matrix:

import java.io.*;

import com.imsl.stat.*;

import com.imsl.math.*;

public class DissimilaritiesEx1 {
public static void main(String argv[]) throws Exception {

double[][] x = {
{ 1., 1.},
{ 1., 0.},
{ 1., -1.},
{ 1., 2.}};

int distanceMethod = 0;

int distanceScale = 0;

int iRow = 1;

Dissimilarities dist =

new Dissimilarities(x, distanceMethod, distanceScale, iRow);

double[][] distanceMatrix = dist.getDistanceMatrix();

for (int i=0;i<distanceMatrix.length;i++){
for (int j=0;j<distanceMatrix[0].length;j++)

System.out.print(distanceMatrix[i][j]+", ");

System.out.println();

}
}

}
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Output

0.0, 1.0, 2.0, 1.0,

0.0, 0.0, 1.0, 2.0,

0.0, 0.0, 0.0, 3.0,

0.0, 0.0, 0.0, 0.0,

class ClusterHierarchical

Performs a hierarchical cluster analysis from a distance matrix.

Class ClusterHierarchical conducts a hierarchical cluster analysis based upon a distance
matrix, or by appropriate use of the argument transform, based upon a similarity matrix.
Only the upper triangular part of the dist matrix is required as input.

Hierarchical clustering in ClusterHierarchical proceeds as follows:

Initially, each data point is considered to be a cluster, numbered 1 to n = npt, where npt
is the number of rows in dist.

1. If the data matrix contains similarities, they are converted to distances by the
method specified by the argument transform. Set k = 1.

2. A search is made of the distance matrix to find the two closest clusters. These
clusters are merged to form a new cluster, numbered n + k. The cluster numbers of
the two clusters joined at this stage are saved as Right Sons and Left Sons, and the
distance measure between the two clusters is stored as Cluster Level.

3. Based upon the method of clustering, updating of the distance measure in the row
and column of dist corresponding to the new cluster is performed.

4. Set k = k + 1. If k is less than n, go to Step 2.

The five methods differ primarily in how the distance matrix is updated after two clusters
have been joined. The argument method specifies how the distance of the cluster just
merged with each of the remaining clusters will be updated. Class ClusterHierarchical

allows five methods for computing the distances. To understand these measures, suppose
in the following discussion that clusters A and B have just been joined to form cluster Z,
and interest is in computing the distance of Z with another cluster called C.
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method Description
0 Single linkage (minimum distance). The

distance from Z to C is the minimum of
the distances (A to C, B to C).

1 Complete linkage (maximum distance).
The distance from Z to C is the maximum
of the distances (A to C, B to C).

2 Average-distance-within-clusters method.
The distance from Z to C is the average
distance of all objects that would be within
the cluster formed by merging clusters Z
and C. This average may be computed ac-
cording to formulas given by Anderberg
(1973, page 139).

3 Average-distance-between-clusters
method. The distance from Z to C is
the average distance of objects within
cluster Z to objects within cluster C. This
average may be computed according to
methods given by Anderberg (1973, page
140).

4 Ward’s method: Clusters are formed so
as to minimize the increase in the within-
cluster sums of squares. The distance be-
tween two clusters is the increase in these
sums of squares if the two clusters were
merged. A method for computing this dis-
tance from a squared Euclidean distance
matrix is given by Anderberg (1973, pages
142-145).

In general, single linkage will yield long thin clusters while complete linkage will yield
clusters that are more spherical. Average linkage and Ward’s linkage tend to yield clusters
that are similar to those obtained with complete linkage.

Function Class ClusterHierarchical produces a unique representation of the binary
cluster tree via the following three conventions; the fact that the tree is unique should aid
in interpreting the clusters. First, when two clusters are joined and each cluster contains
two or more data points, the cluster that was initially formed with the smallest level
becomes the left son. Second, when a cluster containing more than one data point is
joined with a cluster containing a single data point, the cluster with the single data point
becomes the right son. Finally, when two clusters containing only one object are joined,
the cluster with the smallest cluster number becomes the right son.
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Comments

1. The clusters corresponding to the original data points are numbered from 1 to npt,
where npt is the number of rows in dist. The npt - 1 clusters formed by merging
clusters are numbered npt + 1 to npt + (npt - 1 ).

2. Raw correlations, if used as similarities, should be made positive and transformed to
a distance measure. One such transformation can be performed by setting argument
transform, with transform = 2.

3. The user may cluster either variables or observations with ClusterHierarchical

since a dissimilarity matrix, not the original data, is used. Class
com.imsl.stat.Dissimilarities may be used to compute the matrix dist for either the
variables or observations.

Declaration

public class com.imsl.stat.ClusterHierarchical
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Constructor

• ClusterHierarchical
public ClusterHierarchical( double[][] dist, int method, int
transform )

– Description
Constructor for ClusterHierarchical.

– Parameters
∗ dist – A double symmetric matrix containing the distance (or similarity)

matrix. On input, only the upper triangular part needs to be present.
ClusterHierarchical saves the upper triangular part of dist in the lower
triangle. On return, the upper triangular part of dist is restored, and the
matrix is made symmetric.
∗ method – An int identifying the clustering method to be used.

666 • ClusterHierarchical JMSL



method Description
0 Single linkage (minimum distance).
1 Complete linkage (maximum dis-

tance).
2 Average distance within (average

distance between objects within the
merged cluster).

3 Average distance between (average
distance between objects in the two
clusters).

4 Ward’s method (minimize the
within-cluster sums of squares).
For Ward’s method, the elements of
dist are assumed to be Euclidean
distances.

∗ transform – An int identifying the type of transformation applied to the
measures in dist.
transform Description
0 No transformation is required. The

elements of dist are distances.
1 Convert similarities to distances by

multiplication by -1.0.
2 Convert similarities (usually corre-

lations) to distances by taking the
reciprocal of the absolute value.

– Throws
∗ java.lang.IllegalArgumentException – is thrown when the row lengths

of input matrix a are not equal (i.e. the matrix edges are “jagged”)

Methods

• getClusterLeftSons
public final int[] getClusterLeftSons( )

– Description
Returns the left sons of each merged cluster.

– Returns – An int array containing the left sons of each merged cluster.

• getClusterLevel
public final double[] getClusterLevel( )
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– Description
Returns the level at which the clusters are joined.

– Returns – A double array containing the level at which the clusters are joined.
Element [k-1] contains the distance (or similarity) level at which cluster npt + k
was formed. If the original data in dist was transformed, the inverse
transformation is applied to the returned values.

• getClusterMembership
public final int[] getClusterMembership( int nClusters )

– Description
Returns the cluster membership of each observation.

– Parameters
∗ nClusters – An int which specifies the desired number of clusters.

– Returns – An int array containing the cluster membership of each observation.

• getClusterRightSons
public final int[] getClusterRightSons( )

– Description
Returns the right sons of each merged cluster.

– Returns – An int array containing the right sons of each merged cluster.

• getObsPerCluster
public final int[] getObsPerCluster( int nClusters )

– Description
Returns the number of observations in each cluster.

– Parameters
∗ nClusters – An int which specifies the desired number of clusters.

– Returns – An int array containing the number of observations in each cluster.

Example 1: ClusterHierarchical

This example illustrates a typical usage of ClusterHierarchical. The Fisher iris data is
clustered. First the distance between irises is computed using the class Dissimilarities.
The resulting distance matrix is then clustered using ClusterHierarchical, and cluster
memberships for 5 clusters are computed.

import java.io.*;

import com.imsl.stat.*;

import com.imsl.math.*;
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public class ClusterHierarchicalEx1 {
public static void main(String argv[]) throws Exception {

double[][] irisData = {
{ 5.1, 3.5, 1.4, .2},
{ 4.9, 3.0, 1.4, .2},
{ 4.7, 3.2, 1.3, .2},
{ 4.6, 3.1, 1.5, .2},
{ 5.0, 3.6, 1.4, .2},
{ 5.4, 3.9, 1.7, .4},
{ 4.6, 3.4, 1.4, .3},
{ 5.0, 3.4, 1.5, .2},
{ 4.4, 2.9, 1.4, .2},
{ 4.9, 3.1, 1.5, .1},
{ 5.4, 3.7, 1.5, .2},
{ 4.8, 3.4, 1.6, .2},
{ 4.8, 3.0, 1.4, .1},
{ 4.3, 3.0, 1.1, .1},
{ 5.8, 4.0, 1.2, .2},
{ 5.7, 4.4, 1.5, .4},
{ 5.4, 3.9, 1.3, .4},
{ 5.1, 3.5, 1.4, .3},
{ 5.7, 3.8, 1.7, .3},
{ 5.1, 3.8, 1.5, .3},
{ 5.4, 3.4, 1.7, .2},
{ 5.1, 3.7, 1.5, .4},
{ 4.6, 3.6, 1.0, .2},
{ 5.1, 3.3, 1.7, .5},
{ 4.8, 3.4, 1.9, .2},
{ 5.0, 3.0, 1.6, .2},
{ 5.0, 3.4, 1.6, .4},
{ 5.2, 3.5, 1.5, .2},
{ 5.2, 3.4, 1.4, .2},
{ 4.7, 3.2, 1.6, .2},
{ 4.8, 3.1, 1.6, .2},
{ 5.4, 3.4, 1.5, .4},
{ 5.2, 4.1, 1.5, .1},
{ 5.5, 4.2, 1.4, .2},
{ 4.9, 3.1, 1.5, .2},
{ 5.0, 3.2, 1.2, .2},
{ 5.5, 3.5, 1.3, .2},
{ 4.9, 3.6, 1.4, .1},
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{ 4.4, 3.0, 1.3, .2},
{ 5.1, 3.4, 1.5, .2},
{ 5.0, 3.5, 1.3, .3},
{ 4.5, 2.3, 1.3, .3},
{ 4.4, 3.2, 1.3, .2},
{ 5.0, 3.5, 1.6, .6},
{ 5.1, 3.8, 1.9, .4},
{ 4.8, 3.0, 1.4, .3},
{ 5.1, 3.8, 1.6, .2},
{ 4.6, 3.2, 1.4, .2},
{ 5.3, 3.7, 1.5, .2},
{ 5.0, 3.3, 1.4, .2},
{ 7.0, 3.2, 4.7, 1.4},
{ 6.4, 3.2, 4.5, 1.5},
{ 6.9, 3.1, 4.9, 1.5},
{ 5.5, 2.3, 4.0, 1.3},
{ 6.5, 2.8, 4.6, 1.5},
{ 5.7, 2.8, 4.5, 1.3},
{ 6.3, 3.3, 4.7, 1.6},
{ 4.9, 2.4, 3.3, 1.0},
{ 6.6, 2.9, 4.6, 1.3},
{ 5.2, 2.7, 3.9, 1.4},
{ 5.0, 2.0, 3.5, 1.0},
{ 5.9, 3.0, 4.2, 1.5},
{ 6.0, 2.2, 4.0, 1.0},
{ 6.1, 2.9, 4.7, 1.4},
{ 5.6, 2.9, 3.6, 1.3},
{ 6.7, 3.1, 4.4, 1.4},
{ 5.6, 3.0, 4.5, 1.5},
{ 5.8, 2.7, 4.1, 1.0},
{ 6.2, 2.2, 4.5, 1.5},
{ 5.6, 2.5, 3.9, 1.1},
{ 5.9, 3.2, 4.8, 1.8},
{ 6.1, 2.8, 4.0, 1.3},
{ 6.3, 2.5, 4.9, 1.5},
{ 6.1, 2.8, 4.7, 1.2},
{ 6.4, 2.9, 4.3, 1.3},
{ 6.6, 3.0, 4.4, 1.4},
{ 6.8, 2.8, 4.8, 1.4},
{ 6.7, 3.0, 5.0, 1.7},
{ 6.0, 2.9, 4.5, 1.5},
{ 5.7, 2.6, 3.5, 1.0},
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{ 5.5, 2.4, 3.8, 1.1},
{ 5.5, 2.4, 3.7, 1.0},
{ 5.8, 2.7, 3.9, 1.2},
{ 6.0, 2.7, 5.1, 1.6},
{ 5.4, 3.0, 4.5, 1.5},
{ 6.0, 3.4, 4.5, 1.6},
{ 6.7, 3.1, 4.7, 1.5},
{ 6.3, 2.3, 4.4, 1.3},
{ 5.6, 3.0, 4.1, 1.3},
{ 5.5, 2.5, 4.0, 1.3},
{ 5.5, 2.6, 4.4, 1.2},
{ 6.1, 3.0, 4.6, 1.4},
{ 5.8, 2.6, 4.0, 1.2},
{ 5.0, 2.3, 3.3, 1.0},
{ 5.6, 2.7, 4.2, 1.3},
{ 5.7, 3.0, 4.2, 1.2},
{ 5.7, 2.9, 4.2, 1.3},
{ 6.2, 2.9, 4.3, 1.3},
{ 5.1, 2.5, 3.0, 1.1},
{ 5.7, 2.8, 4.1, 1.3},
{ 6.3, 3.3, 6.0, 2.5},
{ 5.8, 2.7, 5.1, 1.9},
{ 7.1, 3.0, 5.9, 2.1},
{ 6.3, 2.9, 5.6, 1.8},
{ 6.5, 3.0, 5.8, 2.2},
{ 7.6, 3.0, 6.6, 2.1},
{ 4.9, 2.5, 4.5, 1.7},
{ 7.3, 2.9, 6.3, 1.8},
{ 6.7, 2.5, 5.8, 1.8},
{ 7.2, 3.6, 6.1, 2.5},
{ 6.5, 3.2, 5.1, 2.0},
{ 6.4, 2.7, 5.3, 1.9},
{ 6.8, 3.0, 5.5, 2.1},
{ 5.7, 2.5, 5.0, 2.0},
{ 5.8, 2.8, 5.1, 2.4},
{ 6.4, 3.2, 5.3, 2.3},
{ 6.5, 3.0, 5.5, 1.8},
{ 7.7, 3.8, 6.7, 2.2},
{ 7.7, 2.6, 6.9, 2.3},
{ 6.0, 2.2, 5.0, 1.5},
{ 6.9, 3.2, 5.7, 2.3},
{ 5.6, 2.8, 4.9, 2.0},
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{ 7.7, 2.8, 6.7, 2.0},
{ 6.3, 2.7, 4.9, 1.8},
{ 6.7, 3.3, 5.7, 2.1},
{ 7.2, 3.2, 6.0, 1.8},
{ 6.2, 2.8, 4.8, 1.8},
{ 6.1, 3.0, 4.9, 1.8},
{ 6.4, 2.8, 5.6, 2.1},
{ 7.2, 3.0, 5.8, 1.6},
{ 7.4, 2.8, 6.1, 1.9},
{ 7.9, 3.8, 6.4, 2.0},
{ 6.4, 2.8, 5.6, 2.2},
{ 6.3, 2.8, 5.1, 1.5},
{ 6.1, 2.6, 5.6, 1.4},
{ 7.7, 3.0, 6.1, 2.3},
{ 6.3, 3.4, 5.6, 2.4},
{ 6.4, 3.1, 5.5, 1.8},
{ 6.0, 3.0, 4.8, 1.8},
{ 6.9, 3.1, 5.4, 2.1},
{ 6.7, 3.1, 5.6, 2.4},
{ 6.9, 3.1, 5.1, 2.3},
{ 5.8, 2.7, 5.1, 1.9},
{ 6.8, 3.2, 5.9, 2.3},
{ 6.7, 3.3, 5.7, 2.5},
{ 6.7, 3.0, 5.2, 2.3},
{ 6.3, 2.5, 5.0, 1.9},
{ 6.5, 3.0, 5.2, 2.0},
{ 6.2, 3.4, 5.4, 2.3},
{ 5.9, 3.0, 5.1, 1.8}};

Dissimilarities dist = new Dissimilarities(irisData, 0, 1, 1);

double[][] distanceMatrix = dist.getDistanceMatrix();

ClusterHierarchical clink = new ClusterHierarchical(

dist.getDistanceMatrix(),2,0);

int nClusters = 5;

int[] iclus = clink.getClusterMembership(nClusters);

int[] nclus = clink.getObsPerCluster(nClusters);

System.out.println("Cluster Membership");

for (int i=0;i<15;i++){
for (int j=0;j<10;j++)

System.out.print(iclus[i*10+j]+" ");

System.out.println();
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}

System.out.println("Observations Per Cluster");

for (int i=0;i<nClusters;i++)

System.out.print(nclus[i]+" ");

System.out.println();

}
}

Output

Cluster Membership

5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5

3 3 3 4 3 4 3 4 3 4

4 3 4 3 4 3 4 4 4 4

3 3 3 3 3 3 3 3 3 4

4 4 4 3 4 3 3 4 4 4

4 3 4 4 4 4 4 3 4 4

2 3 2 3 2 1 4 1 3 2

2 3 2 3 3 2 3 2 1 4

2 3 1 3 2 1 3 3 3 1

1 2 3 3 3 1 2 3 3 2

2 2 3 2 2 2 3 3 2 3

Observations Per Cluster

8 19 44 29 50

class FactorAnalysis

Performs Principal Component Analysis or Factor Analysis on a covariance or correlation
matrix.

Class FactorAnalysis computes principal components or initial factor loading estimates
for a variance-covariance or correlation matrix using exploratory factor analysis models.

Models available are the principal component model for factor analysis and the common
factor model with additions to the common factor model in alpha factor analysis and
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image analysis. Methods of estimation include principal components, principal factor,
image analysis, unweighted least squares, generalized least squares, and maximum
likelihood.

For the principal component model there are methods to compute the characteristic roots,
characteristic vectors, standard errors for the characteristic roots, and the correlations of
the principal component scores with the original variables. Principal components obtained
from correlation matrices are the same as principal components obtained from
standardized (to unit variance) variables.

The principal component scores are the elements of the vector y = ΓTx where Γ is the
matrix whose columns are the characteristic vectors (eigenvectors) of the sample
covariance (or correlation) matrix and x is the vector of observed (or standardized)
random variables. The variances of the principal component scores are the characteristic
roots (eigenvalues) of the covariance (correlation) matrix.

Asymptotic variances for the characteristic roots were first obtained by Girshick (1939)
and are given more recently by Kendall, Stuart, and Ord (1983, page 331). These
variances are computed either for variance-covariance matrices or for correlation matrices.

The correlations of the principal components with the observed (or standardized)
variables are the same as the unrotated factor loadings obtained for the principal
components model for factor analysis when a correlation matrix is input.

In the factor analysis model used for factor extraction, the basic model is given as
Σ = ΛΛT + Ψ where Σ is the p× p population covariance matrix. Λ is the p× k matrix of
factor loadings relating the factors f to the observed variables x, and Ψ is the p× p matrix
of covariances of the unique errors e. Here, p represents the number of variables and k is
the number of factors. The relationship between the factors, the unique errors, and the
observed variables is given as x = Λf + e where, in addition, it is assumed that the
expected values of e, f, and x are zero. (The sample means can be subtracted from x if the
expected value of x is not zero.) It is also assumed that each factor has unit variance, the
factors are independent of each other, and that the factors and the unique errors are
mutually independent. In the common factor model, the elements of the vector of unique
errors e are also assumed to be independent of one another so that the matrix Ψ is
diagonal. This is not the case in the principal component model in which the errors may
be correlated.

Further differences between the various methods concern the criterion that is optimized
and the amount of computer effort required to obtain estimates. Generally speaking, the
least-squares and maximum likelihood methods, which use iterative algorithms, require
the most computer time with the principal factor, principal component, and the image
methods requiring much less time since the algorithms in these methods are not iterative.
The algorithm in alpha factor analysis is also iterative, but the estimates in this method
generally require somewhat less computer effort than the least-squares and maximum
likelihood estimates. In all algorithms one eigensystem analysis is required on each
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iteration.

Declaration

public class com.imsl.stat.FactorAnalysis
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Classes

class FactorAnalysis.RankException

Rank of covariance matrix error.

Declaration

public static class com.imsl.stat.FactorAnalysis.RankException
extends com.imsl.IMSLException (page 1240)

Constructors

• FactorAnalysis.RankException
public FactorAnalysis.RankException( java.lang.String message )

• FactorAnalysis.RankException
public FactorAnalysis.RankException( java.lang.String key,
java.lang.Object[] arguments )

class FactorAnalysis.NotPositiveSemiDefiniteException

Covariance matrix not positive semi-definite.

Declaration

public static class com.imsl.stat.FactorAnalysis.NotPositiveSemiDefiniteException
extends com.imsl.IMSLException (page 1240)
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Constructors

• FactorAnalysis.NotPositiveSemiDefiniteException
public FactorAnalysis.NotPositiveSemiDefiniteException(
java.lang.String message )

• FactorAnalysis.NotPositiveSemiDefiniteException
public FactorAnalysis.NotPositiveSemiDefiniteException(
java.lang.String key, java.lang.Object[] arguments )

class FactorAnalysis.NotSemiDefiniteException

Hessian matrix not semi-definite.

Declaration

public static class com.imsl.stat.FactorAnalysis.NotSemiDefiniteException
extends com.imsl.IMSLException (page 1240)

Constructors

• FactorAnalysis.NotSemiDefiniteException
public FactorAnalysis.NotSemiDefiniteException( java.lang.String
message )

• FactorAnalysis.NotSemiDefiniteException
public FactorAnalysis.NotSemiDefiniteException( java.lang.String key,
java.lang.Object[] arguments )

class FactorAnalysis.NotPositiveDefiniteException

Covariance matrix not positive definite.

Declaration

public static class com.imsl.stat.FactorAnalysis.NotPositiveDefiniteException
extends com.imsl.IMSLException (page 1240)
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Constructors

• FactorAnalysis.NotPositiveDefiniteException
public FactorAnalysis.NotPositiveDefiniteException( java.lang.String
message )

• FactorAnalysis.NotPositiveDefiniteException
public FactorAnalysis.NotPositiveDefiniteException( java.lang.String
key, java.lang.Object[] arguments )

class FactorAnalysis.SingularException

Covariance matrix singular error.

Declaration

public static class com.imsl.stat.FactorAnalysis.SingularException
extends com.imsl.IMSLException (page 1240)

Constructors

• FactorAnalysis.SingularException
public FactorAnalysis.SingularException( java.lang.String message )

• FactorAnalysis.SingularException
public FactorAnalysis.SingularException( java.lang.String key,
java.lang.Object[] arguments )

class FactorAnalysis.BadVarianceException

Bad variance error.

Declaration

public static class com.imsl.stat.FactorAnalysis.BadVarianceException
extends com.imsl.IMSLException (page 1240)
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Constructors

• FactorAnalysis.BadVarianceException
public FactorAnalysis.BadVarianceException( java.lang.String message
)

• FactorAnalysis.BadVarianceException
public FactorAnalysis.BadVarianceException( java.lang.String key,
java.lang.Object[] arguments )

class FactorAnalysis.EigenvalueException

Eigenvalue error.

Declaration

public static class com.imsl.stat.FactorAnalysis.EigenvalueException
extends com.imsl.IMSLException (page 1240)

Constructors

• FactorAnalysis.EigenvalueException
public FactorAnalysis.EigenvalueException( java.lang.String message )

• FactorAnalysis.EigenvalueException
public FactorAnalysis.EigenvalueException( java.lang.String key,
java.lang.Object[] arguments )

class FactorAnalysis.NonPositiveEigenvalueException

Non positive eigenvalue error.

Declaration

public static class com.imsl.stat.FactorAnalysis.NonPositiveEigenvalueException
extends com.imsl.IMSLException (page 1240)
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Constructors

• FactorAnalysis.NonPositiveEigenvalueException
public FactorAnalysis.NonPositiveEigenvalueException(
java.lang.String message )

• FactorAnalysis.NonPositiveEigenvalueException
public FactorAnalysis.NonPositiveEigenvalueException(
java.lang.String key, java.lang.Object[] arguments )

class FactorAnalysis.NoDegreesOfFreedomException

No degrees of freedom error.

Declaration

public static class com.imsl.stat.FactorAnalysis.NoDegreesOfFreedomException
extends com.imsl.IMSLException (page 1240)

Constructors

• FactorAnalysis.NoDegreesOfFreedomException
public FactorAnalysis.NoDegreesOfFreedomException( java.lang.String
message )

• FactorAnalysis.NoDegreesOfFreedomException
public FactorAnalysis.NoDegreesOfFreedomException( java.lang.String
key, java.lang.Object[] arguments )

Fields

• public static final int VARIANCE COVARIANCE MATRIX

– Indicates variance-covariance matrix.

• public static final int CORRELATION MATRIX

– Indicates correlation matrix.
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• public static final int PRINCIPAL COMPONENT MODEL

– Indicates principal component model.

• public static final int PRINCIPAL FACTOR MODEL

– Indicates principal factor model.

• public static final int UNWEIGHTED LEAST SQUARES

– Indicates unweighted least squares method.

• public static final int GENERALIZED LEAST SQUARES

– Indicates generalized least squares method.

• public static final int MAXIMUM LIKELIHOOD

– Indicates maximum likelihood method.

• public static final int IMAGE FACTOR ANALYSIS

– Indicates image factor analysis.

• public static final int ALPHA FACTOR ANALYSIS

– Indicates alpha factor analysis.

Constructor

• FactorAnalysis
public FactorAnalysis( double[][] cov, int matrixType, int nf )

– Description
Constructor for FactorAnalysis.

– Parameters
∗ cov – A double matrix containing the covariance or correlation matrix.
∗ matrixType – An int scalar indicating the type of matrix that is input.

Uses class member VARIANCE COVARIANCE MATRIX, CORRELATION MATRIX for
matrixType.
∗ nf – An int scalar indicating the number of factors in the model. If nf is

not known in advance, several different values of nf should be used, and the
most reasonable value kept in the final solution. Since, in practice, the
non-iterative methods often lead to solutions which differ little from the
iterative methods, it is usually suggested that a non-iterative method be
used in the initial stages of the factor analysis, and that the iterative
methods be used once issues such as the number of factors have been
resolved.
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– Throws
∗ java.lang.IllegalArgumentException – is thrown if x.length, and

x[0].length are equal to 0.

Methods

• getCorrelations
public double[][] getCorrelations( ) throws
com.imsl.stat.FactorAnalysis.RankException,
com.imsl.stat.FactorAnalysis.NoDegreesOfFreedomException,
com.imsl.stat.FactorAnalysis.NotSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveDefiniteException,
com.imsl.stat.FactorAnalysis.SingularException,
com.imsl.stat.FactorAnalysis.BadVarianceException,
com.imsl.stat.FactorAnalysis.EigenvalueException,
com.imsl.stat.FactorAnalysis.NonPositiveEigenvalueException

– Description
Returns the correlations of the principal components.

– Returns – An double matrix containing the correlations of the principal
components with the observed/standardized variables. If a covariance matrix is
input to the constructor, then the correlations are with the observed variables.
Otherwise, the correlations are with the standardized (to a variance of 1.0)
variables. Only valid for the principal components model.

• getFactorLoadings
public double[][] getFactorLoadings( ) throws
com.imsl.stat.FactorAnalysis.RankException,
com.imsl.stat.FactorAnalysis.NoDegreesOfFreedomException,
com.imsl.stat.FactorAnalysis.NotSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveDefiniteException,
com.imsl.stat.FactorAnalysis.SingularException,
com.imsl.stat.FactorAnalysis.BadVarianceException,
com.imsl.stat.FactorAnalysis.EigenvalueException,
com.imsl.stat.FactorAnalysis.NonPositiveEigenvalueException

– Description
Returns the unrotated factor loadings.

– Returns – A double matrix containing the unrotated factor loadings.
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• getParameterUpdates
public double[] getParameterUpdates( ) throws
com.imsl.stat.FactorAnalysis.RankException,
com.imsl.stat.FactorAnalysis.NoDegreesOfFreedomException,
com.imsl.stat.FactorAnalysis.NotSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveDefiniteException,
com.imsl.stat.FactorAnalysis.SingularException,
com.imsl.stat.FactorAnalysis.BadVarianceException,
com.imsl.stat.FactorAnalysis.EigenvalueException,
com.imsl.stat.FactorAnalysis.NonPositiveEigenvalueException

– Description
Returns the parameter updates.

– Returns – A double array containing the parameter updates when convergence
was reached (or the iterations terminated). The parameter updates are only
meaningful for the common factor model. The parameter updates are set to 0.0
for the principal component model.

• getPercents
public double[] getPercents( ) throws
com.imsl.stat.FactorAnalysis.RankException,
com.imsl.stat.FactorAnalysis.NoDegreesOfFreedomException,
com.imsl.stat.FactorAnalysis.NotSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveDefiniteException,
com.imsl.stat.FactorAnalysis.SingularException,
com.imsl.stat.FactorAnalysis.BadVarianceException,
com.imsl.stat.FactorAnalysis.EigenvalueException,
com.imsl.stat.FactorAnalysis.NonPositiveEigenvalueException

– Description
Returns the cumulative percent of the total variance explained by each
principal component. Valid for the principal component model.

– Returns – An double array containing the total variance explained by each
principal component.

• getStandardErrors
public double[] getStandardErrors( ) throws
com.imsl.stat.FactorAnalysis.RankException,
com.imsl.stat.FactorAnalysis.NoDegreesOfFreedomException,
com.imsl.stat.FactorAnalysis.NotSemiDefiniteException,
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com.imsl.stat.FactorAnalysis.NotPositiveSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveDefiniteException,
com.imsl.stat.FactorAnalysis.SingularException,
com.imsl.stat.FactorAnalysis.BadVarianceException,
com.imsl.stat.FactorAnalysis.EigenvalueException,
com.imsl.stat.FactorAnalysis.NonPositiveEigenvalueException

– Description
Returns the estimated asymptotic standard errors of the eigenvalues.

– Returns – An double array containing the estimated asymptotic standard
errors of the eigenvalues.

• getStatistics
public double[] getStatistics( ) throws
com.imsl.stat.FactorAnalysis.RankException,
com.imsl.stat.FactorAnalysis.NoDegreesOfFreedomException,
com.imsl.stat.FactorAnalysis.NotSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveDefiniteException,
com.imsl.stat.FactorAnalysis.SingularException,
com.imsl.stat.FactorAnalysis.BadVarianceException,
com.imsl.stat.FactorAnalysis.EigenvalueException,
com.imsl.stat.FactorAnalysis.NonPositiveEigenvalueException

– Description
Returns statistics.

– Returns – A double array (Stat) containing output statistics. Stat is not
defined and is set to NaN when the method used to obtain the estimates, is the
principal component method, principal factor method, image factor analysis
method, or alpha analysis method.
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i Stat[i]
0 Value of the function minimum.
1 Tucker reliability coefficient.
2 Chi-squared test statistic for testing

that the number of factors in the
model are adequate for the data.

3 Degrees of freedom in chi-squared.
This is computed as
((nvar − nf)2 − nvar − nf)/2where
nvar is the number of variables and nf

is the number of factors in the model.
4 Probability of a greater chi-squared

statistic.
5 Number of iterations.

• getValues
public double[] getValues( ) throws
com.imsl.stat.FactorAnalysis.RankException,
com.imsl.stat.FactorAnalysis.NoDegreesOfFreedomException,
com.imsl.stat.FactorAnalysis.NotSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveDefiniteException,
com.imsl.stat.FactorAnalysis.SingularException,
com.imsl.stat.FactorAnalysis.BadVarianceException,
com.imsl.stat.FactorAnalysis.EigenvalueException,
com.imsl.stat.FactorAnalysis.NonPositiveEigenvalueException

– Description
Returns the eigenvalues.

– Returns – A double array containing the eigenvalues of the matrix from which
the factors were extracted ordered from largest to smallest. If Alpha Factor
analysis is used, then the first nf positions of the array contain the Alpha
coefficients. Here, nf is the number of factors in the model. If the algorithm
fails to converge for a particular eigenvalue, that eigenvalue is set to NaN. Note
that the eigenvalues are usually not the eigenvalues of the input matrix cov.
They are the eigenvalues of the input matrix cov when the principal

component method is used.

• getVariances
public double[] getVariances( ) throws
com.imsl.stat.FactorAnalysis.RankException,
com.imsl.stat.FactorAnalysis.NoDegreesOfFreedomException,
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com.imsl.stat.FactorAnalysis.NotSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveDefiniteException,
com.imsl.stat.FactorAnalysis.SingularException,
com.imsl.stat.FactorAnalysis.BadVarianceException,
com.imsl.stat.FactorAnalysis.EigenvalueException,
com.imsl.stat.FactorAnalysis.NonPositiveEigenvalueException

– Description
Gets the unique variances.

– Returns – A double array of length nvar containing the unique variances,
where nvar is the number of variables.

• getVectors
public double[][] getVectors( ) throws
com.imsl.stat.FactorAnalysis.RankException,
com.imsl.stat.FactorAnalysis.NoDegreesOfFreedomException,
com.imsl.stat.FactorAnalysis.NotSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveSemiDefiniteException,
com.imsl.stat.FactorAnalysis.NotPositiveDefiniteException,
com.imsl.stat.FactorAnalysis.SingularException,
com.imsl.stat.FactorAnalysis.BadVarianceException,
com.imsl.stat.FactorAnalysis.EigenvalueException,
com.imsl.stat.FactorAnalysis.NonPositiveEigenvalueException

– Description
Returns the eigenvectors.

– Returns – A double matrix containing the eigenvectors of the matrix from
which the factors were extracted. The j-th column of the eigenvector matrix
corresponds to the j-th eigenvalue. The eigenvectors are normalized to each
have Euclidean length equal to one. Also, the sign of each vector is set so that
the largest component in magnitude (the first of the largest if there are ties) is
made positive. Note that the eigenvectors are usually not the eigenvectors of
the input matrix cov. They are the eigenvectors of the input matrix cov when
the principal component method is used.

• setConvergenceCriterion1
public void setConvergenceCriterion1( double eps )

– Description
Sets the convergence criterion used to terminate the iterations.

– Parameters
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∗ eps – A double used to terminate the iterations. For the least squares and
and maximum likelihood methods convergence is assumed when the
relative change in the criterion is less than eps. For alpha factor analysis,
convergence is assumed when the maximum change (relative to the
variance) of a uniqueness is less than eps. eps is not referenced for the
other estimation methods. If this member function is not called, eps is set
to 0.0001.

• setConvergenceCriterion2
public void setConvergenceCriterion2( double epse )

– Description
Sets the convergence criterion used to switch to exact second derivatives.

– Parameters
∗ epse – A double used to switch to exact second derivatives. When the

largest relative change in the unique standard deviation vector is less than
epse exact second derivative vectors are used. If this member function is
not called, epse is set to 0.1. Not referenced for principal component,
principal factor, image factor, or alpha factor methods.

• setDegreesOfFreedom
public void setDegreesOfFreedom( int ndf )

– Description
Sets the number of degrees of freedom.

– Parameters
∗ ndf – An int value specifying the number of degrees of freedom in the

input matrix. If this member function is not called 100 degrees of freedom
are assumed.

• setFactorLoadingEstimationMethod
public void setFactorLoadingEstimationMethod( int methodType )

– Description
Sets the factor loading estimation method.

– Parameters
∗ methodType – An int scalar indicating the method to be applied for

obtaining the factor loadings. Use class member
PRINCIPAL COMPONENT MODEL, PRINCIPAL FACTOR MODEL,
UNWEIGHTED LEAST SQUARES, GENERALIZED LEAST SQUARES, MAXIMUM LIKELIHOOD,
IMAGE FACTOR ANALYSIS, or ALPHA FACTOR ANALYSIS for methodType. If this
member function is not called, the PRINCIPAL COMPONENT MODEL is used.
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For the principal component and principal factor methods, the factor
loading estimates are computed as

Γ̂∆̂−1/2

where Γ and the diagonal matrix ∆ are the eigenvalues and eigenvectors of
a matrix. In the principal component model, the eigensystem analysis is
performed on the sample covariance (correlation) matrix S while in the
principal factor model the matrix (S −Ψ) is used. If the unique error
variances Ψ are not known in the principal factor model, then they are
estimated. This is achieved by calling the member function
setVarianceEstimationMethod and setting init to 0. If the principal
component model is used, the error variances are set to 0.0 automatically.
The basic idea in the principal component method is to find factors that
maximize the variance in the original data that is explained by the factors.
Because this method allows the unique errors to be correlated, some factor
analysts insist that the principal component method is not a factor
analytic method. Usually however, the estimates obtained via the principal
component model and other models in factor analysis will be quite similar.
It should be noted that both the principal component and the principal
factor methods give different results when the correlation matrix is used in
place of the covariance matrix. Indeed, any rescaling of the sample
covariance matrix can lead to different estimates with either of these
methods. A further difficulty with the principal factor method is the
problem of estimating the unique error variances. Theoretically, these must
be known in advance and passed in through member function
setVariances. In practice, the estimates of these parameters produced by
calling the member function setVarianceEstimationMethod and setting init

to 0 are often used. In either case, the resulting adjusted covariance
(correlation) matrix

(S − Ψ̂)

may not yield the nf positive eigenvalues required for nf factors to be
obtained. If this occurs, the user must either lower the number of factors to
be estimated or give new unique error variance values.
For the least-squares and maximum likelihood methods an iterative
algorithm is used to obtain the estimates (see Joreskog 1977). As with the
principal factor model, the user may either input the initial unique error
variances or allow the algorithm to compute initial estimates. Unlike the
principal factor method, the code then optimizes the criterion function
with respect to both Ψ and Γ. (In the principal factor method, Ψ is
assumed to be known. Given Ψ, estimates for Λ may be obtained.)
The major differences between the estimation methods described in this
member function are in the criterion function that is optimized. Let S
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denote the sample covariance (correlation) matrix, and let Σ denote the
covariance matrix that is to be estimated by the factor model. In the
unweighted least-squares method, also called the iterated principal factor
method or the minres method (see Harman 1976, page 177), the function
minimized is the sum of the squared differences between S and Σ. This is
written as Φul = .5trace((S − Σ)2).
Generalized least-squares and maximum likelihood estimates are
asymptotically equivalent methods. Maximum likelihood estimates
maximize the (normal theory) likelihood
{Φml = trace(Σ−1S)− log(|Σ−1S|)}. while generalized least squares
optimizes the function Φgs = trace(ΣS−1 − I)2.
In all three methods, a two-stage optimization procedure is used. This
proceeds by first solving the likelihood equations for Λ in terms of Ψ and
substituting the solution into the likelihood. This gives a criterion
Φ(Ψ,Λ(Ψ)), which is optimized with respect to Ψ. In the second stage, the
estimates

Λ̂

are obtained from the estimates for Ψ.
The generalized least-squares and the maximum likelihood methods allow
for the computation of a statistic for testing that nf common factors are
adequate to fit the model. This is a chi-squared test that all remaining
parameters associated with additional factors are zero. If the probability of
a larger chi-squared is small (see stat[4] under getStatistics) so that the
null hypothesis is rejected, then additional factors are needed (although
these factors may not be of any practical importance). Failure to reject
does not legitimize the model. The statistic stat[2] is a likelihood ratio
statistic in maximum likelihood estimates. As such, it asymptotically
follows a chi-squared distribution with degrees of freedom given in stat[3].
The Tucker and Lewis (1973) reliability coefficient, ρ, is returned in
stat[1] when the maximum likelihood or generalized least-squares
methods are used. This coefficient is an estimate of the ratio of explained
to the total variation in the data. It is computed as follows:

ρ =
mMo −mMk

mMo − 1

m = d− 2p+ 5
6
− 2k

6

Mo =
−ln(|S|)
p(p− 1)/2

Mk =
Φ

((p− k)2 − p− k)/2
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where |S| is the determinant of cov, p is the number of variables, k is the
number of factors, Φ is the optimized criterion, and d is the number of
degrees of freedom.
The term “image analysis” is used here to denote the noniterative image
method of Kaiser (1963). It is not the image factor analysis discussed by
Harman (1976, page 226). The image method (as well as the alpha factor
analysis method) begins with the notion that only a finite number from an
infinite number of possible variables have been measured. The image factor
pattern is calculated under the assumption that the ratio of the number of
factors to the number of observed variables is near zero so that a very good
estimate for the unique error variances (for standardized variables) is given
as one minus the squared multiple correlation of the variable under
consideration with all variables in the covariance matrix.
First, the matrix D2 = (diag(S−1))−1 is computed where the operator
“diag” results in a matrix consisting of the diagonal elements of its
argument, and S is the sample covariance (correlation) matrix. Then, the
eigenvalues Λ and eigenvectors Γ of the matrix D−1SD−1 are computed.
Finally, the unrotated image factor pattern matrix is computed as
A = DΓ[(Λ− I)2Λ−1]1/2.
The alpha factor analysis method of Kaiser and Caffrey (1965) finds
factor-loading estimates to maximize the correlation between the factors
and the complete universe of variables of interest. The basic idea in this
method is as follows: only a finite number of variables out of a much larger
set of possible variables is observed. The population factors are linearly
related to this larger set while the observed factors are linearly related to
the observed variables. Let f denote the factors obtainable from a finite set
of observed random variables, and let ξ denote the factors obtainable from
the universe of observable variables. Then, the alpha method attempts to
find factor-loading estimates so as to maximize the correlation between f
and ξ. In order to obtain these estimates, the iterative algorithm of Kaiser
and Caffrey (1965) is used.

• setMaxIterations
public void setMaxIterations( int maxit )

– Description
Sets the maximum number of iterations in the iterative procedure.

– Parameters
∗ maxit – An int used as the maximum number of iterations allowed during

the iterative portion of the algorithm. If this member function is not
called, maxit is set to 60. Not referenced for factor loading methods
principal component, principal factor, or image factor methods.
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• setMaxStep
public void setMaxStep( int maxstp )

– Description
Sets the maximum number of step halvings allowed during an iteration.

– Parameters
∗ maxstp – An int used as the maximum number of step halvings allowed

during an iteration. If this member function is not called, maxstp is set to
8. Not referenced for principal component, principal factor, image factor,
or alpha factor methods.

• setVarianceEstimationMethod
public void setVarianceEstimationMethod( int init )

– Description
Sets the variance estimation method.

– Parameters
∗ init – An int used to designate the method to be applied for obtaining

the initial estimates
of the unique variances. If this member function is not called, init is set to 1.
init Method
0 Initial estimates are taken as the

constant 1-nf/(2*nvar) divided by
the diagonal elements of the inverse
of input matrix cov, where nvar is
the number of variables.

1 Initial estimates are input by the
user in vector uniq (setVariances).

Note that when the factor loading estimation method is
PRINCIPAL COMPONENT MODEL, the initial estimates in uniq are
reset to 0.0.

• setVariances
public void setVariances( double[] uniq )

– Description
Sets the variances.

– Parameters
∗ uniq – A double array of length nvar containing the unique variances,

where nvar is the number of variables. If this member function is not
called, the elements of uniq are set to 0.0. If the iterative methods fail for
the unique variances used, new initial estimates should be tried. These
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may be obtained by use of another factoring method (use the final
estimates from the new method as initial estimates in the old method).
Another alternative is to call member function
setVarianceEstimationMethod and set the input argument to 0. This will
cause the initial unique variances to be estimated by the code.

Example: Principal Components

This example illustrates the use of the FactorAnalysis class for a nine-variable matrix.
The PRINCIPAL COMPONENT MODEL is selected and the input matrix type selected
is a CORRELATION MATRIX.

import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

import com.imsl.math.PrintMatrixFormat;

public class FactorAnalysisEx1 {
public static void main(String args[]) throws Exception {

double[][] corr = {
{1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639},
{0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645},
{0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504},
{0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505},
{0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409},
{0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472},
{0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68},
{0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47},
{0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0}

};
FactorAnalysis pc = new FactorAnalysis(corr, FactorAnalysis.CORRELATION MATRIX, 9);

pc.setFactorLoadingEstimationMethod(pc.PRINCIPAL COMPONENT MODEL);

pc.setDegreesOfFreedom(100);

NumberFormat nf = NumberFormat.getInstance();

nf.setMinimumFractionDigits(4);

PrintMatrixFormat pmf = new PrintMatrixFormat();

pmf.setNumberFormat(nf);

new PrintMatrix("Eigenvalues").print(pmf, pc.getValues());

new PrintMatrix("Percents").print(pmf, pc.getPercents());

new PrintMatrix("Standard Errors").print(pmf, pc.getStandardErrors());

new PrintMatrix("Eigenvectors").print(pmf, pc.getVectors());
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new PrintMatrix("Unrotated Factor Loadings").print(pmf, pc.getFactorLoadings());

}
}

Output

Eigenvalues

0

0 4.6769

1 1.2640

2 0.8444

3 0.5550

4 0.4471

5 0.4291

6 0.3102

7 0.2770

8 0.1962

Percents

0

0 0.5197

1 0.6601

2 0.7539

3 0.8156

4 0.8653

5 0.9130

6 0.9474

7 0.9782

8 1.0000

Standard Errors

0

0 0.6498

1 0.1771

2 0.0986

3 0.0879

4 0.0882

5 0.0890

6 0.0944

7 0.0994

8 0.1113
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Eigenvectors

0 1 2 3 4 5 6 7 8

0 0.3462 -0.2354 0.1386 -0.3317 -0.1088 0.7974 0.1735 -0.1240 -0.0488

1 0.3526 -0.1108 -0.2795 -0.2161 0.7664 -0.2002 0.1386 -0.3032 -0.0079

2 0.2754 -0.2697 -0.5585 0.6939 -0.1531 0.1511 0.0099 -0.0406 -0.0997

3 0.3664 0.4031 0.0406 0.1196 0.0017 0.1152 -0.4022 -0.1178 0.7060

4 0.3144 0.5022 -0.0733 -0.0207 -0.2804 -0.1796 0.7295 0.0075 0.0046

5 0.3455 0.4553 0.1825 0.1114 0.1202 0.0696 -0.3742 0.0925 -0.6780

6 0.3487 -0.2714 -0.0725 -0.3545 -0.5242 -0.4355 -0.2854 -0.3408 -0.1089

7 0.2407 -0.3159 0.7383 0.4329 0.0861 -0.1969 0.1862 -0.1623 0.0505

8 0.3847 -0.2533 -0.0078 -0.1468 0.0459 -0.1498 -0.0251 0.8521 0.1225

Unrotated Factor Loadings

0 1 2 3 4 5 6 7 8

0 0.7487 -0.2646 0.1274 -0.2471 -0.0728 0.5224 0.0966 -0.0652 -0.0216

1 0.7625 -0.1245 -0.2568 -0.1610 0.5124 -0.1312 0.0772 -0.1596 -0.0035

2 0.5956 -0.3032 -0.5133 0.5170 -0.1024 0.0990 0.0055 -0.0214 -0.0442

3 0.7923 0.4532 0.0373 0.0891 0.0012 0.0755 -0.2240 -0.0620 0.3127

4 0.6799 0.5646 -0.0674 -0.0154 -0.1875 -0.1177 0.4063 0.0039 0.0021

5 0.7472 0.5119 0.1677 0.0830 0.0804 0.0456 -0.2084 0.0487 -0.3003

6 0.7542 -0.3051 -0.0666 -0.2641 -0.3505 -0.2853 -0.1589 -0.1794 -0.0482

7 0.5206 -0.3552 0.6784 0.3225 0.0576 -0.1290 0.1037 -0.0854 0.0224

8 0.8319 -0.2848 -0.0071 -0.1094 0.0307 -0.0981 -0.0140 0.4485 0.0543

Example: Factor Analysis

This example illustrates the use of the FactorAnalysis class. The following data were
originally analyzed by Emmett(1949). There are 211 observations on 9 variables.
Following Lawley and Maxwell (1971), three factors will be obtained by the method of
maximum likelihood.

import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

import com.imsl.math.PrintMatrixFormat;

public class FactorAnalysisEx2 {
public static void main(String args[]) throws Exception {
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double[][] cov = {
{1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639},
{0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645},
{0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504},
{0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505},
{0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409},
{0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472},
{0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68},
{0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47},
{0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0}

};
FactorAnalysis fl =

new FactorAnalysis(cov, FactorAnalysis.VARIANCE COVARIANCE MATRIX, 3);

fl.setConvergenceCriterion1(.000001);

fl.setConvergenceCriterion2(.01);

fl.setFactorLoadingEstimationMethod(fl.MAXIMUM LIKELIHOOD);

fl.setVarianceEstimationMethod(0);

fl.setMaxStep(10);

fl.setDegreesOfFreedom(210);

NumberFormat nf = NumberFormat.getInstance();

nf.setMinimumFractionDigits(4);

PrintMatrixFormat pmf = new PrintMatrixFormat();

pmf.setNumberFormat(nf);

new PrintMatrix("Unique Error Variances").print

(pmf, fl.getVariances());

new PrintMatrix("Unrotated Factor Loadings").print

(pmf, fl.getFactorLoadings());

new PrintMatrix("Eigenvalues").print(pmf, fl.getValues());

new PrintMatrix("Statistics").print(pmf, fl.getStatistics());

}
}

Output

Unique Error Variances

0

0 0.4505

1 0.4271

2 0.6166

694 • FactorAnalysis JMSL



3 0.2123

4 0.3805

5 0.1769

6 0.3995

7 0.4615

8 0.2309

Unrotated Factor Loadings

0 1 2

0 0.6642 -0.3209 0.0735

1 0.6888 -0.2471 -0.1933

2 0.4926 -0.3022 -0.2224

3 0.8372 0.2924 -0.0354

4 0.7050 0.3148 -0.1528

5 0.8187 0.3767 0.1045

6 0.6615 -0.3960 -0.0777

7 0.4579 -0.2955 0.4913

8 0.7657 -0.4274 -0.0117

Eigenvalues

0

0 0.0626

1 0.2295

2 0.5413

3 0.8650

4 0.8937

5 0.9736

6 1.0802

7 1.1172

8 1.1401

Statistics

0

0 0.0350

1 1.0000

2 7.1494

3 12.0000

4 0.8476

5 5.0000
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class DiscriminantAnalysis

Performs a linear or a quadratic discriminant function analysis among several known
groups and the use of either reclassification, split sample, or the leaving-out-one methods
in order to evaluate the rule.

Class DiscriminantAnalysis performs discriminant function analysis using either linear or
quadratic discrimination. The output from DiscriminantAnalysis includes a measure of
distance between the groups, a table summarizing the classification results, a matrix
containing the posterior probabilities of group membership for each observation, and the
within-sample means and covariance matrices. The linear discriminant function
coefficients are also computed.

All observations are input during one call to DiscriminantAnalysis, a method of operation
that has the advantage of simplicity.

The first step in the algorithm is the initialization step. The variables means, classication
table, and covariances are initialized to zero, and other program parameters are set. The
next step begins by adding all observations in x to the means and the factorizations of the
covariance matrices. It continues by computing some statistics of interest if requested: the
linear discriminant functions, the prior probabilities, the log of the determinant of each of
the covariance matrices, a test statistic for testing that all of the within-group covariance
matrices are equal, and a matrix of Mahalanobis distances between the groups. The
matrix of Mahalanobis distances is computed via the pooled covariance matrix when
linear discrimination is specified, the row covariance matrix is used when the
discrimination is quadratic. Covariance matrices are defined as follows. Let Ni denote the
sum of the frequencies of the observations in group i, and let Mi denote the number of
observations in group i. Then, if Si denotes the within-group i covariance matrix,

Si =
1

Ni − 1

Mi∑
j=1

wjfj(xj − x)(xj − x)T

where wj is the weight of the j-th observation in group i, fj is its frequency, xj is the j-th
observation column vector (in group i), and x denotes the mean vector of the observations
in group i. The mean vectors are computed as

x =
1
Wi

Mi∑
j=1

wjfjxj

where

Wi =
Mi∑
j=1

wjfj
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Given the means and the covariance matrices, the linear discriminant function for group i
is computed as:

zi = ln(pi)− 0.5xi
TS−1

p xi + xTS−1
p xi

where ln(pi) is the natural log of the prior probability for the i-th group, x is the
observation to be classified, and Sp denotes the pooled covariance matrix.

Let S denote either the pooled covariance matrix or one of the within-group covariance
matrices Si. (S will be the pooled covariance matrix in linear discrimination, and Si

otherwise.) The Mahalanobis distance between group i and group j is computed as:

D2
ij = (xi − xj)TS−1(xi − xj)

Finally, the asymptotic chi-squared test for the equality of covariance matrices is
computed as follows (Morrison 1976, page 252):

γ = C−1
k∑

i=1

ni{ln(|Sp|)− ln(|Si|)}

where ni is the number of degrees of freedom in the i-th sample covariance matrix, k is the
number of groups, and

C−1 = 1− 2p2 + 3p− 1
6(p+ 1)(k − 1)

(
k∑

i=1

1
ni
− 1

Σjnj

)

where p is the number of variables.

The estimated posterior probability of each observation x belonging to group i is
computed using the prior probabilities and the sample mean vectors and estimated
covariance matrices under a multivariate normal assumption. Under quadratic
discrimination, the within-group covariance matrices are used to compute the estimated
posterior probabilities. The estimated posterior probability of an observation x belonging
to group i is

q̂i(x) =
e−

1
2
D2

i (x)∑k
j=1 e

− 1
2
D2

j (x)

where

D2
i (x) =

{
(x− xi)TS−1

i (x− xi) + ln |Si| − 2ln(pi) LINEAR or QUADRATIC
(x− xi)TS−1

p (x− xi)− 2ln(pi) LINEAR, POOLED

For the leaving-out-one method of classification, the sample mean vector and sample
covariance matrices in the formula for

D2
i (x)
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are adjusted so as to remove the observation x from their computation. For linear
discrimination, the linear discriminant function coefficients are actually used to compute
the same posterior probabilities.

Using the posterior probabilities, each observation in X is classified into a group; the
result is tabulated in the matrix returned by getClassTable and saved in the vector
returned by getClassMembership. The clasification table is not altered at this stage if
X[i][groupIndex] contains a group number that is out of range. If the reclassification
method is specified, then all observations with no missing values in the nVariables

classification variables are classified. When the leaving-out-one method is used,
observations with invalid group numbers, weights, frequencies or classification variables
are not classified. Regardless of the frequency, a 1 is added (or subtracted) from the
classification table for each row of X that is classified and contains a valid group number.
When the leaving-out-one method is used, adjustment is made to the posterior
probabilities to remove the effect of the observation in the classification rule. In this
adjustment, each observation is presumed to have a weight of weights[i], and a frequency
of 1.0. See Lachenbruch (1975, page 36) for the required adjustment.

Finally, upon completion, the covariance matrices are computed from their LU
factorizations.

Declaration

public class com.imsl.stat.DiscriminantAnalysis
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Inner Classes

class DiscriminantAnalysis.SumOfWeightsNegException

The sum of the weights have become negative.

Declaration

public static class com.imsl.stat.DiscriminantAnalysis.SumOfWeightsNegException
extends com.imsl.IMSLException (page 1240)

Constructors
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• DiscriminantAnalysis.SumOfWeightsNegException
public DiscriminantAnalysis.SumOfWeightsNegException(
java.lang.String message )

• DiscriminantAnalysis.SumOfWeightsNegException
public DiscriminantAnalysis.SumOfWeightsNegException(
java.lang.String key, java.lang.Object[] arguments )

class DiscriminantAnalysis.EmptyGroupException

There are no observations in a group. Cannot compute statistics.

Declaration

public static class com.imsl.stat.DiscriminantAnalysis.EmptyGroupException
extends com.imsl.IMSLException (page 1240)

Constructors

• DiscriminantAnalysis.EmptyGroupException
public DiscriminantAnalysis.EmptyGroupException( java.lang.String
message )

• DiscriminantAnalysis.EmptyGroupException
public DiscriminantAnalysis.EmptyGroupException( java.lang.String
key, java.lang.Object[] arguments )

class DiscriminantAnalysis.CovarianceSingularException

The variance-Covariance matrix is singular.

Declaration

public static class com.imsl.stat.DiscriminantAnalysis.CovarianceSingularException
extends com.imsl.IMSLException (page 1240)

Constructors
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• DiscriminantAnalysis.CovarianceSingularException
public DiscriminantAnalysis.CovarianceSingularException(
java.lang.String message )

• DiscriminantAnalysis.CovarianceSingularException
public DiscriminantAnalysis.CovarianceSingularException(
java.lang.String key, java.lang.Object[] arguments )

Fields

• public static final int LINEAR

– Indicates a linear discrimination method.

• public static final int QUADRATIC

– Indicates a quadratic discrimination method.

• public static final int POOLED

– Indicates Pooled covariances computed.

• public static final int POOLED GROUP

– Indicates Pooled, group covariances computed.

• public static final int RECLASSIFICATION

– Indicates reclassification as the classicfication method.

• public static final int LEAVE OUT ONE

– Indicates leave-out-one as the Classicfication Method.

• public static final int PRIOR PROPORTIONAL

– Indicates prior probability type is to be prior proportional.

• public static final int PRIOR EQUAL

– Indicates prior probability type is to be prior equal.
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Constructor

• DiscriminantAnalysis
public DiscriminantAnalysis( int nVariables, int nGroups )

– Description
Constructor for DiscriminantAnalysis.

– Parameters
∗ nVariables – An int representing the number of variables to be used in

the discrimination.
∗ nGroups – An int representing the number of groups in the data.

Methods

• getClassMembership
public int[] getClassMembership( )

– Description
Returns the group number to which the observation was classified.

– Returns – An int array containing the group to which the observation was
classified. If an observation has an invalid group number, frequency, or weight
when the leaving-out-one method has been specified, then the observation is
not classified and the corresponding elements of the array are set to zero.

• getClassTable
public double[][] getClassTable( )

– Description
Returns the classification table.

– Returns – A nGroups× nGroups double array containing the classification
table. Each observation that is classified and has a group number equal to 1.0,
2.0, ..., nGroups is entered into the table. The rows of the table correspond to
the known group membership. The columns refer to the group to which the
observation was classified.

• getCoefficients
public double[][] getCoefficients( )

– Description
Returns the linear discriminant function coefficients.
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– Returns – A double array containing the linear discriminant function
coefficients. The first column of the array contains the constant term, and the
remaining columns contain the variable coefficients. The i-th row of the
returned array corresponds to group i. The coefficients are always computed as
linear discriminant function coefficients even when quadratic discrimination is
specified.

• getCovariance
public double[][][] getCovariance( )

– Description
Returns the array of covariances.

– Returns – A nV ariables× nV ariables× g double array containing the
covariances. Here, g = nGroups+ 1 unless pooled only covariance matrices are
computed, in which case g=1. When pooled only covariance matrices are
computed, the within-group covariance matrices are not computed. The pooled
covariance matrix is always computed and is returned as the g-th covariance
matrix.

• getGroupCounts
public int[] getGroupCounts( )

– Description
Returns the group counts.

– Returns – An int array of length nGroups containing the number of
observations in each group.

• getMahalanobis
public double[][] getMahalanobis( )

– Description
Returns the Mahalanobis distances between the group means.

– Returns – A nGroups× nGroups double array containing the Mahalanobis
distances between the group means. For linear discrimination, the Mahalanobis
distance

D2
ij

between group means i and j is computed using the within covariance matrix
for group i in place of the pooled covariance matrix.

• getMeans
public double[][] getMeans( )

– Description
Returns the variable means.
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– Returns – A double array containing the variable means. The i-th row of the
returned array contains the group i variable means.

• getNRowsMissing
public int getNRowsMissing( )

– Description
Returns the number of rows of data encountered containing missing values
(NaN).

– Returns – A int representing the number of rows of data encountered
containing missing values (NaN) for the classification, group, weight, and/or
frequency variables. If a row of data contains a missing value (NaN) for any of
these variables, that row is excluded from the computations.

• getPrior
public double[] getPrior( )

– Description
Returns the prior probabilities.

– Returns – A double vector of length nGroups containing the prior probabilities
for each group.

• getProbability
public double[][] getProbability( )

– Description
Returns the posterior probabilities for each observation.

– Returns – A x.length× nGroups double array containing the posterior
probabilities for each observation.

• getStatistics
public double[] getStatistics( )

– Description
Returns statistics.

– Returns – A double array (stat) containing output statistics.
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I STAT[I]
0 Sum of the degrees of freedom for the

within-covariance matrices.
1 Chi-squared statistic.
2 The degrees of freedom in the chi-

squared statistic.
3 Probability of a greater chi-squared,

respectively, of a test of the homo-
geneity of the within-covariance ma-
trices. (Not computed when the
pooled only covariance matrix is com-
puted).

4 thru 4+nGroups Log of the determinant of each
group’s covariance matrix. (Not com-
puted when the pooled only covari-
ance matrix is computed) and of the
pooled covariance matrix.

Last nGroups + 1 elements Sum of the weights within each group.

Last element Sum of the weights in all groups.

• setClassificationMethod
public void setClassificationMethod( int method )

– Description
Sets the classification method.

– Parameters
∗ method – A int scalar indicating the method of classification. Use class

member RECLASSIFICATION or LEAVE OUT ONE. If this member function is not
called, the RECLASSIFICATION method is used.

• setCovarianceComputation
public void setCovarianceComputation( int type )

– Description
Sets the type of covariance matrices to be computed.

– Parameters
∗ type – An int scalar indicating the type of covariance matrices to be

computed. Use class member POOLED or POOLED GROUP. If this member
function is not called, the POOLED GROUP type is used.

• setDiscriminationMethod
public void setDiscriminationMethod( int method )
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– Description
Sets the discrimination method.

– Parameters
∗ method – An int scalar indicating the method of discrimination. Use class

member LINEAR or QUADRATIC. If this member function is not called, the
LINEAR method is used.

• setPrior
public void setPrior( double[] prior )

– Description
Sets the prior probabilities.

– Parameters
∗ prior – A double vector of length nGroups containing the prior

probabilities for each group. The elements of prior should sum to 1.0. If
this member function is not called, the elements of prior are set so as to be
equal if PRIOR EQUAL is set or they are set to be proportional to the sample
size in each group if PRIOR PROPORTIONAL is set.

• setPrior
public void setPrior( int type )

– Description
Sets the type of prior probabilities to be computed.

– Parameters
∗ type – An int scalar indicating the type of prior probabilities to be

computed. Use class member PRIOR EQUAL or PRIOR PROPORTIONAL. If this
member function is not called, the PRIOR EQUAL type is used.

• update
public void update( double[][] x ) throws
com.imsl.stat.DiscriminantAnalysis.SumOfWeightsNegException,
com.imsl.stat.DiscriminantAnalysis.EmptyGroupException,
com.imsl.stat.DiscriminantAnalysis.CovarianceSingularException

– Description
Processes a set of observations and performs a linear or quadratic discriminant
function analysis among the several known groups.

– Parameters
∗ x – a double matrix containing the observations. The first nVariables

columns correspond to the variables, and the last column (column
nVariables) contains the group numbers. The groups must be numbered
1,2, ..., nGroups.
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• update
public void update( double[][] x, double[] frequencies, double[]
weights ) throws
com.imsl.stat.DiscriminantAnalysis.SumOfWeightsNegException,
com.imsl.stat.DiscriminantAnalysis.EmptyGroupException,
com.imsl.stat.DiscriminantAnalysis.CovarianceSingularException

– Description
Processes a set of observations and associated frequencies and weights then
performs a linear or quadratic discriminant function analysis among the several
known groups.

– Parameters
∗ x – A double matrix containing the observations. The first nVariables

columns correspond to the variables, and the last column (column
nVariables) contains the group numbers. The groups must be numbered
1,2, ..., nGroups.
∗ frequencies – A double array containing the associated frequencies.
∗ weights – A double array containing the associated weights.

• update
public void update( double[][] x, int groupIndex ) throws
com.imsl.stat.DiscriminantAnalysis.SumOfWeightsNegException,
com.imsl.stat.DiscriminantAnalysis.EmptyGroupException,
com.imsl.stat.DiscriminantAnalysis.CovarianceSingularException

– Description
Processes a set of observations and performs a linear or quadratic discriminant
function analysis among the several known groups.

– Parameters
∗ x – A double matrix containing the observations. The first nVariables

columns correspond to the variables, excluding the groupIndex column.
∗ groupIndex – An int containing the column index of x in which the group

numbers are stored. The groups must be numbered 1,2, ..., nGroups.

• update
public void update( double[][] x, int[] varIndex ) throws
com.imsl.stat.DiscriminantAnalysis.SumOfWeightsNegException,
com.imsl.stat.DiscriminantAnalysis.EmptyGroupException,
com.imsl.stat.DiscriminantAnalysis.CovarianceSingularException

– Description
Processes a set of observations and performs a linear or quadratic discriminant
function analysis among the several known groups.
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– Parameters
∗ x – A double matrix containing the observations. The columns indicated in

varIndex correspond to the variables, and the last column (column
nVariables) contains the group numbers. The groups must be numbered
1,2, ..., nGroups.
∗ varIndex – An int array containing the column indices in x that

correspond to the variables to be used in the analysis.

• update
public void update( double[][] x, int[] varIndex, double[]
frequencies, double[] weights ) throws
com.imsl.stat.DiscriminantAnalysis.SumOfWeightsNegException,
com.imsl.stat.DiscriminantAnalysis.EmptyGroupException,
com.imsl.stat.DiscriminantAnalysis.CovarianceSingularException

– Description
Processes a set of observations and associated frequencies and weights then
performs a linear or quadratic discriminant function analysis among the several
known groups.

– Parameters
∗ x – A double matrix containing the observations. The columns indicated in

varIndex correspond to the variables, and the last column (column
nVariables) contains the group numbers. The groups must be numbered
1,2, ..., nGroups.
∗ varIndex – An int array containing the column indices in x that

correspond to the variables to be used in the analysis.
∗ frequencies – A double array containing the associated frequencies.
∗ weights – A double array containing the associated weights.

• update
public void update( double[][] x, int groupIndex, double[]
frequencies, double[] weights ) throws
com.imsl.stat.DiscriminantAnalysis.SumOfWeightsNegException,
com.imsl.stat.DiscriminantAnalysis.EmptyGroupException,
com.imsl.stat.DiscriminantAnalysis.CovarianceSingularException

– Description
Processes a set of observations and associated frequencies and weights then
performs a linear or quadratic discriminant function analysis among the several
known groups.

– Parameters
∗ x – A double matrix containing the observations. The first nVariables

columns correspond to the variables, excluding the groupIndex column.
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∗ groupIndex – An int containing the column index of x in which the group
numbers are stored. The groups must be numbered 1,2, ..., nGroups.
∗ frequencies – A double array containing the associated frequencies.
∗ weights – A double array containing the associated weights.

• update
public void update( double[][] x, int groupIndex, int[] varIndex )
throws com.imsl.stat.DiscriminantAnalysis.SumOfWeightsNegException,
com.imsl.stat.DiscriminantAnalysis.EmptyGroupException,
com.imsl.stat.DiscriminantAnalysis.CovarianceSingularException

– Description
Processes a set of observations and performs a linear or quadratic discriminant
function analysis among the several known groups.

– Parameters
∗ x – A double matrix containing the observations. The columns indicated in

varIndex correspond to the variables, and groupIndex column contains the
group numbers.
∗ groupIndex – An int containing the column index of x in which the group

numbers are stored. The groups must be numbered 1,2, ..., nGroups.
∗ varIndex – An int array containing the column indices in x that

correspond to the variables to be used in the analysis.

• update
public void update( double[][] x, int groupIndex, int[] varIndex,
double[] frequencies, double[] weights ) throws
com.imsl.stat.DiscriminantAnalysis.SumOfWeightsNegException,
com.imsl.stat.DiscriminantAnalysis.EmptyGroupException,
com.imsl.stat.DiscriminantAnalysis.CovarianceSingularException

– Description
Processes a set of observations and associated frequencies and weights then
performs a linear or quadratic discriminant function analysis among the several
known groups.

– Parameters
∗ x – A double matrix containing the observations. The columns indicated in

varIndex correspond to the variables, and groupIndex column contains the
group numbers.
∗ groupIndex – An int containing the column index of x in which the group

numbers are stored. The groups must be numbered 1,2, ..., nGroups.
∗ varIndex – An int array containing the column indices in x that

correspond to the variables to be used in the analysis.
∗ frequencies – A double array containing the associated frequencies.
∗ weights – A double array containing the associated weights.
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Example: Discriminant Analysis

This example uses linear discrimination with equal prior probabilities on Fisher’s (1936)
iris data. This example illustrates the use of the DiscriminantAnalysis class.

import java.text.*;

import com.imsl.stat.*;

import com.imsl.math.PrintMatrix;

public class DiscriminantAnalysisEx1 {
public static void main(String args[]) throws Exception {

double[][] xorig = {
{1.0, 5.1, 3.5, 1.4, .2},
{1.0, 4.9, 3.0, 1.4, .2},
{1.0, 4.7, 3.2, 1.3, .2},
{1.0, 4.6, 3.1, 1.5, .2},
{1.0, 5.0, 3.6, 1.4, .2},
{1.0, 5.4, 3.9, 1.7, .4},
{1.0, 4.6, 3.4, 1.4, .3},
{1.0, 5.0, 3.4, 1.5, .2},
{1.0, 4.4, 2.9, 1.4, .2},
{1.0, 4.9, 3.1, 1.5, .1},
{1.0, 5.4, 3.7, 1.5, .2},
{1.0, 4.8, 3.4, 1.6, .2},
{1.0, 4.8, 3.0, 1.4, .1},
{1.0, 4.3, 3.0, 1.1, .1},
{1.0, 5.8, 4.0, 1.2, .2},
{1.0, 5.7, 4.4, 1.5, .4},
{1.0, 5.4, 3.9, 1.3, .4},
{1.0, 5.1, 3.5, 1.4, .3},
{1.0, 5.7, 3.8, 1.7, .3},
{1.0, 5.1, 3.8, 1.5, .3},
{1.0, 5.4, 3.4, 1.7, .2},
{1.0, 5.1, 3.7, 1.5, .4},
{1.0, 4.6, 3.6, 1.0, .2},
{1.0, 5.1, 3.3, 1.7, .5},
{1.0, 4.8, 3.4, 1.9, .2},
{1.0, 5.0, 3.0, 1.6, .2},
{1.0, 5.0, 3.4, 1.6, .4},
{1.0, 5.2, 3.5, 1.5, .2},
{1.0, 5.2, 3.4, 1.4, .2},
{1.0, 4.7, 3.2, 1.6, .2},
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{1.0, 4.8, 3.1, 1.6, .2},
{1.0, 5.4, 3.4, 1.5, .4},
{1.0, 5.2, 4.1, 1.5, .1},
{1.0, 5.5, 4.2, 1.4, .2},
{1.0, 4.9, 3.1, 1.5, .2},
{1.0, 5.0, 3.2, 1.2, .2},
{1.0, 5.5, 3.5, 1.3, .2},
{1.0, 4.9, 3.6, 1.4, .1},
{1.0, 4.4, 3.0, 1.3, .2},
{1.0, 5.1, 3.4, 1.5, .2},
{1.0, 5.0, 3.5, 1.3, .3},
{1.0, 4.5, 2.3, 1.3, .3},
{1.0, 4.4, 3.2, 1.3, .2},
{1.0, 5.0, 3.5, 1.6, .6},
{1.0, 5.1, 3.8, 1.9, .4},
{1.0, 4.8, 3.0, 1.4, .3},
{1.0, 5.1, 3.8, 1.6, .2},
{1.0, 4.6, 3.2, 1.4, .2},
{1.0, 5.3, 3.7, 1.5, .2},
{1.0, 5.0, 3.3, 1.4, .2},
{2.0, 7.0, 3.2, 4.7, 1.4},
{2.0, 6.4, 3.2, 4.5, 1.5},
{2.0, 6.9, 3.1, 4.9, 1.5},
{2.0, 5.5, 2.3, 4.0, 1.3},
{2.0, 6.5, 2.8, 4.6, 1.5},
{2.0, 5.7, 2.8, 4.5, 1.3},
{2.0, 6.3, 3.3, 4.7, 1.6},
{2.0, 4.9, 2.4, 3.3, 1.0},
{2.0, 6.6, 2.9, 4.6, 1.3},
{2.0, 5.2, 2.7, 3.9, 1.4},
{2.0, 5.0, 2.0, 3.5, 1.0},
{2.0, 5.9, 3.0, 4.2, 1.5},
{2.0, 6.0, 2.2, 4.0, 1.0},
{2.0, 6.1, 2.9, 4.7, 1.4},
{2.0, 5.6, 2.9, 3.6, 1.3},
{2.0, 6.7, 3.1, 4.4, 1.4},
{2.0, 5.6, 3.0, 4.5, 1.5},
{2.0, 5.8, 2.7, 4.1, 1.0},
{2.0, 6.2, 2.2, 4.5, 1.5},
{2.0, 5.6, 2.5, 3.9, 1.1},
{2.0, 5.9, 3.2, 4.8, 1.8},
{2.0, 6.1, 2.8, 4.0, 1.3},
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{2.0, 6.3, 2.5, 4.9, 1.5},
{2.0, 6.1, 2.8, 4.7, 1.2},
{2.0, 6.4, 2.9, 4.3, 1.3},
{2.0, 6.6, 3.0, 4.4, 1.4},
{2.0, 6.8, 2.8, 4.8, 1.4},
{2.0, 6.7, 3.0, 5.0, 1.7},
{2.0, 6.0, 2.9, 4.5, 1.5},
{2.0, 5.7, 2.6, 3.5, 1.0},
{2.0, 5.5, 2.4, 3.8, 1.1},
{2.0, 5.5, 2.4, 3.7, 1.0},
{2.0, 5.8, 2.7, 3.9, 1.2},
{2.0, 6.0, 2.7, 5.1, 1.6},
{2.0, 5.4, 3.0, 4.5, 1.5},
{2.0, 6.0, 3.4, 4.5, 1.6},
{2.0, 6.7, 3.1, 4.7, 1.5},
{2.0, 6.3, 2.3, 4.4, 1.3},
{2.0, 5.6, 3.0, 4.1, 1.3},
{2.0, 5.5, 2.5, 4.0, 1.3},
{2.0, 5.5, 2.6, 4.4, 1.2},
{2.0, 6.1, 3.0, 4.6, 1.4},
{2.0, 5.8, 2.6, 4.0, 1.2},
{2.0, 5.0, 2.3, 3.3, 1.0},
{2.0, 5.6, 2.7, 4.2, 1.3},
{2.0, 5.7, 3.0, 4.2, 1.2},
{2.0, 5.7, 2.9, 4.2, 1.3},
{2.0, 6.2, 2.9, 4.3, 1.3},
{2.0, 5.1, 2.5, 3.0, 1.1},
{2.0, 5.7, 2.8, 4.1, 1.3},
{3.0, 6.3, 3.3, 6.0, 2.5},
{3.0, 5.8, 2.7, 5.1, 1.9},
{3.0, 7.1, 3.0, 5.9, 2.1},
{3.0, 6.3, 2.9, 5.6, 1.8},
{3.0, 6.5, 3.0, 5.8, 2.2},
{3.0, 7.6, 3.0, 6.6, 2.1},
{3.0, 4.9, 2.5, 4.5, 1.7},
{3.0, 7.3, 2.9, 6.3, 1.8},
{3.0, 6.7, 2.5, 5.8, 1.8},
{3.0, 7.2, 3.6, 6.1, 2.5},
{3.0, 6.5, 3.2, 5.1, 2.0},
{3.0, 6.4, 2.7, 5.3, 1.9},
{3.0, 6.8, 3.0, 5.5, 2.1},
{3.0, 5.7, 2.5, 5.0, 2.0},
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{3.0, 5.8, 2.8, 5.1, 2.4},
{3.0, 6.4, 3.2, 5.3, 2.3},
{3.0, 6.5, 3.0, 5.5, 1.8},
{3.0, 7.7, 3.8, 6.7, 2.2},
{3.0, 7.7, 2.6, 6.9, 2.3},
{3.0, 6.0, 2.2, 5.0, 1.5},
{3.0, 6.9, 3.2, 5.7, 2.3},
{3.0, 5.6, 2.8, 4.9, 2.0},
{3.0, 7.7, 2.8, 6.7, 2.0},
{3.0, 6.3, 2.7, 4.9, 1.8},
{3.0, 6.7, 3.3, 5.7, 2.1},
{3.0, 7.2, 3.2, 6.0, 1.8},
{3.0, 6.2, 2.8, 4.8, 1.8},
{3.0, 6.1, 3.0, 4.9, 1.8},
{3.0, 6.4, 2.8, 5.6, 2.1},
{3.0, 7.2, 3.0, 5.8, 1.6},
{3.0, 7.4, 2.8, 6.1, 1.9},
{3.0, 7.9, 3.8, 6.4, 2.0},
{3.0, 6.4, 2.8, 5.6, 2.2},
{3.0, 6.3, 2.8, 5.1, 1.5},
{3.0, 6.1, 2.6, 5.6, 1.4},
{3.0, 7.7, 3.0, 6.1, 2.3},
{3.0, 6.3, 3.4, 5.6, 2.4},
{3.0, 6.4, 3.1, 5.5, 1.8},
{3.0, 6.0, 3.0, 4.8, 1.8},
{3.0, 6.9, 3.1, 5.4, 2.1},
{3.0, 6.7, 3.1, 5.6, 2.4},
{3.0, 6.9, 3.1, 5.1, 2.3},
{3.0, 5.8, 2.7, 5.1, 1.9},
{3.0, 6.8, 3.2, 5.9, 2.3},
{3.0, 6.7, 3.3, 5.7, 2.5},
{3.0, 6.7, 3.0, 5.2, 2.3},
{3.0, 6.3, 2.5, 5.0, 1.9},
{3.0, 6.5, 3.0, 5.2, 2.0},
{3.0, 6.2, 3.4, 5.4, 2.3},
{3.0, 5.9, 3.0, 5.1, 1.8}};
int i, j, jj, k;

int ipermu[] = {2, 3, 4, 5, 1};
double temp;

double x[][];

x = new double[xorig.length][xorig[0].length];
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for (i = 0; i< xorig.length; i++) {
for (j = 1; j < xorig[0].length; j++) {

x[i][j-1] = xorig[i][j];

}
}
for (i = 0; i< xorig.length; i++) {

x[i][4] = xorig[i][0];

}

int nvar = x[0].length -1;

DiscriminantAnalysis da = new DiscriminantAnalysis(nvar, 3);

da.setCovarianceComputation(da.POOLED);

da.setClassificationMethod(da.RECLASSIFICATION);

da.update(x);

new PrintMatrix("Xmean are: ").print(da.getMeans());

new PrintMatrix("Coef: ").print(da.getCoefficients());

new PrintMatrix("Counts: ").print(da.getGroupCounts());

new PrintMatrix("Stats: ").print(da.getStatistics());

new PrintMatrix("ClassMembership: ").print(da.getClassMembership());

new PrintMatrix("ClassTable: ").print(da.getClassTable());

double cov[][][] = da.getCovariance();

for (i= 0; i<cov.length;i++) {
new PrintMatrix("Covariance Matrix "+i+" : ").print(cov[i]);

}
new PrintMatrix("Prior : ").print(da.getPrior());

new PrintMatrix("PROB: ").print(da.getProbability());

new PrintMatrix("MAHALANOBIS: ").print(da.getMahalanobis());

System.out.println("nrmiss = " + da.getNRowsMissing());

}

}

Output

Xmean are:

0 1 2 3

0 5.006 3.428 1.462 0.246

1 5.936 2.77 4.26 1.326

2 6.588 2.974 5.552 2.026
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Coef:

0 1 2 3 4

0 -86.308 23.544 23.588 -16.431 -17.398

1 -72.853 15.698 7.073 5.211 6.434

2 -104.368 12.446 3.685 12.767 21.079

Counts:

0

0 50

1 50

2 50

Stats:

0

0 147

1 ?

2 ?

3 ?

4 ?

5 ?

6 ?

7 -9.959

8 50

9 50

10 50

11 150

ClassMembership:

0

0 1

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

11 1
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12 1

13 1

14 1

15 1

16 1

17 1

18 1

19 1

20 1

21 1

22 1

23 1

24 1

25 1

26 1

27 1

28 1

29 1

30 1

31 1

32 1

33 1

34 1

35 1

36 1

37 1

38 1

39 1

40 1

41 1

42 1

43 1

44 1

45 1

46 1

47 1

48 1

49 1

50 2

51 2

52 2

53 2
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54 2

55 2

56 2

57 2

58 2

59 2

60 2

61 2

62 2

63 2

64 2

65 2

66 2

67 2

68 2

69 2

70 3

71 2

72 2

73 2

74 2

75 2

76 2

77 2

78 2

79 2

80 2

81 2

82 2

83 3

84 2

85 2

86 2

87 2

88 2

89 2

90 2

91 2

92 2

93 2

94 2

95 2
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96 2

97 2

98 2

99 2

100 3

101 3

102 3

103 3

104 3

105 3

106 3

107 3

108 3

109 3

110 3

111 3

112 3

113 3

114 3

115 3

116 3

117 3

118 3

119 3

120 3

121 3

122 3

123 3

124 3

125 3

126 3

127 3

128 3

129 3

130 3

131 3

132 3

133 2

134 3

135 3

136 3

137 3
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138 3

139 3

140 3

141 3

142 3

143 3

144 3

145 3

146 3

147 3

148 3

149 3

ClassTable:

0 1 2

0 50 0 0

1 0 48 2

2 0 1 49

Covariance Matrix 0 :

0 1 2 3

0 0.265 0.093 0.168 0.038

1 0.093 0.115 0.055 0.033

2 0.168 0.055 0.185 0.043

3 0.038 0.033 0.043 0.042

Prior :

0

0 0.333

1 0.333

2 0.333

PROB:

0 1 2

0 1 0 0

1 1 0 0

2 1 0 0

3 1 0 0

4 1 0 0

5 1 0 0

6 1 0 0

7 1 0 0
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8 1 0 0

9 1 0 0

10 1 0 0

11 1 0 0

12 1 0 0

13 1 0 0

14 1 0 0

15 1 0 0

16 1 0 0

17 1 0 0

18 1 0 0

19 1 0 0

20 1 0 0

21 1 0 0

22 1 0 0

23 1 0 0

24 1 0 0

25 1 0 0

26 1 0 0

27 1 0 0

28 1 0 0

29 1 0 0

30 1 0 0

31 1 0 0

32 1 0 0

33 1 0 0

34 1 0 0

35 1 0 0

36 1 0 0

37 1 0 0

38 1 0 0

39 1 0 0

40 1 0 0

41 1 0 0

42 1 0 0

43 1 0 0

44 1 0 0

45 1 0 0

46 1 0 0

47 1 0 0

48 1 0 0

49 1 0 0
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50 0 1 0

51 0 0.999 0.001

52 0 0.996 0.004

53 0 1 0

54 0 0.996 0.004

55 0 0.999 0.001

56 0 0.986 0.014

57 0 1 0

58 0 1 0

59 0 1 0

60 0 1 0

61 0 0.999 0.001

62 0 1 0

63 0 0.994 0.006

64 0 1 0

65 0 1 0

66 0 0.981 0.019

67 0 1 0

68 0 0.96 0.04

69 0 1 0

70 0 0.253 0.747

71 0 1 0

72 0 0.816 0.184

73 0 1 0

74 0 1 0

75 0 1 0

76 0 0.998 0.002

77 0 0.689 0.311

78 0 0.993 0.007

79 0 1 0

80 0 1 0

81 0 1 0

82 0 1 0

83 0 0.143 0.857

84 0 0.964 0.036

85 0 0.994 0.006

86 0 0.998 0.002

87 0 0.999 0.001

88 0 1 0

89 0 1 0

90 0 0.999 0.001

91 0 0.998 0.002
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92 0 1 0

93 0 1 0

94 0 1 0

95 0 1 0

96 0 1 0

97 0 1 0

98 0 1 0

99 0 1 0

100 0 0 1

101 0 0.001 0.999

102 0 0 1

103 0 0.001 0.999

104 0 0 1

105 0 0 1

106 0 0.049 0.951

107 0 0 1

108 0 0 1

109 0 0 1

110 0 0.013 0.987

111 0 0.002 0.998

112 0 0 1

113 0 0 1

114 0 0 1

115 0 0 1

116 0 0.006 0.994

117 0 0 1

118 0 0 1

119 0 0.221 0.779

120 0 0 1

121 0 0.001 0.999

122 0 0 1

123 0 0.097 0.903

124 0 0 1

125 0 0.003 0.997

126 0 0.188 0.812

127 0 0.134 0.866

128 0 0 1

129 0 0.104 0.896

130 0 0 1

131 0 0.001 0.999

132 0 0 1

133 0 0.729 0.271
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134 0 0.066 0.934

135 0 0 1

136 0 0 1

137 0 0.006 0.994

138 0 0.193 0.807

139 0 0.001 0.999

140 0 0 1

141 0 0 1

142 0 0.001 0.999

143 0 0 1

144 0 0 1

145 0 0 1

146 0 0.006 0.994

147 0 0.003 0.997

148 0 0 1

149 0 0.018 0.982

MAHALANOBIS:

0 1 2

0 0 89.864 179.385

1 89.864 0 17.201

2 179.385 17.201 0

nrmiss = 0
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Chapter 20

Probability Distribution Functions
and Inverses

Classes
Cdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725

Cumulative distribution functions.
CdfFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747

Public interface for the user-supplied cumulative distribution function to be
used by InverseCdf and ChiSquaredTest.

InverseCdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748
Inverse of user-supplied cumulative distribution function.

Usage Notes

Definitions and discussions of the terms basic to this chapter can be found in Johnson and
Kotz (1969, 1970a, 1970b). These are also good references for the specific distributions.

In order to keep the calling sequences simple, whenever possible, the methods/classes
described in this chapter are written for standard forms of statistical distributions. Hence,
the number of parameters for any given distribution may be fewer than the number often
associated with the distribution. Also, the methods relating to the normal distribution,
Cdf.normal and Cdf.inverseNormal, are for a normal distribution with mean equal to zero
and variance equal to one. For other means and variances, it is very easy for the user to
standardize the variables by subtracting the mean and dividing by the square root of the
variance.

The distribution function for the (real, single-valued) random variable X is the function F
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defined for all real x by
F (x) = Prob(X ≤ x)

where Prob(·) denotes the probability of an event. The distribution function is often
called the cumulative distribution function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for values
less than the left endpoint and 1 for values greater than the right endpoint. The methods
in the Cdf classes described in this chapter return the correct values for the distribution
functions when values outside of the range of the random variable are input, but warning
error conditions are set in these cases.

Discrete Random Variables

For discrete distributions, the function giving the probability that the random variable
takes on specific values is called the probability function, defined by

p(x) = Prob(X = x)

The CDF for a discrete random variable is

F (x) =
∑
A

p(k)

where A is set such that k ≤ x. Since the distribution function is a step function, its
inverse does not exist uniquely.

Continuous Distributions

For continuous distributions, a probability function, as defined above, would not be useful
because the probability of any given point is 0. For such distributions, the useful analog is
the probability density function (PDF). The integral of the PDF is the probability over the
interval, if the continuous random variable X has PDF f, then

Prob(a ≤ X ≤ b) =
∫ b

a
f(x) dx

The relationship between the CDF and the PDF is

F (x) =
∫ x

−∞
f(t) dt
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For (absolutely) continuous distributions, the value of F(x) uniquely determines x within
the support of the distribution. The “inverse” methods in the Cdf class compute the
inverses of the distribution functions, that is, given F(x), they compute, x. The inverses
are defined only over the open interval (0,1).

Additional Comments

Whenever a probability close to 1.0 results from a call to a distribution function or is to
be input to an inverse function, it is often impossible to achieve good accuracy because of
the nature of the representation of numeric values. In this case, it may be better to work
with the complementary distribution function (one minus the distribution function). If the
distribution is symmetric about some point (as the normal distribution, for example) or is
reflective about some point (as the beta distribution, for example), the complementary
distribution function has a simple relationship with the distribution function. For
example, to evaluate the standard normal distribution at 4.0, using the normal method in
the Cdf class directly, the result to six places is 0.999968. Only two of those digits are
really useful, however. A more useful result may be 1.000000 minus this value, which can
be obtained to six places as 3.16712e-05 by evaluating normal at -4.0. For the normal
distribution, the two values are related by Φ(x) = 1− Φ(−x), where Φ(·) is the normal
distribution function. Another example is the beta distribution with parameters 2 and 10.
This distribution is skewed to the right, so evaluating beta at 0.7, 0.999953 is obtained. A
more precise result is obtained by evaluating beta with parameters 10 and 2 at 0.3. This
yields 4.72392e-5.

Many of the algorithms used by the classes in this chapter are discussed by Abramowitz
and Stegun (1964). The algorithms make use of various expansions and recursive
relationships and often use different methods in different regions.

Cumulative distribution functions are defined for all real arguments. However, if the input
to one of the distribution functions in this chapter is outside the range of the random
variable, an error is issued.

class Cdf

Cumulative distribution functions.

Declaration

public final class com.imsl.stat.Cdf
extends java.lang.Object
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Methods

• beta
public static double beta( double x, double pin, double qin )

– Description
Evaluates the beta probability distribution function.
Method beta evaluates the distribution function of a beta random variable with
parameters pin and qin. This function is sometimes called the incomplete beta
ratio and, with p = pin and q = qin, is denoted by Ix(p, q). It is given by

Ix (p, q) =
Γ (p) Γ (q)
Γ (p+ q)

∫ x

0
tp−1 (1− t)q−1 dt

where Γ(·) is the gamma function. The value of the distribution function
Ix(p, q) is the probability that the random variable takes a value less than or
equal to x.
The integral in the expression above is called the incomplete beta function and is
denoted by βx(p, q). The constant in the expression is the reciprocal of the beta
function (the incomplete function evaluated at one) and is denoted by βx(p, q).
beta uses the method of Bosten and Battiste (1974).
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Beta Distribution FunctionBeta Distribution Function

0.00 0.20 0.40 0.60 0.80 1.00
x

0.00
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0.80

1.00
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e
ta

(x
,p

,q
)

      p     q  
0.5  0.5
0.5  3.0
1.0  1.0

3.0  7.0

– Parameters
∗ x – a double, the argument at which the function is to be evaluated.
∗ pin – a double, the first beta distribution parameter.
∗ qin – a double, the second beta distribution parameter.

– Returns – a double, the probability that a beta random variable takes on a
value less than or equal to x.

• binomial
public static double binomial( int k, int n, double p )
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– Description
Evaluates the binomial distribution function.
Method binomial evaluates the distribution function of a binomial random
variable with parameters n and p. It does this by summing probabilities of the
random variable taking on the specific values in its range. These probabilities
are computed by the recursive relationship

Pr (X = j) =
(n+ 1− j) p
j (1− p)

Pr (X = j − 1)

To avoid the possibility of underflow, the probabilities are computed forward
from 0, if k is not greater than n times p, and are computed backward from n,
otherwise. The smallest positive machine number, ε, is used as the starting
value for summing the probabilities, which are rescaled by (1− p)nε if forward
computation is performed and by pnε if backward computation is done. For the
special case of p = 0, binomial is set to 1; and for the case p = 1, binomial is
set to 1 if k = n and to 0 otherwise.

– Parameters
∗ k – the int argument for which the binomial distribution function is to be

evaluated.
∗ n – the int number of Bernoulli trials.
∗ p – a double scalar value representing the probability of success on each

trial.
– Returns – a double scalar value representing the probability that a binomial

random variable takes a value less than or equal to k. This value is the
probability that k or fewer successes occur in n independent Bernoulli trials,
each of which has a p probability of success.

• binomialProb
public static double binomialProb( int k, int n, double p )

– Description
Evaluates the binomial probability function.
Method binomialProb evaluates the probability that a binomial random
variable with parameters n and p takes on the value k. It does this by
computing probabilities of the random variable taking on the values in its range
less than (or the values greater than) k. These probabilities are computed by
the recursive relationship

Pr (X = j) =
(n+ 1− j) p
j (1− p)

Pr (X = j − 1)

To avoid the possibility of underflow, the probabilities are computed forward
from 0, if k is not greater than n× p, and are computed backward from n,
otherwise. The smallest positive machine number, ε, is used as the starting
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value for computing the probabilities, which are rescaled by (1− p)nε if forward
computation is performed and by pnε if backward computation is done.
For the special case of p = 0, binomialProb is set to 0 if k is greater than 0 and
to 1 otherwise; and for the case p = 1, binomialProb is set to 0 if k is less than
n and to 1 otherwise.

Binomial Probablity FunctionBinomial Probablity Function

0 1 2 3 4 5 6 7 8 9 10
k

0.00

0.10

0.20

0.30

0.40

P
ro

b
ab

lit
y

n=10 p=0.5

n=10 p=0.2

– Parameters
∗ k – the int argument for which the binomial distribution function is to be

evaluated.
∗ n – the int number of Bernoulli trials.
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∗ p – a double scalar value representing the probability of success on each
trial.

– Returns – a double scalar value representing the probability that a binomial
random variable takes a value equal to k.

• chi
public static double chi( double chsq, double df )

– Description
Evaluates the chi-squared distribution function.
Method chi evaluates the distribution function, F, of a chi-squared random
variable with df degrees of freedom, that is, with v = df, and x = chsq,

F (x) =
1

2ν/2Γ (ν/2)

∫ x

0
e−t/2tν/2−1dt

where Γ(·) is the gamma function. The value of the distribution function at the
point x is the probability that the random variable takes a value less than or
equal to x.
For v > 65, chi uses the Wilson-Hilferty approximation (Abramowitz and
Stegun 1964, equation 26.4.17) to the normal distribution, and method normal

is used to evaluate the normal distribution function.
For v ≤ 65, chi uses series expansions to evaluate the distribution function. If
x < max(v/2, 26), chi uses the series 6.5.29 in Abramowitz and Stegun (1964),
otherwise, it uses the asymptotic expansion 6.5.32 in Abramowitz and Stegun.
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Chi-Squared Distribution FunctionChi-Squared Distribution Function
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– Parameters
∗ chsq – a double scalar value representing the argument at which the

function is to be evaluated.
∗ df – a double scalar value representing the number of degrees of freedom.

This must be at least 0.5.
– Returns – a double scalar value representing the probability that a

chi-squared random variable takes a value less than or equal to chsq.

• F
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public static double F( double x, double dfn, double dfd )

– Description
Evaluates the F distribution function.
F evaluates the distribution function of a Snedecor’s F random variable with
dfn numerator degrees of freedom and dfd denominator degrees of freedom.
The function is evaluated by making a transformation to a beta random
variable and then using the function beta. If X is an F variate with v1 and v2
degrees of freedom and Y = v1X/(v2 + v1X), then Y is a beta variate with
parameters p = v1/2 and q = v2/2. F also uses a relationship between F random
variables that can be expressed as follows:

F(X, dfn, dfd) = 1− F(1/X, dfd , dfn)
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F Distribution FunctionF Distribution Function
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– Parameters
∗ x – a double, the argument at which the function is to be evaluated.
∗ dfn – a double, the numerator degrees of freedom. It must be positive.
∗ dfd – a double, the denominator degrees of freedom. It must be positive.

– Returns – a double, the probability that an F random variable takes on a
value less than or equal to x.

• gamma
public static double gamma( double x, double a )
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– Description
Evaluates the gamma distribution function.
Method gamma evaluates the distribution function, F, of a gamma random
variable with shape parameter a; that is,

F (x) =
1

Γ (a)

∫ x

0
e−tta−1dt

where Γ(·) is the gamma function. (The gamma function is the integral from 0
to ∞ of the same integrand as above). The value of the distribution function at
the point x is the probability that the random variable takes a value less than
or equal to x.
The gamma distribution is often defined as a two-parameter distribution with a
scale parameter b (which must be positive), or even as a three-parameter
distribution in which the third parameter c is a location parameter. In the
most general case, the probability density function over (c,∞) is

f (t) =
1

baΓ (a)
e−(t−c)/b (x− c)a−1

If T is such a random variable with parameters a, b, and c, the probability that
T ≤ t0 can be obtained from gamma by setting X = (t0 − c)/b.
If X is less than a or if X is less than or equal to 1.0, gamma uses a series
expansion. Otherwise, a continued fraction expansion is used. (See Abramowitz
and Stegun, 1964.)
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Gamma Distribution FunctionGamma Distribution Function
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– Parameters
∗ x – a double scalar value representing the argument at which the function

is to be evaluated.
∗ a – a double scalar value representing the shape parameter. This must be

positive.
– Returns – a double scalar value representing the probability that a gamma

random variable takes on a value less than or equal to x.

• hypergeometric
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public static double hypergeometric( int k, int sampleSize, int
defectivesInLot, int lotSize )

– Description
Evaluates the hypergeometric distribution function.
Method hypergeometric evaluates the distribution function of a hypergeometric
random variable with parameters n, l, and m. The hypergeometric random
variable X can be thought of as the number of items of a given type in a
random sample of size n that is drawn without replacement from a population
of size l containing m items of this type. The probability function is

Pr (X = j) =

(
m
j

)(
l−m
n−j

)
(l
n)

for j = i, i+ 1, i+ 2, . . . , min (n,m)

where i = max(0, n− l +m).
If k is greater than or equal to i and less than or equal to min(n,m),
hypergeometric sums the terms in this expression for j going from i up to k.
Otherwise, hypergeometric returns 0 or 1, as appropriate. So, as to avoid
rounding in the accumulation, hypergeometric performs the summation
differently depending on whether or not k is greater than the mode of the
distribution, which is the greatest integer less than or equal to
(m+ 1)(n+ 1)/(l + 2).

– Parameters
∗ k – an int, the argument at which the function is to be evaluated.
∗ sampleSize – an int, the sample size, n.
∗ defectivesInLot – an int, the number of defectives in the lot, m.
∗ lotSize – an int, the lot size, l.

– Returns – a double, the probability that a hypergeometric random variable
takes a value less than or equal to k.

• hypergeometricProb
public static double hypergeometricProb( int k, int sampleSize, int
defectivesInLot, int lotSize )

– Description
Evaluates the hypergeometric probability function.
Method hypergeometricProb evaluates the probability function of a
hypergeometric random variable with parameters n, l, and m. The
hypergeometric random variable X can be thought of as the number of items of
a given type in a random sample of size n that is drawn without replacement
from a population of size l containing m items of this type. The probability
function is:
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Pr (X = k) =
(m
k )
(

l−m
n−k

)
(l
n)

for k = i, i+ 1, i+ 2 . . . , min (n,m)

where i = max(0, n - l + m). hypergeometricProb evaluates the expression
using log gamma functions.

– Parameters
∗ k – an int, the argument at which the function is to be evaluated.
∗ sampleSize – an int, the sample size, n.
∗ defectivesInLot – an int, the number of defectives in the lot, m.
∗ lotSize – an int, the lot size, l.

– Returns – a double, the probability that a hypergeometric random variable
takes on a value equal to k.

• inverseBeta
public static double inverseBeta( double p, double pin, double qin )

– Description
Evaluates the inverse of the beta probability distribution function.
Method inverseBeta evaluates the inverse distribution function of a beta
random variable with parameters pin and qin, that is, with P = p, p = pin,
and q = qin, it determines x (equal to inverseBeta (p, pin, qin)), such that

P =
Γ (p) Γ (q)
Γ (p+ q)

∫ x

0
tp−1 (1− t)q−1 dt

where Γ(·) is the gamma function. The probability that the random variable
takes a value less than or equal to x is P.

– Parameters
∗ p – a double, the probability for which the inverse of the beta CDF is to be

evaluated.
∗ pin – a double, the first beta distribution parameter.
∗ qin – a double, the second beta distribution parameter.

– Returns – a double, the probability that a beta random variable takes a value
less than or equal to this value is p.

• inverseChi
public static double inverseChi( double p, double df )

– Description
Evaluates the inverse of the chi-squared distribution function.
Method inverseChi evaluates the inverse distribution function of a chi-squared
random variable with df degrees of freedom, that is, with P = p and v = df, it
determines x (equal to inverseChi(p, df)), such that

Probability Distribution Functions and Inverses Cdf • 737



P =
1

2ν/2Γ (ν/2)

∫ x

0
e−t/2tν/2−1dt

where Γ(·) is the gamma function. The probability that the random variable
takes a value less than or equal to x is P.
For v < 40, inverseChi uses bisection, if v ≥ 2 or P > 0.98, or regula falsi to
find the point at which the chi-squared distribution function is equal to P. The
distribution function is evaluated using chi.
For 40 ≤ v < 100, a modified Wilson-Hilferty approximation (Abramowitz and
Stegun 1964, equation 26.4.18) to the normal distribution is used, and
inverseNormal is used to evaluate the inverse of the normal distribution
function. For v ≥ 100, the ordinary Wilson-Hilferty approximation
(Abramowitz and Stegun 1964, equation 26.4.17) is used.

– Parameters
∗ p – a double scalar value representing the probability for which the inverse

chi-squared function is to be evaluated.
∗ df – a double scalar value representing the number of degrees of freedom.

This must be at least 0.5.
– Returns – a double scalar value representing the probability that a

chi-squared random variable takes a value less than or equal to this value is p.

• inverseF
public static double inverseF( double p, double dfn, double dfd )

– Description
Returns inverse of the F probability distribution function.
Method inverseF evaluates the inverse distribution function of a Snedecor’s F
random variable with dfn numerator degrees of freedom and dfd denominator
degrees of freedom. The function is evaluated by making a transformation to a
beta random variable and then using inverseBeta. If X is an F variate with v1
and v2 degrees of freedom and Y = v1X/(v2 + v1X), then Y is a beta variate
with parameters p = v1/2 and q = v2/2. If P ≤ 0.5, inverseF uses this
relationship directly, otherwise, it also uses a relationship between X random
variables that can be expressed as follows, using f, which is the F cumulative
distribution function:

F(X, dfn, dfd) = 1− F(1/X, dfd , dfn)

– Parameters
∗ p – a double, the probability for which the inverse of the F distribution

function is to be evaluated. Argument p must be in the open interval (0.0,
1.0).

∗ dfn – a double, the numerator degrees of freedom. It must be positive.
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∗ dfd – a double, the denominator degrees of freedom. It must be positive.
– Returns – a double, the probability that an F random variable takes a value

less than or equal to this value is p.

• inverseGamma
public static double inverseGamma( double p, double a )

– Description
Evaluates the inverse of the gamma distribution function.
Method inverseGamma evaluates the inverse distribution function of a gamma
random variable with shape parameter a, that is, it determines
x = inverseGamma(p, a)), such that

P =
1

Γ (a)

∫ x

o
e−tta−1dt

where Γ(·) is the gamma function. The probability that the random variable
takes a value less than or equal to x is P. See the documentation for routine
gamma for further discussion of the gamma distribution.
inverseGamma uses bisection and modified regula falsi to invert the distribution
function, which is evaluated using method gamma.

– Parameters
∗ p – a double scalar value representing the probability at which the function

is to be evaluated.
∗ a – a double scalar value representing the shape parameter. This must be

positive.
– Returns – a double scalar value representing the probability that a gamma

random variable takes a value less than or equal to this value is p.

• inverseNormal
public static double inverseNormal( double p )

– Description
Evaluates the inverse of the normal (Gaussian) distribution function.
Method inverseNormal evaluates the inverse of the distribution function, Φ, of
a standard normal (Gaussian) random variable, that is,
inverseNormal(p) = Φ− 1(p), where

Φ (x) =
1√
2π

∫ x

−∞
e−t2/2dt

The value of the distribution function at the point x is the probability that the
random variable takes a value less than or equal to x. The standard normal
distribution has a mean of 0 and a variance of 1.

– Parameters

Probability Distribution Functions and Inverses Cdf • 739



∗ p – a double scalar value representing the probability at which the function
is to be evaluated.

– Returns – a double scalar value representing the probability that a standard
normal random variable takes a value less than or equal to this value is p.

• inverseStudentsT
public static double inverseStudentsT( double p, double df )

– Description
Returns inverse of the Student’s t distribution function.
inverseStudentsT evaluates the inverse distribution function of a Student’s t
random variable with df degrees of freedom. Let v = df. If v equals 1 or 2, the
inverse can be obtained in closed form, if v is between 1 and 2, the relationship
of a t to a beta random variable is exploited and inverseBeta is used to
evaluate the inverse; otherwise the algorithm of Hill (1970) is used. For small
values of v greater than 2, Hill’s algorithm inverts an integrated expansion in
1/(1 + t2/v) of the t density. For larger values, an asymptotic inverse
Cornish-Fisher type expansion about normal deviates is used.

– Parameters
∗ p – a double scalar value representing the probability for which the inverse

Student’s t function is to be evaluated.
∗ df – a double scalar value representing the number of degrees of freedom.

This must be at least one.
– Returns – a double scalar value representing the probability that a Student’s t

random variable takes a value less than or equal to this value is p.

• normal
public static double normal( double x )

– Description
Evaluates the normal (Gaussian) distribution function.
Method normal evaluates the distribution function, Φ, of a standard normal
(Gaussian) random variable, that is,

Φ (x) =
1√
2π

∫ x

−∞
e−t2/2dt

The value of the distribution function at the point x is the probability that the
random variable takes a value less than or equal to x.
The standard normal distribution (for which normal is the distribution
function) has mean of 0 and variance of 1. The probability that a normal
random variable with mean µ and variance σ2 is less than y is given by normal

evaluated at (y − µ)/σ.
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Φ(x) is evaluated by use of the complementary error function, erfc. The
relationship is:

Φ(x) = erfc(−x/
√

2.0)/2

Normal Distribution FunctionNormal Distribution Function
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– Parameters
∗ x – a double scalar value representing the argument at which the function

is to be evaluated.

Probability Distribution Functions and Inverses Cdf • 741



– Returns – a double scalar value representing the probability that a normal
variable takes a value less than or equal to x.

• poisson
public static double poisson( int k, double theta )

– Description
Evaluates the Poisson distribution function.
poisson evaluates the distribution function of a Poisson random variable with
parameter theta. theta, which is the mean of the Poisson random variable,
must be positive. The probability function (with θ = theta) is

f(x) = e−θθx/x! for x = 0, 1, 2, . . .

The individual terms are calculated from the tails of the distribution to the
mode of the distribution and summed. poisson uses the recursive relationship

f (x+ 1) = f (x) (θ/ (x+ 1)), for x = 0, 1, 2, . . . k − 1

with f(0) = e−θ.
– Parameters
∗ k – the int argument for which the Poisson distribution function is to be

evaluated.
∗ theta – a double scalar value representing the mean of the Poisson

distribution.
– Returns – a double scalar value representing the probability that a Poisson

random variable takes a value less than or equal to k.

• poissonProb
public static double poissonProb( int k, double theta )

– Description
Evaluates the Poisson probability function.
Method poissonProb evaluates the probability function of a Poisson random
variable with parameter theta. theta, which is the mean of the Poisson random
variable, must be positive. The probability function (with θ = theta) is

f(x) = e−θ θk/k!, for k = 0, 1, 2, . . .

poissonProb evaluates this function directly, taking logarithms and using the
log gamma function.
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– Parameters
∗ k – the int argument for which the Poisson probability function is to be

evaluated.
∗ theta – a double scalar value representing the mean of the Poisson

distribution.
– Returns – a double scalar value representing the probability that a Poisson

random variable takes a value equal to k.

Probability Distribution Functions and Inverses Cdf • 743



• studentsT
public static double studentsT( double t, double df )

– Description
Evaluates the Student’s t distribution function.
Method studentsT evaluates the distribution function of a Student’s t random
variable with df degrees of freedom. If the square of t is greater than or equal
to df, the relationship of a t to an f random variable (and subsequently, to a
beta random variable) is exploited, and routine beta is used. Otherwise, the
method described by Hill (1970) is used. If df is not an integer, if df is greater
than 19, or if df is greater than 200, a Cornish-Fisher expansion is used to
evaluate the distribution function. If df is less than 20 and |t| is less than 2.0, a
trigonometric series (see Abramowitz and Stegun 1964, equations 26.7.3 and
26.7.4, with some rearrangement) is used. For the remaining cases, a series
given by Hill (1970) that converges well for large values of t is used.
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– Parameters
∗ t – a double scalar value representing the argument at which the function

is to be evaluated
∗ df – a double scalar value representing the number of degrees of freedom.

This must be at least one.
– Returns – a double scalar value representing the probability that a Student’s t

random variable takes a value less than or equal to t

• Weibull
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public static double Weibull( double x, double gamma, double alpha )

– Description
Evaluates the Weibull distribution function.

– Parameters
∗ x – a double scalar value representing the argument at which the function

is to be evaluated. It must be non-negative.
∗ gamma – a double scalar value representing the shape parameter.
∗ alpha – a double scalar value representing the scale parameter.

– Returns – a double scalar value representing the probability that a Weibull
random variable takes a value less than or equal to x

Example: The Cumulative Distribution Functions

Various cumulative distribution functions are exercised. Their use in this example typifies
the manner in which other functions in the Cdf class would be used.
import com.imsl.stat.*;

public class CdfEx1 {
public static void main(String args[]) {

double x, prob, result;

int p, q, k, n;

// Beta

x =.5;

p = 12;

q = 12;

result = Cdf.beta(x, p, q);

System.out.println("beta(.5, 12, 12) is "+result);

// Inverse Beta

x =.5;

p = 12;

q = 12;

result = Cdf.inverseBeta(x, p, q);

System.out.println("inversebeta(.5, 12, 12) is "+result);

// binomial

k = 3;

n = 5;

prob = .95;

result = Cdf.binomial(k, n, prob);

746 • Cdf JMSL



System.out.println("binomial(3, 5, .95) is "+result);

// Chi

x = .15;

n = 2;

result = Cdf.chi(x, n);

System.out.println("chi(.15, 2) is "+result);

// Inverse Chi

prob = .99;

n = 2;

result = Cdf.inverseChi(prob, n);

System.out.println("inverseChi(.99, 2) is "+result);

}
}

Output

beta(.5, 12, 12) is 0.5000000000000016

inversebeta(.5, 12, 12) is 0.4999999999999991

binomial(3, 5, .95) is 0.02259250000000004

chi(.15, 2) is 0.07225651367144711

inverseChi(.99, 2) is 9.210340371976306

interface CdfFunction

Public interface for the user-supplied cumulative distribution function to be used by
InverseCdf and ChiSquaredTest.

Declaration

public interface com.imsl.stat.CdfFunction

Method

• cdf
double cdf( double p )
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– Description
Public interface for the user-supplied cumulative distribution function to be
used by InverseCdf.

– Parameters
∗ p – a double scalar value representing the point at which the inverse CDF

is desired.
– Returns – a double scalar value representing the probability that a random

variable for this CDF takes a value less than or equal to this value is p.

class InverseCdf

Inverse of user-supplied cumulative distribution function.

Class InverseCdf evaluates the inverse of a continuous, strictly monotone function. Its
most obvious use is in evaluating inverses of continuous distribution functions that can be
defined by a user-supplied function, which implements the InverseCdf interface. The
inverse is computed using regula falsi and/or bisection, possibly with the Illinois
modification (see Dahlquist and Bjorck 1974). A maximum of 100 iterations are
performed.

Declaration

public class com.imsl.stat.InverseCdf
extends java.lang.Object
implements java.io.Serializable

Inner Class

class InverseCdf.DidNotConvergeException

The iteration did not converge

Declaration

public static class com.imsl.stat.InverseCdf.DidNotConvergeException
extends com.imsl.IMSLException (page 1240)
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Constructors

• InverseCdf.DidNotConvergeException
public InverseCdf.DidNotConvergeException( java.lang.String message
)

• InverseCdf.DidNotConvergeException
public InverseCdf.DidNotConvergeException( java.lang.String key,
java.lang.Object[] arguments )

Constructor

• InverseCdf
public InverseCdf( CdfFunction cdf )

– Description
Constructor for the inverse of a user-supplied cummulative distribution
function.

– Parameters
∗ cdf – is a CdfFunction object that contains the user-supplied function to

be inverted. The cdf function must be continuous and strictly monotone.

Methods

• eval
public double eval( double p, double guess ) throws
com.imsl.stat.InverseCdf.DidNotConvergeException

– Description
Evaluates the inverse CDF function.

– Parameters
∗ p – a double scalar value representing the point at which the inverse CDF

is desired
∗ guess – a double scalar value representing an initial estimate of the inverse

at p
– Returns – a double scalar value representing the inverse of the CDF at the

point p. Cdf(inverseCdf) is “close” to p.
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• setTolerance
public void setTolerance( double tolerance )

– Description
Sets the tolerance to be used as the convergence criterion.

– Parameters
∗ tolerance – a double scalar value representing the convergence criterion.

When the relative change from one iteration to the next is less than
tolerance, convergence is assumed. The default value for tolerance is 0.0001.

Example: Inverse of a User-Supplied Cumulative Distribution Function

In this example, InverseCdf is used to compute the point such that the probability is 0.9
that a standard normal random variable is less than or equal to the computed point.
import com.imsl.stat.*;

public class InverseCdfEx1 implements CdfFunction {
public double cdf(double x) {

return Cdf.normal(x);

}

public static void main(String args[]) throws

InverseCdf.DidNotConvergeException {
double x1, p;

p = 0.9;;

InverseCdfEx1 invcdf = new InverseCdfEx1();

InverseCdf inv = new InverseCdf(invcdf);

inv.setTolerance(1.0e-10);

x1 = inv.eval(p, 0.0);

System.out.println("The 90th percentile of a standard normal is "+x1);

}
}

Output

The 90th percentile of a standard normal is 1.2815515655446006
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Chapter 21

Random Number Generation

Classes
Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751

Generate uniform and non-uniform random number distributions.
FaureSequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766

Generates the low-discrepancy Faure sequence.
RandomSequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770

Interface implemented by generators of random or quasi-random multidi-
mension sequences.

class Random

Generate uniform and non-uniform random number distributions.

The non-uniform distributions are generated from a uniform distribution. By default, this
class uses the uniform distribution generated by the base class java.util.Random. If the
multiplier is set in this class then a multiplicative congruential method is used. The form
of the generator is

xi ≡ cxi−1mod(231 − 1)

Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primitive root
modulo 231 − 1 (which is a prime), then the generator will have a maximal period of
231 − 2. There are several other considerations, however. See Knuth (1981) for a good
general discussion. Possible values for c are 16807, 397204094, and 950706376. The
selection is made by the method setMultiplier. Evidence suggests that the performance of
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950706376 is best among these three choices (Fishman and Moore 1982).

The generation of uniform (0,1) numbers is done by the method nextDouble.

Declaration

public class com.imsl.stat.Random
extends java.util.Random
implements java.io.Serializable, java.lang.Cloneable

Constructors

• Random
public Random( )

– Description
Constructor for the Random number generator class.

• Random
public Random( long seed )

– Description
Constructor for the Random number generator class with supplied seed.

– Parameters
∗ seed – a long which represents the random number generator seed

Methods

• next
protected synchronized int next( int bits )

– Description
Generates the next pseudorandom number. If the multiplier is set then the
multiplicative congruential method is used. Otherwise, super.next(bits) is
used.

– Parameters
∗ bits – is the number of random bits required.

– Returns – the next pseudorandom value from this random number generator’s
sequence.
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• nextBeta
public double nextBeta( double p, double q )

– Description
Generate a pseudorandom number from a beta distribution.
Method nextBeta generates pseudorandom numbers from a beta distribution
with parameters p and q, both of which must be positive. The probability
density function is

f (x) =
Γ (p+ q)
Γ (p) Γ (q)

xp−1 (1− x)q−1 for 0 ≤ x ≤ 1

where Γ(·) is the gamma function.
The algorithm used depends on the values of p and q. Except for the trivial
cases of p = 1 or q = 1, in which the inverse CDF method is used, all of the
methods use acceptance/rejection. If p and q are both less than 1, the method
of Johnk (1964) is used; if either p or q is less than 1 and the other is greater
than 1, the method of Atkinson (1979) is used; if both p and q are greater than
1, algorithm BB of Cheng (1978), which requires very little setup time, is used.
The value returned is less than 1.0 and greater than ε, where ε is the smallest
positive number such that 1.0− ε is less than 1.0.

– Parameters
∗ p – a double, the first beta distribution parameter, p >0
∗ q – a double, the second beta distribution parameter, q >0

– Returns – a double, a pseudorandom number from a beta distribution

• nextBinomial
public int nextBinomial( int n, double p )

– Description
Generate a pseudorandom number from a binomial distribution.
nextBinomial generates pseudorandom numbers from a binomial distribution
with parameters n and p. n and p must be positive, and p must be less than 1.
The probability function (with n = n and p = p) is

f (x) = (n
x) px (1− p)n−x

for x = 0, 1, 2, . . . , n.
The algorithm used depends on the values of n and p. If np < 10 or if p is less
than a machine epsilon, the inverse CDF technique is used; otherwise, the
BTPE algorithm of Kachitvichyanukul and Schmeiser (see Kachitvichyanukul
1982) is used. This is an acceptance/rejection method using a composition of
four regions. (TPE equals Triangle, Parallelogram, Exponential, left and right.)
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– Parameters
∗ n – an int, the number of Bernoulli trials.
∗ p – a double, the probability of success on each trial, 0 < p < 1.

– Returns – an int, the pseudorandom number from a binomial distribution.

• nextCauchy
public double nextCauchy( )

– Description
Generates a pseudorandom number from a Cauchy distribution. The
probability density function is

f (x) =
1

π(1 + x2)

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform
(0, 1) deviate, u, as tan [π (u− .5)]. Rather than evaluating a tangent directly,
however, nextCauchy generates two uniform (-1, 1) deviates, x1 and x2. These
values can be thought of as sine and cosine values. If

x2
1 + x2

2

is less than or equal to 1, then x1/x2 is delivered as the Cauchy deviate;
otherwise, x1 and x2 are rejected and two new uniform (-1, 1) deviates are
generated. This method is also equivalent to taking the ratio of two
independent normal deviates.
Deviates from the Cauchy distribution with median t and first quartile t - s,
that is, with density

f (x) =
s

π
[
s2 + (x− t)2

]
can be obtained by scaling the output from nextCauchy. To do this, first scale
the output from nextCauchy by S and then add T to the result.

– Returns – a double, a pseudorandom number from a Cauchy distribution

• nextChiSquared
public double nextChiSquared( double df )

– Description
Generates a pseudorandom number from a Chi-squared distribution.
nextChiSquared generates pseudorandom numbers from a chi-squared
distribution with df degrees of freedom. If df is an even integer less than 17,
the chi-squared deviate r is generated as
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r = −2 ln
(

n
Π

i=1
ui

)
where n = df/2 and the ui are independent random deviates from a uniform (0,
1) distribution. If df is an odd integer less than 17, the chi-squared deviate is
generated in the same way, except the square of a normal deviate is added to
the expression above. If df is greater than 16 or is not an integer, and if it is
not too large to cause overflow in the gamma random number generator, the
chi-squared deviate is generated as a special case of a gamma deviate, using
nextGamma. If overflow would occur in nextGamma, the chi-squared deviate is
generated in the manner described above, using the logarithm of the product of
uniforms, but scaling the quantities to prevent underflow and overflow.

– Parameters
∗ df – a double which specifies the number of degrees of freedom. It must be

positive.
– Returns – a double, a pseudorandom number from a Chi-squared distribution.

• nextExponential
public double nextExponential( )

– Description
Generates a pseudorandom number from a standard exponential distribution.
The probability density function is f(x) = e−x; for x > 0.
nextExponential uses an antithetic inverse CDF technique; that is, a uniform
random deviate U is generated and the inverse of the exponential cumulative
distribution function is evaluated at 1.0 - U to yield the exponential deviate.
Deviates from the exponential distribution with mean θ can be generated by
using nextExponential and then multiplying the result by θ.

– Returns – a double which specifies a pseudorandom number from a standard
exponential distribution

• nextExponentialMix
public double nextExponentialMix( double theta1, double theta2,
double p )

– Description
Generate a pseudorandom number from a mixture of two exponential
distributions. The probability density function is

f (x) =
p

θ
e−x/θ1 +

1− p
θ2

e−x/θ2 for x > 0

where p = p, θ1 = theta1, and θ2 = theta2.
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In the case of a convex mixture, that is, the case 0 < p < 1, the mixing
parameter p is interpretable as a probability; and nextExponentialMix with
probability p generates an exponential deviate with mean θ1, and with
probability 1 - p generates an exponential with mean θ2. When p is greater
than 1, but less than θ1/(θ1 − θ2), then either an exponential deviate with
mean θ2 or the sum of two exponentials with means θ1 and θ2 is generated.
The probabilities are q = p− (p− 1)θ1/θ2 and 1 - q, respectively, for the single
exponential and the sum of the two exponentials.

– Parameters
∗ theta1 – a double which specifies the mean of the exponential distribution

that has the larger mean.
∗ theta2 – a double which specifies the mean of the exponential distribution

that has the smaller mean. theta2 must be positive and less than or equal
to theta1.
∗ p – a double which specifies the mixing parameter. It must satisfy

0 ≤ p ≤ theta1/(theta1− theta2).
– Returns – a double, a pseudorandom number from a mixture of the two

exponential distributions.

• nextGamma
public double nextGamma( double a )

– Description
Generates a pseudorandom number from a standard gamma distribution.
Method nextGamma generates pseudorandom numbers from a gamma
distribution with shape parameter a. The probability density function is

P =
1

Γ (a)

∫ x

o
e−tta−1dt

Various computational algorithms are used depending on the value of the shape
parameter a. For the special case of a = 0.5, squared and halved normal
deviates are used; and for the special case of a = 1.0, exponential deviates
(from method nextExponential) are used. Otherwise, if a is less than 1.0, an
acceptance-rejection method due to Ahrens, described in Ahrens and Dieter
(1974), is used; if a is greater than 1.0, a ten-region rejection procedure
developed by Schmeiser and Lal (1980) is used.
The Erlang distribution is a standard gamma distribution with the shape
parameter having a value equal to a positive integer; hence, nextGamma
generates pseudorandom deviates from an Erlang distribution with no
modifications required.

– Parameters
∗ a – a double, the shape parameter of the gamma distribution. It must be

positive.
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– Returns – a double, a pseudorandom number from a standard gamma
distribution

• nextGeometric
public int nextGeometric( double p )

– Description
Generate a pseudorandom number from a geometric distribution.
nextGeometric generates pseudorandom numbers from a geometric distribution
with parameter p, where P =p is the probability of getting a success on any
trial. A geometric deviate can be interpreted as the number of trials until the
first success (including the trial in which the first success is obtained). The
probability function is

f(x) = P (1− P )x−1

for x = 1, 2, . . . and 0 < P < 1.
The geometric distribution as defined above has mean 1/P.
The i-th geometric deviate is generated as the smallest integer not less than
log(Ui)/log(1− P ), where the Ui are independent uniform (0, 1) random
numbers (see Knuth, 1981).
The geometric distribution is often defined on 0, 1, 2, ..., with mean (1 - P)/P.
Such deviates can be obtained by subtracting 1 from each element returned
value.

– Parameters
∗ p – a double, the probability of success on each trial, 0 < p ≤ 1.

– Returns – an int, a pseudorandom number from a geometric distribution.

• nextHypergeometric
public int nextHypergeometric( int n, int m, int l )

– Description
Generate a pseudorandom number from a hypergeometric distribution.
Method nextHypergeometric generates pseudorandom numbers from a
hypergeometric distribution with parameters n, m, and l. The hypergeometric
random variable x can be thought of as the number of items of a given type in a
random sample of size n that is drawn without replacement from a population
of size l containing m items of this type. The probability function is

f (x) =
(m
x )
(

l−m
n−x

)
(l
n)

for x = max(0, n− l +m), 1, 2, . . . ,min(n,m).
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If the hypergeometric probability function with parameters n, m, and l
evaluated at n - l + m (or at 0 if this is negative) is greater than the machine
epsilon, and less than 1.0 minus the machine epsilon, then nextHypergeometric

uses the inverse CDF technique. The method recursively computes the
hypergeometric probabilities, starting at x = max(0, n− l +m) and using the
ratio f (x = x + 1)/f(x = x) (see Fishman 1978, page 457).
If the hypergeometric probability function is too small or too close to 1.0, then
nextHypergeometric generates integer deviates uniformly in the interval [1, l− i],
for i = 0, 1, . . .; and at the I-th step, if the generated deviate is less than or
equal to the number of special items remaining in the lot, the occurrence of one
special item is tallied and the number of remaining special items is decreased
by one. This process continues until the sample size or the number of special
items in the lot is reached, whichever comes first. This method can be much
slower than the inverse CDF technique. The timing depends on n. If n is more
than half of l (which in practical examples is rarely the case), the user may
wish to modify the problem, replacing n by l - n, and to consider the deviates
to be the number of special items not included in the sample.

– Parameters
∗ n – an int which specifies the number of items in the sample, n >0
∗ m – an int which specifies the number of special items in the population, or

lot, m >0
∗ l – an int which specifies the number of items in the lot, l >max(n,m)

– Returns – an int which specifies the number of special items in a sample of
size n drawn without replacement from a population of size l that contains m
such special items.

• nextLogarithmic
public int nextLogarithmic( double a2 )

– Description
Generate a pseudorandom number from a logarithmic distribution.
Method nextLogarithmic generates pseudorandom numbers from a logarithmic
distribution with parameter a. The probability function is

f (x) = − ax

x ln (1− a)
for x = 1, 2, 3, . . ., and 0 < a < 1.
The methods used are described by Kemp (1981) and depend on the value of a.
If a is less than 0.95, Kemp’s algorithm LS, which is a “chop-down” variant of
an inverse CDF technique, is used. Otherwise, Kemp’s algorithm LK, which
gives special treatment to the highly probable values of 1 and 2, is used.

– Parameters
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∗ a2 – a double which specifies the parameter of the logarithmic distribution,
0 < a ≤ 1.0.

– Returns – an int, a pseudorandom number from a logarithmic distribution.

• nextLogNormal
public double nextLogNormal( double mean, double stdev )

– Description
Generate a pseudorandom number from a lognormal distribution.
Method nextLogNormal generates pseudorandom numbers from a lognormal
distribution with parameters mean and stdev. The scale parameter in the
underlying normal distribution, stdev, must be positive. The method is to
generate normal deviates with mean mean and standard deviation stdev and
then to exponentiate the normal deviates.
With µ = mean and σ = stdev, the probability density function for the
lognormal distribution is

f (x) =
1

σx
√

2π
exp

[
− 1

2σ2
(lnx− µ)2

]
for x > 0

The mean and variance of the lognormal distribution are exp(µ+ σ2/2) and
exp(2µ+ 2σ2)− exp(2µ+ σ2), respectively.

– Parameters
∗ mean – a double which specifies the mean of the underlying normal

distribution
∗ stdev – a double which specifies the standard deviation of the underlying

normal distribution. It must be positive.
– Returns – a double, a pseudorandom number from a lognormal distribution

• nextMultivariateNormal
public double[] nextMultivariateNormal( int k, com.imsl.math.Cholesky
matrix )

– Description
Generate pseudorandom numbers from a multivariate normal distribution.
nextMultivariateNormal generates pseudorandom numbers from a multivariate
normal distribution with mean vector consisting of all zeroes and
variance-covariance matrix whose Cholesky factor (or “square root”) is matrix;
that is, matrix is an upper triangular matrix such that the transpose of matrix
times matrix is the variance-covariance matrix. First, independent random
normal deviates with mean 0 and variance 1 are generated, and then the matrix
containing these deviates is post-multiplied by matrix.
Deviates from a multivariate normal distribution with means other than zero
can be generated by using nextMultivariateNormal and then by adding the
means to the deviates.
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– Parameters
∗ k – an int which specifies the length of the multivariate normal vectors
∗ matrix – is the Cholesky factorization of the variance-covariance matrix of

order k
– Returns – a double array which contains the pseudorandom numbers from a

multivariate normal distribution

• nextNegativeBinomial
public int nextNegativeBinomial( double rk, double p )

– Description
Generate a pseudorandom number from a negative binomial distribution.
Method nextNegativeBinomial generates pseudorandom numbers from a
negative binomial distribution with parameters rk and p. rk and p must be
positive and p must be less than 1. The probability function with (r = rk and
p = p) is

f (x) =
(
r + x− 1

x

)
(1− p)r px

for x = 0, 1, 2, . . ..
If r is an integer, the distribution is often called the Pascal distribution and can
be thought of as modeling the length of a sequence of Bernoulli trials until r
successes are obtained, where p is the probability of getting a success on any
trial. In this form, the random variable takes values r, r + 1, r + 2, . . . and can
be obtained from the negative binomial random variable defined above by
adding r to the negative binomial variable. This latter form is also equivalent
to the sum of r geometric random variables defined as taking values 1, 2, 3, . . ..
If rp/(1 - p) is less than 100 and (1− p)r is greater than the machine epsilon,
nextNegativeBinomial uses the inverse CDF technique; otherwise, for each
negative binomial deviate, nextNegativeBinomial generates a gamma (r, p/(1 -
p)) deviate y and then generates a Poisson deviate with parameter y.

– Parameters
∗ rk – a double which specifies the negative binomial parameter, rk >0
∗ p – a double which specifies the probability of success on each trial. It must

be greater than machine precision and less than one.
– Returns – an int which specifies the pseudorandom number from a negative

binomial distribution. If rk is an integer, the deviate can be thought of as the
number of failures in a sequence of Bernoulli trials before rk successes occur.

• nextNormal
public double nextNormal( )
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– Description
Generate a pseudorandom number from a standard normal distribution using
an inverse CDF method. In this method, a uniform (0,1) random deviate is
generated, then the inverse of the normal distribution function is evaluated at
that point using inverseNormal. This method is slower than the
acceptance/rejection technique used in the nextNormalAR to generate standard
normal deviates. Deviates from the normal distribution with mean xm and
standard deviation xstd can be obtained by scaling the output from nextNormal.
To do this first scale the output of nextNormal by xstd and then add xm to the
result.

– Returns – a double which represents a pseudorandom number from a standard
normal distribution

• nextNormalAR
public double nextNormalAR( )

– Description
Generate a pseudorandom number from a standard normal distribution using
an acceptance/rejection method.
nextNormalAR generates pseudorandom numbers from a standard normal
(Gaussian) distribution using an acceptance/rejection technique due to
Kinderman and Ramage (1976). In this method, the normal density is
represented as a mixture of densities over which a variety of
acceptance/rejection methods due to Marsaglia (1964), Marsaglia and Bray
(1964), and Marsaglia, MacLaren, and Bray (1964) are applied. This method is
faster than the inverse CDF technique used in nextNormal to generate standard
normal deviates.
Deviates from the normal distribution with mean xm and standard deviation
xstd can be obtained by scaling the output from nextNormalAR. To do this first
scale the output of nextNormalAR by xstd and then add xm to the result.

– Returns – a double which represents a pseudorandom number from a standard
normal distribution

• nextPoisson
public int nextPoisson( double theta )

– Description
Generate a pseudorandom number from a Poisson distribution.
Method nextPoisson generates pseudorandom numbers from a Poisson
distribution with parameter theta. theta, which is the mean of the Poisson
random variable, must be positive. The probability function (with θ = theta) is

f(x) = e−θ θx/x!
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for x = 0, 1, 2, . . .
If theta is less than 15, nextPoisson uses an inverse CDF method; otherwise
the PTPE method of Schmeiser and Kachitvichyanukul (1981) (see also
Schmeiser 1983) is used.
The PTPE method uses a composition of four regions, a triangle, a
parallelogram, and two negative exponentials. In each region except the
triangle, acceptance/rejection is used. The execution time of the method is
essentially insensitive to the mean of the Poisson.

– Parameters
∗ theta – a double which specifies the mean of the Poisson distribution,

theta >0
– Returns – an int, a pseudorandom number from a Poisson distribution

• nextStudentsT
public double nextStudentsT( double df )

– Description
Generate a pseudorandom number from a Student’s t distribution.
nextStudentsT generates pseudo-random numbers from a Student’s t
distribution with df degrees of freedom, using a method suggested by
Kinderman, Monahan, and Ramage (1977). The method (“TMX” in the
reference) involves a representation of the t density as the sum of a triangular
density over (-2, 2) and the difference of this and the t density. The mixing
probabilities depend on the degrees of freedom of the t distribution. If the
triangular density is chosen, the variate is generated as the sum of two
uniforms; otherwise, an acceptance/rejection method is used to generate a
variate from the difference density.
For degrees of freedom less than 100, nextStudentsT requires approximately
twice the execution time as nextNormalAR, which generates pseudorandom
normal deviates. The execution time of nextStudentsT increases very slowly as
the degrees of freedom increase. Since for very large degrees of freedom the
normal distribution and the t distribution are very similar, the user may find
that the difference in the normal and the t does not warrant the additional
generation time required to use nextStudentsT instead of nextNormalAR.

– Parameters
∗ df – a double which specifies the number of degrees of freedom. It must be

positive.
– Returns – a double, a pseudorandom number from a Student’s t distribution

• nextTriangular
public double nextTriangular( )
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– Description
Generate a pseudorandom number from a triangular distribution on the interval
(0,1). The probability density function is f(x) = 4x, for 0 ≤ x ≤ .5, and
f(x) = 4(1− x), for .5 < x ≤ 1. nextTriangular uses an inverse CDF technique.

– Returns – a double, a pseudorandom number from a triangular distribution on
the interval (0,1)

• nextVonMises
public double nextVonMises( double c )

– Description
Generate a pseudorandom number from a von Mises distribution.
Method nextVonMises generates pseudorandom numbers from a von Mises
distribution with parameter c, which must be positive. With c = C, the
probability density function is

f (x) =
1

2πI0 (c)
exp [c cos (x)] for − π < x < π

where I0(c) is the modified Bessel function of the first kind of order 0. The
probability density equals 0 outside the interval (−π, π).
The algorithm is an acceptance/rejection method using a wrapped Cauchy
distribution as the majorizing distribution. It is due to Best and Fisher (1979).

– Parameters
∗ c – a double which specifies the parameter of the von Mises distribution,
c > 7.4× 10−9.

– Returns – a double, a pseudorandom number from a von Mises distribution

• nextWeibull
public double nextWeibull( double a )

– Description
Generate a pseudorandom number from a Weibull distribution.
Method nextWeibull generates pseudorandom numbers from a Weibull
distribution with shape parameter a. The probability density function is

f (x) = AxA−1e−xA
for x ≥ 0

nextWeibull uses an antithetic inverse CDF technique to generate a Weibull
variate; that is, a uniform random deviate U is generated and the inverse of the
Weibull cumulative distribution function is evaluated at 1.0 - u to yield the
Weibull deviate.
Deviates from the two-parameter Weibull distribution, with shape parameter a
and scale parameter b, can be generated by using nextWeibull and then
multiplying the result by b.
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The Rayleigh distribution with probability density function,

r (x) =
1
α2
x e(−x2/2α2) for x ≥ 0

is the same as a Weibull distribution with shape parameter a equal to 2 and
scale parameter b equal to.

√
2α

hence, nextWeibull and simple multiplication can be used to generate Rayleigh
deviates.

– Parameters
∗ a – a double which specifies the shape parameter of the Weibull

distribution, a >0
– Returns – a double, a pseudorandom number from a Weibull distribution

• setMultiplier
public void setMultiplier( int multiplier )

– Description
Sets the multiplier for a linear congruential random number generator. If a
multiplier is set then the linear congruential generator, defined in the base class
java.util.Random, is replaced by the generator
seed = (multiplier*seed) mod (231 − 1)
See Donald Knuth, The Art of Computer Programming, Volume 2, for
guidelines in choosing a multiplier. Some possible values are 16807, 397204094,
950706376.

– Parameters
∗ multiplier – an int which represents the random number generator

multiplier

• setSeed
public void setSeed( long seed )

– Description
Sets the seed.

– Parameters
∗ seed – a long which represents the random number generator seed

• skip
public void skip( int n )
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– Description
Resets the seed to skip ahead in the base linear congruential generator. This
method can be used only if a linear congruential multiplier is explicitly defined
by a call to setMultiplier. The method skips ahead in the deviates returned by
the protected method next. The public methods use next(int) as their source
of uniform random deviates. Some methods call it more than once. For
instance, each call to nextDouble calls it twice.

– Parameters
∗ n – is the number of random deviates to skip.

Example: Random Number Generation

In this example, a discrete normal random sample of size 1000 is generated via
Random.nextGaussian. Random.setSeed is first used to set the seed. After the
ChiSquaredTest constructor is called, the random observations are added to the test one at
a time to simulate streaming data. The Chi-squared test is performed using Cdf.normal as
the cumulative distribution function object to see how well the random numbers fit the
normal distribution.
import com.imsl.stat.*;

public class RandomEx1 implements CdfFunction {
public double cdf(double x) {

return Cdf.normal(x);

}

public static void main(String args[]) throws

InverseCdf.DidNotConvergeException {
int nObservations = 1000;

Random r = new Random(123457L);

ChiSquaredTest test =

new ChiSquaredTest(new RandomEx1(), 10, 0);

for (int k = 0; k < nObservations; k++) {
test.update(r.nextNormal(), 1.0);

}

double p = test.getP();

System.out.println("The P-value is "+p);

}
}
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Output

The P-value is 0.5518855965158243

class FaureSequence

Generates the low-discrepancy Faure sequence.

Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set x1, . . . , xn ∈ [0, 1]d, d ≥ 1, is

D(d)
n = sup

E

∣∣∣∣A(E;n)
n

− λ(E)
∣∣∣∣ ,

where the supremum is over all subsets of [0, 1]d of the form

E = [0, t1)× · · · × [0, td) , 0 ≤ tj ≤ 1, 1 ≤ j ≤ d,

λ is the Lebesque measure, and A(E;n) is the number of the xj contained in E.

The sequence x1, x2, . . . of points in [0, 1]d is a low-discrepancy sequence if there exists a
constant c(d), depending only on d, such that

D(d)
n ≤ c(d)(log n)d

n

for all n > 1.

Generalized Faure sequences can be defined for any prime base b ≥ d. The lowest bound
for the discrepancy is obtained for the smallest prime b ≥ d, so the base defaults to the
smallest prime greater than or equal to the dimension.

The generalized Faure sequence x1, x2, . . ., is computed as follows:

Write the positive integer n in its b-ary expansion,

n =
∞∑
i=0

ai(n)bi

where ai(n) are integers, 0 ≤ aj(n) < b.

The j-th coordinate of xn is

x(j)
n =

∞∑
k=0

∞∑
d=0

c
(j)
kd ad(n)b−k−1, 1 ≤ j ≤ d
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The generator matrix for the series, c(j)kd , is defined to be

c
(j)
kd = jd−kckd

and ckd is an element of the Pascal matrix,

ckd =

{
d!

c!(d−c)! k ≤ d
0 k > d

It is faster to compute a shuffled Faure sequence than to compute the Faure sequence
itself. It can be shown that this shuffling preserves the low-discrepancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive integer n
into the integer given by its b-ary expansion. The sequence computed by this function is
~x(G(n)), where ~x is the generalized Faure sequence.

Declaration

public class com.imsl.stat.FaureSequence
extends java.lang.Object
implements java.io.Serializable, RandomSequence, java.lang.Cloneable

Constructors

• FaureSequence
public FaureSequence( int dim )

– Description
Creates a Faure sequence with the default base. The base defaults to the
smallest prime equal to or greater than dim.

– Parameters
∗ dim – is the dimension of the sequence.

• FaureSequence
public FaureSequence( int dim, int base, int nSkip )

– Description
Creates a Faure sequence.

– Parameters
∗ dim – is the dimension of the sequence.
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∗ base – is the base of the sequence, as described above. It must be at least
as large as dim.
∗ nSkip – is the number of initial points to skip. If negative then basem/2−1,

where m is the number of digits needed to represent the
Integer.MAX VALUE in the base, points are skipped.

Methods

• clone
public java.lang.Object clone( )

– Description
Returns a copy of this object.

• getBase
public int getBase( )

– Description
Returns the base.

• getCount
public long getCount( )

• getDimension
public int getDimension( )

– Description
Returns the dimension of the sequence.

• getSkip
public int getSkip( )

– Description
Returns the number of points skipped at the beginning of the sequence.

• nextDouble
public double nextDouble( )

– Description
Returns the first value of the next point in the sequence. This method is
intended for use when dim is 1.

– Returns – a double array, the next sequence value.
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• nextPoint
public double[] nextPoint( )

– Description
Returns the next point in the sequence.

– Returns – a double array, the next point in the sequence.

• nextPrime
public static int nextPrime( int n )

– Description
Returns the smallest prime greater than or equal to n.

– Parameters
∗ n – is the first number to try as a prime.

– Returns – a prime greater than or equal to n. If n is less than or equal to 2
then 2 is returned.

Example: FaureSequence

In this example, ten points of the Faure sequence are computed. The points are in a
four-dimensional cube.
import com.imsl.stat.FaureSequence;

import com.imsl.math.PrintMatrix;

public class FaureSequenceEx1 {
public static void main(String args[]) {

FaureSequence seq = new FaureSequence(4);

double x[][] = new double[10][];

for (int k = 0; k < 10; k++) {
x[k] = seq.nextPoint();

}
new PrintMatrix("Faure Sequence").print(x);

}
}

Output

Faure Sequence

0 1 2 3

0 0.201 0.275 0.533 0.694

1 0.401 0.475 0.733 0.894
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2 0.601 0.675 0.933 0.094

3 0.801 0.875 0.133 0.294

4 0.841 0.115 0.573 0.934

5 0.041 0.315 0.773 0.134

6 0.241 0.515 0.973 0.334

7 0.441 0.715 0.173 0.534

8 0.641 0.915 0.373 0.734

9 0.681 0.155 0.613 0.374

interface RandomSequence

Interface implemented by generators of random or quasi-random multidimension
sequences.

Declaration

public interface com.imsl.stat.RandomSequence

Methods

• getDimension
int getDimension( )

– Description
Returns the dimension of the sequence.

• nextPoint
double[] nextPoint( )

– Description
Returns the next multidimensional point in the sequence.

– Returns – a double array of length dimension.

770 • RandomSequence JMSL



Chapter 22

Input/Output

Classes
AbstractFlatFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771

Reads a text or binary file as a ResultSet.
FlatFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823

Reads a text file as a ResultSet.
Tokenizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832

Breaks a line into tokens.

class AbstractFlatFile

Reads a text or binary file as a ResultSet.

In Java, the result of a database query is normally returned as a ResultSet object. This
class is intended to support reading of text or binary flat files and returning them as a
ResultSet.

A flat file is a rectangular data set where each row is an observation and each column is a
variable. The data type in any one column is the same for all of the rows.

Declaration

public abstract class com.imsl.io.AbstractFlatFile
extends java.lang.Object
implements java.sql.ResultSet
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Inner Class

class AbstractFlatFile.FlatFileSQLException

A SQLException thrown by the AbstractFlatFile class.

Declaration

protected static class com.imsl.io.AbstractFlatFile.FlatFileSQLException
extends java.sql.SQLException

Constructor

• AbstractFlatFile
public AbstractFlatFile( )

– Description
Initializes an AbstractFlatFile. Since AbstractFlatFile is abstract, it cannot be
directly instantiated.

Methods

• absolute
public boolean absolute( int row ) throws java.sql.SQLException

– Description
Moves the cursor to the given row number in this ResultSet object.

– Parameters
∗ row – an int which specifies a row, of the ResultSet object, where the

cursor is to be moved
– Returns – a boolean whose value is true if the cursor is on the result set;

false otherwise
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since only forward operations are allowed

• afterLast
public void afterLast( ) throws java.sql.SQLException
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– Description
Moves the cursor to the end of this ResultSet object, just after the last row.
This method has no effect if the result set contains no rows.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since this method has not been implemented

• beforeFirst
public void beforeFirst( ) throws java.sql.SQLException

– Description
Moves the cursor to the front of this ResultSet object, just before the first row.
This method has no effect if the result set contains no rows.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since only forward operations are allowed

• beginGet
protected void beginGet( )

– Description
This method should be called at the start of every getType method. It closes
any InputStreams or Readers created by get methods in this object. It also
resets the wasNull flag to false.

• cancelRowUpdates
public void cancelRowUpdates( ) throws java.sql.SQLException

– Description
Cancels the updates made to the current row in this ResultSet object. Since
updates are not allowed, this method always throws an SQLException.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• clearWarnings
public void clearWarnings( ) throws java.sql.SQLException

– Description
Clears all warnings reported on this ResultSet object. After this method is
called, the method getWarnings returns null until a new warning is reported for
this ResultSet object.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs
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• close
public void close( ) throws java.sql.SQLException

– Description
Releases this ResultSet object’s database and JDBC resources immediately
instead of waiting for this to happen when it is automatically closed.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• deleteRow
public void deleteRow( ) throws java.sql.SQLException

– Description
Deletes the current row from this ResultSet object and from the underlying
database. Since updates are not allowed, this method always throws an
SQLException.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• doGetBytes
protected abstract byte[] doGetBytes( int columnIndex ) throws
java.sql.SQLException

– Description
Implements the actual getBytes(). The bytes represent the raw values returned
by the driver.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a byte array representation of the column value; if the value is SQL

null, the value returned is null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• doNext
protected abstract boolean doNext( ) throws java.sql.SQLException

– Description
Implements the operations on the file required by the method next().
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– Returns – a boolean, true if the new current row is valid; false if there are no
more rows

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• findColumn
public int findColumn( java.lang.String columnName ) throws
java.sql.SQLException

– Description
Maps the given ResultSet column name to its ResultSet column index.

– Parameters
∗ columnName – a String specifying the name of the column

– Returns – an int specifying the column index of the given column name
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if the

ResultSet object does not contain columnName or a database access error
occurs

• findColumnName
protected java.lang.String findColumnName( int columnIndex )
throws java.sql.SQLException

– Description
Maps the given columnIndex into its column name.

– Parameters
∗ columnIndex – an int specifying the index of a column for which the name

is to be found
– Returns – a String containing the name of the column
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• first
public boolean first( ) throws java.sql.SQLException

– Description
Moves the cursor to the first row in this ResultSet object.

– Returns – a boolean whose value is true if the cursor is on the result set;
false otherwise

– Throws
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∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always
thrown since only forward operations are allowed

• getArray
public java.sql.Array getArray( int columnIndex ) throws
java.sql.SQLException

– Description
Returns the value of the designated column in the current row of this ResultSet

object as an Array object in the Java programming language.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a Array object representing an SQL Array value in the specified

column
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since this method is not implemented

• getArray
public java.sql.Array getArray( java.lang.String columnName )
throws java.sql.SQLException

– Description
Returns the value of the designated column in the current row of this ResultSet

object as an Array object in the Java programming language.
– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – an Array object representing the SQL ARRAY value in the specified
column

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getAsciiStream
public java.io.InputStream getAsciiStream( int columnIndex ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a stream of ASCII characters. The value can then be read in chunks
from the stream. This method is particularly suitable for retrieving large
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LONGVARCHAR values. The JDBC driver will do any necessary conversion from
the database format into ASCII.
Note: All the data in the returned stream must be read prior to getting the
value of any other column. The next call to a getType method implicitly closes
the stream. Also, a stream may return 0 when the method
InputStream.available is called whether there is data available or not.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a java.io.InputStream that delivers the database column value as a

stream of one-byte ASCII characters; if the value is SQL NULL, the value
returned is null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getAsciiStream
public java.io.InputStream getAsciiStream( java.lang.String
columnName ) throws java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a stream of ASCII characters. The value can then be read in chunks
from the stream. This method is particularly suitable for retrieving large
LONGVARCHAR values. The JDBC driver will do any necessary conversion from
the database format into ASCII.
Note: All the data in the returned stream must be read prior to getting the
value of any other column. The next call to a getType method implicitly closes
the stream. Also, a stream may return 0 when the method available is called
whether there is data available or not.

– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a java.io.InputStream that delivers the database column value as a
stream of one-byte ASCII characters. If the value is SQL NULL, the value
returned is null.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getBigDecimal
public java.math.BigDecimal getBigDecimal( int columnIndex ) throws
java.sql.SQLException
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– Description
Gets the value of the designated column in the current row of this ResultSet

object as a java.math.BigDecimal with full precision.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a java.math.BigDecimal object that contains the column value; if

the value is SQL NULL, the value returned is null in the Java programming
language

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a

conversion or database access error occurs

• getBigDecimal
public java.math.BigDecimal getBigDecimal( int columnIndex, int
scale ) throws java.sql.SQLException

Deprecated

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a java.sql.BigDecimal in the Java programming language.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ scale – an int which specifies the number of digits to the right of the

decimal point
– Returns – a java.sql.BigDecimal representation of the column value; if the

value is SQL NULL, the value returned is null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getBigDecimal
public java.math.BigDecimal getBigDecimal( java.lang.String
columnName ) throws java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a java.math.BigDecimal with full precision.
– Parameters
∗ columnName – a String which specifies the SQL name of the column
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– Returns – a java.math.BigDecimal object that contains the column value; if
the value is SQL NULL, the value returned is null in the Java programming
language

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getBigDecimal
public java.math.BigDecimal getBigDecimal( java.lang.String
columnName, int scale ) throws java.sql.SQLException

Deprecated

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a java.math.BigDecimal in the Java programming language.
– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ scale – an int which specifies the number of digits to the right of the

decimal point
– Returns – a java.math.BigDecimal representation of the column value; if the

value is SQL NULL, the value returned is null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getBinaryStream
public java.io.InputStream getBinaryStream( int columnIndex )
throws java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a binary stream of uninterpreted bytes. The value can then be read in
chunks from the stream. This method is particularly suitable for retrieving
large LONGVARBINARY values.
Note: All the data in the returned stream must be read prior to getting the
value of any other column. The next call to a getType method implicitly closes
the stream. Also, a stream may return 0 when the method
InputStream.available is called whether there is data available or not.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
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– Returns – a java.io.InputStream that delivers the database column value as a
stream of uninterpreted bytes; if the value is SQL NULL, the value returned is
null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getBinaryStream
public java.io.InputStream getBinaryStream( java.lang.String
columnName ) throws java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a stream of uninterpreted bytes. The value can then be read in
chunks from the stream. This method is particularly suitable for retrieving
large LONGVARBINARY values.
Note: All the data in the returned stream must be read prior to getting the
value of any other column. The next call to a getType method implicitly closes
the stream. Also, a stream may return 0 when the method available is called
whether there is data available or not.

– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a java.io.InputStream that delivers the database column value as a
stream of uninterpreted bytes; if the value is SQL NULL, the result is null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getBlob
public java.sql.Blob getBlob( int columnIndex ) throws
java.sql.SQLException

– Description
Returns the value of the designated column in the current row of this ResultSet

object as a Blob object in the Java programming language.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a Blob object representing the SQL BLOB value in the specified

column
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

780 • AbstractFlatFile JMSL



• getBlob
public java.sql.Blob getBlob( java.lang.String columnName ) throws
java.sql.SQLException

– Description
Returns the value of the designated column in the current row of this ResultSet

object as a Blob object in the Java programming language.
– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a Blob object representing the SQL BLOB value in the specified
column

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getBoolean
public boolean getBoolean( int columnIndex ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a boolean in the Java programming language.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a boolean representation of the column value; if the value is SQL

NULL, the value returned is false

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a

conversion or database access error occurs

• getBoolean
public boolean getBoolean( java.lang.String columnName ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a boolean in the Java programming language.
– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a boolean representation of the column value; if the value is SQL
NULL, the value returned is false
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– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getByte
public byte getByte( int columnIndex ) throws java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a byte in the Java programming language.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a byte representation of the column value; if the value is SQL NULL,

the value returned is 0

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a

conversion or database access error occurs

• getByte
public byte getByte( java.lang.String columnName ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a byte in the Java programming language.
– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a byte representation of the column value; if the value is SQL NULL,
the value returned is 0

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getBytes
public byte[] getBytes( int columnIndex ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a byte array in the Java programming language. The bytes represent
the raw values returned by the driver.

– Parameters
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∗ columnIndex – an int which specifies the column. The first column is 1,
the second is 2, ...

– Returns – a byte array representation of the column value; if the value is SQL
NULL, the value returned is null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getBytes
public byte[] getBytes( java.lang.String columnName ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a byte array in the Java programming language. The bytes represent
the raw values returned by the driver.

– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a byte array representation of the column value; if the value is SQL
NULL, the value returned is null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getCharacterStream
public java.io.Reader getCharacterStream( int columnIndex ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a java.io.Reader object.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a java.io.Reader object that contains the column value; if the value

is SQL NULL, the value returned is null in the Java programming language.
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getCharacterStream
public java.io.Reader getCharacterStream( java.lang.String
columnName ) throws java.sql.SQLException
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– Description
Gets the value of the designated column in the current row of this ResultSet

object as a java.io.Reader object.
– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a java.io.Reader object that contains the column value; if the value
is SQL NULL, the value returned is null in the Java programming language

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getClob
public java.sql.Clob getClob( int columnIndex ) throws
java.sql.SQLException

– Description
Returns the value of the designated column in the current row of this ResultSet

object as a Clob object in the Java programming language.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a Clob object representing an SQL Clob value in the specified

column
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getClob
public java.sql.Clob getClob( java.lang.String columnName ) throws
java.sql.SQLException

– Description
Returns the value of the designated column in the current row of this ResultSet

object as a Clob object in the Java programming language.
– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a Clob object representing the SQL CLOB value in the specified
column

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs
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• getColumnClass
public java.lang.Class getColumnClass( int columnIndex ) throws
java.sql.SQLException

– Description
Returns the class of the items in the specified column. The default
implementation returns the Class set using getColumnClass. If no class type is
set the default implementation returns Object.class.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a Class object used to specify the class of the data in the column
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getColumnCount
public abstract int getColumnCount( ) throws java.sql.SQLException

– Description
Returns the number of columns in this ResultSet object.

– Returns – an int which specifies the number of columns
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getConcurrency
public int getConcurrency( ) throws java.sql.SQLException

– Description
Returns the concurrency mode of this ResultSet object.

– Returns – an int which specifies whether concurrency is read only or for
update processes as well. Always returns CONCUR READ ONLY.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getCursorName
public java.lang.String getCursorName( ) throws
java.sql.SQLException

– Description
Gets the name of the SQL cursor used by this ResultSet object. The default
implementation throws a SQLException.
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– Returns – a String which specifies the SQL name for this ResultSet object’s
cursor.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• getDate
public java.sql.Date getDate( int columnIndex ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a java.sql.Date object in the Java programming language.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a java.sql.Date representation of the column value; if the value is

SQL NULL, the value returned is null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a

conversion or database access error occurs

• getDate
public java.sql.Date getDate( int columnIndex, java.util.Calendar cal
) throws java.sql.SQLException

– Description
Returns the value of the designated column in the current row of this ResultSet

object as a java.sql.Date object in the Java programming language. This
method uses the given calendar to construct an appropriate millisecond value
for the date if the underlying database does not store timezone information.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ cal – the java.util.Calendar object to use in constructing the date

– Returns – the column value as a java.sql.Date object; if the value is SQL
NULL, the value returned is null in the Java programming language

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getDate
public java.sql.Date getDate( java.lang.String columnName ) throws
java.sql.SQLException
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– Description
Gets the value of the designated column in the current row of this ResultSet

object as a java.sql.Date object in the Java programming language.
– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a java.sql.Date representation of the column value; if the value is
SQL NULL, the value returned is null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getDate
public java.sql.Date getDate( java.lang.String columnName,
java.util.Calendar cal ) throws java.sql.SQLException

– Description
Returns the value of the designated column in the current row of this ResultSet

object as a java.sql.Date object in the Java programming language. This
method uses the given calendar to construct an appropriate millisecond value
for the date if the underlying database does not store timezone information.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ cal – the java.util.Calendar object to use in constructing the date

– Returns – the column value as a java.sql.Date object; if the value is SQL
NULL, the value returned is null in the Java programming language

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getDouble
public double getDouble( int columnIndex ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a double in the Java programming language.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a double representation of the column value; if the value is SQL

NULL, the value returned is 0

– Throws
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∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a
conversion or database access error occurs

• getDouble
public double getDouble( java.lang.String columnName ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a double in the Java programming language.
– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a double representation of the column value; if the value is SQL
NULL, the value returned is 0

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getFetchDirection
public int getFetchDirection( ) throws java.sql.SQLException

– Description
Returns the fetch direction for this ResultSet object.

– Returns – an int which specifies the current fetch direction for this ResultSet

object. Always returns FETCH FORWARD.
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getFetchSize
public int getFetchSize( ) throws java.sql.SQLException

– Description
Returns the fetch size for this ResultSet object.

– Returns – an int which specifies the current fetch size for this ResultSet

object
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getFloat
public float getFloat( int columnIndex ) throws java.sql.SQLException
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– Description
Gets the value of the designated column in the current row of this ResultSet

object as a float in the Java programming language.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a float representation of the column value; if the value is SQL

NULL, the value returned is 0

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a

conversion or database access error occurs

• getFloat
public float getFloat( java.lang.String columnName ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a float in the Java programming language.
– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a float representation of the column value; if the value is SQL
NULL, the value returned is 0

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getInt
public int getInt( int columnIndex ) throws java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as an int in the Java programming language.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – an int representation of the column value; if the value is SQL NULL,

the value returned is 0

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a

conversion or database access error occurs
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• getInt
public int getInt( java.lang.String columnName ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as an int in the Java programming language.
– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a int representation of the column value; if the value is SQL NULL,
the value returned is 0

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getLong
public long getLong( int columnIndex ) throws java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a long in the Java programming language.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a long representation of the column value; if the value is SQL NULL,

the value returned is 0

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a

conversion or database access error occurs

• getLong
public long getLong( java.lang.String columnName ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a long in the Java programming language.
– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a long representation of the column value; if the value is SQL NULL,
the value returned is 0

– Throws
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∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database
access error occurs

• getMetaData
public java.sql.ResultSetMetaData getMetaData( ) throws
java.sql.SQLException

– Description
Retrieves the number, types and properties of this ResultSet object’s columns.

– Returns – a ResultSetMetaData which provides a description of this ResultSet

object’s columns
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getObject
public abstract java.lang.Object getObject( int columnIndex ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as an Object in the Java programming language.
This method will return the value of the given column as a Java object. The
type of the Java object will be the default Java object type corresponding to
the column’s SQL type, following the mapping for built-in types specified in the
JDBC specification.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a java.lang.Object representation of the column value
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getObject
public java.lang.Object getObject( int columnIndex, java.util.Map
map ) throws java.sql.SQLException

– Description
Returns the value of the designated column in the current row of this ResultSet

object as an Object in the Java programming language. This method uses the
given Map object for the custom mapping of the SQL structured or distinct type
that is being retrieved.
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– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ map – a java.util.Map object that contains the mapping from SQL type

names to classes in the Java programming language
– Returns – an Object in the Java programming language representing the SQL

value
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since this method has not been implimented

• getObject
public java.lang.Object getObject( java.lang.String columnName )
throws java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as an Object in the Java programming language.
This method will return the value of the given column as a Java object. The
type of the Java object will be the default Java object type corresponding to
the column’s SQL type, following the mapping for built-in types specified in the
JDBC specification.
This method may also be used to read datatabase-specific abstract data types.
In the JDBC 2.0 API, the behavior of the method getObject is extended to
materialize data of SQL user-defined types. When a column contains a
structured or distinct value, the behavior of this method is as if it were a call to:
getObject(columnIndex, this.getStatement().getConnection().getTypeMap()).

– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a java.lang.Object representation of the column value
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getObject
public java.lang.Object getObject( java.lang.String columnName,
java.util.Map map ) throws java.sql.SQLException

– Description
Returns the value of the designated column in the current row of this ResultSet

object as an Object in the Java programming language. This method uses the
specified Map object for custom mapping if appropriate.

– Parameters
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∗ columnName – a String which specifies the SQL name of the column
∗ map – a java.util.Map object that contains the mapping from SQL type

names to classes in the Java programming language
– Returns – an Object representing the SQL value in the specified column
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since this method is not implemented

• getRef
public java.sql.Ref getRef( int columnIndex ) throws
java.sql.SQLException

– Description
Returns the value of the designated column in the current row of this ResultSet

object as a Ref object in the Java programming language.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a Ref object representing the SQL REF value in the specified column
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since this method has not been implimented

• getRef
public java.sql.Ref getRef( java.lang.String columnName ) throws
java.sql.SQLException

– Description
Returns the value of the designated column in the current row of this ResultSet

object as a Ref object in the Java programming language.
– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a Ref object representing the SQL REF value in the specified column
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since this method is not implemented

• getRow
public int getRow( ) throws java.sql.SQLException

– Description
Retrieves the current row number. The first row is number 1, the second
number 2, and so on.
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– Returns – an int which specifies the current row number; 0 if there is no
current row

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getShort
public short getShort( int columnIndex ) throws java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a short in the Java programming language.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a short representation of the column value; if the value is SQL

NULL, the value returned is 0

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a

conversion or database access error occurs

• getShort
public short getShort( java.lang.String columnName ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a short in the Java programming language.
– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a short representation of the column value; if the value is SQL
NULL, the value returned is 0

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getStatement
public java.sql.Statement getStatement( ) throws
java.sql.SQLException

– Description
Returns the Statement object that produced this ResultSet object. Since there
is not statement, this method always throws an SQLException.
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– Returns – the Statment object that produced this ResultSet object or null if
the result set was produced some other way

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• getString
public java.lang.String getString( int columnIndex ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a String in the Java programming language.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a String representation of the column value; if the value is SQL

NULL, the value returned is null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getString
public java.lang.String getString( java.lang.String columnName )
throws java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a String in the Java programming language.
– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a String representation of the column value; if the value is SQL
NULL, the value returned is null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getTime
public java.sql.Time getTime( int columnIndex ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a java.sql.Time object in the Java programming language.
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– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a java.sql.Time representation of the column value; if the value is

SQL NULL, the value returned is null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a

conversion or database access error occurs

• getTime
public java.sql.Time getTime( int columnIndex, java.util.Calendar
cal ) throws java.sql.SQLException

– Description
Returns the value of the designated column in the current row of this ResultSet

object as a java.sql.Time object in the Java programming language. This
method uses the given calendar to construct an appropriate millisecond value
for the time if the underlying database does not store timezone information.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ cal – the java.util.Calendar object to use in constructing the time

– Returns – the column value as a java.sql.Time object; if the value is SQL
NULL, the value returned is null in the Java programming language

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getTime
public java.sql.Time getTime( java.lang.String columnName ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a java.sql.Time object in the Java programming language.
– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a java.sql.Time representation of the column value; if the value is
SQL NULL, the value returned is null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs
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• getTime
public java.sql.Time getTime( java.lang.String columnName,
java.util.Calendar cal ) throws java.sql.SQLException

– Description
Returns the value of the designated column in the current row of this ResultSet

object as a java.sql.Time object in the Java programming language. This
method uses the given calendar to construct an appropriate millisecond value
for the time if the underlying database does not store timezone information.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ cal – the java.util.Calendar object to use in constructing the time

– Returns – the column value as a java.sql.Time object; if the value is SQL
NULL, the value returned is null in the Java programming language

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getTimestamp
public java.sql.Timestamp getTimestamp( int columnIndex ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a java.sql.Timestamp object in the Java programming language.
– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a java.sql.Timestamp representation of the column value; if the

value is SQL NULL, the value returned is null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a

conversion or database access error occurs

• getTimestamp
public java.sql.Timestamp getTimestamp( int columnIndex,
java.util.Calendar cal ) throws java.sql.SQLException

– Description
Returns the value of the designated column in the current row of this ResultSet

object as a java.sql.Timestamp object in the Java programming language. This
method uses the given calendar to construct an appropriate millisecond value
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for the timestamp if the underlying database does not store timezone
information.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ cal – the java.util.Calendar object to use in constructing the timestamp

– Returns – the column value as a java.sql.Timestamp object; if the value is
SQL NULL, the value returned is null in the Java programming language

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getTimestamp
public java.sql.Timestamp getTimestamp( java.lang.String
columnName ) throws java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a java.sql.Timestamp object.
– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a java.sql.Timestamp representation of the column value; if the
value is SQL NULL, the value returned is null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getTimestamp
public java.sql.Timestamp getTimestamp( java.lang.String
columnName, java.util.Calendar cal ) throws java.sql.SQLException

– Description
Returns the value of the designated column in the current row of this ResultSet

object as a java.sql.Timestamp object in the Java programming language. This
method uses the given calendar to construct an appropriate millisecond value
for the timestamp if the underlying database does not store timezone
information.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ cal – the java.util.Calendar object to use in constructing the timestamp

– Returns – the column value as a java.sql.Timestamp object; if the value is
SQL NULL, the value returned is null in the Java programming language
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– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getType
public int getType( ) throws java.sql.SQLException

– Description
Returns the type of this ResultSet object. The type is determined by the
Statement object hat created the result set.

– Returns – an int which specifies the type of this ResultSet object. Always
returns TYPE FORWARD ONLY.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getUnicodeStream
public java.io.InputStream getUnicodeStream( int columnIndex )
throws java.sql.SQLException

Deprecated

use getCharacterStream in place of getUnicodeStream

– Description
Gets the value of the designated column in the current row of this ResultSet

object as as a stream of Unicode characters. The value can then be read in
chunks from the stream. This method is particularly suitable for retrieving
large LONGVARCHAR values. The JDBC driver will do any necessary conversion
from the database format into Unicode. The byte format of the Unicode stream
must be Java UTF-8, as specified in the Java virtual machine specification.
Note: All the data in the returned stream must be read prior to getting the
value of any other column. The next call to a getType method implicitly closes
the stream. Also, a stream may return 0 when the method
InputStream.available is called whether there is data available or not.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a java.io.InputStream that delivers the database column value as a

stream in Java UTF-8 byte format; if the value is SQL NULL, the value returned
is null

– Throws
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∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database
access error occurs

• getUnicodeStream
public java.io.InputStream getUnicodeStream( java.lang.String
columnName ) throws java.sql.SQLException

Deprecated

– Description
Gets the value of the designated column in the current row of this ResultSet

object as a stream of Unicode characters. The value can then be read in chunks
from the stream. This method is particularly suitable for retrieving large
LONGVARCHAR values. The JDBC driver will do any necessary conversion from
the database format into Unicode. The byte format of the Unicode stream
must be Java UTF-8, as defined in the Java virtual machine specification.
Note: All the data in the returned stream must be read prior to getting the
value of any other column. The next call to a getType method implicitly closes
the stream. Also, a stream may return 0 when the method available is called
whether there is data available or not.

– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a java.io.InputStream that delivers the database column value as a
stream of two-byte Unicode characters. If the value is SQL NULL, the value
returned is null.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getURL
public java.net.URL getURL( int columnIndex ) throws
java.sql.SQLException

– Description
Retrieves the value of the designated column in the current row of this
ResultSet object as a java.net.URL object.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Returns – a java.net.URL object that contains the column value; if the value

is SQL NULL, the value returned is null in the Java programming language
– Throws
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∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a
conversion or database access error occurs

• getURL
public java.net.URL getURL( java.lang.String columnName ) throws
java.sql.SQLException

– Description
Retrieves the value of the designated column in the current row of this
ResultSet object as a java.net.URL object.

– Parameters
∗ columnName – a String which specifies the SQL name of the column

– Returns – a java.net.URL object that contains the column value; if the value
is SQL NULL, the value returned is null in the Java programming language

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• getWarnings
public java.sql.SQLWarning getWarnings( ) throws
java.sql.SQLException

– Description
Returns the first warning reported by calls on this ResultSet object.
Subsequent warnings on this ResultSet object will be chained to the
SQLWarning object that this method returns.
The warning chain is automatically cleared each time a new row is read.
Note: This warning chain only covers warnings caused by ResultSet methods.
Any warning caused by Statement methods (such as reading OUT parameters)
will be chained on the Statement object.

– Returns – the first SQLWarning object reported or null

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• insertRow
public void insertRow( ) throws java.sql.SQLException

– Description
Inserts the contents of the insert row into this ResultSet object and into the
database. Since updates are not allowed, this method always throws an
SQLException.

– Throws
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∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always
thrown since updates are not allowed

• isAfterLast
public boolean isAfterLast( ) throws java.sql.SQLException

– Description
Indicates whether the cursor is after the last row in this ResultSet object.

– Returns – a boolean whose value is true if the cursor is after the last row;
false if the cursor is at any other position or the ResultSet contains no rows

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• isBeforeFirst
public boolean isBeforeFirst( ) throws java.sql.SQLException

– Description
Indicates whether the cursor is before the first row in this ResultSet object.

– Returns – a boolean whose value is true if the cursor is before the first row;
false if the cursor is at any other position or the ResultSet contains no rows

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• isFirst
public boolean isFirst( ) throws java.sql.SQLException

– Description
Indicates whether the cursor is on the first row of this ResultSet object.

– Returns – a boolean whose value is true if the cursor is on the first row; false
otherwise

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• isLast
public boolean isLast( ) throws java.sql.SQLException

– Description
Indicates whether the cursor is on the last row of this ResultSet object. Note:
Calling the method isLast may be expensive because the JDBC driver might
need to fetch ahead one row in order to determine whether the current row is
the last row in the result set.
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– Returns – a boolean whose value is true if the cursor is on the last row; false
otherwise

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• last
public boolean last( ) throws java.sql.SQLException

– Description
Moves the cursor to the last row in this ResultSet object.

– Returns – a boolean whose value is true if the cursor is on the result set;
false otherwise

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since this method has not been implemented

• moveToCurrentRow
public void moveToCurrentRow( ) throws java.sql.SQLException

– Description
Moves the cursor to the remembered cursor position, usually the current row.
Since updates are not allowed, this method always throws an SQLException.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• moveToInsertRow
public void moveToInsertRow( ) throws java.sql.SQLException

– Description
Moves the cursor to the insert row. Since updates are not allowed, this method
always throws an SQLException.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• next
public boolean next( ) throws java.sql.SQLException

– Description
Moves the cursor down one row from its current position. A ResultSet cursor is
initially positioned before the first row; the first call to the method next makes
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the first row the current row; the second call makes the second row the current
row, and so on.
If an input stream is open for the current row, a call to the method next will
implicitly close it. A ResultSet object’s warning chain is cleared when a new
row is read.

– Returns – a boolean, true if the new current row is valid; false if there are no
more rows

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• previous
public boolean previous( ) throws java.sql.SQLException

– Description
Moves the cursor to the previous row in this ResultSet object.

– Returns – a boolean whose value is true if the cursor is on the result set;
false otherwise

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since only forward operations are allowed

• refreshRow
public void refreshRow( ) throws java.sql.SQLException

– Description
Refreshes the current row with its most recent value in the database. Since
updates are not allowed, this method always throws an SQLException.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• relative
public boolean relative( int rows ) throws java.sql.SQLException

– Description
Moves the cursor a relative number of rows, either positive or negative.

– Parameters
∗ rows – an int which specifies the number of rows in the ResultSet object

to advance or regress
– Returns – a boolean whose value is true if the cursor is on the result set;

false otherwise
– Throws
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∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always
thrown since only forward operations are allowed

• rowDeleted
public boolean rowDeleted( ) throws java.sql.SQLException

– Description
Indicates whether a row has been deleted. Since updates are not allowed, this
always returns false.

– Returns – a boolean which indicates whether a row has been deleted. Always
returns false since updates are not allowed.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• rowInserted
public boolean rowInserted( ) throws java.sql.SQLException

– Description
Indicates whether the current row has had an insertion. Since updates are not
allowed, this always returns false.

– Returns – a boolean which indicates whether the current row had an insertion.
Always returns false since updates are not allowed.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• rowUpdated
public boolean rowUpdated( ) throws java.sql.SQLException

– Description
Indicates whether the current row has been updated. Since updates are not
allowed, this always returns false.

– Returns – a boolean which indicates whether a row has been updated. Always
returns false since updates are not allowed.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

• setColumnClass
protected void setColumnClass( int columnIndex, java.lang.Class
columnClass )
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– Description
Sets a column class.

– Parameters
∗ columnIndex – an int specifying the index of a column
∗ columnClass – a Class object used to specify the class of the data in the

column

• setColumnName
protected void setColumnName( int columnIndex, java.lang.String
columnName )

– Description
Sets a column name. A subclass can define its own mechanism for naming
columns. An alternate mechanism would require overriding the methods
findColumn and findColumnName.

– Parameters
∗ columnIndex – an int specifying the column index of the column to be

named
∗ columnName – a String specifying the name of the column

• setFetchDirection
public void setFetchDirection( int direction ) throws
java.sql.SQLException

– Description
Gives a hint as to the direction in which the rows in this ResultSet object will
be processed.

– Parameters
∗ direction – an int which specifies the expected direction this ResultSet

object is to be processed
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if the fetch

direction is not FETCH FORWARD

• setFetchSize
public void setFetchSize( int rows ) throws java.sql.SQLException

– Description
Gives the JDBC driver a hint as to the number of rows that should be fetched
from the database when more rows are needed for this ResultSet object. If the
fetch size specified is zero, the JDBC driver ignores the value and is free to
make its own best guess as to what the fetch size should be. The default value
is set by the Statement object that created the result set. The fetch size may be
changed at any time.
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– Parameters
∗ rows – an int which specifies the number of rows to fetch

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs or the condition 0 = rows = this.getMaxRows() is not
satisfied

• setWarning
protected void setWarning( java.sql.SQLWarning warning )

– Description
Sets a SQLWarning.

– Parameters
∗ warning – a SQLWarning that is to be added to this object.

• updateArray
public void updateArray( int column, java.sql.Array x ) throws
java.sql.SQLException

– Description
Updates the designated column with an Array value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ column – an int which specifies the column. The first column is 1, the

second is 2, ...
∗ x – a java.sql.Array which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateArray
public void updateArray( java.lang.String columnName,
java.sql.Array x ) throws java.sql.SQLException

– Description
Updates the designated column with an Array value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – a java.sql.Array which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed
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• updateAsciiStream
public void updateAsciiStream( int columnIndex, java.io.InputStream
x, int length ) throws java.sql.SQLException

– Description
Updates the designated column with an ascii stream value. Since updates are
not allowed, this method always throws an SQLException.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ x – a InputStream which specifies the new column value
∗ length – an int which specifies the stream length

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateAsciiStream
public void updateAsciiStream( java.lang.String columnName,
java.io.InputStream x, int length ) throws java.sql.SQLException

– Description
Updates the designated column with an ascii stream value. Since updates are
not allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – a InputStream which specifies the new column value
∗ length – an int which specifies the stream length

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateBigDecimal
public void updateBigDecimal( int columnIndex, java.math.BigDecimal
x ) throws java.sql.SQLException

– Description
Updates the designated column with a java.math.BigDecimal value. Since
updates are not allowed, this method always throws an SQLException.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ x – a java.math.BigDecimal which specifies the new column value
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– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateBigDecimal
public void updateBigDecimal( java.lang.String columnName,
java.math.BigDecimal x ) throws java.sql.SQLException

– Description
Updates the designated column with a java.sql.BigDecimal value. Since
updates are not allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – a java.sql.BigDecimal which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateBinaryStream
public void updateBinaryStream( int columnIndex,
java.io.InputStream x, int length ) throws java.sql.SQLException

– Description
Updates the designated column with a binary stream value. Since updates are
not allowed, this method always throws an SQLException.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ x – a InputStream which specifies the new column value
∗ length – an int which specifies the stream length

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateBinaryStream
public void updateBinaryStream( java.lang.String columnName,
java.io.InputStream x, int length ) throws java.sql.SQLException

– Description
Updates the designated column with a binary stream value. Since updates are
not allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – a InputStream which specifies the new column value
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∗ length – an int which specifies the stream length
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateBlob
public void updateBlob( int column, java.sql.Blob x ) throws
java.sql.SQLException

– Description
Updates the designated column with an java.sql.Blob value. Since updates are
not allowed, this method always throws an SQLException.

– Parameters
∗ column – an int which specifies the column. The first column is 1, the

second is 2, ...
∗ x – a java.sql.Blob which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateBlob
public void updateBlob( java.lang.String columnName, java.sql.Blob
x ) throws java.sql.SQLException

– Description
Updates the designated column with an java.sql.Blob value. Since updates are
not allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – a java.sql.Blob which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateBoolean
public void updateBoolean( int columnIndex, boolean x ) throws
java.sql.SQLException

– Description
Updates the designated column with a boolean value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
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∗ x – a boolean which specifies the new column value
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateBoolean
public void updateBoolean( java.lang.String columnName, boolean x
) throws java.sql.SQLException

– Description
Updates the designated column with a boolean value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – a boolean which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateByte
public void updateByte( int columnIndex, byte x ) throws
java.sql.SQLException

– Description
Updates the designated column with a byte value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ x – a byte which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateByte
public void updateByte( java.lang.String columnName, byte x )
throws java.sql.SQLException

– Description
Updates the designated column with a byte value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
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∗ x – a byte which specifies the new column value
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateBytes
public void updateBytes( int columnIndex, byte[] x ) throws
java.sql.SQLException

– Description
Updates the designated column with a byte array value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ x – a byte which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateBytes
public void updateBytes( java.lang.String columnName, byte[] x )
throws java.sql.SQLException

– Description
Updates the designated column with a byte value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – a byte which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateCharacterStream
public void updateCharacterStream( int columnIndex, java.io.Reader
x, int length ) throws java.sql.SQLException

– Description
Updates the designated column with a character stream value. Since updates
are not allowed, this method always throws an SQLException.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
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∗ x – a Reader which specifies the new column value
∗ length – an int which specifies the stream length

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateCharacterStream
public void updateCharacterStream( java.lang.String columnName,
java.io.Reader reader, int length ) throws java.sql.SQLException

– Description
Updates the designated column with a character stream value. Since updates
are not allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ reader – a Reader which specifies the new column value
∗ length – an int which specifies the stream length

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateClob
public void updateClob( int column, java.sql.Clob x ) throws
java.sql.SQLException

– Description
Updates the designated column with an java.sql.Clob value. Since updates are
not allowed, this method always throws an SQLException.

– Parameters
∗ column – an int which specifies the column. The first column is 1, the

second is 2, ...
∗ x – a java.sql.Clob which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateClob
public void updateClob( java.lang.String columnName, java.sql.Clob
x ) throws java.sql.SQLException

– Description
Updates the designated column with an java.sql.Clob value. Since updates are
not allowed, this method always throws an SQLException.

– Parameters
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∗ columnName – a String which specifies the SQL name of the column
∗ x – a java.sql.Clob which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateDate
public void updateDate( int columnIndex, java.sql.Date x ) throws
java.sql.SQLException

– Description
Updates the designated column with a java.sql.Date value. Since updates are
not allowed, this method always throws an SQLException.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ x – a java.sql.Date which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateDate
public void updateDate( java.lang.String columnName, java.sql.Date
x ) throws java.sql.SQLException

– Description
Updates the designated column with a java.sql.Date value. Since updates are
not allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – a java.sql.Date which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateDouble
public void updateDouble( int columnIndex, double x ) throws
java.sql.SQLException

– Description
Updates the designated column with a double value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
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∗ columnIndex – an int which specifies the column. The first column is 1,
the second is 2, ...
∗ x – a double which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateDouble
public void updateDouble( java.lang.String columnName, double x )
throws java.sql.SQLException

– Description
Updates the designated column with a double value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – a double which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateFloat
public void updateFloat( int columnIndex, float x ) throws
java.sql.SQLException

– Description
Updates the designated column with a float value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ x – a float which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateFloat
public void updateFloat( java.lang.String columnName, float x )
throws java.sql.SQLException

– Description
Updates the designated column with a float value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
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∗ columnName – a String which specifies the SQL name of the column
∗ x – a float which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateInt
public void updateInt( int columnIndex, int x ) throws
java.sql.SQLException

– Description
Updates the designated column with an int value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ x – an int which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateInt
public void updateInt( java.lang.String columnName, int x ) throws
java.sql.SQLException

– Description
Updates the designated column with an int value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – an int which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateLong
public void updateLong( int columnIndex, long x ) throws
java.sql.SQLException

– Description
Updates the designated column with a long value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
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∗ columnIndex – an int which specifies the column. The first column is 1,
the second is 2, ...
∗ x – a long which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateLong
public void updateLong( java.lang.String columnName, long x )
throws java.sql.SQLException

– Description
Updates the designated column with a long value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – a long which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateNull
public void updateNull( int columnIndex ) throws
java.sql.SQLException

– Description
Gives a nullable column a null value. Since updates are not allowed, this
method always throws an SQLException.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateNull
public void updateNull( java.lang.String columnName ) throws
java.sql.SQLException

– Description
Updates the designated column with a null value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
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∗ columnName – a String which specifies the SQL name of the column
– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateObject
public void updateObject( int columnIndex, java.lang.Object x )
throws java.sql.SQLException

– Description
Updates the designated column with an Object value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ x – an Object which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateObject
public void updateObject( int columnIndex, java.lang.Object x, int
scale ) throws java.sql.SQLException

– Description
Updates the designated column with an Object value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ x – an Object which specifies the new column value
∗ scale – for java.sql.Types.DECIMAL or java.sql.Types.NUMERIC types, this

is the number of digits after the decimal point. For all other types this
value will be ignored.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateObject
public void updateObject( java.lang.String columnName,
java.lang.Object x ) throws java.sql.SQLException

– Description
Updates the designated column with an Object value. Since updates are not
allowed, this method always throws an SQLException.
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– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – a java.sql.Object which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateObject
public void updateObject( java.lang.String columnName,
java.lang.Object x, int scale ) throws java.sql.SQLException

– Description
Updates the designated column with an Object value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – an Object which specifies the new column value
∗ scale – for java.sql.Types.DECIMAL or java.sql.Types.NUMERIC types, this

is the number of digits after the decimal point. For all other types this
value will be ignored.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateRef
public void updateRef( int column, java.sql.Ref x ) throws
java.sql.SQLException

– Description
Updates the designated column with an java.sql.Ref value. Since updates are
not allowed, this method always throws an SQLException.

– Parameters
∗ column – an int which specifies the column. The first column is 1, the

second is 2, ...
∗ x – a java.sql.Ref which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateRef
public void updateRef( java.lang.String columnName, java.sql.Ref x
) throws java.sql.SQLException
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– Description
Updates the designated column with an java.sql.Ref value. Since updates are
not allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – a java.sql.Ref which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateRow
public void updateRow( ) throws java.sql.SQLException

– Description
Updates the underlying database with the new contents of the current row of
this ResultSet object. Since updates are not allowed, this method always
throws an SQLException.

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateShort
public void updateShort( int columnIndex, short x ) throws
java.sql.SQLException

– Description
Updates the designated column with a short value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ x – a short which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateShort
public void updateShort( java.lang.String columnName, short x )
throws java.sql.SQLException

– Description
Updates the designated column with a short value. Since updates are not
allowed, this method always throws an SQLException.
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– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – a short which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateString
public void updateString( int columnIndex, java.lang.String x )
throws java.sql.SQLException

– Description
Updates the designated column with a String value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ x – a String which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateString
public void updateString( java.lang.String columnName,
java.lang.String x ) throws java.sql.SQLException

– Description
Updates the designated column with a String value. Since updates are not
allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – a String which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateTime
public void updateTime( int columnIndex, java.sql.Time x ) throws
java.sql.SQLException

– Description
Updates the designated column with a java.sql.Time value. Since updates are
not allowed, this method always throws an SQLException.
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– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ x – a java.sql.Time which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateTime
public void updateTime( java.lang.String columnName, java.sql.Time
x ) throws java.sql.SQLException

– Description
Updates the designated column with a java.sql.Time value. Since updates are
not allowed, this method always throws an SQLException.

– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – a java.sql.Time which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateTimestamp
public void updateTimestamp( int columnIndex, java.sql.Timestamp x
) throws java.sql.SQLException

– Description
Updates the designated column with a java.sql.Timestamp value. Since
updates are not allowed, this method always throws an SQLException.

– Parameters
∗ columnIndex – an int which specifies the column. The first column is 1,

the second is 2, ...
∗ x – a java.sql.Timestamp which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• updateTimestamp
public void updateTimestamp( java.lang.String columnName,
java.sql.Timestamp x ) throws java.sql.SQLException

– Description
Updates the designated column with a java.sql.Timestamp value. Since
updates are not allowed, this method always throws an SQLException.
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– Parameters
∗ columnName – a String which specifies the SQL name of the column
∗ x – a java.sql.Timestamp which specifies the new column value

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – is always

thrown since updates are not allowed

• wasNull
public boolean wasNull( ) throws java.sql.SQLException

– Description
Reports whether the last column read had a value of SQL NULL. Note that you
must first call one of the getType methods on a column to try to read its value
and then call the method wasNull to see if the value read was SQL NULL.

– Returns – a boolean, true if the last column value read was SQL NULL and
false otherwise

– Throws
∗ com.imsl.io.AbstractFlatFile.FlatFileSQLException – if a database

access error occurs

class FlatFile

Reads a text file as a ResultSet.

FlatFile extends AbstractFlatFile to handle text flat files.

As the file is read, it is split into lines using the readLine method. Each line is then split
into tokens using a Tokenizer. Finally, each token string is converted into an Object using
a Parser.

Parser is an interface defined within this class for converting a String into an Object.
Parser objects for standard types are defined as static members of this class. By default,
for each column its class is used to select one of these predefined parsers to parse that
column.

Declaration

public class com.imsl.io.FlatFile
extends com.imsl.io.AbstractFlatFile (page 771)
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Inner Class

interface FlatFile.Parser

Defines a method that parses a String into an Object.

Declaration

public static interface com.imsl.io.FlatFile.Parser

Method

• parse
java.lang.Object parse( java.lang.String input ) throws
java.sql.SQLException

– Description
Parse a String into an Object.

– Parameters
∗ input – is the String to be parsed.

– Returns – the value of the String as an Object.

Fields

• public static final FlatFile.Parser PARSE BYTE

– Implements a Parser that converts a String to a Byte.

• public static final FlatFile.Parser PARSE SHORT

– Implements a Parser that converts a String to a Short.

• public static final FlatFile.Parser PARSE INTEGER

– Implements a Parser that converts a String to a Integer.

• public static final FlatFile.Parser PARSE LONG

– Implements a Parser that converts a String to a Long.

• public static final FlatFile.Parser PARSE FLOAT
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– Implements a Parser that converts a String to a Float.

• public static final FlatFile.Parser PARSE DOUBLE

– Implements a Parser that converts a String to a Double.

Constructors

• FlatFile
public FlatFile( java.io.BufferedReader reader ) throws
java.io.IOException

– Description
Creates a FlatFile with the CSV tokenizer. The CSV Tokenizer is for reading
comma separated value files.

– Parameters
∗ reader – is the stream to be read.

• FlatFile
public FlatFile( java.io.BufferedReader reader, Tokenizer tokenizer )
throws java.io.IOException

– Description
Creates a FlatFile from a BufferedReader.

– Parameters
∗ reader – is the stream to be read.
∗ tokenizer – splits a text line into tokens, one per column.

• FlatFile
public FlatFile( java.lang.String filename ) throws java.io.IOException

– Description
Creates a FlatFile from a CSV file. A CSV file is a comma separated value file.

– Parameters
∗ filename – is the name of the file to be read.

• FlatFile
public FlatFile( java.lang.String filename, Tokenizer tokenizer )
throws java.io.IOException

– Description
Creates a FlatFile from a file with the default tokenizer.
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– Parameters
∗ filename – is the name of the file to be read.
∗ tokenizer – is the Tokenizer used to split lines into token strings.

Methods

• doGetBytes
protected byte[] doGetBytes( int columnIndex ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row as a byte array.

– Parameters
∗ columnIndex – the first column is 1, the second is 2, ...

– Returns – the column value; if the value is SQL NULL, the value returned is
null

– Throws
∗ java.sql.SQLException – if a database access error occurs

• doNext
protected boolean doNext( ) throws java.sql.SQLException

– Description
Moves the cursor down one row from its current position. A ResultSet cursor is
initially positioned before the first row; the first call to the method next makes
the first row the current row; the second call makes the second row the current
row, and so on.

– Returns – true if the new current row is valid; false if there are no more rows
– Throws
∗ java.sql.SQLException – if a database access error occurs

• getColumnCount
public int getColumnCount( ) throws java.sql.SQLException

– Description
Returns the number of columns in this ResultSet object.

– Returns – the number of columns
– Throws
∗ java.sql.SQLException – if a database access error occurs
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• getObject
public java.lang.Object getObject( int columnIndex ) throws
java.sql.SQLException

– Description
Gets the value of the designated column in the current row of this ResultSet

object as an Object in the Java programming language.
This method will return the value of the given column as a Java object. The
type of the Java object will be the default Java object type corresponding to
the column’s SQL type, following the mapping for built-in types specified in the
JDBC specification.
This method may also be used to read datatabase-specific abstract data types.
In the JDBC 2.0 API, the behavior of method getObject is extended to
materialize data of SQL user-defined types. When a column contains a
structured or distinct value, the behavior of this method is as if it were a call to:
getObject(columnIndex, this.getStatement().getConnection().getTypeMap()).

– Parameters
∗ columnIndex – the first column is 1, the second is 2, ...

– Returns – a java.lang.Object holding the column value
– Throws
∗ java.sql.SQLException – if a database access error occurs

• readLine
protected java.lang.String readLine( ) throws java.io.IOException

– Description
Reads and returns a line from the input.

• setColumnClass
protected void setColumnClass( int columnIndex, java.lang.Class
columnClass )

– Description copied from AbstractFlatFile (page 771)
Sets a column class.

– Parameters
∗ columnIndex – an int specifying the index of a column
∗ columnClass – a Class object used to specify the class of the data in the

column

• setColumnParser
protected void setColumnParser( int columnIndex, FlatFile.Parser
columnParser )
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– Description
Sets the Parser for the specified column.

– Parameters
∗ columnIndex – the column index of the column
∗ columnParser – is the Parser to be used to parse entries in the specified

column.

• setDateColumnParser
protected void setDateColumnParser( int columnIndex,
java.lang.String pattern, java.util.Locale locale )

– Description
Creates for a pattern string and sets the Parser for the specified column.

– Parameters
∗ pattern – is used to construct a java.text.SimpleDateFormat object used

to parse the column.
∗ locale – is the Locale for the date format Parser.

Example: Fisher Iris Data Set

The Fisher iris data set is frequently used as a sample statistical data set. This example
reads the data set in a CVS (comma separated value) format.

The first few lines of the data set are as follows:
Species,Sepal Length,Sepal Width,Petal Length,Petal Width

1.0, 5.1, 3.5, 1.4, .2

1.0, 4.9, 3.0, 1.4, .2

1.0, 4.7, 3.2, 1.3, .2

1.0, 4.6, 3.1, 1.5, .2

1.0, 5.0, 3.6, 1.4, .2

1.0, 5.4, 3.9, 1.7, .4

The first line contains the column names, with a comma as the separator. The rest of the
lines contain double data, one observation per line, with comma as a separator.

The class FlatFileEx1 extends com.imsl.io.FlatFile . The FlatFileEx1 constructor
constructs a BufferedReader object and calls the com.imsl.io.FlatFile constructor. It
then reads the line containing the column names. The column names are parsed and used
to set the column names in com.imsl.io.FlatFile. All of the columns are also set to type
Double.

The class FlatFileEx1 is used in the method main. The data set is assumed to be in a file
called “FisherIris.csv” in the same location as the example class file, so the
getResourceAsStream can be used to open the file as a stream. A com.imsl.stat.Summary is

828 • FlatFile JMSL



created and used to compute statistics for the “Sepal Width” column.
import com.imsl.io.FlatFile;

import com.imsl.stat.Summary;

import java.io.*;

import java.sql.SQLException;

import java.util.StringTokenizer;

public class FlatFileEx1 extends FlatFile {
public FlatFileEx1(InputStream is) throws IOException {

super(new BufferedReader(new InputStreamReader(is)));

String line = readLine();

StringTokenizer st = new StringTokenizer(line, ",");

for (int j = 0; st.hasMoreTokens(); j++) {
setColumnName(j+1, st.nextToken().trim());

setColumnClass(j, Double.class);

}
}

public static void main(String[] args) throws SQLException, IOException {
InputStream is = FlatFileEx1.class.getResourceAsStream("FisherIris.csv");

FlatFileEx1 iris = new FlatFileEx1(is);

Summary summary = new Summary();

while (iris.next()) {
summary.update(iris.getDouble("Sepal Width"));

}

System.out.println("Sepal Width mean " + summary.getMean());

System.out.println("Sepal Width variance " + summary.getVariance());

}
}

Output

Sepal Width mean 3.057333333333334

Sepal Width variance 0.18871288888888907
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Example: Space Separated Data

This example reads a set of stock prices in a space separated form.

The first few lines of the data set are as follows:
Date Open High Low Close Volume

28-Apr-03 3.3 3.34 3.27 3.33 37224400

25-Apr-03 3.35 3.38 3.25 3.26 57117400

24-Apr-03 3.32 3.40 3.30 3.38 47019800

23-Apr-03 3.34 3.44 3.30 3.37 63243800

22-Apr-03 3.24 3.38 3.22 3.36 67392500

The first line contains the column names, with a comma as the separator. The rest of the
lines contain data, one day per line. The first column is Date data and the last column is
int data. All of the rest is double data. The data’s class is set for each column. The
parser is explicitly set for the date column, because it cannot be guessed by FlatFile. The
date’s locale is set to US, so that the example will work with a different default locale.

A Tokenizer is created and used that counts multiple separators (spaces) as one separator.

The class FlatFileEx2 extends com.imsl.io.FlatFile. The FlatFileEx2 constructor reads
the line containing the column names, parses the names, and sets the column names.

The class FlatFileEx2 is used in the method main. The data set is assumed to be in a file
called “SUNW.txt” in the same location as the example class file, so the
getResourceAsStream method can be used to open the file as a stream. Some of the
columns are printed out for each stock price.
import com.imsl.io.*;

import java.text.DateFormat;

import java.io.*;

import java.sql.SQLException;

import java.util.StringTokenizer;

import java.sql.Date;

public class FlatFileEx2 extends FlatFile {
static DateFormat dateFormat = DateFormat.getDateInstance();

public FlatFileEx2(BufferedReader br, Tokenizer tokenizer) throws IOException {
super(br, tokenizer);
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String line = readLine();

StringTokenizer st = new StringTokenizer(line, " ", false);

for (int j = 0; st.hasMoreTokens(); j++) {
setColumnName(j+1, st.nextToken().trim());

}
setColumnClass(1, Date.class); // Date

setDateColumnParser(1, "dd-MMM-yy", java.util.Locale.US);

setColumnClass(2, Double.class); // Open

setColumnClass(3, Double.class); // High

setColumnClass(4, Double.class); // Low

setColumnClass(5, Double.class); // Close

setColumnClass(6, Integer.class); // Volume

}

public static void main(String[] args) throws SQLException, IOException {
InputStream is = FlatFileEx2.class.getResourceAsStream("SUNW.txt");

BufferedReader br = new BufferedReader(new InputStreamReader(is));

Tokenizer tokenizer = new Tokenizer(" ", (char)0, true);

FlatFileEx2 reader = new FlatFileEx2(br, tokenizer);

while (reader.next()) {
Date date = reader.getDate("Date");

double close = reader.getDouble("Close");

int volume = reader.getInt("Volume");

System.out.println(dateFormat.format(date) + " " + close + " " + volume);

}
}

}

Output

Apr 28, 2003 3.33 37224400

Apr 25, 2003 3.26 57117400

Apr 24, 2003 3.38 47019800

Apr 23, 2003 3.37 63243800

Apr 22, 2003 3.36 67392500

Apr 21, 2003 3.28 58523800

Apr 17, 2003 3.24 101856900

Apr 16, 2003 3.32 54912900

Apr 15, 2003 3.35 33604200
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Apr 14, 2003 3.29 38851800

Apr 11, 2003 3.31 38424000

Apr 10, 2003 3.37 38608500

Apr 9, 2003 3.28 50669700

Apr 8, 2003 3.31 46106400

Apr 7, 2003 3.36 47462900

Apr 4, 2003 3.34 48689900

Apr 3, 2003 3.48 38304400

Apr 2, 2003 3.49 48510200

Apr 1, 2003 3.36 38823800

Mar 31, 2003 3.26 38949300

Mar 28, 2003 3.42 27186700

Mar 27, 2003 3.56 40054700

Mar 26, 2003 3.5 30952400

Mar 25, 2003 3.45 63787600

Mar 24, 2003 3.45 34645400

Mar 21, 2003 3.72 53745900

Mar 20, 2003 3.65 47358500

Mar 19, 2003 3.57 51280600

Mar 18, 2003 3.55 51727400

Mar 17, 2003 3.53 69296600

Mar 14, 2003 3.24 59278900

Mar 13, 2003 3.31 58360700

Mar 12, 2003 3.08 71790300

Mar 11, 2003 3.21 42498400

class Tokenizer

Breaks a line into tokens.

The Tokenizer divides a line into tokens separated by deliminators. There can be any
number of deliminators set. All of the deliminators are treated equally.

There can be at most one quote character set. If it is set then deliminators inside of a
quoted string are treated as part of the string and not as deliminators. The quotes are not
returned as part of the token. To escape a quote, repeat it.

Declaration

public class com.imsl.io.Tokenizer
extends java.lang.Object
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Constructor

• Tokenizer
public Tokenizer( java.lang.String deliminators, char quote, boolean
mergeMultipleDeliminators )

– Description
Creates a Tokenizer.

– Parameters
∗ deliminators – is a String containing the deliminator characters.
∗ quote – is a char containing the quote character. If 0 then quoting is

disabled.
∗ mergeMultipleDeliminators – is true if multiple consecutive deliminators

are to be treated as a single deliminator.

Methods

• countTokens
public int countTokens( )

– Description
Returns the number of times that the nextToken method can be called without
generating an exception.

• hasMoreTokens
public boolean hasMoreTokens( )

– Description
Returns true if a call to nextToken will not generate an exception.

• nextToken
public java.lang.String nextToken( )

– Description
Returns the next token.

– Returns – the next token.
– Throws
∗ java.util.NoSuchElementException – if there are no more tokens to be

returned.
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• parse
public void parse( java.lang.String line )

– Description
Sets the line to be tokenized. Any tokens left from the previous line are
discarded.

– Parameters
∗ line – is the line to be tokenized.
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Collection of finance functions.

Usage Notes

Users can perform financial computations by using pre-defined data types. Most of the
financial functions require one or more of the following:

• Date

• Number of payments per year

• A variable to indicate when payments are due

• Day count basis
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The Bond class provides constants to indicate the number of payments for each year.
Class member Meaning
Bond.ANNUAL One payment per year (Annual payment)
Bond.SEMIANNUAL Two payments per year (Semi-annual pay-

ment)
Bond.QUARTERLY Four payments per year (Quarterly pay-

ment)

The Finance class provides constants to indicate when payments are due.
Class member Meaning
Finance.AT END OF PERIOD Payments are due at the end of the period
Finance.AT BEGINNING OF PERIOD Payments are due at the beginning of the

period

The DayCountBasis class provides constants to indicate the type of day count basis. Day
count basis is the method for computing the number of days between two dates.
Class member Day count basis
DayCountBasis.BasisNASD US (NASD) 30/360
DayCountBasis.BasisActualActual Actual/Actual
DayCountBasis.BasisActual360 Actual/360
DayCountBasis.BasisActual365 Actual/365
DayCountBasis.Basis30e360 European 30/360

Additional Information

In preparing the finance and bond functions we incorporated standards used by SIA
Standard Securities Calculation Methods.

More detailed information on finance and bond functionality can be found in the following
manuals:

• SIA Standard Securities Calculation Methods 1993, vols. 1 and 2, Third Edition

• Microsoft Excel 5, Worksheet Function Reference.

interface BasisPart

Component of com.imsl.finance.DayCountBasis. The day count basis consists of a month
basis and a yearly basis. Each of these components implements this interface.
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Declaration

public interface com.imsl.finance.BasisPart

Methods

• daysBetween
int daysBetween( java.util.GregorianCalendar date1,
java.util.GregorianCalendar date2 )

– Description
Returns the number of days from date1 to date2.

– Parameters
∗ date1 – a GregorianCalendar which specifies the initial date
∗ date2 – a GregorianCalendar which specifies the final date

– Returns – an int indicating the number of days from date1 to date2.

• daysInPeriod
double daysInPeriod( java.util.GregorianCalendar date, int frequency
)

– Description
Returns the number of days in a coupon period.

– Parameters
∗ date – a GregorianCalendar which specifies the final date of the coupon

period
∗ frequency – is the number of coupon periods per year. This is typically 1,

2 or 4.
– Returns – an int which specifies the number of days in the coupon period

• getDaysInYear
int getDaysInYear( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity )

– Description
Returns the number of days in the year.

– Parameters
∗ settlement – a GregorianCalendar date which specifies the settlement date
∗ maturity – a GregorianCalendar date which specifies the maturity date

– Returns – an int which specifies the number of days in the year

Finance Bond • 837



class Bond

Collection of bond functions.

rate is an annualized rate of return based on the par value of the bills.

yield is an annualized rate based on the purchase price and reflects the actual yield to
maturity.

coupons are interest payments on a bond.

redemption is the amount a bond pays at maturity.

frequency is the number of times a year that a bond makes interest payments.

basis is the method used to calculate dates. For example, sometimes computations are
done assuming 360 days in a year.

issue is the day a bond is first sold.

settlement is the day a purchaser aquires a bond.

maturity is the day a bond’s principal is repaid.

Discount bonds, also called zero-coupon bonds, do not pay interest during the life of the
security, instead they sell at a discount to their value at maturity. The discount bond
methods all have settlement, maturity, basis and redemption as arguments. In the
following list these common arguments are omitted.

• price = pricedisc(rate)

• price = priceyield(yield)

• price = pricemat(issue, rate, yield)

• rate = disc(price)

• yield = yielddisc(price)

A related method is accrintm, which returns the interest that has accumulated on the
discount bond.

US Treasury bills are a special case of discount bonds. The basis is fixed for treasury bills
and the redemption value is assumed to be $100. So these functions have only settlement
and maturity as common arguments.

• price = tbillprice(rate)

• yield = tbillyield(price)

• yield = tbilleq(rate)
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Most bonds pay interest periodically. The interest paying bond methods all have
settlement, maturity, basis and frequency as arguments. Again supressing the common
arguments,

• price = price(rate, yield, redemption)

• yield = yield(rate, price, redemption)

• redemption = received(price, rate)

A related method is accrint, which returns the interest that has accumulated at settlement
from the previous coupon date.

In this diagram, the settlement date is shown as a hollow circle and the adjacent coupon
dates are shown as filled circles.

• coupppcd is the coupon date immediately prior to the settlement date.

• coupncd is the coupon date immediately after the settlement date.
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• coupdaybs is the number of days from the immediately prior coupon date to the
settlement date.

• coupdaysnc is the number of days from the settlement date to the next coupon date.

• coupdays is the number of days between these two coupon dates.

A related method is coupnum, which returns the number of coupons payable between
settlement and maturity.

Another related method is yearfrac, which returns the fraction of the year between two
days.

Duration is used to measure the sensitivity of a bond to changes in interest rates.
Convexity is a measure of the sensitivity of duration.

• duration

• modified duration

• convexity

Declaration

public class com.imsl.finance.Bond
extends java.lang.Object

Fields

• public static final int ANNUAL

– Coupon payments are made annually.

• public static final int SEMIANNUAL

– Coupon payments are made semiannually.

• public static final int QUARTERLY

– Coupon payments are made quarterly.

Constructor

• Bond
public Bond( )
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Methods

• accrint
public static double accrint( java.util.GregorianCalendar issue,
java.util.GregorianCalendar firstCoupon, java.util.GregorianCalendar
settlement, double rate, double par, int frequency, DayCountBasis
basis )

– Description
Returns the interest which has accrued on a security that pays interest
periodically. In the equation below, Ai represents the number of days which
have accrued for the ith quasi-coupon period within the odd period. (The
quasi-coupon periods are periods obtained by extending the series of equal
payment periods to before or after the actual payment periods.) NC represents
the number of quasi-coupon periods within the odd period, rounded to the next
highest integer. (The odd period is a period between payments that differs from
the usual equally spaced periods at which payments are made.) NLi represents
the length of the normal ith quasi-coupon period within the odd period. NLi is
expressed in days. Function accrint can be found by solving the following:

par

(
rate

frequency

NC∑
i=1

Ai

NLi

)
– Parameters
∗ issue – a GregorianCalendar issue date of the security
∗ firstCoupon – a GregorianCalendar date of the security’s first interest date
∗ settlement – a GregorianCalendar settlement date of the security
∗ rate – a double which specifies the security’s annual coupon rate
∗ par – a double which specifies the security’s par value
∗ frequency – an int which specifies the number of coupon payments per

year; ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for
quarterly
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis.
– Returns – a double which specifies the accrued interest

• accrintm
public static double accrintm( java.util.GregorianCalendar issue,
java.util.GregorianCalendar maturity, double rate, double par,
DayCountBasis basis )

– Description
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Returns the interest which has accrued on a security that pays interest at
maturity.

= par × rate × A

D

In the above equation, A represents the number of days starting at issue date
to maturity date and D represents the annual basis.

– Parameters
∗ issue – a GregorianCalendar issue date of the security
∗ maturity – a GregorianCalendar date of the security’s maturity
∗ rate – a double which specifies the security’s annual coupon rate
∗ par – a double which specifies the security’s par value
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. see DayCountBasis

– Returns – a double which specifies the accrued interest

• amordegrc
public static double amordegrc( double cost,
java.util.GregorianCalendar issue, java.util.GregorianCalendar
firstPeriod, double salvage, int period, double rate, DayCountBasis
basis )

– Description
Returns the depreciation for each accounting period. This method is similar to
amorlinc. However, in this method a depreciation coefficient based on the asset
life is applied during the evaluation of the function.

– Parameters
∗ cost – a double which specifies the cost of the asset
∗ issue – a GregorianCalendar issue date of the asset
∗ firstPeriod – a GregorianCalendar date of the end of the first period
∗ salvage – a double which specifies the asset’s salvage value at the end of

the life of the asset
∗ period – an int which specifies the period
∗ rate – a double which specifies the rate of depreciation
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. see DayCountBasis.
– Returns – a double which specifies the depreciation

• amorlinc
public static double amorlinc( double cost,
java.util.GregorianCalendar issue, java.util.GregorianCalendar
firstPeriod, double salvage, int period, double rate, DayCountBasis
basis )
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– Description
Returns the depreciation for each accounting period. This method is similar to
amordegrc, except that amordegrc has a depreciation coefficient that is applied
during the evaluation that is based on the asset life.

– Parameters
∗ cost – a double which specifes the cost of the asset
∗ issue – a GregorianCalendar issue date of the asset
∗ firstPeriod – a GregorianCalendar date of the end of the first period
∗ salvage – a double which specifies the asset’s salvage value at the end of

the life of the asset
∗ period – an int which specifies the period
∗ rate – a double which specifies the rate of depreciation
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. see DayCountBasis.
– Returns – a double which specifies the depreciation

• convexity
public static double convexity( java.util.GregorianCalendar
settlement, java.util.GregorianCalendar maturity, double coupon,
double yield, int frequency, DayCountBasis basis )

– Description
Returns the convexity for a security. Convexity is the sensitivity of the
duration of a security to changes in yield. It is computed using the following:

1
(q×frequency)2

{
n∑

t=1
t (t+ 1)

(
coupon

frequency

)
q−t + n (n+ 1) q−n

}
(

n∑
t=1

(
coupon

frequency

)
q−t + q−n

)
where n is calculated from coupnum, and q = 1 + yield

frequency .
– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ coupon – a double which specifies the security’s annual coupon rate
∗ yield – a double which specifires the security’s annual yield
∗ frequency – an int which specifies the number of coupon payments per

year; ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for
quarterly
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis.
– Returns – a double which specifies the convexity for a security
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• coupdaybs
public static int coupdaybs( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity, int frequency, DayCountBasis
basis )

– Description
Returns the number of days starting with the beginning of the coupon period
and ending with the settlement date. For a good discussion on day count basis,
see SIA Standard Securities Calculation Methods 1993, vol. 1, pages 17-35.

– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ frequency – an int which specifies the number of coupon payments per

year; ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for
quarterly
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis.
– Returns – an int which specifies the number of days from the beginning of the

coupon period to the settlement date

• coupdays
public static double coupdays( java.util.GregorianCalendar
settlement, java.util.GregorianCalendar maturity, int frequency,
DayCountBasis basis )

– Description
Returns the number of days in the coupon period containing the settlement
date. For a good discussion on day count basis, see SIA Standard Securities
Calculation Methods 1993, vol. 1, pages 17-35.

– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ frequency – an int which specifies the number of coupon payments per

year; ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for
quarterly
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis.
– Returns – an int which specifies the number of days in the coupon period

that contains the settlement date

• coupdaysnc
public static int coupdaysnc( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity, int frequency, DayCountBasis
basis )
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– Description
Returns the number of days starting with the settlement date and ending with
the next coupon date. For a good discussion on day count basis, see SIA
Standard Securities Calculation Methods 1993, vol. 1, pages 17-35.

– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ frequency – an int which specifies the number of coupon payments per

year; ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for
quarterly
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis.
– Returns – an int which specifies the number of days from the settlement date

to the next coupon date

• coupncd
public static java.util.GregorianCalendar coupncd(
java.util.GregorianCalendar settlement, java.util.GregorianCalendar
maturity, int frequency, DayCountBasis basis )

– Description
Returns the first coupon date which follows the settlement date. For a good
discussion on day count basis, see SIA Standard Securities Calculation Methods
1993, vol. 1, pages 17-35.

– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ frequency – an int which specifies the number of coupon payments per

year; ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for
quarterly
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis

– Returns – an int which specifies the next coupon date after the settlement
date

• coupnum
public static int coupnum( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity, int frequency, DayCountBasis
basis )

– Description
Returns the number of coupons payable between the settlement date and the
maturity date. For a good discussion on day count basis, see SIA Standard
Securities Calculation Methods 1993, vol. 1, pages 17-35.
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– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ frequency – an int which specifies the number of coupon payments per

year; ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for
quarterly
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis.
– Returns – an int which specifies the number of coupons payable between the

settlement date and maturity date

• couppcd
public static java.util.GregorianCalendar couppcd(
java.util.GregorianCalendar settlement, java.util.GregorianCalendar
maturity, int frequency, DayCountBasis basis )

– Description
Returns the coupon date which immediately precedes the settlement date. For
a good discussion on day count basis, see SIA Standard Securities Calculation
Methods 1993, vol. 1, pages 17-35.

– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ frequency – an int which specifies the number of coupon payments per

year; ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for
quarterly
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis

– Returns – an int which specifies the previous coupon date before the
settlement date

• disc
public static double disc( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity, double price, double
redemption, DayCountBasis basis )

– Description
Returns the implied interest rate of a discount bond. The discount rate is the
interest rate implied when a security is sold for less than its value at maturity
in lieu of interest payments. It is computed using the following:

redemption − price
price

× B

DSM
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In the equation above, B represents the number of days in a year based on the
annual basis and DSM represents the number of days starting with the
settlement date and ending with the maturity date.

– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ price – a double which specifies the security’s price per $100 face value
∗ redemption – a double which specifies the security’s redemption value per

$100 face value
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis.
– Returns – a double which specifies the discount rate for a security

• duration
public static double duration( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity, double coupon, double yield,
int frequency, DayCountBasis basis )

– Description
Returns the Macauley’s duration of a security where the security has periodic
interest payments. The Macauley’s duration is the weighted-average time to
the payments, where the weights are the present value of the payments. It is
computed using the following:


DSC

E
100(

1+ yield
freq

)(N−1+DSC
E ) +

N∑
k=1

 100×coupon

freq×
(
1+ yield

freq

)(k−1+DSC
E )

(k − 1 + DSC
E

)
100(

1+ yield
freq

)N−1+DSC
E

+
N∑

k=1

 100×coupon

freq×
(
1+ yield

freq

)k−1+DSC
E




1

freq

In the equation above, DSC represents the number of days starting with the
settlement date and ending with the next coupon date. E represents the
number of days within the coupon period. N represents the number of coupons
payable from the settlement date to the maturity date. freq represents the
frequency of the coupon payments annually.

– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ coupon – a double which specifies the security’s annual coupon rate
∗ yield – a double which specifies the security’s annual yield
∗ frequency – an int which specifies the number of coupon payments per

year; ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for
quarterly
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∗ basis – a DayCountBasis object which contains the type of day count basis
to use. See DayCountBasis.

– Returns – a double which specifies the annual duration of a security with
periodic interest payments

• intrate
public static double intrate( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity, double investment, double
redemption, DayCountBasis basis )

– Description
Returns the interest rate of a fully invested security. It is computed using the
following:

redemption − investment
investment

× B

DSM
In the equation above, B represents the number of days in a year based on the
annual basis, and DSM represents the number of days in the period starting
with the settlement date and ending with the maturity date.

– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ investment – a double which specifies the amount invested
∗ redemption – a double which specifies the amount to be received at

maturity
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis.
– Returns – a double which specifies the interest rate for a fully invested security

• mduration
public static double mduration( java.util.GregorianCalendar
settlement, java.util.GregorianCalendar maturity, double coupon,
double yield, int frequency, DayCountBasis basis )

– Description
Returns the modified Macauley duration for a security with an assumed par
value of $100. It is computed using the following:

duration

1 + yield
frequency

where duration is calculated from mduration.
– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
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∗ maturity – a GregorianCalendar maturity date of the security
∗ coupon – a double which specifies the security’s annual coupon rate
∗ yield – a double which specifies the security’s annual yield
∗ frequency – an int which specifies the number of coupon payments per

year; ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for
quarterly
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis.
– Returns – a double which specifies the modified Macauley duration for a

security with an assumed par value of $100

• price
public static double price( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity, double rate, double yield,
double redemption, int frequency, DayCountBasis basis )

– Description
Returns the price, per $100 face value, of a security that pays periodic interest.
It is computed using the following:

redemption(
1 + yield

frequency

)(N−1+DSC
E )

+
N∑

k=1

100× rate
frequency(

1 + yield
frequency

)(k−1+DSC
E )
−
(

100× rate
frequency

× A

E

)

In the above equation, DSC represents the number of days in the period
starting with the settlement date and ending with the next coupon date. E
represents the number of days within the coupon period. N represents the
number of coupons payable in the timeframe from the settlement date to the
redemption date. A represents the number of days in the timeframe starting
with the beginning of coupon period and ending with the settlement date.

– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ rate – a double which specifies the security’s annual coupon rate
∗ yield – a double which specifies the security’s annual yield
∗ redemption – a double which specifies the security’s redemption value per

$100 face value
∗ frequency – an int which specifies the number of coupon payments per

year; ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for
quarterly
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis.
– Returns – a double which specifies the price per $100 face value of a security

that pays periodic interest
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• pricedisc
public static double pricedisc( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity, double rate, double redemption,
DayCountBasis basis )

– Description
Returns the price of a discount bond given the discount rate. It is computed
using the following:

redemption − rate × redemption × DSM
B

In the equation above, DSM represents the number of days starting at the
settlement date and ending with the maturity date. B represents the number of
days in a year based on the annual basis.

– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ rate – a double which specifies the security’s discount rate
∗ redemption – a double which specifies the security’s redemption value per

$100 face value
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis.
– Returns – a double which specifies the price per $100 face value of a

discounted security

• pricemat
public static double pricemat( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity, java.util.GregorianCalendar
issue, double rate, double yield, DayCountBasis basis )

– Description
Returns the price, per $100 face value, of a discount bond. It is computed using
the following:

100 +
(

DIM
B × rate× 100

)
1 +

(
DSM

B × yield
) − A

B
× rate × 100

In the equation above, B represents the number of days in a year based on the
annual basis. DSM represents the number of days in the period starting with
the settlement date and ending with the maturity date. DIM represents the
number of days in the period starting with the issue date and ending with the
maturity date. A represents the number of days in the period starting with the
issue date and ending with the settlement date.
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– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ issue – a GregorianCalendar issue date of the security
∗ rate – a double which specifies the security’s interest rate at issue date
∗ yield – a double which specifies the security’s annual yield
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. see DayCountBasis

– Returns – a double which specifies the price per $100 face value of a security
that pays interest at maturity

• priceyield
public static double priceyield( java.util.GregorianCalendar
settlement, java.util.GregorianCalendar maturity, double yield, double
redemption, DayCountBasis basis )

– Description
Returns the price of a discount bond given the yield. It is computed using the
following:

redemption
1 +

(
DSM

B

)
yield

In the equation above, DSM represents the number of days starting at the
settlement date and ending with the maturity date. B represents the number of
days in a year based on the annual basis.

– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ yield – a double which specifies the security’s yield
∗ redemption – a double which specifies the security’s redemption value per

$100 face value
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis

– Returns – a double which specifies the price per $100 face value of a
discounted security

• received
public static double received( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity, double investment, double rate,
DayCountBasis basis )

– Description
Returns the amount one receives when a fully invested security reaches the
maturity date. It is computed using the following:
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investment
1−

(
rate × DIM

B

)
In the equation above, B represents the number of days in a year based on the
annual basis, and DIM represents the number of days in the period starting
with the issue date and ending with the maturity date.

– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ investment – a double which specifies the amount invested in the security
∗ rate – a double which specifies the security’s rate at issue date
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis.
– Returns – a double which specifies the amount received at maturity for a fully

invested security

• tbilleq
public static double tbilleq( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity, double rate )

– Description
Returns the bond-equivalent yield of a Treasury bill. It is computed using the
following:
If DSM <= 182

365× rate
360− rate ×DSM

otherwise,

−DSM
365 +

√(
DSM
365

)2 − (2× DSM
365 − 1

)
× rate×DSM

rate×DSM−360

DSM
365 − 0.5

In the above equation, DSM represents the number of days starting at
settlement date to maturity date.

– Parameters
∗ settlement – a GregorianCalendar settlement date of the Treasury bill
∗ maturity – a GregorianCalendar maturity date of the Treasury bill. The

maturity cannot be more than a year after the settlement.
∗ rate – a double which specifies the Treasury bill’s discount rate at issue

date. The discount rate is an annualized rate of return based on the par
value of the bills. The discount rate is calculated on a 360-day basis
(twelve 30-day months).
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– Returns – a double which specifies the bond-equivalent yield for the Treasury
bill. This is an annualized rate based on the purchase price of the bills and
reflects the actual yield to maturity.

• tbillprice
public static double tbillprice( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity, double rate )

– Description
Returns the price, per $100 face value, of a Treasury bill. It is computed using
the following:

100
(

1− rate ×DSM
360

)
In the equation above, DSM represents the number of days in the period
starting with the settlement date and ending with the maturity date (any
maturity date that is more than one calendar year after the settlement date is
excluded).

– Parameters
∗ settlement – a GregorianCalendar settlement date of the Treasury bill
∗ maturity – a GregorianCalendar maturity date of the Treasury bill. The

maturity cannot be more than a year after the settlement
∗ rate – a double which specifies the Treasury bill’s discount rate at issue

date. The discount rate is an annualized rate of return based on the par
value of the bills. The discount rate is calculated on a 360-day basis
(twelve 30-day months).

– Returns – a double which specifies the price per $100 face value for the
Treasury bill

• tbillyield
public static double tbillyield( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity, double price )

– Description
Returns the yield of a Treasury bill. It is computed using the following:

100− price
price

× 360
DSM

In the equation above, DSM represents the number of days in the period
starting with the settlement date and ending with the maturity date (any
maturity date that is more than one calendar year after the settlement date is
excluded).

– Parameters
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∗ settlement – a GregorianCalendar settlement date of the Treasury bill
∗ maturity – a GregorianCalendar maturity date of the Treasury bill. The

maturity cannot be more than a year after the settlement.
∗ price – a double which specifies the Treasury bill’s price per $100 face

value
– Returns – a double which specifies the yield for the Treasury bill. This is an

annualized rate based on the purchase price of the bills and reflects the actual
yield to maturity.

• yearfrac
public static double yearfrac( java.util.GregorianCalendar start,
java.util.GregorianCalendar end, DayCountBasis basis )

– Description
Returns the fraction of a year represented by the number of whole days
between two dates. It is computed using the following:

A/D

where A equals the number of days from start to end, D equals annual basis.
– Parameters
∗ start – a GregorianCalendar start date of the security
∗ end – a GregorianCalendar end date of the security
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis.
– Returns – a double which specifies the annual yield of a security that pays

interest at maturity

• yield
public static double yield( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity, double rate, double price,
double redemption, int frequency, DayCountBasis basis )

– Description
Returns the yield of a security that pays periodic interest. If there is one
coupon period use the following:(

redemption
100 + rate

frequency

)
−
[

price
100 +

(
A
E ×

rate
frequency

)]
price
100 +

(
A
E ×

rate
frequency

) × frequency × E
DSR

In the equation above, DSR represents the number of days in the period
starting with the settlement date and ending with the redemption date. E
represents the number of days within the coupon period. A represents the
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number of days in the period starting with the beginning of coupon period and
ending with the settlement date.
If there is more than one coupon period use the following:

price − redemption(
1+yield

frequency

)N−1+DSC
E

−

 N∑
k=1

100× rate
frequency(

1+yield
frequency

) k−1+DSC
E

+100× rate
frequency

× A

E

In the equation above, DSC represents the number of days in the period from
the settlement to the next coupon date. E represents the number of days
within the coupon period.N represents the number of coupons payable in the
period starting with the settlement date and ending with the redemption date.
A represents the number of days in the period starting with the beginning of
the coupon period and ending with the settlement date.

– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ rate – a double which specifies the security’s annual coupon rate
∗ price – a double which specifies the security’s price per $100 face value
∗ redemption – a double which specifies the security’s redemption value per

$100 face value
∗ frequency – an int which specifies the number of coupon payments per

year; ANNUAL for annual, SEMIANNUAL for semiannual and QUARTERLY for
quarterly
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis.
– Returns – a double which specifies the yield of a security that pays periodic

interest

• yielddisc
public static double yielddisc( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity, double price, double
redemption, DayCountBasis basis )

– Description
Returns the annual yield of a discount bond. It is computed using the following:

redemption − price
price

× B

DSM

In the equation above, B represents the number of days in a year based on the
annual basis, and DSM represents the number of days starting with the
settlement date and ending with the maturity date.
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– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ price – a double which specifies the security’s price per $100 face value
∗ redemption – a double which specifies the security’s redemption value per

$100 face value
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis.
– Returns – a double which specifies the annual yield for a discounted security

• yieldmat
public static double yieldmat( java.util.GregorianCalendar settlement,
java.util.GregorianCalendar maturity, java.util.GregorianCalendar
issue, double rate, double price, DayCountBasis basis )

– Description
Returns the annual yield of a security that pays interest at maturity. It is
computed using the following:[

1 +
(

DIM
B × rate

)]
−
[

price
100 +

(
A
B × rate

)]
price
100 +

(
A
B × rate

) × B

DSM

In the equation above, DIM represents the number of days in the period
starting with the issue date and ending with the maturity date. DSM
represents the number of days in the period starting with the settlement date
and ending with the maturity date. A represents the number of days in the
period starting with the issue date and ending with the settlement date. B
represents the number of days in a year based on the annual basis.

– Parameters
∗ settlement – a GregorianCalendar settlement date of the security
∗ maturity – a GregorianCalendar maturity date of the security
∗ issue – a GregorianCalendar issue date of the security
∗ rate – a double which specifies the security’s interest rate at date of issue
∗ price – a double the security’s price per $100 face value
∗ basis – a DayCountBasis object which contains the type of day count basis

to use. See DayCountBasis.
– Returns – a double which specifies the annual yield of a security that pays

interest at maturity

Example: Accrued Interest - Periodic Payments

In this example, the accrued interest is calculated for a bond which pays interest
semiannually. The day count basis used is 30/360.
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import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class accrintEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar issue = parse("10/1/91");

GregorianCalendar firstCoupon = parse("3/31/92");

GregorianCalendar settlement = parse("11/3/91");

double rate = .06;

double par = 1000.;

int freq = Bond.SEMIANNUAL;

DayCountBasis dcb = DayCountBasis.BasisNASD;

double accrint = Bond.accrint(issue, firstCoupon, settlement, rate,

par, freq, dcb);

System.out.println("The accrued interest is " +accrint);

}
}

Output

The accrued interest is 5.333333333333334

Example: Accrued Interest - Payment at Maturity

In this example, the accrued interest is calculated for a bond which pays at maturity. The
day count basis used is 30/360.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;
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public class accrintmEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar issue = parse("10/1/91");

GregorianCalendar settlement = parse("11/3/91");

double rate = .06;

double par = 1000.;

DayCountBasis dcb = DayCountBasis.BasisNASD;

double accrintm = Bond.accrintm(issue, settlement, rate, par, dcb);

System.out.println("The accrued interest is " +accrintm);

}
}

Output

The accrued interest is 5.333333333333334

Example: Depreciation - French Accounting System

In this example, the depreciation for the second accounting period is calculated for an
asset.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class amordegrcEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));
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return cal;

}

public static void main(String args[]) throws ParseException {
double cost = 2400.;

GregorianCalendar issue = parse("11/1/92");

GregorianCalendar firstPeriod = parse("11/30/93");

double salvage = 300.;

int period = 2;

double rate = .15;

DayCountBasis dcb = DayCountBasis.BasisNASD;

double amordegrc = Bond.amordegrc(cost, issue, firstPeriod,

salvage, period, rate, dcb);

System.out.println("The depreciation for the second accounting " +

"period is " +amordegrc);

}
}

Output

The depreciation for the second accounting period is 334.0

Example: Depreciation - French Accounting System

In this example, the depreciation for the second accounting period is calculated for an
asset.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class amorlincEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}
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public static void main(String args[]) throws ParseException {
double cost = 2400.;

GregorianCalendar issue = parse("11/1/92");

GregorianCalendar firstPeriod = parse("11/30/93");

double salvage = 300.;

int period = 2;

double rate = .15;

DayCountBasis dcb = DayCountBasis.BasisNASD;

double amorlinc = Bond.amorlinc(cost, issue, firstPeriod,

salvage, period, rate, dcb);

System.out.println("The depreciation for the second accounting " +

"period is " +amorlinc);

}
}

Output

The depreciation for the second accounting period is 360.0

Example: Convexity for a Security

The convexity of a 10 year bond which pays interest semiannually is returned in this
example.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class convexityEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/90");

GregorianCalendar maturity = parse("7/1/00");
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double coupon = .075;

double yield = .09;

int freq = Bond.SEMIANNUAL;

DayCountBasis dcb = DayCountBasis.BasisActual365;

double convexity = Bond.convexity(settlement, maturity, coupon,

yield, freq, dcb);

System.out.println("The convexity of the bond with semiannual " +

"interest payments is " + convexity);

}
}

Output

The convexity of the bond with semiannual interest payments is 59.404991291585645

Example: Days - Beginning of Period to Settlement Date

In this example, the settlement date is 11/11/86. The number of days from the beginning
of the coupon period to the settlement date is returned.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class coupdaybsEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("11/11/86");

GregorianCalendar maturity = parse("3/1/99");

int freq = Bond.SEMIANNUAL;

DayCountBasis dcb = DayCountBasis.BasisActual365;

int coupdaybs = Bond.coupdaybs(settlement, maturity, freq, dcb);

System.out.println("The number of days from the beginning of the" +
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"\ncoupon period to the settlement date is " + coupdaybs);

}
}

Output

The number of days from the beginning of the

coupon period to the settlement date is 71

Example: Days in the Settlement Date Period

In this example, the settlement date is 11/11/86. The number of days in the coupon
period containing this date is returned.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class coupdaysEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("11/11/86");

GregorianCalendar maturity = parse("3/1/99");

int freq = Bond.SEMIANNUAL;

DayCountBasis dcb = DayCountBasis.BasisActual365;

double coupdays = Bond.coupdays(settlement, maturity, freq, dcb);

System.out.println("The number of days in the coupon period that " +

"contains the settlement date is " + coupdays);

}
}
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Output

The number of days in the coupon period that contains the settlement date is 182.5

Example: Days - Settlement Date to Next Coupon Date

In this example, the settlement date is 11/11/86. The number of days from this date to
the next coupon date is returned.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class coupdaysncEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("11/11/86");

GregorianCalendar maturity = parse("3/1/99");

int freq = Bond.SEMIANNUAL;

DayCountBasis dcb = DayCountBasis.BasisActual365;

int coupdaysnc = Bond.coupdaysnc(settlement, maturity, freq, dcb);

System.out.println("The number of days from the settlement date " +

"to the next coupon date is " +coupdaysnc);

}
}

Output

The number of days from the settlement date to the next coupon date is 110
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Example: Next Coupon Date After the Settlement Date

In this example, the settlement date is 11/11/86. The previous coupon date before this
date is returned.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class coupncdEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("11/11/86");

GregorianCalendar maturity = parse("3/1/99");

int freq = Bond.SEMIANNUAL;

DayCountBasis dcb = DayCountBasis.BasisActual365;

GregorianCalendar coupncd = Bond.coupncd(settlement, maturity,

freq, dcb);

System.out.println("The next coupon date after the settlement date is "

+ dateFormat.format(coupncd.getTime()));

}
}

Output

The next coupon date after the settlement date is 3/1/87

Example: Number of Payable Coupons

In this example, the settlement date is 11/11/86. The number of payable coupons between
this date and the maturity date is returned.
import com.imsl.finance.*;

import java.text.*;
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import java.util.*;

public class coupnumEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("11/11/86");

GregorianCalendar maturity = parse("3/1/99");

int freq = Bond.SEMIANNUAL;

DayCountBasis dcb = DayCountBasis.BasisActual365;

int coupnum = Bond.coupnum(settlement, maturity, freq, dcb);

System.out.println("The number of coupons payable between the " +

"\nsettlement date and the maturity date is " + coupnum);

}
}

Output

The number of coupons payable between the

settlement date and the maturity date is 25

Example: Previous Coupon Date Before the Settlement Date

In this example, the settlement date is 11/11/86. The previous coupon date before this
date is returned.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class couppcdEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);
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static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("11/11/86");

GregorianCalendar maturity = parse("3/1/99");

int freq = Bond.SEMIANNUAL;

DayCountBasis dcb = DayCountBasis.BasisActual365;

GregorianCalendar couppcd = Bond.couppcd(settlement, maturity,

freq, dcb);

System.out.println("The previous coupon date before the settlement " +

"date is " + dateFormat.format(couppcd.getTime()));

}
}

Output

The previous coupon date before the settlement date is 9/1/86

Example: Discount Rate for a Security

In this example, the discount rate for a security is returned.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class discEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
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GregorianCalendar settlement = parse("2/15/92");

GregorianCalendar maturity = parse("6/10/92");

double price = 97.975;

double redemption = 100.;

DayCountBasis dcb = DayCountBasis.BasisActual365;

double disc = Bond.disc(settlement, maturity, price, redemption, dcb);

System.out.println("The discount rate for the security is " +disc);

}
}

Output

The discount rate for the security is 0.06371767241379328

Example: Duration of a Security with Periodic Payments

The annual duration of a 10 year bond which pays interest semiannually is returned in
this example.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class durationEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");

GregorianCalendar maturity = parse("7/1/95");

double coupon = .075;

double yield = .09;

int freq = Bond.SEMIANNUAL;

DayCountBasis dcb = DayCountBasis.BasisActual365;

double duration = Bond.duration(settlement, maturity, coupon,
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yield, freq, dcb);

System.out.println("The annual duration of the bond with" +

"\nsemiannual interest payments is " + duration);

}
}

Output

The annual duration of the bond with

semiannual interest payments is 7.041953377972151

Example: Interest Rate of a Fully Invested Security

The discount rate of a 10 year bond is returned in this example.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class intrateEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");

GregorianCalendar maturity = parse("7/1/95");

double investment = 7000.;

double redemption = 10000.;

DayCountBasis dcb = DayCountBasis.BasisActual365;

double intrate = Bond.intrate(settlement, maturity, investment,

redemption, dcb);

System.out.println("The interest rate of the bond is " +intrate);

}
}
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Output

The interest rate of the bond is 0.042833672351744644

Example: Modified Macauley Duration of a Security with Periodic
Payments

The modified Macauley duration of a 10 year bond which pays interest semiannually is
returned in this example.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class mdurationEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");

GregorianCalendar maturity = parse("7/1/95");

double coupon = .075;

double yield = .09;

int freq = Bond.SEMIANNUAL;

DayCountBasis dcb = DayCountBasis.BasisActual365;

double mduration = Bond.mduration(settlement, maturity,

coupon, yield, freq, dcb);

System.out.println("The modified Macauley duration of the bond" +

"\nwith semiannual interest payments is " + mduration);

}
}
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Output

The modified Macauley duration of the bond

with semiannual interest payments is 6.738711366480527

Example: Price of a Security

The price per $100 face value of a 10 year bond which pays interest semiannually is
returned in this example.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class priceEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");

GregorianCalendar maturity = parse("7/1/95");

double rate = .06;

double yield = .07;

double redemption = 105.;

int frequency = Bond.SEMIANNUAL;

DayCountBasis dcb = DayCountBasis.BasisNASD;

double price = Bond.price(settlement, maturity, rate, yield,

redemption, frequency, dcb);

System.out.println("The price of the bond is " +price);

}
}
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Output

The price of the bond is 95.40662777118231

Example: Price of a Discounted Security

The price per $100 face value of a discounted 1 year bond is returned in this example.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class pricediscEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");

GregorianCalendar maturity = parse("7/1/86");

double rate = .05;

double redemption = 100.;

DayCountBasis dcb = DayCountBasis.BasisNASD;

double pricedisc = Bond.pricedisc(settlement, maturity,

rate, redemption, dcb);

System.out.println("The price of the discounted bond is " +pricedisc);

}
}

Output

The price of the discounted bond is 95.0
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Example: Price of a Security that Pays at Maturity

The price per $100 face value of 1 year bond that pays interest at maturity is returned in
this example.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class pricematEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("8/1/85");

GregorianCalendar maturity = parse("7/1/86");

GregorianCalendar issue = parse("7/1/85");

double rate = .05;

double yield = .05;

DayCountBasis dcb = DayCountBasis.BasisNASD;

double pricemat = Bond.pricemat(settlement, maturity, issue,

rate, yield, dcb);

System.out.println("The price of the bond is " +pricemat);

}
}

Output

The price of the bond is 99.98173970783533

The price of a discounted 1 year bond is returned in this example.

package com.imsl.example.finance;

import com.imsl.finance.*;

import java.text.*;

import java.util.*;
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public class priceyieldEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s)

throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");

GregorianCalendar maturity = parse("7/1/95");

double yield = 0.010055244588347783;

double redemption = 105.;

DayCountBasis dcb = DayCountBasis.BasisNASD;

double priceyield = Bond.priceyield(settlement, maturity,

yield, redemption, dcb);

System.out.println("The price of the discounted bond is "

+ priceyield);

}
}

The price of the discounted bond is 95.40663

Example: Amount Received at Maturity for a Fully Invested Security

The amount to be received at maturity for a 10 year bond is returned in this example.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class receivedEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));
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return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");

GregorianCalendar maturity = parse("7/1/95");

double investment = 7000.;

double discount = .06;

DayCountBasis dcb = DayCountBasis.BasisActual365;

double received = Bond.received(settlement, maturity,

investment, discount, dcb);

System.out.println("The amount received at maturity for the bond is " +

NumberFormat.getCurrencyInstance().format(received));

}
}

Output

The amount received at maturity for the bond is $17,514.40

Example: Bond-Equivalent Yield

The bond-equivalent yield for a 1 year Treasury bill is returned in this example.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class tbilleqEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");

GregorianCalendar maturity = parse("7/1/86");
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double discount = .05;

double tbilleq = Bond.tbilleq(settlement, maturity, discount);

System.out.println("The bond-equivalent yield for the T-bill is "

+ tbilleq);

}
}

Output

The bond-equivalent yield for the T-bill is 0.05270709977197674

Example: Treasury Bill Price

The price per $100 face value for a 1 year Treasury bill is returned in this example.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class tbillpriceEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");

GregorianCalendar maturity = parse("7/1/86");

double discount = .05;

double tbillprice = Bond.tbillprice(settlement, maturity, discount);

System.out.println("The price per $100 face value for the T-bill is "

+ tbillprice);

}
}
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Output

The price per $100 face value for the T-bill is 94.93055555555556

Example: Treasury Bill Yield

The yield for a 1 year Treasury bill is returned in this example.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class tbillyieldEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");

GregorianCalendar maturity = parse("7/1/86");

double price = 94.93;

double tbillyield = Bond.tbillyield(settlement, maturity, price);

System.out.println("The yield for the T-bill is " +tbillyield);

}
}

Output

The yield for the T-bill is 0.05267616080486118

Example: Year Fraction

The year fraction of a 30/360 year starting 8/1/85 and ending 7/1/86 is returned in this
example.
import com.imsl.finance.*;
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import java.text.*;

import java.util.*;

public class yearfracEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar start = parse("8/1/85");

GregorianCalendar end = parse("7/1/86");

DayCountBasis dcb = DayCountBasis.BasisNASD;

double yearfrac = Bond.yearfrac(start, end, dcb);

System.out.println("The year fraction of the 30/360 period is " +

yearfrac);

}
}

Output

The year fraction of the 30/360 period is 0.9166666666666666

Example: Yield on a Security

The yield on a 10 year bond which pays interest semiannually is returned in this example.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class yieldEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();
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cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("7/1/85");

GregorianCalendar maturity = parse("7/1/95");

double rate = .06;

double price = 95.40663;

double redemption = 105.;

int frequency = Bond.SEMIANNUAL;

DayCountBasis dcb = DayCountBasis.BasisNASD;

double yield = Bond.yield(settlement, maturity, rate, price,

redemption, frequency, dcb);

System.out.println("The yield of the bond is " + yield);

}
}

Output

The yield of the bond is 0.06999999682842895

Example: Yield on a Discounted Security

The yield on a discounted 10 year bond is returned in this example.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class yielddiscEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
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GregorianCalendar settlement = parse("7/1/85");

GregorianCalendar maturity = parse("7/1/95");

double price = 95.40663;

double redemption = 105.;

DayCountBasis dcb = DayCountBasis.BasisNASD;

double yielddisc = Bond.yielddisc(settlement, maturity, price,

redemption, dcb);

System.out.println("The yield on the discounted bond is " + yielddisc);

}
}

Output

The yield on the discounted bond is 0.010055244588347783

Example: Yield on a Security Which Pays at Maturity

The yield on a bond which pays at maturity is returned in this example.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class yieldmatEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

static private GregorianCalendar parse(String s) throws ParseException {
GregorianCalendar cal = new GregorianCalendar();

cal.setTime(dateFormat.parse(s));

return cal;

}

public static void main(String args[]) throws ParseException {
GregorianCalendar settlement = parse("8/1/85");

GregorianCalendar maturity = parse("7/1/95");

GregorianCalendar issue = parse("7/1/85");

double rate = .06;

double price = 95.40663;

DayCountBasis dcb = DayCountBasis.BasisNASD;

double yieldmat = Bond.yieldmat(settlement, maturity, issue, rate,
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price, dcb);

System.out.println("The yield on a bond which pays at maturity is " +

yieldmat);

}
}

Output

The yield on a bond which pays at maturity is 0.06739051278091948

class DayCountBasis

The Day Count Basis. Rules for computing the number or days between two dates or
number of days in a year. For many securities, computations are based on rules other than
on the actual calendar.

Declaration

public class com.imsl.finance.DayCountBasis
extends java.lang.Object

Fields

• public static final BasisPart BasisPartNASD

– Computations based on the assumption of 30 days per month and 360 days per
year.

• public static final BasisPart BasisPart30E360

– Computations based on the assumption of 30 days per month and 360 days per
year. This computes the number of days between two dates differently than
BasisPartNASD for months with other than 30 days.

• public static final BasisPart BasisPart365

– Computations based on the assumption of 365 days per year.

• public static final BasisPart BasisPartActual
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– Computations are based on the actual calendar.

• public static final DayCountBasis BasisNASD

– Computations based on the assumption of 30 days per month and 360 days per
year.

• public static final DayCountBasis BasisActualActual

– Computations are based on the actual calendar.

• public static final DayCountBasis BasisActual360

– Computations are based on the number of days in a month based on the actual
calendar value and the number of days, but assuming 360 days per year.

• public static final DayCountBasis BasisActual365

– Computations are based on the number of days in a month based on the actual
calendar value and the number of days, but assuming 365 days per year.

• public static final DayCountBasis Basis30e360

– Computations based on the assumption of 30 days per month and 360 days per
year.

Constructor

• DayCountBasis
public DayCountBasis( BasisPart monthBasis, BasisPart yearBasis )

– Description
Creates a new DayCountBasis.

– Parameters
∗ monthBasis – is the month basis
∗ yearBasis – is the year basis

Methods

• getMonthBasis
public BasisPart getMonthBasis( )

– Description
Returns the (days in month) portion of the Day Count Basis.

Finance DayCountBasis • 881



– Returns – a BasisPart object which represents the month Basis for this
DayCountBasis

• getYearBasis
public BasisPart getYearBasis( )

– Description
Returns the (days in year) portion of the Day Count Basis.

– Returns – a BasisPart object which represents the year Basis for this
DayCountBasis

class Finance

Collection of finance functions.

Declaration

public class com.imsl.finance.Finance
extends java.lang.Object

Fields

• public static final int AT END OF PERIOD

– Flag used to indicate that payment is made at the end of each period.

• public static final int AT BEGINNING OF PERIOD

– Flag used to indicate that payment is made at the beginning of each period.

Methods

• cumipmt
public static double cumipmt( double rate, int nper, double pv, int
start, int end, int when )
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– Description
Returns the cumulative interest paid between two periods. It is computed using
the following:

end∑
i=start

interest i

where interest i is computed from ipmt for the ith period.
– Parameters
∗ rate – a double, the interest rate
∗ nper – an int, the total number of payment periods
∗ pv – a double, the present value
∗ start – an int, the first period in the caclulation. Periods are numbered

starting with one.
∗ end – an int, the last period in the calculation
∗ when – an int, the time in each period when the payment is made, either

AT END OF PERIOD or AT BEGINNING OF PERIOD
– Returns – a double, the cumulative interest paid between the first period and

the last period

• cumprinc
public static double cumprinc( double rate, int nper, double pv, int
start, int end, int when )

– Description
Returns the cumulative principal paid between two periods. It is computed
using the following:

end∑
i=start

principal i

where principal i is computed from ppmt for the ith period.
– Parameters
∗ rate – a double, the interest rate
∗ nper – an int, the total number of payment periods
∗ pv – a double, the present value
∗ start – an int, the first period in the calculation. Periods are numbered

starting with one.
∗ end – an int, the last period in the calculation
∗ when – an int, the time in each period when the payment is made, either

AT END OF PERIOD or AT BEGINNING OF PERIOD.
– Returns – a double, the cumulative principal paid between the first period and

the last period
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• db
public static double db( double cost, double salvage, int life, int
period, int month )

– Description
Returns the depreciation of an asset using the fixed-declining balance method.
Method db varies depending on the specified value for the argument period, see
table below.
If period = 1,

cost× rate× month
12

If period = life,

(cost− total depreciation from periods)× rate× 12−month
12

If period other than 1 or life,

(cost− total depreciation from priorperiods)× rate

where

rate = 1−
(

salvage
cost

)(
1

life

)

NOTE: rate is rounded to three decimal places.
– Parameters
∗ cost – a double, the initial cost of the asset
∗ salvage – a double, the salvage value of the asset
∗ life – an int, the number of periods over which the asset is being

depreciated
∗ period – an int, the period for which the depreciation is to be computed
∗ month – an int, the number of months in the first year

– Returns – a double, the depreciation of an asset for a specified period using
the fixed-declining balance method

• ddb
public static double ddb( double cost, double salvage, int life, int
period, double factor )

– Description
Returns the depreciation of an asset using the double-declining balance
method. It is computed using the following:

[cost − salvage (total depreciation from prior periods)]
factor
life
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– Parameters
∗ cost – a double, the initial cost of the asset
∗ salvage – a double, the salvage value of the asset
∗ life – an int, the number of periods over which the asset is being

depreciated
∗ period – an int, the period
∗ factor – a double, the rate at which the balance declines

– Returns – a double, the depreciation of an asset for a specified period

• dollarde
public static double dollarde( double fractionalDollar, int fraction )

– Description
Converts a fractional price to a decimal price. It is computed using the
following:

idollar + (fractionalDollar − idollar)× 10(ifrac+1)

fraction

where idollar is the integer part of fractionalDollar , and ifrac is the integer
part of log(fraction).

– Parameters
∗ fractionalDollar – a double, a fractional number
∗ fraction – an int, the denominator

– Returns – a double, the dollar price expressed as a decimal number

• dollarfr
public static double dollarfr( double decimalDollar, int fraction )

– Description
Converts a decimal price to a fractional price. It is computed using the
following:

idollar +
decimalDollar − idollar

10(ifrac+1)/fraction

where idollar is the integer part of the decimalDollar , and ifrac is the integer
part of log(fraction).

– Parameters
∗ decimalDollar – a double, a decimal number
∗ fraction – a int, the denominator

– Returns – a double, a dollar price expressed as a fraction

• effect
public static double effect( double nominalRate, int nper )
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– Description
Returns the effective annual interest rate. The nominal interest rate is the
periodically-compounded interest rate as stated on the face of a security. The
effective annual interest rate is computed using the following:(

1 +
nominalRate

nper

)nper

− 1

– Parameters
∗ nominalRate – a double, the nominal interest rate
∗ nper – an int, the number of compounding periods per year

– Returns – a double, the effective annual interest rate

• fv
public static double fv( double rate, int nper, double pmt, double
pv, int when )

– Description
Returns the future value of an investment. The future value is the value, at
some time in the future, of a current amount and a stream of payments. It can
be found by solving the following:
If rate = 0,

pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (when)]
(1 + rate)nper − 1

rate
+ fv = 0

– Parameters
∗ rate – a double, the interest rate
∗ nper – an int, the total number of payment periods
∗ pmt – a double, the payment made in each period
∗ pv – a double, the present value
∗ when – an int, the time in each period when the payment is made, either

AT END OF PERIOD or AT BEGINNING OF PERIOD
– Returns – a double, the future value of an investment

• fvschedule
public static double fvschedule( double principal, double[] schedule )

– Description
Returns the future value of an initial principal taking into consideration a
schedule of compound interest rates. It is computed using the following:

count∑
i=1

(principal × schedulei)
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where schedulei = interest rate at the ith period, and the count is
schedule.length.

– Parameters
∗ principal – a double, the present value
∗ schedule – a double array of interest rates to apply

– Returns – a double, the future value of an initial principal

• ipmt
public static double ipmt( double rate, int period, int nper, double
pv, double fv, int when )

– Description
Returns the interest payment for an investment for a given period. It is
computed using the following:{

pv (1 + rate)nper−1 + pmt (1 + rate × when)
(1 + rate)nper−1

rate

}
rate

– Parameters
∗ rate – a double, the interest rate
∗ period – an int, the payment period
∗ nper – an int, the total number of periods
∗ pv – a double, the present value
∗ fv – a double, the future value
∗ when – an int, the time in each period when the payment is made, either

AT END OF PERIOD or AT BEGINNING OF PERIOD
– Returns – a double, the interest payment for a given period for an investment

• irr
public static double irr( double[] pmt )

– Description
Returns the internal rate of return for a schedule of cash flows. It is found by
solving the following:

0 =
count∑
i=1

valuei

(1 + rate)i

where valuei = the ith cash flow, rate is the internal rate of return, and count
is pmt.length.

– Parameters
∗ pmt – a double array which contains cash flow values which occur at

regular intervals
– Returns – a double, the internal rate of return
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• irr
public static double irr( double[] pmt, double guess )

– Description
Returns the internal rate of return for a schedule of cash flows. It is found by
solving the following:

0 =
count∑
i=1

valuei

(1 + rate)i

where valuei = the ith cash flow, rate is the internal rate of return.
– Parameters
∗ pmt – a double array which contains cash flow values which occur at

regular intervals
∗ guess – a double value which represents an initial guess at the return value

from this function
– Returns – a double, the internal rate of return

• mirr
public static double mirr( double[] value, double financeRate, double
reinvestRate )

– Description
Returns the modified internal rate of return for a schedule of periodic cash
flows. The modified internal rate of return differs from the ordinary internal
rate of return in assuming that the cash flows are reinvested at the cost of
capital, not at the internal rate of return. It also eliminates the multiple rates
of return problem. It is computed using the following:{

− (pnpv) (1 + reinvestRate)nper

(nnpv) (1 + financeRate)

} 1
nper−1

− 1

where pnpv is calculated from npv for positive values in value using
reinvestRate, nnpv is calculated from npv for negative values in value using
financeRate, and nper = value.length.

– Parameters
∗ value – a double array of cash flows
∗ financeRate – a double, the interest you pay on the money you borrow
∗ reinvestRate – a double, the interest rate you receive on the cash flows

– Returns – a double, the modified internal rate of return

• nominal
public static double nominal( double effectiveRate, int nper )
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– Description
Returns the nominal annual interest rate. The nominal interest rate is the
interest rate as stated on the face of a security. It is computed using the
following: [

(1 + effectiveRate)
1

nper − 1
]
× nper

– Parameters
∗ effectiveRate – a double, the effective interest rate
∗ nper – an int, the number of compounding periods per year

– Returns – a double, the nominal annual interest rate

• nper
public static double nper( double rate, double pmt, double pv, double
fv, int when )

– Description
Returns the number of periods for an investment for which periodic, and
constant payments are made and the interest rate is constant. It can be found
by solving the following:
If rate = 0,

pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (when)]
(1 + rate)nper − 1

rate
+ fv = 0

– Parameters
∗ rate – a double, the interest rate
∗ pmt – a double, the payment
∗ pv – a double, the present value
∗ fv – a double, the future value
∗ when – an int, the time in each period when the payment is made, either

AT END OF PERIOD or AT BEGINNING OF PERIOD
– Returns – an int, the number of periods for an investment

• npv
public static double npv( double rate, double[] value )

– Description
Returns the net present value of a stream of equal periodic cash flows, which
are subject to a given discount rate. It is found by solving the following:

count∑
i=1

valuei

(1 + rate)i
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where valuei = the ith cash flow, and count is value.length.
– Parameters
∗ rate – a double, the interest rate per period
∗ value – a double array of equally-spaced cash flows

– Returns – a double, the net present value of the investment

• pmt
public static double pmt( double rate, int nper, double pv, double
fv, int when )

– Description
Returns the periodic payment for an investment. It can be found by solving the
following:
If rate = 0,

pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (when)]
(1 + rate)nper − 1

rate
+ fv = 0

– Parameters
∗ rate – a double, the interest rate
∗ nper – an int, the total number of periods
∗ pv – a double, the present value
∗ fv – a double, the future value
∗ when – an int, the time in each period when the payment is made, either

AT END OF PERIOD or AT BEGINNING OF PERIOD
– Returns – a double, the interest payment for a given period for an investment

• ppmt
public static double ppmt( double rate, int period, int nper, double
pv, double fv, int when )

– Description
Returns the payment on the principal for a specified period. It is computed
using the following:

payment i − interest i

where payment i is computed from pmt for the ith period, interest i is calculated
from ipmt for the ith period.

– Parameters
∗ rate – a double, the interest rate
∗ period – an int, the payment period
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∗ nper – an int, the total number of periods
∗ pv – a double, the present value
∗ fv – a double, the future value
∗ when – an int, the time in each period when the payment is made, either

AT END OF PERIOD or AT BEGINNING OF PERIOD
– Returns – a double, the payment on the principal for a given period

• pv
public static double pv( double rate, int nper, double pmt, double
fv, int when )

– Description
Returns the net present value of a stream of equal periodic cash flows, which
are subject to a given discount rate. It can be found by solving the following:
If rate = 0,

pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (when)]
(1 + rate)nper − 1

rate
+ fv = 0

– Parameters
∗ rate – a double, the interest rate per period
∗ nper – an int, the number of periods
∗ pmt – a double, the payment made each period
∗ fv – a double, the annuity’s value after the last payment
∗ when – an int, the time in each period when the payment is made, either

AT END OF PERIOD or AT BEGINNING OF PERIOD
– Returns – a double, the present value of the investment

• rate
public static double rate( int nper, double pmt, double pv, double
fv, int when )

– Description
Returns the interest rate per period of an annuity. rate is calculated by
iteration and can have zero or more solutions. It can be found by solving the
following:
If rate = 0,

pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (when)]
(1 + rate)nper − 1

rate
+ fv = 0
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– Parameters
∗ nper – an int, the number of periods
∗ pmt – a double, the payment made each period
∗ pv – a double, the present value
∗ fv – a double, the annuity’s value after the last payment
∗ when – an int, the time in each period when the payment is made, either

AT END OF PERIOD or AT BEGINNING OF PERIOD
– Returns – a double, the interest rate per period of an annuity

• rate
public static double rate( int nper, double pmt, double pv, double
fv, int when, double guess )

– Description
Returns the interest rate per period of an annuity with an initial guess. rate is
calculated by iteration and can have zero or more solutions. It can be found by
solving the following:
If rate = 0,

pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (when)]
(1 + rate)nper − 1

rate
+ fv = 0

– Parameters
∗ nper – an int, the number of periods
∗ pmt – a double, the payment made each period
∗ pv – a double, the present value
∗ fv – a double, the annuity’s value after the last payment
∗ when – an int, the time in each period when the payment is made, either

AT END OF PERIOD or AT BEGINNING OF PERIOD
∗ guess – a double value which represents an initial guess at the interest rate

per period of an annuity
– Returns – a double, the interest rate per period of an annuity

• sln
public static double sln( double cost, double salvage, int life )

– Description
Returns the depreciation of an asset using the straight line method. It is
computed using the following:

cost − salvage/life

– Parameters

892 • Finance JMSL



∗ cost – a double, the initial cost of the asset
∗ salvage – a double, the salvage value of the asset
∗ life – an int, the number of periods over which the asset is being

depreciated
– Returns – a double, the straight line depreciation of an asset for one period

• syd
public static double syd( double cost, double salvage, int life, int
per )

– Description
Returns the depreciation of an asset using the sum-of-years digits method. It is
computed using the following:

(cost − salvage)(per)
(life + 1) (life)

2
– Parameters
∗ cost – a double, the initial cost of the asset
∗ salvage – a double, the salvage value of the asset
∗ life – an int, the number of periods over which the asset is being

depreciated
∗ per – an int, the period

– Returns – a double, the sum-of-years digits depreciation of an asset

• vdb
public static double vdb( double cost, double salvage, int life, int
start, int end, double factor, boolean no sl )

– Description
Returns the depreciation of an asset for any given period using the
variable-declining balance method. It is computed using the following:
If no sl = 0,

end∑
i=start+1

ddbi

If no sl 6= 0,

A+
end∑
i=k

cost −A− salvage
end − k + 1

where ddbi is computed from ddb for the ith period. k = the first period where
straight line depreciation is greater than the depreciation using the
double-declining balance method.

A =
k−1∑

i=start+1

ddbi
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– Parameters
∗ cost – a double, the initial cost of the asset
∗ salvage – a double, the salvage value of the asset
∗ life – an int, the number of periods over which the asset is being

depreciated
∗ start – an int, the initial period for the calculation
∗ end – an int, the final period for the calculation
∗ factor – a double, the rate at which the balance declines
∗ no sl – a boolean flag. If true, do not switch to straight-line depreciation

even when the depreciation is greater than the declining balance
calculation.

– Returns – a double, the depreciation of the asset

• xirr
public static double xirr( double[] pmt, java.util.Date[] dates )

– Description
Returns the internal rate of return for a schedule of cash flows. It is not
necessary that the cash flows be periodic. It can be found by solving the
following:

0 =
count∑
i=1

valuei

(1 + rate)
di−d1
365

In the equation above, di represents the ith payment date. d1 represents the 1st
payment date. value represents the ith cash flow. rate is the internal rate of
return, and count is pmt.length.

– Parameters
∗ pmt – a double array which contains cash flow values which correspond to a

schedule of payments in dates
∗ dates – a Date array which contains a schedule of payment dates

– Returns – a double, the internal rate of return

• xirr
public static double xirr( double[] pmt, java.util.Date[] dates,
double guess )

– Description
Returns the internal rate of return for a schedule of cash flows with a user
supplied initial guess. It is not necessary that the cash flows be periodic. It can
be found by solving the following:

0 =
count∑
i=1

valuei

(1 + rate)
di−d1
365
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In the equation above, di represents the ith payment date. d1 represents the 1st
payment date. value represents the ith cash flow. rate is the internal rate of
return. Count is pmt.length.

– Parameters
∗ pmt – a double array which contains cash flow values which correspond to a

schedule of payments in dates
∗ dates – a Date array which contains a schedule of payment dates
∗ guess – a double value which represents an initial guess at the return value

from this function
– Returns – a double, the internal rate of return

• xnpv
public static double xnpv( double rate, double[] value,
java.util.Date[] dates )

– Description
Returns the present value for a schedule of cash flows. It is not necessary that
the cash flows be periodic. It is computed using the following:

count∑
i=1

valuei

(1 + rate)(di−d1)/365

In the equation above, di represents the ith payment date, d1 represents the
first payment date, valuei represents the ith cash flow. and count is
value.length

– Parameters
∗ rate – a double, the interest rate
∗ value – a double array containing the cash flows
∗ dates – a Date array which contains a schedule of payment dates

– Returns – a double, the present value

Example: Cumulative Interest Example

The amount of interest paid in the first year of a 30 year fixed rate mortgage is computed.
The amount financed is $200,000 at an interest rate of 7.25% for 30 years.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class cumipmtEx1 {
public static void main(String args[]) {

double rate = 0.0725/12;

int periods = 12*30;
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double pv = 200000;

int start = 1;

int end = 12;

double total;

total = Finance.cumipmt(rate, periods, pv, start, end,

Finance.AT END OF PERIOD);

System.out.println("First year interest = " +

NumberFormat.getCurrencyInstance().format(total));

}
}

Output

First year interest = ($14,436.52)

Example: Cumulative Principal Example

The amount of principal paid in the first year of a 30 year fixed rate mortgage is
computed. The amount financed is $200,000 at an interest rate of 7.25% for 30 years.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class cumprincEx1 {
public static void main(String args[]) {

double rate = 0.0725/12;

int periods = 12*30;

double pv = 200000;

int start = 1;

int end = 12;

double total;

total = Finance.cumprinc(rate, periods, pv, start, end,

Finance.AT END OF PERIOD);

System.out.println("First year principal = " +

NumberFormat.getCurrencyInstance().format(total));

}
}
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Output

First year principal = ($1,935.71)

Example: Depreciation - Fixed Declining Balance Method

The depreciation of an asset with an initial cost of $2500 and a salvage value of $500 over
a period of 3 years is calculated. Here month is 6 since the life of the asset did not begin
until the seventh month of the first year.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class dbEx1 {
public static void main(String args[]) {

double cost = 2500;

double salvage = 500;

int life = 3;

int month = 6;

for (int period = 1; period <= life+1; period++) {
double db = Finance.db(cost, salvage, life, period, month);

System.out.println("For period "+period+" db = " +

NumberFormat.getCurrencyInstance().format(db));

}
}

}

Output

For period 1 db = $518.75

For period 2 db = $822.22

For period 3 db = $481.00

For period 4 db = $140.69

Example: Depreciation - Double-Declining Balance Method

The depreciation of an asset with an initial cost of $2500 and a salvage value of $500 over
a period of 2 years is calculated. A factor of 2 is used (the double-declining balance
method).
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import com.imsl.finance.*;

import java.text.NumberFormat;

public class ddbEx1 {
public static void main(String args[]) {

double cost = 2500;

double salvage = 500;

double factor = 2;

int life = 24;

for (int period = 1; period <= life; period++) {
double ddb = Finance.ddb(cost, salvage, life, period, factor);

System.out.println("For period "+period+" ddb = " +

NumberFormat.getCurrencyInstance().format(ddb));

}
}

}

Output

For period 1 ddb = $208.33

For period 2 ddb = $190.97

For period 3 ddb = $175.06

For period 4 ddb = $160.47

For period 5 ddb = $147.10

For period 6 ddb = $134.84

For period 7 ddb = $123.60

For period 8 ddb = $113.30

For period 9 ddb = $103.86

For period 10 ddb = $95.21

For period 11 ddb = $87.27

For period 12 ddb = $80.00

For period 13 ddb = $73.33

For period 14 ddb = $67.22

For period 15 ddb = $61.62

For period 16 ddb = $56.48

For period 17 ddb = $51.78

For period 18 ddb = $47.46

For period 19 ddb = $22.09

For period 20 ddb = $0.00

For period 21 ddb = $0.00
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For period 22 ddb = $0.00

For period 23 ddb = $0.00

For period 24 ddb = $0.00

Example: Price Conversion - Fractional Dollars

A fractional dollar price, in this case 1 3/8, is converted to a decimal price.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class dollardeEx1 {
public static void main(String args[]) {

double fractionalDollar = 1.3;

int fraction = 8;

double dollardec = Finance.dollarde(fractionalDollar, fraction);

System.out.println("The fractional dollar 1.3 = " +

NumberFormat.getCurrencyInstance().format(dollardec));

}
}

Output

The fractional dollar 1.3 = $1.38

Example: Price Conversion - Decimal Dollars

A decimal dollar price, in this case $1.38, is converted to a fractional price.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class dollarfrEx1 {
public static void main(String args[]) {

double decimalDollar = 1.38;

int fraction = 8;

double dollarfrc = Finance.dollarfr(decimalDollar, fraction);

NumberFormat nf = NumberFormat.getInstance();

nf.setMaximumFractionDigits(2);

System.out.println("The decimal dollar $1.38 as a fractional dollar = "
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+ nf.format(dollarfrc));

}
}

Output

The decimal dollar $1.38 as a fractional dollar = 1.3

Example: Effective Rate

In this example the effective interest rate is computed given that the nominal rate is 6.0%
and that the interest will be compounded quarterly.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class effectEx1 {
public static void main(String args[]) {

double nominalRate = .06;

int nper = 4;

double effectiveRate;

effectiveRate = Finance.effect(nominalRate, nper);

NumberFormat nf = NumberFormat.getPercentInstance();

nf.setMaximumFractionDigits(2);

System.out.println("The effective rate of the nominal rate, 6.0%, " +

"compounded quarterly is " +nf.format(effectiveRate));

}
}

Output

The effective rate of the nominal rate, 6.0%, compounded quarterly is 6.14%

Example: Future Value of an Investment

A couple starts setting aside $30,000 a year when they are 45 years old. They expect to
earn 5% interest on the money compounded yearly. The future value of the investment is
computed for a 20 year period.
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import com.imsl.finance.*;

import java.text.NumberFormat;

public class fvEx1 {
public static void main(String args[]) {

double rate = .05;

int nper = 20;

double payment = -30000.00;

double pv = -30000.00;

int when = Finance.AT BEGINNING OF PERIOD;

double fv = Finance.fv(rate, nper, payment, pv, when);

System.out.println("After 20 years, the value of the investments " +

"will be " + NumberFormat.getCurrencyInstance().format(fv));

}
}

Output

After 20 years, the value of the investments will be $1,121,176.49

Example: Future Value - Adustable Rates

An investment of $10,000 is made. The investment will grow at the rate of 5.1% the first
year, with the rate increasing by .1% each year thereafter for a total of 5 years. The future
value of the investment is computed.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class fvscheduleEx1 {
public static void main(String args[]) {

double principal = 10000.0;

double[] schedule = {.050, .051, .052, .053, .054};
double fvschedule;

fvschedule = Finance.fvschedule(principal, schedule);

System.out.println("After 5 years the $10,000 investment will have " +

"grown to " + NumberFormat.getCurrencyInstance().format(fvschedule));

}
}
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Output

After 5 years the $10,000 investment will have grown to $12,884.77

Example: Interest Payments

The interest due the second year on a $100,000 25 year loan is calculated. The loan is at
8%.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class ipmtEx1 {
public static void main(String args[]) {

double rate = .08;

int per = 2;

int nper = 25;

double pv = 100000.00;

double fv = 0.0;

int when = Finance.AT END OF PERIOD;

double ipmt = Finance.ipmt(rate, per, nper, pv, fv, when);

System.out.println("The interest due the second year on the " +

"$100,000 loan is " + NumberFormat.getCurrencyInstance().format(ipmt));

}
}

Output

The interest due the second year on the $100,000 loan is ($7,890.57)

Example: Internal Rate of Return

A farmer buys 10 young cows and a bull for $4500. The first year he does not expect to
sell any calves, he just expects to feed them. Thereafter, he expects to be able to sell
calves to offset the cost of feed. He expects them to be productive for 9 years, after which
time he will liquidate the herd. The internal rate of return is computed after 9 years.
import com.imsl.finance.*;

import java.text.NumberFormat;
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public class irrEx1 {
public static void main(String args[]) {

double[] pmt = {-4500., -800., 800., 800., 600., 600.,

800., 800., 700., 3000.};

double irr = Finance.irr(pmt);

NumberFormat nf = NumberFormat.getPercentInstance();

nf.setMaximumFractionDigits(2);

System.out.println("After 9 years, the internal rate of return on " +

"the cows is " + nf.format(irr));

}
}

Output

After 9 years, the internal rate of return on the cows is 7.21%

Example: Modified Internal Rate of Return

A farmer uses a $4500 loan to buy 10 young cows and a bull. The interest rate on the loan
is 8%. He expects to reinvest the profits received in any one year in the money market and
receive 5.5%. The first year he does not expect to sell any calves, he just expects to feed
them. Thereafter, he expects to be able to sell calves to offset the cost of feed. He expects
them to be productive for 9 years, after which time he will liquidate the herd. The
modified internal rate of return is computed after 9 years.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class mirrEx1 {
public static void main(String args[]) {

double[] value = {-4500., -800., 800., 800., 600., 600.,

800., 800., 700., 3000.};
double financeRate = .08;

double reinvestRate = .055;

double mirr = Finance.mirr(value, financeRate, reinvestRate);

NumberFormat nf = NumberFormat.getPercentInstance();

nf.setMaximumFractionDigits(2);

System.out.println("After 9 years, the modified internal rate of " +

"return on the cows is " +nf.format(mirr));

}
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}

Output

After 9 years, the modified internal rate of return on the cows is 6.66%

Example: Nominal Rate

In this example the nominal interest rate is computed given that the effective rate is
6.14% and that the interest has been compounded quarterly.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class nominalEx1 {
public static void main(String args[]) {

double effectiveRate = .0614;

int nper = 4;

double nominalRate = Finance.nominal(effectiveRate, nper);

NumberFormat nf = NumberFormat.getPercentInstance();

nf.setMaximumFractionDigits(2);

System.out.println("The nominal rate of the effective rate, 6.14%, " +

"compounded quarterly is " + nf.format(nominalRate));

}
}

Output

The nominal rate of the effective rate, 6.14%, compounded quarterly is 6%

Example: Number of Periods for an Investment

Someone obtains a $20,000 loan at 7.25% to buy a car. They want to make $350 a month
payments. Here, the number of payments necessary to pay off the loan is computed.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class nperEx1 {
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public static void main(String args[]) {
double rate = 0.0725/12;

double pmt = -350.;

double pv = 20000;

double fv = 0.;

int when = Finance.AT BEGINNING OF PERIOD;

double nperiods;

nperiods = Finance.nper(rate, pmt, pv, fv, when);

System.out.println("Number of payment periods = " +nperiods);

}
}

Output

Number of payment periods = 69.78051136628257

Example: Net Present Value of an Investment

A lady wins a $10 million lottery. The money is to be paid out at the end of each year in
$500,000 payments for 20 years. The current treasury bill rate of 6% is used as the
discount rate. Here, the net present value of her prize is computed.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class npvEx1 {
public static void main(String args[]) {

double rate = 0.06;

double[] value = new double[20];

for (int i = 0; i < 20; i++) value[i] = 500000.;

double npv = Finance.npv(rate, value);

System.out.println("The net present value of the $10 million " +

"prize is " + NumberFormat.getCurrencyInstance().format(npv));

}
}
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Output

The net present value of the $10 million prize is $5,734,960.61

Example: Periodic Payments

The payment due each year on a 25 year, $100,000 loan is calculated. The loan is at 8%.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class pmtEx1 {
public static void main(String args[]) {

double rate = .08;

int nper = 25;

double pv = 100000.00;

double fv = 0.0;

int when = Finance.AT END OF PERIOD;

double pmt = Finance.pmt(rate, nper, pv, fv, when);

System.out.println("The payment due each year on the $100,000 loan is "

+ NumberFormat.getCurrencyInstance().format(pmt));

}
}

Output

The payment due each year on the $100,000 loan is ($9,367.88)

Example: Principal Payments

The payment on the principal the first year on a 25 year, $100,000 loan is calculated. The
loan is at 8%.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class ppmtEx1 {
public static void main(String args[]) {

double rate = .08;

int per = 1;
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int nper = 25;

double pv = 100000.00;

double fv = 0.0;

int when = Finance.AT END OF PERIOD;

double ppmt = Finance.ppmt(rate, per, nper, pv, fv, when);

System.out.println("The payment on the principal the first year " +

"of the $100,000 loan is " +

NumberFormat.getCurrencyInstance().format(ppmt));

}
}

Output

The payment on the principal the first year of the $100,000 loan is ($1,367.88)

Example: Present Value of an Investment

A lady wins a $10 million lottery. The money is to be paid out at the end of each year in
$500,000 payments for 20 years. The current treasury bill rate of 6% is used as the
discount rate. Here, the present value of her prize is computed.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class pvEx1 {
public static void main(String args[]) {

double rate = 0.06;

double pmt = 500000.;

double fv = 0.;

int nper = 20;

int when = Finance.AT END OF PERIOD;

double pv = Finance.pv(rate, nper, pmt, fv, when);

System.out.println("The present value of the $10 million prize is " +

NumberFormat.getCurrencyInstance().format(pv));

}
}
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Output

The present value of the $10 million prize is ($5,734,960.61)

Example: Interest Rate

Someone obtains a $20,000 loan to buy a car. They make $350 a month payments for 70
months. Here, the interest rate of the loan is computed.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class rateEx1 {
public static void main(String args[]) {

double rate;

int nper = 70;

double pmt = -350.;

double pv = 20000;

double fv = 0.;

int when = Finance.AT BEGINNING OF PERIOD;

rate = Finance.rate(nper, pmt, pv, fv, when)*12;

NumberFormat nf = NumberFormat.getPercentInstance();

nf.setMaximumFractionDigits(2);

System.out.println("The computed interest rate on the loan is " +

nf.format(rate));

}
}

Output

The computed interest rate on the loan is 7.35%

Example: Depreciation - Straight Line Method

The straight line depreciation for one period of an asset with a life of 24 months, an initial
cost of $2500 and a salvage value of $500 is computed.
import com.imsl.finance.*;

import java.text.NumberFormat;

908 • Finance JMSL



public class slnEx1 {
public static void main(String args[]) {

double cost = 2500;

double salvage = 500;

int life = 24;

double sln = Finance.sln(cost, salvage, life);

System.out.println("The straight line depreciation of the asset " +

"for one period is " + NumberFormat.getCurrencyInstance().format(sln));

}
}

Output

The straight line depreciation of the asset for one period is $83.33

Example: Depreciation - Sum-of-years’ Digits

The sum-of-years’ digits depreciation for the 14th year of an asset with a life of 15 years,
an initial cost of $25000 and a salvage value of $5000 is computed.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class sydEx1 {
public static void main(String args[]) {

double cost = 25000;

double salvage = 5000;

int life = 15;

int per = 14;

double syd = Finance.syd(cost, salvage, life, per);

System.out.println("The depreciation allowance for the 14th year is " +

NumberFormat.getCurrencyInstance().format(syd));

}
}

Output

The depreciation allowance for the 14th year is $333.33
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Example: Depreciation - Variable Declining Balance

The depreciation between the 10th and 15th year of an asset with a life of 15 years, an
initial cost of $25000 and a salvage value of $5000 is computed. The variable-declining
balance method is used.
import com.imsl.finance.*;

import java.text.NumberFormat;

public class vdbEx1 {
public static void main(String args[]) {

double cost = 25000;

double salvage = 5000;

int life = 15;

int start = 10;

int end = 15;

double factor = 2.;

boolean no sl = false;

double vdb = Finance.vdb(cost, salvage, life, start, end,

factor, no sl);

System.out.println("The depreciation allowance between the " +

"10th and 15th year is " +

NumberFormat.getCurrencyInstance().format(vdb));

}
}

Output

The depreciation allowance between the 10th and 15th year is $976.69

Example: Internal Rate of Return - Variable Schedule

A farmer buys 10 young cows and a bull for $4500. The first year he does not expect to
sell any calves, he just expects to feed them. Thereafter, he expects to be able to sell
calves to offset the cost of feed. He expects them to be productive for 9 years, after which
time he will liquidate the herd. The internal rate of return is computed after 9 years.
import com.imsl.finance.*;

import java.text.NumberFormat;

import java.text.*;

import java.util.*;
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public class xirrEx1 {
static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

private static Date parse(String s) throws ParseException {
return dateFormat.parse(s);

}

public static void main(String args[]) throws ParseException {
double[] pmt = {-4500., -800., 800., 800., 600., 600.,

800., 800., 700., 3000.};
Date dates[] = {

parse("1/1/98"), parse("10/1/98"), parse("5/5/99"),

parse("5/5/00"), parse("6/1/01"), parse("7/1/02"),

parse("8/30/03"), parse("9/15/04"), parse("10/15/05"),

parse("11/1/06")

};
double xirr = Finance.xirr(pmt, dates);

NumberFormat nf = NumberFormat.getPercentInstance();

nf.setMaximumFractionDigits(2);

System.out.println("After approximately 9 years, the internal rate " +

"of return on the cows is " + nf.format(xirr));

}
}

Output

After approximately 9 years, the internal rate of return on the cows is 7.69%

Example: Present Value of a Schedule of Cash Flows

In this example, the present value of 3 payments, $1,000, $2,000, and $1,000, with an
interest rate of 5% made on January 3, 1997, January 3, 1999, and January 3, 2000 is
computed.
import com.imsl.finance.*;

import java.text.*;

import java.util.*;

public class xnpvEx1 {
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static final DateFormat dateFormat =

DateFormat.getDateInstance(DateFormat.SHORT, Locale.US);

private static Date parse(String s) throws ParseException {
return dateFormat.parse(s);

}

public static void main(String args[]) throws ParseException {
double rate = 0.05;

double value[]= {1000.,2000., 1000.};
Date dates[] = {parse("1/3/1997"), parse("1/3/1999"),

parse("1/3/2000")};

double pv = Finance.xnpv(rate, value, dates);

System.out.println("The present value of the schedule of cash " +

"flows is " + NumberFormat.getCurrencyInstance().format(pv));

}
}

Output

The present value of the schedule of cash flows is $3,677.90
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The major tick marks.
MinorTick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973

The minor tick marks.
Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973

Defines a custom transformation along an axis.
TransformDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974

Defines a transformation along an axis that skips weekend dates.
AxisR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975

The R-axis in a polar plot.
AxisRLabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977

The labels on an axis.
AxisRLine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979

The radius axis line in a polar plot.
AxisRMajorTick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979

The major tick marks for the radius axis in a polar plot.
AxisTheta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980

The angular axis in a polar plot.
GridPolar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982

Draws the grid lines for a polar plot.
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .982

Draws a data node.
ChartFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994

An interface that allows a function to be plotted.
ChartSpline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995

Wrap a spline into a ChartFunction to be plotted.
Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 996

The value of the attribute “Title”.
ToolTip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 998

A ToolTip for a chart element.
FillPaint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000

A collection of methods to create Paint objects for fill areas.
Draw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003

Chart tree renderer.
JFrameChart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012

JFrameChart is a JFrame that contains a chart.
JPanelChart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1013

A Swing JPanel that contains a chart.
DrawPick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015

The DrawPick class.
PickEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022
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An event that indicates that a chart element has been selected.
PickListener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023

The listener interface for receiving pick events.
JspBean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024

JspBean is used to refer to charts in a Java Server Page that are later
rendered using the ChartServlet.

ChartServlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027
The base class for chart servlets.

DrawMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1029
Creates an HTML client-side imagemap from a chart tree.

BoxPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1036
Draws a multiple-group Box plot.

Contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1047
A Contour chart shows level curves of a two-dimensional function.

ErrorBar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056
Data points with error bars.

HighLowClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1061
High-low-close plot of stock data.

Candlestick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067
Candlestick plot of stock data.

CandlestickItem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069
A candlestick for the up days or the down days.

SplineData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070
A data set created from a Spline.

Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073
A bar chart.

BarItem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080
A single bar in a bar chart.

BarSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081
A set of bars in a bar chart.

Pie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082
A pie chart.

PieSlice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086
One wedge of a pie chart.

Polar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087
This Axis node is used for polar charts.

Heatmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1089
Heatmap creates a chart from a two-dimensional array of double precision
values or java.awt.Color values.

Colormap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099
Colormaps are mappings from the unit interval to Colors.
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class Chart

The root node of the chart tree.

This chart node creates the following child nodes: com.imsl.chart.Background,
com.imsl.chart.ChartTitle and com.imsl.chart.Legend.

Declaration

public class com.imsl.chart.Chart
extends com.imsl.chart.ChartNode (page 920)
implements java.lang.Cloneable, java.awt.print.Printable

Constructors

• Chart
public Chart( )

– Description
This is the root of our tree, it has no parent. This creates the Chart with a null
component

• Chart
public Chart( java.awt.Component component )

– Description
This is the root of our tree, it has no parent. This creates the Chart with the
named component

– Parameters
∗ component – the Component that contains the chart.

• Chart
public Chart( java.awt.Image image )

– Description
This is the root of our tree, it has no parent. This creates the Chart drawn into
the image.

– Parameters
∗ image – the Image into which the chart is to be drawn.
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Methods

• addLegendItem
public void addLegendItem( int type, ChartNode node )

– Description
Adds a legend to this ChartNode

– Parameters
∗ type – an int which specifies the LegendItem type. 0 =

DATA TYPE NONE; 1 = DATA TYPE LINE; 2 =
DATA TYPE MARKER; 3 = DATA TYPE FILL
∗ node – the ChartNode object to which this legend is to be added

• addMouseListener
public void addMouseListener( java.awt.event.MouseListener listener )

– Description
Adds a MouseListener to the component associated with this chart. If the
component is null the listener will be saved and added to the component when
it is assigned.

• addMouseMotionListener
public void addMouseMotionListener(
java.awt.event.MouseMotionListener listener )

– Description
Adds a MouseMotionListener to the component associated with this chart. If
the component is null the listener will be saved and added to the component
when it is assigned.

• clone
public java.lang.Object clone( )

– Description
Returns a clone of the graphics tree.

– Returns – an Object which is a clone of this graphics tree

• clone
protected java.lang.Object clone( java.util.Hashtable hashClonedNode
)

– Description
Returns a clone of this node.
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– Parameters
∗ hashClonedNode – the Hashtable to be cloned

– Returns – an Object which is a clone of this node

• copy
public void copy( )

– Description
Copy the chart to the clipboard.

• finalize
protected void finalize( ) throws java.lang.Throwable

• paint
public synchronized void paint( Draw draw )

– Description
Paints this node and all of its children.

– Parameters
∗ draw – a Draw object to be painted

• paint
public void paint( java.awt.Graphics g )

– Description
Paints this node and all of its children. This should be called whenever the
paint member function in the Component used in this object’s constructor is
called.

– Parameters
∗ g – Graphics object to be painted

• paintChart
public void paintChart( java.awt.Graphics graphics )

– Description
Draw the chart using the given Graphics object.

– Parameters
∗ graphics – is the object for which the chart is to be drawn.

• paintImage
public java.awt.Image paintImage( )

– Description
Returns an Image of the chart.
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– Returns – an Image containing a picture of the chart. Call flush() on the
image when it is no longer needed.

• pick
public void pick( java.awt.event.MouseEvent event )

– Description
Fire the PickListeners for the nodes hit by the event.

– Parameters
∗ event – MouseEvent/code whose position determines which nodes have

been selected

• print
public int print( java.awt.Graphics graphics,
java.awt.print.PageFormat pageFormat, int param ) throws
java.awt.print.PrinterException

– Description
This method implements the Printable interface. It prints the chart on a single
page. The output is scaled to fill the page as much as possible while preserving
the aspect ratio.

• repaint
public void repaint( )

– Description
Prepares the chart to be repainted by deleting any double buffering image.

• setComponent
public void setComponent( java.awt.Component component )

– Description
Sets the Component for this chart. Also registers MouseListeners or
MouseMotionListeners that could not be added previously.

• update
public void update( java.awt.Graphics g )

• writePNG
public void writePNG( java.io.OutputStream os, int width, int height
) throws java.io.IOException

– Description
Writes the chart as an PNG file. PNG () is a lossless bitmap format. This
method requires either J2SE 1.4 or later .
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– Parameters
∗ os – is the output stream to which the PNG image is to be written.
∗ width – is the width of the output image.
∗ height – is the height of the output image.

– Throws
∗ java.io.IOException – if there is a problem writing the image to the

stream.
∗ java.lang.NoClassDefFoundError – if an older version of J2SE is used

and the Java Advanced Imaging Toolkit cannot be found.

• writeSVG
public void writeSVG( java.io.Writer writer, boolean useCSS ) throws
java.io.IOException

– Description
Writes the chart as an SVG file. This method requires the library.

– Parameters
∗ writer – is the output character stream
∗ useCSS – is true if the CSS style attribute is to be used

– Throws
∗ java.io.IOException – if there is a problem writing the file.
∗ java.lang.NoClassDefFoundError – if the Batik library cannot be found.

class ChartNode

The base class of all of the nodes in the chart tree.

Declaration

public abstract class com.imsl.chart.ChartNode
extends java.lang.Object
implements java.io.Serializable, java.lang.Cloneable

Fields

• public static final int AXIS X

– Flag to indicate x-axis.
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• public static final int AXIS Y

– Flag to indicate y-axis.

• public static final int AXIS X TOP

– Flag to indicate x-axis placed on top of the chart.

• public static final int AXIS Y RIGHT

– Flag to indicate y-axis placed to the right of the chart.

• public static final int AUTOSCALE OFF

– Flag used to indicate that autoscaling is turned off.

• public static final int AUTOSCALE DATA

– Flag used to indicate that autoscaling is to be done by scanning the data nodes.

• public static final int AUTOSCALE WINDOW

– Flag used to indicate that autoscaling is to be done by using the “Window”
attribute.

• public static final int AUTOSCALE NUMBER

– Flag used to indicate that autoscaling is to adjust the “Number” attribute.

• public static final int AUTOSCALE DENSITY

– Flag used to indicate that autoscaling is to adjust the “Density” attribute.
This applies only to time axes.

• public static final int BAR TYPE VERTICAL

– Flag to indicate a vertical bar chart.

• public static final int BAR TYPE HORIZONTAL

– Flag to indicate a horizontal bar chart.

• public static final int DATA TYPE LINE

– Value for attribute “DataType” indicating that the data points should be
connected with line segments. This is the default setting.

• public static final int DATA TYPE MARKER

– Value for attribute “DataType” indicating that a marker should be drawn at
each data point.

• public static final int DATA TYPE FILL
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– Value for attribute “DataType” indicating that the area between the lines
connecting the data points and the horizontal reference line (y = attribute
“Reference”) should be filled. This is an area chart.

• public static final int DATA TYPE PICTURE

– Value for attribute “DataType” indicating that an image (attribute “Image”)
should be drawn at each data point. This can be used to draw fancy markers.

• public static final double[] DASH PATTERN SOLID

– Flag to draw solid line.

• public static final double[] DASH PATTERN DOT

– Flag to draw a dotted line.

• public static final double[] DASH PATTERN DASH

– Flag to draw a dashed line.

• public static final double[] DASH PATTERN DASH DOT

– Flag to draw a dash-dot pattern line.

• public static final int FILL TYPE NONE

– Value for attribute “FillType” and “FillOutlineType” indicating that the
region is not to be drawn.

• public static final int FILL TYPE SOLID

– Value for attribute “FillType” and “FillOutlineType” indicating that the
region is to be drawn using the solid color specified by the attribute FillColor
or FillOutlineColor.

• public static final int FILL TYPE GRADIENT

– Value for attribute “FillType” indicating that the region is to be drawn in a
color gradient as specified by the attribute Gradient.

• public static final int FILL TYPE PAINT

– Value for attribute “FillType” indicating that the region is to be drawn using
the texture specified by the attribute FillPaint.

• public static final int LABEL TYPE NONE

– Flag used to indicate the an element is not to be labeled.

• public static final int LABEL TYPE X

– Flag used to indicate that an element is to be labeled with the value of its
x-coordinate.
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• public static final int LABEL TYPE Y

– Flag used to indicate that an element is to be labeled with the value of its
y-coordinate.

• public static final int LABEL TYPE TITLE

– Flag used to indicate that an element is to be labeled with the value of its title
attribute.

• public static final int LABEL TYPE PERCENT

– Flag used to indicate that a pie slice is to be labeled with a percentage value.
This attribute only applies to pie charts.

• public static final int MARKER TYPE PLUS

– Flag for a plus-shaped data marker.

• public static final int MARKER TYPE ASTERISK

– Flag for a asterisk data marker.

• public static final int MARKER TYPE X

– Flag for a x-shaped data marker.

• public static final int MARKER TYPE HOLLOW SQUARE

– Flag for a hollow square data marker.

• public static final int MARKER TYPE FILLED SQUARE

– Flag for a filled square data marker.

• public static final int MARKER TYPE HOLLOW TRIANGLE

– Flag for hollow triangle data marker.

• public static final int MARKER TYPE FILLED TRIANGLE

– Flag for a filled triangle data marker.

• public static final int MARKER TYPE HOLLOW DIAMOND

– Flag for a hollow diamond data marker.

• public static final int MARKER TYPE FILLED DIAMOND

– Flag for a filled diamond data marker.

• public static final int MARKER TYPE DIAMOND PLUS

– Flag for a plus in a diamond data marker.

• public static final int MARKER TYPE SQUARE X
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– Flag for an x in a square data marker.

• public static final int MARKER TYPE SQUARE PLUS

– Flag for a plus in a square data marker.

• public static final int MARKER TYPE OCTAGON X

– Flag for a x in an octagon data marker.

• public static final int MARKER TYPE OCTAGON PLUS

– Flag for a plus in an octagon data marker.

• public static final int MARKER TYPE HOLLOW CIRCLE

– Flag for a hollow circle data marker.

• public static final int MARKER TYPE FILLED CIRCLE

– Flag for a filled circle data marker.

• public static final int MARKER TYPE CIRCLE X

– Flag for an x in a circle data marker.

• public static final int MARKER TYPE CIRCLE PLUS

– Flag for a plus in a circle data marker.

• public static final int MARKER TYPE CIRCLE CIRCLE

– Flag for a circle in a circle data marker.

• public static final int TEXT X LEFT

– Value for attribute “TextAlignment” indicating that the text should be left
adjusted. This is the default setting.

• public static final int TEXT X CENTER

– Value for attribute “TextAlignment” indicating that the text should be
centered.

• public static final int TEXT X RIGHT

– Value for attribute “TextAlignment” indicating that the text should be right
adjusted.

• public static final int TEXT Y BOTTOM

– Value for attribute “TextAlignment” indicating that the text should be drawn
on the baseline. This is the default setting.

• public static final int TEXT Y CENTER
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– Value for attribute “TextAlignment” indicating that the text should be
vertically centered.

• public static final int TEXT Y TOP

– Value for attribute “TextAlignment” indicating that the text should be drawn
with the top of the letters touching the top of the drawing region.

• public static final int TRANSFORM LINEAR

– Flag used to indicate that the axis uses linear scaling.

• public static final int TRANSFORM LOG

– Flag used to indicate that the axis uses logarithmic scaling.

• public static final int TRANSFORM CUSTOM

– Flag used to indicate that the axis using a custom transformation.

Constructor

• ChartNode
public ChartNode( ChartNode parent )

– Description
Construct a ChartNode object.

– Parameters
∗ parent – the ChartNode parent of this object

Methods

• addPickListener
public void addPickListener( PickListener pickListener )

– Description
Adds a PickListener to this node. Unlike simple attributes, the pickListener is
added to a list of existing PickListeners defined at this node. The existing
listeners remain defined at this node. If this pickListener is already registered
in this node, it will not be added again.

– Parameters
∗ pickListener – the PickListener to be added to this node
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• clone
protected java.lang.Object clone( java.util.Hashtable hashClonedNode
)

– Description
Returns a deep-copy clone of this node. Each class derived from this class
should override this function IF the derived class contains ChartNode objects
or double[] arrays as member data. The overriden function should call this
function and then clone each of its ChartNode data members. For example, in
AxisXY we have
protected Object clone(Hashtable hashClonedNode)

{
AxisXY t = (AxisXY)super.clone(hashClonedNode);

t.axisX = (Axis1D)axisX.clone(hashClonedNode);

t.axisY = (Axis1D)axisY.clone(hashClonedNode);

return t;

}

– Parameters
∗ hashClonedNode – Hashtable of nodes that have already been cloned. We

need to clone each ChartNode exactly once even if multiple references to it
exist in the graphics tree. In this hashtable keys are existing ChartNode
objects and values are their clones.

• clone
protected final java.util.Hashtable clone( java.util.Hashtable hashIn,
java.util.Hashtable hashClonedNode )

– Description
Returns a deep copy of a Hashtable. We assume the keys are immutable (e.g.
Strings) and so do not have to be cloned. We cannot just use Hashtable.clone()
because we want to specially handle cloning of ChartNodes that may occur in
the hashtable. (Need to clone each ChartNode exactly once even if multiple
references to it exist in the graphics tree.)

• clone
protected java.lang.Object clone( java.lang.Object value,
java.util.Hashtable hashClonedNode )

– Description
Returns a deep copy of an Object. Handles non-immutable object types
ChartNode, Hashtable, Vector, double[], String[], and int[]. (Immutable objects
can just be reused, they do not have to be cloned.)
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If other non-immutable object types are used in the tree then the nodes where
they are defined should override this function to handle the cloning. The new
function calls super.clone(value, hashClonedNode) for values handled here.

• clone
protected final java.util.Vector clone( java.util.Vector vecIn,
java.util.Hashtable hashClonedNode )

– Description
Returns a deep copy of a vector of ChartNode’s.

• firePickListeners
public void firePickListeners( java.awt.event.MouseEvent event )

– Description
Fires the pick listeners defined at this node and at all of its ancestors, if the
event “hits” the node.

– Parameters
∗ event – MouseEvent which determines which nodes have been selected

• getALT
public java.lang.String getALT( )

– Description
Returns the value of the “ALT” attribute.

– Returns – The value of the “ALT” attribute.

• getAttribute
public java.lang.Object getAttribute( java.lang.String name )

– Description
Gets an attribute.

– Parameters
∗ name – a String which contains the name of the attribute

• getAutoscaleInput
public int getAutoscaleInput( )

– Description
Returns the value of the “AutoscaleInput” attribute.

– Returns – the int value of the “AutoscaleInput” attribute.

• getAutoscaleMinimumTimeInterval
public int getAutoscaleMinimumTimeInterval( )
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– Description
Returns the value of the “AutoscaleMinimumTimeInterval” attribute.

– Returns – The int value of the “AutoscaleMinimumTimeInterval” attribute.

• getAutoscaleOutput
public int getAutoscaleOutput( )

– Description
Returns the value of the “AutoscaleOutput” attribute.

– Returns – The int value of the “AutoscaleOutput” attribute.

• getAxis
public Axis getAxis( )

– Description
Returns the value of the “Axis” attribute.

– Returns – the Axis value of the “Axis” attribute

• getBackground
public Background getBackground( )

– Description
Returns the value of the “Background” attribute. This is the node used to
draw the chart’s background.

– Returns – The Background value of the “Background” attribute, if defined.
Otherwise, null is returned.

• getBarGap
public double getBarGap( )

– Description
Returns the value of the “BarGap” attribute.

– Returns – the double value of the “BarGap” attribute, if defined. Otherwise,
0.0 is returned.

• getBarType
public int getBarType( )

– Description
Returns the value of the “BarType” attribute.

– Returns – an int which specifies BarType

• getBarWidth
public double getBarWidth( )
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– Description
Returns the value of the “BarWidth” attribute.

– Returns – the double value of the “BarWidth” attribute, if defined.
Otherwise, 0.5 is returned.

• getBooleanAttribute
public boolean getBooleanAttribute( java.lang.String name, boolean
defaultValue )

– Description
Convenience routine to get a Boolean-valued attribute.

– Parameters
∗ name – a String which contains the name of the attribute
∗ defaultValue – the boolean default value of the attribute

– Returns – the boolean value of the attribute, if defined and if its value is of
type Boolean. Otherwise defaultValue is returned.

• getChart
public Chart getChart( )

– Description
Returns the value of the “Chart” attribute. This is the root node of the chart
tree.

– Returns – The Chart value of the attribute, if defined. Otherwise, null is
returned.

• getChartTitle
public ChartTitle getChartTitle( )

– Description
Returns the value of the “ChartTitle” attribute.

– Returns – the ChartTitle value of the attribute.

• getChildren
public final ChartNode[] getChildren( )

– Description
Returns an array of the children of this node. If there are no children, a
0-length array is returned.

– Returns – a ChartNode array which contains the children of this node

• getClipData
public boolean getClipData( )
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– Description
Returns the value of the “ClipData” attribute.

– Returns – The boolean value of the attribute, if defined. Otherwise, true is
returned.

• getColorAttribute
public java.awt.Color getColorAttribute( java.lang.String name )

– Description
Convenience routine to get a Color-valued attribute.

– Parameters
∗ name – a String which contains the name of the attribute.

– Returns – the Color value of the attribute, if defined and if its value is of type
Color. Otherwise, a default color value is returned.

• getComponent
public java.awt.Component getComponent( )

– Description
Returns the value of the “Component” attribute. This is the AWT object into
which the chart is rendered.

– Returns – The Component value of the attribute, if defined. Otherwise, null is
returned.

• getConcatenatedViewport
public double[] getConcatenatedViewport( )

– Description
Returns the value of the “Viewport” attribute concatenated with the
“Viewport” attributes set in its ancestor nodes.

– Returns – a double[4] array containing xmin, xmax, ymin, ymax

• getCustomTransform
public Transform getCustomTransform( )

– Description
Returns the value of the “CustomTransform” attribute.

– Returns – an Transform which contains the value of the “Transform” attribute

• getDataType
public int getDataType( )

– Description
Returns the value of the “DataType” attribute.
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– Returns – The int value of the “DataType” attribute, if defined. Otherwise,
DATA TYPE LINE is returned.

• getDensity
public int getDensity( )

– Description
Returns the value of the “Density” attribute.

– Returns – The int value of the “Density” attribute, if defined. Otherwise, a
default value of zero is returned.

• getDoubleAttribute
public double getDoubleAttribute( java.lang.String name, double
defaultValue )

– Description
Convenience routine to get a Double-valued attribute.

– Parameters
∗ name – a String which contains the name of the attribute
∗ defaultValue – the double default value of the attribute.

– Returns – the double value of the attribute, if defined and if its value is of
type Double. Otherwise defaultValue is returned.

• getDoubleBuffering
public boolean getDoubleBuffering( )

– Description
Returns the value of the “DoubleBuffering” attribute.

– Returns – The boolean value of the “DoubleBuffering” attribute, if defined.
Otherwise, false is returned.

• getExplode
public double getExplode( )

– Description
Returns the value of the “Explode” attribute.

– Returns – The double value of the “Explode” attribute, if defined. Otherwise,
a default value of zero is returned. (The pie slice begins at the center.)

• getFillColor
public java.awt.Color getFillColor( )

– Description
Returns the value of the “FillColor” attribute.
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– Returns – The Color value of the “FillColor” attribute, if defined. Otherwise,
a default color value is returned.

• getFillOutlineColor
public java.awt.Color getFillOutlineColor( )

– Description
Returns the value of the “FillOutlineColor” attribute.

– Returns – The Color value of the “FillOutlineColor” attribute, if defined.
Otherwise, a default color value is returned.

• getFillOutlineType
public int getFillOutlineType( )

– Description
Returns the value of the “FillOutlineType” attribute.

– Returns – The int value of the “FillOutlineType” attribute, if defined.
Otherwise, FILL TYPE SOLID is returned.

• getFillPaint
public java.awt.Paint getFillPaint( )

– Description
Returns the value of the “FillPaint” attribute.

– Returns – The value of the “FillPaint” attribute, if defined. Otherwise, null is
returned.

• getFillType
public int getFillType( )

– Description
Returns the value of the “FillType” attribute.

– Returns – The int value of the “FillType” attribute, if defined. Otherwise,
FILL TYPE SOLID is returned.

• getFont
public java.awt.Font getFont( )

– Description
Convenience routine which gets a Font object based on the “FontName”,
“FontStyle” and “FontSize” attributes. There is no “Font” attribute.

• getFontName
public java.lang.String getFontName( )
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– Description
Returns the value of the “FontName” attribute.

– Returns – The String value of the “FontName” attribute, if defined.
Otherwise, the empty string is returned.

• getFontSize
public int getFontSize( )

– Description
Returns the value of the “FontSize” attribute.

– Returns – The int value of the “FontSize” attribute, if defined. Otherwise, 10
is returned.

• getFontStyle
public int getFontStyle( )

– Description
Returns the value of the “FontStyle” attribute.

– Returns – The int value of the “FontStyle” attribute, if defined. Otherwise,
java.awt.Font.PLAIN is returned.

• getGradient
public java.awt.Color[] getGradient( )

– Description
Returns the value of the “Gradient” attribute.

– Returns – a Color array which contains the color value of the “Gradient”
attribute, if defined. Otherwise, null is returned. The array is of length four,
containing {colorLL, colorLR, colorUR, colorUL}.

• getHREF
public java.lang.String getHREF( )

– Description
Returns the value of the “HREF” attribute.

– Returns – The value of the “HREF” attribute.

• getImage
public java.awt.Image getImage( )

– Description
Returns the value of the “Image” attribute.

– Returns – the Image value of the “Image” attribute
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• getIntegerAttribute
public int getIntegerAttribute( java.lang.String name, int
defaultValue )

– Description
Convenience routine to get an Integer-valued attribute.

– Parameters
∗ name – a String which contains the name of the attribute.
∗ defaultValue – the int default value of the attribute

– Returns – the int value of the attribute, if defined and if its value is of type
Integer. Otherwise defaultValue is returned.

• getLabelType
public int getLabelType( )

– Description
Returns the value of the “LabelType” attribute. If the attribute has not been
set LABEL TYPE NONE is returned.

– Returns – The int value of the “LabelType” attribute.

• getLegend
public Legend getLegend( )

– Description
Returns the value of the “Legend” attribute.

– Returns – the Legend value of the “Legend” attribute

• getLineColor
public java.awt.Color getLineColor( )

– Description
Returns the value of the “LineColor” attribute.

– Returns – The LineColor value of the “LineColor” attribute, if defined.
Otherwise, a default color value is returned.

• getLineDashPattern
public double[] getLineDashPattern( )

– Description
Returns the value of the “LineDashPattern” attribute.

– Returns – double array containing the value of the “LineDashPattern”
attribute, if defined. Otherwise, null is returned.

• getLineWidth
public double getLineWidth( )
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– Description
Returns the value of the “LineWidth” attribute.

– Returns – The double value of the “LineWidth” attribute, if defined.
Otherwise, the default value of one is returned.

• getLocale
public java.util.Locale getLocale( )

– Description
Returns the value of the “Locale” attribute.

– Returns – The Locale value of the “Locale” attribute, if defined. Otherwise, a
default value is returned.

• getMarkerColor
public java.awt.Color getMarkerColor( )

– Description
Returns the value of the “MarkerColor” attribute. Otherwise, a default color
value is returned.

– Returns – a Color which contains the “MarkerColor” value

• getMarkerDashPattern
public double[] getMarkerDashPattern( )

– Description
Returns the value of the “MarkerPattern” attribute.

– Returns – The double array which contains the value of the “MarkerPattern”
attribute, if defined. Otherwise, null is returned.

• getMarkerSize
public double getMarkerSize( )

– Description
Returns the value of the “MarkerSize” attribute.

– Returns – The double value of the “MarkerSize” attribute, if defined.
Otherwise, a default of 1.0 is returned.

• getMarkerThickness
public double getMarkerThickness( )

– Description
Returns the value of the “MarkerThickness” attribute.

– Returns – The double value of the “MarkerThickness” attribute, if defined.
Otherwise, a default of 1.0 is returned.
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• getMarkerType
public int getMarkerType( )

– Description
Returns the value of the “MarkerType” attribute.

– Returns – The int value of the “MarkerType” attribute, if defined.
Otherwise, a default of MARKER TYPE PLUS is returned.

• getName
public java.lang.String getName( )

– Description
Returns the value of the “Name” attribute.

– Returns – The String value of the “Name” attribute, if defined. Otherwise,
the empty string is returned.

• getNumber
public int getNumber( )

– Description
Returns the value of the “Number” attribute.

– Returns – The int value of the “Number” attribute, if defined. Otherwise,
zero is returned.

• getPaint
public boolean getPaint( )

– Description
Returns the value of the “Paint” attribute.

– Returns – The boolean value of the “Paint” attribute, if defined. Otherwise,
true is returned.

• getParent
public ChartNode getParent( )

– Description
Returns the parent of this node. Note that this is not an attribute setting.
Note that there is no setParent function.

– Returns – A ChartNode object which contains this node’s parent. This is null
in the case of the root node of the chart tree, since that node has no parent.

• getReference
public double getReference( )
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– Description
Returns the value of the “Reference” attribute.

– Returns – The double value of the “Reference” attribute, if defined.
Otherwise, zero is returned.

• getScreenAxis
public AxisXY getScreenAxis( )

– Description
Returns the value of the “ScreenAxis” attribute. This provides a default
mapping from the user coordinates [0,1] by [0,1] to the screen. This is set by
the root Chart node, so there is no setScreenAxis function.

– Returns – The AxisXY value of the “ScreenAxis” attribute

• getScreenSize
public java.awt.Dimension getScreenSize( )

– Description
Returns the value of the “ScreenSize” attribute.

– Returns – The Dimension value of the “ScreenSize” attribute, if defined.
Otherwise, the size of the “Component” attribute is returned. If neither the
“ScreenSize” nor the “Component” attributes are defined then null is returned.

• getScreenViewport
public int[] getScreenViewport( )

– Description
Returns the value of the “Viewport” attribute scaled by the screen size.

– Returns – the int[4] value of the “Viewport” attribute scaled by the screen
size containing the pixel coordinates for xmin, xmax, ymin, ymax

• getSize
public java.awt.Dimension getSize( )

– Description
Returns the value of the “Size” attribute.

– Returns – the Dimension value of the “Size” attribute

• getSkipWeekends
public boolean getSkipWeekends( )

– Description
Returns the value of the “SkipWeekends” attribute. If true then autoscaling
will not select an interval of less than a day.
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– Returns – the value of the “SkipWeekend” attribute..

• getStringAttribute
public java.lang.String getStringAttribute( java.lang.String name )

– Description
Convenience routine to get a String-valued attribute.

– Parameters
∗ name – a String which contains the name of the attribute.

– Returns – the String value of the attribute, if defined and if its value is of
type String.

• getTextAngle
public int getTextAngle( )

– Description
Returns the value of the “TextAngle” attribute.

– Returns – The int value of the “TextAngle” attribute, if defined. Otherwise,
zero is returned.

• getTextColor
public java.awt.Color getTextColor( )

– Description
Returns the value of the “TextColor” attribute.

– Returns – The Color value of the “TextColor” attribute, if defined. Otherwise,
a default color value is returned.

• getTextFormat
public java.text.Format getTextFormat( )

– Description
Returns the value of the “TextFormat” attribute.

– Returns – The Format value of the “TextFormat” attribute, if defined.
Otherwise, a default format is returned. The default is a NumberFomat that
allows exactly two digits after the decimal.

• getTickLength
public double getTickLength( )

– Description
Returns the value of the “TickLength” attribute.

– Returns – The double value of the “TickLength” attribute, if defined.
Otherwise, 1.0 is returned.
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• getTitle
public Text getTitle( )

– Description
Returns the value of the “Title” attribute.

– Returns – the Text value of the “Title” attribute

• getToolTip
public java.lang.String getToolTip( )

– Description
Returns the value of the “ToolTip” attribute.

– Returns – the String value of the “ToolTip” attribute

• getTransform
public int getTransform( )

– Description
Returns the value of the “Transform” attribute.

– Returns – an int which contains the value of the “Transform” attribute

• getViewport
public double[] getViewport( )

– Description
Returns the value of the “Viewport” attribute.

– Returns – a double[4] array containing xmin, xmax, ymin, ymax

• getX
public double[] getX( )

– Description
Returns the value of the “X” attribute.

– Returns – the double array which contains the value of the “X” attribute

• getY
public double[] getY( )

– Description
Returns the value of the “Y” attribute.

– Returns – the double array which contains the value of the “Y” attribute

• isAncestorOf
public boolean isAncestorOf( ChartNode node )
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– Description
Returns true if this node is an ancestor of the argument node.

– Parameters
∗ node – a ChartNode object

– Returns – a boolean, true if this node is an ancestor of the argument, node

• isAttributeSet
public boolean isAttributeSet( java.lang.String name )

– Description
Determines if an attribute is defined (may have been inherited).

– Parameters
∗ name – a String which contains the name of the attribute

– Returns – a boolean, true if the attribute is defined for this node. The
definition may have been inherited from its parent node.

• isAttributeSetAtThisNode
public boolean isAttributeSetAtThisNode( java.lang.String name )

– Description
Determines if an attribute is defined in this node (not inherited).

– Parameters
∗ name – a String which contains the name of the attribute

– Returns – a boolean, true if the attribute is defined in this node. The
definition must have been set directly in this node, not just inherited from its
parent node.

• isBitSet
public static boolean isBitSet( int flag, int mask )

– Description
Returns true if the bit set in flag is set in mask.

– Parameters
∗ flag – the int which contains the bit to be tested against mask
∗ mask – the int which is used as the mask

– Returns – a boolean, true if the bit set in flag is set in mask

• paint
public abstract void paint( Draw draw )

– Description
Paints this node and all of its children.

– Parameters
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∗ draw – the Draw object to be painted

• parseColor
public static java.awt.Color parseColor( java.lang.String nameColor
)

– Description
Returns a color specified by name or a red-green-blue triple.

– Parameters
∗ nameColor – is the name of a color (this name is not case sensitive) or a

comma separated list of red, green, blue values all in the range 0 to 255.
For example, “red” or “255,0,0”.

– Returns – the named Color.
– Throws
∗ java.lang.IllegalArgumentException – is thrown if the color name is

not known.

• remove
public final void remove( )

– Description
Removes the node from its parents list of children.

• removePickListener
public void removePickListener( PickListener pickListener )

– Description
Removes a PickListener from this node.

– Parameters
∗ pickListener – the PickListener to be removed from this node

• setALT
public void setALT( java.lang.String value )

– Description
Sets the value of the “ALT” attribute. The “ALT” attribute is used when
client-side image maps are generated. A client-side image map has an entry for
each node in which the chart attribute HREF is defined. Some browsers use the
alt tag value as tooltip text. *

– Parameters
∗ value – “ALT” value.
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• setAttribute
public void setAttribute( java.lang.String name, java.lang.Object
value )

– Description
Sets an attribute.

– Parameters
∗ name – a String which contains the name of the attribute to be set
∗ value – an Object which contains the value of the attribute

• setAutoscaleInput
public void setAutoscaleInput( int value )

– Description
Sets the value of the “AutoscaleInput” attribute. This attribute determines
what inputs are use for autoscaling.

– Parameters
∗ value – “AutoscaleInput” value. Legal values are

AUTOSCALE OFF Do not do autoscaling.
AUTOSCALE DATA Use the data values. This is the de-

fault.
AUTOSCALE WINDOW Use the “Window” attribute value.

• setAutoscaleMinimumTimeInterval
public void setAutoscaleMinimumTimeInterval( int value )

– Description
Sets the value of the “AutoscaleMinimumTimeInterval” attribute. This
attribute determines the minimum tick mark interval for autoscaled time axes.

– Parameters
∗ value – “AutoscaleMinimumTimeInterval” value. Legal values are:

MILLISECOND Millisecond
SECOND Second
MINUTE Minute
HOUR OF DAY Hour
DAY OF WEEK Day
WEEK OF YEAR Week
MONTH Month
YEAR Year
The default is MILLISECOND.

• setAutoscaleOutput
public void setAutoscaleOutput( int value )
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– Description
Sets the value of the “AutoscaleOutput” attribute. This attribute determines
what attributes to change as a result of autoscaling.

– Parameters
∗ value – “AutoscaleOutput” value. Legal values are bitwise-or

combinations of the following:
AUTOSCALE OFF Do not do autoscaling.
AUTOSCALE WINDOW Change the “Window” attribute

value.
AUTOSCALE NUMBER Change the “Number” attribute

value.
AUTOSCALE DENSITY Change the “Density” attribute

value.
The default is (AUTOSCALE NUMBER | AUTOSCALE WINDOW |

AUTOSCALE DENSITY).

• setBarGap
public void setBarGap( double value )

– Description
Sets the value of the “BarGap” attribute. This is the gap between bars in a
group. A gap of 1.0 means that space between bars is the same as the width of
an individual bar in the group.

– Parameters
∗ value – the double “BarGap” value

• setBarType
public void setBarType( int value )

– Description
Sets the value of the “BarType” attribute.

– Parameters
∗ value – an int which specifies BarType. Legal values are

BAR TYPE VERTICAL or BAR TYPE HORIZONTAL.

• setBarWidth
public void setBarWidth( double value )

– Description
Sets the value of the “BarWidth” attribute. This is the width of all of the
groups of bars at each index.

– Parameters
∗ value – the double “BarWidth” value.
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• setChartTitle
public void setChartTitle( ChartTitle value )

– Description
Sets the value of the “ChartTitle” attribute. This is effective only in the Chart
node, where it replaces the existing ChartTitle node. The Chart node
constructor creates a ChartTitle node and uses it to define its “ChartTitle”
attribute, so there is generally no need to call this routine.

– Parameters
∗ value – ChartTitle node

• setClipData
public void setClipData( boolean value )

– Description
Sets the value of the “ClipData” attribute. This indicates that the data
elements are to be clipped to the current window.

– Parameters
∗ value – “ClipData” value

• setCustomTransform
public void setCustomTransform( Transform value )

– Description
Sets the value of the “CustomTransform” attribute. This is used only if the
“Transform” attribute is set to TRANSFORM CUSTOM.

– Parameters
∗ value – an object implementing the Transform interface.

• setDataType
public void setDataType( int value )

– Description
Sets the value of the “DataType” attribute.

– Parameters
∗ value – “DataType” value. This should be some xor-ed combination of

DATA TYPE LINE, DATA TYPE MARKER, DATA TYPE FILL,
DATA TYPE ERROR X, DATA TYPE ERROR Y, and
DATA TYPE ERROR PICTURE.

• setDensity
public void setDensity( int value )
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– Description
Sets the value of the “Density” attribute. This attribute controls the number of
minor tick marks in the interval between major tick marks.

– Parameters
∗ value – int “Density” value which specifies the number of minor tick

marks per major tick mark.

• setDoubleBuffering
public void setDoubleBuffering( boolean value )

– Description
Sets the value of the “DoubleBuffering” attribute. Double buffering reduces
flicker when the screen is updated. This attribute only has an effect if it is set
at the root node of the chart tree.

– Parameters
∗ value – boolean “DoubleBuffering” value

• setExplode
public void setExplode( double value )

– Description
Sets the value of the “Explode” attribute. This attribute controls how far from
the center pie slices are drawn. The scale is proportional to the pie chart’s
radius.

– Parameters
∗ value – a double “Explode” value. This attribute controls how far from

the center pie slices are drawn. The scale is proportional to the pie chart’s
radius.

• setFillColor
public void setFillColor( java.awt.Color color )

– Description
Sets the value of the “FillColor” attribute.

– Parameters
∗ color – Color “FillColor” value

• setFillColor
public void setFillColor( java.lang.String color )

– Description
Sets the “FillColor” attribute to a color specified by name.

– Parameters
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∗ color – String name of a color.

• setFillOutlineColor
public void setFillOutlineColor( java.awt.Color color )

– Description
Sets the value of the “FillOutlineColor” attribute.

– Parameters
∗ color – a Color “FillOutlineColor” value.

• setFillOutlineColor
public void setFillOutlineColor( java.lang.String color )

– Description
Sets the value of the “FillOutlineColor” attribute to a color specified by name.

– Parameters
∗ color – String name of a color.

• setFillOutlineType
public void setFillOutlineType( int value )

– Description
Sets the value of the “FillOutlineType” attribute.

– Parameters
∗ value – “FillOutlineType” value. This value should be

FILL TYPE NONE or FILL TYPE SOLID.

• setFillPaint
public void setFillPaint( javax.swing.ImageIcon imageIcon )

– Description
Sets the value of the “FillPaint” attribute.

– Parameters
∗ imageIcon – is used to create a Paint object that is used as the value of

the “FillPaint” attribute.

• setFillPaint
public void setFillPaint( java.awt.Paint value )

– Description
Sets the value of the “FillPaint” attribute.

– Parameters
∗ value – “FillPaint” value.
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• setFillPaint
public void setFillPaint( java.net.URL urlImage )

– Description
Sets the value of the “FillPaint” attribute.

– Parameters
∗ urlImage – is the URL of an image used to set the FillPaint attribute.

• setFillType
public void setFillType( int value )

– Description
Sets the value of the “FillType” attribute.

– Parameters
∗ value – “FillType” value. This value should be FILL TYPE NONE,

FILL TYPE SOLID, FILL TYPE GRADIENT or FILL TYPE PAINT.

• setFont
public void setFont( java.awt.Font font )

– Description
Sets the value of the font attributes. This function sets the “FontName”,
“FontStyle” and “FontSize” attributes. There is no “Font” attribute.

– Parameters
∗ font – Font object whose components are used to set three different

attributes.

• setFontName
public void setFontName( java.lang.String value )

– Description
Sets the value of the “FontName” attribute. This is used in the constructor for
java.awt.Font.

– Parameters
∗ value – a String which contains the “FontName” value

• setFontSize
public void setFontSize( int value )

– Description
Sets the value of the “FontSize” attribute. This is used in the constructor for
java.awt.Font.

– Parameters
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∗ value – an int “FontSize” value

• setFontStyle
public void setFontStyle( int value )

– Description
Sets the value of the “FontStyle” attribute. This is used in the constructor for
java.awt.Font.

– Parameters
∗ value – an int “FontStyle” value.

• setGradient
public void setGradient( java.awt.Color[] colorGradient )

– Description
Sets the value of the “Gradient” attribute.

– Parameters
∗ colorGradient – is a Color array of length four, containing the colors at

the lower left, lower right, upper right and upper left corners of the
bounding box of the regions being filled. See
setGradient(java.awt.Color,java.awt.Color,java.awt.Color,java.awt.Color)
for details on the interpretation of these colors.

• setGradient
public void setGradient( java.awt.Color colorLL, java.awt.Color
colorLR, java.awt.Color colorUR, java.awt.Color colorUL )

– Description
Sets the value of the “Gradient” attribute.

– Parameters
∗ colorLL – Color value which specifies the color of the lower left corner.
∗ colorLR – Color value which specifies the color of the lower right corner.
∗ colorUR – Color value which specifies the color of the upper right corner.
∗ colorUL – Color value which specifies the color of the upper left corner.

This attribute defines a color gradient used to fill regions. Only two of the
four colors given are actually used.
If colorLL==colorLR and colorUL==colorUR then a vertical gradient is
drawn.
If colorLL==colorUL and colorLR==colorUR then a horizontal gradient is
drawn.
If colorLR==null and colorUL==null then a diagonal gradient is used.
If colorLL==null and colorUR==null then a diagonal gradient is used.
If none of these conditions is met then no gradient is drawn.
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• setGradient
public void setGradient( java.lang.String colorLL, java.lang.String
colorLR, java.lang.String colorUR, java.lang.String colorUL )

– Description
Sets the value of the “Gradient” attribute using named colors.

– Parameters
∗ colorLL – String value which specifies the color of the lower left corner.
∗ colorLR – String value which specifies the color of the lower right corner.
∗ colorUR – String value which specifies the color of the upper right corner.
∗ colorUL – String value which specifies the color of the upper left corner.

This attribute defines a color gradient used to fill regions. Only two of the
four colors given are actually used.
If colorLL==colorLR and colorUL==colorUR then a vertical gradient is
drawn.
If colorLL==colorUL and colorLR==colorUR then a horizontal gradient is
drawn.
If colorLR==null and colorUL==null then a diagonal gradient is used.
If colorLL==null and colorUR==null then a diagonal gradient is used.
If none of these conditions is met then no gradient is drawn.

• setHREF
public void setHREF( java.lang.String value )

– Description
Sets the value of the “HREF” attribute. The “HREF” attribute is used when
client-side image maps are generated. A client-side image map has an entry for
each node in which the chart attribute HREF is defined. The values of HREF
attributes are URLs. Such regions treated by the browser as hyperlinks.

– Parameters
∗ value – “HREF” value.

• setImage
public void setImage( java.awt.Image value )

– Description
Sets the value of the “Image” attribute. This function also loads the image, if
necessary, using the java.awt.MediaTracker class. The component associated
with this chart is redrawn after the image is loaded by MediaTracker.
Note that Image objects are not serializable and their presence in the chart tree
will make the entire chart non-serializable. javax.swing.ImageIcon objects are
serializable.
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– Parameters
∗ value – Image value.

• setImage
public void setImage( javax.swing.ImageIcon value )

– Description
Sets the value of the “Image” attribute.

– Parameters
∗ value – ImageIcon value.

• setLabelType
public void setLabelType( int type )

– Description
Sets the value of the “LabelType” attribute. This indicates how a data point is
to be labeled. The default is to not label data points.

– Parameters
∗ type – the int “LabelType” value

• setLineColor
public void setLineColor( java.awt.Color color )

– Description
Sets the value of the “LineColor” attribute.

– Parameters
∗ color – the LineColor value

• setLineColor
public void setLineColor( java.lang.String color )

– Description
Sets the value of the “LineColor” attribute.

– Parameters
∗ color – the LineColor value

• setLineDashPattern
public void setLineDashPattern( double[] value )

– Description
Sets the value of the “LineDashPattern” attribute.

– Parameters
∗ value – double “LineDashPattern” value.
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• setLineWidth
public void setLineWidth( double value )

– Description
Sets the value of the “LineWidth” attribute.

– Parameters
∗ value – the double “LineWidth” value

• setLocale
public void setLocale( java.util.Locale value )

– Description
Sets the value of the “Locale” attribute. This attribute controls how formatting
is done.

– Parameters
∗ value – the Locale value

• setMarkerColor
public void setMarkerColor( java.awt.Color color )

– Description
Sets the value of the “MarkerColor” attribute.

– Parameters
∗ color – a Color which contains the “MarkerColor” value

• setMarkerColor
public void setMarkerColor( java.lang.String color )

– Description
Sets the value of the “MarkerColor” attribute to a color specified by name.

– Parameters
∗ color – String name of a color.

• setMarkerDashPattern
public void setMarkerDashPattern( double[] value )

– Description
Sets the value of the “MarkerDashPattern” attribute.

– Parameters
∗ value – double array which contains the “MarkerDashPattern” value.

• setMarkerSize
public void setMarkerSize( double size )
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– Description
Sets the value of the “MarkerSize” attribute. The default marker size is 1.0. If
“MarkerSize” is 2.0 then markers are drawn twice as large as normal.

– Parameters
∗ size – a double which specifies the “MarkerSize” value

• setMarkerThickness
public void setMarkerThickness( double width )

– Description
Sets the value of the “MarkerThickness” attribute. This determines the line
thickness used to draw the markers. The default marker width is 1.0. If
“MarkerThickness” is 2.0 then markers are drawn twice as thick as normal.

– Parameters
∗ width – the double “MarkerThickness” value.

• setMarkerType
public void setMarkerType( int type )

– Description
Sets the value of the “MarkerType” attribute. This indicates which marker is
to be drawn.

– Parameters
∗ type – the int “MarkerType” value.

• setName
public void setName( java.lang.String value )

– Description
Sets the value of the “Name” attribute. This the user-friendly name of the
node.

– Parameters
∗ value – a String which contains the “Name” value

• setNumber
public void setNumber( int value )

– Description
Sets the value of the “Number” attribute. This is the number of tick marks
along an axis.

– Parameters
∗ value – the int “Number” value
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• setPaint
public void setPaint( boolean value )

– Description
Sets the value of the “Paint” attribute.

– Parameters
∗ value – the boolean “Paint” value. If false, this node and its children are

not drawn.

• setReference
public void setReference( double value )

– Description
Sets the value of the “Reference” attribute. This is used as the baseline in
drawing area charts. It is also used as the angle (in degrees) of the first slice in
a pie chart.

– Parameters
∗ value – the double “Reference” value

• setScreenSize
public void setScreenSize( java.awt.Dimension value )

– Description
Sets the value of the “ScreenSize” attribute.

– Parameters
∗ value – the Dimension “ScreenSize” value.

• setSize
public void setSize( java.awt.Dimension value )

– Description
Sets the value of the “Size” attribute.

– Parameters
∗ value – the Dimension “Size” value

• setSkipWeekends
public void setSkipWeekends( boolean skipWeekends )

– Description
Sets the value of the “SkipWeekends” attribute. If this attribute is true and
weekends are skipped on date axes. (A date axis is an Axis1D whose AxisLabel
has a TextFormat value that extends java.text.DateFormat.)
If this attribute is set to true, the attribute “AutoscaleMinimumTimeInterval”
should also be set to value of a day or longer.
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– Parameters
∗ skipWeekends – the boolean value.

• setTextAngle
public void setTextAngle( int value )

– Description
Sets the value of the “TextAngle” attribute. This indicates the angle, in
degrees, at which text is to be drawn. Only multiples of 90 are allowed at this
time.

– Parameters
∗ value – an int “TextAngle” value

• setTextColor
public void setTextColor( java.awt.Color color )

– Description
Sets the value of the “TextColor” attribute.

– Parameters
∗ color – a Color which contains the “TextColor” value

• setTextColor
public void setTextColor( java.lang.String color )

– Description
Sets the value of the “TextColor” attribute to a color specified by name.

– Parameters
∗ color – String name of a color.

• setTextFormat
public void setTextFormat( java.text.Format value )

– Description
Sets the value of the “TextFormat” attribute.

– Parameters
∗ value – a Format which contains the “TextFormat” value

• setTextFormat
public void setTextFormat( java.lang.String value )

– Description
Sets the value of the “TextFormat” attribute.
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The TextFormat attribute is normally a java.text.Format object, but, as a
convenience, it can be set as a String. The following special values are defined.
In this table, “locale” is the value of the locale attribute.
value Attribute
“Date(SHORT)” DateFormat.getDateInstance(

DateFormat.SHORT, locale)
“Date(MEDIUM)” DateFormat.getDateInstance(

DateFormat.MEDIUM, locale)
“Date(LONG)” DateFormat.getDateInstance(

DateFormat.LONG, locale)
“Currency” DateFormat.getCurrencyInstance(locale)
“Number” DateFormat.getNumberInstance(locale)
“Percent” DateFormat.getPercentInstance(locale)

If the value does not match one of these special cases then an interpretation as
a java.text.DecimalFormat object is attempted. If this fails then an
interpretation as a java.text.SimpleDateFormat object is attempted.

– Parameters
∗ value – a String which contains the “TextFormat” value

• setTickLength
public void setTickLength( double value )

– Description
Sets the value of the “TickLength” attribute. This scales the length of the tick
mark lines. A value of 2.0 makes the tick marks twice as long as normal. A
negative value causes the tick marks to be drawn pointing into the plot area.

– Parameters
∗ value – a double which contains the “TickLength” value

• setTitle
public void setTitle( java.lang.String value )

– Description
Sets the value of the “Title” attribute.

– Parameters
∗ value – a String which contains the “Title” value

• setTitle
public void setTitle( Text value )

– Description
Sets the value of the “Title” attribute.

– Parameters
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∗ value – a Text which contains the “Title” value

• setToolTip
public void setToolTip( java.lang.String value )

– Description
Sets the value of the “ToolTip” attribute.

– Parameters
∗ value – a String which contains the “ToolTip” value

• setTransform
public void setTransform( int value )

– Description
Sets the value of the “Transform” attribute. This sets the axis to be linear,
logarithmic or a custom transform.

– Parameters
∗ value – The “Transform” value. Legal values are TRANSFORM LINEAR

(the default), TRANSFORM LOG and TRANSFORM CUSTOM.

• setViewport
public void setViewport( double[] value )

– Description
Sets the value of the “Viewport” attribute. The viewport is the subregion of
the drawing surface where the plot is to be drawn. “Viewport” coordinates are
[0,1] by [0,1] with (0,0) in the lower left corner. This attribute affects only Axis
nodes, since they contain the mappings to device space.

– Parameters
∗ value – A double array of length 4 which contains the “Viewport” values

for xmin, xmax, ymin, ymax. The value saved is a copy of the input array.

• setViewport
public void setViewport( double xmin, double xmax, double ymin,
double ymax )

– Description
Sets the value of the “Viewport” attribute.

– Parameters
∗ xmin – a double, the left side of the viewport
∗ xmax – a double, the right side of the viewport
∗ ymin – a double, the bottom side of the viewport
∗ ymax – a double, the top side of the viewport
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• setX
public void setX( java.lang.Object value )

– Description
Sets the value of the “X” attribute.

– Parameters
∗ value – an Object which contains the “X” value

• setY
public void setY( java.lang.Object value )

– Description
Sets the value of the “Y” attribute.

– Parameters
∗ value – the Object which contains the “Y” value

• toString
public java.lang.String toString( )

– Description
Returns the name of this ChartNode

– Returns – a String, the name of this ChartNode

class Background

The background of a chart.

Grid is created by com.imsl.chart.Chart as its child. It can be retrieved using the method
getBackground().

Fill attributes in this node control the drawing of the background.

Declaration

public class com.imsl.chart.Background
extends com.imsl.chart.AxisXY (page 962)

Method
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• paint
public void paint( Draw draw )

– Description
Paint this node. This is not normally called by a user program.

– Parameters
∗ draw – the Draw object to be painted

class ChartTitle

The main title of a chart.

ChartTitle is created by com.imsl.chart.Chart as its child. It can be retrieved using the
method getChartTitle().

The chart title is the value of the “Title” attribute at this node. Text attributes in this
node control the drawing of the title.

Declaration

public class com.imsl.chart.ChartTitle
extends com.imsl.chart.AxisXY (page 962)

Method

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

class Legend

The chart legend.
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Legend is created by com.imsl.chart.Chart as its child. It can be retrieved using the
method getLegend().

By default the legend is not drawn. To have it drawn, set its “Paint” attribute to true.

com.imsl.chart.Data objects that have their “Title” attribute defined are automatically
entered into the legend.

The drawing of the background of the legend box is controlled by the fill attributes in this
node. Text attributes control the drawing of the text strings in the box.

Declaration

public class com.imsl.chart.Legend
extends com.imsl.chart.AxisXY (page 962)

Constructor

• Legend
protected Legend( Chart chart )

Method

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

class Grid

Draws the grid lines perpendicular to an axis.

Grid is created by com.imsl.chart.Axis1D as its child. It can be retrieved using the
method getGrid().
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Line attributes in this node control the drawing of the grid lines.

Declaration

public class com.imsl.chart.Grid
extends com.imsl.chart.ChartNode (page 920)

Methods

• getType
public int getType( )

– Description
Returns the axis type.

– Returns – an int, the axis type

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

class Axis

The Axis node provides the mapping for all of its children from the user coordinate space
to the device (screen) space.

Declaration

public abstract class com.imsl.chart.Axis
extends com.imsl.chart.ChartNode (page 920)
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Constructor

• Axis
public Axis( Chart chart )

– Description
Contructs an Axis node. Its parent must be a Chart node. This node’s “Axis”
attribute has itself as a value, so that decendent nodes can easily obtain their
controlling axis node.

– Parameters
∗ chart – a Chart object, the parent of this node

Methods

• mapDeviceToUser
public abstract void mapDeviceToUser( int devX, int devY, double[]
userXY )

– Description
Maps the device coordinates to user coordinates.

– Parameters
∗ devX – an int which specifies the device x-coordinate
∗ devY – an int which specifies the device y-coordinate
∗ userXY – an int[2] array on input, on output, the user coordinates

• mapUserToDevice
public abstract void mapUserToDevice( double userX, double userY,
int[] devXY )

– Description
Maps the user coordinates (userX,userY) to the device coordinates devXY.

– Parameters
∗ userX – a double which specifies the user x-coordinate
∗ userY – a double which specifies the user y-coordinate
∗ devXY – an int[2] array on input, on output, the device coordinates

• paint
public void paint( Draw draw )
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– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – a Draw object which specifies the chart tree to be rendered on the

screen

• setupMapping
public abstract void setupMapping( )

– Description
Initializes the mappings between user and coordinate space. This must be
called whenever the screen size, the window or the viewport may have changed.
Generally, it is safest to call this each time the chart is repainted.

class AxisXY

The axes for an x-y chart.

This node is used when the mapping to and from user and device space can be
decomposed into an x and a y mapping. This is when the mapping map(userX,userY) =
(deviceX,deviceY) can be written as map(userX,userY) = (mapX(userX),mapY(userY) =
(deviceX,deviceY)

Declaration

public class com.imsl.chart.AxisXY
extends com.imsl.chart.Axis (page 960)

Constructor

• AxisXY
public AxisXY( Chart chart )

– Description
Create an AxisXY. This also creates two Axis1D nodes as children of this node.
They hold the decomposed mapping. The “Viewport” attributute for this node
is set to [0.2,0.8] by [0.2,0.8].

– Parameters
∗ chart – the Chart parent of this node
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Methods

• getAxisX
public Axis1D getAxisX( )

– Description
Return the x-axis node.

– Returns – the Axis1D x-axis node

• getAxisY
public Axis1D getAxisY( )

– Description
Return the y-axis node.

– Returns – the Axis1D y-axis node

• getCross
public double[] getCross( )

– Description
Returns the value of the “Cross” attribute.

– Returns – a double[2] array containing the value of the “Cross” attribute, if
defined. The value is the point where the X and Y axes intersect,
(xcross,ycross). If “Cross” is not defined then null is returned.

• mapDeviceToUser
public void mapDeviceToUser( int devX, int devY, double[] userXY
)

– Description
Map the device coordinates to user coordinates.

– Parameters
∗ devX – an int which specifies the device x-coordinate
∗ devY – an int which specifies the device y-coordinate
∗ userXY – a double[2] array on input. On output, the user coordinates.

• mapUserToDevice
public void mapUserToDevice( double userX, double userY, int[]
devXY )

– Description
Map the user coordinates (userX,userY) to the device coordinates devXY.

– Parameters
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∗ userX – a double which specifies the user x-coordinate
∗ userY – a double which specifies the user y-coordinate
∗ devXY – an int[2] array on input. On output, the device coordinates.

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

• setCross
public void setCross( double[] cross )

– Description
Sets the value of the “Cross” attribute. This defines the point where the X and
Y axes intersect. If “Cross” is not defined then the attribute “Window” is used
to determine the crossing point.

– Parameters
∗ cross – is a double of length two containing the x and y-coordinate where

the axes cross

• setCross
public void setCross( double xcross, double ycross )

– Description
Sets the value of the “Cross” attribute. This defines the point where the X and
Y axes intersect. If “Cross” is not defined then the attribute “Window” is used
to determine the crossing point.

– Parameters
∗ xcross – a double which specifies the x-coordinate where the axes cross
∗ ycross – a double which specifies the y-coordinate where the axes cross

• setupMapping
public void setupMapping( )

– Description
Initializes the mappings between user and coordinate space. This must be
called whenever the screen size, the window or the viewport may have changed.
Generally, it is safest to call this each time the chart is repainted.

• setWindow
public void setWindow( double[] value )
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– Description
Sets the window in user coordinates along an axis.

– Parameters
∗ value – a double array which contains the minimum and maximum of the

window along an axis

class Axis1D

An x-axis or a y-axis.

Axis1D is created by com.imsl.chart.AxisXY as its child. It can be retrieved using the
method getAxisX() or getAxisY().

It in turn creates the following child nodes: com.imsl.chart.AxisLine,
com.imsl.chart.AxisLabel, com.imsl.chart.AxisTitle, com.imsl.chart.AxisUnit,
com.imsl.chart.MajorTick, com.imsl.chart.MinorTick and com.imsl.chart.Grid.

The number of tick marks (“Number” attribute) is set to 5, but autoscaling can change
this value.

Declaration

public class com.imsl.chart.Axis1D
extends com.imsl.chart.ChartNode (page 920)

Methods

• getAxisLabel
public AxisLabel getAxisLabel( )

– Description
Returns the label node associated with this axis.

– Returns – the AxisLabel node created as a child by this node

• getAxisLine
public AxisLine getAxisLine( )

– Description
Returns the axis line node associated with this axis.
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– Returns – the AxisLine node created as a child by this node

• getAxisTitle
public AxisTitle getAxisTitle( )

– Description
Returns the title node associated with this axis.

– Returns – the AxisTitle node created as a child by this node

• getAxisUnit
public AxisUnit getAxisUnit( )

– Description
Returns the unit node associated with this axis.

– Returns – the AxisUnit node created as a child by this node

• getFirstTick
public double getFirstTick( )

– Description
Convenience routine to get the “FirstTick” attribute.

– Returns – the double value of the “FirstTick” attribute, if defined. Otherwise,
window[0] is returned.

• getGrid
public Grid getGrid( )

– Description
Returns the grid node associated with this axis.

– Returns – the Grid node created as a child by this node

• getMajorTick
public MajorTick getMajorTick( )

– Description
Returns the major tick node associated with this axis.

– Returns – the MajorTick node created as a child by this node

• getMinorTick
public MinorTick getMinorTick( )

– Description
Returns the minor tick node associated with this axis.

– Returns – the MinorTick node created as a child by this node
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• getTickInterval
public double getTickInterval( )

– Description
Retrieves the tick interval.

– Returns – a double which specifies the tick interval

• getTicks
public double[] getTicks( )

– Description
Returns the value of the “Ticks” attribute, if set. If not set, then computed tick
values are returned.

– Returns – the double value of the “Ticks” attribute, if defined. Otherwise, the
computed tick values are returned.

• getType
public int getType( )

– Description
Returns the axis type.

– Returns – an int which specifies the node type; can be AXIS X, AXIS Y,
AXIS X TOP or AXIS Y RIGHT

• getWindow
public double[] getWindow( )

– Description
Returns the window for an Axis1D.

– Returns – a double array of length two containing the range of this axis.

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

• setFirstTick
public void setFirstTick( double firstTick )

– Description
Convenience routine to set the “FirstTick” attribute.
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– Parameters
∗ firstTick – a double, the location of the first tick

• setTickInterval
public void setTickInterval( double tickInterval )

– Description
Sets the tick interval.

– Parameters
∗ tickInterval – a double which specifies a tick interval

• setTicks
public void setTicks( double[] ticks )

– Description
Sets the value of the “Ticks” attribute. The attribute Number is set to the
length of the array.

– Parameters
∗ ticks – an array of doubles which contain the location, in user

coordinates, of the major tick marks. If set, this attribute overrides the
automatic computation of the tick values.

• setType
public void setType( int type )

– Description
Sets the type of this node.

– Parameters
∗ type – an int which specifies the node type; can be AXIS X, AXIS Y,

AXIS X TOP or AXIS Y RIGHT

• setWindow
public void setWindow( double[] window )

– Description
Sets the window for an Axis1D.

– Parameters
∗ window – is an array of length two containing the range of this axis.

• setWindow
public void setWindow( double min, double max )

– Description
Sets the window for an Axis1D.
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– Parameters
∗ min – a double which specifies the value of the left/bottom end of the axis
∗ max – a double which specifies the value of the right/top end of the axis

class AxisLabel

The labels on an axis.

AxisLabel is created by com.imsl.chart.Axis1D as its child. It can be retrieved using the
method getAxisLabel().

Axis labels are placed at the tick mark locations. The number of tick marks is determined
by the attribute “Number”. Tick marks are evenly spaced. If the attribute “Labels” is
defined then it is used to label the tick marks.

If “Labels” is not defined, the ticks are labeled numerically. The endpoint label values are
obtained from the attribute “Window”. The numbers are formatted using the attribute
“TextFormat”.

Text attributes in this node control the drawing of the axis labels.

Declaration

public class com.imsl.chart.AxisLabel
extends com.imsl.chart.ChartNode (page 920)

Methods

• getLabels
public Text[] getLabels( )

– Description
Returns the “Labels” attribute.

– Returns – a String array containing the axis labels, if set. Otherwise, null is
returned.

• paint
public void paint( Draw draw )
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– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

• setLabels
public void setLabels( java.lang.String[] value )

– Description
Sets the axis label values for this node to be used instead of the default
numbers. The attribute “Number” is also set to value.length.

– Parameters
∗ value – a String array containing the labels for the major tick marks

class AxisLine

The axis line.

AxisLine is created by com.imsl.chart.Axis1D as its child. It can be retrieved using the
method getAxisLine().

Line attributes in this node control the drawing of the axis line.

Declaration

public class com.imsl.chart.AxisLine
extends com.imsl.chart.ChartNode (page 920)

Method

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted
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class AxisTitle

The title on an axis.

AxisTitle is created by com.imsl.chart.Axis1D as its child. It can be retrieved using the
method getAxisTitle().

The axis title is the value of the “Title” attribute at this node. Text attributes in this
node control the drawing of the axis title.

Declaration

public class com.imsl.chart.AxisTitle
extends com.imsl.chart.ChartNode (page 920)

Method

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

class AxisUnit

The unit title on an axis.

AxisUnit is created by com.imsl.chart.Axis1D as its child. It can be retrieved using the
method getAxisUnit().

The unit title is the value of the “Title” attribute at this node. Text attributes in this
node control the drawing of the unit title.

Declaration

public class com.imsl.chart.AxisUnit
extends com.imsl.chart.ChartNode (page 920)
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Method

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

class MajorTick

The major tick marks.

MajorTick is created by com.imsl.chart.Axis1D as its child. It can be retrieved using the
method getMajorTick().

Line attributes in this node control the drawing of the major tick marks.

Declaration

public class com.imsl.chart.MajorTick
extends com.imsl.chart.ChartNode (page 920)

Method

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted
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class MinorTick

The minor tick marks.

MinorTick is created by com.imsl.chart.Axis1D as its child. It can be retrieved using the
method getMinorTick().

Line attributes in this node control the drawing of the minor tick marks.

Declaration

public class com.imsl.chart.MinorTick
extends com.imsl.chart.ChartNode (page 920)

Method

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

interface Transform

Defines a custom transformation along an axis. Axis1D has built in support for linear and
logarithmic transformations. Additional transformations can be specified by setting the
“CustomTransform” attribute in an Axis1D to an object that implements this interface.
The interface consists of two methods that must be implemented. Each method is the
inverse of the other.

Declaration

public interface com.imsl.chart.Transform
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Methods

• mapUnitToUser
double mapUnitToUser( double unit )

– Description
Maps points in the interval [0,1] to user coordinates.

• mapUserToUnit
double mapUserToUnit( double user )

– Description
Maps user coordinate to the interval [0,1]. The user coordinate interval is
specified by the “Window” attribute for the axis with which the transform is
associated.

• setupMapping
void setupMapping( Axis1D axis1d )

– Description
Initializes the mappings between user and coordinate space.

class TransformDate

Defines a transformation along an axis that skips weekend dates.

Declaration

public class com.imsl.chart.TransformDate
extends java.lang.Object
implements Transform

Constructor

• TransformDate
public TransformDate( )
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Methods

• isWeekday
public boolean isWeekday( java.util.GregorianCalendar cal )

– Description
Returns true if the specified date is a weekday.

• mapUnitToUser
public double mapUnitToUser( double unit )

– Description
Maps points in the interval [0,1] to user coordinates.

• mapUserToUnit
public double mapUserToUnit( double user )

– Description
Maps user coordinate to the interval [0,1]. The user coordinate interval is
specified by the “Window” attribute for the axis with which the transform is
associated.

• setupMapping
public void setupMapping( Axis1D axis1d )

– Description
Initializes the mappings between user and coordinate space.

class AxisR

The R-axis in a polar plot.

AxisR is created by com.imsl.chart.Polar as its child. It can be retrieved using the method
getAxisR().

It in turn creates the following child nodes: com.imsl.chart.AxisRLine,
com.imsl.chart.AxisRLabel and com.imsl.chart.AxisRMajorTick.

The number of tick marks (“Number” attribute) is set to 4, but autoscaling can change
this value.
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Declaration

public class com.imsl.chart.AxisR
extends com.imsl.chart.ChartNode (page 920)

Methods

• getAxisRLabel
public AxisRLabel getAxisRLabel( )

– Description
Returns the AxisRLabel node.

• getAxisRLine
public AxisRLine getAxisRLine( )

– Description
Returns the AxisRLine node.

• getAxisRMajorTick
public AxisRMajorTick getAxisRMajorTick( )

– Description
Returns the major tick node associated with this axis.

– Returns – the MajorTick node created as a child by this node

• getTickInterval
public double getTickInterval( )

– Description
Retrieves the tick interval.

– Returns – a double which indicates the tick interval

• getTicks
public double[] getTicks( )

– Description
Returns the value of the “Ticks” attribute, if set. If not set, then it computes
and returns tick values, based on the attributes “Number” and “TickInterval”.

– Returns – the double values of the “Ticks” attribute, if defined. Otherwise,
computed tick values are returned.
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• getWindow
public double getWindow( )

– Description
Returns the Window attribute.

– Returns – a double which specifies the Window value

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children.

– Parameters
∗ draw – the Draw object to be painted

• setTickInterval
public void setTickInterval( double tickInterval )

– Description
Sets the tick interval.

– Parameters
∗ tickInterval – a double which specifies the tick interval

• setWindow
public void setWindow( double rmax )

– Description
Sets the Window attribute. The R-axis always starts at 0. The Window
attribute is the maximum value of R.

– Parameters
∗ rmax – a double specifying the radius at which the AxisTheta is drawn.

class AxisRLabel

The labels on an axis.

AxisRLabel is created by com.imsl.chart.AxisR as its child. It can be retrieved using the
method getAxisRLabel().

Axis labels are placed at the tick mark locations. The number of tick marks is determined
by the attribute “Number”. Tick marks are evenly spaced. If the attribute “Labels” is
defined then it is used to label the tick marks.
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If “Labels” is not defined, the ticks are labeled numerically. The endpoint label values are
obtained from the attribute “Window”. The numbers are formatted using the attribute
“TextFormat”.

Text attributes in this node control the drawing of the axis labels.

Declaration

public class com.imsl.chart.AxisRLabel
extends com.imsl.chart.ChartNode (page 920)

Methods

• getLabels
public Text[] getLabels( )

– Description
Returns the “Labels” attribute.

– Returns – a Text array containing the axis labels and formatting information,
if set. Otherwise, null is returned.

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

• setLabels
public void setLabels( java.lang.String[] value )

– Description
Sets the axis label values for this node to be used instead of the default
numbers. The attribute “Number” is also set to value.length.

– Parameters
∗ value – a String array containing the labels to be used to label the major

tick marks
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class AxisRLine

The radius axis line in a polar plot.

AxisRLine is created by com.imsl.chart.AxisR as its child. It can be retrieved using the
method getAxisRLine().

Line attributes in this node control the drawing of the axis line.

Declaration

public class com.imsl.chart.AxisRLine
extends com.imsl.chart.ChartNode (page 920)

Method

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

class AxisRMajorTick

The major tick marks for the radius axis in a polar plot.

AxisRMajorTick is created by com.imsl.chart.AxisR as its child. It can be retrieved using
the method getAxisRMajorTick().

Line attributes in this node control the drawing of the major tick marks.

Declaration

public class com.imsl.chart.AxisRMajorTick
extends com.imsl.chart.ChartNode (page 920)
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Method

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

class AxisTheta

The angular axis in a polar plot.

AxisTheta is created by com.imsl.chart.Polar as its child. It can be retrieved using the
method getAxisTheta().

The angles are labeled using the TextFormat attribute, which is set to ‘‘0.##\\u00b0’’,
where \\u00b0 is the Unicode character for degrees. This labels the angles in degrees.
More generally, TextFormat can be set to a NumberFormat object to format the angles in
degrees.

TextFormat can also be set to a MessageFormat object. In this case, field {0} is the value
in degrees, field {1} is the value in radians and field {2} is the value in radians/π. So, for
labels like 1.5\\u03c0, where \\u03c0 is the Unicode character for π, set TextFormat to
new MessageFormat(‘‘{2,number,0.##\\u03c0}’’).

The number of tick marks (“Number” attribute) is set to 9, but autoscaling can change
this value.

Declaration

public class com.imsl.chart.AxisTheta
extends com.imsl.chart.ChartNode (page 920)

Methods
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• getTicks
public double[] getTicks( )

– Description
Returns the value of the “Ticks” attribute, if set. If not set then computed tick
values are returned. These are the positions at which the angles are labeled.

– Returns – the double value of the “Ticks” attribute, if defined. Otherwise,
computed tick values are returned. The ticks are in radians, not degrees.

• getWindow
public double[] getWindow( )

– Description
Returns the window for an AxisTheta.

– Returns – a double array of length two containing the angular range of the
window.

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children.

– Parameters
∗ draw – the Draw object to be painted

• setWindow
public void setWindow( double[] window )

– Description
Sets the window for an AxisTheta.

– Parameters
∗ window – a double array of length two containing the angular range.

• setWindow
public void setWindow( double min, double max )

– Description
Sets the window for an AxisTheta. The default Window is [0,2pi].

– Parameters
∗ min – a double which specifies the initial angular value, in radians.
∗ max – a double which specifies the final angular value, in radians.
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class GridPolar

Draws the grid lines for a polar plot.

PolarGrid is created by com.imsl.chart.Polar as its child. It can be retrieved using the
method getGridPolar().

Line attributes in this node control the drawing of the grid lines.

Declaration

public class com.imsl.chart.GridPolar
extends com.imsl.chart.ChartNode (page 920)

Method

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children.

– Parameters
∗ draw – the Draw object to be painted

class Data

Draws a data node.

Drawing of a Data node is determined by the setting of the “DataType” attribute.
Multiple bits can be set in “DataType”. If the DATA TYPE LINE bit is set, the line
attributes are active. If the DATA TYPE MARKER bit is set, the marker attributes are
active. If the DATA TYPE FILL bit is set, the fill attributes are active.

If the attribute “LabelType” is set to other than the default, then the data points are
labeled. The contents of the labels are determined by the value of the “LabelType”
attribute. See Chart Programmer’s Guide: Labels for details. The drawing of the labels is
controlled by the text attributes.
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Declaration

public class com.imsl.chart.Data
extends com.imsl.chart.ChartNode (page 920)

Constructors

• Data
public Data( ChartNode parent )

– Description
Creates a data node.

– Parameters
∗ parent – the ChartNode parent of this data node

• Data
public Data( ChartNode parent, ChartFunction cf, double a, double b )

– Description
Creates a data node with y values. The attribute “X” is set to the double array
containing {0,1,...,y.length-1}.

– Parameters
∗ parent – the ChartNode parent of this data node
∗ cf – a ChartFunction object that defines the function to be plotted
∗ a – a double, the left endpoint
∗ b – a double, the right endpoint

• Data
public Data( ChartNode parent, double[] y )

– Description
Creates a data node with y values. The attribute “X” is set to the double array
containing {0,1,...,y.length-1}.

– Parameters
∗ parent – the ChartNode parent of this data node
∗ y – a double array containing the “Y” attribute in this node

• Data
public Data( ChartNode parent, double[] x, double[] y )

– Description
Creates a data node with x and y values.
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– Parameters
∗ parent – the ChartNode parent of this data node
∗ x – a double array which contains the value for the attribute “X” in this

node
∗ y – a double array which contains the value for the attribute “Y” in this

node

Methods

• dataRange
public void dataRange( double[] range )

– Description
Update the data range. range = {xmin,xmax,ymin,ymax} The entries in range
are updated to reflect the extent of the data in this node. Range is an
input/output variable. Its value should be updated only if the data in this node
is outside the range already in the array.

– Parameters
∗ range – a double array which contains the updated range,
{xmin,xmax,ymin,ymax}

• formatLabel
protected Text formatLabel( double x, double y )

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

Example: Scatter Chart

A scatter plot is constructed in this example. Three data sets are used and a legend is
added to the chart. This class can be used either as an applet or as an application.
import com.imsl.chart.*;

import java.awt.Color;

public class ScatterEx1 extends javax.swing.JApplet {
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private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);

panel = new JPanelChart(chart);

getContentPane().add(panel, java.awt.BorderLayout.CENTER);

setup(chart);

}

static private void setup(Chart chart) {
AxisXY axis = new AxisXY(chart);

int npoints = 20;

double dx = .5 * Math.PI/(npoints - 1);

double x[] = new double[npoints];

double y1[] = new double[npoints];

double y2[] = new double[npoints];

double y3[] = new double[npoints];

// Generate some data

for (int i = 0; i < npoints; i++){
x[i] = i * dx;

y1[i] = Math.sin(x[i]);

y2[i] = Math.cos(x[i]);

y3[i] = Math.atan(x[i]);

}
Data d1 = new Data(axis, x, y1);

Data d2 = new Data(axis, x, y2);

Data d3 = new Data(axis, x, y3);

// Set Data Type to Marker

d1.setDataType(d1.DATA TYPE MARKER);

d2.setDataType(d2.DATA TYPE MARKER);

d3.setDataType(d3.DATA TYPE MARKER);

// Set Marker Types

d1.setMarkerType(Data.MARKER TYPE CIRCLE PLUS);

d2.setMarkerType(Data.MARKER TYPE HOLLOW SQUARE);

d3.setMarkerType(Data.MARKER TYPE ASTERISK);

// Set Marker Colors

d1.setMarkerColor(Color.red);
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d2.setMarkerColor(Color.black);

d3.setMarkerColor(Color.blue);

// Set Data Labels

d1.setTitle("Sine");

d2.setTitle("Cosine");

d3.setTitle("ArcTangent");

// Add a Legend

Legend legend = chart.getLegend();

legend.setTitle(new Text("Legend"));

chart.addLegendItem(2, chart);

legend.setPaint(true);

// Set the Chart Title

chart.getChartTitle().setTitle("Scatter Plot");

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();

ScatterEx1.setup(frame.getChart());

frame.show();

}
}
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Output
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Example: Line Chart

A simple line chart is constructed in this example. Three data sets are used and a legend
is added to the chart. This class can be used either as an applet or as an application.
import com.imsl.chart.*;

import java.awt.Color;

public class LineEx1 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);

panel = new JPanelChart(chart);

getContentPane().add(panel, java.awt.BorderLayout.CENTER);

setup(chart);

}

Charting Data • 987



static private void setup(Chart chart) {
AxisXY axis = new AxisXY(chart);

int npoints = 20;

double dx = .5 * Math.PI/(npoints - 1);

double x[] = new double[npoints];

double y1[] = new double[npoints];

double y2[] = new double[npoints];

double y3[] = new double[npoints];

// Generate some data

for (int i = 0; i < npoints; i++){
x[i] = i * dx;

y1[i] = Math.sin(x[i]);

y2[i] = Math.cos(x[i]);

y3[i] = Math.atan(x[i]);

}
Data d1 = new Data(axis, x, y1);

Data d2 = new Data(axis, x, y2);

Data d3 = new Data(axis, x, y3);

// Set Data Type to Line

axis.setDataType(axis.DATA TYPE LINE);

// Set Line Colors

d1.setLineColor(Color.red);

d2.setLineColor(Color.black);

d3.setLineColor(Color.blue);

// Set Data Labels

d1.setTitle("Sine");

d2.setTitle("Cosine");

d3.setTitle("ArcTangent");

// Add a Legend

Legend legend = chart.getLegend();

legend.setTitle(new Text("Legend"));

chart.addLegendItem(1, chart);

legend.setPaint(true);

// Set the Chart Title
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chart.getChartTitle().setTitle("Line Plots");

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();

LineEx1.setup(frame.getChart());

frame.show();

}
}

Output
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Example: Picture Chart

A picture plot is constructed in this example. This class can be used either as an applet or
as an application.
import com.imsl.chart.*;
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import java.awt.Color;

import java.net.URL;

import javax.swing.ImageIcon;

public class PictureEx1 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);

panel = new JPanelChart(chart);

getContentPane().add(panel, java.awt.BorderLayout.CENTER);

setup(chart);

}

static private void setup(Chart chart) {
AxisXY axis = new AxisXY(chart);

int npoints = 20;

double dx = .5 * Math.PI/(npoints - 1);

double x[] = new double[npoints];

double y1[] = new double[npoints];

double y2[] = new double[npoints];

// Generate some data

for (int i = 0; i < npoints; i++){
x[i] = i * dx;

y1[i] = Math.sin(x[i]);

y2[i] = Math.cos(x[i]);

}
Data d1 = new Data(axis, x, y1);

Data d2 = new Data(axis, x, y2);

// Load Images

d1.setDataType(Data.DATA TYPE PICTURE);

d1.setImage(loadImage("/com/imsl/example/chart/marker.gif"));

d2.setDataType(Data.DATA TYPE PICTURE);

d2.setImage(loadImage("/com/imsl/example/chart/marker2.gif"));

// Set the Chart Title

chart.getChartTitle().setTitle("Picture Plot");

}
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static private java.awt.Image loadImage(String name) {
return new ImageIcon(PictureEx1.class.getResource(name)).getImage();

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();

PictureEx1.setup(frame.getChart());

frame.show();

}
}

Output
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Example: Area Chart

An area chart is constructed in this example. Three data sets are used and a legend is
added to the chart. This class can be used either as an applet or as an application.
import com.imsl.chart.*;

import java.awt.Color;

public class AreaEx1 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);

panel = new JPanelChart(chart);

getContentPane().add(panel, java.awt.BorderLayout.CENTER);

setup(chart);

}

static private void setup(Chart chart) {
AxisXY axis = new AxisXY(chart);

int npoints = 20;

double dx = .5 * Math.PI/(npoints - 1);

double x[] = new double[npoints];

double y1[] = new double[npoints];

double y2[] = new double[npoints];

double y3[] = new double[npoints];

// Generate some data

for (int i = 0; i < npoints; i++) {
x[i] = i * dx;

y1[i] = Math.sin(x[i]);

y2[i] = Math.cos(x[i]);

y3[i] = Math.atan(x[i]);

}
Data d1 = new Data(axis, x, y1);

Data d2 = new Data(axis, x, y2);

Data d3 = new Data(axis, x, y3);

// Set Data Type to Fill Area

axis.setDataType(d1.DATA TYPE FILL);

// Set Line Colors
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d1.setLineColor(Color.red);

d2.setLineColor(Color.black);

d3.setLineColor(Color.blue);

// Set Fill Colors

d1.setFillColor(Color.red);

d2.setFillColor(Color.black);

d3.setFillColor(Color.blue);

// Set Data Labels

d1.setTitle("Sine");

d2.setTitle("Cosine");

d3.setTitle("ArcTangent");

// Add a Legend

Legend legend = chart.getLegend();

legend.setTitle(new Text("Legend"));

legend.setPaint(true);

// Set the Chart Title

chart.getChartTitle().setTitle("Area Plots");

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();

AreaEx1.setup(frame.getChart());

frame.show();

}
}
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Output
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interface ChartFunction

An interface that allows a function to be plotted.

Declaration

public interface com.imsl.chart.ChartFunction

Method

• f
double f( double x )
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– Description
Function to be charted.

class ChartSpline

Wrap a spline into a ChartFunction to be plotted.

Declaration

public class com.imsl.chart.ChartSpline
extends java.lang.Object
implements ChartFunction

Constructors

• ChartSpline
public ChartSpline( com.imsl.math.Spline spline )

– Description
Creates a ChartSpline from a Spline.

– Parameters
∗ spline – The Spline to be plotted.

• ChartSpline
public ChartSpline( com.imsl.math.Spline spline, int ideriv )

– Description
Creates a ChartSpline from the derivative of a Spline.

– Parameters
∗ spline – The Spline to be plotted.
∗ ideriv – The derivative to be plotted. If zero, the function value is

plotted. If one, the first derivative is plotted, etc.

Method
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• f
public double f( double x )

– Description
Function to be charted.

class Text

The value of the attribute “Title”. A Title is a multi-line string with alignment
information.

Line breaks are indicated by the newline character (‘\n’) within the string.

Titles are drawn relative to a reference point. Alignment determines the position of the
reference point on the horizontally-aligned box that bounds the text.

Declaration

public class com.imsl.chart.Text
extends java.lang.Object
implements java.io.Serializable

Constructors

• Text
public Text( java.text.Format format, double value )

– Description
Creates a text object by applying a java.text.Format to a double.

– Parameters
∗ format – a java.text.Format
∗ value – the double to which the java.text.Format is to be applied.

• Text
public Text( java.lang.String string )

– Description
Construct a Text object.

– Parameters
∗ string – a String

996 • Text JMSL



• Text
public Text( java.lang.String string, int alignment )

– Description
Construct a Text object with specified alignment.

– Parameters
∗ string – a String
∗ alignment – an int which specifies the alignment. The alignment

determines the position of the reference point on the horizontally aligned
box containing the drawn text. It is the bitwise combination of one of
TEXT X LEFT, TEXT X CENTER, TEXT X RIGHT and one of
TEXT Y BOTTOM, TEXT Y CENTER, TEXT Y TOP.

Methods

• getAlignment
public int getAlignment( )

– Description
Gets the alignment for this Text object.

– Returns – the int which specifies the alignment for this Text object.

• getOffset
public double getOffset( )

– Description
Returns the offset.

• getString
public java.lang.String getString( )

– Description
Gets the string for this Text object.

– Returns – the String

• setAlignment
public void setAlignment( int alignment )

– Description
Sets the alignment for this Text object.

– Parameters
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∗ alignment – the int which specifies the alignment.

• setDefaultAlignment
public void setDefaultAlignment( int alignment )

– Description
Sets the alignment to use, if it has not been set using setAlignment(int).

– Parameters
∗ alignment – the int which specifies the default alignment.

• setDefaultOffset
public void setDefaultOffset( double offset )

– Description
Sets the default value of the offset. Offset is in units of the default marker size.
Text drawn is offset in the direction of the alignment.

• setOffset
public void setOffset( double offset )

– Description
Sets the offset. Offset is in units of the default marker size. Text drawn is offset
in the direction of the alignment.

• setString
public void setString( java.lang.String string )

– Description
Sets the string for this Text object.

– Parameters
∗ string – the String

class ToolTip

A ToolTip for a chart element.

This class requires that the chart’s component be a subclass of javax.swing.JComponent.
The JComponent class can be subclassed to provide different behaviors for displaying
ToolTips.

To use, create an instance of ToolTip to activate the ToolTips in a node and in the node’s
descendants. The ToolTip string is the value of a node’s “ToolTip” attribute or, if it is
null, the node’s “Title” attribute.
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Declaration

public class com.imsl.chart.ToolTip
extends com.imsl.chart.ChartNode (page 920)
implements PickListener, java.awt.event.MouseMotionListener

Constructor

• ToolTip
public ToolTip( ChartNode parent )

– Description
Creates a ToolTip node that enables ToolTips on charts.

– Parameters
∗ parent – The ChartNode parent of this node. Do not use the root chart

node for this argument, because it will normally select only the background
node.

Methods

• mouseDragged
public void mouseDragged( java.awt.event.MouseEvent e )

– Description
Part of the MouseMotionListener interface.

• mouseMoved
public void mouseMoved( java.awt.event.MouseEvent event )

– Description
Part of the MouseMotionListener interface.

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children.

– Parameters
∗ draw – the Draw object to be painted
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• pickPerformed
public void pickPerformed( PickEvent event )

– Description
Part of the PickListener interface.

class FillPaint

A collection of methods to create Paint objects for fill areas. All of the Paint objects
returned by the methods in this class are Serializable, unlike most Paint objects.

Declaration

public class com.imsl.chart.FillPaint
extends java.lang.Object

Methods

• checkerboard
public static java.awt.Paint checkerboard( int n, java.awt.Color
colorA, java.awt.Color colorB )

– Description
Returns a checkerboard pattern.

– Parameters
∗ n – is the size of the pattern in pixels.
∗ colorA – is one of the colors.
∗ colorB – is the other color.

– Returns – a Paint containing the checkerboard pattern.

• crosshatch
public static java.awt.Paint crosshatch( int n, int p, java.awt.Color
colorBackground, java.awt.Color colorLine )

– Description
Returns a horizonal and vertical crosshatch pattern.

– Parameters
∗ n – is the size of the pattern in pixels.
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∗ p – is the number of pixels between the vertical lines.
∗ colorBackground – is the background color.
∗ colorLine – is the line color.

– Returns – a Paint containing the pattern.

• diagonal
public static java.awt.Paint diagonal( int n, java.awt.Color colorA,
java.awt.Color colorB )

– Description
Returns a diagonal pattern.

– Parameters
∗ n – is the size of the pattern in pixels.
∗ colorA – is one of the colors.
∗ colorB – is the other color.

– Returns – a Paint containing the checkerboard pattern.

• diamond
public static java.awt.Paint diamond( int n, int p, java.awt.Color
colorBackground, java.awt.Color colorLine )

– Description
Returns a diamond pattern (a checkerboard rotated 45 degrees).

– Parameters
∗ n – is the size of the pattern in pixels.
∗ p – is the thickness of the line.
∗ colorBackground – is the color of the background.
∗ colorLine – is the color of the line.

– Returns – a Paint containing the diamond pattern.

• diamondHatch
public static java.awt.Paint diamondHatch( int n, int p,
java.awt.Color colorBackground, java.awt.Color colorLine )

– Description
Returns a crosshatch on a 45 degree angle.

– Parameters
∗ n – is the size of the pattern in pixels.
∗ p – is the number of pixels between the vertical lines.
∗ colorBackground – is the background color.
∗ colorLine – is the line color.

– Returns – a Paint containing the pattern.
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• dot
public static java.awt.Paint dot( int n, int r, java.awt.Color
colorBackground, java.awt.Color colorCircle )

– Description
Returns a pattern that is an array of circles.

– Parameters
∗ n – is the size of the pattern in pixels.
∗ r – is the radius, in pixels, of the circles in the pattern.
∗ colorBackground – is the background color.
∗ colorCircle – is the color of the circles.

– Returns – a Paint containing the pattern.

• horizontalStripe
public static java.awt.Paint horizontalStripe( int n, int p,
java.awt.Color colorBackground, java.awt.Color colorLine )

– Description
Returns a horizontally striped pattern.

– Parameters
∗ n – is the size of the pattern in pixels.
∗ p – is the number of pixels between the vertical lines.
∗ colorBackground – is the background color.
∗ colorLine – is the line color.

– Returns – a Paint containing the pattern.

• image
public static java.awt.Paint image( javax.swing.ImageIcon imageIcon )

– Description
Returns a tiling of an image.

– Parameters
∗ imageIcon – is the image to be tiled.

– Returns – a Paint containing the tiling of the image.

• verticalStripe
public static java.awt.Paint verticalStripe( int n, int p,
java.awt.Color colorBackground, java.awt.Color colorLine )

– Description
Returns a vertically striped pattern.

– Parameters
∗ n – is the size of the pattern in pixels.
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∗ p – is the number of pixels between the vertical lines.
∗ colorBackground – is the background color.
∗ colorLine – is the line color.

– Returns – a Paint containing the pattern.

class Draw

Chart tree renderer.

Renders the chart tree to the screen.

Declaration

public class com.imsl.chart.Draw
extends java.lang.Object

Fields

• protected static final double RADIAN

• protected static final int NONE

• protected static final int LINE

• protected static final int MARKER

• protected static final int FILL

• protected static final int TEXT

• protected static final int IMAGE

• protected static final int ERROR BAR

• protected java.awt.Graphics2D graphics

• protected java.awt.geom.GeneralPath path

• protected ChartNode node

• protected int currentType
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• protected boolean haveLineProperties

• protected java.awt.Color lineColor

• protected float lineWidth

• protected float[] lineDashPattern

• protected boolean haveMarkerProperties

• protected java.awt.Color markerColor

• protected float markerSize

• protected int markerType

• protected float markerThickness

• protected float[] markerDashPattern

• protected boolean haveFillProperties

• protected java.awt.Color fillColor

• protected java.awt.Color fillOutlineColor

• protected int fillType

• protected int fillOutlineType

• protected java.awt.Paint fillPaint

• protected boolean haveTextProperties

• protected java.awt.Font textFont

• protected java.awt.Color textColor

• protected int textAngle

• protected float scaleFont

• protected boolean haveImageProperties

• protected java.awt.Component imageObserver

• protected boolean haveErrorBarProperties

• protected static final int LAST

– Flag for the last data marker.
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• protected static final float MARKER SCALE

– Normal marker size in pixels is screen width times MARKER SCALE.

• protected static final float[][][] outline

– Markers defined on a [-1,1] x [-1,1] grid. Each row is a continuous polyline,
{x1,y1, x2,y2, x3,y3, etc.} If a row contains only a single number then that
number is taken as the radius of a circle with center at (0,0).

Constructor

• Draw
public Draw( java.awt.Graphics graphics, java.awt.Dimension bounds )

– Description
Contructs a Draw object.

– Parameters
∗ graphics – is the graphics context in which to draw.
∗ bounds – is the size of the chart to be drawn.

Methods

• check
protected void check( int type )

• drawArc
public void drawArc( int x, int y, int width, int height, int
startAngle, int arcAngle )

– Description
Draws the outline of a circular or elliptical arc covering the specified rectangle.
The center of the arc is center of this rectangle.

– Parameters
∗ x – An int which specifies the x of the rectangle.
∗ y – An int which specifies the y of the rectangle origin.
∗ width – An int which specifies the width of the rectangle.
∗ height – An int which specifies the height of the rectangle.
∗ startAngle – An int which specifies the start angle in degrees. startAngle

= 0 is equivalent to the 3-o’clock position.
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∗ arcAngle – An int which specifies the arcAngle. drawArc draws the arc
from startAngle to startAngle+arcAngle. A positive arcAngle indicates a
counter-clockwise rotation. A negative arcAngle implies a clockwise
rotation.

• drawErrorBar
public void drawErrorBar( int x0, int y0, int x1, int y1, int flag )

– Description
Draw an error bar.

– Parameters
∗ x0 – an int which specifies the x-coordinate of the beginning reference

point
∗ y0 – an int which specifies the y-coordinate of the beginning reference

point
∗ x1 – an int which specifies the x-coordinate of the ending reference point
∗ y1 – an int which specifies the y-coordinate of the ending reference point
∗ flag – indicates which caps to draw (0=none, 1=bottom, 2=top, 3=both).

• drawImage
public void drawImage( java.awt.Image image, int x, int y )

– Description
Draw an image.

– Parameters
∗ image – the Image object to be drawn
∗ x – an int which specifies the x-coordinate of the reference point
∗ y – an int which specifies the y-coordinate of the reference point

• drawLine
public void drawLine( int x0, int y0, int x1, int y1 )

– Description
Draw a line from (x0,y0) to (x1,y1).

– Parameters
∗ x0 – an int which specifies the x0 of the line origin, (x0,y0)
∗ y0 – an int which specifies the y0 of the line origin, (x0,y0)
∗ x1 – an int which specifies the x1 of the line destination, (x1,y1)
∗ y1 – an int which specifies the y1 of the line destination, (x1,y1)

• drawMarker
public void drawMarker( int x, int y )
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– Description
Draw a marker.

– Parameters
∗ x – an int which specifies the x of the marker destination, (x,y)
∗ y – an int which specifies the y of the marker destination, (x,y)

• drawRotatedText
protected void drawRotatedText( Text text, int x, int y, float angle
)

– Description
Draws a text object, at the specified angle, with its lower left point being at
(x,y).

• drawText
protected void drawText( java.awt.Graphics g, Text text )

– Description
Draws the text.

• drawText
public java.awt.Dimension drawText( Text text, int x, int y )

– Description
Draws a text object.

– Parameters
∗ text – the Textobject to be drawn
∗ x – an int which specifies the abscissa of the (x,y) point at which to start

drawing the text
∗ y – an int which specifies the ordinate of the (x,y) point at which to start

drawing the text

• drawText
protected java.awt.Dimension drawText( Text text, int x, int y,
boolean dimensionOnly )

– Description
Draws a text object. The angle of the string is given by textAngle. Consider
the horizontally and vertically aligned bounding box around the string. The
box below corresponds to textAngle == 45.

*--*--*

| o|

| l |
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| e |
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*--*--*

The reference point corresponds to one of the 8 starred points on the bounding
box, as indicated by the “alignment” attribute“ in the text object.

– Parameters
∗ text – a Text object to be drawn.
∗ x – an int which specifies the x-coordinate of the reference point.
∗ y – an int which specifies the y-coordinate of the reference point.
∗ dimensionOnly – a boolean which is true if only the bounding box is to be

computed and no text actually drawn.
– Returns – the dimension of the bounding box.

• endErrorBar
public void endErrorBar( )

– Description
Stop drawing an error bar.

• endFill
public void endFill( )

– Description
Stop drawing a filled region.

• endImage
public void endImage( )

– Description
Stop drawing an image.

• endLine
public void endLine( )

– Description
Finish drawing lines.

• endMarker
public void endMarker( )

– Description
Finish drawing markers.
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• endText
public void endText( )

– Description
Stop drawing text.

• fillArc
public void fillArc( int x, int y, int width, int height, int
startAngle, int arcAngle )

– Description
Fills a circular or elliptical arc covering the specified rectangle. The center of
the arc is center of this rectangle.

– Parameters
∗ x – An int which specifies the x of the rectangle.
∗ y – An int which specifies the y of the rectangle origin.
∗ width – An int which specifies the width of the rectangle.
∗ height – An int which specifies the height of the rectangle.
∗ startAngle – An int which specifies the start angle in degrees. startAngle

= 0 is equivalent to the 3-o’clock position.
∗ arcAngle – An int which specifies the arcAngle.

• fillPolygon
public void fillPolygon( int[] xpoints, int[] ypoints, int npoints )

– Description
Fill a polygon.

– Parameters
∗ xpoints – an int array which contains the abscissae of the points which

define the polygon
∗ ypoints – an int array which contains the ordinates of the points which

define the polygon
∗ npoints – an int which specifies the number of points

• fillPolygon
public void fillPolygon( java.awt.Polygon polygon )

– Description
Fill a polygon defined by a Polygon object.

– Parameters
∗ polygon – a Polygon object which specifies the polygon to be filled

• fillRectangle
public void fillRectangle( int x, int y, int width, int height )
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– Description
Fill a rectangle.

– Parameters
∗ x – an int which specifies the abscissa of the origin of the rectangle
∗ y – an int which specifies the ordinate of the origin of the rectangle
∗ width – an int which specifies the width of the rectangle
∗ height – an int which specifies the height of the rectangle

• getClipBounds
public java.awt.Rectangle getClipBounds( )

– Description
Get the clipping rectangle.

– Returns – a Rectangle object which contains the clipping bounds

• getDeviceMarkerSize
public float getDeviceMarkerSize( )

– Description
Returns the marker size in device corrdinates.

• getScaleFont
public double getScaleFont( )

– Description
Returns the factor by which fonts are to be scaled.

• getSize
protected java.awt.Dimension getSize( Text text )

– Description
Returns the size of the bounding box for a text object. This does not take into
account any rotation.

• setClip
public void setClip( java.awt.Rectangle clip )

– Description
Set the clipping rectangle.

– Parameters
∗ clip – a Rectangle object which contains the clipping bounds

• setNode
public void setNode( ChartNode node )
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– Description
Set the current ChartNode. This is used to get drawing attributes from the
tree.

– Parameters
∗ node – a ChartNode object

• setScaleFont
public void setScaleFont( double scaleFont )

– Description
Set a factor by which fonts are to be scaled.

• start
public void start( Chart chart )

– Description
Called just before a chart is drawn.

• startErrorBar
public void startErrorBar( )

– Description
Start drawing an error bar.

• startFill
public void startFill( )

– Description
Start drawing a filled region.

• startImage
public void startImage( )

– Description
Start drawing an image.

• startLine
public void startLine( )

– Description
Start drawing lines.

• startMarker
public void startMarker( )

Charting Draw • 1011



– Description
Start drawing markers.

• startText
public void startText( )

– Description
Start drawing text.

• stop
public void stop( )

– Description
Called when a chart is finished being drawn.

• translate
public void translate( int x, int y )

– Description
Translates the origin to the point (x,y)

– Parameters
∗ x – an int which specifies the x of the new origin
∗ y – an int which specifies the y of the new origin

class JFrameChart

JFrameChart is a JFrame that contains a chart. It is designed to allow simple charting
applications to be quickly implemented. It contains a menu bar with “Print” and “Exit”
menu items.

Declaration

public class com.imsl.chart.JFrameChart
extends javax.swing.JFrame

Constructors

• JFrameChart
public JFrameChart( )
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– Description
Creates new JFrameChart to display a chart.

• JFrameChart
public JFrameChart( Chart chart )

– Description
Creates new JFrameChart to display a given chart.

– Parameters
∗ chart – is the Chart to be displayed

Methods

• getChart
public Chart getChart( )

– Description
Return the Chart object.

– Returns – the chart being displayed by this container

• getPanel
public JPanelChart getPanel( )

– Description
Returns the JPanelChart into which the chart is drawn.

• setChart
public void setChart( Chart chart )

– Description
Sets the chart to be handled.

– Parameters
∗ chart – is the new chart

class JPanelChart

A Swing JPanel that contains a chart. This class causes the contained chart to be redrawn
as necessary.
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Declaration

public class com.imsl.chart.JPanelChart
extends javax.swing.JPanel

Field

• protected Chart chart

– The embedded chart.

Constructors

• JPanelChart
public JPanelChart( )

– Description
Creates new JPanelChart. This creates a new Chart object.

• JPanelChart
public JPanelChart( Chart chart )

– Description
Creates new JPanelChart using a given Chart object.

– Parameters
∗ chart – is the Chart to be displayed in this panel

Methods

• getChart
public Chart getChart( )

– Description
Return the Chart object.

– Returns – the chart being displayed by this container

• paintComponent
public void paintComponent( java.awt.Graphics g )
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– Description
Calls the UI delegate’s paint method, if the UI delegate is non-null. We pass
the delegate a copy of the Graphics object to protect the rest of the paint code
from irrevocable changes (for example, Graphics.translate). If you override
this in a subclass you should not make permanent changes to the passed in
Graphics). For example, you should not alter the clip Rectangle or modify the
transform. If you need to do these operations you may find it easier to create a
new Graphics from the passed in Graphics and manipulate it. Further, if you
do not invoker super’s implementation you must honor the opaque property,
that is if this component is opaque, you must completely fill in the background
in a non-opaque color. If you do not honor the opaque property you will likely
see visual artifacts.

– Parameters
∗ g – the Graphics for painting the chart.

• print
public void print( )

– Description
Print the chart, centered on a page.

• setChart
public void setChart( Chart chart )

– Description
Sets the Chart to be handled by this container.

– Parameters
∗ chart – is the Chart to be displayed by this container

class DrawPick

The DrawPick class.

Declaration

public class com.imsl.chart.DrawPick
extends com.imsl.chart.Draw (page 1003)
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Constructor

• DrawPick
public DrawPick( java.awt.event.MouseEvent event, java.awt.Graphics
graphics, java.awt.Dimension bounds )

– Description
Contructs a DrawPick object.

– Parameters
∗ event – is a MouseEvent
∗ graphics – is the graphics context in which to draw.
∗ bounds – is the size of the chart to be drawn.

Methods

• drawArc
public void drawArc( int x, int y, int width, int height, int
startAngle, int arcAngle )

– Description
Draw an arc.

– Parameters
∗ x – An int which specifies the x of the rectangle origin, (x,y). The center

of the arc is the center of this rectangle.
∗ y – An int which specifies the y of the rectangle origin, (x,y). The center

of the arc is the center of this rectangle.
∗ width – An int which specifies the width of the rectangle.
∗ height – An int which specifies the height of the rectangle.
∗ startAngle – An int which specifies the start angle in degrees. startAngle

= 0 is equivalent to the 3-o’clock position.
∗ arcAngle – An int which specifies the arcAngle. drawArc draws the arc

from startAngle to startAngle+arcAngle. A positive arcAngle indicates a
counter-clockwise rotation. A negative arcAngle implies a clockwise
rotation.

• drawErrorBar
public void drawErrorBar( int x0, int y0, int x1, int y1 )

– Description
Draw ErrorBar
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– Parameters
∗ x0 – an int which specifies the x-coordinate of the beginning reference

point
∗ y0 – an int which specifies the y-coordinate of the beginning reference

point
∗ x1 – an int which specifies the x-coordinate of the ending reference point
∗ y1 – an int which specifies the y-coordinate of the ending reference point

• drawImage
public void drawImage( java.awt.Image image, int x, int y )

– Description
Draw Image

– Parameters
∗ image – the Image object to be drawn
∗ x – an int which specifies the x-coordinate of the reference point
∗ y – an int which specifies the y-coordinate of the reference point

• drawLine
public void drawLine( int x0, int y0, int x1, int y1 )

– Description
Draw a line from (x0,y0) to (x1,y1).

– Parameters
∗ x0 – an int which specifies the x0 of the line origin, (x0,y0)
∗ y0 – an int which specifies the y0 of the line origin, (x0,y0)
∗ x1 – an int which specifies the x1 of the line destination, (x1,y1)
∗ y1 – an int which specifies the y1 of the line destination, (x1,y1)

• drawMarker
public void drawMarker( int x, int y )

– Description
Draw a marker.

– Parameters
∗ x – an int which specifies the x of the marker destination, (x,y)
∗ y – an int which specifies the y of the marker destination, (x,y)

• drawText
public java.awt.Dimension drawText( Text text, int x, int y )

– Description copied from Draw (page 1003)
Draws a text object.

– Parameters
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∗ text – the Textobject to be drawn
∗ x – an int which specifies the abscissa of the (x,y) point at which to start

drawing the text
∗ y – an int which specifies the ordinate of the (x,y) point at which to start

drawing the text

• endErrorBar
public void endErrorBar( )

– Description
End ErrorBar

• endFill
public void endFill( )

– Description
End fill

• endImage
public void endImage( )

– Description
End Image

• endLine
public void endLine( )

– Description
Finish drawing lines.

• endMarker
public void endMarker( )

– Description
Finish drawing markers.

• endText
public void endText( )

– Description
End Text

• fillArc
public void fillArc( int x, int y, int width, int height, int
startAngle, int arcAngle )
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– Description
Fills a circular or elliptical arc covering the specified rectangle. The center of
the arc is center of this rectangle.

– Parameters
∗ x – An int which specifies the x of the rectangle.
∗ y – An int which specifies the y of the rectangle origin.
∗ width – An int which specifies the width of the rectangle.
∗ height – An int which specifies the height of the rectangle.
∗ startAngle – An int which specifies the start angle in degrees. startAngle

= 0 is equivalent to the 3-o’clock position.
∗ arcAngle – An int which specifies the arcAngle. drawArc draws the arc

from startAngle to startAngle+arcAngle. A positive arcAngle indicates a
counter-clockwise rotation. A negative arcAngle implies a clockwise
rotation.

• fillPolygon
public void fillPolygon( int[] xpoints, int[] ypoints, int npoints )

– Description
Fill a polygon.

– Parameters
∗ xpoints – an int array which contains the abscissae of the points which

define the polygon
∗ ypoints – an int array which contains the ordinates of the points which

define the polygon
∗ npoints – an int which specifies the number of points

• fillPolygon
public void fillPolygon( java.awt.Polygon polygon )

– Description
Fill a polygon defined by a Polygon object.

– Parameters
∗ polygon – a Polygon object which specifies the polygon to be filled

• fillRectangle
public void fillRectangle( int x, int y, int width, int height )

– Description
Fill a rectangle.

– Parameters
∗ x – an int which specifies the abscissa of the origin of the rectangle
∗ y – an int which specifies the ordinate of the origin of the rectangle
∗ width – an int which specifies the width of the rectangle
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∗ height – an int which specifies the height of the rectangle

• fire
public void fire( )

– Description
Fires the pickListeners for all of the picked nodes.

• getTolerance
public int getTolerance( )

– Description
Get the minimum distance that an event can be from a point or a line and still
be considered a hit.

– Returns – an int which specifies the minimum distance that an event can be
from a point or a line and still be considered a hit

• pickNode
protected void pickNode( )

– Description
Register the currentNode as the “picked” node if the “PickListener” attribute
is defined for the current node.

• setNode
public void setNode( ChartNode node )

– Description
Set the current ChartNode. This is used to get drawing attributes from the
tree.

– Parameters
∗ node – a ChartNode object

• setTolerance
public void setTolerance( int tolerance )

– Description
Set the minimum distance that an event can be from a point or a line and still
be considered a hit.

– Parameters
∗ tolerance – an int which specifies the minimum distance that an event

can be from a point or a line and still be considered a hit

• startErrorBar
public void startErrorBar( )
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– Description
Start ErrorBar

• startFill
public void startFill( )

– Description
Fill

• startImage
public void startImage( )

– Description
Start Image

• startLine
public void startLine( )

– Description
Start drawing lines.

• startMarker
public void startMarker( )

– Description
Start drawing markers.

• startText
public void startText( )

– Description
Start drawing text

• translate
public void translate( int x, int y )

– Description
Translates the origin to the point (x,y)

– Parameters
∗ x – an int which specifies the x of the new origin
∗ y – an int which specifies the y of the new origin
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class PickEvent

An event that indicates that a chart element has been selected.

Declaration

public class com.imsl.chart.PickEvent
extends java.awt.event.MouseEvent

Constructors

• PickEvent
public PickEvent( java.awt.Component source, int id, long when, int
modifiers, int x, int y, int clickCount, boolean popupTrigger )

– Description
Construct a PickEvent object at point (x,y).

– Parameters
∗ source – the Component that originated the event
∗ id – an int that identifies the event
∗ when – a long that gives the time the event occurred
∗ modifiers – an int that gives the modifier keys down during event (e.g.

shift, ctrl, alt, meta)
∗ x – an int, the x coordinate of the point (x,y)
∗ y – an int, the y coordinate of the point (x,y)
∗ clickCount – an int which specifies the number of mouse button clicks

necessary to trigger the event
∗ popupTrigger – is a boolean, true if this event is a trigger for a popup

menu

• PickEvent
public PickEvent( java.awt.event.MouseEvent event )

– Description
Construct a PickEvent object.

– Parameters
∗ event – a MouseEvent
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Methods

• getNode
public ChartNode getNode( )

– Description
Gets this ChartNode.

• pointToLine
public static double pointToLine( int Px, int Py, int[] devA, int[]
devB )

– Description
Compute the distance from the point (Px,Py) to the line segment AB. If the
closest point from P to the line AB is not between A and B then the distance
to the closer of A and B is returned.

– Parameters
∗ Px – an int, the x coordinate of the point (Px,Py)
∗ Py – an int, the y coordinate of the point (Px,Py)
∗ devA – an int array which contains the point which defines the head of the

line segment.
∗ devB – an int array which contains the point which defines the tail of the

line segment.
– Returns – a double, the distance from the point (Px,Py) to the line segment

AB.

• setNode
public void setNode( ChartNode node )

– Description
Sets the ChartNode.

– Parameters
∗ node – the ChartNode to be set

interface PickListener

The listener interface for receiving pick events.
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Declaration

public interface com.imsl.chart.PickListener
implements java.util.EventListener

Method

• pickPerformed
void pickPerformed( PickEvent event )

– Description
Public interface for PickListener.

– Parameters
∗ event – a PickEvent

class JspBean

JspBean is used to refer to charts in a Java Server Page that are later rendered using the
ChartServlet.

Declaration

public class com.imsl.chart.JspBean
extends java.lang.Object
implements java.io.Serializable

Constructor

• JspBean
public JspBean( )

– Description
Creates a JspBean object.
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Methods

• getChartServletName
public java.lang.String getChartServletName( )

– Description
Returns the URL of the servlet used to render the chart.

• getCreateImageMap
public boolean getCreateImageMap( )

– Description
Returns true if a client-side imagemap is to be created.

• getId
public java.lang.String getId( )

– Description
Returns the identifier number for the chart. It is assigned a unique random
value by the constructor.

• getImageMap
public java.lang.String getImageMap( )

– Description
Returns an HTML for the client-side imagemap. This HTML is to be inserted
into the page being generated.

– Returns – the HTML map tag. If no map is defined the empty string is
returned.

• getImageTag
public java.lang.String getImageTag( )

– Description
Returns an HTML image tag. This is normally inserted into the HTML being
generated.

– Returns – the HTML tag refering to the servlet-generated chart. If no image
is defined the empty string is returned.

• getMapName
public java.lang.String getMapName( )
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– Description
Returns the name of the client-size imagemap. This is null if CreateImageMap
is false.

• getSize
public java.awt.Dimension getSize( )

– Description
Returns the size of the generated image.

• registerChart
public void registerChart( Chart chart,
javax.servlet.http.HttpServletRequest request )

– Description
Saves the chart and sets the chart attribute “Size”. The chart is saved using
the saveChart method. If the ChartServletName has not been set, it is set to
“ContextPath/servlet/com.imsl.chart.ChartServlet“, where ”ContextPath is
the context path in the request.

– Parameters
∗ chart – is the chart to be registered. The java.awt.Dimension-value

attribute “Size” is set in the root node of the chart tree. The Size attribute
is used by com.imsl.chart.ChartServlet.
∗ request – from the Java Server Page.

• saveChart
protected void saveChart( Chart chart,
javax.servlet.http.HttpServletRequest request )

– Description
Saves the chart so that a servlet can later render it. The chart is saved in the
HttpSession, associated with the request, under the key “chartNNN“, where
NNN is the value of the id property. This method can be overridden to change
the mechanism by which the bean and the servlet correspond.

– Parameters
∗ chart – is the chart to be registered.
∗ request – from the Java Server Page. The chart is saved in its session

object.

• setChartServletName
public void setChartServletName( java.lang.String chartServletName
)
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– Description
Sets the URL of the servlet used to render the chart. Its initial value is null. It
is usually set in the registerChart method. Since this is used only in the image
tag, it can be specified relative to the URL of the page in which the image tag
is used.

– Parameters
∗ chartServletName – is the location of the chart servlet to be used in the

generated image tag.

• setCreateImageMap
public void setCreateImageMap( boolean createImageMap )

– Description
Sets a flag indicating if a client-size imagemap is to be generated. Its initial
value is false. A client-side image map has an entry for each node in which the
chart attribute HREF is defined. The values of HREF attributes are URLs. Such
regions are treated by the browser as hyperlinks.

– Parameters
∗ createImageMap – is true if a client-side image map is to be generated.

• setSize
public void setSize( java.awt.Dimension size )

– Description
Sets the size of the generated image. Its initial value is new Dimension(300,300).

– Parameters
∗ size – is the size of the generated image.

• setSize
public void setSize( int width, int height )

– Description
Sets the size of the generated image. Its initial value is new Dimension(300,300).

– Parameters
∗ width – is the width of the generated image.
∗ height – is the height of the generated image.

class ChartServlet

The base class for chart servlets.
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This class requires a servlet container.

The behavior of this class depends on the version of the Java runtime being used.

• JDK1.4 or later. Images are rendered using the standard class
javax.imageio.ImageIO. This class can be used on a headless server. Java runs in a
headless mode if the system property java.awt.headless=true. This class turns off
caching in the ImageIO class (calls javax.imageio.ImageIO.setUseCache(false)).

• JDK1.3 or earlier. Since the ImageIO class does not exist in older versions of Java,
this class requires the Java Advanced Imaging Toolkit (JAI) and a running
windowing system to create images. It will not work on a “headless” server.

Declaration

public class com.imsl.chart.ChartServlet
extends javax.servlet.http.HttpServlet

Constructor

• ChartServlet
public ChartServlet( )

Methods

• doGet
protected void doGet( javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response ) throws
javax.servlet.ServletException, java.io.IOException

– Description
Returns the chart as a PNG image. The HTTP request parameter “id” selects
the chart.

– Parameters
∗ request – an HttpServletRequest object that contains the request the

client has made of the servlet
∗ response – an HttpServletResponse object that contains the response the

servlet sends to the client
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• getChart
protected Chart getChart( javax.servlet.http.HttpServletRequest
request )

– Description
Returns the chart found in the session saved with the key “chart”+id, where id
is the value of the “id” parameter in the request. This method can be
overridden to change how charts are communicated to this servlet.

– Parameters
∗ request – an HttpServletRequest object that contains the request the

client has made of the servlet
– Returns – the chart to be rendered or null if the chart cannot be found.

• init
public void init( ) throws javax.servlet.ServletException

class DrawMap

Creates an HTML client-side imagemap from a chart tree. Entries in the imagemap
correspond to nodes that define the HREF attribute.

Declaration

public class com.imsl.chart.DrawMap
extends com.imsl.chart.Draw (page 1003)

Constructor

• DrawMap
public DrawMap( java.awt.Graphics graphics, java.awt.Dimension
bounds )

– Description
Contructs a DrawMap object.

– Parameters
∗ graphics – is the graphics context in which to draw.
∗ bounds – is the size of the chart to be drawn.
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Methods

• circle
protected void circle( int x, int y, int r )

– Description
Sets a circle as the target.

– Parameters
∗ x – is the x-coordinate of the center of the circle
∗ y – is the y-coordinate of the center of the circle
∗ r – is the radius of the circle

• drawArc
public void drawArc( int x, int y, int width, int height, int
startAngle, int arcAngle )

– Description
Draws the outline of a circular or elliptical arc covering the specified rectangle.
The center of the arc is center of this rectangle.

– Parameters
∗ x – An int which specifies the x of the rectangle.
∗ y – An int which specifies the y of the rectangle origin.
∗ width – An int which specifies the width of the rectangle.
∗ height – An int which specifies the height of the rectangle.
∗ startAngle – An int which specifies the start angle in degrees. startAngle

= 0 is equivalent to the 3-o’clock position.
∗ arcAngle – An int which specifies the arcAngle. drawArc draws the arc

from startAngle to startAngle+arcAngle. A positive arcAngle indicates a
counter-clockwise rotation. A negative arcAngle implies a clockwise
rotation.

• drawErrorBar
public void drawErrorBar( int x0, int y0, int x1, int y1, int flag )

– Description
Draw an error bar.

– Parameters
∗ x0 – an int which specifies the x-coordinate of the beginning reference

point
∗ y0 – an int which specifies the y-coordinate of the beginning reference

point
∗ x1 – an int which specifies the x-coordinate of the ending reference point

1030 • DrawMap JMSL



∗ y1 – an int which specifies the y-coordinate of the ending reference point
∗ flag – an int that indicates which caps to draw (0=none, 1=bottom,

2=top, 3=both).

• drawImage
public void drawImage( java.awt.Image image, int x, int y )

– Description
Draw Image

– Parameters
∗ image – the Image object to be drawn
∗ x – an int which specifies the x-coordinate of the reference point
∗ y – an int which specifies the y-coordinate of the reference point

• drawLine
public void drawLine( int x0, int y0, int x1, int y1 )

– Description
Draw a line from (x0,y0) to (x1,y1).

– Parameters
∗ x0 – an int which specifies the x0 of the line origin, (x0,y0)
∗ y0 – an int which specifies the y0 of the line origin, (x0,y0)
∗ x1 – an int which specifies the x1 of the line destination, (x1,y1)
∗ y1 – an int which specifies the y1 of the line destination, (x1,y1)

• drawMarker
public void drawMarker( int x, int y )

– Description
Draw a marker.

– Parameters
∗ x – an int which specifies the x of the marker destination, (x,y)
∗ y – an int which specifies the y of the marker destination, (x,y)

• drawText
protected java.awt.Dimension drawText( Text text, int x, int y,
boolean dimensionOnly )

– Description copied from Draw (page 1003)
Draws a text object. The angle of the string is given by textAngle. Consider
the horizontally and vertically aligned bounding box around the string. The
box below corresponds to textAngle == 45.

*--*--*

| o|
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The reference point corresponds to one of the 8 starred points on the bounding
box, as indicated by the “alignment” attribute“ in the text object.

– Parameters
∗ text – a Text object to be drawn.
∗ x – an int which specifies the x-coordinate of the reference point.
∗ y – an int which specifies the y-coordinate of the reference point.
∗ dimensionOnly – a boolean which is true if only the bounding box is to be

computed and no text actually drawn.
– Returns – the dimension of the bounding box.

• endErrorBar
public void endErrorBar( )

– Description copied from Draw (page 1003)
Stop drawing an error bar.

• endFill
public void endFill( )

– Description copied from Draw (page 1003)
Stop drawing a filled region.

• endImage
public void endImage( )

– Description copied from Draw (page 1003)
Stop drawing an image.

• endLine
public void endLine( )

– Description copied from Draw (page 1003)
Finish drawing lines.

• endMarker
public void endMarker( )

– Description copied from Draw (page 1003)
Finish drawing markers.
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• endText
public void endText( )

– Description copied from Draw (page 1003)
Stop drawing text.

• fillArc
public void fillArc( int x, int y, int width, int height, int
startAngle, int arcAngle )

– Description
Fills a circular or elliptical arc covering the specified rectangle. The center of
the arc is center of this rectangle.

– Parameters
∗ x – An int which specifies the x of the rectangle.
∗ y – An int which specifies the y of the rectangle origin.
∗ width – An int which specifies the width of the rectangle.
∗ height – An int which specifies the height of the rectangle.
∗ startAngle – An int which specifies the start angle in degrees. startAngle

= 0 is equivalent to the 3-o’clock position.
∗ arcAngle – An int which specifies the arcAngle. drawArc draws the arc

from startAngle to startAngle+arcAngle. A positive arcAngle indicates a
counter-clockwise rotation. A negative arcAngle implies a clockwise
rotation.

• fillPolygon
public void fillPolygon( int[] xpoints, int[] ypoints, int npoints )

– Description
Fill a polygon.

– Parameters
∗ xpoints – an int array which contains the abscissae of the points which

define the polygon
∗ ypoints – an int array which contains the ordinates of the points which

define the polygon
∗ npoints – an int which specifies the number of points

• fillPolygon
public void fillPolygon( java.awt.Polygon polygon )

– Description
Fill a polygon defined by a Polygon object.

– Parameters
∗ polygon – a Polygon object which specifies the polygon to be filled
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• fillRectangle
public void fillRectangle( int x, int y, int width, int height )

– Description
Fill a rectangle.

– Parameters
∗ x – an int which specifies the abscissa of the origin of the rectangle
∗ y – an int which specifies the ordinate of the origin of the rectangle
∗ width – an int which specifies the width of the rectangle
∗ height – an int which specifies the height of the rectangle

• getALT
protected java.lang.String getALT( )

– Description
Returns the current ALT string.

• getHREF
protected java.lang.String getHREF( )

– Description
Returns the current HREF string.

• getMap
public java.lang.String getMap( )

– Description
Returns the body of the HTML imagemap.

– Returns – the body of the HTML client-side imagemap. The actual
<map>and </map>tags are not included, so that the client code can more
easily add attributes to the <map>tag.

• getTolerance
public int getTolerance( )

– Description
Get the minimum distance that an event can be from a point or a line and still
be considered a hit.

– Returns – an int which specifies the minimum distance that an event can be
from a point or a line and still be considered a hit

• poly
protected void poly( int[] x, int[] y )
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– Description
Sets a polygon as the target.

– Parameters
∗ x – is an array containing the x-coordinates of the polygon.
∗ y – is an array containing the y-coordinates of the polygon.

• rect
protected void rect( int x, int y, int w, int h )

– Description
Sets a rectangle as the target.

– Parameters
∗ x – is the x-coordinate of the left edge of the rectangle
∗ y – is the y-coordinate of the top edge of the rectangle
∗ w – is the width of the rectangle
∗ h – is the height of the rectangle

• setNode
public void setNode( ChartNode node )

– Description
Set the current ChartNode. This is used to get drawing attributes from the
tree.

– Parameters
∗ node – a ChartNode object

• setTolerance
public void setTolerance( int tolerance )

– Description
Set the minimum distance that an event can be from a point or a line and still
be considered a hit.

– Parameters
∗ tolerance – an int which specifies the minimum distance that an event

can be from a point or a line and still be considered a hit

• startErrorBar
public void startErrorBar( )

– Description copied from Draw (page 1003)
Start drawing an error bar.

• startFill
public void startFill( )
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– Description copied from Draw (page 1003)
Start drawing a filled region.

• startImage
public void startImage( )

– Description copied from Draw (page 1003)
Start drawing an image.

• startLine
public void startLine( )

– Description
Start drawing lines.

• startMarker
public void startMarker( )

– Description
Start drawing markers.

• startText
public void startText( )

– Description copied from Draw (page 1003)
Start drawing text.

• translate
public void translate( int x, int y )

– Description
Translates the origin to the point (x,y)

– Parameters
∗ x – an int which specifies the x of the new origin
∗ y – an int which specifies the y of the new origin

class BoxPlot

Draws a multiple-group Box plot.

For each group of observations, the box limits represent the lower quartile (25th
percentile) and upper quartile (75th percentile). The median is displayed as a line across
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the box. Whiskers are drawn from the upper quartile to the upper adjacent value, and
from the lower quartile to the lower adjacent value.

Optional notches may be displayed to show a 95 percent confidence interval about the
median, at ±1.58 IRQ /

√
n, where IRQ is the interquartile range and n is the number of

observations. Outside and far outside values may be displayed as symbols. Outside values
are outside the inner fence. Far out values are outside the outer fence.

The BoxPlot has several child nodes. Any of these nodes can be disabled by setting their
“Paint” attribute to false.

• The “Bodies” node has the main body of the box plot elements. Its fill attributes
determine the drawing of (notched) rectangle. Its line attributes determine the
drawing of the median line. The width of the box is controlled by the “MarkerSize”
attribute.

• The “Whiskers” node draws the lines to the upper and lower quartile. Its drawing is
affected by the marker attributes.

• The “FarMarkers” node hold the far markers. Its drawing is affected by the marker
attributes.

• The “OutsideMarkers” node hold the outside markers. Its drawing is affected by the
marker attributes.

Declaration

public class com.imsl.chart.BoxPlot
extends com.imsl.chart.Data (page 982)

Inner Class

class BoxPlot.Statistics

Computes the statistics for one set of observations in a Boxplot.

Declaration

public static class com.imsl.chart.BoxPlot.Statistics
extends java.lang.Object
implements java.io.Serializable
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Constructor

• BoxPlot.Statistics
public BoxPlot.Statistics( double[] obs )

– Description
Creates a new instance of BoxPlot.Statistics.

– Parameters
∗ obs – a double array containing the set of observations. There must be at

least 4 observations to compute the statistics.
– Throws
∗ java.lang.IllegalArgumentException – is thrown if there are fewer

than 4 observations.

Methods

• getFarMarkers
public double[] getFarMarkers( )

– Description
Returns the array of far markers.

– Returns – a double array containing the far markers for this set

• getLowerAdjacentValue
public double getLowerAdjacentValue( )

– Description
Returns the lower adjacent value.

– Returns – a double which specifies the lower adjacent value

• getLowerQuartile
public double getLowerQuartile( )

– Description
Returns the lower quartile value.

– Returns – a double which specifies the lower quartile value (25th percentile)

• getMaximumValue
public double getMaximumValue( )
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– Description
Returns the maximum value of the observations.

– Returns – a double which specifies the the maximum value of this set

• getMedian
public double getMedian( )

– Description
Returns the median value.

– Returns – a double which specifies the median value for the set of observations

• getMedianLowerConfidenceInterval
public double getMedianLowerConfidenceInterval( )

– Description
Returns the lower confidence interval for the median.

– Returns – a double which specifies the lower confidence interval for the
median value of this set of observations

• getMedianUpperConfidenceInterval
public double getMedianUpperConfidenceInterval( )

– Description
Returns the upper confidence interval for the median.

– Returns – a double which specifies the upper confidence interval for the
median value of this set of observations

• getMinimumValue
public double getMinimumValue( )

– Description
Returns the minimum value of the observations.

– Returns – a double which specifies the the minimum value of this set

• getNumberObservations
public int getNumberObservations( )

– Description
Returns the number of observations.

– Returns – an int which specifies the number of observations in this set

• getOutsideMarkers
public double[] getOutsideMarkers( )
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– Description
Returns the array of outside markers.

– Returns – a double array containing the outside markers for this set

• getUpperAdjacentValue
public double getUpperAdjacentValue( )

– Description
Returns the lower adjacent value.

– Returns – a double which specifies the upper adjacent value

• getUpperQuartile
public double getUpperQuartile( )

– Description
Returns the upper quartile value.

– Returns – a double which specifies the upper quartile value (75th percentile)

Fields

• public static final int BOXPLOT TYPE HORIZONTAL

– Value for attribute “BoxPlotType” indicating that this is a horizontal box plot.
Used in connection with BoxPlot nodes.

• public static final int BOXPLOT TYPE VERTICAL

– Value for attribute “BoxPlotType” indicating that this is a horizontal box plot.
Used in connection with BoxPlot nodes.

Constructors

• BoxPlot
public BoxPlot( AxisXY axis, double[][] obs )

– Description
Constructs a box plot chart.

– Parameters
∗ axis – an AxisXY object, the parent of this node
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∗ obs – a double array which contains the observations. The length of each
row in obs must be at least 4.

• BoxPlot
public BoxPlot( AxisXY axis, double[] x, BoxPlot.Statistics[]
statistics )

– Description
Constructs a box plot chart node with specified x values.

– Parameters
∗ axis – an AxisXY object, the parent of this node
∗ x – a double array which contains the x values
∗ statistics – is an array of BoxPlot.Statistics objects. The number of

BoxPlot.Statistics must equal the length of x.

• BoxPlot
public BoxPlot( AxisXY axis, double[] x, double[][] obs )

– Description
Constructs a box plot chart node with specified x values.

– Parameters
∗ axis – an AxisXY object, the parent of this node
∗ x – a double array which contains the x values
∗ obs – a double array which contains the observations for each x. The

number of rows in obs must equal the length of x. The length of each row
in obs must be at least 4.

Methods

• dataRange
public void dataRange( double[] range )

– Description
Overrides Data.dataRange.

– Parameters
∗ range – a double array which contains the new range

• getBodies
public ChartNode getBodies( )

– Description
Returns a node containing the body elements in the Box plot.
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– Returns – a ChartNode containing the bodies.

• getBoxPlotType
public int getBoxPlotType( )

– Description
Returns the value of the “BoxPlotType” attribute.

– Returns – an int which contains the “BoxPlotType”. Legal values are
BOXPLOT TYPE VERTICAL or BOXPLOT TYPE HORIZONTAL.

• getFarMarkers
public ChartNode getFarMarkers( )

– Description
Returns the FarMarkers node.

– Returns – a ChartNode containing the far markers

• getNotch
public boolean getNotch( )

– Description
Gets the “Notch” attribute value. return a boolean which specifies whether the
notches are to be displayed; true if so false otherwise

• getOutsideMarkers
public ChartNode getOutsideMarkers( )

– Description
Returns the OutsideMarkers node.

– Returns – a ChartNode containing the outside markers

• getStatistics
public BoxPlot.Statistics[] getStatistics( )

– Description
Returns an array of BoxPlot.Statistics objects, one for each set of
observations.

– Returns – an array of BoxPlot.Statistics objects

• getStatistics
public BoxPlot.Statistics getStatistics( int iSet )

– Description
Returns a BoxPlot.Statistics for a set of observations.

– Parameters
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∗ iSet – an int which specifies the index of a set whose statistics are to be
returned

– Returns – a BoxPlot.Statistics object related to the iSet set of observations

• getWhiskers
public ChartNode getWhiskers( )

– Description
Returns the Whiskers node. return a ChartNode containing the whiskers

• isProportionalWidth
public boolean isProportionalWidth( )

– Description
Returns the value of the attribute “ProportionalWidth”. The width of the
narrowest box is determined by the “MarkerSize” attribute.

– Returns – a boolean which specifies whether the box widths are proportional.
If true the box widths are proportional to the square root of the number of
observations. If false all of the boxes have the same width.

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

• setBoxPlotType
public void setBoxPlotType( int value )

– Description
Sets the “BoxPlotType” attribute value.

– Parameters
∗ value – an int which specifies the “BoxPlotType” attribute. Legal values

are BOXPLOT TYPE VERTICAL or BOXPLOT TYPE HORIZONTAL.

• setLabels
public void setLabels( java.lang.String[] labels )

– Description
Sets up an axis with labels. This turns off the tick marks and sets the
“BoxPlotType” attribute. It also turns off autoscaling for the axis and sets its
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“Window” and “Number” and “Ticks” attribute as appropriate for a labeled
Box plot. The existing value of the “BoxPlotType” attribute is used to
determine the axis to be modified.

– Parameters
∗ labels – is an array of strings with which to label the axis. The number of

labels must equal the number of items.

• setLabels
public void setLabels( java.lang.String[] labels, int type )

– Description
Sets up an axis with labels. This turns off the tick marks and sets the
“BoxPlotType” attribute. It also turns off autoscaling for the axis and sets its
“Window” and “Number” and “Ticks” attribute as appropriate for a labeled
Box plot.

– Parameters
∗ labels – an array of Strings with which to label the axis. The number of

labels must equal the number of items.
∗ type – an int which specifies the BoxPlotType. Legal values are

BOXPLOT TYPE VERTICAL or BOXPLOT TYPE HORIZONTAL. This determines the
axis to be modified.

• setNotch
public void setNotch( boolean value )

– Description
Sets the attribute “Notch”.

– Parameters
∗ value – a boolean which specifies whether notches are to be displayed;

true if so false otherwise

• setProportionalWidth
public void setProportionalWidth( boolean proportionalWidth )

– Description
Sets the value of the attribute “ProportionalWidth”.

– Parameters
∗ proportionalWidth – a boolean which specifies whether the box widths

are to be proportional. Is true if the box widths are to be proportional to
the square root of the number of observations. If false all of the boxes
have the same width. The default value is false.
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Example: Box Plot Chart

A simple box plot chart is constructed in this example. Display of far and outside values
is turned on.
import com.imsl.chart.*;

public class BoxPlotEx1 extends javax.swing.JApplet {

public void init() {
Chart chart = new Chart(this);

JPanelChart panel = new JPanelChart(chart);

getContentPane().add(panel, java.awt.BorderLayout.CENTER);

setup(chart);

}

static private void setup(Chart chart) {
double obs[][]={{66.0, 52.0, 49.0, 64.0, 68.0, 26.0, 86.0, 52.0,

43.0, 75.0, 87.0, 188.0, 118.0, 103.0, 82.0,

71.0, 103.0, 240.0, 31.0, 40.0, 47.0, 51.0, 31.0,

47.0, 14.0, 71.0},

{61.0, 47.0, 196.0, 131.0, 173.0, 37.0, 47.0,

215.0, 230.0, 69.0, 98.0, 125.0, 94.0, 72.0,

72.0, 125.0, 143.0, 192.0, 122.0, 32.0, 114.0,

32.0, 23.0, 71.0, 38.0, 136.0, 169.0},

{152.0, 201.0, 134.0, 206.0, 92.0, 101.0, 119.0,

124.0, 133.0, 83.0, 60.0, 124.0, 142.0, 124.0, 64.0,

75.0, 103.0, 46.0, 68.0, 87.0, 27.0,

73.0, 59.0, 119.0, 64.0, 111.0},

{80.0, 68.0, 24.0, 24.0, 82.0, 100.0, 55.0, 91.0,

87.0, 64.0, 170.0, 86.0, 202.0, 71.0, 85.0, 122.0,

155.0, 80.0, 71.0, 28.0, 212.0, 80.0, 24.0,

80.0, 169.0, 174.0, 141.0, 202.0},

{113.0, 38.0, 38.0, 28.0, 52.0, 14.0, 38.0, 94.0,

89.0, 99.0, 150.0, 146.0, 113.0, 38.0, 66.0, 38.0,

80.0, 80.0, 99.0, 71.0, 42.0, 52.0, 33.0, 38.0,

24.0, 61.0, 108.0, 38.0, 28.0}
};

double x[] = {1.0, 2.0, 3.0, 4.0, 5.0};
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String xLabels[] = {"May", "June", "July", "August", "September"};

// Create an instance of a BoxPlot Chart

AxisXY axis = new AxisXY(chart);

BoxPlot boxPlot = new BoxPlot(axis, obs);

boxPlot.setLabels(xLabels);

// Customize the fill color and the outside and far markers

boxPlot.getBodies().setFillColor("blue");

boxPlot.getOutsideMarkers().setMarkerType(boxPlot.MARKER TYPE HOLLOW CIRCLE);

boxPlot.getOutsideMarkers().setMarkerColor("purple");

boxPlot.getFarMarkers().setMarkerType(boxPlot.MARKER TYPE ASTERISK);

boxPlot.getFarMarkers().setMarkerColor("red");

// Set titles

chart.getChartTitle().setTitle("Ozone Levels in Stanford by Month");

axis.getAxisX().getAxisTitle().setTitle("Month");

axis.getAxisY().getAxisTitle().setTitle("Ozone Level");

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();

BoxPlotEx1.setup(frame.getChart());

frame.show();

}
}
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class Contour

A Contour chart shows level curves of a two-dimensional function.

The function can be defined either as values on a rectangular grid or by scattered data
points.

A set of ContourLevel objects are created as children of this node. The number of
ContourLevels is one more than the number of level curves. If the level curve values are
c0, . . . , cn−1 then the k-th ContourLevel child corresponds to ck−1 < z ≤ ck.

To change the look of the contour chart, change the line attributes and fill attributes in
the ContourLevel nodes.

A Legend object is also created as a child of this node. It should be used instead of the
usual chart legend. By default, this legend is not shown. To show it, set its paint method
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to true.

Declaration

public class com.imsl.chart.Contour
extends com.imsl.chart.Data (page 982)

Inner Class

class Contour.Legend

A legend for a contour chart.

This legend should be used for contour charts, instead of usual chart legend.

Declaration

public class com.imsl.chart.Contour.Legend
extends com.imsl.chart.AxisXY (page 962)

Method

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

Constructors

• Contour
public Contour( AxisXY axis, double[] x, double[] y, double[] z )

– Description
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Create a Contour chart from scattered data with computed contour levels. The
contour chart is created by using a RadialBasis approximation to estimate the
functions value on a rectangular grid. The contour chart is then computed as
for gridded data.

– Parameters
∗ axis – an AxisXY object, the parent of this node.
∗ x – a double array which contains the x-values of the data points.
∗ y – a double array which contains the y-values of the data points.
∗ z – a double array which contains the z-values of the data points.

• Contour
public Contour( AxisXY axis, double[] xGrid, double[] yGrid,
double[][] zData )

– Description
Create a Contour chart from rectangularly gridded data with computed contour
levels. The contour levels are chosen to span the data and to be “nice” values.

– Parameters
∗ axis – an AxisXY object, the parent of this node.
∗ xGrid – a double array which contains the x-coordinate values of the grid.
∗ yGrid – a double array which contains the y-coordinate values of the grid.
∗ zData – a double rectangular matrix which contains the function values to

be contoured. The value of the function at (xGrid[i],yGrid[j]) is given by
zData[i][j]. The size of this matrix must be xGrid.length by yGrid.length.

• Contour
public Contour( AxisXY axis, double[] xGrid, double[] yGrid,
double[][] zData, double[] cLevel )

– Description
Create a Contour chart from rectangularly gridded data.

– Parameters
∗ axis – an AxisXY object, the parent of this node.
∗ xGrid – a double array which contains the x-coordinate values of the grid.
∗ yGrid – a double array which contains the y-coordinate values of the grid.
∗ zData – a double rectangular matrix which contains the function values to

be contoured. The value of the function at (xGrid[i],yGrid[j]) is given by
zData[i][j]. The size of this matrix must be xGrid.length by yGrid.length.

∗ cLevel – a double array which contains the values of the contour levels.

• Contour
public Contour( AxisXY axis, double[] x, double[] y, double[] z,
double[] cLevel, int nCenters )
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– Description
Create a Contour chart from scattered data. The contour chart is created by
using a RadialBasis appoximation to estimate the functions value on a
rectangular grid. The contour chart is then computed as for gridded data.

– Parameters
∗ axis – an AxisXY object, the parent of this node.
∗ x – a double array which contains the x-values of the data points.
∗ y – a double array which contains the y-values of the data points.
∗ z – a double array which contains the z-values of the data points.
∗ cLevel – a double array which contains the values of the contour levels.
∗ nCenters – is the number of centers to use for the radial basis

approximation. The larger the number the closer, but noiser, the
approximation.

Methods

• dataRange
public void dataRange( double[] range )

– Description
Update the data range. range = {xmin,xmax,ymin,ymax} The entries in range
are updated to reflect the extent of the data in this node. Range is an
input/output variable. Its value should be updated only if the data in this node
is outside the range already in the array.

– Parameters
∗ range – a double array which contains the updated range,
{xmin,xmax,ymin,ymax}

• getContourLegend
public Contour.Legend getContourLegend( )

– Description
Returns the contour chart legend.
By default, the legend is not drawn because its “Paint” attribute is set to false.
To show the legend set “Paint” to true, .i.e.,
contour.getContourLegend().setPaint(true);

– Returns – the Legend associated with the contour chart.

• getContourLevel
public ContourLevel[] getContourLevel( )
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– Description
Returns all of the contour levels.

– Returns – an array containing the contour levels.

• getContourLevel
public ContourLevel getContourLevel( int k )

– Description
Returns a ContourLevel. The k-th contour level contains the level curve equal
to cLevel[k] in the constructor. It also contains the fill areas for the values in
the interval (cLevel[k-1], cLevel[k]). The first contour level (k=0) contains the
fill area for values less than cLevel[0] and the level curves lines where the
function value equals cLevel[0]. The last contour level (k=cLevel.length)
contains the fill area for values greater than cLevel[cLevel.length-1], but no
level curve lines.

• paint
public void paint( Draw draw )

– Description copied from Data (page 982)
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

Example: Contour Chart from Gridded Data

In the restricted three-body problem, two large objects (masses M1 and M2) a distance a
apart, undergoing mutual gravitational attraction, circle a common center-of-mass. A
third small object (mass m) is assumed to move in the same plane as M1 and M2 and is
assumed to be two small to affect the large bodies. For simplicity, we use a coordinate
system that has the center of mass at the origin. M1 and M2 are on the x-axis at x1 and
x2, respectively.

In the center-of-mass coordinate system, the effective potential energy of the system is
given by

V =
m(M1 +M2)G

a

[
x2√

(x− x1)2 + y2
− x1√

(x− x2)2 + y2
− 1

2
(
x2 + y2

)]

The universal gravitational constant is G. The following program plots the part of V(x,y)
inside of the square bracket. The factor m(M1+M2)G

a is ignored because it just scales the
plot.
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import com.imsl.chart.*;

public class ContourEx1 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);

panel = new JPanelChart(chart);

getContentPane().add(panel, java.awt.BorderLayout.CENTER);

setup(chart);

}

static private void setup(Chart chart) {
int nx = 80;

int ny = 80;

// Allocate space

double xGrid[] = new double[nx];

double yGrid[] = new double[ny];

double zData[][] = new double[nx][ny];

// Setup the grids points

for (int i = 0; i < nx; i++) {
xGrid[i] = -2 + 4.0*i/(double)(nx-1);

}
for (int j = 0; j < ny; j++) {

yGrid[j] = -2 + 4.0*j/(double)(ny-1);

}

// Evaluate the function at the grid points

for (int i = 0; i < nx; i++) {
for (int j = 0; j < ny; j++) {

double x = xGrid[i];

double y = yGrid[j];

double rm = 0.5;

double x1 = rm / (1.0+rm);

double x2 = x1 - 1.0;

double d1 = Math.sqrt((x-x1)*(x-x1)+y*y);

double d2 = Math.sqrt((x-x2)*(x-x2)+y*y);

zData[i][j] = x2/d1 - x1/d2 - 0.5*(x*x+y*y);

}
}
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// Create the contour chart, with user-specified levels and a legend

AxisXY axis = new AxisXY(chart);

double cLevel[]

= {-7, -5.4, -3, -2.3, -2.1, -1.97, -1.85, -1.74, -1.51, -1.39, -1};
Contour c = new Contour(axis, xGrid, yGrid, zData, cLevel);

c.getContourLegend().setPaint(true);

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();

ContourEx1.setup(frame.getChart());

frame.show();

}
}

Output
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Example: Contour Chart from Scattered Data

In this example, a contour chart is created from 150, randomly choosen, scattered data
points. The function is

√
x2 + y2, so the level curve should be circles.

The input data is shown on top of the contours as small green circles. The chart data
nodes are drawn in the order in which they are added, so the input data marker node has
to be added to the axis after the contour, so that the markers are not hidden.
import com.imsl.chart.*;

import java.util.Random;

public class ContourEx2 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);

panel = new JPanelChart(chart);

getContentPane().add(panel, java.awt.BorderLayout.CENTER);

setup(chart);

}

static private void setup(Chart chart) {
JFrameChart jfc = new JFrameChart();

int n = 150;

// Allocate space

double x[] = new double[n];

double y[] = new double[n];

double z[] = new double[n];

// Evaluate the function at n random points

Random random = new Random(123457);

for (int k = 0; k < n; k++) {
x[k] = random.nextDouble();

y[k] = random.nextDouble();

z[k] = Math.sqrt(x[k]*x[k] + y[k]*y[k]);

}

// Setup the contour plot and its legend

AxisXY axis = new AxisXY(chart);

Contour contour = new Contour(axis, x, y, z);

contour.getContourLegend().setPaint(true);
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// Show the input data points as small green circles

Data dataPoints = new Data(axis, x, y);

dataPoints.setDataType(Data.DATA TYPE MARKER);

dataPoints.setMarkerType(Data.MARKER TYPE FILLED CIRCLE);

dataPoints.setMarkerColor("green");

dataPoints.setMarkerSize(0.5);

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();

ContourEx2.setup(frame.getChart());

frame.show();

}
}

Output
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class ErrorBar

Data points with error bars.

Declaration

public class com.imsl.chart.ErrorBar
extends com.imsl.chart.Data (page 982)

Fields

• public static final int DATA TYPE ERROR X

– Value for attribute “DataType” indicating that this is a horizontal error bar.
Used in connection with ErrorBar nodes.

• public static final int DATA TYPE ERROR Y

– Value for attribute “DataType” indicating that this is a vertical error bar.
Used in connection with ErrorBar nodes.

Constructor

• ErrorBar
public ErrorBar( AxisXY axis, double[] x, double[] y, double[] low,
double[] high )

– Description
Creates a set of error bars centered at (x[k],y[k]) and with extents low[k],high[k].
If the attribute “DataType” has the bit DATA TYPE ERROR X set then this
is a horizontal error bar. If the bit DATA TYPE ERROR Y is set then this is
a vertical error bar. If neither bit is set then no error bar is drawn.
A Data node with the same x and y values can be used to put markers at the
center of each error bar.

– Parameters
∗ axis – an Axis object
∗ x – a double array which contains the x coordinates of the points at which

the error bars will be centered. This is used to set the “X” attribute.
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∗ y – a double array which contains the y coordinates of the points at which
the error bars will be centered. This is used to set the “Y” attribute.

∗ low – a double array which contains the values which define the minimum
extent of the error bars. This is used to set the “Low” attribute.
∗ high – a double array which contains the values which define the maximum

extent of the error bars. This is used to set the “High” attribute.

Methods

• dataRange
public void dataRange( double[] range )

– Description
Overrides Data.dataRange.

– Parameters
∗ range – a double array which contains the new range

• getHigh
public double[] getHigh( )

– Description
Convenience routine to get the “High” attribute.

– Returns – the double array which contains the value of the “High” attribute

• getLow
public double[] getLow( )

– Description
Convenience routine to get the “Low” attribute.

– Returns – the double array which contains the value of the “Low” attribute

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

• setHigh
public void setHigh( double[] value )

Charting ErrorBar • 1057



– Description
Convenience routine to set the “High” attribute.

– Parameters
∗ value – an double array which contains the “High” values.

• setLow
public void setLow( double[] value )

– Description
Convenience routine to set the “Low” attribute.

– Parameters
∗ value – an double array which contains the “Low” values.

Example: ErrorBar Chart

An ErrorBar chart is constructed in this example. Three data sets are used and a legend
is added to the chart. This class can be used either as an applet or as an application.
import com.imsl.chart.*;

import java.awt.Color;

public class ErrorBarEx1 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);

panel = new JPanelChart(chart);

getContentPane().add(panel, java.awt.BorderLayout.CENTER);

setup(chart);

}

static private void setup(Chart chart) {
AxisXY axis = new AxisXY(chart);

int npoints = 20;

double dx = .5 * Math.PI/(npoints - 1);

double x[] = new double[npoints];

double y1[] = new double[npoints];

double y2[] = new double[npoints];

double y3[] = new double[npoints];

double low1[] = new double[npoints];

double low2[] = new double[npoints];

double low3[] = new double[npoints];
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double hi1[] = new double[npoints];

double hi2[] = new double[npoints];

double hi3[] = new double[npoints];

// Generate some data

for (int i = 0; i < npoints; i++){
x[i] = i * dx;

y1[i] = Math.sin(x[i]);

low1[i] = x[i] - .05;

hi1[i] = x[i] + .05;

y2[i] = Math.cos(x[i]);

low2[i] = y2[i] - .07;

hi2[i] = y2[i] + .03;

y3[i] = Math.atan(x[i]);

low3[i] = y3[i] - .01;

hi3[i] = y3[i] + .04;

}

Data d1 = new Data(axis, x, y1);

Data d2 = new Data(axis, x, y2);

Data d3 = new Data(axis, x, y3);

// Set Data Type to Marker

d1.setDataType(d1.DATA TYPE MARKER);

d2.setDataType(d2.DATA TYPE MARKER);

d3.setDataType(d3.DATA TYPE MARKER);

// Set Marker Types

d1.setMarkerType(Data.MARKER TYPE CIRCLE PLUS);

d2.setMarkerType(Data.MARKER TYPE HOLLOW SQUARE);

d3.setMarkerType(Data.MARKER TYPE ASTERISK);

// Set Marker Colors

d1.setMarkerColor(Color.red);

d2.setMarkerColor(Color.black);

d3.setMarkerColor(Color.blue);

// Create an instances of ErrorBars

ErrorBar ebar1 = new ErrorBar(axis, x, y1, low1, hi1);

ErrorBar ebar2 = new ErrorBar(axis, x, y2, low2, hi2);

ErrorBar ebar3 = new ErrorBar(axis, x, y3, low3, hi3);
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// Set Data Type to Error X

ebar1.setDataType(ebar1.DATA TYPE ERROR X);

// Set Data Type to Error Y

ebar2.setDataType(ebar2.DATA TYPE ERROR Y);

ebar3.setDataType(ebar3.DATA TYPE ERROR Y);

// Set Marker Colors

ebar1.setMarkerColor(Color.red);

ebar2.setMarkerColor(Color.black);

ebar3.setMarkerColor(Color.blue);

// Set Data Labels

d1.setTitle("Sine");

d2.setTitle("Cosine");

d3.setTitle("ArcTangent");

// Add a Legend

Legend legend = chart.getLegend();

legend.setTitle(new Text("Legend"));

chart.addLegendItem(0, chart);

legend.setPaint(true);

// Set the Chart Title

chart.getChartTitle().setTitle("ErrorBar Plot");

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();

ErrorBarEx1.setup(frame.getChart());

frame.show();

}
}
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Output
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class HighLowClose

High-low-close plot of stock data.

Declaration

public class com.imsl.chart.HighLowClose
extends com.imsl.chart.Data (page 982)

Field

• public static final long DAY
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– Milliseconds per day

Constructors

• HighLowClose
public HighLowClose( AxisXY axis, java.util.Date start, double[]
high, double[] low, double[] close )

– Description
Constructs a high-low-close chart node beginning with specified start date.

– Parameters
∗ axis – an Axis object, the parent of this node.
∗ start – a date object which contains the first date.
∗ high – a double array which contains the stock’s high prices. This is used

to set the “High” attribute.
∗ low – a double array which contains the stock’s low prices. This is used to

set the “Low” attribute.
∗ close – a double array which contains the stock’s closing prices. This is

used to set the “Close” attribute.

• HighLowClose
public HighLowClose( AxisXY axis, java.util.Date start, double[]
high, double[] low, double[] close, double[] open )

– Description
Constructs a high-low-close-open chart node beginning with specified start date.

– Parameters
∗ axis – an Axis object, the parent of this node.
∗ start – a date object which contains the first date.
∗ high – a double array which contains the stock’s high prices. This is used

to set the “High” attribute.
∗ low – a double array which contains the stock’s low prices. This is used to

set the “Low” attribute.
∗ close – a double array which contains the stock’s closing prices. This is

used to set the “Close” attribute.
∗ open – a double array which contains the stock’s opening prices. This is

used to set the “Open” attribute.

• HighLowClose
public HighLowClose( AxisXY axis, double[] x, double[] high,
double[] low, double[] close )
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– Description
Constructs a high-low-close chart node at specified axis points.

– Parameters
∗ axis – an Axis object, the parent of this node.
∗ x – a double array which contains the axis points. This is used to set the

“X” attribute.
∗ high – a double array which contains the stock’s high prices. This is used

to set the “High” attribute.
∗ low – a double array which contains the stock’s low prices. This is used to

set the “Low” attribute.
∗ close – a double array which contains the stock’s closing prices. This is

used to set the “Close” attribute.

• HighLowClose
public HighLowClose( AxisXY axis, double[] x, double[] high,
double[] low, double[] close, double[] open )

– Description
Constructs a high-low-close-open chart node at specified axis points.

– Parameters
∗ axis – an Axis object, the parent of this node.
∗ x – a double array which contains the axis points. This is used to set the

“X” attribute.
∗ high – a double array which contains the stock’s high prices. This is used

to set the “High” attribute.
∗ low – a double array which contains the stock’s low prices. This is used to

set the “Low” attribute.
∗ close – a double array which contains the stock’s closing prices. This is

used to set the “Close” attribute.
∗ open – a double array which contains the stock’s opening prices This is

used to set the “Open” attribute.

Methods

• dataRange
public void dataRange( double[] range )

– Description
Overrides Data.dataRange.

– Parameters
∗ range – a double array which contains the new range
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• getClose
public double[] getClose( )

– Description
Gets the value of the attribute “Close”. return a double array of closing stock
prices.

• getHigh
public double[] getHigh( )

– Description
Convenience routine to get the “High” attribute.

– Returns – the double array of high stock prices.

• getLow
public double[] getLow( )

– Description
Convenience routine to get the “Low” attribute.

– Returns – the double array of low stock prices.

• getOpen
public double[] getOpen( )

– Description
Gets the value of the attribute “Open”. return a double array of opening stock
prices.

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

• setClose
public void setClose( double[] value )

– Description
Sets the attribute “Close”.

– Parameters
∗ value – a double array of closing stock prices.
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• setDateAxis
public void setDateAxis( java.lang.String labelFormat )

– Description
Sets up the x-axis for high-low-close plot. This turns off autoscaling on the
x-axis and sets the Window attribute depending on the number of dates being
plotted. The Number attribute determines the number of intervals along the
x-axis.

– Parameters
∗ labelFormat – is used to format the date axis labels. It sets the

TextFormat attribute in the AxisLabel node.

• setHigh
public void setHigh( double[] value )

– Description
Convenience routine to set the “High” attribute.

– Parameters
∗ value – an double array of high stock prices.

• setLow
public void setLow( double[] value )

– Description
Convenience routine to set the “Low” attribute.

– Parameters
∗ value – an double array of low stock prices.

• setOpen
public void setOpen( double[] value )

– Description
Sets the attribute “Open”.

– Parameters
∗ value – a double array of opening stock prices.

Example: High-Low-Close Chart

A simple high-low-close chart is constructed in this example.

Autoscaling does not properly handle time data, so autoscaling is turned off for the x
(time) axis and the axis limits are set explicitly.
import com.imsl.chart.*;
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import java.awt.Color;

import java.text.DateFormat;

import java.util.Date;

import java.util.GregorianCalendar;

public class HiLoEx1 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);

panel = new JPanelChart(chart);

getContentPane().add(panel, java.awt.BorderLayout.CENTER);

setup(chart);

}

static private void setup(Chart chart) {
AxisXY axis = new AxisXY(chart);

// Date is June 27, 1999

Date date =

new GregorianCalendar(1999, GregorianCalendar.JUNE, 27).getTime();

double high[] = {75., 75.25, 75.25, 75., 74.125, 74.25};
double low[] = {74.125, 74.25, 74., 74.5, 73.75, 73.50};
double close[] = {75., 74.75, 74.25, 74.75, 74., 74.0};

// Create an instance of a HighLowClose Chart

HighLowClose hilo = new HighLowClose(axis, date, high, low, close);

hilo.setMarkerColor("blue");

// Set the HighLowClose Chart Title

chart.getChartTitle().setTitle("A Simple HighLowClose Chart");

// Configure the x-axis

hilo.setDateAxis("Date(SHORT)");

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();

HiLoEx1.setup(frame.getChart());

frame.show();
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}
}

Output
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class Candlestick

Candlestick plot of stock data.

Two nodes are created as children of this node. One for the up days and one for the down
days.
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Declaration

public class com.imsl.chart.Candlestick
extends com.imsl.chart.HighLowClose (page 1061)

Constructors

• Candlestick
public Candlestick( AxisXY axis, java.util.Date start, double[] high,
double[] low, double[] close, double[] open )

– Description
Constructs a candlestick chart node beginning with specified start date.

– Parameters
∗ axis – an Axis object, the parent of this node
∗ start – a date object which contains the first date
∗ high – a double array which contains the stock’s high prices This is used to

set the “High” attribute.
∗ low – a double array which contains the stock’s low prices This is used to

set the “Low” attribute.
∗ close – a double array which contains the stock’s closing prices This is

used to set the “Close” attribute.
∗ open – a double array which contains the stock’s opening prices This is

used to set the “Open” attribute.

• Candlestick
public Candlestick( AxisXY axis, double[] x, double[] high, double[]
low, double[] close, double[] open )

– Description
Constructs a candlestick chart node at specified axis points.

– Parameters
∗ axis – an Axis object, the parent of this node
∗ x – a double array which contains the axis points. This is used to set the

“X” attribute.
∗ high – a double array which contains the stock’s high prices. This is used

to set the “High” attribute.
∗ low – a double array which contains the stock’s low prices. This is used to

set the “Low” attribute.
∗ close – a double array which contains the stock’s closing prices. This is

used to set the “Close” attribute.
∗ open – a double array which contains the stock’s opening prices This is

used to set the “Open” attribute.
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Methods

• getDown
public CandlestickItem getDown( )

– Description
Returns the CandlestickItem for down days.

• getUp
public CandlestickItem getUp( )

– Description
Returns the CandlestickItem for up days.

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

class CandlestickItem

A candlestick for the up days or the down days.

CandlestickItem’s are created by Candlestick; one for up days and one for down days.

Declaration

public class com.imsl.chart.CandlestickItem
extends com.imsl.chart.Data (page 982)

Method

• paint
public void paint( Draw draw )
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– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

class SplineData

A data set created from a Spline.

Declaration

public class com.imsl.chart.SplineData
extends com.imsl.chart.Data (page 982)

Constructor

• SplineData
public SplineData( ChartNode parent, com.imsl.math.Spline spline )

– Description
Creates a data node from Spline values.

– Parameters
∗ parent – the ChartNode parent of this data node
∗ spline – the Spline to be plotted

Example: SplineData Chart

This example makes use of the SplineData class as well as the two spline smoothing
classes in the package com.imsl.math. This class can be used either as an applet or as an
application.
import com.imsl.math.*;

import com.imsl.chart.*;

import com.imsl.stat.Random;

import java.awt.Color;
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public class SplineDataEx1 extends javax.swing.JApplet {
static private final int nData = 21;

static private final int nSpline = 100;

private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);

panel = new JPanelChart(chart);

getContentPane().add(panel, java.awt.BorderLayout.CENTER);

setup(chart);

}

static private void setup(Chart chart) {
chart.getChartTitle().setTitle(new Text("Smoothed Spline"));

Legend legend = chart.getLegend();

legend.setTitle(new Text("Legend"));

legend.setViewport(0.7, 0.9, 0.1, 0.3);

legend.setPaint(true);

// Original data

double xData[] = grid(nData);

double yData[] = new double[nData];

for (int k = 0; k < nData; k++) {
yData[k] = f(xData[k]);

}
AxisXY axis = new AxisXY(chart);

Data data = new Data(axis, xData, yData);

data.setDataType(data.DATA TYPE MARKER);

data.setMarkerType(Data.MARKER TYPE HOLLOW CIRCLE);

data.setMarkerColor(Color.red);

data.setTitle("Original Data");

// Noisy data

Random random = new Random(123457);

double yNoisy[] = new double[nData];

for (int k = 0; k < nData; k++) {
yNoisy[k] = yData[k] + (2.*random.nextDouble()-1.);

}
data = new Data(axis, xData, yNoisy);

data.setDataType(data.DATA TYPE MARKER);
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data.setMarkerType(Data.MARKER TYPE FILLED SQUARE);

data.setMarkerSize(0.75);

data.setMarkerColor(Color.blue);

data.setTitle("Noisy Data");

chartSpline(axis, new CsSmooth(xData, yData), Color.red, "CsSmooth");

chartSpline(axis, new CsSmoothC2(xData, yData, nData),

Color.orange, "CsSmoothC2");

}

static private void chartSpline(AxisXY axis, Spline spline,

Color color, String title) {
Data data = new SplineData(axis, spline);

data.setDataType(data.DATA TYPE LINE);

data.setLineColor(color);

data.setTitle(title);

}

static private double[] grid(int nData) {
double xData[] = new double[nData];

for (int k = 0; k < nData; k++) {
xData[k] = 3.0*k / (double)(nData-1);

}
return xData;

}

static private double f(double x) {
return 1.0/(0.1+Math.pow(3.0*(x-1.0),4));

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();

SplineDataEx1.setup(frame.getChart());

frame.show();

}
}
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Output
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class Bar

A bar chart.

The class Bar has children of class com.imsl.chart.BarItem. The attribute “BarItem” in
class Bar is set to the BarItem array of children.

Declaration

public class com.imsl.chart.Bar
extends com.imsl.chart.Data (page 982)
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Constructors

• Bar
public Bar( AxisXY axis )

– Description
Constructs a bar chart.

– Parameters
∗ axis – the AxisXY parent of this node

• Bar
public Bar( AxisXY axis, double[] y )

– Description
Constructs a simple bar chart using supplied y data.

– Parameters
∗ axis – the AxisXY parent of this node
∗ y – a double array which contains the y data for the simple bar chart

• Bar
public Bar( AxisXY axis, double[][] y )

– Description
Constructs a grouped bar chart using supplied x and y data.

– Parameters
∗ axis – the AxisXY parent of this node
∗ y – a double array which contains the y data for the grouped bar chart.

The first index refers to the group and the second refers to the x position.

• Bar
public Bar( AxisXY axis, double[][][] y )

– Description
Constructs a stacked, grouped bar chart using supplied y data.

– Parameters
∗ axis – the AxisXY parent of this node
∗ y – a double array which contains the y data for the stacked, grouped bar

chart. The first index refers to the stack, the second refers to the group
and the third refers to the x position.

• Bar
public Bar( AxisXY axis, double[] x, double[] y )
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– Description
Constructs a simple bar chart using supplied x and y data.

– Parameters
∗ axis – the AxisXY parent of this node
∗ x – a double array which contains the x data for the simple bar chart
∗ y – a double array which contains the y data for the simple bar chart

• Bar
public Bar( AxisXY axis, double[] x, double[][] y )

– Description
Constructs a grouped bar chart using supplied x and y data.

– Parameters
∗ axis – the AxisXY parent of this node
∗ x – a double array which contains the x data for the grouped bar chart
∗ y – a double array which contains the y data for the grouped bar chart.

The first index refers to the group and the second refers to the x position.

• Bar
public Bar( AxisXY axis, double[] x, double[][][] y )

– Description
Constructs a stacked, grouped bar chart using supplied x and y data.

– Parameters
∗ axis – the AxisXY parent of this node
∗ x – a double array which contains the x data for the stacked, grouped bar

chart
∗ y – a double array which contains the y data for the stacked, grouped bar

chart. The first index refers to the “stack”, the second refers to the group
and the third refers to the x position.

Methods

• dataRange
public void dataRange( double[] range )

– Description
Overrides Data.dataRange.

– Parameters
∗ range – a double array which contains the new range
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• getBarData
public double[][][] getBarData( )

– Description
Returns the “BarData” attribute.

– Returns – a BarData[][][] value

• getBarSet
public BarSet[][] getBarSet( )

– Description
Returns the BarSet object.

– Returns – a BarSet[][] value

• getBarSet
public BarSet getBarSet( int group )

– Description
Returns the BarSet object. The group index is assumed to be zero. This
method is most useful for charts with only a single group.

– Parameters
∗ group – an int which specifies the group index

– Returns – a BarSet[][] value

• getBarSet
public BarSet getBarSet( int stack, int group )

– Description
Returns the BarSet object.

– Parameters
∗ stack – an int which specifies the stack index
∗ group – an int which specifies the group index

– Returns – a BarSet[][] value

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

1076 • Bar JMSL



• setBarData
public void setBarData( double[][][] value )

– Description
Convenience routine to set the “BarData” attribute.

– Parameters
∗ value – a BarData[][][] array of objects that make up this bar chart. The

first index refers to the “stack”, the second refers to the group and the
third refers to the x position.

• setLabels
public void setLabels( java.lang.String[] labels )

– Description
Sets up an axis with bar labels. This turns off the tick marks and sets the
BarType attribute. It also turns off autoscaling for the axis and sets its
Window and Number and Ticks attribute as appropriate for a labeled bar
chart. The existing value of the BarType attribute is used to determine the
axis to be modified.

– Parameters
∗ labels – a String array with which to label the axis. The number of labels

must equal the number of items.

• setLabels
public void setLabels( java.lang.String[] labels, int type )

– Description
Sets up an axis with bar labels. This turns off the tick marks and sets the
“BarType” attribute. It also turns off autoscaling for the axis and sets its
“Window”, “Number” and “Ticks” attributes as appropriate for a labeled bar
chart.

– Parameters
∗ labels – a String array with which to label the axis. The number of labels

must equal the number of items.
∗ type – an int which specifies the BarType. Legal values are

BAR TYPE VERTICAL or BAR TYPE HORIZONTAL. This determines the axis to be
modified.

Example: Stacked Bar Chart

A stacked bar chart is constructed in this example. Bar labels and colors are set and axis
labels are set. This class can be used either as an applet or as an application.
import com.imsl.chart.*;
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import com.imsl.stat.Random;

import java.awt.Color;

public class BarEx1 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);

panel = new JPanelChart(chart);

getContentPane().add(panel, java.awt.BorderLayout.CENTER);

setup(chart);

}

static private void setup(Chart chart) {
AxisXY axis = new AxisXY(chart);

int nStacks = 2;

int nGroups = 3;

int nItems = 6;

// Generate some random data

Random r = new Random(123457);

double x[] = new double[nItems];

double y[][][] = new double[nStacks][nGroups][nItems];

double dx = 0.5*Math.PI/(x.length-1);

for (int istack = 0; istack < y.length; istack++) {
for (int jgroup = 0; jgroup < y[istack].length; jgroup++) {

for (int kitem = 0; kitem < y[istack][jgroup].length;

kitem++) {
y[istack][jgroup][kitem] = r.nextDouble();

}
}

}

// Create an instance of a Bar Chart

Bar bar = new Bar(axis, y);

// Set the Bar Chart Title

chart.getChartTitle().setTitle("Sales by Region");

// Set the fill outline type;

bar.setFillOutlineType(Bar.FILL TYPE SOLID);
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// Set the Bar Item fill colors

bar.getBarSet(0,0).setFillColor(Color.red);

bar.getBarSet(0,1).setFillColor(Color.yellow);

bar.getBarSet(0,2).setFillColor(Color.green);

bar.getBarSet(1,0).setFillColor(Color.blue);

bar.getBarSet(1,1).setFillColor(Color.cyan);

bar.getBarSet(1,2).setFillColor(Color.magenta);

chart.getLegend().setPaint(true);

bar.getBarSet(0,0).setTitle("Red");

bar.getBarSet(0,1).setTitle("Yellow");

bar.getBarSet(0,2).setTitle("Green");

bar.getBarSet(1,0).setTitle("Blue");

bar.getBarSet(1,1).setTitle("Cyan");

bar.getBarSet(1,2).setTitle("Magenta");

// Setup the vertical axis for a labeled bar chart.

String labels[] = {
"New York",

"Texas",

"Northern\nCalifornia",

"Southern\nCalifornia",

"Colorado",

"New Jersey"

};
bar.setLabels(labels, bar.BAR TYPE VERTICAL);

// Set the text angle

axis.getAxisX().getAxisLabel().setTextAngle(270);

// Set the Y axis title

axis.getAxisY().getAxisTitle().setTitle("Sales ($million)\nby " +

"widget color");

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();

BarEx1.setup(frame.getChart());

frame.show();

}
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}
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class BarItem

A single bar in a bar chart.

Declaration

public class com.imsl.chart.BarItem
extends com.imsl.chart.Data (page 982)
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Methods

• dataRange
public void dataRange( double[] range )

– Description
Overides Data.dataRange.

– Parameters
∗ range – a double array which contains the new range

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

class BarSet

A set of bars in a bar chart.

A BarSetis created by Bar and contains a collection of BarItems. Bar creates a

BarSet for each stack-group combination. Each BarSet contains the BarItems for

that combination. Normally all of the BarItems in a BarSet have the same color,

title, etc.

Declaration

public class com.imsl.chart.BarSet
extends com.imsl.chart.ChartNode (page 920)

Methods

• dataRange
public void dataRange( double[] range )
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• getBarItem
public BarItem[] getBarItem( )

– Description
Returns an array of BarItems. This is the collection of all BarItems contained in
this bar group.

– Returns – a BarItem array

• getBarItem
public BarItem getBarItem( int index )

– Description
Returns the BarItem given the index.

– Parameters
∗ index – an int which specifies the index

– Returns – a BarItem associated with the specified index

• paint
public abstract void paint( Draw draw )

– Description copied from ChartNode (page 920)
Paints this node and all of its children.

– Parameters
∗ draw – the Draw object to be painted

class Pie

A pie chart.

The angle of the first slice is determined by the attribute “Reference”.

The Pie class is an Axis, because it defines its own mapping to device space.

Declaration

public class com.imsl.chart.Pie
extends com.imsl.chart.Axis (page 960)
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Constructors

• Pie
public Pie( Chart chart )

– Description
Constructs a Pie chart object. The “Viewport” attribute for this node is set to
[0.2,0.8] by [0.2,0.8].

– Parameters
∗ chart – the Chart parent of this node

• Pie
public Pie( Chart chart, double[] y )

– Description
Constructs a Pie chart object with a specified number of slices. An array of
y.length PieSlice nodes are created as children of this node and this array is
used to define the attribute “PieSlice” in this node. The “Viewport” attribute
for this node is set to [0.2,0.8] by [0.2,0.8].

– Parameters
∗ chart – the Chart parent of this node
∗ y – a double array which contains the values for the pie chart

Methods

• getPieSlice
public PieSlice[] getPieSlice( )

– Description
Returns the PieSlice objects.

– Returns – a PieSlice array of PieSlice objects

• getPieSlice
public PieSlice getPieSlice( int index )

– Description
Returns a specified PieSlice.

– Parameters
∗ index – an int, the 0-based index of the pie slice to return
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– Returns – a PieSlice array of PieSlice objects

• mapDeviceToUser
public void mapDeviceToUser( int devX, int devY, double[] userXY
)

– Description
Maps the device coordinates to user coordinates.

– Parameters
∗ devX – an int which specifies the device x-coordinate
∗ devY – an int which specifies the device y-coordinate
∗ userXY – an int[2] array in which the the user coordinates are returned.

• mapUserToDevice
public void mapUserToDevice( double userX, double userY, int[]
devXY )

– Description
Maps the user coordinates (userX,userY) to the device coordinates devXY.

– Parameters
∗ userX – a double which specifies the user x-coordinate
∗ userY – a double which specifies the user y-coordinate
∗ devXY – an int[2] array in which the device coordinates are returned.

• setData
public PieSlice[] setData( double[] y )

– Description
Changes the data in a Pie chart object.

– Parameters
∗ y – a double array which contains the values for the pie chart.

– Returns – A PieSlice array containing the updated PieSlice. If the number of
slices is unchanged then the existing pie slice array, defined by the attribute
“PieSlice” in this node, is reused. If the number is different, a new array is
allocated, using the existing PieSlice elements to initialize the new array.

• setupMapping
public void setupMapping( )

– Description
Initializes the mappings between user and coordinate space. This must be
called whenever the screen size, the window or the viewport may have changed.
Generally, it is safest to call this each time the chart is repainted.
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Example: Pie Chart

A simple Pie chart is constructed in this example. Pie slice labels and colors are set and
one pie slice is exploded from the center. This class extends JFrameChart, which manages
the window.
import com.imsl.chart.*;

import java.awt.Color;

import java.applet.Applet;

public class PieEx1 extends javax.swing.JApplet {
private JPanelChart panel;

public void init() {
Chart chart = new Chart(this);

panel = new JPanelChart(chart);

getContentPane().add(panel, java.awt.BorderLayout.CENTER);

setup(chart);

}

static private void setup(Chart chart) {
// Create an instance of a Pie Chart

double y[] = {10., 20., 30., 40.};
Pie pie = new Pie(chart, y);

// Set the Pie Chart Title

chart.getChartTitle().setTitle("A Simple Pie Chart");

// Set the colors of the Pie Slices

PieSlice[] slice = pie.getPieSlice();

slice[0].setFillColor(Color.red);

slice[1].setFillColor(Color.blue);

slice[2].setFillColor(Color.black);

slice[3].setFillColor(Color.yellow);

// Set the Pie Slice Labels

pie.setLabelType(pie.LABEL TYPE TITLE);

slice[0].setTitle("Fish");

slice[1].setTitle("Pork");

slice[2].setTitle("Poultry");

slice[3].setTitle("Beef");

// Explode a Pie Slice
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slice[0].setExplode(0.2);

}

public static void main(String argv[]) {
JFrameChart frame = new JFrameChart();

PieEx1.setup(frame.getChart());

frame.show();

}
}

Output

A Simple Pie ChartA Simple Pie Chart

Fish

Pork

Poultry

Beef

class PieSlice

One wedge of a pie chart.

com.imsl.chart.Pie creates PieSlice objects as its children, one per pie wedge. A specific
slice can be retrieved using the method getPieSlice(int). All of the slices can be retrieved
using the method getPieSlice().
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The drawing of the slice is controlled by the fill attributes in this node.

Declaration

public class com.imsl.chart.PieSlice
extends com.imsl.chart.Data (page 982)

Methods

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

• setAngles
protected void setAngles( double angleA, double angleB )

– Description
Sets the angles, in degrees, that determine the extent of this slice.

– Parameters
∗ angleA – is the angle, in degrees, at which the slice begins
∗ angleB – is the angle, in degrees, at which the slice ends

class Polar

This Axis node is used for polar charts. In a polar plot, the (x,y) coordinates in Data
nodes are interpreted as (r,theta) values.

Declaration

public class com.imsl.chart.Polar
extends com.imsl.chart.Axis (page 960)
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Constructor

• Polar
public Polar( Chart chart )

– Description
Create an AxisPolar.

– Parameters
∗ chart – a Chart object, the parent of this node

Methods

• getAxisR
public AxisR getAxisR( )

– Description
Return the radius axis node.

– Returns – the AxisR radius axis node

• getAxisTheta
public AxisTheta getAxisTheta( )

– Description
Return the angular axis node.

– Returns – the AxisTheta axis node

• getGridPolar
public GridPolar getGridPolar( )

– Description
Returns the grid.

– Returns – the grid, a GridPolar object

• mapDeviceToUser
public void mapDeviceToUser( int devX, int devY, double[] userRT
)

– Description
Map the device coordinates to polar coordinates.

– Parameters
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∗ devX – an int, the device x-coordinate
∗ devY – an int, the device y-coordinate
∗ userRT – a double[2] array in which the user coordinates, (radius,theta),

are returned.

• mapUserToDevice
public void mapUserToDevice( double userRadius, double userTheta,
int[] devXY )

– Description
Map the polar coordinates (userRadius,userAngle) to the device coordinates
devXY.

– Parameters
∗ userRadius – a double, the user radius coordinate
∗ userTheta – a double, the user angle coordinate
∗ devXY – an int[2] array in which the device coordinates are returned.

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – the Draw object to be painted

• setupMapping
public void setupMapping( )

– Description
Initializes the mappings between user and coordinate space. This must be
called whenever the screen size, the window or the viewport may have changed.

class Heatmap

Heatmap creates a chart from a two-dimensional array of double precision values or
java.awt.Color values. Optionally, each cell in the heatmap can be labeled.

If the input is a two-dimensional array of double values then a Colormap object is used to
map the real values to colors.
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Declaration

public class com.imsl.chart.Heatmap
extends com.imsl.chart.Data (page 982)

Inner Class

class Heatmap.Legend

A legend for use with a heatmap.

This Legend should be used with heatmaps, rather than the usual chart legend.

Declaration

public class com.imsl.chart.Heatmap.Legend
extends com.imsl.chart.AxisXY (page 962)

Method

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – The Draw object to be painted.

Constructors

• Heatmap
public Heatmap( AxisXY axis, double xmin, double xmax, double
ymin, double ymax, java.awt.Color[][] color )

– Description
Creates a Heatmap from an array of Color values.

– Parameters
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∗ axis – An AxisXY object, the parent of this node.
∗ xmin – The minimum x-value of the color data.
∗ xmax – The maximum x-value of the color data.
∗ ymin – The minimum y-value of the color data.
∗ ymax – The maximum y-value of the color data.
∗ color – A two-dimensional Color array of the color values. The value of

color[0][0] is the color of the cell whose lower left corner is (xmin, ymin).

• Heatmap
public Heatmap( AxisXY axis, double xmin, double xmax, double
ymin, double ymax, double zmin, double zmax, double[][] data,
Colormap colormap )

– Description
Creates a Heatmap from an array of double values and a Colormap.

– Parameters
∗ axis – An AxisXY object, the parent of this node.
∗ xmin – The minimum x-value of the color data.
∗ xmax – The maximum x-value of the color data.
∗ ymin – The minimum y-value of the color data.
∗ ymax – The maximum y-value of the color data.
∗ zmin – The data value that corresponds to the initial (t=0) value in the

Colormap.
∗ zmax – The data value that corresponds to the final (t=1) value in the

Colormap.
∗ data – A two-dimensional double array containing the data values. The

x-interval (xmin , xmax) is uniformly divided and mapped into the first
index of data. The y-interval (ymin, ymax) is uniformly divided and mapped
into the second index of data. So, the value of data[0][0] is used to
determine the color of the cell whose lower left corner is (xmin,ymin ).

∗ colormap – Maps the values in data to colors. If a cell has a data value
equal to t then its color is the value of the colormap at s, where
s = t−zmin

zmax−zmin.

Methods

• dataRange
public void dataRange( double[] range )

– Description
Update the data range. range = {xmin,xmax,ymin,ymax} The entries in range

are updated to reflect the extent of the data in this node. range is an
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input/output variable. Its value should be updated only if the data in this node
is outside the range already in the array.

– Parameters
∗ range – A array containing the updated range = {xmin,xmax,ymin,ymax}.

• getColormap
public Colormap getColormap( )

– Description
Returns the value of the “Colormap” attribute. This is the Colormap associated
with this Heatmap.

– Returns – The Colormap value of the “Colormap” attribute, if defined.
Otherwise, null is returned.

• getHeatmapLabels
public Text[][] getHeatmapLabels( )

– Description
Returns the value of the “HeatmapLabels” attribute.

– Returns – A two-dimensional array of com.imsl.chart.Text objects that are the
value of the “HeatmapLabels” attribute, if defined. Otherwise, null is returned.

• getHeatmapLegend
public Heatmap.Legend getHeatmapLegend( )

– Description
Returns the heatmap legend.
By default, the legend is not drawn because its “Paint” attribute is set to
false. To show the legend set “Paint” to true, .i.e.,
contour.getContourLegend().setPaint(true);

– Returns – The Legend object associated with the Heatmap.

• paint
public void paint( Draw draw )

– Description
Paints this node and all of its children. This is normally called only by the
paint method in this node’s parent.

– Parameters
∗ draw – The Draw object to be painted.

• setColormap
public void setColormap( Colormap colorMap )
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– Description
Sets the value of the “Colormap” attribute. This is the Colormap associated
with this Heatmap.

– Parameters
∗ colorMap – The Colormap object’s “ColorMap” value.

• setHeatmapLabels
public void setHeatmapLabels( java.lang.String[][] labels )

– Description
Sets the value of the “HeatmapLabels” attribute. The value of the
“HeatmapLabels” attribute is a two dimensional array of Text objects. Each
Text object is created from the corresponding label value with
TEXT X CENTER|TEXT Y CENTER alignment.

– Parameters
∗ labels – A two-dimensional array of String objects used to create the two

dimensional array of Text objects that is the value of the attribute. The
array of labels and the array of Text objects have the same shape.

• setHeatmapLabels
public void setHeatmapLabels( Text[][] labels )

– Description
Sets the value of the “HeatmapLabels” attribute.

– Parameters
∗ labels – A two-dimensional array of com.imsl.chart.Text objects that are

used to set the “HeatmapLabels” attribute.

Example: Heatmap from Color array

A 5 by 10 array of Color objects is created by linearly interpolating red along the x-axis,
blue along the y-axis and mixing in a random amount of green. The data range is set to
[0,10] by [0,1].
import com.imsl.chart.*;

import java.awt.Color;

import java.util.Random;

public class HeatmapEx1 extends javax.swing.JApplet {

public void init() {
Chart chart = new Chart(this);

JPanelChart panel = new JPanelChart(chart);
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getContentPane().add(panel, java.awt.BorderLayout.CENTER);

setup(chart);

}

static private void setup(Chart chart) {
JFrameChart jfc = new JFrameChart();

AxisXY axis = new AxisXY(chart);

double xmin = 0.0;

double xmax = 10.0;

double ymin = 0.0;

double ymax = 1.0;

int nxRed = 5;

int nyBlue = 10;

Random random = new Random(123457L);

Color color[][] = new Color[nxRed][nyBlue];

for (int i = 0; i < nxRed; i++) {
for (int j = 0; j < nyBlue; j++) {

int r = (int)(255.*i/nxRed);

int g = random.nextInt(255);

int b = (int)(255.*j/nyBlue);

color[i][j] = new Color(r,g,b);

}
}
Heatmap heatmap = new Heatmap(axis, xmin, xmax, ymin, ymax, color);

axis.getAxisX().getAxisTitle().setTitle("Red");

axis.getAxisY().getAxisTitle().setTitle("Blue");

}

public static void main(String argv[]) throws Exception {
JFrameChart frame = new JFrameChart();

HeatmapEx1.setup(frame.getChart());

frame.show();

}
}
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Example: Heatmap from Color array

A 5 by 10 data array is created by linearly interpolating from the lower left corner to the
upper right corner and adding in a uniform random variable. A red temperature color
map is used. This maps the minimum data value to light green and the maximum data
value to dark green.

The legend is enabled by setting its paint attribute to true.
import com.imsl.chart.*;

import java.awt.Color;

import java.util.Random;

public class HeatmapEx2 extends javax.swing.JApplet {

public void init() {
Chart chart = new Chart(this);

JPanelChart panel = new JPanelChart(chart);
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getContentPane().add(panel, java.awt.BorderLayout.CENTER);

setup(chart);

}

static private void setup(Chart chart) {
JFrameChart jfc = new JFrameChart();

AxisXY axis = new AxisXY(chart);

int nx = 5;

int ny = 10;

double xmin = 0.0;

double xmax = 10.0;

double ymin = -3.0;

double ymax = 2.0;

double fmin = 0.0;

double fmax = nx + ny - 1;

double data[][] = new double[nx][ny];

Random random = new Random(123457L);

for (int i = 0; i < nx; i++) {
for (int j = 0; j < ny; j++) {

data[i][j] = i + j + random.nextDouble();

}
}
Heatmap heatmap = new Heatmap(axis, xmin, xmax, ymin, ymax, 0.0, fmax,

data, Colormap.RED TEMPERATURE);

heatmap.getHeatmapLegend().setPaint(true);

heatmap.getHeatmapLegend().setTitle("Heat");

}

public static void main(String argv[]) throws Exception {
JFrameChart frame = new JFrameChart();

HeatmapEx2.setup(frame.getChart());

frame.show();

}
}
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Example: Heatmap with Labels

A 5 by 10 array of random data is created and a similarly sized array of strings is also
created. These labels contain spreadsheet-like indices and the random data value
expressed as a percentage.

The legend is enabled by setting its paint attribute to true. The tick marks in the legend
are formatted using the percentage NumberFormat object. A title is also set in the legend.
import com.imsl.chart.*;

import java.awt.Color;

import java.text.NumberFormat;

import java.util.Random;

public class HeatmapEx3 extends javax.swing.JApplet {

public void init() {
Chart chart = new Chart(this);

JPanelChart panel = new JPanelChart(chart);
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getContentPane().add(panel, java.awt.BorderLayout.CENTER);

setup(chart);

}

static private void setup(Chart chart) {
JFrameChart jfc = new JFrameChart();

AxisXY axis = new AxisXY(chart);

double xmin = 0.0;

double xmax = 10.0;

double ymin = 0.0;

double ymax = 1.0;

NumberFormat format = NumberFormat.getPercentInstance();

int nx = 5;

int ny = 10;

double data[][] = new double[nx][ny];

String labels[][] = new String[nx][ny];

Random random = new Random(123457L);

for (int i = 0; i < nx; i++) {
for (int j = 0; j < ny; j++) {

data[i][j] = random.nextDouble();

labels[i][j] = "ABCDE".charAt(i) + Integer.toString(j) + "\n"

+ format.format(data[i][j]);

}
}
Heatmap heatmap = new Heatmap(axis, xmin, xmax, ymin, ymax, 0.0, 1.0,

data, Colormap.BLUE);

heatmap.setHeatmapLabels(labels);

heatmap.setTextColor("orange");

heatmap.getHeatmapLegend().setPaint(true);

heatmap.getHeatmapLegend().setTextFormat(format);

heatmap.getHeatmapLegend().setTitle("Percentage");

}

public static void main(String argv[]) throws Exception {
JFrameChart frame = new JFrameChart();

HeatmapEx3.setup(frame.getChart());

frame.show();

}
}
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interface Colormap

Colormaps are mappings from the unit interval to Colors. They are a one-dimensional
parameterized path through the color cube.

Declaration

public interface com.imsl.chart.Colormap

Fields

• Colormap RED

– Linear red colormap.
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• Colormap GREEN

– Linear green colormap.

• Colormap BLUE

– Linear blue colormap.

• Colormap BW LINEAR

– Black and white (grayscale) colormap.

• Colormap BLUE WHITE

– Blue/white colormap.

• Colormap GREEN RED BLUE WHITE

– Green/red/blue/white colormap.

• Colormap RED TEMPERATURE

– Red temperature colormap.

• Colormap BLUE GREEN RED YELLOW

– Blue/green/red/yellow colormap.

• Colormap STANDARD GAMMA

– Standard gamma colormap.

• Colormap PRISM

– Prism colormap.

• Colormap RED PURPLE

– Red/purple colormap.

• Colormap GREEN WHITE LINEAR

– Linear green/white colormap.

• Colormap GREEN WHITE EXPONENTIAL

– Exponential green/white colormap.

• Colormap GREEN PINK

– Green/pink colormap.

• Colormap BLUE RED

– Blue/red colormap.

• Colormap SPECTRAL
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– Spectral colormap.

• Colormap WHITE BLUE LINEAR

– Linear blue/white colormap.

Method

• color
java.awt.Color color( double t )

– Description
Maps the parameterization interval [0,1] into Colors.

– Parameters
∗ t – A parameter value in the interval [0,1].

– Returns – A Color value corresponding to t.
– Throws
∗ java.lang.IllegalArgumentException – is thrown if t is outside of the

range [0,1]
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Chapter 25

Neural Nets
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FeedForwardNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1164

A representation of a feed forward neural network.
Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1178

The base class for Layers in a neural network.
InputLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179

Input layer in a neural network.
HiddenLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1180

Hidden layer in a neural network.
OutputLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1182

Output layer in a neural network.
Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1183

A Node in a neural network.
InputNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1184

A Node in the InputLayer.
Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1185

A Perceptron node in a neural network.
OutputPerceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186

A Perceptron in the output layer.
Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187

Interface implemented by perceptron activation functions.
Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188

A link in a neural network.
Trainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1190

Interface implemented by classes used to train a network.
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QuasiNewtonTrainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191
Trains a network using the quasi-Newton method, MinUnconMultiVar.

LeastSquaresTrainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1197
Trains a FeedForwardNetwork using a Levenberg-Marquardt algorithm for
minimizing a sum of squares error.

EpochTrainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202
Two-stage training using randomly selected training patterns in stage I.

ScaleFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207
Scales or unscales continuous data prior to its use in neural network training,
testing, or forecasting.

UnsupervisedNominalFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217
Converts nominal data into a series of binary encoded columns for input to
a neural network.

UnsupervisedOrdinalFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221
Encodes ordinal data into percentages for input to a neural network.

TimeSeriesFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1227
Converts time series data to a lagged format used as input to a neural net-
work.

TimeSeriesClassFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1230
Converts time series data contained within nominal categories to a lagged
format for processing by a neural network.

Usage Notes

Neural Networks - An Overview

Today, neural networks are used to solve a wide variety of problems, some of which have
been solved by existing statistical methods, and some of which have not. These
applications fall into one of the following three categories:

• Forecasting: predicting one or more quantitative outcomes from both quantitative
and categorical input data,

• Classification: classifying input data into one of two or more categories, or

• Statistical pattern recognition: uncovering patterns, typically spatial or temporal,
among a set of variables.

Forecasting, pattern recognition and classification problems are not new. They existed
years before the discovery of neural network solutions in the 1980’s. What is new is that
neural networks provide a single framework for solving so many traditional problems and,
in some cases, extend the range of problems that can be solved.

1104 • JMSL JMSL



Traditionally, these problems have been solved using a variety of well known statistical
methods:

• linear regression and general least squares,

• logistic regression and discrimination,

• principal component analysis,

• discriminant analysis,

• k-nearest neighbor classification, and

• ARMA and non-linear ARMA time series forecasts.

In many cases, simple neural network configurations yield the same solution as many
traditional statistical applications.For example, a single-layer, feed-forward neural network
with linear activation for its output perceptron is equivalent to a general linear regression
fit. Neural networks can provide more accurate and robust solutions for problems where
traditional methods do not completely apply.

Mandic and Chambers (2001) point out that traditional methods for time series
forecasting are unsuitable when a time series:

• is non-stationary,

• has large amounts of noise, such as a biomedical series, or

• is too short.

ARIMA and other traditional time series approaches can produce poor forecasts when one
or more of the above problems exist. The forecasts of ARMA and non-linear ARMA
(NARMA) depend heavily upon key assumptions about the model or underlying
relationship between the output of the series and its patterns.

Neural networks, on the other hand, adapt to changes in a non-stationary series and can
produce reliable forecasts even when the series contains a good deal of noise or when only
a short series is available for training. Neural networks provide a single tool for solving
many problems traditionally solved using a wide variety of statistical tools and for solving
problems when traditional methods fail to provide an acceptable solution.

Although neural network solutions to forecasting, pattern recognition, and classification
problems can be very different, they are always the result of computations that proceed
from the network inputs to the network outputs. The network inputs are referred to as
patterns, and outputs are referred to as classes. Frequently the flow of these computations
is in one direction, from the network input patterns to its outputs. Networks with
forward-only flow are referred to as feed-forward networks.
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Figure 1. A 2-layer, Feed-Forward Network with 4 Inputs and 2 Outputs

Other networks, such as recurrent neural networks, allow data and information to flow in
both directions, see Mandic and Chambers (2001).
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Figure 2. A Recurrent Neural Network with 4 Inputs and 2 Outputs

A neural network is defined not only by its architecture and flow, or interconnections, but
also by computations used to transmit information from one node or input to another
node. These computations are determined by network weights. The process of fitting a
network to existing data to determine these weights is referred to as training the network,
and the data used in this process are referred to as patterns. Individual network inputs are
referred to as attributes and outputs are referred to as classes. Many terms used to
describe neural networks are synonymous to common statistical terminology.

Table 1. Synonyms between Neural Network and Common Statistical
Terminology
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Neural Network Termi-
nology

Traditional Statistical
Terminology

Description

Training Model Fitting Estimating unknown param-
eters or coefficients in the
analysis.

Patterns Cases or Observations A single observation of all in-
put and output variables.

Attributes Independent variables Inputs to the network or
model.

Classes Dependent variables Outputs from the network or
model calculations.

Neural Networks – History and Terminology

The Threshold Neuron

McCulloch and Pitts (1943) wrote one of the first published works on neural networks. In
their paper, they describe the threshold neuron as a model for how the human brain stores
and processes information.

x1

x2

x3

W
1

W2

W 3

McCulloch &
Pitts  Neuron

Weights

Inputs

Y

Output

Figure 3. The McCulloch and Pitts Threshold Neuron
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All inputs to a threshold neuron are combined into a single number, Z, using the following
weighted sum:

Z =
m∑

i=1

wixi − µ

where wi is the weight associated with the ith input (attribute) xi. The term µ in this
calculation is referred to as the bias term. In traditional statistical terminology, it might
be referred to as the intercept. The weights and bias terms in this calculation are
estimated during network training.

In McCulloch and Pitt’s description of the threshold neuron, the neuron does not respond
to its inputs unless Z is greater than zero. If Z is greater than zero then the output from
this neuron is set equal to 1. If Z is less than zero the output is zero:

Y =
{

1 ifZ > 0
0 ifZ ≤ 0

where Y is the neuron’s output.

For years following their 1943 paper, interest in the McCulloch and Pitts neural network
was limited to theoretical discussions, such as those of Hebb (1949), about learning,
memory, and the brain’s structure.

The Perceptron

The McCulloch and Pitts neuron is also referred to as a threshold neuron since it abruptly
changes its output from 0 to 1 when its potential, Z, crosses a threshold. Mathematically,
this behavior can be viewed as a step function that maps the neuron’s potential, Z, to the
neuron’s output, Y.

Rosenblatt (1958) extended the McCulloch and Pitts threshold neuron by replacing this
step function with a continuous function that maps Z to Y. The Rosenblatt neuron is
referred to as the perceptron, and the continuous function mapping Z to Y makes it easier
to train a network of perceptrons than a network of threshold neurons.

Unlike the threshold neuron, the perceptron produces analog output rather than the
threshold neuron’s purely binary output. Carefully selecting the analog function makes
Rosenblatt’s perceptron differentiable, whereas the threshold neuron is not. This simplifies
the training algorithm.

Like the threshold neuron, Rosenblatt’s perceptron starts by calculating a weighted sum of

its inputs, Z =
m∑

i=1
wixi − µ. This is referred to as the perceptron’s potential.

Rosenblatt’s perceptron calculates its analog output from its potential. There are many
choices for this calculation. The function used for this calculation is referred to as the
activation function in Figure 4 below.
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Figure 4. The Perceptron

As shown in Figure 4, perceptrons consist of the following five components:

Component Example
Inputs X1,X2,X3,
Input Weights W1,W2,W3,

Potential Z =
3∑

i=1
WiXi−µ, where µ is a bias correc-

tion.
Activation Function g(Z)
Output g(Z)

Like threshold neurons, perceptron inputs can be either the initial raw data inputs or the
output from another perceptron. The primary purpose of the network training is to
estimate the weights associated with each perceptron’s potential. The activation function
maps this potential to the perceptron’s output.

The Activation Function

Although theoretically any differential function can be used as an activation function, the
identity and sigmoid functions are the two most commonly used.

The identity activation function, also referred to as a linear activation function, is a
flow-through mapping of the perceptron’s potential to its output:

g (Z) = Z
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Output perceptrons in a forecasting network often use the identity activation function.

0

1

Z

g(Z)

Figure 5. An Identity (Linear) Activation Function

If the identity activation function is used throughout the network, then it is easily shown
that the network is equivalent to fitting a linear regression model of the form
Yi = β0 + β1x1 + · · ·+ βkxk, where x1, x2, · · · , xk are the k network inputs, Yi is the ith
network output and β0, β1, · · · , βk are the coefficients in the regression equation. As a
result, it is uncommon to find a neural network with identity activation used in all its
perceptrons.

Sigmoid activation functions are differentiable functions that map the perceptron’s
potential to a range of values, such as 0 to 1, i.e., RK → R where K is the number of
preceptron inputs.
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Z
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Figure 6. A Sigmoid Activation Function

In practice, the most common sigmoid activation function is the logistic function that
maps the potential into the range 0 to 1:

g(Z) =
1

1 + e−Z

Since 0 < g(Z) < 1, the logistic function is very popular for use in networks that output
probabilities.

Other popular sigmoid activation functions include:

1. the hyperbolic-tangent g(Z) = tanh(Z) = eαZ−e−αZ

eαZ+e−αZ

2. the arc-tangent g(Z) = 2
π arctan

(
πZ
2

)
, and

3. the squash activation function (Elliott (1993)) g(Z) = Z
1+|Z|

It is easy to show that the hyperbolic-tangent and logistic activation functions are linearly
related. Consequently, forecasts produced using logistic activation should be close to those
produced using hyperbolic-tangent activation. However, one function may be preferred
over the other when training performance is a concern. Researchers report that the
training time using the hyperbolic-tangent activation function is shorter than using the
logistic activation function.
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Network Applications

Forecasting using Neural Networks

There are many good statistical forecasting tools. Most require assumptions about the
relationship between the variables being forecasted and the variables used to produce the
forecast, as well as the distribution of forecast errors. Such statistical tools are referred to
as parametric methods. ARIMA time series models, for example, assume that the time
series is stationary, that the errors in the forecasts follow a particular ARIMA model, and
that the probability distribution for the residual errors is Gaussian, see Box and Jenkins
(1970). If these assumptions are invalid, then ARIMA time series forecasts can be very
poor.

Neural networks, on the other hand, require few assumptions. Since neural networks can
approximate highly non-linear functions, they can be applied without an extensive
analysis of underlying assumptions.

Another advantage of neural networks over ARIMA modeling is the number of
observations needed to produce a reliable forecast. ARIMA models generally require 50 or
more equally spaced, sequential observations in time. In many cases, neural networks can
also provide adequate forecasts with fewer observations by incorporating exogenous, or
external, variables in the network’s input.

For example, a company applying ARIMA time series analysis to forecast business
expenses would normally require each of its departments, and each sub-group within each
department to prepare its own forecast. For large corporations this can require fitting
hundreds or even thousands of ARIMA models. With a neural network approach, the
department and sub-group information could be incorporated into the network as
exogenous variables. Although this can significantly increase the network’s training time,
the result would be a single model for predicting expenses within all departments and
sub-departments.

Linear least squares models are also popular statistical forecasting tools. These methods
range from simple linear regression for predicting a single quantitative outcome to logistic
regression for estimating probabilities associated with categorical outcomes. It is easy to
show that simple linear least squares forecasts and logistic regression forecasts are
equivalent to a feed-forward network with a single layer. For this reason, single-layer
feed-forward networks are rarely used for forecasting. Instead multilayer networks are
used.

Hutchinson (1994) and Masters (1995) describe using multilayer feed-forward neural
networks for forecasting. Multilayer feed-forward networks are characterized by the
forward-only flow of information in the network. The flow of information and
computations in a feed-forward network is always in one direction, mapping an
M-dimensional vector of inputs to a C-dimensional vector of outputs, i.e., RM → RC .
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There are many other types of networks without this feed-forward requirement.
Information and computations in a recurrent neural network, for example, flows in both
directions. Output from one level of a recurrent neural network can be fed back, with
some delay, as input into the same network, see Figure 2. Recurrent networks are very
useful for time series prediction, see Mandic and Chambers (2001).

Pattern Recognition using Neural Networks

Neural networks are also extensively used in statistical pattern recognition. Pattern
recognition applications that make wide use of neural networks include:

• natural language processing: Manning and Schtze (1999)

• speech and text recognition: Lippmann (1989)

• face recognition: Lawrence, et al. (1997)

• playing backgammon, Tesauro (1990)

• classifying financial news, Calvo (2001).

The interest in pattern recognition using neural networks has stimulated the development
of important variations of feed-forward networks. Two of the most popular are:

• Self-Organizing Maps, also called Kohonen Networks, Kohonen (1995),

• and Radial Basis Function Networks, Bishop (1995).

Good mathematical descriptions of the neural network methods underlying these
applications are given by Bishop (1995), Ripley (1996), Mandic and Chambers (2001), and
Abe (2001). An excellent overview of neural networks, from a statistical viewpoint, is also
found in Warner and Misra (1996).

Neural Networks for Classification

Classifying observations using prior concomitant information is possibly the most popular
application of neural networks. Data classification problems abound in business and
research. When decisions based upon data are needed, they can often be treated as a
neural network data classification problem. Decisions to buy, sell, hold or do nothing with
a stock, are decisions involving four choices. Classifying loan applicants as good or bad
credit risks, based upon their application, is a classification problem involving two choices.
Neural networks are powerful tools for making decisions or choices based upon data.

These same tools are ideally suitable for automatic selection or decision-making. Incoming
email, for example, can be examined to separate spam from important email using a
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neural network trained for this task. A good overview of solving classification problems
using multilayer feed-forward neural networks is found in Abe (2001) and Bishop (1995).

There are two popular methods for solving data classification problems using multilayer
feed-forward neural networks, depending upon the number of choices (classes) in the
classification problem. If the classification problem involves only two choices, then it can
be solved using a neural network with one logistic output. This output estimates the
probability that the input data belong to one of the two choices.

For example, a multilayer feed-forward network with a single logistic output can be used
to determine whether a new customer is credit-worthy. The network’s input would consist
of information on the applicants credit application, such as age, income, etc. If the
network output probability is above some threshold value (such as 0.5 or higher) then the
applicant’s credit application is approved.

This is referred to as binary classification using a multilayer feed-forward neural network.
If more than two classes are involved then a different approach is needed. A popular
approach is to assign logistic output perceptrons to each class in the classification problem.
The network assigns each input pattern to the class associated with the output perceptron
that has the highest probability for that input pattern. However, this approach produces
invalid probabilities since the sum of the individual class probabilities for each input is not
equal to one, which is a requirement for any valid multivariate probability distribution.

To avoid this problem, the softmax activation function, see Bridle (1990), applied to the
network outputs ensures that the outputs conform to the mathematical requirements of
multivariate classification probabilities. If the classification problem has C categories, or
classes, then each category is modeled by one of the network outputs. If Zi is the weighted
sum of products between its weights and inputs for the ith output, i.e., Zi =

∑
j
wjiyji.

softmaxi =
eZi

C∑
j=1

eZj

The softmax activation function ensures that the outputs all conform to the requirements
for multivariate probabilities. That is,

0 < softmaxi < 1, for all i = 1, 2, . . . , C

and
C∑

i=1

softmaxi = 1

A pattern is assigned to the ith classification when softmaxiis the largest among all C
classes.
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However, multilayer feed-forward neural networks are only one of several popular methods
for solving classification problems. Others include:

• Support Vector Machines (SVM Neural Networks), Abe (2001),

• Classification and Regression Trees (CART), Breiman, et al. (1984),

• Quinlan’s classification algorithms C4.5 and C5.0, Quinlan (1993), and

• Quick, Unbiased and Efficient Statistical Trees (QUEST), Loh and Shih (1997).

Support Vector Machines are simple modifications of traditional multilayer feed-forward
neural networks (MLFF) configured for pattern classification.

Multilayer Feed-Forward Neural Networks

A multilayer feed-forward neural network is an interconnection of perceptrons in which
data and calculations flow in a single direction, from the input data to the outputs. The
number of layers in a neural network is the number of layers of perceptrons. The simplest
neural network is one with a single input layer and an output layer of perceptrons. The
network in Figure 7 illustrates this type of network. Technically this is referred to as a
one-layer feed-forward network with two outputs because the output layer is the only layer
with an activation calculation.
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Figure 7. A Single-Layer Feed-Forward Neural Net
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In this single-layer feed-forward neural network, the networks inputs are directly
connected to the output layer perceptrons, Z1 and Z2.

The output perceptrons use activation functions, g1 and g2, to produce the outputs Y1 and
Y2

Since

Z1 =
3∑

i=1

W1,iXi − µ1

and

Z2 =
3∑

i=1

W2,iXi − µ2

Y1 = g1(Z1) = g1(
3∑

i=1

W1,iXi − µ1)

and

Y2 = g2(Z2) = g2(
3∑

i=1

W2,iXi − µ2)

When the activation functions g1 and g2 are identity activation functions, a single-layer
neural net is equivalent to a linear regression model. Similarly, if g1 and g2 are logistic
activation functions, then the single-layer neural net is equivalent to logistic regression.
Because of this correspondence between single-layer neural networks and linear and
logistic regression, single-layer neural networks are rarely used in place of linear and
logistic regression.

The next most complicated neural network is one with two layers. This extra layer is
referred to as a hidden layer. In general there is no restriction on the number of hidden
layers. However, it has been shown mathematically that a two-layer neural network, such
as shown in Figure 1, can accurately reproduce any differentiable function, provided the
number of perceptrons in the hidden layer is unlimited.

However, increasing the number of neurons increases the number of weights that must be
estimated in the network, which in turn increases the execution time for this network.
Instead of increasing the number of perceptrons in the hidden layers to improve accuracy,
it is sometimes better to add additional hidden layers, which typically reduces both the
total number of network weights and the computational time. However, in practice, it is
uncommon to see neural networks with more than two or three hidden layers.
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Neural Network Error Calculations

Error Calculations for Forecasting

The error calculations used to train a neural network are very important. Many error
calculations have been researched, trying to find a calculation with a short training time
that is appropriate for the network’s application. Typically error calculations are very
different depending primarily on the network’s application.

For forecasting, the most popular error function is the sum-of-squared errors, or one of its
scaled versions. This is analogous to using the minimum least squares optimization
criterion in linear regression. Like least squares, the sum-of-squared errors is calculated by
looking at the squared difference between what the network predicts for each training
pattern and the target value, or observed value, for that pattern. Formally, the equation is
the same as one-half the traditional least squares error:

E = 1
2

N∑
i=1

C∑
j=1

(
tij − t̂ij

)2
where N is the total number of training cases, C is equal to the number of network
outputs, tij is the observed output for the ith training case and the jth network output,
and t̂ij is the network’s forecast for that case.

Common practice recommends fitting a different network for each forecast variable. That
is, the recommended practice is to use C=1 when using a multilayer feed-forward neural
network for forecasting. For classification problems with more than two classes, it is
common to associate one output with each classification category, i.e., C=number of
classes.

Notice that in ordinary least squares, the sum-of-squared errors is not multiplied by
one-half. Although this has no impact on the final solution, it significantly reduces the
number of computations required during training.

Also note that as the number of training patterns increases, the sum-of-squared errors
increases. As a result, it is often useful to use the root-mean-square (RMS) error instead
of the unscaled sum-of-squared errors:

ERMS =

N∑
i=1

C∑
j=1

(
tij − t̂ij

)2
N∑

i=1

C∑
j=1

(tij − t̄)2
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where t̄ is the average output:

t̄ =

N∑
i=1

C∑
j=1

tij

N · C
Unlike the unscaled sum-of-squared errors, ERMS does not increase as N increases. The
smaller the value of ERMS the closer the network is predicting its targets during training.
A value of ERMS = 0 indicates that the network is able to predict every pattern exactly.
A value of ERMS = 1 indicates that the network is predicting the training cases only as
well as using the mean of the training cases for forecasting.

Notice that the root-mean-squared error is related to the sum-of-squared error by a simple
scale factor:

ERMS =
2
t̄
· E

Another popular error calculation for forecasting from a neural network is the
Minkowski-R error. The sum-of-squared error, E, and the root-mean-squared error,
ERMS , are both theoretically motivated by assuming the noise in the target data is
Gaussian. In many cases, this assumption is invalid. A generalization of the Gaussian
distribution to other distributions gives the following error function, referred to as the
Minkowski-R error:

ER =
N∑

i=1

C∑
j=1

∣∣tij − t̂ij∣∣R.
Notice that ER = 2E when R=2.

A good motivation for using ER instead of E is to reduce the impact of outliers in the
training data. The usual error measures, E and ERMS , emphasize larger differences
between the training data and network forecasts since they square those differences. If
outliers are expected, then it is better to de-emphasize larger differences. This can be
done by using the Minkowski-R error with R=1. When R=1, the Minkowski-R error
simplifies to the sum of absolute differences:

L = E1 =
N∑

i=1

C∑
j=1

∣∣tij − t̂ij∣∣.
L is also referred to as the Laplacian error. Its name is derived from the fact that it can
be theoretically justified by assuming the noise in the training data follows a Laplacian
rather than Gaussian distribution.

Of course, similar to E, L generally increases when the number of training cases increases.
Similar to ERMS , a scaled version of the Laplacian error can be calculated using the
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following formula:

LRMS =

N∑
i=1

C∑
j=1

∣∣tij − t̂ij∣∣
N∑

i=1

C∑
j=1
|tij − t̄|

Cross-Entropy Error for Binary Classification

As previously mentioned, multilayer feed-forward neural networks can be used for both
forecasting and classification applications. Training a forecasting network involves finding
the network weights that minimize either the Gaussian or Laplacian distributions, E or L
respectively, or equivalently their scaled versions, ERMS or LRMS . Although these error
calculations can be adapted for use in classification by setting the target classification
variable to zeros and ones, this is not recommended. Use of the sum-of-squared and
Laplacian error calculations is based on the assumption that the target variable is
continuous. In classification applications, the target variable is a discrete random variable
with C possible values, where C=number of classes.

A multilayer feed-forward neural network for classifying patterns into one of only two
categories is referred to as a binary classification network. It has a single output: the
estimated probability that the input pattern belongs to one of the two categories. The
probably that it belongs to the other category is equal to one minus this probability, i.e.,

P (C2) = P (not C1) = 1− P (C1)

Binary classification applications are very common. Any problem requiring yes/no
classification is a binary classification application. For example, deciding to sell or buy a
stock is a binary classification problem. Deciding to approve a loan application is also a
binary classification problem. Deciding whether to approve a new drug or to provide one
of two medical treatments are binary classification problems.

For binary classification problems, only a single output is used, C=1. This output
represents the probability that the training case should be classified as yes. A common
choice for the activation function of the output of a binary classification networks is the
logistic activation function, which always results in an output in the range 0 to 1,
regardless of the perceptron’s potential.

One choice for training binary classification network is to use sum-of-squared errors with
the class value of yes patterns coded as a 1 and the no classes coded as a 0, i.e.:

tij =
{

1 if training pattern i=yes
0 if the training pattern i=no

However, using either the sum-of-squared or Laplacian errors for training a network with
these target values assumes that the noise in the training data are Gaussian. In binary
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classification, the zeros and ones are not Gaussian. They follow the Bernoulli distribution:

P (ti = t) = pt(1− p)1−t

where p is equal to the probability that a randomly selected case belongs to the yes class.

Modeling the binary classes as Bernoulli observations leads to the use of the cross-entropy
error function described by Hopfield (1987) and Bishop (1995):

EC = −
N∑

i=1

{
ti ln(t̂i) + (1− ti) ln(1− t̂i)

}
.

where N is the number of training patterns, ti is the target value for the ith case (either 1
or 0), and t̂i is the network’s output for the ith case. This is equal to the neural network’s
estimate of the probability that the ith case should be classified as yes.

For situations in which the target variable is a probability in the range 0 < tij < 1, the
value of the cross-entropy at the networks optimum is equal to:

EC
min = −

N∑
i=1

{ti ln(ti) + (1− ti) ln(1− ti)}

Subtracting this from EC gives an error term bounded below by zero, i.e., ECE ≥ 0 where:

ECE = EC − EC
min = −

N∑
i=1

{
ti ln

[
t̂i
ti

]
+ (1− ti) ln

[
1− t̂i
1− ti

]}
This adjusted cross-entropy is normally reported when training a binary classification
network where 0 < tij < 1. Otherwise EC , the non-adjusted cross-entropy error, is used.
Small values, values near zero, would indicate that the training resulted in a network with
a low error rate and that patterns are being classified correctly most of the time.

Back-Propagation in Multilayer Feed-Forward Neural Network

Sometimes a multilayer feed-forward neural network is referred to incorrectly as a
back-propagation network. The term back-propagation does not refer to the structure or
architecture of a network. Back-propagation refers to the method used during network
training. More specifically, back-propagation refers to a simple method for calculating the
gradient of the network, that is the first derivative of the weights in the network.

The primary objective of network training is to estimate an appropriate set of network
weights based upon a training dataset. There are many ways that have been researched
for estimating these weights, but they all involve minimizing some error function. In
forecasting, the most commonly used error function is the sum of squared errors:
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E = 1
2

N∑
i=1

C∑
j=1

(
tij − t̂ij

)2
Training uses one of several possible optimization methods to minimize this error
term. Some of the more common are: steepest descent, quasi-Newton, conjugant gradient,
and many various modifications of these optimization routines.

Back-propagation is a method for calculating the first derivative, or gradient, of the error
function required by some optimization methods.It is certainly not the only method for
estimating the gradient. However, it is the most efficient. In fact, some will argue that the
development of this method by Werbos (1974), Parket (1985), and Rumelhart, Hinton and
Williams (1986) contributed to the popularity of neural network methods by significantly
reducing the network training time and making it possible to train networks consisting of
a large number of inputs and perceptrons.

Simply stated, back-propagation is a method for calculating the first derivative of the
error function with respect to each network weight. Bishop (1995) derives and describes
these calculations for the two most common forecasting error functions, the sum of
squared errors and Laplacian error functions. Abe (2001) gives the description for the
classification error function, the cross-entropy error function. For all of these error
functions, the basic formula for the first derivative of the network weight wji at the ith
perceptron applied to the output from the jth perceptron

∂E

∂wji
= δjZi,

where Zi = g(ai) is the output from the ith perceptron after activation, and

∂E

∂wji

is the derivative for a single output and a single training pattern. The overall estimate of
the first derivative of wji is obtained by summing this calculation over all N training
patterns and C network outputs.

The term back-propagation gets its name from the way the term δj in the
back-propagation formula is calculated:

δj = g′(aj) ·
∑

k

wkjδk,

where the summation is over all perceptrons that use the activation from the jth
perceptron, g(aj).

The derivative of the activation functions, g′(a), varies among these functions, see the
following table:
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Table 2. Activation Functions and Their Derivatives

Activation Function g(a) g′(a)
Linear g(a) = a g′(a) = 1 (where a is a con-

stant)
Logistic g(a) = 1

1+e−a g′(a) = g(a)(1− g(a))
Hyperbolic-tangent g(a) = tanh(a) g′(a) = sech2(a) = 1 −

tanh2(a)
Squash g(a) = a

1+|a| g′(a) = 1
(1+|a|)2

Creating a Feed Forward Network

The following code fragment creates the feed forward neural network shown in the
following figure:
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Figure 8. A Three-Layer Feed-Forward Neural Net

Notice that this network is more complex than the typical feed-forward network in which
all nodes from each layer are connected to every node in the next layer. This network has
6 input nodes, and they are not all connected to every node in the 1st hidden layer.

Note also that the 4 perceptrons in the 1st hidden layer are not connected to every node
in the 2nd hidden layer, and the perceptrons in the 2nd hidden layer are not all connected
to the two outputs.

// ***************************************************************

// EXAMPLE CODE FOR CREATING LINKS AMONG NETWORK NODES

// ***************************************************************

import com.imsl.datamining.neural.*;
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FeedForwardNetwork network = new FeedForwardNetwork();

network.getInputLayer().createInputs(6);

network.createHiddenLayer().createPerceptrons(4);

network.createHiddenLayer().createPerceptrons(3);

network.getOutputLayer().createPerceptrons(2);

HiddenLayers[] hiddenLayer = network.getHiddenLayers();

Node[] inputNode = network.getInputLayer().getNodes();

Node[] layer1Node = hiddenLayer[0].getNodes();

Node[] layer2Node = hiddenLayer[1].getNodes();

Node[] outputNode = network.getOutputLayer().getNodes();

// Create links between input nodes and 1st hidden layer

network.link(inputNode[0], layer1Node[0]);

network.link(inputNode[0], layer1Node[1]);

network.link(inputNode[1], layer1Node[0]);

network.link(inputNode[1], layer1Node[1]);

network.link(inputNode[1], layer1Node[3]);

network.link(inputNode[2], layer1Node[1]);

network.link(inputNode[2], layer1Node[2]);

network.link(inputNode[3], layer1Node[3]);

network.link(inputNode[4], layer1Node[3]);

network.link(inputNode[5], layer1Node[3]);

// Create links between 1st and 2nd hidden layers

network.link(layer1Node[0], layer2Node[0]);

network.link(layer1Node[0], layer2Node[1]);

network.link(layer1Node[0], layer2Node[2]);

network.link(layer1Node[1], layer2Node[0]);

network.link(layer1Node[1], layer2Node[1]);

network.link(layer1Node[1], layer2Node[2]);

network.link(layer1Node[2], layer2Node[0]);

network.link(layer1Node[2], layer2Node[2]);

network.link(layer1Node[3], layer2Node[1]);

network.link(layer1Node[3], layer2Node[2]);

// Create links between 2nd hidden layer and output layer

network.link(layer2Node[0], outputNode[0]);

network.link(layer2Node[1], outputNode[0]);

network.link(layer2Node[1], outputNode[1]);

network.link(layer2Node[2], outputNode[0]);

network.link(layer2Node[2], outputNode[1]);

// Create link between input node[0] and ouput node[0]

network.link(inputNode[0], outputNode[0]);

// ***************************************************************
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By default, the FeedForwardNetwork constructor creates a feed forward network with an
empty input layer, no hidden layers and an empty output layer. Input nodes are created
by accessing the empty input layer and creating 6 nodes within it. Two hidden layers are
then created within the network using the
FeedForwardNetwork.createHiddenLayer().createPerceptrons() method. Four perceptrons
are created within the first hidden layer and three within the second. Output perceptrons
are created by accessing the empty output layer and creating the Perceptrons within it:
FeedForwardNetwork.getOutputLayer().createPerceptrons().

Links among the input nodes and perceptrons can be created using one of several
approaches. If all inputs are connected to every perceptron in the first hidden layer, and if
all perceptrons are connected to every perceptron in the following layer, which is a
standard architecture for feed forward networks, then a call to the
FeedForwardNetwork.linkAll() method can be used to create these links.

However, this example does not use that standard configuration. Some links are missing.
In this case, the approach used is to construct individual links using the
FeedForwardNetwork.link() method. This requires one call for every link.

An alternate approach is to first create all links and then to remove those that are not
needed. The following code illustrates this approach:

// ***************************************************************

// EXAMPLE CODE FOR REMOVING LINKS AMONG NETWORK NODES

// ***************************************************************

import com.imsl.datamining.neural.*;

FeedForwardNetwork network = new FeedForwardNetwork();

InputNode[] inputNode = network.getInputLayer().createInputs(6);

Perceptron[] hiddenLayer1 = network.createHiddenLayer().createPerceptrons(4);

Perceptron[] hiddenLayer2 = network.createHiddenLayer().createPerceptrons(3);

Perceptron[] outputLayer = network.getOutputLayer().createPerceptrons(2);

network.linkAll(); // Creates standard feed forward configuration

// Remove links between input nodes and 1st hidden layer

network.remove(network.findLink(inputNode[0],hiddenLayer1[2]));

network.remove(network.findLink(inputNode[0],hiddenLayer1[3]));

network.remove(network.findLink(inputNode[1],hiddenLayer1[3]));

network.remove(network.findLink(inputNode[2],hiddenLayer1[0]));

network.remove(network.findLink(inputNode[2],hiddenLayer1[3]));

network.remove(network.findLink(inputNode[3],hiddenLayer1[0]));

network.remove(network.findLink(inputNode[3],hiddenLayer1[1]));

network.remove(network.findLink(inputNode[3],hiddenLayer1[2]));

network.remove(network.findLink(inputNode[4],hiddenLayer1[0]));

network.remove(network.findLink(inputNode[4],hiddenLayer1[1]));
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network.remove(network.findLink(inputNode[4],hiddenLayer1[2]));

network.remove(network.findLink(inputNode[5],hiddenLayer1[0]));

network.remove(network.findLink(inputNode[5],hiddenLayer1[1]));

network.remove(network.findLink(inputNode[5],hiddenLayer1[2]));

// Remove links between 1st and 2nd hidden layers

network.remove(network.findLink(hiddenLayer1[2],hiddenLayer2[1]));

network.remove(network.findLink(hiddenLayer1[3],hiddenLayer2[0]));

// Remove links between 2nd hidden layer and the output layer

network.remove(network.findLink(hiddenLayer2[0],outputLayer[1]));

// Add link from input node[0] to output node[0]

network.link(inputNode[0], outputNode[0]);

// ***************************************************************

In the above fragment, all links are created using the FeedForwardNetwork.linkAll()

method. This creates a total of 6*4+4*3+3*2=42 links, not including the link between
the first input node and the first output node. Links that skip layers are not created by
the linkAll() method.

Links are then selectively removed starting with the first input node and proceeding to
links between the last hidden layer and the output layers. In this case, there are 6*4=24
possible links between the input nodes and first hidden layer. Fourteen of them had to be
removed. Between the first hidden layer and second, there are 4*3=12 possible links. Two
of them were removed. Between the second hidden layer and output layer there are 3*2=6
possible links, and only one needed to be removed. Finally the skip-layer link between the
first input node and first output node is added.

After creating and removing links among layers, the activation function used with each
perceptron can be selected. By default, every perceptron in the hidden layers use the
logistic activation function and every perceptron in the output layers uses the linear
activation function. The following fragment shows how to change the activation function
in the hidden layer perceptrons from logistic to hyperbolic-tangent and the output layer
from linear to logistic. It also creates a connection directly from the first input node to
the output node.

// ***************************************************************

// EXAMPLE CODE FOR SETTING NON-DEFAULT ACTIVATION FUNCTIONS

// ***************************************************************

import com.imsl.datamining.neural.*;

FeedForwardNetwork network = new FeedForwardNetwork();

InputNode[] inputNode = network.getInputLayer().createInputs(6);

Perceptron[] hiddenLayer1 = network.createHiddenLayer().createPerceptrons(4);

Perceptron[] hiddenLayer2 = network.createHiddenLayer().createPerceptrons(3);

Perceptron[] outputLayer = network.getOutputLayer().createPerceptrons(2);
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for (int k = 0; k hiddenLayer1.length; k++) {
hiddenLayer1[k].setActivation(Activation.TANH);

}
for (int k = 0; k hiddenLayer2.length; k++) {

hiddenLayer2[k].setActivation(Activation.TANH);

}
for (int k = 0; k outputLayer.length; k++) {

output[k].setActivation(Activation.LOGISTIC);

}
.

.

.

// ***************************************************************

Training

Trainers are used to find the network weights that produce network outputs matching a
set of training targets. The training targets together with their associated network inputs
are referred to as training patterns. Training patterns can be historical data relating
network inputs to its outputs, or they can be developed from expert opinion or theoretical
analysis. In the end, each training pattern relates specific network inputs to its real or
desired target outputs.

In JMSL, all trainers implement the com.imsl.datamining.neural.Trainer interface. The
number of training input attributes must equal the number of input nodes, and the
number of training outputs, sometimes called training targets, must equal the number of
output perceptrons created for the network.

Single Stage Trainers

QuasiNewtonTrainer and LeastSquaresTrainer are single stage trainers. They use all
available training patterns and a specific optimization method to find optimum network
weights. The best set of weights is a set that minimizes the error between the network
output and its training targets. The following code fragment illustrates how to use the
quasi-Newton method for single stage network training.

// ***************************************************************

// EXAMPLE CODE FOR ONE-STAGE TRAINER

// ***************************************************************

double xData[][] = ...

double yData[][] = ...

QuasiNewtonTrainer trainer = new QuasiNewtonTrainer();
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trainer.setGradientTolerance(1.0e-7);

trainer.train(network, xData, yData);

.

.

.

// ***************************************************************

In this example, xData and yData are two-dimensional arrays containing the input
attributes and output targets respectively. The number of rows in these arrays is equal to
the number of training patterns. The number of columns in xData is equal to the number
of input attributes, after applying any necessary preprocessing. The number of columns in
yData is equal to the number of network outputs. The setGradientTolerance() method is
one of several optional settings for tailoring the convergence criteria used with the training
optimizer.

LeastSquaresTrainer is another single stage trainer. There are two principal differences
between this trainer and the quasi-Newton trainer. First their optimization algorithms are
different. The least squares trainer uses the Levenberg-Marquardt algorithm to optimize
the network. As the name implies, the quasi-Newton trainer uses a modified Newton
algorithm for optimization. In some applications, depending upon the data and the
network architecture, one method may train the network faster than the other.

Another key difference between these single stage trainers is that the least squares trainer
only uses one error function, the sum of squared errors. The quasi-Newton trainer, by
default, uses the same error function. However, it also has an interface that accepts a
user-supplied error function.

Multistage Trainers

When there are a large number of training patterns, single stage trainers will often take
too long to complete network training. For these applications, a multistage trainer could
be used to reduce training time. Multistage trainers provide considerably more flexibility
in designing an optimum training scheme. All of these trainers break network training
into two stages. Stage II is optional. That is, a multistage trainer can be requested to only
conduct Stage I training, or it can be requested to conduct both Stage I and II training.

The main difference between Stage I and II training is that Stage I training is conducted
multiple times using randomly selected subsets of all available training patterns. Each
training session is referred to as an epoch. Although each epoch uses a different set of
randomly selected training patterns, the number of patterns is the same for every epoch.
Typically, because they are using different data, the solutions vary among epochs.

Stage II training is conducted following the Stage I training using the best set of weights
obtained during Stage I. This ensures that the weights developed during Stage II training
will always be as good as or better than those determined during Stage I training. The
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entire set of original training patterns is used during Stage II training, and only one
training session is completed.

There is no requirement to use the same trainer for both stages, although there is nothing
wrong with that approach. The least squares trainer might be used for Stage I training
and the quasi-Newton trainer might be used for Stage II training. In addition, the
optimization settings for each trainer can be different. In JMSL, the multistage trainer is
implemented using the EpochTrainer class.

The following code fragment illustrates the use of the epoch multistage trainer:

// ***************************************************************

// EXAMPLE CODE FOR MULTISTAGE EPOCH TRAINER

// ***************************************************************

double xData[][] = ...

double yData[][] = ...

QuasiNewtonTrainer stageITrainer = new QuasiNewtonTrainer();

LeastSquaresTrainer stageIITrainer = new LeastSquaresTrainer();

EpochTrainer trainer = new EpochTrainer(stageITrainer, stageIITrainer);

trainer.setNumberOfEpochs(20);

trainer.setEpochSize(3000);

.

.

.

// ***************************************************************

In this example, a quasi-Newton trainer is selected for the Stage I trainer, and the least
squares trainers is used for Stage II. Stage I will consists of 20 training epochs. The
training of each epoch uses 3,000 randomly selected training patterns with the
quasi-Newton trainer. The epoch with the smallest training error supplies the starting
values for the Stage II trainer.

Data Preprocessing

Data preprocessing, or filtering, is the term used to describe the process of scaling or
transforming input attributes into numerical values suitable for network training. In
general it is important to scale all input attributes to a common range, either [0, 1] or [-1,
1]. The algorithm used for obtaining values for the network weights assumes that the
inputs are scaled to one of these ranges. If some network inputs have values that cover a
much broader range, then the initial weights can be far from optimum causing network
training to fail or take an excessively long time.

Network input data are classified into three general categories: continuous, ordinal and
nominal. JMSL provides methods for preprocessing all three data types. Continuous data
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are scaled using the ScaleFilter class. In addition, lagged versions of continuous time
series data can be created using the TimeSeriesFilter or TimeSeriesClassFilter class.

Categorical data, such as color or preference ratings, are either ordinal and nominal data.
JMSL provides methods UnsupervisedOrdinalFilter and UnsupervisedNominalFilter to
preprocess ordinal and nominal data respectively. UnsupervisedOrdinalFilter transforms
ordinal data into values between 0 and 1, which allows them to be treated as continuous
data.

Nominal data, on the other hand, can be transformed using several methods.
UnsupervisedNominalFilter converts a single nominal variable with m classes into m
columns containing the values 0 and 1. This is referred to as binary encoding of nominal
classification information.

The following code fragment illustrates the use of some of these preprocessing methods:

// ***************************************************************

// EXAMPLE CODE FOR PREPROCESSING NOMINAL AND CONTINUOUS DATA

// ***************************************************************

double[][] yData = {....};
int[] nominalVariable={.....};
int nClasses = 3;

// Create a nominal filter for binary encoding of a nominal variable

// that has 3 categorical values

UnsupervisedNominalFilter nominalFilter = new UnsupervisedNominalFilter(nClasses);

int[][] binaryColumns = nominalFilter(nominalVariable);

// Create a scale filter for scaling continuous data in a range of [0,1]

ScaleFilter scaleFilter = new ScaleFilter(ScaleFilter.BOUNDED SCALING);

// Apply the scale filter to two continuous variables, x1 and x2

scaleFilter.setBounds(-200,1000,0,1); // Original values [-200, 1000]

scaleFilter.encode(x1);

scaleFilter.setBounds(0,5000,0,1); // Original values [0, 5000]

scaleFilter.encode(x2);

// Load the encoded columns into xData

int n = nominalVariable.length;

double[][] xData = new double[n][3+3];

for(int i=0; i n; i++){
xData[i][0] = x1[i];

xData[i][1] = x2[i];

for(int j=0; j nClasses; j++) xData[i][j+2] = binaryColumns[i][j];

}
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.

.

.

// ***************************************************************

In the above example, one nominal variable consisting of values representing 3 different
classes, or categories, is encoded into 3 binary columns using UnsupervisedNominalFilter

class. Two continuous variables are scaled using the ScaleFilter class, and these five
columns are then loaded into xData in preparation for network training.

Serialization

Neural network training can require a substantial amount of time, so it is often desirable
to save a trained network for later use in forecasting. Java serialization can be used to
save the results of network training.

When an object is serialized, its state is saved. However, the code implementing the class
(the class file) is not saved with the serialized file. Hence when the object is deserialized,
the code that created the serialized object should be in the classpath. Otherwise
deserialization will fail.

For an object to be serialized, it must implement the java.io.Serializable interface. The
following code fragment serializes key network and training information into four files.
One contains the network weights, another contains the training statistics, and two
additional files contain the training patterns. This is done using a write(Object,String)

method that takes a file name and writes the serialized object to that file.

// ***************************************************************

// EXAMPLE CODE FOR SAVING TRAINED NETWORK USING SERIALIZATION

// ***************************************************************

.

.

.

// ***************************************************************

// SAVE A TRAINED NETWORK BY SAVING THE SERIALIZED NETWORK OBJECTS

// ***************************************************************

// Saving network weights and structural information

write(network, "MyNetwork.ser");

// Saving training information available from computeStatistics()

write(trainer, "MyNetworkTrainer.ser");

// Saving xData training targests

write(xData, "MyNetworkxData.ser");

// Saving yData training targets
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write(yData, "MyNetworkyData.ser);

// ***************************************************************

// WRITE SERIALIZED OBJECT TO A FILE

// ***************************************************************

static public void write(Object obj, String filename)

throws IOException {
FileOutputStream fos = new FileOutputStream(filename);

ObjectOutputStream oos = new ObjectOutputStream(fos);

oos.writeObject(obj);

oos.close();

fos.close();

}
// ***************************************************************

Notice that not only is the network object serialized and saved, the trainer and training
patterns, xData and yData, are also saved. This was only done to allow someone to
calculate the additional network statistics. If these are not needed, then these training
patterns need not be saved. However, for forecasting, it is essential to remember the
specifc order and nature of the network inputs used during training. This information is
not saved in the network serialized file.

When an object is deserialized, the object is reconstructed using the saved serialization
file. The following code deserializes the previously saved network information.

// ***************************************************************

// EXAMPLE CODE FOR READING TRAINED NETWORK FROM SERIALIZED FILES

// ***************************************************************

.

.

.

// ***************************************************************

// READ THE TRAINED NETWORK FROM THE SERIALIZED NETWORK OBJECT

Network network = (Network)read("MyNetwork.ser");

// READ THE SERIALIZED XDATA[][] AND YDATA[][] ARRAYS OF TRAINING

// PATTERNS.

xData = (double[][])read("MyNetworkxData.ser");

yData = (double[][])read("MyNetworkyData.ser");

// READ THE SERIALIZED TRAINER OBJECT

Trainer trainer = (Trainer)read("MyNetworkTrainer.ser");

// ***************************************************************

// DISPLAY TRAINING STATISTICS

// ***************************************************************

double stats[] = network.computeStatistics(xData, yData);
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.

.

.

// ***************************************************************

// READ SERIALIZED NETWORK FROM A FILE

// ***************************************************************

static public Object read(String filename)

throws IOException, ClassNotFoundException {
FileInputStream fis = new FileInputStream(filename);

ObjectInputStream ois = new ObjectInputStream(fis);

Object obj = ois.readObject();

ois.close();

fis.close();

return obj;

}
// ***************************************************************

Logging

The training classes support logging using the standard Java classes. The following code
fragment enables logging for an epoch trainer. The log is stored into a file with the name
MyNetworkTraining.log

// ***************************************************************

// EXAMPLE CODE FOR CREATING TRAINING LOG

// ***************************************************************

import java.util.logging.*;

.

.

.

try {
Handler handler = new FileHandler("MyNetworkTraining.log");

Logger logger = Logger.getLogger("com.imsl.datamining.neural");

logger.setLevel(Level.FINEST);

logger.addHandler(handler);

handler.setFormatter(EpochTrainer.getFormatter());

}catch (Exception e) {
e.printStackTrace();

}
.

.
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.

// ***************************************************************

The standard Java logging classes are in the package java.util.logging. A FileHandler is
used to write the logging information to the log file. Each of the training classes has a
static method that returns a special Formatter designed to work with the logging
statements in the trainers. All of the trainers use the same Formatter.

The name of the logger in each of the trainers is the fully qualified name of the trainer.
Because the Java logger is hierarchical, the name com.imsl.datamining.neural can be used
to log all of the JMSL training classes. More specific names can be used to set trainer
specific logging levels. For example, setting the logging level in
com.imsl.datamining.neural.EpochTrainer to Level.FINEST, while setting the level in
com.imsl.datamining.neural.QuasiNewtonTrainer to Level.FINE. The trainers support
logging the Level.FINE, Level.FINER and Level.FINEST.

Example: Neural Network Application

This application illustrates one common approach to time series prediction using a neural
network. In this case, the output target for this network is a single time series. In general,
the inputs to this network consist of lagged values of the time series together with other
concomitant variables, both continuous and categorical. In this application, however, only
the first three lags of the time series are used as network inputs.

The objective is to train a neural network for forecasting the series Yt, t = 0, 1, 2, . . ., from
the first three lags of Yt, i.e.

Yt = f(Yt−1, Yt−2, Yt−3)

Since this series consists of data from several company departments, lagging of the series
must be done within departments. This creates many missing values. The original data
contains 118,519 training patterns. After lagging, 16,507 are identified as missing and are
removed, leaving a total of 102,012 usable training patterns. Missing values are denoted
using a number not in the training patterns, the value -9,999,999,999.0 .

The structure of the network consists of three input nodes and two layers, with three
perceptrons in the hidden layer and one in the output layer. The following figure depicts
this structure:
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Figure 9. An example 2-layer Feed Forward Neural Network

There are a total of 16 weights in this network, including the 4 bias weights. All
perceptrons in the hidden layer use logistic activation, and the output perceptron uses
linear activation. Because of the large number of training patterns, the
Activation.LOGISTIC TABLE activation funtion is used instead of Activation.LOGISTIC.
Activation.LOGISTIC TABLE uses a table lookup for calculating the logistic activation
function, which significantly reduces training time. However, these are not completely
interchangable. If a network is trained using Activation.LOGISTIC TABLE, then it is
important to use the same activation function for forecasting.

All input nodes are linked to every perceptron in the hidden layer, which are in turn
linked to the output perceptron. Then all inputs and the output target are scaled using
the ScaleFilter class to ensure that all input values and outputs are in the range [0, 1].
This requires forecasts to be unscaled using the decode() method of the ScaleFilter class.

Training is conducted using the epoch trainer. This trainer allows users to customize
training into two stages. Typically this is necessary when training using a large number of
training patterns. Stage I training uses randomly selected subsets of training patterns to
search for network solutions. Stage II training is optional, and uses the entire set of
training patterns. For larger sets of training patterns, training could take many hours, or
even days. In that case, Stage II training might be bypassed.

In this example, Stage I training is conducted using the Quasi-Newton trainer applied to
20 epochs, each consisting of 5,000 randomly selected observations. Stage II training also
uses the Quasi-Newton trainer. The training results for each Stage I epoch and for the
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final Stage II solution are stored in a training log file NeuralNetworkEx1.log.

The training patterns are contained in two data files: continuous.txt and output.txt.
The formats of these files are identical. The first line of the file contains the number of
columns or variables in that file. The second contains a line of tab-delimited integer
values. These are the column indices associated with the incoming data. The remaining
lines contain tab-delimited, floating point values, one for each of the incoming variables.

For example, the first four lines of the continuous.txt file consists of the following lines:

3
1 2 3
0 0 0
0 0 0

There are 3 continuous input variables which are numbered, or labeled, as 1, 2, and 3.

Source Code

import com.imsl.datamining.neural.*;

import com.imsl.math.*;

import java.io.*;

import java.util.*;

import java.util.logging.*;

//*****************************************************************************

// NeuralNetworkEx1.java *

// Two Layer Feed-Forward Network Complete Example for Simple Time Series *

//*****************************************************************************

// Synopsis: This example illustrates how to use a Feed-Forward Neural *

// Network to forecast time series data. The network target is a *

// time series and the three inputs are the 1st, 2nd, and 3rd lag *

// for the target series. *

// Activation: Logistic Table in Hidden Layer, Linear in Output Layer *

// Trainer: Epoch Trainer: Stage I - Quasi-Newton, Stage II - Quasi-Newton *

// Inputs: Lags 1-3 of the time series *

// Output: A Time Series sorted chronologically in descending order, *

// i.e., the most recent observations occur before the earliest, *

// within each department *

//*****************************************************************************

public class NeuralNetworkEx1 implements Serializable {
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private FeedForwardNetwork network;

private static String QuasiNewton = "quasi-newton";

private static String LeastSquares= "least-squares";

// *****************************************************************************

// Network Architecture *

// *****************************************************************************

private static int nObs =118519; // number of training patterns

private static int nInputs = 3; // four inputs

private static int nCategorical = 0; // three categorical attributes

private static int nContinuous = 3; // one continuous input attribute

private static int nOutputs = 1; // one continuous output

private static int nLayers = 2; // number of perceptron layers

private static int nPerceptrons = 3; // perceptrons in hidden layer

private static int perceptrons[]={3}; // number of perceptrons in each

// hidden layer

// PERCEPTRON ACTIVATION

private static Activation hiddenLayerActivation = Activation.LOGISTIC TABLE;

private static Activation outputLayerActivation = Activation.LINEAR;

// *****************************************************************************

// Epoch Training Optimization Settings *

// *****************************************************************************

private static boolean trace = true; //trainer logging *

private static int nEpochs = 20; //number of epochs *

private static int epochSize = 5000; //samples per epoch *

// Stage I Trainer - Quasi-Newton Trainer **********************************

private static int stage1Iterations = 5000; //max. iterations *

private static double stage1MaxStepsize = 50.0; //max. stepsize *

private static double stage1StepTolerance = 1e-09;//step tolerance *

private static double stage1RelativeTolerance = 1e-11;//rel. tolerance *

// Stage II Trainer - Quasi-Newton Trainer *********************************

private static int stage2Iterations = 5000; //max. iterations *

private static double stage2MaxStepsize = 50.0; //max. stepsize *

private static double stage2StepTolerance = 1e-09;//step tolerance *

private static double stage2RelativeTolerance = 1e-11;//rel. tolerance *

// *****************************************************************************

// FILE NAMES AND FILE READER DEFINITIONS *

// *****************************************************************************

// READERS

private static BufferedReader attFileInputStream;

private static BufferedReader contFileInputStream;

private static BufferedReader outputFileInputStream;
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// OUTPUT FILES

// File Name for training log produced when trace = true

private static String trainingLogFile = "NeuralNetworkEx1.log";

// File Name for Serialized Network

private static String networkFileName = "NeuralNetworkEx1.ser";

// File Name for Serialized Trainer

private static String trainerFileName = "NeuralNetworkTrainerEx1.ser";

// File Name for Serialized xData File (training input attributes)

private static String xDataFileName = "NeuralNetworkxDataEx1.ser";

// File Name for Serialized yData File (training output targets)

private static String yDataFileName = "NeuralNetworkyDataEx1.ser";

// INPUT FILES

// Continuous input attributes file. File contains Lags 1-3 of series

private static String contFileName = "continuous.txt";

// Continuous network targets file. File contains the original series

private static String outputFileName = "output.txt";

// *****************************************************************************

// Data Preprocessing Settings *

// *****************************************************************************

private static double lowerDataLimit=-105000; // lower scale limit

private static double upperDataLimit=25000000; // upper scale limit

private static double missingValue = -9999999999.0; // missing values

// indicator

// *****************************************************************************

// Time Parameters for Tracking Training Time *

// *****************************************************************************

private static Calendar startTime;

private static Calendar endTime;

// *****************************************************************************

// Error Message Encoding for Stage II Trainer - Quasi-Newton Trainer *

// *****************************************************************************

// Note: For the Epoch Trainer, the error status returned is the status for *

// the Stage II trainer, unless Stage II training is not used. *

// *****************************************************************************

private static String errorMsg = "";

// Error Status Messages for the Quasi-Newton Trainer

private static String errorMsg0 =

"--> Network Training";

private static String errorMsg1 =

"--> The last global step failed to locate a lower point than the\n"+

"current error value. The current solution may be an approximate\n"+

"solution and no more accuracy is possible, or the step tolerance\n"+
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"may be too large.";

private static String errorMsg2 =

"--> Relative function convergence; both both the actual and \n"+

"predicted relative reductions in the error function are less than\n"+

"or equal to the relative fu nction convergence tolerance.";

private static String errorMsg3 =

"--> Scaled step tolerance satisfied; the current solution may be\n"+

"an approximate local solution, or the algorithm is making very slow\n"+

"progress and is not near a solution, or the step tolerance is too big.";

private static String errorMsg4 =

"--> Quasi-Newton Trainer threw a \n"+

"MinUnconMultiVar.FalseConvergenceException.";

private static String errorMsg5 =

"--> Quasi-Newton Trainer threw a \n"+

"MinUnconMultiVar.MaxIterationsException.";

private static String errorMsg6 =

"--> Quasi-Newton Trainer threw a \n"+

"MinUnconMultiVar.UnboundedBelowException.";

// *****************************************************************************

// MAIN *

// *****************************************************************************

public static void main(String[] args) throws Exception {

double weight[]; // Network weights

double gradient[]; // Network gradient after training

double x[]; // Temporary x space for generating forecasts

double y[]; // Temporary y space for generating forecasts

double xData[][]; // Training Patterns Input Attributes

double yData[][]; // Training Targets Output Attributes

double contAtt[][];// A 2D matrix for the continuous training attributes

double outs[][]; // A matrix containing the training output tragets

int i, j, k, m=0; // Array indicies

int nWeights = 0; // Number of network weights

int nCol = 0; // Number of data columns in input file

int ignore[]; // Array of 0’s and 1’s (0=missing value)

int cont col[], outs col[], isMissing[]={0};
String inputLine="", temp;

String dataElement[];

// *************************************************************************

// Initialize timers *

// *************************************************************************

startTime = Calendar.getInstance();
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System.out.println("--> Starting Data Preprocessing at: "+

startTime.getTime());

// *************************************************************************

// Read continuous attribute data *

// *************************************************************************

// Initialize ignore[] for identifying missing observations

ignore = new int[nObs];

isMissing = new int[1];

openInputFiles();

nCol = readFirstLine(contFileInputStream);

nContinuous = nCol;

System.out.println("--> Number of continuous variables: "+nContinuous);

// If the number of continuous variables is greater than zero then read

// the remainder of this file (contFile)

if(nContinuous > 0){
// contFile contains continuous attribute data

contAtt = new double[nObs][nContinuous];

cont col = readColumnLabels(contFileInputStream, nContinuous);

for (i=0; i < nObs; i++){
isMissing[0] = -1;

contAtt[i] = readDataLine(contFileInputStream,

nContinuous, isMissing);

ignore[i] = isMissing[0];

if (isMissing[0] >= 0) m++;

}
}else{

nContinuous = 0;

contAtt = new double[1][1];

contAtt[0][0]= 0;

}
closeFile(contFileInputStream);

// *************************************************************************

// Read continuous output targets *

// *************************************************************************

nCol = readFirstLine(outputFileInputStream);

nOutputs = nCol;

System.out.println("--> Number of output variables: "+nOutputs);

outs = new double[nObs][nOutputs];

// Read numeric labels for continuous input attributes
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outs col = readColumnLabels(outputFileInputStream, nOutputs);

m = 0;

for (i=0; i < nObs; i++){
isMissing[0] = ignore[i];

outs[i] = readDataLine(outputFileInputStream, nOutputs, isMissing);

ignore[i] = isMissing[0];

if (isMissing[0] >= 0) m++;

}
System.out.println("--> Number of Missing Observations: " + m);

closeFile(outputFileInputStream);

// Remove missing observations using the ignore[] array

m = removeMissingData(nObs, nContinuous, ignore, contAtt);

m = removeMissingData(nObs, nOutputs, ignore, outs);

System.out.println("--> Total Number of Training Patterns: "+ nObs);

nObs = nObs - m;

System.out.println("--> Number of Usable Training Patterns: "+ nObs);

// *************************************************************************

// Setup Method and Bounds for Scale Filter *

// *************************************************************************

ScaleFilter scaleFilter = new ScaleFilter(ScaleFilter.BOUNDED SCALING);

scaleFilter.setBounds(lowerDataLimit,upperDataLimit,0,1);

// *************************************************************************

// PREPROCESS TRAINING PATTERNS *

// *************************************************************************

System.out.println("--> Starting Preprocessing of Training Patterns");

xData = new double[nObs][nContinuous];

yData = new double[nObs][nOutputs];

for(i=0; i < nObs; i++) {
for(j=0; j < nContinuous; j++){

xData[i][j] = contAtt[i][j];

}
yData[i][0] = outs[i][0];

}
scaleFilter.encode(0, xData);

scaleFilter.encode(1, xData);

scaleFilter.encode(2, xData);

scaleFilter.encode(0, yData) ;

// *************************************************************************

// CREATE FEEDFORWARD NETWORK *
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// *************************************************************************

System.out.println("--> Creating Feed Forward Network Object");

FeedForwardNetwork network = new FeedForwardNetwork();

// setup input layer with number of inputs = nInputs = 3

network.getInputLayer().createInputs(nInputs);

// create a hidden layer with nPerceptrons=3 perceptrons

network.createHiddenLayer().createPerceptrons(nPerceptrons);

// create output layer with nOutputs=1 output perceptron

network.getOutputLayer().createPerceptrons(nOutputs);

// link all inputs and perceptrons to all perceptrons in the next layer

network.linkAll();

// Get Network Perceptrons for Setting Their Activation Functions

Perceptron perceptrons[] = network.getPerceptrons();

// Set all hidden layer perceptrons to logistic table activation

for (i=0; i < perceptrons.length-1; i++) {
perceptrons[i].setActivation(hiddenLayerActivation);

}
perceptrons[perceptrons.length-1].setActivation(outputLayerActivation);

System.out.println("--> Feed Forward Network Created with 2 Layers");

// ****************************************************************************

// TRAIN NETWORK USING EPOCH TRAINER *

// ****************************************************************************

System.out.println("--> Training Network using Epoch Trainer");

Trainer trainer = createTrainer(QuasiNewton,QuasiNewton);

Calendar startTime = Calendar.getInstance();

// Train Network

trainer.train(network, xData, yData);

// Check Training Error Status

switch(trainer.getErrorStatus()){
case 0: errorMsg = errorMsg0;

break;

case 1: errorMsg = errorMsg1;

break;

case 2: errorMsg = errorMsg2;

break;

case 3: errorMsg = errorMsg3;

break;

case 4: errorMsg = errorMsg4;

break;

case 5: errorMsg = errorMsg5;

break;
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case 6: errorMsg = errorMsg6;

break;

default:errorMsg = "--> Unknown Error Status Returned from Trainer";

}
System.out.println(errorMsg);

Calendar currentTimeNow = Calendar.getInstance();

System.out.println("--> Network Training Completed at: "+currentTimeNow.getTime());

double duration = (double)(currentTimeNow.getTimeInMillis() -

startTime.getTimeInMillis())/1000.0;

System.out.println("--> Training Time: "+duration+" seconds");

// *************************************************************************

// DISPLAY TRAINING STATISTICS *

// *************************************************************************

double stats[] = network.computeStatistics(xData, yData);

// Display Network Errors

System.out.println("***********************************************");

System.out.println("--> SSE: "+(float)stats[0]);

System.out.println("--> RMS: "+(float)stats[1]);

System.out.println("--> Laplacian Error: "+(float)stats[2]);

System.out.println("--> Scaled Laplacian Error: "+(float)stats[3]);

System.out.println("--> Largest Absolute Residual: "+(float)stats[4]);

System.out.println("***********************************************");

System.out.println("");

// *************************************************************************

// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS *

// *************************************************************************

System.out.println("--> Getting Network Weights and Gradients");

// Get weights

weight = network.getWeights();

// Get number of weights = number of gradients

nWeights = network.getNumberOfWeights();

// Obtain Gradient Vector

gradient = trainer.getErrorGradient();

// Print Network Weights and Gradients

System.out.println(" ");

System.out.println("--> Network Weights and Gradients:");

System.out.println("***********************************************");

double[][] printMatrix = new double[nWeights][2];

for(i=0; i < nWeights; i++){
printMatrix[i][0] = weight[i];

printMatrix[i][1] = gradient[i];
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}
// Print result without row/column labels.

String[] colLabels = {"Weight", "Gradient"};
PrintMatrix pm = new PrintMatrix();

PrintMatrixFormat mf;

mf = new PrintMatrixFormat();

mf.setNoRowLabels();

mf.setColumnLabels(colLabels);

pm.setTitle("Weights and Gradients");

pm.print(mf, printMatrix);

System.out.println("***********************************************");

// *************************************************************************

// SAVE THE TRAINED NETWORK BY SAVING THE SERIALIZED NETWORK OBJECT *

// *************************************************************************

System.out.println("\n--> Saving Trained Network into "+

networkFileName);

write(network, networkFileName);

System.out.println("--> Saving Network Trainer into "+

trainerFileName);

write(trainer, trainerFileName);

System.out.println("--> Saving xData into "+

xDataFileName);

write(xData, xDataFileName);

System.out.println("--> Saving yData into "+

yDataFileName);

write(yData, yDataFileName);

}
// *****************************************************************************

// OPEN DATA FILES *

// *****************************************************************************

static public void openInputFiles(){
try{

// Continuous Input Attributes

InputStream contInputStream = new FileInputStream(contFileName);

contFileInputStream =

new BufferedReader(new InputStreamReader(contInputStream));

// Continuous Output Targets

InputStream outputInputStream = new FileInputStream(outputFileName);

outputFileInputStream =

new BufferedReader(new InputStreamReader(outputInputStream));

}catch(Exception e){
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System.out.println("-->ERROR: "+e);

System.exit(0);

}
}

// *****************************************************************************

// READ FIRST LINE OF DATA FILE AND RETURN NUMBER OF COLUMNS IN FILE *

// *****************************************************************************

static public int readFirstLine(BufferedReader inputFile){
String inputLine="", temp;

int nCol=0;

try{
temp = inputFile.readLine();

inputLine = temp.trim();

nCol = Integer.parseInt(inputLine);

}catch(Exception e){
System.out.println("--> ERROR READING 1st LINE OF File" + e);

System.exit(0);

}
return nCol;

}
// *****************************************************************************

// READ COLUMN LABELS (2ND LINE IN FILE) *

// *****************************************************************************

static public int[] readColumnLabels(BufferedReader inputFile, int nCol){
int contCol[] = new int[nCol];

String inputLine="", temp;

String dataElement[];

// Read numeric labels for continuous input attributes

try{
temp = inputFile.readLine();

inputLine = temp.trim();

}catch(Exception e){
System.out.println("--> ERROR READING 2nd LINE OF FILE: "+ e);

System.exit(0);

}
dataElement = inputLine.split(" ");

for (int i=0; i < nCol; i++){
contCol[i] = Integer.parseInt(dataElement[i]);

}
return contCol;

}
// *****************************************************************************
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// READ DATA ROW *

// *****************************************************************************

static public double[] readDataLine(BufferedReader inputFile,

int nCol, int[] isMissing){
double missingValueIndicator = -9999999999.0;

double dataLine[] = new double[nCol];

double contCol[] = new double[nCol];

String inputLine="", temp;

String dataElement[];

try{
temp = inputFile.readLine();

inputLine = temp.trim();

}catch(Exception e){
System.out.println("-->ERROR READING LINE: " + e);

System.exit(0);

}
dataElement = inputLine.split(" ");

for (int j=0; j < nCol; j++){
dataLine[j] = Double.parseDouble(dataElement[j]);

if (dataLine[j] == missingValueIndicator)isMissing[0] = 1;

}
return dataLine;

}
// *****************************************************************************

// CLOSE FILE *

// *****************************************************************************

static public void closeFile(BufferedReader inputFile){
try{

inputFile.close();

}catch(Exception e){
System.out.println("ERROR: Unable to close file: " + e);

System.exit(0);

}
}

// *****************************************************************************

// REMOVE MISSING DATA *

// *****************************************************************************

// Now remove all missing data using the ignore[] array

// and recalculate the number of usable observations, nObs

// This method is inefficient, but it works. It removes one case at a

// time, starting from the bottom. As a case (row) is removed, the cases

// below are pushed up to take it’s place.
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// *************************************************************************

static public int removeMissingData(int nObs,int nCol,int ignore[],

double[][] inputArray){
int m=0;

for(int i=nObs-1; i >=0; i--){
if(ignore[i]>=0){
// the ith row contains a missing value

// remove the ith row by shifting all rows below the

// ith row up by one position, e.g. row i+1 -> row i

m++;

if (nCol > 0){
for(int j=i; j < nObs-m; j++){

for (int k=0; k < nCol; k++){
inputArray[j][k]=inputArray[j+1][k];

}
}

}
}

}
return m;

}
// ********************************************************************************

// Create Stage I/Stage II Trainer *

// ********************************************************************************

static public Trainer createTrainer(String s1, String s2) {
EpochTrainer epoch = null; // Epoch Trainer (returned by this method)

QuasiNewtonTrainer stage1Trainer; // Stage I Quasi-Newton Trainer

QuasiNewtonTrainer stage2Trainer; // Stage II Quasi-Newton Trainer

LeastSquaresTrainer stage1LS; // Stage I Least Squares Trainer

LeastSquaresTrainer stage2LS; // Stage II Least Squares Trainer

Calendar currentTimeNow ; // Calendar time tracker

// Create Epoch (Stage I/Stage II) trainer from above trainers.

System.out.println(" --> Creating Epoch Trainer");

if (s1.equals(QuasiNewton)){
// Setup stage I quasi-newton trainer

stage1Trainer = new QuasiNewtonTrainer();

//stage1Trainer.setMaximumStepsize(maxStepSize);

stage1Trainer.setMaximumTrainingIterations(stage1Iterations);

stage1Trainer.setStepTolerance(stage1StepTolerance);

if (s2.equals(QuasiNewton)){
stage2Trainer = new QuasiNewtonTrainer();
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//stage2Trainer.setMaximumStepsize(maxStepSize);

stage2Trainer.setMaximumTrainingIterations(stage2Iterations);

epoch = new EpochTrainer(stage1Trainer, stage2Trainer);

}else{
if (s2.equals(LeastSquares)){

stage2LS = new LeastSquaresTrainer();

stage2LS.setInitialTrustRegion(1.0e-3);

//stage2LS.setMaximumStepsize(maxStepSize);

stage2LS.setMaximumTrainingIterations(stage2Iterations);

epoch = new EpochTrainer(stage1Trainer, stage2LS);

}else{
epoch = new EpochTrainer(stage1Trainer);

}
}

}else{
// Setup stage I least squares trainer

stage1LS = new LeastSquaresTrainer();

stage1LS.setInitialTrustRegion(1.0e-3);

stage1LS.setMaximumTrainingIterations(stage1Iterations);

//stage1LS.setMaximumStepsize(maxStepSize);

if (s2.equals(QuasiNewton)){
stage2Trainer = new QuasiNewtonTrainer();

//stage2Trainer.setMaximumStepsize(maxStepSize);

stage2Trainer.setMaximumTrainingIterations(stage2Iterations);

epoch = new EpochTrainer(stage1LS, stage2Trainer);

}else{
if (s2.equals(LeastSquares)){

stage2LS = new LeastSquaresTrainer();

stage2LS.setInitialTrustRegion(1.0e-3);

//stage2LS.setMaximumStepsize(maxStepSize);

stage2LS.setMaximumTrainingIterations(stage2Iterations);

epoch = new EpochTrainer(stage1LS, stage2LS);

}else{
epoch = new EpochTrainer(stage1LS);

}
}

}
epoch.setNumberOfEpochs(nEpochs);

epoch.setEpochSize(epochSize);

epoch.setRandom(new com.imsl.stat.Random(1234567));

epoch.setRandomSamples(new com.imsl.stat.Random(12345),

new com.imsl.stat.Random(67891));
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System.out.println(" --> Trainer: Stage I - "+s1+" Stage II "+s2);

System.out.println(" --> Number of Epochs: " + nEpochs);

System.out.println(" --> Epoch Size: " + epochSize);

// Describe optimization setup for Stage I training

System.out.println(" --> Creating Stage I Trainer");

System.out.println(" --> Stage I Iterations: " + stage1Iterations);

System.out.println(" --> Stage I Step Tolerance: " + stage1StepTolerance);

System.out.println(" --> Stage I Relative Tolerance: " + stage1RelativeTolerance);

System.out.println(" --> Stage I Step Size: " + "DEFAULT");

System.out.println(" --> Stage I Trace: " + trace);

if(s2.equals(QuasiNewton) || s2.equals(LeastSquares)){
// Describe optimization setup for Stage II training

System.out.println(" --> Creating Stage II Trainer");

System.out.println(" --> Stage II Iterations: " + stage2Iterations);

System.out.println(" --> Stage II Step Tolerance: " + stage2StepTolerance);

System.out.println(" --> Stage II Relative Tolerance: " + stage2RelativeTolerance);

System.out.println(" --> Stage II Step Size: " + "DEFAULT");

System.out.println(" --> Stage II Trace: " + trace);

}
if (trace) {

try {
Handler handler = new FileHandler(trainingLogFile);

Logger logger = Logger.getLogger("com.imsl.datamining.neural");

logger.setLevel(Level.FINEST);

logger.addHandler(handler);

handler.setFormatter(EpochTrainer.getFormatter());

System.out.println(" --> Training Log Stored in "+trainingLogFile);

} catch (Exception e) {
e.printStackTrace();

}
}
currentTimeNow = Calendar.getInstance();

System.out.println("--> Starting Network Training at "+currentTimeNow.getTime());

// Return Stage I/Stage II trainer

return epoch;

}

// *****************************************************************************

// WRITE SERIALIZED OBJECT TO A FILE *

// *****************************************************************************

static public void write(Object obj, String filename)

throws IOException {
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FileOutputStream fos = new FileOutputStream(filename);

ObjectOutputStream oos = new ObjectOutputStream(fos);

oos.writeObject(obj);

oos.close();

fos.close();

}
}
// *****************************************************************************

Output

--> Starting Data Preprocessing at: Thu Oct 14 17:27:04 CDT 2004

--> Number of continuous variables: 3

--> Number of output variables: 1

--> Number of Missing Observations: 16507

--> Total Number of Training Patterns: 118519

--> Number of Usable Training Patterns: 102012

--> Starting Preprocessing of Training Patterns

--> Creating Feed Forward Network Object

--> Feed Forward Network Created with 2 Layers

--> Training Network using Epoch Trainer

--> Creating Epoch Trainer

--> Trainer: Stage I - quasi-newton Stage II quasi-newton

--> Number of Epochs: 20

--> Epoch Size: 5000

--> Creating Stage I Trainer

--> Stage I Iterations: 5000

--> Stage I Step Tolerance: 1.0E-9

--> Stage I Relative Tolerance: 1.0E-11

--> Stage I Step Size: DEFAULT

--> Stage I Trace: true

--> Creating Stage II Trainer

--> Stage II Iterations: 5000

--> Stage II Step Tolerance: 1.0E-9

--> Stage II Relative Tolerance: 1.0E-11

--> Stage II Step Size: DEFAULT

--> Stage II Trace: true

--> Training Log Stored in NeuralNetworkEx1.log

--> Starting Network Training at Thu Oct 14 17:32:33 CDT 2004

--> The last global step failed to locate a lower point than the

current error value. The current solution may be an approximate
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solution and no more accuracy is possible, or the step tolerance

may be too larger.

--> Network Training Completed at: Thu Oct 14 18:18:08 CDT 2004

--> Training Time: 2735.341 seconds

***********************************************

--> SSE: 3.88076

--> RMS: 0.12284768

--> Laplacian Error: 125.36781

--> Scaled Laplacian Error: 0.20686063

--> Largest Absolute Residual: 0.500993

***********************************************

--> Getting Network Weights and Gradients

--> Network Weights and Gradients:

***********************************************

Weights and Gradients

Weight Gradient

1.921 -0

1.569 0

-199.709 0

0.065 -0

-0.003 0

106.62 0

1.221 -0

0.787 0

119.169 0

-129.8 0

146.822 0

-0.076 0

-6.022 -0

-5.257 0.001

2.19 0

-0.377 0

***********************************************

--> Saving Trained Network into NeuralNetworkEx1.ser

--> Saving Network Trainer into NeuralNetworkTrainerEx1.ser

--> Saving xData into NeuralNetworkxDataEx1.ser

--> Saving yData into NeuralNetworkyDataEx1.ser
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Results

The above output indicates that the network successfully completed its training. The final
sum of squared errors was 3.88, and the RMS (the scaled version of the sum of squared
errors) was 0.12. All of the gradients at this solution are nearly zero, which is expected if
network training found a local or global optima. Non-zero gradients usually indicate there
was a problem with network training.

Examining the training log for this application, NeuralNetworkEx1.log, illustrates the
importance of Stage II training.

Portions of the Training Log - NeuralNetworkEx1.log

.

.

.

End EpochTrainer Stage 1

Best Epoch 15

Error Status 17

Best Error 0.03979299031789641

Best Residual 0.03979299031789641

SSE 1072.1281419136983

RMS 33.93882798404427

Laplacian 429.30253410528974

Scaled Laplacian 0.7083620086220087

Max Residual 11.837166167929052

Exiting com.imsl.datamining.neural.EpochTrainer.train Stage 1

Beginning com.imsl.datamining.neural.EpochTrainer.train Stage 2

.

.

.

Exiting com.imsl.datamining.neural.EpochTrainer.train Stage 2

Summary

Error Status 1

Best Error 3.88076005209094

SSE 3.88076005209094

RMS 0.12284767343218107

Laplacian 125.3678136373788

Scaled Laplacian 0.20686063843020083

Max Residual 0.5009930332151435
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The training log indicates that the best Stage I epoch occurred at iteration 15, and that 17
of the 20 Stage I epochs detected a problem with training optimization. Other parts of the
log indicate that these problems included: possible local minima, and maximum number
of iterations exceeded. Although these problems are warning messages and not true errors,
they do indicate that convergence to a global optima is uncertain for 17 of the 20 epochs.
Possibly increasing the epoch size might have provided more stable Stage I training.

More disturbing is the fact that for the best epoch=15, the sum of squared errors totaled
over all training patterns is 1072.13. Epoch 15 was used as the starting point for the Stage
II training which was able to reduce this sum of squared errors to 3.88. This suggests that
although the epoch size, epochSize=5000, was too small for effective Stage I training, the
Stage II trainer was able to locate a better solution.

However, even the Stage II trainer returned a non-zero error status, errorStatus=1. This
was a warning that the Stage II trainer may have found a local optima. Further attempts
were made to determine whether a better network could be found, but these alternate
solutions only marginally lowered the sum of squared errors.

The trained network was serialized and stored into four files:

the network file - NeuralNetworkEx1.ser,
the trainer file - NeuralNetworkTrainerEx1.ser,
the xData file - NeuralNetworkxDataEx1.ser, and
the yData file - NeuralNetworkyDataEx1.ser.

class Network

Neural network base class.
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Declaration

public abstract class com.imsl.datamining.neural.Network
extends java.lang.Object
implements java.io.Serializable

Constructor

• Network
public Network( )

– Description
Default constructor for Network. Since this class is abstract, it cannot be
instantiated directly; this constructor is used by constructors in classes derived
from Network.

Methods

• computeStatistics
public double[] computeStatistics( double[][] xData, double[][] yData
)

– Description
Computes error statistics.
This is a static method that can be used to compute the statistics regardless of
the training class used to train the network.
Computes statistics related to the error. In this table, the observed values are
yi. The forecasted values are ŷi. The mean observed value is ȳ =

∑
i yi/NC,

where N is the number of observations and C is the number of classes per
observation.
Index Name Formula
0 SSE 1

2

∑
i (yi − ŷi)

2

1 RMS
∑

i(yi−ŷi)
2∑

i(yi−ȳi)

2 Laplacian
∑

i |yi − ŷi|
3 Scaled Laplacian

∑
i|yi−ŷi|∑
i|yi−ȳi|

4 Max residual maxi |yi − ŷi|

– Parameters
∗ xData – A double matrix containing the input values.
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∗ yData – A double array containing the observed values.
– Returns – A double array containing the above described statistics.

• createHiddenLayer
public abstract HiddenLayer createHiddenLayer( )

– Description
Creates the next HiddenLayer in the Network.

– Returns – The new HiddenLayer.

• forecast
public abstract double[] forecast( double[] x )

– Description
Returns a forecast for each of the Network‘s outputs computed from the trained
Network.

– Parameters
∗ x – A double array of values with the same length and order as the training

patterns used to train the Network.
– Returns – A double array containing the forecasts for the output Perceptrons.

Its length is equal to the number of output Perceptrons.

• getForecastGradient
public abstract double[] getForecastGradient( double[] x )

– Description
Returns the first derivatives with respect to the weights evaluated at x.

– Parameters
∗ x – A double array which specifies the input values at which the gradient is

to be evaluated. It must have the same length and order as the training
patterns used to train the Network.

– Returns – A double array containing the derivative values. The i-th entry in
this array contains dN(xData,weights)/dweights[i]. Its length is equal to the
number of weights in the Network.

• getInputLayer
public abstract InputLayer getInputLayer( )

– Description
Returns the InputLayer object.

– Returns – The Network InputLayer.

• getLinks
public abstract Link[] getLinks( )
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– Description
Returns an array containing the Link objects in the Network.

– Returns – An array of Links associated with this Network.

• getNumberOfInputs
public abstract int getNumberOfInputs( )

– Description
Returns the number of Network inputs.

– Returns – An int which contains the number of inputs.

• getNumberOfLinks
public abstract int getNumberOfLinks( )

– Description
Returns the number of Network Links among the nodes.

– Returns – An int which contains the number of Links in the Network.

• getNumberOfOutputs
public abstract int getNumberOfOutputs( )

– Description
Returns the number of Network output Perceptrons.

– Returns – An int which contains the number of outputs.

• getNumberOfWeights
public abstract int getNumberOfWeights( )

– Description
Returns the number of weights in the Network.

– Returns – An int which contains the number of weights associated with this
Network.

• getOutputLayer
public abstract OutputLayer getOutputLayer( )

– Description
Returns the OutputLayer.

– Returns – The Network OutputLayer.

• getPerceptrons
public abstract Perceptron[] getPerceptrons( )

– Description
Returns an array containing the Perceptrons in the Network.
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– Returns – An array of Perceptrons associated with this Network.

• getWeights
public abstract double[] getWeights( )

– Description
Returns the weights.

– Returns – A double array containing the weights associated with Network

Links.

• setWeights
public abstract void setWeights( double[] weights )

– Description
Sets the weights.

– Parameters
∗ weights – A double array which specifies the weights to be associated with

Network Links.

Example: Network

This example uses a network previously trained and serialized into four files to obtain
information about the network and forecasts. Training was done using the code for the
FeedForwardNetwork Example 1.

The network training targets were generated using the relationship:

y = 10*X1 + 20*X2 + 30*X3 + 2.0*X4, where

X1 to X3 are the three binary columns, corresponding to categories 1 to 3 of the nominal
attribute, and X4 is the scaled continuous attribute.

The structure of the network consists of four input nodes and two layers, with three
perceptrons in the hidden layer and one in the output layer. The following figure
illustrates this structure:
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INPUT LAYER

H1

H2

H3

Z1 Y1

g1(H1)

g3(H3)

g2(H2) f1(Z1)

HIDDEN LAYER

OUTPUT LAYER

X1

X2

X3

X4

Figure 10. An example 2-layer Feed Forward Neural Network with 4 Inputs

All perceptrons were trained using a Linear Activation Function. Forecasts are generated
for 9 conditions, corresponding to the following conditions:
Nominal Class 1-3 with the Continuous Input Attribute = 0
Nominal Class 1-3 with the Continuous Input Attribute = 5.0
Nominal Class 1-3 with the Continuous Input Attribute = 10.0

Note that the network training statistics retrieved from the serialized network confirm
that this is the same network used in the previous example. Obtaining these statistics
requires retrieval of the training patterns which were serialized and stored into separate
files. This information is not serialized with the network, nor with the trainer.

import com.imsl.datamining.neural.*;

import java.io.*;

//*****************************************************************************

// Two Layer Feed-Forward Network with 4 inputs: 1 categorical with 3 classes

// encoded using binary encoding and 1 continuous input, and 1 output

// target (continuous). There is a perfect linear relationship between

// the input and output variables:

//
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// MODEL: Y = 10*X1 + 20*X2 + 30*X3 + 2*X4

//

// Variables X1-X3 are the binary encoded nominal variable and X4 is the

// continuous variable.

//

// This example uses Linear Activation in both the hidden and output layers

// The network uses a 2-layer configuration, one hidden layer and one

// output layer. The hidden layer consists of 3 perceptrons. The output

// layer consists of a single output perceptron.

// The input from the continuous variable is scaled to [0,1] before training

// the network. Training is done using the Quasi-Newton Trainer.

// The network has a total of 19 weights.

// Since the network target is a linear combination of the network inputs, and

// since all perceptrons use linear activation, the network is able to forecast

// the every training target exactly. The largest residual is 2.78E-08.

//*****************************************************************************

public class NetworkEx1 implements Serializable {
// **********************************************************************

// MAIN

// **********************************************************************

public static void main(String[] args) throws Exception {
double xData[][]; // Input Attributes for Training Patterns

double yData[][]; // Output Attributes for Training Patterns

double weight[]; // network weights

double gradient[];// network gradient after training

// Input Attributes for Forecasting

double x[][] = { {1,0,0,0.0}, {0,1,0,0.0}, {0,0,1,0.0},
{1,0,0,5.0}, {0,1,0,5.0}, {0,0,1,5.0},
{1,0,0,10.0}, {0,1,0,10.0}, {0,0,1,10.0}

};
double xTemp[], y[];// Temporary areas for storing forecasts

int i, j; // loop counters

// Names of Serialized Files

String networkFileName = "FeedForwardNetworkEx1.ser"; // the network

String trainerFileName = "FeedForwardTrainerEx1.ser"; // the trainer

String xDataFileName = "FeedForwardxDataEx1.ser"; // xData

String yDataFileName = "FeedForwardyDataEx1.ser"; // yData

// **********************************************************************

// READ THE TRAINED NETWORK FROM THE SERIALIZED NETWORK OBJECT

// **********************************************************************

System.out.println("--> Reading Trained Network from " +
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networkFileName);

Network network = (Network)read(networkFileName);

// **********************************************************************

// READ THE SERIALIZED XDATA[][] AND YDATA[][] ARRAYS OF TRAINING

// PATTERNS.

// **********************************************************************

System.out.println("--> Reading xData from " +

xDataFileName);

xData = (double[][])read(xDataFileName);

System.out.println("--> Reading yData from " +

yDataFileName);

yData = (double[][])read(yDataFileName);

// **********************************************************************

// READ THE SERIALIZED TRAINER OBJECT

// **********************************************************************

System.out.println("--> Reading Network Trainer from " +

trainerFileName);

Trainer trainer = (Trainer)read(trainerFileName);

// **********************************************************************

// DISPLAY TRAINING STATISTICS

// **********************************************************************

double stats[] = network.computeStatistics(xData, yData);

// Display Network Errors

System.out.println("***********************************************");

System.out.println("--> SSE: "+(float)stats[0]);

System.out.println("--> RMS: "+(float)stats[1]);

System.out.println("--> Laplacian Error: "+(float)stats[2]);

System.out.println("--> Scaled Laplacian Error: "+(float)stats[3]);

System.out.println("--> Largest Absolute Residual: "+(float)stats[4]);

System.out.println("***********************************************");

System.out.println("");

// **********************************************************************

// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS

// **********************************************************************

System.out.println("--> Getting Network Information");

// Get weights

weight = network.getWeights();

// Get number of weights = number of gradients

int nWeights = network.getNumberOfWeights();

// Obtain Gradient Vector

gradient = trainer.getErrorGradient();

// Print Network Weights and Gradients
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System.out.println(" ");

System.out.println("--> Network Weights and Gradients:");

for(i=0; i < nWeights; i++){
System.out.println("w["+i+"]=" + (float)weight[i]+

" g["+i+"]="+(float)gradient[i]);

}
// **********************************************************************

// OBTAIN AND DISPLAY FORECASTS FOR THE LAST 10 TRAINING TARGETS

// **********************************************************************

// Get number of network inputs

int nInputs = network.getNumberOfInputs();

// Get number of network outputs

int nOutputs = network.getNumberOfOutputs();

xTemp = new double[nInputs]; // temporary x space for forecast inputs

y = new double[nOutputs];// temporary y space for forecast output

System.out.println(" ");

// Obtain example forecasts for input attributes = x[]

// X1-X3 are binary encoded for one nominal variable with 3 classes

// X4 is a continuous input attribute ranging from 0-10. During

// training, X4 was scaled to [0,1] by dividing by 10.

for(i=0;i<9;i++){
for(j=0;j<nInputs;j++) xTemp[j] = x[i][j];

xTemp[nInputs-1] = xTemp[nInputs-1]/10.0;

y = network.forecast(xTemp);

System.out.print("--> X1="+(int)x[i][0]+

" X2="+(int)x[i][1]+" X3="+(int)x[i][2]+

" | X4="+x[i][3]);

System.out.println(" | y="+

(float)(10.0*x[i][0]+20.0*x[i][1]+30.0*x[i][2]+2.0*x[i][3])+

"| Forecast="+(float)y[0]);

}
}

// **************************************************************************

// READ SERIALIZED NETWORK FROM A FILE

// **************************************************************************

static public Object read(String filename)

throws IOException, ClassNotFoundException {
FileInputStream fis = new FileInputStream(filename);

ObjectInputStream ois = new ObjectInputStream(fis);

Object obj = ois.readObject();

ois.close();

fis.close();
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return obj;

}
}

Output

--> Reading Trained Network from FeedForwardNetworkEx1.ser

--> Reading xData from FeedForwardxDataEx1.ser

--> Reading yData from FeedForwardyDataEx1.ser

--> Reading Network Trainer from FeedForwardTrainerEx1.ser

***********************************************

--> SSE: 1.0134443E-15

--> RMS: 2.0074636E-19

--> Laplacian Error: 3.0058038E-7

--> Scaled Laplacian Error: 3.5352343E-10

--> Largest Absolute Residual: 2.784276E-8

***********************************************

--> Getting Network Information

--> Network Weights and Gradients:

w[0]=-1.4917853 g[0]=-2.6110852E-8

w[1]=-1.4917853 g[1]=-2.6110852E-8

w[2]=-1.4917853 g[2]=-2.6110852E-8

w[3]=1.6169184 g[3]=6.182032E-8

w[4]=1.6169184 g[4]=6.182032E-8

w[5]=1.6169184 g[5]=6.182032E-8

w[6]=4.725622 g[6]=-5.273859E-8

w[7]=4.725622 g[7]=-5.273859E-8

w[8]=4.725622 g[8]=-5.273859E-8

w[9]=6.217407 g[9]=-8.7338103E-10

w[10]=6.217407 g[10]=-8.7338103E-10

w[11]=6.217407 g[11]=-8.7338103E-10

w[12]=1.0722584 g[12]=-1.6909877E-7

w[13]=1.0722584 g[13]=-1.6909877E-7

w[14]=1.0722584 g[14]=-1.6909877E-7

w[15]=3.8507552 g[15]=-1.7029118E-8

w[16]=3.8507552 g[16]=-1.7029118E-8

w[17]=3.8507552 g[17]=-1.7029118E-8

w[18]=2.4117248 g[18]=-1.5881545E-8
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--> X1=1 X2=0 X3=0 | X4=0.0 | y=10.0| Forecast=10.0

--> X1=0 X2=1 X3=0 | X4=0.0 | y=20.0| Forecast=20.0

--> X1=0 X2=0 X3=1 | X4=0.0 | y=30.0| Forecast=30.0

--> X1=1 X2=0 X3=0 | X4=5.0 | y=20.0| Forecast=20.0

--> X1=0 X2=1 X3=0 | X4=5.0 | y=30.0| Forecast=30.0

--> X1=0 X2=0 X3=1 | X4=5.0 | y=40.0| Forecast=40.0

--> X1=1 X2=0 X3=0 | X4=10.0 | y=30.0| Forecast=30.0

--> X1=0 X2=1 X3=0 | X4=10.0 | y=40.0| Forecast=40.0

--> X1=0 X2=0 X3=1 | X4=10.0 | y=50.0| Forecast=50.0

class FeedForwardNetwork

A representation of a feed forward neural network.

A Network contains an InputLayer, an OutputLayer and zero or more HiddenLayers. The
null InputLayer and OutputLayer are automatically created by the
com.imsl.datamining.neural.Network constructor. The InputNodes are added using the
getInputLayer().createInputs(nInputs) method. Output Perceptrons are added using
the getOutputLayer().createPerceptrons(nOutputs), and HiddenLayers can be created
using the createHiddenLayer().createPerceptrons(nPerceptrons) method.

The InputLayer contains InputNodes. The HiddenLayers and OutputLayers contain
Perceptron nodes. These Nodes are created using factory methods in the Layers.

The Network also contains Links between Nodes. Links are created by methods in this class.

Each Link has a weight and gradient value. Each Perceptron node has a bias value. When
the Network is trained, the weight and bias values are used as initial guesses. After the
Network is trained the weight, gradient and bias values are set to the values computed by
the training.

A feed forward network is a network in which links are only allowed from one layer to a
following layer.

Declaration

public class com.imsl.datamining.neural.FeedForwardNetwork
extends com.imsl.datamining.neural.Network (page 1154)

1164 • FeedForwardNetwork JMSL



Constructor

• FeedForwardNetwork
public FeedForwardNetwork( )

– Description
Creates a new instance of FeedForwardNetwork.

Methods

• createHiddenLayer
public HiddenLayer createHiddenLayer( )

– Description
Creates a HiddenLayer.

– Returns – A HiddenLayer object which specifies a neural network hidden layer.

• findLink
public Link findLink( Node from, Node to )

– Description
Returns the Link between two Nodes.

– Parameters
∗ from – The origination Node.
∗ to – The destination Node.

– Returns – A Link between the two Nodes, or null if no such Link exists.

• findLinks
public Link[] findLinks( Node to )

– Description
Returns all of the Links to a given Node.

– Parameters
∗ to – A Node who’s Links are to be determined.

– Returns – An array of Links containing all of the Links to the given Node.

• forecast
public double[] forecast( double[] x )

– Description
Computes a forecast using the Network.
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– Parameters
∗ x – A double array of values to which the Nodes in the InputLayer are to be

set.
– Returns – A double array containing the values of the Nodes in the

OutputLayer.

• getForecastGradient
public double[] getForecastGradient( double[] xData )

– Description
Returns the gradient with respect to the weights.

– Parameters
∗ xData – A double array which specifies the input values at which the

gradient is to be evaluated.
– Returns – A double array containing the gradient values. The i-th entry in

this array contains dN(xData,weights)/dweights[i].

• getHiddenLayers
public HiddenLayer[] getHiddenLayers( )

– Description
Returns the HiddenLayers in this network.

– Returns – An array of HiddenLayers in this network.

• getInputLayer
public InputLayer getInputLayer( )

– Description
Returns the InputLayer.

– Returns – The neural network InputLayer.

• getLinks
public Link[] getLinks( )

– Description
Return all of the Links in this Network.

– Returns – An array of Links containing all of the Links in this Network.

• getNumberOfInputs
public int getNumberOfInputs( )

– Description
Returns the number of inputs to the Network.

– Returns – An int containing the number of inputs to the Network.
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• getNumberOfLinks
public int getNumberOfLinks( )

– Description
Returns the number of Links in the Network.

– Returns – An int which contains the number of Links in the Network.

• getNumberOfOutputs
public int getNumberOfOutputs( )

– Description
Returns the number of outputs from the Network.

– Returns – An int containing the number of outputs from the Network.

• getNumberOfWeights
public int getNumberOfWeights( )

– Description
Returns the number of weights in the Network.

– Returns – An int which contains the number of weights in the Network.

• getOutputLayer
public OutputLayer getOutputLayer( )

– Description
Returns the OutputLayer.

– Returns – The neural network OutputLayer.

• getPerceptrons
public Perceptron[] getPerceptrons( )

– Description
Returns the Perceptrons in this Network.

– Returns – An array of Perceptrons in this network.

• getWeights
public double[] getWeights( )

– Description
Returns the weights for the Links in this network.

– Returns – An array of doubles containing the weights. The array contains the
weights for each Link followed by the Perceptron bias values. The Link weights
are the order in which the Links were created. The weight values are first,
followed by the bias values in the HiddenLayers and then the bias values in the
OutputLayer, and then by the order in which the Perceptrons were created.
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• link
public Link link( Node from, Node to )

– Description
Establishes a Link between two Nodes. Any existing Link between these Nodes is
removed.

– Parameters
∗ from – The origination Node.
∗ to – The destination Node.

– Returns – A Link between the two Nodes.

• link
public Link link( Node from, Node to, double weight )

– Description
Establishes a Link between two Nodes with a specified weight.

– Parameters
∗ from – The origination Node.
∗ to – The destination Node.
∗ weight – A double which specifies the weight to be given the Link.

– Returns – A Link between the two Nodes.

• linkAll
public void linkAll( )

– Description
For each Layer in the Network, link each Node in the Layer to each Node in the
next Layer.

• linkAll
public void linkAll( Layer from, Layer to )

– Description
Link all of the Nodes in one Layer to all of the Nodes in another Layer.

– Parameters
∗ from – The origination Layer.
∗ to – The destination Layer.

• remove
public void remove( Link link )

– Description
Removes a Link from the network.
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– Parameters
∗ link – The Link deleted from the network.

• setWeights
public void setWeights( double[] weights )

– Description
Sets the weights for the Links in this Network.

– Parameters
∗ weights – A double array containing the weights in the same order as

getWeights.

• validateLink
protected void validateLink( Node from, Node to ) throws
java.lang.IllegalArgumentException

– Description
Checks that a Link between two Nodes is valid.
In a feed forward network a link must be from a node in one layer to a node in a
later layer. Intermediate layers can be skipped, but a link cannot go backward.

– Parameters
∗ from – The origination Node.
∗ to – The destination Node.

– Throws
∗ java.lang.IllegalArgumentException – is thrown if the Link is not valid

Example: FeedForwardNetwork

This example trains a 2-layer network using 100 training patterns from one nominal and
one continuous input attribute. The nominal attribute has three classifications which are
encoded using binary encoding. This results in three binary network input columns. The
continuous input attribute is scaled to fall in the interval [0,1].

The network training targets were generated using the relationship:

y = 10*X1 + 20*X2 + 30*X3 + 2.0*X4, where

X1-X3 are the three binary columns, corresponding to categories 1-3 of the nominal
attribute, and X4 is the scaled continuous attribute.

The structure of the network consists of four input nodes and two layers, with three
perceptrons in the hidden layer and one in the output layer. The following figure
illustrates this structure:
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There are a total of 19 weights in this network. The activations functions are all linear.
Since the target output is a linear function of the input attributes, linear activation
functions guarantee that the network forecasts will exactly match their targets. Of course,
this same result could have been obtained using linear multiple regression. Training is
conducted using the quasi-newton trainer.

import com.imsl.datamining.neural.*;

import java.io.*;

import java.util.logging.*;

//*****************************************************************************

// Two Layer Feed-Forward Network with 4 inputs: 1 nominal with 3 categories,

// encoded using binary encoding, 1 continuous input attribute, and 1 output

// target (continuous).

// There is a perfect linear relationship between the input and output
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// variables:

//

// MODEL: Y = 10*X1+20*X2+30*X3+2*X4

//

// Variables X1-X3 are the binary encoded nominal variable and X4 is the

// continuous variable.

//*****************************************************************************

public class FeedForwardNetworkEx1 implements Serializable {

// Network Settings

private FeedForwardNetwork network;

private static int nObs =100; // number of training patterns

private static int nInputs = 4; // four inputs

private static int nCategorical = 3; // three categorical attributes

private static int nContinuous = 1; // one continuous input attribute

private static int nOutputs = 1; // one continuous output

private static int nLayers = 2; // number of perceptron layers

private static int nPerceptrons = 3; // perceptrons in hidden layer

private static boolean trace = true; // Turns on/off training log

private static Activation hiddenLayerActivation = Activation.LINEAR;

private static Activation outputLayerActivation = Activation.LINEAR;

private static String errorMsg = "";

// Error Status Messages for the Least Squares Trainer

private static String errorMsg0 =

"--> Least Squares Training Completed Successfully";

private static String errorMsg1 =

"--> Scaled step tolerance was satisfied. The current solution \n"+

"may be an approximate local solution, or the algorithm is making\n"+

"slow progress and is not near a solution, or the Step Tolerance\n"+

"is too big";

private static String errorMsg2 =

"--> Scaled actual and predicted reductions in the function are\n"+

"less than or equal to the relative function convergence\n"+

"tolerance RelativeTolerance";

private static String errorMsg3 =

"--> Iterates appear to be converging to a noncritical point.\n"+

"Incorrect gradient information, a discontinuous function,\n"+

"or stopping tolerances being too tight may be the cause.";

private static String errorMsg4 =

"--> Five consecutive steps with the maximum stepsize have\n"+

"been taken. Either the function is unbounded below, or has\n"+
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"a finite asymptote in some direction, or the maximum stepsize\n"+

"is too small.";

private static String errorMsg5 =

"--> Too many iterations required";

// categoricalAtt[]: A 2D matrix of values for the categorical training

// attribute. In this example, the single categorical

// attribute has 3 categories that are encoded using

// binary encoding for input into the network.

// {1,0,0} = category 1, {0,1,0} = category 2, and

// {0,0,1} = category 3.

private static double categoricalAtt[][] =

{
{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},
{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},
{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},
{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},

{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},
{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},
{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},{0,1,0},
{0,1,0},{0,1,0},{0,1,0},

{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},
{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},
{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},
{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1}
};

//

// contAtt[]: A matrix of values for the continuous training attribute

//

private static double contAtt[] = {
4.007054658,7.10028447,4.740350984,5.714553211,6.205437459,

2.598930065,8.65089967,5.705787357,2.513348184,2.723795955,

4.1829356,1.93280416,0.332941608,6.745567628,5.593588463,

7.273544478,3.162117939,4.205381208,0.16414745,2.883418275,

0.629342241,1.082223406,8.180324708,8.004894314,7.856215418,

7.797143157,8.350033996,3.778254431,6.964837082,6.13938006,

0.48610387,5.686627923,8.146173848,5.879852653,4.587492779,

0.714028533,7.56324211,8.406012623,4.225261454,6.369220241,

4.432772218,9.52166984,7.935791508,4.557155333,7.976015058,

4.913538616,1.473658514,2.592338905,1.386872932,7.046051685,
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1.432128376,1.153580985,5.6561491,3.31163251,4.648324851,

5.042514515,0.657054195,7.958308093,7.557870384,7.901990083,

5.2363088,6.95582150,8.362167045,4.875903563,1.729229471,

4.380370223,8.527875685,2.489198107,3.711472959,4.17692681,

5.844828801,4.825754155,5.642267843,5.339937786,4.440813223,

1.615143829,7.542969339,8.100542684,0.98625265,4.744819569,

8.926039258,8.813441887,7.749383991,6.551841576,8.637046998,

4.560281415,1.386055087,0.778869034,3.883379045,2.364501589,

9.648737525,1.21754765,3.908879368,4.253313879,9.31189696,

3.811953836,5.78471629,3.414486452,9.345413015,1.024053777

};
//

// outs[]: A 2D matrix containing the training outputs for this network

// In this case there is an exact linear relationship between these

// outputs and the inputs: outs = 10*X1+20*X2+30*X3+2*X4, where

// X1-X3 are the categorical variables and X4=contAtt

//

private static double outs[] = {
18.01410932,24.20056894,19.48070197,21.42910642,22.41087492,

15.19786013,27.30179934,21.41157471,15.02669637,15.44759191,

18.3658712,13.86560832,10.66588322,23.49113526,21.18717693,

24.54708896,16.32423588,18.41076242,10.3282949,15.76683655,

11.25868448,12.16444681,26.36064942,26.00978863,25.71243084,

25.59428631,26.70006799,17.55650886,23.92967416,22.27876012,

10.97220774,21.37325585,26.2923477,21.75970531,19.17498556,

21.42805707,35.12648422,36.81202525,28.45052291,32.73844048,

28.86554444,39.04333968,35.87158302,29.11431067,35.95203012,

29.82707723,22.94731703,25.18467781,22.77374586,34.09210337,

22.86425675,22.30716197,31.3122982,26.62326502,29.2966497,

30.08502903,21.31410839,35.91661619,35.11574077,35.80398017,

30.4726176,33.91164302,36.72433409,29.75180713,23.45845894,

38.76074045,47.05575137,34.97839621,37.42294592,38.35385362,

41.6896576,39.65150831,41.28453569,40.67987557,38.88162645,

33.23028766,45.08593868,46.20108537,31.9725053,39.48963914,

47.85207852,47.62688377,45.49876798,43.10368315,47.274094,

39.1205628,32.77211017,31.55773807,37.76675809,34.72900318,

49.29747505,32.4350953,37.81775874,38.50662776,48.62379392,

37.62390767,41.56943258,36.8289729,48.69082603,32.04810755

};
// **********************************************************************

// MAIN

// **********************************************************************
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public static void main(String[] args) throws Exception {

double weight[]; // network weights

double gradient[];// network gradient after training

double x[]; // temporary x space for generating forecasts

double y[]; // temporary y space for generating forecasts

double xData[][]; // Input Attributes for Trainer

double yData[][]; // Output Attributes for Trainer

int i, j; // array indicies

int nWeights = 0; // Number of weights obtained from network

String networkFileName = "FeedForwardNetworkEx1.ser";

String trainerFileName = "FeedForwardTrainerEx1.ser";

String xDataFileName = "FeedForwardxDataEx1.ser";

String yDataFileName = "FeedForwardyDataEx1.ser";

String trainLogName = "FeedForwardTraining.log";

// **********************************************************************

// PREPROCESS TRAINING PATTERNS

// **********************************************************************

System.out.println("--> Starting Preprocessing of Training Patterns");

xData = new double[nObs][nInputs];

yData = new double[nObs][nOutputs];

for(i=0; i < nObs; i++) {
for(j=0; j < nCategorical; j++){

xData[i][j] = categoricalAtt[i][j];

}
xData[i][nCategorical] = contAtt[i]/10.0; // Scale continuous input

yData[i][0] = outs[i]; // outputs are unscaled

}
// **********************************************************************

// CREATE FEEDFORWARD NETWORK

// **********************************************************************

System.out.println("--> Creating Feed Forward Network Object");

FeedForwardNetwork network = new FeedForwardNetwork();

// setup input layer with number of inputs = nInputs = 4

network.getInputLayer().createInputs(nInputs);

// create a hidden layer with nPerceptrons=3 perceptrons

network.createHiddenLayer().createPerceptrons(nPerceptrons);

// create output layer with nOutputs=1 output perceptron

network.getOutputLayer().createPerceptrons(nOutputs);

// link all inputs and perceptrons to all perceptrons in the next layer

network.linkAll();

// Get Network Perceptrons for Setting Their Activation Functions
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Perceptron perceptrons[] = network.getPerceptrons();

// Set all perceptrons to linear activation

for (i=0; i < perceptrons.length-1; i++) {
perceptrons[i].setActivation(hiddenLayerActivation);

}
perceptrons[perceptrons.length-1].setActivation(outputLayerActivation);

System.out.println("--> Feed Forward Network Created with 2 Layers");

// **********************************************************************

// TRAIN NETWORK USING QUASI-NEWTON TRAINER

// **********************************************************************

System.out.println("--> Training Network using Quasi-Newton Trainer");

// Create Trainer

QuasiNewtonTrainer trainer = new QuasiNewtonTrainer();

// Set Training Parameters

trainer.setMaximumTrainingIterations(1000);

// If tracing is requested setup training logger

if (trace) {
try {

Handler handler = new FileHandler(trainLogName);

Logger logger = Logger.getLogger("com.imsl.datamining.neural");

logger.setLevel(Level.FINEST);

logger.addHandler(handler);

handler.setFormatter(QuasiNewtonTrainer.getFormatter());

System.out.println("--> Training Log Created in "+

trainLogName);

} catch (Exception e) {
System.out.println("--> Cannot Create Training Log.");

}
}

// Train Network

trainer.train(network, xData, yData);

// Check Training Error Status

switch(trainer.getErrorStatus()){
case 0: errorMsg = errorMsg0;

break;

case 1: errorMsg = errorMsg1;

break;

case 2: errorMsg = errorMsg2;

break;

case 3: errorMsg = errorMsg3;

break;

case 4: errorMsg = errorMsg4;
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break;

case 5: errorMsg = errorMsg5;

break;

default:errorMsg = errorMsg0;

}
System.out.println(errorMsg);

// **********************************************************************

// DISPLAY TRAINING STATISTICS

// **********************************************************************

double stats[] = network.computeStatistics(xData, yData);

// Display Network Errors

System.out.println("***********************************************");

System.out.println("--> SSE: "+(float)stats[0]);

System.out.println("--> RMS: "+(float)stats[1]);

System.out.println("--> Laplacian Error: "+(float)stats[2]);

System.out.println("--> Scaled Laplacian Error: "+(float)stats[3]);

System.out.println("--> Largest Absolute Residual: "+(float)stats[4]);

System.out.println("***********************************************");

System.out.println("");

// **********************************************************************

// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS

// **********************************************************************

System.out.println("--> Getting Network Weights and Gradients");

// Get weights

weight = network.getWeights();

// Get number of weights = number of gradients

nWeights = network.getNumberOfWeights();

// Obtain Gradient Vector

gradient = trainer.getErrorGradient();

// Print Network Weights and Gradients

System.out.println(" ");

System.out.println("--> Network Weights and Gradients:");

System.out.println("***********************************************");

for(i=0; i < nWeights; i++){
System.out.println("w["+i+"]=" + (float)weight[i]+

" g["+i+"]="+(float)gradient[i]);

}
System.out.println("***********************************************");

// **********************************************************************

// SAVE THE TRAINED NETWORK BY SAVING THE SERIALIZED NETWORK OBJECT

// **********************************************************************

System.out.println("\n--> Saving Trained Network into "+
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networkFileName);

write(network, networkFileName);

System.out.println("--> Saving xData into "+

xDataFileName);

write(xData, xDataFileName);

System.out.println("--> Saving yData into "+

yDataFileName);

write(yData, yDataFileName);

System.out.println("--> Saving Network Trainer into "+

trainerFileName);

write(trainer, trainerFileName);

}
// **************************************************************************

// WRITE SERIALIZED NETWORK TO A FILE

// **************************************************************************

static public void write(Object obj, String filename)

throws IOException {
FileOutputStream fos = new FileOutputStream(filename);

ObjectOutputStream oos = new ObjectOutputStream(fos);

oos.writeObject(obj);

oos.close();

fos.close();

}
}

Output

--> Starting Preprocessing of Training Patterns

--> Creating Feed Forward Network Object

--> Feed Forward Network Created with 2 Layers

--> Training Network using Quasi-Newton Trainer

--> Training Log Created in FeedForwardTraining.log

--> Least Squares Training Completed Successfully

***********************************************

--> SSE: 1.0134443E-15

--> RMS: 2.0074636E-19

--> Laplacian Error: 3.0058038E-7

--> Scaled Laplacian Error: 3.5352343E-10

--> Largest Absolute Residual: 2.784276E-8

***********************************************
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--> Getting Network Weights and Gradients

--> Network Weights and Gradients:

***********************************************

w[0]=-1.4917853 g[0]=-2.6110852E-8

w[1]=-1.4917853 g[1]=-2.6110852E-8

w[2]=-1.4917853 g[2]=-2.6110852E-8

w[3]=1.6169184 g[3]=6.182032E-8

w[4]=1.6169184 g[4]=6.182032E-8

w[5]=1.6169184 g[5]=6.182032E-8

w[6]=4.725622 g[6]=-5.273859E-8

w[7]=4.725622 g[7]=-5.273859E-8

w[8]=4.725622 g[8]=-5.273859E-8

w[9]=6.217407 g[9]=-8.7338103E-10

w[10]=6.217407 g[10]=-8.7338103E-10

w[11]=6.217407 g[11]=-8.7338103E-10

w[12]=1.0722584 g[12]=-1.6909877E-7

w[13]=1.0722584 g[13]=-1.6909877E-7

w[14]=1.0722584 g[14]=-1.6909877E-7

w[15]=3.8507552 g[15]=-1.7029118E-8

w[16]=3.8507552 g[16]=-1.7029118E-8

w[17]=3.8507552 g[17]=-1.7029118E-8

w[18]=2.4117248 g[18]=-1.5881545E-8

***********************************************

--> Saving Trained Network into FeedForwardNetworkEx1.ser

--> Saving xData into FeedForwardxDataEx1.ser

--> Saving yData into FeedForwardyDataEx1.ser

--> Saving Network Trainer into FeedForwardTrainerEx1.ser

class Layer

The base class for Layers in a neural network.

Declaration

public abstract class com.imsl.datamining.neural.Layer
extends java.lang.Object
implements java.io.Serializable
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Constructor

• Layer
protected Layer( FeedForwardNetwork network )

– Description
Constructs a Layer.

– Parameters
∗ network – The FeedForwardNetwork to which this Layer is to be associated.

Methods

• addNode
protected void addNode( Node node )

– Description
Associates a Perceptron with this Layer.

– Parameters
∗ node – A Node to associate with this Layer.

• getIndex
public int getIndex( )

– Description
Returns the index of this Layer.

– Returns – An int which contains the value of property index.

• getNodes
public Node[] getNodes( )

– Description
Return a list of the Perceptrons in this Layer.

– Returns – An array containing the Nodes associated with this Layer.

class InputLayer

Input layer in a neural network. An InputLayer is automatically created by Network.

Neural Nets InputLayer • 1179



Declaration

public class com.imsl.datamining.neural.InputLayer
extends com.imsl.datamining.neural.Layer (page 1178)

Methods

• createInput
public InputNode createInput( )

– Description
Creates an InputNode in the InputLayer of the neural network.

• createInputs
public InputNode[] createInputs( int n )

– Description
Creates a number of InputNodes in this Layer of the neural network.

– Parameters
∗ n – An int which specifies the number of InputNodes to be created in this

layer.
– Returns – An array containing the created InputNodes.

• getNodes
public Node[] getNodes( )

– Description
Return the Perceptrons in the InputLayer.

– Returns – An InputNode array containing the Nodes in the InputLayer.

class HiddenLayer

Hidden layer in a neural network. This is created by a factory method in Network.

Declaration

public class com.imsl.datamining.neural.HiddenLayer
extends com.imsl.datamining.neural.Layer (page 1178)
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Methods

• createPerceptron
public Perceptron createPerceptron( )

– Description
Creates a Perceptron in this Layer of the neural network. The created
Perceptron uses the logistic activation function and has an initial bias value of
zero.

• createPerceptron
public Perceptron createPerceptron( Activation activation, double bias
)

– Description
Creates a Perceptron in this Layer with a specified activation function and bias.

– Parameters
∗ activation – The Activation object which specifies the activation

function to be used.
∗ bias – A double which specifies the initial value for the bias.

• createPerceptrons
public Perceptron[] createPerceptrons( int n )

– Description
Creates a number of Perceptrons in this Layer of the neural network. The
created Perceptrons use the logistic activation function and have an initial bias
value of zero.

– Parameters
∗ n – An int which specifies the number of Perceptrons to be created.

– Returns – An array containing the created Perceptrons.

• createPerceptrons
public Perceptron[] createPerceptrons( int n, Activation activation,
double bias )

– Description
Creates a number of Perceptrons in this Layer with the specified bias.

– Parameters
∗ n – An int which specifies the number of Perceptrons to be created.
∗ activation – The Activation object which specifies the action function to

be used.
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∗ bias – A double containing the initial value to be applied as the bias
values for the Perceptrons.

– Returns – An array containing the created Perceptrons.

class OutputLayer

Output layer in a neural network. An empty OutputLayer is automatically created by
FeedForwardNetwork.

Declaration

public class com.imsl.datamining.neural.OutputLayer
extends com.imsl.datamining.neural.Layer (page 1178)

Methods

• createPerceptron
public Perceptron createPerceptron( )

– Description
Creates a Perceptron in this Layer of the neural network. By default, the
created Perceptron uses the linear activation function and has an initial bias
value of zero.

• createPerceptron
public Perceptron createPerceptron( Activation activation, double bias
)

– Description
Creates a Perceptron in this Layer with a specified Activation and bias.

– Parameters
∗ activation – The Activation object which specifies the action function to

be used.
∗ bias – A double which specifies the initial value for the bias for this

Perceptron.

• createPerceptrons
public Perceptron[] createPerceptrons( int n )
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– Description
Creates a number of Perceptrons in this Layer of the neural network. By
default, they will use linear activation and a zero initial bias.

– Parameters
∗ n – An int which specifies the number of Perceptrons to be created in this

layer.
– Returns – An array containing the created Perceptrons.

• createPerceptrons
public Perceptron[] createPerceptrons( int n, Activation activation,
double bias )

– Description
Creates a number of Perceptrons in this Layer with specified activation and
bias.

– Parameters
∗ n – An int which specifies the number of Perceptrons to be created.
∗ activation – The Activation object which indicates the action function to

be used.
∗ bias – A double which specifies the initial bias for the Perceptrons.

– Returns – An array containing the created Perceptrons.

• getNodes
public Node[] getNodes( )

– Description
Return the Perceptrons in the OutputLayer.
This method overides the method in com.imsl.datamining.neural.Layer to
return the Perceptrons in an OutputPerceptron array.

– Returns – An OutputPerceptron[] array containing the Nodes in the
OutputLayer.

class Node

A Node in a neural network.

Node is an abstract class that serves as the base class for the concrete classes InputNode

and Perceptron.
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Declaration

public abstract class com.imsl.datamining.neural.Node
extends java.lang.Object
implements java.io.Serializable

Method

• getLayer
public Layer getLayer( )

– Description
Returns the Layer in which this Node exists.

– Returns – The Layer associated with this Node.

class InputNode

A Node in the InputLayer.

InputNodes are not created directly. Instead factory methods in InputLayer are used to
create InputNodes within the InputLayer. For example, createInput() creates a single
InputNode.

Declaration

public class com.imsl.datamining.neural.InputNode
extends com.imsl.datamining.neural.Node (page 1183)

Methods

• getValue
public double getValue( )

– Description
Returns the value of this node.

– Returns – A double which contains the value of this InputNode.
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• setValue
public void setValue( double value )

– Description
Sets the value of this Node.

– Parameters
∗ value – A double which specifies the new value of this InputNode.

class Perceptron

A Perceptron node in a neural network. Perceptrons are created by factory methods in a
network layer.

Each perceptron has an activation function (g) and a bias (µ). The value of a perceptron
is given by g(

∑
iwiXi + µ), where Xi are the values of nodes input to this perceptron with

weights wi.

Network training will use existing bias values for the starting values for the trainer. Upon
completion of network training, the bias values are set to the values computed by the
trainer.

Declaration

public class com.imsl.datamining.neural.Perceptron
extends com.imsl.datamining.neural.Node (page 1183)

Methods

• getActivation
public Activation getActivation( )

– Description
Returns the activation function.

– Returns – An Activation object indicating the activation function.

• getBias
public double getBias( )

– Description
Returns the bias for this perceptron.
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– Returns – A double representing the bias for this perceptron.

• setActivation
public void setActivation( Activation activation )

– Description
Sets the activation function.

– Parameters
∗ activation – An Activation object which represents the activation g to be

used by this perceptron.

• setBias
public void setBias( double bias )

– Description
Sets the bias for this perceptron.

– Parameters
∗ bias – A double scalar value to which the bias is to be set. The bias has a

default value of 0.

class OutputPerceptron

A Perceptron in the output layer. OutputPerceptrons are created by factory methods in
Outputlayer.

OutputPerceptrons are not created directly. Instead factory methods in OutputLayer are
used to create OutputPerceptrons within the OutputLayer. For example,
OutputLayer.createPerceptron() creates a single OutputPerceptron.

Declaration

public class com.imsl.datamining.neural.OutputPerceptron
extends com.imsl.datamining.neural.Perceptron (page 1185)

Method

• getValue
public double getValue( )
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– Description
Returns the value of the output perceptron determined using the current
network state and inputs.

– Returns – A double value of the output perceptron determined using the
current network state and inputs.

interface Activation

Interface implemented by perceptron activation functions.

Standard activation functions are defined as static members of this interface. New
activation functions can be defined by implementing a method, g(double x), returning the
value and a method, derivative(double x, double y), returning the derivative of g
evaluated at x where y = g(x).

Declaration

public interface com.imsl.datamining.neural.Activation
implements java.io.Serializable

Fields

• long serialVersionUID

• Activation LINEAR

– The identity activation function, g(x) = x.

• Activation LOGISTIC

– The logistic activation function, g(x) = 1
1+e−x .

• Activation LOGISTIC TABLE

– The logistic activation function computed using a table. This is an
approximation to the logistic function that is faster to compute.
This version of the logistic function differs from the exact version by at most
4.0e-9.
Networks trained using this activation should not use Activation.LOGISTIC for
forecasting. Forecasting should be done using the specific function supplied
during training.
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• Activation TANH

– The hyperbolic tangent activation function, g(x) = tanhx = ex−e−x

ex+e−x .

• Activation SQUASH

– The squash activation function, g(x) = x
1+|x|

Methods

• derivative
double derivative( double x, double y )

– Description
Returns the value of the derivative of the activation function.

– Parameters
∗ x – A double which specifies the point at which the activation function is

to be evaluated.
∗ y – A double which specifies y = g(x), the value of the activation function

at x. This parameter is not mathematically required, but can sometimes be
used to more quickly compute the derivative.

– Returns – A double containing the value of the derivative of the activation
function at x.

• g
double g( double x )

– Description
Returns the value of the activation function.

– Parameters
∗ x – A double is the point at which the activation function is to be

evaluated.
– Returns – A double containing the value of the activation function at x.

class Link

A link in a neural network.

Link objects are not created directly. Instead, they are created by factory methods in
FeedForwardNetwork.
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The most useful method is linkAll which creates Link objects connecting every Node in
each Layer to every Node in the next Layer .

The method link(Node,Node) creates a Link from a Node to any Node in a later Layer.

The method findLink(Node,Node) returns the Link connecting two Nodes in the Network.

The method remove(Link) removes a Link from the Network.

Each Link object contains a weight. Weights are used in computing Perceptron values.

Declaration

public class com.imsl.datamining.neural.Link
extends java.lang.Object
implements java.io.Serializable

Methods

• getFrom
public Node getFrom( )

– Description
Returns the origination Node for this Link.

– Returns – A Node which is the origination Node for this Link.

• getTo
public Node getTo( )

– Description
Returns the destination Node for this Link.

– Returns – A Node which is the destination Node for this Link.

• getWeight
public double getWeight( )

– Description
Returns the weight for this Link.

– Returns – A double which contains the weight attributed to this Node.

• setWeight
public void setWeight( double weight )
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– Description
Sets the weight for this Link.

– Parameters
∗ weight – A double which specifies the weight to attribute to this Link.

interface Trainer

Interface implemented by classes used to train a network. The method train is used to
adjust the weights in a network to best fit a set of observed data. After a network is
trained, the other methods in this interface can be used to check the quality of the fit.

Declaration

public interface com.imsl.datamining.neural.Trainer
implements java.io.Serializable

Methods

• getErrorGradient
double[] getErrorGradient( )

– Description
Returns the value of the gradient of the error function with respect to the
weights.

– Returns – A double array, the length of the number of weights, containing the
value of the gradient of the error function with respect to the weights at the
computed optimal point. Before training, null is returned.

• getErrorStatus
int getErrorStatus( )

– Description
Returns the error status.

– Returns – An int specifying the error. If there was no error, zero is returned.
A non-zero return indicates a potential problem with the trainer.

• getErrorValue
double getErrorValue( )
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– Description
Returns the value of the error function minimized by the trainer.

– Returns – A double indicating the final value of the error function from the
last training. Before training, NaN is returned.

• train
void train( Network network, double[][] xData, double[][] yData )

– Description
Trains the neural network using supplied training patterns.

– Parameters
∗ network – A Network object, which is the Network to be trained.
∗ xData – A double matrix containing the input training patterns. The

number of columns in xData must equal the number of nodes in the input
layer. Each row of xData contains a training pattern.

∗ yData – A double matrix containing the output training patterns. The
number of columns in yData must equal the number of perceptrons in the
output layer. Each row of yData contains a training pattern.

class QuasiNewtonTrainer

Trains a network using the quasi-Newton method, MinUnconMultiVar.

The Java Logging API can be used to trace the performance training. The name of this
logger is com.imsl.datamining.QuasiNewtonTrainer Accumulated levels of detail
correspond to Java’s FINE, FINER, and FINEST logging levels with FINE yielding the smallest
amount of information and FINEST yielding the most. The levels of output yield the
following:

Level Output
FINE A message on entering and exiting method

train, and any exceptions from and the
exit status of MinUnconMultiVar

FINER All of the messages in FINE, the
input settings, and a summary
report with the statistics from
Network.computeStatistics(), the number
of function evaluations and the elapsed
time.

FINEST All of the messages in FINER, and a table of
the computed weights and their gradient
values.
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Declaration

public class com.imsl.datamining.neural.QuasiNewtonTrainer
extends java.lang.Object
implements Trainer, java.io.Serializable

Inner Class

interface QuasiNewtonTrainer.Error

Error function to be minimized by trainer. This trainer attempts to solve the problem

min
w

n−1∑
i=0

e(yi, ŷi)

where w are the weights, n is the number of training patterns, yi is a training target
output and ŷi is its forecast value.

This interface defines the function e(y, ŷ) and its derivative with respect to its computed
value, de/dŷ.

Declaration

public static interface com.imsl.datamining.neural.QuasiNewtonTrainer.Error
implements java.io.Serializable

Methods

• error
double error( double computed, double expected )

– Description
Returns the contribution to the error from a single training output target. This
is the function e(yi, ŷi).

– Parameters
∗ computed – A double representing the computed value.
∗ expected – A double representing the expected value.

– Returns – A double representing the contribution to the error from a single
training output target.

1192 • QuasiNewtonTrainer JMSL



• errorGradient
double errorGradient( double computed, double expected )

– Description
Returns the derivative of the error function with respect to the forecast output.

– Parameters
∗ computed – A double representing the computed value.
∗ expected – A double representing the expected value.

– Returns – A double representing the derivative of the error function with
respect to the forecast output.

Field

• public static final QuasiNewtonTrainer.Error SUM OF SQUARES

– Compute the sum of squares error. The sum of squares error term is
e(y, ŷ) = (y − ŷ)2/2.
This is the default Error object used by QuasiNewtonTrainer.

Constructor

• QuasiNewtonTrainer
public QuasiNewtonTrainer( )

– Description
Constructs a QuasiNewtonTrainer object.

Methods

• getError
public QuasiNewtonTrainer.Error getError( )

– Description
Returns the function used to compute the error to be minimized.

– Returns – The Error object containing the function to be minimized.
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• getErrorGradient
public double[] getErrorGradient( )

– Description
Returns the value of the gradient of the error function with respect to the
weights.

– Returns – A double array whose length is equal to the number of network
weights, containing the value of the gradient of the error function with respect
to the weights. Before training, null is returned.

• getErrorStatus
public int getErrorStatus( )

– Description
Returns the error status from the trainer.

– Returns – An int representing the error status from the trainer. Zero indicates
that no errors were encountered during training. Any non-zero value indicates
that some error condition arose during training. In many cases the trainer is
able to recover from these conditions and produce a well-trained network.
Error Status Condition
0 No error occurred during training.
1 The last global step failed to locate

a lower point than the current error
value. The current solution may be
an approximate solution and no more
accuracy is possible, or the step toler-
ance may be too large.

2 Relative function convergence; both
the actual and predicted relative re-
ductions in the error function are less
than or equal to the relative function
convergence tolerance.

3 Scaled step tolerance satisfied; the
current point may be an approximate
local solution, or the algorithm is
making very slow progress and is not
near a solution, or the step tolerance
is too big.

4 Optimizer threw a
MinUnconMultiVar.FalseConvergenceException.

5 Optimizer threw a
MinUnconMultiVar.MaxIterationsException.

6 Optimizer threw a
MinUnconMultiVar.UnboundedBelowException.
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• getErrorValue
public double getErrorValue( )

– Description
Returns the final value of the error function.

– Returns – A double representing the final value of the error function from the
last training. Before training, NaN is returned.

• getFormatter
public static java.util.logging.Formatter getFormatter( )

– Description
Returns the logging formatter object. Logger support requires JDK1.4. Use
with earlier versions returns null.
The returned Formatter is used as input to setFormatter to format the output
log.

– Returns – The Formatter object, if present, or null.

• getLogger
public static java.util.logging.Logger getLogger( )

– Description
Returns the Logger object. This is the Logger used to trace this class. It is
named com.imsl.datamining.neural.QuasiNewtonTrainer.

– Returns – The Logger object, if present, or null.

• getTrainingIterations
public int getTrainingIterations( )

– Description
Returns the number of iterations used during training.

– Returns – An int representing the number of iterations used during training.

• setError
public void setError( QuasiNewtonTrainer.Error error )

– Description
Sets the function used to compute the network error.

– Parameters
∗ error – The Error object containing the function to be used to compute

the network error. The default is to compute the sum of squares error,
SUM OF SQUARES.
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• setFalseConvergenceTolerance
public void setFalseConvergenceTolerance( double
falseConvergenceTolerance )

– Description
Set the false convergence tolerance for the Trainer.

– Parameters
∗ falseConvergenceTolerance – A double specifying the false convergence

tolerance. Default: 2.22044604925031308e-14.

• setGradientTolerance
public void setGradientTolerance( double gradientTolerance )

– Description
Set the gradient tolerance.

– Parameters
∗ gradientTolerance – A double specifying the gradient tolerance. Default:

cube root of machine precision.

• setMaximumStepsize
public void setMaximumStepsize( double maximumStepsize )

– Description
Sets the maximum step size.

– Parameters
∗ maximumStepsize – A nonnegative double value specifying the maximum

allowable step size in the optimizer.

• setMaximumTrainingIterations
public void setMaximumTrainingIterations( int
maximumTrainingIterations )

– Description
Sets the maximum number of iterations to use in a training.

– Parameters
∗ maximumTrainingIterations – An int representing the maximum number

of training iterations. Default: 100.

• setRelativeTolerance
public void setRelativeTolerance( double relativeTolerance )

– Description
Sets the relative tolerence.
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– Parameters
∗ relativeTolerance – A double representing the relative error tolerance. It

must be in the interval [0,1]. Its default value is 3.66685e-11.

• setStepTolerance
public void setStepTolerance( double stepTolerance )

– Description
Sets the scaled step tolerance.
The second stopping criterion for com.imsl.math.MinUnconMultiVar, the
optimizer used by this Trainer, is that the scaled distance between the last two
steps be less than the step tolerance.

– Parameters
∗ stepTolerance – A double which is the step tolerance. Default:

3.66685e-11.

• train
public void train( Network network, double[][] xData, double[][]
yData )

– Description
Trains the neural network using supplied training patterns.
Each row of xData and yData contains a training pattern. The number of rows
in these two arrays must be at least equal to the number of weights in the
network.

– Parameters
∗ network – The Network to be trained.
∗ xData – An input double matrix containing training patterns. The number

of columns in xData must equal the number of nodes in the input layer.
∗ yData – An output double matrix containing output training patterns. The

number of columns in yData must equal the number of perceptrons in the
output layer.

class LeastSquaresTrainer

Trains a FeedForwardNetwork using a Levenberg-Marquardt algorithm for minimizing a
sum of squares error.

The Java Logging API can be used to trace the performance training. The name of this
Logger is com.imsl.datamining.LeatSquaresTrainer. Accumulated levels of detail
correspond to Java’s FINE, FINER, and FINEST logging levels with FINE yielding the smallest
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amount of information and FINEST yielding the most. The levels of output yield the
following:

Level Output
FINE A message on entering and exiting method

train, and any exceptions from and the
exit status of NonlinLeastSquares

FINER All of the messages in FINE, the
input settings, and a summary
report with the statistics from
Network.computeStatistics() and the
elapsed time.

FINEST All of the messages in FINER, and a table
of the computed weights and their gradient
values.

Declaration

public class com.imsl.datamining.neural.LeastSquaresTrainer
extends java.lang.Object
implements Trainer, java.io.Serializable

Constructor

• LeastSquaresTrainer
public LeastSquaresTrainer( )

– Description
Creates a LeastSquaresTrainer.

Methods

• getErrorGradient
public double[] getErrorGradient( )

– Description
Returns the value of the gradient of the error function with respect to the
weights.
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– Returns – A double array whose length is equal to the number of network
weights, containing the value of the gradient of the error function with respect
to the weights. Before training, null is returned.

• getErrorStatus
public int getErrorStatus( )

– Description
Returns the error status from the trainer.

– Returns – An int which contains the error status. Zero indicates that no
errors were encountered during training. Any non-zero value indicates that
some error condition arose during training.
In many cases the trainer is able to recover from these conditions and produce
a well-trained network.
Value Meaning
0 All convergence tests were met.
1 Scaled step tolerance was satisfied.

The current point may be an approx-
imate local solution, or the algorithm
is making very slow progress and is
not near a solution, or StepTolerance

is too big.
2 Scaled actual and predicted reduc-

tions in the function are less than or
equal to the relative function conver-
gence tolerance RelativeTolerance.

3 Iterates appear to be converging to a
noncritical point. Incorrect gradient
information, a discontinuous function,
or stopping tolerances being too tight
may be the cause.

4 Five consecutive steps with the maxi-
mum stepsize have been taken. Either
the function is unbounded below, or
has a finite asymptote in some direc-
tion, or the maximum stepsize is too
small.

5 Too many iterations required

• getErrorValue
public double getErrorValue( )

– Description
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Returns the final value of the error function.
– Returns – A double containing the final value of the error function from the

last training. Before training, NaN is returned.

• getFormatter
public static java.util.logging.Formatter getFormatter( )

– Description
Returns the logging Formatter object. Logger support requires JDK1.4. Use
with earlier versions returns null.
The returned Formatter is used as input to setFormatter to format the output
log.

– Returns – A Formatter object, if present, or null .

• getLogger
public static java.util.logging.Logger getLogger( )

– Description
Returns the Logger object. This is the Logger used to trace this class. It is
named com.imsl.datamining.neural.QuasiNewtonTrainer.

– Returns – The Logger object, if present, or null .

• setFalseConvergenceTolerance
public void setFalseConvergenceTolerance( double
falseConvergenceTolerance )

– Description
Set the false convergence tolerance.

– Parameters
∗ falseConvergenceTolerance – a double specifying the false convergence

tolerance. Default: 1.0e-14.

• setGradientTolerance
public void setGradientTolerance( double gradientTolerance )

– Description
Set the gradient tolerance.

– Parameters
∗ gradientTolerance – A double specifying the gradient tolerance. Default:

2.0e-5.

• setInitialTrustRegion
public void setInitialTrustRegion( double initialTrustRegion )
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– Description
Sets the intial trust region.

– Parameters
∗ initialTrustRegion – A double which specifies the initial trust region

radius. Default: unlimited trust region.

• setMaximumStepsize
public void setMaximumStepsize( double maximumStepsize )

– Description
Sets the maximum step size.

– Parameters
∗ maximumStepsize – A nonnegative double value specifying the maximum

allowable stepsize in the optimizer. Default: 103||w||2, where w are the
values of the weights in the network when training starts.

• setMaximumTrainingIterations
public void setMaximumTrainingIterations( int
maximumSolverIterations )

– Description
Sets the maximum number of iterations used by the nonlinear least squares
solver.

– Parameters
∗ maximumSolverIterations – An int which specifies the maximum number

of iterations to be used by the nonlinear least squares solver. Its default
value is 1000.

• setRelativeTolerance
public void setRelativeTolerance( double relativeTolerance )

– Description
Sets the relative tolerance.

– Parameters
∗ relativeTolerance – A double which specifies the relative error tolerance.

It must be in the interval [0,1]. Its default value is 1.0e-20.

• setStepTolerance
public void setStepTolerance( double stepTolerance )

– Description
Set the step tolerance used to step between weights.

– Parameters
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∗ stepTolerance – A double which specifies the scaled step tolerance to use
when changing the weights. Default: 1.0e-5.

• train
public void train( Network network, double[][] xData, double[][]
yData )

– Description
Trains the neural network using supplied training patterns.
Each row of xData and yData contains a training pattern. These number of rows
in two arrays must be equal.

– Parameters
∗ network – The Network to be trained.
∗ xData – A double matrix which contains the input training patterns. The

number of columns in xData must equal the number of Nodes in the
InputLayer.

∗ yData – A double matrix which contains the output training patterns. The
number of columns in yData must equal the number of Perceptrons in the
OutputLayer.

class EpochTrainer

Two-stage training using randomly selected training patterns in stage I. The epoch
trainer, is a meta-trainer that combines two trainers. The first trainer is used on a series
of randomly selected subsets of the training patterns. For each subset, the weights are
initialized to their initial values plus a random offset.

Stage 2 then refines the result found in stage 1. The best result from the stage 1 trainings
is used as the initial guess with the second trainer operating on the full set of training
patterns. Stage 2 is optional, if the second trainer is null then the best stage 1 result is
returned as the epoch trainer’s result.

The Java Logging API can be used to trace the performance training. The name of this
logger is com.imsl.datamining.EpochTrainer. Accumulated levels of detail correspond to
Java’s FINE, FINER, and FINEST logging levels with FINE yielding the smallest amount of
information and FINEST yielding the most. The levels of output yield the following:
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Level Output
FINE A message on entering and exiting method

train, a message entering and exiting both
stages 1 and 2, and a summary report
(based on computeStatistics) upon comple-
tion of training.

FINER All of the messages in FINE, a message en-
tering and exiting each epoch in stage 1,
the input settings, the value of the func-
tion being minimized in stage 1 for each
epoch, a time stamp at the start of each
iteration in stage 1 and at the beginning
and end of stage 2, and (if there is a stage
2) a summary at the end of stage 1.

FINEST All of the messages in FINER and a table
of the computed weights and their gradient
values.

Declaration

public class com.imsl.datamining.neural.EpochTrainer
extends java.lang.Object
implements Trainer, java.io.Serializable

Constructors

• EpochTrainer
public EpochTrainer( Trainer stage1Trainer )

– Description
Creates a single stage EpochTrainer. Stage 2 training is bypassed.

– Parameters
∗ stage1Trainer – The Trainer used in stage I.

• EpochTrainer
public EpochTrainer( Trainer stage1Trainer, Trainer stage2Trainer )

– Description
Creates an two-stage EpochTrainer.

– Parameters
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∗ stage1Trainer – The stage I Trainer.
∗ stage2Trainer – The stage II Trainer, or null if stage II is to be

bypassed.

Methods

• getEpochSize
public int getEpochSize( )

– Description
Returns the number of sample training patterns in each stage 1 epoch.

– Returns – An int which contains the number of sample training patterns in
each stage I epoch.

• getErrorGradient
public double[] getErrorGradient( )

– Description
Returns the value of the gradient of the error function with respect to the
weights.

– Returns – A double array whose length is equal to the number of Network
weights, containing the value of the gradient of the error function with respect
to the weights. Before training, null is returned.

• getErrorStatus
public int getErrorStatus( )

– Description
Returns the training error status.

– Returns – An int containing the error status from stage 2. If there is no stage
2 then the number of stage 1 epochs that returned a non-zero error status is
returned.

• getErrorValue
public double getErrorValue( )

– Description
Returns the value of the error function.

– Returns – A double containing final value of the error function from the last
training. Before training, NaN is returned.
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• getFormatter
public static java.util.logging.Formatter getFormatter( )

– Description
Returns the logging Formatter object. Logger support requires JDK1.4. Use
with earlier versions returns null .
The returned Formatter is used as input to setFormatter to format the output
log.

– Returns – The Formatter object, if present, or null otherwise.

• getLogger
public static java.util.logging.Logger getLogger( )

– Description
Returns the Logger object. This is the Logger used to trace this class. It is
named com.imsl.datamining.neural.QuasiNewtonTrainer.

– Returns – The Logger object, if present, or null otherwise.

• getNumberOfEpochs
public int getNumberOfEpochs( )

– Description
Returns the number of epochs used during stage I training.

– Returns – An int which contains the number of epochs used during stage I
training.

• getRandom
public com.imsl.stat.Random getRandom( )

– Description
Returns the random number generator used to perturb the stage 1 guesses.

– Returns – The Random object used to generate stage 1 perturbations.

• setEpochSize
public void setEpochSize( int epochSize )

– Description
Sets the number of randomly selected training patterns in stage 1 epoch.

– Parameters
∗ epochSize – An int which specifies the number of sample training

patterns in each stage I epoch.

• setNumberOfEpochs
public void setNumberOfEpochs( int numberOfEpochs )
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– Description
Sets the number of epochs.

– Parameters
∗ numberOfEpochs – An int which specifies the number of epochs to be used

during stage I training.

• setRandom
public void setRandom( com.imsl.stat.Random random )

– Description
Sets the random number generator used to perturb the initial stage 1 guesses.

– Parameters
∗ random – The Random object used to set the random number generator.

• setRandomSamples
public void setRandomSamples( com.imsl.stat.Random randomA,
com.imsl.stat.Random randomB )

– Description
Sets the random number generators used to select random training patterns in
stage 1. The two random number generators should be independent.

– Parameters
∗ randomA – A Random object which is the first random number generator.
∗ randomB – A Random object which is the second random number generator,

independent of randomA.

• train
public void train( Network network, double[][] xData, double[][]
yData )

– Description
Trains the neural network using supplied training patterns.

– Parameters
∗ network – The Network to be trained.
∗ xData – A double matrix specifying the input training patterns. The

number of columns in xData must equal the number of Nodes in the
InputLayer.

∗ yData – A double containing the output training patterns. The number of
columns in yData must equal the number of Perceptrons in the OutputLayer.
Each row of xData and yData contains a training pattern. These number of
rows in two arrays must be equal.
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class ScaleFilter

Scales or unscales continuous data prior to its use in neural network training, testing, or
forecasting.

Bounded scaling is used to ensure that the values in the scaled array fall between a lower
and upper bound. The scale limits have the following interpretation:

Argument Interpretation
realMin The lowest value expected in x.
realMax The largest value expected in x.
targetMin The lower bound for the values in the

scaled data.
targetMax The upper bound for the values in the

scaled data.

The scale limits are set using the method setBounds.

The specific scaling used is controlled by the argument scalingMethod used when
constructing the filter object. If scalingMethod is NO SCALING, then no scaling is performed
on the data.

If the scalingMethod is BOUNDED SCALING then the bounded method of scaling and
unscaling is applied to x. The scaling operation is conducted using the scale limits set in
method setBounds, using the following calculation:

z = r(x− realMin) + targetMin,

where
r =

targetMax− targetMin

realMax− realMin
.

If scalingMethod is one of UNBOUNDED Z SCORE SCALING MEAN STDEV,
UNBOUNDED Z SCORE SCALING MEDIAN MAD, BOUNDED Z SCORE SCALING MEAN STDEV, or
BOUNDED Z SCORE SCALING MEDIAN MAD, then the z-score method of scaling is used. These
calculations are based upon the following scaling calculation:

z =
(x− a)

b
,

where a is a measure of center for x, and b is a measure of the spread of x.

If scalingMethod is UNBOUNDED Z SCORE SCALING MEAN STDEV, or
BOUNDED Z SCORE SCALING MEAN STDEV, then a and b are the arithmetic average and sample
standard deviation of the training data.

If scalingMethod is UNBOUNDED Z SCORE SCALING MEDIAN MAD or
BOUNDED Z SCORE SCALING MEDIAN MAD, then a and b are the median and s̃, where s̃ is a
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robust estimate of the population standard deviation:

s̃ =
MAD
0.6745

where MAD is the Mean Absolute Deviation

MAD = median{| x−median{x} |}

The Mean Absolute Deviation is a robust measure of spread calculated by finding the
median of the absolute value of differences between each non-missing value for the ith
variable and the median of those values.

If the method decode is called then an unscaling operation is conducted by inverting using:

x =
(z − targetMin)

r
+ realMin.

Unbounded z-score Scaling

If scalingMethod is UNBOUNDED Z SCORE SCALING MEAN STDEV or
UNBOUNDED Z SCORE SCALING MEDIAN MAD, then a scaling operation is conducted using the
z-score calculation:

z =
(x− center)
spread

,

If scalingMethod is UNBOUNDED Z SCORE SCALING MEAN STDEV then center is set equal to the
arithmetic average x̄ of x, and spread is set equal to the sample standard deviation of x. If
scalingMethod is UNBOUNDED Z SCORE SCALING MEDIAN MAD then center is set equal to the
median m̃ of x, and spread is set equal to the Mean Absolute Difference (MAD).

The method decode can be used to unfilter data using the the inverse calculation for the
above equation:

x = spread · z + center.

Bounded z-score Scaling

This method is essentially the same as the z-score calculation described above with
additional scaling or unscaling using the scale limits set in method setBounds. The scaling
operation is conducted using the well known z-score calculation:

z =
r · (x− center)

spread
− r · realMin+ targetMin.

If scalingMethod is UNBOUNDED Z SCORE SCALING MEAN STDEV then center is set equal to the
arithmetic average x̄ of x, and spread is set equal to the sample standard deviation of x. If
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scalingMethod is UNBOUNDED Z SCORE SCALING MEDIAN MAD then center is set equal to the
median m̃ of x, and spread is set equal to the Mean Absolute Difference (MAD).The
method decode can be used to unfilter data using the the inverse calculation for the above
equation:

x =
spread · (z − targetMin)

r
+ spread · realMin+ center

Declaration

public class com.imsl.datamining.neural.ScaleFilter
extends java.lang.Object
implements java.io.Serializable

Fields

• public static final int NO SCALING

– Flag to indicate no scaling.

• public static final int BOUNDED SCALING

– Flag to indicate bounded scaling.

• public static final int UNBOUNDED Z SCORE SCALING MEAN STDEV

– Flag to indicate unbounded z-score scaling using the mean and standard
deviation.

• public static final int
UNBOUNDED Z SCORE SCALING MEDIAN MAD

– Flag to indicate unbounded z-score scaling using the median and mean absolute
difference.

• public static final int BOUNDED Z SCORE SCALING MEAN STDEV

– Flag to indicate bounded z-score scaling using the mean and standard
deviation.

• public static final int BOUNDED Z SCORE SCALING MEDIAN MAD

– Flag to indicate bounded z-score scaling using the median and mean absolute
difference.
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Constructor

• ScaleFilter
public ScaleFilter( int scalingMethod )

– Description
Constructor for ScaleFilter.

– Parameters
∗ scalingMethod – An int specifying the scaling method to be applied.

scalingMethod is specified by: NO SCALING, BOUNDED SCALING,
UNBOUNDED Z SCORE SCALING MEAN STDEV,
UNBOUNDED Z SCORE SCALING MEDIAN MAD,
BOUNDED Z SCORE SCALING MEAN STDEV, or
BOUNDED Z SCORE SCALING MEDIAN MAD.

Methods

• decode
public double decode( double z )

– Description
Unscales a value.

– Parameters
∗ z – A double containing the value to be unscaled.

– Returns – A double containing the filtered data.

• decode
public double[] decode( double[] z )

– Description
Unscales an array of values.

– Parameters
∗ z – A double array of values to be unscaled.

– Returns – A double array containing the filtered data.

• decode
public void decode( int columnIndex, double[][] z )

– Description
Unscales a single column of a two dimensional array of values.
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– Parameters
∗ columnIndex – An int specifying the index of the column of z to unscale.

Indexing is zero-based.
∗ z – A double matrix containing the values to be unscaled. Its

columnIndex-th column is modified in place.

• encode
public double encode( double x )

– Description
Scales a value.

– Parameters
∗ x – A double containing the value to be scaled.

– Returns – A double containing the scaled value.

• encode
public double[] encode( double[] x )

– Description
Scales an array of values.

– Parameters
∗ x – A double array containing the data to be scaled.

– Returns – A double array containing the scaled data.

• encode
public void encode( int columnIndex, double[][] x )

– Description
Scales a single column of a two dimensional array of values.

– Parameters
∗ columnIndex – An int specifying the index of the column of x to scale.

Indexing is zero-based.
∗ x – A double matrix containing the value to be scaled. Its columnIndex-th

column is modified in place.

• getBounds
public double[] getBounds( )

– Description
Retrieves bounds used during bounded scaling.
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– Returns – A double array of length 4 containing the values
i result[i]

0 realMin. Lowest expected value in the
data to be filtered.

1 realMax. Largest expected value in
the data to be filtered.

2 targetMin. Lowest allowed value in
the filtered data.

3 targetMax. Largest allowed value in
the filtered data.

• getCenter
public double getCenter( )

– Description
Retrieves the measure of center to be used during z-score scaling.

– Returns – A double containing the measure of center to be used during z-score
scaling.

• getSpread
public double getSpread( )

– Description
Retrieves the measure of spread to be used during scaling.

– Returns – a double containing the measure of spread to be used during scaling.

• setBounds
public void setBounds( double realMin, double realMax, double
targetMin, double targetMax )

– Description
Sets bounds to be used during bounded scaling and unscaling. This method is
normally called prior to calls to encode or decode. Otherwise the default
bounds are realMin = 0, realMax = 1, targetMin = 0, and targetMax = 1.
These bounds are ignored for unbounded scaling.

– Parameters
∗ realMin – A double containing the lowest expected value in the data to be

filtered.
∗ realMax – A double containing the largest expected value in the data to be

filtered.
∗ targetMin – A double containing the lowest allowed value in the filtered

data.
∗ targetMax – A double containing the largest allowed value in the filtered

data.
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• setCenter
public void setCenter( double center )

– Description
Set the measure of center to be used during z-score scaling.

– Parameters
∗ center – A double containing the measure of center to be used during

scaling. If this method is not called then the measure of center is computed
from the data.

• setSpread
public void setSpread( double spread )

– Description
Set the measure of spread to be used during z-score scaling.

– Parameters
∗ spread – A double containing the measure of spread to be used during

z-score scaling. If this method is not called then the measure of spread is
computed from the data.

Example: ScaleFilter

In this example three sets of data, X0, X1, and X2 are scaled using the methods described
in the following table:

Variables and Scaling Methods
Variable Method Description
X0 0 No Scaling
X1 4 Bounded Z-score scaling us-

ing the mean and standard
deviation of X1

X2 5 Bounded Z-score scaling us-
ing the median and MAD of
X2

The bounds, measures of center and spread for X1 and X2 are:

Scaling Limits and Measures of Center and Spread
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Variable Real Limits Target Limits Measure of Cen-
ter

Measure of
Spread

X1 (-6, +6) (-3, +3) 3.4
(Mean)

1.7421
(Std. Dev.)

X2 (-3, +3) (-3, +3) 2.4
(Median)

1.3343
(MAD/0.6745)

The real and target limits are used for bounded scaling. The measures of center and
spread are used to calculate z-scores. Using these values for x1[0]=3.5 yields the
following calculations:

For x1[0] , the scale factor is calculated using the real and target limits in the above table:

r = (3-(-3))/(6-(-6)) = 0.5

The z-score for x1[0] is calculated using the measures of center and spread:

z1[0] = (3.5 - 3.4)/1.7421 = 0.057402

Since method=4 is used for x1, this z-score is bounded (scaled) using the real and target
limits:

z1(bounded) = r(z1[0]) - r(realMin) + (targetMin)
= 0.5(0.057402) - 0.5(-6) + (-3) = 0.029

The calculations for x2[0] are nearly identical, except that since method=5 for x2, the
median and MAD replace the mean and standard deviation used to calculate
z1(bounded):

r = (3-(-3))/(3-(-3)) = 1,

z2[0] = (3.1 - 2.4)/1.3343 = 0.525, and

z2(bounded) = r(z2[0]) - r(realMin) + (targetMin)
= 1(0.525) - 1(-3) + (-3) = 0.525

import com.imsl.stat.*;

import com.imsl.math.*;

import com.imsl.datamining.neural.*;

public class ScaleFilterEx1 {
public static void main(String args[]) throws Exception {

ScaleFilter[] scaleFilter = new ScaleFilter[3];

scaleFilter[0] = new ScaleFilter(ScaleFilter.NO SCALING);

scaleFilter[1] =

new ScaleFilter(ScaleFilter.BOUNDED Z SCORE SCALING MEAN STDEV);

scaleFilter[1].setBounds(-6.0, 6.0, -3.0, 3.0);

scaleFilter[2] =
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new ScaleFilter(ScaleFilter.BOUNDED Z SCORE SCALING MEDIAN MAD);

scaleFilter[2].setBounds(-3.0, 3.0, -3.0, 3.0);

int nObs = 5;

double[] y0, y1, y2;

double[] x0 = {1.2, 0.0, -1.4, 1.5, 3.2};
double[] x1 = {3.5, 2.4, 4.4, 5.6, 1.1};
double[] x2 = {3.1, 1.5, -1.5, 2.4, 4.2};

// Perform forward filtering

y0 = scaleFilter[0].encode(x0);

y1 = scaleFilter[1].encode(x1);

y2 = scaleFilter[2].encode(x2);

// Display x0

System.out.print("X0 = {");
for (int i=0; i<4; i++) System.out.print(x0[i]+", ");

System.out.println(x0[4]+"}");
// Display summary statistics for X1

System.out.print("\nX1 = {");
for (int i=0; i<4; i++) System.out.print(x1[i]+", ");

System.out.println(x1[4]+"}");
System.out.println("X1 Mean: "+scaleFilter[1].getCenter());

System.out.println("X1 Std. Dev.: "+scaleFilter[1].getSpread());

// Display summary statistics for X2

System.out.print("\nX2 = {");
for (int i=0; i<4; i++) System.out.print(x2[i]+", ");

System.out.println(x2[4]+"}");
System.out.println("X2 Median: "+scaleFilter[2].getCenter());

System.out.println("X2 MAD/0.6745: "+scaleFilter[2].getSpread());

System.out.println("");

PrintMatrix pm = new PrintMatrix();

pm.setTitle("Filtered X0 Using Method=0 (no scaling)");

pm.print(y0);

pm.setTitle("Filtered X1 Using Bounded Z-score Scaling\n"+

"with Center=Mean and Spread=Std. Dev.");

pm.print(y1);

pm.setTitle("Filtered X2 Using Bounded Z-score Scaling\n"+

"with Center=Median and Spread=MAD/0.6745");

pm.print(y2);

// Perform inverse filtering

double[] z0, z1, z2;

z0 = scaleFilter[0].decode(y0);
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z1 = scaleFilter[1].decode(y1);

z2 = scaleFilter[2].decode(y2);

pm.setTitle("Decoded Z0");

pm.print(z0);

pm.setTitle("Decoded Z1");

pm.print(z1);

pm.setTitle("Decoded Z2");

pm.print(z2);

}
}

Output

X0 = {1.2, 0.0, -1.4, 1.5, 3.2}

X1 = {3.5, 2.4, 4.4, 5.6, 1.1}
X1 Mean: 3.4

X1 Std. Dev.: 1.7421251390184345

X2 = {3.1, 1.5, -1.5, 2.4, 4.2}
X2 Median: 2.4

X2 MAD/0.6745: 1.3343419966550414

Filtered X0 Using Method=0 (no scaling)

0

0 1.2

1 0

2 -1.4

3 1.5

4 3.2

Filtered X1 Using Bounded Z-score Scaling

with Center=Mean and Spread=Std. Dev.

0

0 0.029

1 -0.287

2 0.287

3 0.631

4 -0.66
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Filtered X2 Using Bounded Z-score Scaling

with Center=Median and Spread=MAD/0.6745

0

0 0.525

1 -0.674

2 -2.923

3 0

4 1.349

Decoded Z0

0

0 1.2

1 0

2 -1.4

3 1.5

4 3.2

Decoded Z1

0

0 3.5

1 2.4

2 4.4

3 5.6

4 1.1

Decoded Z2

0

0 3.1

1 1.5

2 -1.5

3 2.4

4 4.2

class UnsupervisedNominalFilter

Converts nominal data into a series of binary encoded columns for input to a neural
network. It also reverses the aforementioned encoding, accepting binary encoded data and
returns an array of integers representing the classes for a nominal variable.
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Binary Encoding

Method encode can be used to apply binary encoding. Referring to the result as z, binary
encoding takes each category in the nominal variable x[], and creates a column in z

containing all zeros and ones. A value of zero indicates that this category was not present
and a value of one indicates that it is present.

For example, if x[]={2, 1, 3, 4, 2, 4} then nClasses=4, and

z =

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1

Notice that the number of columns in the result, z, is equal to the number of distinct
classes in x. The number of rows in z is equal to the length of x.

Binary Decoding

Unfiltering can be performed using the method decode. In this case, z is the input, and we
refer to x as the output. Binary unfiltering takes binary representation in z, and returns
the appropriate class in x.

For example, if a row in z equals {0, 1, 0, 0}, then the return value from decode would be
2 for that row. If a row in z equals {1, 0, 0, 0}, then the return value from decode would
be 1 for that row. Notice these are the same values as the first two elements of the original
x[] because classes are numbered sequentially from 1 to nClasses. This ensures that the
results of decode are associated with the ith class in x[].

Declaration

public class com.imsl.datamining.neural.UnsupervisedNominalFilter
extends java.lang.Object
implements java.io.Serializable

Constructor

• UnsupervisedNominalFilter
public UnsupervisedNominalFilter( int nClasses )
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– Description
Constructor for UnsupervisedNominalFilter.

– Parameters
∗ nClasses – An int specifying the number of categories in the nominal

variable to be filtered.

Methods

• decode
public int decode( int[] z )

– Description
Decodes a binary encoded array into its nominal category. This is the inverse of
the encode(int) method.

– Parameters
∗ z – An int array containing the data to be decoded.

– Returns – An int containing the number associated with the category
encoded in z.

• decode
public int[] decode( int[][] z )

– Description
Decodes a matrix representing the binary encoded columns of the nominal
variable. This is the inverse of the encode(int[]) method.

– Parameters
∗ z – An int matrix containing the data to be decoded.

– Returns – An int array containing the decoded data.

• encode
public int[] encode( int x )

– Description
Apply forward encoding to a value.

– Parameters
∗ x – An int containing the value to be encoding. Class number must be in

the range 1 to nClasses.
– Returns – An int array containing the encoded data.

• encode
public int[][] encode( int[] x )
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– Description
Encodes class data prior to its use in neural network training.

– Parameters
∗ x – An int array containing the data to be encoded. Class number must be

in the range 1 to nClasses.
– Returns – An int matrix containing the encoded data.

• getNumberOfClasses
public int getNumberOfClasses( )

– Description
Retrieves the number of classes in the nominal variable.

– Returns – An int containing the number of classes in the nominal variable.

Example: UnsupervisedNominalFilter

In this example a data set with 7 observations and 3 classes is filtered.

import com.imsl.stat.*;

import com.imsl.math.*;

import com.imsl.datamining.neural.*;

public class UnsupervisedNominalFilterEx1 {
public static void main(String args[]) throws Exception {

int nClasses = 3;

UnsupervisedNominalFilter filter = new UnsupervisedNominalFilter(nClasses);

int nObs = 7;

int[] x = {3, 3, 1, 2, 2, 1, 2};
int[] xBack = new int[nObs];

int[][] z;

/* Perform Binary Filtering. */

z = filter.encode(x);

PrintMatrix pm = new PrintMatrix();

pm.setTitle("Filtered x");

pm.print(z);

/* Perform Binary Un-filtering. */

for (int i=0;i<nObs;i++) {
xBack[i] = filter.decode(z[i]);

}

1220 • UnsupervisedNominalFilter JMSL



pm.setTitle("Result of inverse filtering");

pm.print(xBack);

}
}

Output

Filtered x

0 1 2

0 0 0 1

1 0 0 1

2 1 0 0

3 0 1 0

4 0 1 0

5 1 0 0

6 0 1 0

Result of inverse filtering

0

0 3

1 3

2 1

3 2

4 2

5 1

6 2

class UnsupervisedOrdinalFilter

Encodes ordinal data into percentages for input to a neural network. It also allows
decoding, accepting a percentage and converting it into an ordinal value.

Class UnsupervisedOrdinalFilter is designed to either encode or decode ordinal variables.
Encoding consists of transforming the ordinal classes into percentages, with each
percentage being equal to the percentage of the data at or below this class.
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Ordinal Encoding

In this case, x is input to the method encode and is filtered by converting each ordinal
class value into a cumulative percentage.

For example, if x[]={2, 1, 3, 4, 2, 4, 1, 1, 3, 3} then nClasses=4, and encode returns
the ordinal class designation with the cumulative percentages displayed in the following ta-
ble. Cumulative percentages are equal to the percent of the data in this class or a lower class.
Ordinal Class Frequency Cumulative Percentage
1 3 30%
2 2 50%
3 3 80%
4 2 100%

Classes in x must be numbered from 1 to nClasses.

The values returned from encoding or decoding depend upon the setting of transform. In
this example, if the filter was constructed with transform = TRANSFORM NONE, then the
method encode will return

z[] = {50, 30, 80, 100, 50, 100, 30, 30, 80, 80}.

If the filter was constructed with transform = TRANSFORM SQRT, then the square root of
these values is returned, i.e.,

z[i] =

√
z[i]
100

z[] = {0.71, 0.55, 0.89, 1.0, 0.71, 1.0, 0.55, 0.55, 0.89, 0.89};

If the filter was constructed with transform = TRANSFORM ASIN SQRT, then the arcsin square
root of these values is returned using the following calculation:

z[i] = arcsin

(√
z[i]
100

)

Ordinal Decoding

Ordinal decoding takes a transformed cumulative proportion and converts it into an
ordinal class value.
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Declaration

public class com.imsl.datamining.neural.UnsupervisedOrdinalFilter
extends java.lang.Object
implements java.io.Serializable

Fields

• public static final int TRANSFORM NONE

– Flag to indicate no transformation of percentages.

• public static final int TRANSFORM SQRT

– Flag to indicate the square root transform will be applied to the percentages.

• public static final int TRANSFORM ASIN SQRT

– Flag to indicate the arcsine square root transform will be applied to the
percentages.

Constructor

• UnsupervisedOrdinalFilter
public UnsupervisedOrdinalFilter( int nClasses, int transform )

– Description
Constructor for UnsupervisedOrdinalFilter.

– Parameters
∗ nClasses – An int specifying the number of classes in the data to be

filtered.
∗ transform – An int specifying the transform to be applied to the

percentages. Values for transform are: TRANSFORM NONE,
TRANSFORM SQRT, TRANSFORM ASIN SQRT,

Methods

• decode
public int decode( double y )
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– Description
Decodes an encoded ordinal variable.

– Parameters
∗ y – A double containing the encoded value to be decoded.

– Returns – An int containing the ordinal category associated with y.

• decode
public int[] decode( double[] y )

– Description
Decodes an array of encoded ordinal values.

– Parameters
∗ y – A double array containing the encoded ordinal data to be decoded.

– Returns – An int array containing the decoded ordinal classifications.

• encode
public double encode( int x )

– Description
Encodes an ordinal category.

– Parameters
∗ x – An int containing the ordinal category. Must be an integer between 1

and nClasses.
– Returns – A double containing the encoded value, a transformed cumulative

percentage.

• encode
public double[] encode( int[] x )

– Description
Encodes an array of ordinal categories into an array of transformed percentages.

– Parameters
∗ x – An int array containing the categories for the ordinal variable.

Categories must be numbered from 1 to nClasses.
– Returns – A double array of the transformed percentages.

• getNumberOfClasses
public int getNumberOfClasses( )

– Description
Retrieves the number of categories associated with this ordinal variable.

– Returns – An int containing the number of categories associated with this
ordinal variable.
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• getPercentages
public double[] getPercentages( )

– Description
Retrieves the cumulative percentages used for encoding and decoding. If a
transform has been applied to the percentages then the transformed
percentages are returned.

– Returns – A double array of length nClasses containing the cumulative
transformed percentages associated with the ordinal categories.

• getTransform
public int getTransform( )

– Description
Retrieves the transform flag used for encoding and decoding.

– Returns – An int containing the transform flag used for encoding and
decoding.

• setPercentages
public void setPercentages( double[] percentages )

– Description
Set the untransformed cumulative percentages used during encoding and
decoding. Setting percentages with this method bypasses calculating
cumulative percentages based on the data being encoded. The percentages
must be nondecreasing in the interval [0, 100], with the last element equal to
100. If this method is used it must be called prior to any calls to the encoding
and decoding methods.

– Parameters
∗ percentages – A double array of length nClasses containing the

cumulative percentages to use during encoding and decoding.

Example: UnsupervisedOrdinalFilter

In this example a data set with 10 observations and 4 classes is filtered.

import com.imsl.stat.*;

import com.imsl.math.*;

import com.imsl.datamining.neural.*;

public class UnsupervisedOrdinalFilterEx1 {
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public static void main(String args[]) throws Exception {
int nClasses = 4;

UnsupervisedOrdinalFilter filter =

new UnsupervisedOrdinalFilter(nClasses,

UnsupervisedOrdinalFilter.TRANSFORM ASIN SQRT);

int[] x = {2,1,3,4,2,4,1,1,3,3};
int nObs = x.length;

int[] xBack;

double[] z;

/* Ordinal Filtering. */

z = filter.encode(x);

// Print result without row/column labels.

PrintMatrix pm = new PrintMatrix();

PrintMatrixFormat mf;

mf = new PrintMatrixFormat();

mf.setNoRowLabels();

mf.setNoColumnLabels();

pm.setTitle("Filtered data");

pm.print(mf, z);

/* Ordinal Un-filtering. */

pm.setTitle("Un-filtered data");

xBack = filter.decode(z);

// Print results of Un-filtering.

pm.print(mf, xBack);

}
}

Output

Filtered data

0.785

0.58

1.107

1.571

0.785

1.571

0.58

0.58
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1.107

1.107

Un-filtered data

2

1

3

4

2

4

1

1

3

3

class TimeSeriesFilter

Converts time series data to a lagged format used as input to a neural network.

Class TimeSeriesFilter can be used to operate on a data matrix and lags every column to
form a new data matrix. Using the method computeLags, each column of the input matrix,
x, is transformed into (nLags+1) columns by creating a column for lags = 0, 1, . . . nLags.

The output data array, z, can be symbolically represented as:

z = |x(0) : x(1) : x(2) : . . . : x(nLags− 1)|,

where x(i) is a lagged column of the incoming data matrix, x.

Consider, an example in which x has five rows and two columns with all variables
continuous input attributes. Using nObs and nVar to represent the number of rows and
columns in x, let

x =


1 6
2 7
3 8
4 9
5 10


If nLags=1, then the number of columns in z[][] is nVar*(nLags+1)=2*2=4, and the
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number of rows is (nObs-nLags)=5-1=4:

z =


1 6 2 7
2 7 3 8
3 8 4 9
4 9 5 10


If nLags=2, then the number of rows in z will be (nObs-nLags)=(5-2)=3 and the number of
columns will be nVar*(nLags+1)=2*3=6:

z =

 1 6 2 7 3 8
2 7 3 8 4 9
3 8 4 9 5 10



Declaration

public class com.imsl.datamining.neural.TimeSeriesFilter
extends java.lang.Object
implements java.io.Serializable

Constructor

• TimeSeriesFilter
public TimeSeriesFilter( )

– Description
Constructor for TimeSeriesClassFilter.

Method

• computeLags
public double[][] computeLags( int nLags, double[][] x )

– Description
Lags time series data to a format used for input to a neural network.

– Parameters
∗ nLags – An int containing the requested number of lags. nLags must be

greater than 0.
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∗ x – A double matrix, nObs by nVar, containing the time series data to be
lagged. It is assumed that x is sorted in descending chronological order.

– Returns – A double matrix with (nObs-nLags) rows and (nVar(nLags+1))
columns. The columns 0 through (nVar-1) contain the columns of x. The next
nVar columns contain the first lag of the columns in x, etc.

Example: TimeSeriesFilter

In this example a matrix with 5 rows and 2 columns is lagged twice. This produces a
two-dimensional matrix with 5 rows, but 2*3=6 columns. The first two columns
correspond to lag=0, which just places the original data into these columns. The 3rd and
4th columns contain the first lags of the original 2 columns and the 5th and 6th columns
contain the second lags.

import com.imsl.stat.*;

import com.imsl.math.*;

import com.imsl.datamining.neural.*;

public class TimeSeriesFilterEx1 {
public static void main(String args[]) throws Exception {

TimeSeriesFilter filter = new TimeSeriesFilter();

int nLag = 2;

double[][] x = {
{1, 6},
{2, 7},
{3, 8},
{4, 9},
{5, 10}

};
double[][] z = filter.computeLags(nLag, x);

// Print result without row/column labels.

PrintMatrix pm = new PrintMatrix();

PrintMatrixFormat mf;

mf = new PrintMatrixFormat();

mf.setNoRowLabels();

mf.setNoColumnLabels();

pm.setTitle("Lagged data");

pm.print(mf, z);

}
}
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Output

Lagged data

1 6 2 7 3 8

2 7 3 8 4 9

3 8 4 9 5 10

class TimeSeriesClassFilter

Converts time series data contained within nominal categories to a lagged format for
processing by a neural network. Lagging is done within the nominal categories associated
with the time series.

Class TimeSeriesClassFilter can be used with a data array, x[] to compute a new data
array, z[][], containing lagged columns of x[].

When using the method computeLags, the output array, z[][] of lagged columns, can be
symbolically represented as:

z = |x(0) : x(1) : x(2) : . . . : x(nLags− 1)|,

where x(i) is a lagged column of the incoming data array x, and nLags is the number of
computed lags. The lag associated with x(i) is equal to the value in lag[i], and lagging is
done within the nominal categories given in iClass[]. This requires the time series data in
x[] be sorted in time order within each category iClass.

Consider an example in which the number of observations in x[] is 10. There are two lags
requested in lag[]. If

xT = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

iClassT = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

and
lagT = {0, 2}

then, all the time series data fall into a single category, i.e. nClasses = 1, and z would
contain 2 columns and 10 rows. The first column reproduces the values in x[] because
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lags[0]=0, and the second column is the 2nd lag because lags[0]=2.

z =



1 3
2 4
3 5
4 6
5 7
6 8
7 9
8 10
9 NaN
10 NaN


On the other hand, if the data were organized into two classes with

iClassT = {1, 1, 1, 1, 1, 2, 2, 2, 2, 2},

then nClasses is 2, and z is still a 2 by 10 matrix, but with the following values:

z =



1 3
2 4
3 5
4 NaN
5 NaN

6 8
7 9
8 10
9 NaN
10 NaN


The first 5 rows of z are the lagged columns for the first category, and the last five are the
lagged columns for the second category.

Declaration

public class com.imsl.datamining.neural.TimeSeriesClassFilter
extends java.lang.Object
implements java.io.Serializable

Constructor

• TimeSeriesClassFilter
public TimeSeriesClassFilter( int nClasses )
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– Description
Constructor for TimeSeriesClassFilter.

– Parameters
∗ nClasses – An int specifying the number of nominal categories associated

with the time series.

Method

• computeLags
public double[][] computeLags( int[] lags, int[] iClass, double[] x )

– Description
Computes lags of an array sorted first by class designations and then
descending chronological order.

– Parameters
∗ lags – An int array containing the requested lags. Every lag must be

non-negative.
∗ iClass – An int array containing class number associated with each

element of x, sorted in ascending order. The ith element is equal to the
class associated with the ith element of x. iClass and x must be the same
length.

∗ x – A double array containing the time series data to be lagged. This array
is assumed to be sorted first by class designations and then descending
chronological order, i.e., most recent observations appear first within a
class.

– Returns – A double matrix containing the lagged data. The i-th column of
this array is the lagged values of x for a lag equal to lags[i]. The number of
rows is equal to the length of x.

Example: TimeSeriesClassFilter

For illustration purposes, the time series in this example consists of the integers 1, 2, ...,
10, organized into two classes. Of course, it is assumed that these data are sorted in
chronologically descending order. That is for each class, the first number is the latest
value and the last number in that class is the earliest.

The values 1-4 are in class 1, and the values 5-10 are in class 2. These values represent
two separate time series, one for each class. If you were to list them in chronologically
ascending order, starting with time = T0, the values would be:
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Class 1: T0=4, T1=3, T2=2, T3=1
Class 2: T0=10, T1=9, T2=8, T3=7, T4=6, T5=5

This example requests lag calculations for lags 0, 1, 2, 3. For lag=0, no lagging is
performed. For lag=1, the value at time = t replaced with the value at time = t-1, the
previous value in that class. If t− 1 < 0, then a missing value is placed in that position.

For example, the first lag of a time series at time=t are the values at time=t-1. For the
time series values of Class 1 (lag=1), these values are:

Class 1, lag 1: T0=NaN, T1=4, T2=3, T3=2

The second lag for time=t consists of the values at time=t-2:

Class 1, lag 2: T0=NaN, T1=NaN, T2=4, T3=3

Notice that the second lag now has two missing observations. In general, lag=n will have
n missing values. In some cases this can result in all missing values for classes with few
observations. A class will have all missing values in any of its lag columns that have a lag
value larger than or equal to the number of observations in that class.

import com.imsl.stat.*;

import com.imsl.math.*;

import com.imsl.datamining.neural.*;

public class TimeSeriesClassFilterEx1 {
private static int nClasses = 2;

private static int nObs =10;

private static int nLags = 4;

public static void main(String args[]) throws Exception {

double[] x = {1,2,3,4,5,6,7,8,9,10};
double[] time = {3,2,1,0,5,4,3,2,1,0};
int[] iClass = {1,1,1,1,2,2,2,2,2,2};
int[] lag = {0,1,2,3};
String[] colLabels = {"Class","Time","Lag=0","Lag=1","Lag=2","Lag=3"};

// Filter Classified Time Series Data

TimeSeriesClassFilter filter = new TimeSeriesClassFilter(nClasses);

double[][] y = filter.computeLags(lag, iClass, x);

double[][] z = new double[nObs][nLags+2];

for(int i=0; i < nObs;i++){
z[i][0] = (double)iClass[i];

z[i][1] = time[i];
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for(int j=0; j < nLags; j++){
z[i][j+2] = y[i][j];

}
}

// Print result without row/column labels.

PrintMatrix pm = new PrintMatrix();

PrintMatrixFormat mf;

mf = new PrintMatrixFormat();

mf.setNoRowLabels();

mf.setColumnLabels(colLabels);

pm.setTitle("Lagged data");

pm.print(mf, z);

}
}

Output

Lagged data

Class Time Lag=0 Lag=1 Lag=2 Lag=3

1 3 1 2 3 4

1 2 2 3 4 ?

1 1 3 4 ? ?

1 0 4 ? ? ?

2 5 5 6 7 8

2 4 6 7 8 9

2 3 7 8 9 10

2 2 8 9 10 ?

2 1 9 10 ? ?

2 0 10 ? ? ?

1234 • TimeSeriesClassFilter JMSL



Chapter 26

Miscellaneous

Classes
Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235

Retrieve and format message strings.
Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237

Print the version information.
Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238

Handle warning messages.
WarningObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239

Handle warning messages.
IMSLException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1240

Signals that a mathematical exception has occurred.
IMSLRuntimeException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1242

Signals that an error has occurred.
LicenseManagerException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243

A LicenseManagerException exception is thrown if a license to use the prod-
uct cannot be obtained.

class Messages

Retrieve and format message strings.
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Declaration

public class com.imsl.Messages
extends java.lang.Object

Constructor

• Messages
public Messages( )

Methods

• check
public static int check( int arg )

• formatMessage
public static java.lang.String formatMessage( java.lang.String
bundleName, java.lang.String key )

– Description
A message is formatted, without arguments, using a MessageFormat string
retrieved from the named resource bundle using the given key.

– Parameters
∗ bundleName – is the resource bundle name.
∗ key – is the key of the MessageFormat string in the resource bundle.

• formatMessage
public static java.lang.String formatMessage( java.lang.String
bundleName, java.lang.String key, java.lang.Object[] arg )

– Description
A message is formatted using a MessageFormat string retrieved from the
named resource bundle using the given key.

– Parameters
∗ bundleName – is the resource bundle name.
∗ key – is the key of the MessageFormat string in the resource bundle.
∗ arg – is an array of arguments passed to the MessageFormat.format

method.
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• throwIllegalArgumentException
public static void throwIllegalArgumentException( java.lang.String
packageName, java.lang.String key, java.lang.Object[] args )

– Description
Throws an IllegalArgumentException with a formatted String argument.

– Parameters
∗ packageName – is package from which the error is thrown. The resource

bundle “ErrorMessages” in this package contains the error MessageFormat
string.
∗ key – is the key of the MessageFormat string in the resource bundle.
∗ args – is an array of arguments passed to the MessageFormat.format

method.

class Version

Print the version information.

Declaration

public class com.imsl.Version
extends java.lang.Object

Constructor

• Version
public Version( )

Method

• main
public static void main( java.lang.String[] args ) throws
java.text.ParseException

– Description
Print the version information about the envirnoment and this library.
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class Warning

Handle warning messages. This class maintains a single, private, WarningObject that
actually displays the warning messages.

Declaration

public final class com.imsl.Warning
extends java.lang.Object

Constructor

• Warning
public Warning( )

Methods

• getWarning
public static synchronized WarningObject getWarning( )

– Description
Gets the WarningObject.

– Returns – The current warning object.

• print
public static synchronized void print( java.lang.Object source,
java.lang.String bundleName, java.lang.String key,
java.lang.Object[] arg )

– Description
Issue a warning message. Warning messages are stored as MessageFormat
patterns in a ResourceBundle. This method retrieves the pattern from the
bundle, formats the message with the supplied arguments, and prints the
message to the warning stream.

– Parameters
∗ source – is the object that is the source of the warning.
∗ bundleName – is the prefix of the ResourceBundle name. The actual name

is formed by appending “.ErrorMessages”.
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∗ key – identifies the warning message in the bundle.
∗ arg – are the arguments used to format the message.

• setOut
public static synchronized void setOut( java.io.PrintStream out )

– Description
Reassigns the output stream. The default warning stream is @see System.err.

– Parameters
∗ out – is the new warning output stream. It may be null, in which case

warnings are not printed.

• setWarning
public static synchronized void setWarning( WarningObject
warningObject )

– Description
Sets a new WarningObject. Replacing the WarningObject allows warning
errors to be handled in a more custom fashion.

– Parameters
∗ warningObject – is the new WarningObject. It may be null, in which case

error messages will be ignored.

class WarningObject

Handle warning messages.

Declaration

public class com.imsl.WarningObject
extends java.lang.Object

Field

• protected java.io.PrintStream out

– The warning stream. Its default value is System.err.
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Constructor

• WarningObject
public WarningObject( )

Methods

• print
public synchronized void print( java.lang.Object source,
java.lang.String bundleName, java.lang.String key,
java.lang.Object[] arg )

– Description
Issue a warning message. Warning messages are stored as MessageFormat
patterns in a ResourceBundle. This method retrieves the pattern from the
bundle, formats the message with the supplied arguments, and prints the
message to the warning stream.

– Parameters
∗ source – is the object that is the source of the warning.
∗ bundleName – is the prefix of the ResourceBundle name. The actual name

is formed by appending “.ErrorMessages”.
∗ key – identifies the warning message in the bundle.
∗ arg – are the arguments used to format the message.

• setOut
public synchronized void setOut( java.io.PrintStream out )

– Description
Reassigns the output stream. The default warning stream is err.

– Parameters
∗ out – is the new warning output stream. It may be null, in which case

warnings are not printed.

class IMSLException

Signals that a mathematical exception has occurred.
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Declaration

public abstract class com.imsl.IMSLException
extends java.lang.Exception

Constructors

• IMSLException
public IMSLException( )

– Description
Constructs an IMSLException with no detail message. A detail message is a
String that describes this particular exception.

• IMSLException
public IMSLException( java.lang.String s )

– Description
Constructs an IMSLException with the specified detail message. A detail
message is a String that describes this particular exception.

– Parameters
∗ s – the detail message

• IMSLException
public IMSLException( java.lang.String packageName,
java.lang.String key, java.lang.Object[] arguments )

– Description
Constructs an IMSLException with the specified detail message. The error
message string is in a resource bundle, ErrorMessages.

– Parameters
∗ packageName – is the name of the package containing the ErrorMessages

resource bundle.
∗ key – is the key of the error message in the resource bundle.
∗ arguments – is an array containing arguments used within the error

message string.
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class IMSLRuntimeException

Signals that an error has occurred. This is used for programming mistake type of errors.
Since IMSLRuntimeException is a subclass of RuntimeException, this exception does not
have to be caught.

Declaration

public abstract class com.imsl.IMSLRuntimeException
extends java.lang.RuntimeException

Constructors

• IMSLRuntimeException
public IMSLRuntimeException( )

– Description
Constructs an IMSLRuntimeException with no detail message. A detail
message is a String that describes this particular exception.

• IMSLRuntimeException
public IMSLRuntimeException( java.lang.String s )

– Description
Constructs an IMSLRuntimeException with the specified detail message. A
detail message is a String that describes this particular exception.

– Parameters
∗ s – the detail message

• IMSLRuntimeException
public IMSLRuntimeException( java.lang.String packageName,
java.lang.String key, java.lang.Object[] arguments )

– Description
Constructs an IMSLRuntimeException with the specified detail message. The
error message string is in a resource bundle, ErrorMessages.

– Parameters
∗ packageName – is the name of the package containing the ErrorMessages

resource bundle.
∗ key – is the key of the error message in the resource bundle.
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∗ arguments – is an array containing arguments used within the error
message string.

class LicenseManagerException

A LicenseManagerException exception is thrown if a license to use the product cannot be
obtained. Either a LicenseManagerException exception will be thrown or a
ExceptionInInitializerError exception will be thrown with LicenseManagerException as
the cause.

The behavior of the license manager is controlled by the following system properties.
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Property Value Meaning
com.imsl.license.path License file path A location in your in-

stallation hierarchy which
indicates the expected li-
cense file location. This
is a combination of one or
more license file paths and
[port]@host specifications.
Multiple components of
the list are separated by a
semicolon (;) on Windows
or colon (:) on UNIX.
Redundant servers are not
supported in Java. Default
is license.dat:@localhost

(Windows) or
license.dat:@localhost

(Unix).
com.imsl.license.queue ‘‘true’’ or ‘‘false’’ If ‘‘true’’, automatically

wait in the queue for a li-
cense without asking. De-
fault is to ask the user.

com.imsl.license.popup ‘‘true’’ or ‘‘false’’ If ‘‘true’’, use a dialog box
to show any license man-
ager errors or to ask the user
about waiting for a license.
If ‘‘false’’, errors only re-
sult in this exception being
thrown. The user is asked on
the console about waiting for
a license. Default is to use a
popup.

Declaration

public class com.imsl.LicenseManagerException
extends com.imsl.IMSLRuntimeException (page 1242)

Methods
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• getErrorNumber
public int getErrorNumber( )

– Description
Returns the FlexLM error number for this exception.

• getFeature
public java.lang.String getFeature( )

– Description
Returns the name of the feature that could not be licensed.

• getLicensePath
public java.lang.String getLicensePath( )

– Description
Returns the license file path for this exception.

• getLocalizedMessage
public java.lang.String getLocalizedMessage( )

– Description
Returns the localized error message for this exception.
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