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Chapter 8: Time Series and 
Forecasting 

Routines 
 ARIMA Models 

Computes least-squares or method of moments estimates  
of parameters...........................................................................arma 517 
Computes forecasts and 
their associated probability limits ..............................arma_forecast 527 
Performs differencing on a time series ............................ difference 532 
 
Model Construction and Evaluation Utilities 
Performs a Box-Cox transformation ................. box_cox_transform 537 
Sample autocorrelation function .............................. autocorrelation 541 
Computes the sample cross correlation function... crosscorrelation 546 
Computes the multichannel cross-correlation 
function ........................................................multi_crosscorrelation 552  
Sample partial autocorrelation function........ partial_autocorrelation 560 
Lack-of-fit test based on the  
corrleation function...........................................................lack_of_fit 563 
 
GARCH Modeling 
Computes estimates of the parameters of  
a GARCH(p,q) model..............................................................garch 566 
 
Frequency Domain Modeling 
Performs Kalman filtering and evaluates the likelihood  
function for the state-space model....................................... kalman 571 

Usage Notes 
The functions in this chapter assume the time series does not contain any missing 
observations. If missing values are present, they should be set to NaN  
(see the routine imsls_f_machine, Chapter 14), and the routine will return an 
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appropriate error message. To enable fitting of the model, the missing values 
must be replaced by appropriate estimates.  

General Methodology 

A major component of the model identification step concerns determining  
if a given time series is stationary. The sample correlation functions  
computed by routines imsls_f_autocorrelation (page541),  
imsls_f_crosscorrelation (page 546), 
imsls_f_multi_crosscorrelation (page 552), and 
imsls_f_partial_autocorrelation (page 560) may be used to diagnose  
the presence of nonstationarity in the data, as well as to indicate the type of 
transformation required to induce stationarity. The family of power 
transformations provided by routine imsls_f_box_cox_transform  
(page 537) coupled with the ability to difference the transformed data using 
routine imsls_f_difference (page 532) affords a convenient method of 
transforming a wide class of nonstationary time series to stationarity. 

The “raw” data, transformed data, and sample correlation functions also provide 
insight into the nature of the underlying model. Typically, this information is 
displayed in graphical form via time series plots, plots of the lagged data, and 
various correlation function plots.  

The observed time series may also be compared with time series generated from 
various theoretical models to help identify possible candidates for model fitting. 
The routine imsls_f_random_arma  (see Chapter 12, Random Number 
Generation) may be used to generate a time series according to a specified 
autoregressive moving average model. 

Time Domain Methodology 
Once the data are transformed to stationarity, a tentative model in the time 
domain is often proposed and parameter estimation, diagnostic checking and 
forecasting are performed. 

ARIMA Model   (Autoregressive Integrated Moving Average)  
A small, yet comprehensive, class of stationary time-series models consists of the 
nonseasonal ARMA processes defined by 

�(B) (Wt � �) = �(B)At, t � Z 

where Z = {..., �2, �1, 0, 1, 2, ...} denotes the set of integers, B is the backward 
shift operator defined by BkWt = Wt-k, � is the mean of Wt, and the following 
equations are true: 

�(B) = 1 � �1B � �2B2 � ... � �pBp, p � 0 

�(B) = 1 � �1B � �2B2 � ... � �qBq, q � 0 

The model is of order (p, q) and is referred to as an ARMA (p, q) model. 
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An equivalent version of the ARMA (p, q) model is given by 

�(B) Wt = �0 + �(B)At, t � Z 

where �0 is an overall constant defined by the following: 

0
1

1
p

i
i

� � �
�

� �
� �� �

� �
�  

See Box and Jenkins (1976, pp. 92�93) for a discussion of the meaning and 
usefulness of the overall constant. 

If the “raw” data, {Zt}, are homogeneous and nonstationary, then differencing 
using imsls_f_difference (page 532) induces stationarity, and the model is 
called ARIMA (AutoRegressive Integrated Moving Average). Parameter 
estimation is performed on the stationary time series Wt, = �dZt , where  
�d = (1 � B)d is the backward difference operator with period 1 and order d, 
d > 0. 

Typically, the method of moments includes argument IMSLS_METHOD_OF_MOMENTS 
in a call to function imsls_f_arma (page 517) for preliminary parameter estimates. 
These estimates can be used as initial values into the least-squares procedure by 
including argument IMSLS_LEAST_SQUARES in a call to function imsls_f_arma. 
Other initial estimates provided by the user can be used. The least-squares procedure 
can be used to compute conditional or unconditional least-squares estimates of the 
parameters, depending on the choice of the backcasting length. The parameter 
estimates from either the method of moments or least-squares procedures can be 
input to function imsls_f_arma_forecast (page 527) through the arma_info 
structure. The functions for preliminary parameter estimation, least-squares 
parameter estimation, and forecasting follow the approach of Box and Jenkins  
(1976, Programs 2�4, pp. 498�509). 

arma 
Computes least-square estimates of parameters for an ARMA model. 

Synopsis 
#include <imsls.h> 
float *imsls_f_arma (int n_observations, float z[], int p, int q, ..., 

0) 

The type double function is imsls_d_arma. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 
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float z[]   (Input) 
Array of length n_observations containing the observations. 

int p   (Input) 
Number of autoregressive parameters. 

int q   (Input) 
Number of moving average parameters. 

Return Value 
Pointer to an array of length 1 + p + q with the estimated constant, AR, and MA 
parameters. If IMSLS_NO_CONSTANT is specified, the 0-th element of this array is 
0.0. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_arma (int n_observations, float z[], int p, int q, 

IMSLS_NO_CONSTANT, or 
IMSLS_CONSTANT, 
IMSLS_AR_LAGS, int ar_lags[], 
IMSLS_MA_LAGS, int ma_lags[], 
IMSLS_METHOD_OF_MOMENTS, or 
IMSLS_LEAST_SQUARES, 
IMSLS_BACKCASTING, int length, float tolerance, 
IMSLS_CONVERGENCE_TOLERANCE, 
 float convergence_tolerance, 
IMSLS_RELATIVE_ERROR, float relative_error, 
IMSLS_MAX_ITERATIONS, int max_iterations, 
IMSLS_MEAN_ESTIMATE, float *z_mean, 
IMSLS_INITIAL_ESTIMATES, float ar[], float ma[], 
IMSLS_RESIDUAL, float **residual, 
IMSLS_RESIDUAL_USER, float residual[], 
IMSLS_PARAM_EST_COV, float **param_est_cov, 
IMSLS_PARAM_EST_COV_USER, float param_est_cov[], 
IMSLS_AUTOCOV, float **autocov, 
IMSLS_AUTOCOV_USER, float autocov[], 
IMSLS_SS_RESIDUAL, float *ss_residual, 
IMSLS_RETURN_USER, float *constant, float ar[], float ma[], 
IMSLS_ARMA_INFO, Imsls_f_arma **arma_info, 
0) 

Optional Arguments 
IMSLS_NO_CONSTANT, or 
IMSLS_CONSTANT 

If IMSLS_NO_CONSTANT is specified, the time series is not centered 
about its mean, z_mean. If IMSLS_CONSTANT, the default, is specified, 
the time series is centered about its mean. 
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IMSLS_AR_LAGS, int ar_lags[]   (Input) 
Array of length p containing the order of the autoregressive parameters. 
The elements of ar_lags must be greater than or equal to 1. 
Default: ar_lags = [1, 2, ..., p] 

IMSLS_MA_LAGS, int ma_lags[]   (Input) 
Array of length q containing the order of the moving average 
parameters. The ma_lags elements must be greater than or equal to 1. 
Default: ma_lags = [1, 2, ..., q] 

IMSLS_METHOD_OF_MOMENTS, or 
IMSLS_LEAST_SQUARES 

If IMSLS_METHOD_OF_MOMENTS is specified, the autoregressive and 
moving average parameters are estimated by a method of moments 
procedure. If IMSLS_LEAST_SQUARES is specified, the autoregressive 
and moving average parameters are estimated by a least-squares 
procedure. 

IMSLS_BACKCASTING, int length, float tolerance   (Input) 
If IMSLS_BACKCASTING is specified, length is the maximum length of 
backcasting and must be greater than or equal to 0. Argument 
tolerance is the tolerance level used to determine convergence of the 
backcast algorithm. Typically, tolerance is set to a fraction of an 
estimate of the standard deviation of the time series. 
Default: length = 10; tolerance = 0.01 � standard deviation of z  

IMSLS_CONVERGENCE_TOLERANCE, float convergence_tolerance   (Input) 
Tolerance level used to determine convergence of the nonlinear least-
squares algorithm. Argument convergence_tolerance represents the 
minimum relative decrease in sum of squares between two iterations 
required to determine convergence. Hence, convergence_tolerance 
must be greater than or equal to 0. The default value is max  
{10-10, eps2/3} for single precision and max {10-20, eps2/3} for double 
precision, where eps = imsls_f_machine(4) for single precision and 
eps = imsls_d_machine(4) for double precision. 

IMSLS_RELATIVE_ERROR, float relative_error   (Input) 
Stopping criterion for use in the nonlinear equation solver used in both 
the method of moments and least-squares algorithms. 
Default: relative_error = 100 � imsls_f_machine(4)  
See documentation for function imsls_f_machine (Chapter 14, 
“Utilities”). 

IMSLS_MAX_ITERATIONS, int max_iterations   (Input) 
Maximum number of iterations allowed in the nonlinear equation solver 
used in both the method of moments and least-squares algorithms. 
Default: max_iterations = 200 

IMSLS_MEAN_ESTIMATE, float *z_mean   (Input or Input/Output) 
On input, z_mean is an initial estimate of the mean of the time series z. 
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On return, z_mean contains an update of the mean. 
If IMSLS_NO_CONSTANT and IMSLS_LEAST_SQUARES are specified, 
z_mean is not used in parameter estimation. 

IMSLS_INITIAL_ESTIMATES, float ar[], float ma[]   (Input) 
If specified, ar is an array of length p containing preliminary estimates 
of the autoregressive parameters, and ma is an array of length q 
containing preliminary estimates of the moving average parameters; 
otherwise, these are computed internally. IMSLS_INITIAL_ESTIMATES 
is only applicable if IMSLS_LEAST_SQUARES is also specified. 

IMSLS_RESIDUAL, float **residual   (Output) 
Address of a pointer to an internally allocated array of length  
n_observations � max (ar_lags [i]) + length containing the 
residuals (including backcasts) at the final parameter estimate point in 
the first n_observations � max (ar_lags [i]) + nb, where nb is  
the number of values backcast. 

IMSLS_RESIDUAL_USER, float residual[]   (Output) 
Storage for array residual is provided by the user. See 
IMSLS_RESIDUAL. 

IMSLS_PARAM_EST_COV, float **param_est_cov   (Output) 
Address of a pointer to an internally allocated array of size np � np, 
where np = p + q + 1 if z is centered about z_mean, and np = p + q  
if z is not centered. The ordering of variables in param_est_cov is 
z_mean, ar, and ma. Argument np must be 1 or larger. 

IMSLS_PARAM_EST_COV_USER, float param_est_cov[]   (Output) 
Storage for array param_est_cov is provided by the user. See 
IMSLS_PARAM_EST_COV. 

IMSLS_AUTOCOV, float **autocov   (Output) 
Address of a pointer to an array of length p + q + 1 containing the 
variance and autocovariances of the time series z. Argument 
autocov [0] contains the variance of the series z. Argument 
autocov [k] contains the autocovariance of lag k, where  
k = 1, ..., p + q + 1. 

IMSLS_AUTOCOV_USER, float autocov[]   (Output) 
Storage for array autocov is provided by the user. See 
IMSLS_AUTOCOV. 

IMSLS_SS_RESIDUAL, float *ss_residual   (Output) 
If specified, ss_residual contains the sum of squares of the random 
shock, ss_residual = residual [1]2 + ... + residual [na]2. 

IMSLS_RETURN_USER, float *constant, float ar[], float ma[]   (Output) 
If specified, constant is the constant parameter estimate, ar is an array 
of length p containing the final autoregressive parameter estimates, and 
ma is an array of length q containing the final moving average parameter 
estimates.  
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IMSLS_ARMA_INFO, Imsls_f_arma **arma_info   (Output) 
Address of a pointer to an internally allocated structure of type 
Imsls_f_arma that contains information necessary in the call to 
imsls_forecast. 

Description 
Function imsls_f_arma computes estimates of parameters for a nonseasonal 
ARMA model given a sample of observations, {Wt}, for t = 1, 2, ..., n, where 
n = n_observations. There are two methods, method of moments and least 
squares, from which to choose. The default is method of moments. 

Two methods of parameter estimation, method of moments and least squares, are 
provided. The user can choose the method of moments algorithm with the 
optional argument IMSLS_METHOD_OF_MOMENTS. The least-squares algorithm is 
used if the user specifies IMSLS_LEAST_SQUARES. If the user wishes to use the 
least-squares algorithm, the preliminary estimates are the method of moments 
estimates by default. Otherwise, the user can input initial estimates by specifying 
optional argument IMSLS_INITIAL_ESTIMATES. The following table lists the 
appropriate optional arguments for both the method of moments and least-squares 
algorithm: 

Method of Moments only Least Squares only Both Method of Moments 
and Least Squares 

IMSLS_METHOD_OF_MOMENTS IMSLS_LEAST_SQUARES IMSLS_RELATIVE_ERROR 
 IMSLS_CONSTANT  

(or IMSLS_NO_CONSTANT) 
IMSLS_MAX_ITERATIONS 

 IMSLS_AR_LAGS IMSLS_MEAN_ESTIMATE 
 IMSLS_MA_LAGS IMSLS_AUTOCOV(_USER) 
 IMSLS_BACKCASTING IMSLS_RETURN_USER 
 IMSLS_CONVERGENCE_TOLERANCE IMSLS_ARMA_INFO 
 IMSLS_INITIAL_ESTIMATES  
 IMSLS_RESIDUAL (_USER)  
 IMSLS_PARAM_EST_COV (_USER)  
 IMSLS_SS_RESIDUAL  

Method of Moments Estimation 

Suppose the time series {Zt} is generated by an ARMA (p, q) model of the form 

�(B)Zt = �0 + �(B)At 

for t � {0, 	1, 	2, ...} 

Let  = w_mean be the estimate of the mean � of the time series{Zt}, where  
 equals the following: 
�̂

�̂
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The autocovariance function is estimated by 
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for k = 0, 1, ..., K, where K = p + q. Note that � (0) is an estimate of the sample 
variance. 

ˆ

Given the sample autocovariances, the function computes the method of moments 
estimates of the autoregressive parameters using the extended Yule-Walker 
equations as follows: 

ˆ ˆ ˆ� �� �  
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The overall constant �0 is estimated by the following: 
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The moving average parameters are estimated based on a system of nonlinear 
equations given K = p + q + 1 autocovariances, 
(k) for k = 1, ..., K, and p 
autoregressive parameters �i for i = 1, ..., p. 

Let Z�t = �(B)Zt. The autocovariances of the derived moving average process 
Z�t = �(B)At are estimated by the following relation: 

� �

� �

� �� � 0
0 0
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ˆ ˆ ˆ ˆˆ for 1, 1

p p

i j
i j
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The iterative procedure for determining the moving average parameters is based 
on the relation 

� �
� �
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where 
(k) denotes the autocovariance function of the original Zt process. 

Let � = (�0, �1, ..., �q)T and f =  (f0, f1, ..., fq)T, where 

0

for 0

θ / for 1, ...,
A

j
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j

j q

� �

� �

� � �

�
�
�

 

and 

� �
0

ˆ for 0,1, ...,
q j

j i i j
i

f j j
�

�

�

�� � � �� �� q  

Then, the value of � at the (i + 1)-th iteration is determined by the following: 

� �
11i i iT f� �

�
�

� �
i  

The estimation procedure begins with the initial value 

� �0 ˆ( 0 , 0, , 0 T
� � �� � )  

and terminates at iteration i when either ||f i|| is less than relative_error or  
i equals max_iterations. The moving average parameter estimates are 
obtained from the final estimate of � by setting 

0
ˆ /  for 1, ,j j j q� � �� � � �  

The random shock variance is estimated by the following: 
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See Box and Jenkins (1976, pp. 498�500) for a description of a function that 
performs similar computations. 

Least-squares Estimation 

Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the 
form, 

�(B) (Zt � �) = �(B)At for t � {0, 	1, 	2, …} 

where B is the backward shift operator, � is the mean of Zt, and 

� � � � � � � �
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1 2
1 2

1 2
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B B B B p
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with p autoregressive and q moving average parameters. Without loss of 
generality, the following is assumed: 
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 lf (1) 
 lf (2) 
 … 
 lf (p) 

1 
 lq (1) 
 lq (2) 
 … 
 lq (q) 

so that the nonseasonal ARMA model is of order (p�, q�), where p� = lq (p) and 
q� = lq (q). Note that the usual hierarchical model assumes the following: 

lf (i) = i, 1 
 i 
 p  

lq (j) = j, 1 
 j 
 q  

Consider the sum-of-squares function 
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T t
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where 

� � � �, , ,t tA E A Z� � �� �� � �  

and T is the backward origin. The random shocks {At} are assumed to be 
independent and identically distributed 

� �20, AN �  

random variables. Hence, the log-likelihood function is given by 
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A A
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S
l f n

� � �
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�
� � �  

where f (�, �, �) is a function of �, �, and �. 

For T = 0, the log-likelihood function is conditional on the past values of both  
Zt and At required to initialize the model. The method of selecting these initial 
values usually introduces transient bias into the model (Box and Jenkins 1976, 
pp. 210�211). For T = �, this dependency vanishes, and estimation problem 
concerns maximization of the unconditional log-likelihood function. Box and 
Jenkins (1976, p. 213) argue that 

� � � �2, , / 2 AS � � � �
�

 

dominates 

� �2, , , Al � � � �  

The parameter estimates that minimize the sum-of-squares function are called 
least-squares estimates. For large n, the unconditional least-squares estimates are 
approximately equal to the maximum likelihood-estimates. 

In practice, a finite value of T will enable sufficient approximation of the 
unconditional sum-of-squares function. The values of [AT] needed to compute  
the unconditional sum of squares are computed iteratively with initial values of  
Zt obtained by back forecasting. The residuals (including backcasts), estimate of 
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random shock variance, and covariance matrix of the final parameter estimates 
also are computed. ARIMA parameters can be computed by using 
imsls_f_difference ( page 532), with imsls_f_arma. 

Examples 

Example 1 
Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the 
number of sunspots observed each year from 1749 through 1924. The data set for 
this example consists of the number of sunspots observed from 1770 through 
1869. The method of moments estimates 

0 1 2
ˆ ˆˆ ˆθ ,φ ,φ , and θ  

for the ARMA(2, 1) model  

0 0 1 2 2 1 1t t t tz z z A
� � �

� � � A� � � � � �  

 

where the errors At are independently normally distributed with mean zero and 
variance 

2
A�  

#include <imsls.h> 
 
void main() 
{ 
    int    p = 2; 
    int    q = 1; 
    int    i; 
    int    n_observations = 100; 
    int    max_iterations = 0; 
    float  w[176][2]; 
    float  z[100]; 
    float  *parameters; 
    float  relative_error = 0.0; 
 
    imsls_f_data_sets(2, IMSLS_X_COL_DIM,  
                      2, IMSLS_RETURN_USER, w,  
                      0); 
    for (i=0; i<n_observations; i++) z[i] = w[21+i][1]; 
     
    parameters = imsls_f_arma(n_observations, &z[0], p, q, 
                              IMSLS_RELATIVE_ERROR, relative_error, 
                              IMSLS_MAX_ITERATIONS, max_iterations, 
                              0); 
    printf("AR estimates are %11.4f and %11.4f.\n",  
           parameters[1], parameters[2]); 
    printf("MA estimate is %11.4f.\n", parameters[3]); 
} 
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Output 
AR estimates are      1.2443 and     -0.5751. 
MA estimate is     -0.1241. 

Example 2 
The data for this example are the same as that for the initial example. Preliminary 
method of moments estimates are computed by default, and the method of least 
squares is used to find the final estimates. Note that at the end of the output, a 
warning error appears. In most cases, this error message can be ignored. There 
are three general reasons this error can occur: 

1. Convergence is declared using the criterion based on tolerance, but the 
gradient of the residual sum-of-squares function is nonzero. This occurs 
in this example. Either the message can be ignored or tolerance can 
be reduced to allow more iterations and a slightly more accurate 
solution. 

2. Convergence is declared based on the fact that a very small step was 
taken, but the gradient of the residual sum-of-squares function was 
nonzero. This message can usually be ignored. Sometimes, however, the 
algorithm is making very slow progress and is not near a minimum. 

3. Convergence is not declared after 100 iterations. 

Trying a smaller value for tolerance can help determine what caused the error 
message. 

#include <imsls.h> 
 
void main() 
{ 
    int    p = 2; 
    int    q = 1; 
    int    i; 
    int    n_observations = 100; 
    float  w[176][2]; 
    float  z[100]; 
    float  *parameters; 
    float  tolerance = 0.125; 
 
    imsls_f_data_sets(2, IMSLS_X_COL_DIM,  
                      2, IMSLS_RETURN_USER, w,  
                      0); 
    for (i=0; i<n_observations; i++) z[i] = w[21+i][1]; 
     
    parameters = imsls_f_arma(n_observations, &z[0], p, q, 
                              IMSLS_LEAST_SQUARES,  
                              IMSLS_CONVERGENCE_TOLERANCE, 
                                 tolerance, 
                              0); 
    printf("AR estimates are %11.4f and %11.4f.\n",  
           parameters[1], parameters[2]); 
    printf("MA estimate is %11.4f.\n", parameters[3]); 
 
} 
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Output 
*** WARNING  Error IMSLS_LEAST_SQUARES_FAILED from imsls_f_arma.  Least 
***          squares estimation of the parameters has failed to converge. 
***          Increase "length" and/or "tolerance" and/or 
***          "convergence_tolerance". The estimates of the parameters at  
              the 
***          last iteration may be used as new starting values. 
 
AR estimates are      1.3926 and     -0.7329. 
MA estimate is     -0.1375. 

Warning Errors 
IMSLS_LEAST_SQUARES_FAILED Least-squares estimation of the 

parameters has failed to converge. 
Increase “length” and/or 
“tolerance” and/or 
“convergence_tolerance.” The 
estimates of the parameters at the 
last iteration may be used as new 
starting values. 

arma_forecast 
Computes forecasts and their associated probability limits for an ARMA model. 

Synopsis 
#include <imsls.h> 
float *imsls_f_arma_forecast (Imsls_f_arma *arma_info, 

int n_predict, ..., 0) 

The type double function is imsls_d_arma_forecast. 

Required Arguments 

Imsls_f_arma *arma_info   (Input) 
Pointer to a structure of type Imsls_f_arma that is passed from the 
imsls_f_arma function. 

int n_predict   (Input) 
Maximum lead time for forecasts. Argument n_predict must be 
greater than 0. 

Return Value 
Pointer to an array of length n_predict � (backward_origin + 3) containing 
the forecasts up to n_predict steps ahead and the information necessary to 
obtain pairwise confidence intervals. More information is given in the description 
of argument IMSLS_RETURN_USER. 
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Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_arma_forecast (Imsls_f_arma *arma_info, 

int n_predict, 
IMSLS_CONFIDENCE, float confidence, 
IMSLS_BACKWARD_ORIGIN, int backward_origin, 
IMSLS_RETURN_USER, float forecasts[], 
0) 

Optional Arguments 
IMSLS_CONFIDENCE, float confidence   (Input) 

Value in the exclusive interval (0, 100) used to specify the confidence 
percent probability limits of the forecasts. Typical choices for 
confidence are 90.0, 95.0, and 99.0. 
Default: confidence = 95.0 

IMSLS_BACKWARD_ORIGIN, int backward_origin   (Input) 
If specified, the maximum backward origin. Argument 
backward_origin must be greater than or equal to 0 and less than or 
equal to n_observations � max (maxar, maxma), where maxar = max 
(ar_lags [i]), maxma = max (ma_lags [j]), and 
n_observations = the number of observations in the series, as input in 
function imsls_arma. Forecasts at origins 
n_observations � backward_origin through n_observations 
are generated. 
Default: backward_origin � 0 

IMSLS_RETURN_USER, float forecasts[]   (Output) 
If specified, a user-specified array of length  
n_predict � (backward_origin + 3) as defined below. 

Column Content 
j forecasts for lead times l = 1, ..., n_predict at origins 

n_observations � backward_origin � 1 + j, where j = 0, 
..., backward_origin 

backward_origin + 2 deviations from each forecast that give the confidence 
percent probability limits 

backward_origin + 3 psi weights of the infinite order moving average form of the 
model 

If specified, the forecasts for lead times l = 1, ..., n_predict at origins 
n_observations � backward_origin � 1 + j, where  
j = 1, ..., backward_origin + 1. 
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Description 
The Box-Jenkins forecasts and their associated probability limits for a 
nonseasonal ARMA model are computed given a sample of 
n = n_observations {Zt} for t = 1, 2, ..., n. 

Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the 
form 

�(B)Zt = �0 + �(B)At 

for t � {0, 	1, 	2, ...}, where B is the backward shift operator, �0 is the constant, 
and 

� �
� � � � � �
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with p autoregressive and q moving average parameters. Without loss of 
generality, the following is assumed: 

1 
 lf (1) 
 lf (2) 
 … 
 lf (p) 

1 
 lq (1) 
 lq (2) 
 … 
 lq (q) 

so that the nonseasonal ARMA model is of order (p�, q�), where p� = lq(p) and  
q� = lq(q). Note that the usual hierarchical model assumes the following: 

lf (i) = i, 1 
 i 
 p 

lq (j) = j, 1 
 j 
 q 

The Box-Jenkins forecast at origin t for lead time l of Zt+1 is defined in terms of 
the difference equation 
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where the following is true: 
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The 100(1 � �) percent probability limits for Zt+l are given by 
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where z(1-a/2) is the 100(1 � �/2) percentile of the standard normal distribution 
2
A�  

(returned from imsls_f_arma) and 

� �2
j�  

are the parameters of the random shock form of the difference equation. Note that 
the forecasts are computed for lead times l = 1, 2, ..., L at origins  
t = (n � b), (n � b + 1), ..., n, where L = n_predict and b = backward_origin. 

The Box-Jenkins forecasts minimize the mean-square error 

� �
2ˆ

t l tE Z Z l
�

� ��� �  

Also, the forecasts can be easily updated according to the following equation: 

� � � �1 1
ˆ ˆ 1t t l tZ l Z l A�

� �
� � �  

This approach and others are discussed in Chapter 5 of Box and Jenkins (1976). 

Example 
Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the 
number of sunspots observed each year from 1749 through 1924. The data set for 
this example consists of the number of sunspots observed from 1770 through 
1869. Function imsls_f_arma_forecast computes forecasts and 95-percent 
probability limits for the forecasts for an ARMA(2, 1) model fit using function 
imsls_f_arma with the method of moments option. With  
backward_origin = 3, columns zero through three of forecasts provide 
forecasts given the data through 1866, 1867, 1868, and 1869, respectively. 
Column four gives the deviations from the forecast for computing probability 
limits, and column six gives the psi weights, which can be used to update 
forecasts when more data is available. For example, the forecast for the 102-nd 
observation (year 1871) given the data through the 100-th observation (year 
1869) is 77.21; and 95-percent probability limits are given by 77.21 56.30. 
After observation 101 ( Z101 for year 1870) is available, the forecast can be 
updated by using 

�

� �
1/ 2

1
2

/ 2
1

ˆ 1
l

t j
j

Z l z
�

� �

�

�

� �
� �� �

� �
� A  

with the psi weight (�1 = 1.37) and the one-step-ahead forecast error for 
observation 101 (Z101 � 83.72) to give the following: 

77.21 + 1.37 � (Z101 � 83.72) 

Since this updated forecast is one step ahead, the 95-percent probability limits are 
now given by the forecast 33.22. �

#include <imsls.h> 
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void main() 
{ 
    int    p = 2; 
    int    q = 1; 
    int    i; 
    int    n_observations = 100; 
    int    max_iterations = 0; 
    int    n_predict = 12; 
    int    backward_origin = 3; 
    float  w[176][2]; 
    float  z[100]; 
    float  *parameters; 
    float  rel_error = 0.0; 
    float  *forecasts; 
    Imsls_f_arma *arma_info; 
 
    char   *col_labels[] = { 
           "Lead Time", 
           "Forecast From 1866", 
           "Forecast From 1867", 
           "Forecast From 1868", 
           "Forecast From 1869", 
           "Dev. for Prob. Limits", 
           "Psi"}; 
 
    imsls_f_data_sets(2, IMSLS_X_COL_DIM,  
                      2, IMSLS_RETURN_USER, w,  
                      0); 
    for (i=0; i<n_observations; i++) z[i] = w[21+i][1]; 
     
    parameters = imsls_f_arma(n_observations, &z[0], p, q, 
                              IMSLS_RELATIVE_ERROR, 
                                 rel_error, 
                              IMSLS_MAX_ITERATIONS, 
                                 max_iterations, 
                              IMSLS_ARMA_INFO, 
                                 &arma_info, 
                              0); 
    printf("Method of Moments initial estimates:\n"); 
    printf("AR estimates are %11.4f and %11.4f.\n",  
           parameters[1], parameters[2]); 
    printf("MA estimate is %11.4f.\n", parameters[3]); 
 
    forecasts = imsls_f_arma_forecast(arma_info, n_predict, 
                              IMSLS_BACKWARD_ORIGIN, 
                                 backward_origin, 
                              0); 
   
    imsls_f_write_matrix("* * * Forecast Table * * *\n", 
                         n_predict, backward_origin+3, 
                         forecasts, 
                         IMSLS_COL_LABELS, col_labels, 
                         IMSLS_WRITE_FORMAT, "%11.4f", 
                         0); 
} 
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Output 
Method of Moments initial estimates: 
AR estimates are      1.2443 and     -0.5751. 
MA estimate is     -0.1241. 
  
                     * * * Forecast Table * * * 
 
Lead Time  Forecast From  Forecast From  Forecast From  Forecast From 
                    1866           1867           1868           1869 
        1        18.2833        16.6151        55.1893        83.7196 
        2        28.9182        32.0189        62.7606        77.2092 
        3        41.0101        45.8275        61.8922        63.4608 
        4        49.9387        54.1496        56.4571        50.0987 
        5        54.0937        56.5623        50.1939        41.3803 
        6        54.1282        54.7780        45.5268        38.2174 
        7        51.7815        51.1701        43.3221        39.2965 
        8        48.8417        47.7072        43.2631        42.4582 
        9        46.5335        45.4736        44.4577        45.7715 
       10        45.3524        44.6861        45.9781        48.0758 
       11        45.2103        44.9909        47.1827        49.0371 
       12        45.7128        45.8230        47.8072        48.9080 
  
Lead Time  Dev. for Prob.          Psi 
                   Limits              
        1         33.2179       1.3684 
        2         56.2980       1.1274 
        3         67.6168       0.6158 
        4         70.6432       0.1178 
        5         70.7515      -0.2076 
        6         71.0869      -0.3261 
        7         71.9074      -0.2863 
        8         72.5337      -0.1687 
        9         72.7498      -0.0452 
       10         72.7653       0.0407 
       11         72.7779       0.0767 
       12         72.8225       0.0720 

difference 
Differences a seasonal or nonseasonal time series. 

Synopsis 

#include <imsls.h> 

float *imsls_f_difference (int n_observations, float z[], 
int n_differences, int periods[], ..., 0) 

The type double function is imsls_d_difference. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 
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float z[]   (Input) 
Array of length n_observations containing the time series. 

int n_differences   (Input) 
Number of differences to perform. Argument n_differences must be 
greater than or equal to 1. 

int periods[]   (Input) 
Array of length n_differences containing the periods at which z is to 
be differenced. 

Return Value 
Pointer to an array of length n_observations containing the differenced series. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_difference (int n_observations, float z[], 

int n_differences, int periods[], 
IMSLS_ORDERS, int orders[], 
IMSLS_LOST, int *n_lost, 
IMSLS_EXCLUDE_FIRST, or 
IMSLS_SET_FIRST_TO_NAN,  
IMSLS_RETURN_USER, float w[],  
0) 

Optional Arguments 
IMSLS_ORDERS, int orders[]   (Input) 

Array of length n_differences containing the order of each difference 
given in periods. The elements of orders must be greater than or equal to 
0. 

IMSLS_LOST, int *n_lost   (Output) 
Number of observations lost because of differencing the time series z. 

IMSLS_EXCLUDE_FIRST, or 
IMSLS_SET_FIRST_TO_NAN 

If IMSLS_EXCLUDE_FIRST is specified, the first n_lost are excluded 
from w due to differencing. The differenced series w is of length 
n_observations � n_lost. If IMSLS_SET_FIRST_TO_NAN is 
specified, the first n_lost observations are set to NaN (Not a Number). 
This is the default if neither IMSLS_EXCLUDE_FIRST nor 
IMSLS_SET_FIRST_TO_NAN is specified. 

IMSLS_RETURN_USER, float w[]   (Output) 
If specified, w contains the differenced series. If 
IMSLS_EXCLUDE_FIRST also is specified, w is of length 
n_observations. If IMSLS_SET_FIRST_TO_NAN is specified or 
neither IMSLS_EXCLUDE_FIRST nor IMSLS_SET_FIRST_TO_NAN is 
specified, w is of length n_observations � n_lost. 
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Description 
Function imsls_f_difference performs m = n_differences successive 
backward differences of period si = periods [i � 1] and order  
di = orders [i � 1] for i = 1, ..., m on the n = n_observations observations 
{Zt} for t = 1, 2, ..., n. 

Consider the backward shift operator B given by 

BkZt = Zt-k 

for all k. Then, the backward difference operator with period s is defined by the 
following: 

�sZt = (1 � Bs) Zt = Zt � Zt-s for s � 0 

Note that BsZt and �sZt are defined only for t = (s + 1), ..., n. Repeated 
differencing with period s is simply 

� �
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where d � 0 is the order of differencing. Note that 
d
s tZ�  

is defined only for t = (sd + 1), ..., n. 

The general difference formula used in the function imsls_f_difference is 
given by 
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where nL represents the number of observations “lost” because of differencing 
and NaN represents the missing value code. See the functions 
imsls_f_machine and imsls_d_machine (Chapter 14, “Utilities”) to retrieve 
missing values. Note that 

L j
j

n s��  

A homogeneous, stationary time series can be arrived at by appropriately 
differencing a homogeneous, nonstationary time series (Box and Jenkins 1976,  
p. 85). Preliminary application of an appropriate transformation followed by 
differencing of a series can enable model identification and parameter estimation 
in the class of homogeneous stationary autoregressive moving average models. 
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Examples 

Example 1 
Consider the Airline Data (Box and Jenkins 1976, p. 531) consisting of the 
monthly total number of international airline passengers from January 1949 
through December 1960. Function imsls_f_difference is used to compute  

Wt = �1�12Zt = (Zt � Zt-12) � (Zt-1 � Zt-13) 

for t = 14, 15, ..., 24. 
#include <imsls.h> 
 
void main() 
 
{ 
    int    i; 
    int    n_observations = 24; 
    int    n_differences = 2; 
    int    periods[2] = {1, 12}; 
    float  *z; 
    float  *difference; 
 
    z = imsls_f_data_sets (4, 0); 
    difference = imsls_f_difference (n_observations, z, 
                                     n_differences, periods, 
                                     0); 
    printf ("i\tz[i]\tdifference[i]\n"); 
    for (i = 0; i < n_observations; i++) 
        printf ("%d\t%f\t%f\n", i, z[i], difference[i]); 
 
} 

Output 
 i      z[i]         difference[i] 
 0      112.000000   NaN 
 1      118.000000   NaN 
 2      132.000000   NaN 
 3      129.000000   NaN 
 4      121.000000   NaN 
 5      135.000000   NaN 
 6      148.000000   NaN 
 7      148.000000   NaN 
 8      136.000000   NaN 
 9      119.000000   NaN 
10      104.000000   NaN 
11      118.000000   NaN 
12      115.000000   NaN 
13      126.000000   5.000000 
14      141.000000   1.000000 
15      135.000000  -3.000000 
16      125.000000  -2.000000 
17      149.000000  10.000000 
18      170.000000   8.000000 
19      170.000000   0.000000 
20      158.000000   0.000000 
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21      133.000000  -8.000000 
22      114.000000  -4.000000 
23      140.000000  12.000000 

Example 2 
The data for this example is the same as that for the initial example. The first 
n_lost observations are excluded from W due to differencing, and n_lost is 
also output. 

#include <imsls.h> 
 
void main() 
{ 
 
    int    i; 
    int    n_observations = 24; 
    int    n_differences = 2; 
    int    periods[2] = {1, 12}; 
    int    n_lost; 
    float  *z; 
    float  *difference; 
                  /* Get airline data */ 
    z = imsls_f_data_sets (4, 0); 
                  /* Compute differenced time series when observations 
                     lost are excluded from the differencing */ 
    difference = imsls_f_difference (n_observations, z, 
                                     n_differences, periods, 
                                     IMSLS_EXCLUDE_FIRST, 
                                     IMSLS_LOST, &n_lost, 
                                     0); 
                  /* Print the number of lost observations */ 
    printf ("n_lost equals %d\n", n_lost); 
    printf ("\n\ni\tz[i]\t        difference[i]\n"); 
                  /* Print the original time series and the differenced 
                     time series */ 
    for (i = 0; i < n_observations - n_lost; i++) 
        printf ("%d\t%f\t%f\n", i, z[i], difference[i]); 
} 

Output 
n_lost equals 13 
 
 
 i      z[i]          difference[i] 
 0      112.000000    5.000000 
 1      118.000000    1.000000 
 2      132.000000   -3.000000 
 3      129.000000   -2.000000 
 4      121.000000   10.000000 
 5      135.000000    8.000000 
 6      148.000000    0.000000 
 7      148.000000    0.000000 
 8      136.000000   -8.000000 
 9      119.000000   -4.000000 
10      104.000000   12.000000 
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Fatal Errors 
IMSLS_PERIODS_LT_ZERO “period[#]” = #. All elements of “period” 

must be greater than 0. 

IMSLS_ORDER_NEGATIVE  “order[#]” = #. All elements of “order” 
must be nonnegative. 

IMSLS_Z_CONTAINS_NAN “z[#]” = NaN; “z” can not contain missing 
values. There may be other elements of “z” 
that are equal to NaN. 

box_cox_transform  
Performs a forward or an inverse Box-Cox (power) transformation. 

Synopsis 
#include <imsls.h> 
float *imsls_f_box_cox_transform (int n_observations, float z[], 

float power, ..., 0) 
The type double function is imsls_d_box_cox_transform. 

Required Arguments 

int n_observations   (Input) 
Number of observations in z. 

float z[]   (Input) 
Array of length n_observations containing the observations. 

float power   (Input) 
Exponent parameter in the Box-Cox (power) transformation. 

Return Value 
Pointer to an internally allocated array of length n_observations containing 
the transformed data. To release this space, use free. If no value can be 
computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsls.h> 

float *imsls_f_box_cox_transform (int n_observations, float z[], 
float power, 
IMSLS_SHIFT, float shift, 
IMSLS_INVERSE_TRANSFORM,  
IMSLS_RETURN_USER, float x[] 
0) 
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Optional Arguments 
IMSLS_SHIFT, float shift   (Input) 

Shift parameter in the Box-Cox (power) transformation. Parameter shift 
must satisfy the relation min (z(i)) + shift > 0. 
Default: shift = 0.0. 

IMSLS_INVERSE_TRANSFORM 
If IMSLS_INVERSE_TRANSFORM is specified, the inverse transform is 
performed. 

IMSLS_RETURN_USER, float x[]   (Output) 
User-allocated array of length n_observations containing the 
transformed data. 

Description 
Function imsls_f_box_cox_transform performs a forward or an inverse 
Box-Cox (power) transformation of n = n_observations observations {Zt} for 
t = 1, 2, ..., n. 

The forward transformation is useful in the analysis of linear models or models 
with nonnormal errors or nonconstant variance (Draper and Smith 1981, p. 222). 
In the time series setting, application of the appropriate transformation and 
subsequent differencing of a series can enable model identification and parameter 
estimation in the class of homogeneous stationary autoregressive-moving average 
models. The inverse transformation can later be applied to certain results of the 
analysis, such as forecasts and prediction limits of forecasts, in order to express 
the results in the scale of the original data. A brief note concerning the choice of 
transformations in the time series models is given in Box and Jenkins (1976,  
p. 328). 

The class of power transformations discussed by Box and Cox (1964) is defined 
by 
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where Zt + � > 0 for all t. Since 
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the family of power transformations is continuous. 

Let � = power and � = shift; then, the computational formula used by 
imsls_f_box_cox_transform is given by 
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where Zt + � > 0 for all t. The computational and Box-Cox formulas differ only in 
the scale and origin of the transformed data. Consequently, the general analysis of 
the data is unaffected (Draper and Smith 1981, p. 225). 

The inverse transformation is computed by 
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where {Zt} now represents the result computed by 
imsls_f_box_cox_transform for a forward transformation of the original 
data using parameters � and �. 

Examples 

Example 1 
The following example performs a Box-Cox transformation with power = 2.0 on 
10 data points. 

#include <imsls.h> 
  
void main() { 
    int n_observations = 10; 
    float power = 2.0; 
    float *x; 
    static float z[10] ={ 
        1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0}; 
 
    /* Transform Data using Box Cox Transform */ 
    x = imsls_f_box_cox_transform(n_observations, z, power, 0); 
     
    imsls_f_write_matrix("Transformed Data", 1, n_observations, x, 0);  
  
    free(x); 
} 

Output 
                           Transformed Data 
         1           2           3           4           5           6 
       1.0         4.0         9.0        16.0        25.0        30.2 
  
         7           8           9          10 
      42.2        56.2        64.0       100.0 

Example 2 
This example extends the first example—an inverse transformation is applied to 
the transformed data to return to the orignal data values. 

#include <imsls.h> 
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void main() { 
    int n_observations = 10; 
    float power = 2.0; 
    float *x, *y; 
    static float z[10] ={ 
        1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0}; 
 
    /* Transform Data using Box Cox Transform */ 
    x = imsls_f_box_cox_transform(n_observations, z, power, 0); 
     
    imsls_f_write_matrix("Transformed Data", 1, n_observations, x, 0);  
 
    /* Perform an Inverse Transform on the Transformed Data */ 
    y = imsls_f_box_cox_transform(n_observations, x, power,  
            IMSLS_INVERSE_TRANSFORM, 0); 
     
    imsls_f_write_matrix("Inverse Transformed Data", 1, n_observations, y, 
0);  
  
    free(x); 
    free(y); 
} 

Output 
                           Transformed Data 
         1           2           3           4           5           6 
       1.0         4.0         9.0        16.0        25.0        30.2 
  
         7           8           9          10 
      42.2        56.2        64.0       100.0 
  
                       Inverse Transformed Data 
         1           2           3           4           5           6 
       1.0         2.0         3.0         4.0         5.0         5.5 
  
         7           8           9          10 
       6.5         7.5         8.0        10.0 

Fatal Errors 
IMSLS_ILLEGAL_SHIFT “shift” = # and the smallest element of “z” 

is “z[#]” = #. “shift” plus “z[#]” = #. “shift” 
+ “z[i]” must be greater than 0 for i = 1, ..., 
“n_observations”. “n_observations” = #. 

IMSLS_BCTR_CONTAINS_NAN One or more elements of “z” is equal to 
NaN (Not a number). No missing values are 
allowed. The smallest index of an element 
of “z” that is equal to NaN is #. 

IMSLS_BCTR_F_UNDERFLOW Forward transform. “power” = #. “shift” = 
#. The minimum element of “z” is “z[#]” = 
#. (“z[#]”+ “shift”) ^ “power” will 
underflow. 
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IMSLS_BCTR_F_OVERFLOW Forward transformation. “power” = #. 
“shift” = #. The maximum element of “z” is 
“z[#]” = #. (“z[#]” + “shift”) ^ “power” will 
overflow. 

IMSLS_BCTR_I_UNDERFLOW Inverse transformation. “power” = #. The 
minimum element of “z” is “z[#]” = #. 
exp(“z[#]”) will underflow. 

IMSLS_BCTR_I_OVERFLOW Inverse transformation. “power” = #. The 
maximum element of “z[#]” = #. 
exp(“z[#]”) will overflow. 

IMSLS_BCTR_I_ABS_UNDERFLOW Inverse transformation. “power” = #. The 
element of “z” with the smallest absolute 
value is “z[#]” = #. “z[#]” ^ (1/ “power”) 
will underflow. 

IMSLS_BCTR_I_ABS_OVERFLOW Inverse transformation. “power” = #. The 
element of “z” with the largest absolute 
value is “z[#]” = #. “z[#]” ^ (1/ “power”) 
will overflow. 

autocorrelation 
Computes the sample autocorrelation function of a stationary time series. 

Synopsis 
#include <imsls.h> 
float *imsls_f_autocorrelation (int n_observations, float x[],  

int lagmax, ... 
0) 

The type double function is imsls_d_autocorrelation. 

Required Arguments 
int n_observations  (Input) 

Number of observations in the time series x.  n_observations must 
be greater than or equal to 2. 

float x[]  (Input)  
Array of length n_observations containing the time series. 

int lagmax  (Input)  
Maximum lag of autocovariance, autocorrelations, and standard errors of 
autocorrelations to be computed.  lagmax must be greater than or equal 
to 1 and less than n_observations. 
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Return Value 
Pointer to an array of length lagmax + 1 containing the autocorrelations of the 
time series x.  The 0-th element of this array is 1.  The k-th element of this array 
contains the autocorrelation of lag k where k = 1, ..., lagmax. 

Synopsis with Optional Arguments 
 

#include <imsls.h> 
float imsls_f_autocorrelation (int n_observations, float x[],  

int lagmax,  
IMSLS_RETURN_USER,  float autocorrelations[], 
IMSLS_PRINT_LEVEL, int iprint, 
IMSLS_ACV, float **autocovariances, 
IMSLS_ACV_USER, float autocovariances[], 
IMSLS_SEAC, float **standard_errors, int 
  se_option, 
IMSLS_SEAC_USER, float standard_errors[],  
  int se_option, 
IMSLS_X_MEAN_IN, float x_mean_in, 
IMSLS_X_MEAN_OUT, float *x_mean_out, 
0) 

Optional Arguments 
IMSLS_RETURN_USER,  float autocorrelations[]  (Output) 

If specified, autocorrelations is an array of length lagmax + 1 
containing the autocorrelations of the time series x. The  
oth element of this array is 1.  The kth element of this array contains 
the autocorrelation of lag k where k = 1, ..., lagmax. 

IMSLS_PRINT_LEVEL, int iprint  (Input) 
Printing option.  Default = 0. 

Iprint Action 
0 No printing is performed. 
1 Prints the mean and variance. 
2 Prints the mean, variance, and autocovariances. 
3 Prints the mean, variance, autocovariances, 

autocorrelations, and standard errors of 
autocorrelations. 

IMSLS_ACV, float **autocovariances  (Output) 
Address of a pointer to an array of length lagmax + 1 containing the 
variance and autocovariances of the time series x.  The 0-th element of 
this array is the variance of the time series x.  The kth element contains 
the autocovariance of lag k where k = 1, ..., lagmax. 



 

 
 

Chapter 8: Time Series and Forecasting autocorrelation � 543 

 

 

 

IMSLS_ACV_USER, float autocovariances[]  (Output) 
If specified, autocovariances is an array of length lagmax + 1 
containing the variance and autocovariances of the time series x.   
See IMSLS_ACV. 

IMSLS_SEAC, float **standard_errors, int se_option  (Output) 
Address of a pointer to an array of length lagmax containing the 
standard errors of the autocorrelations of the time series x.  
Method of computation for standard errors of the autocorrelations is 
chosen by se_option. 

Se_option Action 
1 Compute the standard errors of autocorrelations using 

Barlett’s formula. 
2 Compute the standard errors of autocorrelations 

using Moran’s formula. 
  

IMSLS_SEAC_USER, float standard_errors[], int se_option  (Output) 
If specified, autocovariances is an array of length lagmax containing 
the standard errors of the autocorrelations of the time series x.  
See IMSLS_SEAC. 

IMSLS_X_MEAN_IN, float x_mean_in  (Input) 
User input the estimate of the time series x. 

IMSLS_X_MEAN_OUT, float *x_mean_out  (Output) 
If specified, x_mean_out is the estimate of the mean of the time  
series x. 

Description 
Function imsls_f_autocorrelation estimates the autocorrelation function 
of a stationary time series given a sample of  n  =  n_observations 
observations {Xt} for t = 1, 2, …, n. 

Let  

�̂ � x_mean  

be the estimate of the mean � of the time series {Xt} where 
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where K = lagmax. Note that  

� �ˆ 0�  

is an estimate of the sample variance. The autocorrelation function �(k) is 
estimated by 

ˆ ( )ˆ ( ) , 0,1, ,
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Note that  

� �ˆ 0 1� �  

by definition. 

The standard errors of the sample autocorrelations may be optionally computed 
according to argument se_option for the optional argument IMSLS_SEAC. 
One method (Bartlett 1946) is based on a general asymptotic expression for the 
variance of the sample autocorrelation coefficient of a stationary time series with 
independent, identically distributed normal errors. The theoretical formula is 
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where  

ˆ ( )k�  

assumes � is unknown. For computational purposes, the autocorrelations r(k) are 
replaced by their estimates  

ˆ ( )k�  

for |k| 
 K, and the limits of summation are bounded because of the assumption 
that r(k) = 0 for all k such that |k| > K. 

A second method (Moran 1947) utilizes an exact formula for the variance of the 
sample autocorrelation coefficient of a random process with independent, 
identically distributed normal errors. The theoretical formula is 
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where � is assumed to be equal to zero. Note that this formula does not depend on 
the autocorrelation function. 

Example 
Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the 
number of sunspots observed each year from 1749 through 1924. The data set for 
this example consists of the number of sunspots observed from 1770 through 
1869. Function imsls_f_autocorrelation with optional arguments computes 
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the estimated autocovariances, estimated autocorrelations, and estimated standard 
errors of the autocorrelations. 

#include <imsls.h> 
#include <stdio.h> 
 
void main() 
{ 
   float *result=NULL, data[176][2], x[100], xmean; 
   int i, nobs = 100, lagmax = 20; 
   float *acv=NULL, *seac=NULL; 
 
 
   imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0); 
   for (i=0;i<nobs;i++) x[i] = data[21+i][1]; 
  
   result = imsls_f_autocorrelation(nobs, x, lagmax,  
                            IMSLS_X_MEAN_OUT, &xmean, 
                            IMSLS_ACV, &acv,  
                            IMSLS_SEAC, &seac, 1, 
                            0);     
   printf("Mean     = %8.3f\n", xmean); 
   printf("Variance = %8.1f\n", acv[0]); 
   printf("\nLag\t   ACV\t\t   AC\t\t   SEAC\n"); 
   printf("%2d\t%8.1f\t%8.5f\n", 0, acv[0], result[0]); 
   for(i=1; i<21; i++) 
      printf("%2d\t%8.1f\t%8.5f\t%8.5f\n", i, acv[i], result[i],  
      seac[i-1]); 
       
} 

Output 

 
Mean     =     46.976 
Variance =     1382.9 
 
Lag         ACV           AC          SEAC 
 
 0         1382.9      1.00000 
 1         1115.0      0.80629      0.03478 
 2          592.0      0.42809      0.09624 
 3           95.3      0.06891      0.15678 
 4         -236.0     -0.17062      0.20577 
 5         -370.0     -0.26756      0.23096 
 6         -294.3     -0.21278      0.22899 
 7          -60.4     -0.04371      0.20862 
 8          227.6      0.16460      0.17848 
 9          458.4      0.33146      0.14573 
10          567.8      0.41061      0.13441 
11          546.1      0.39491      0.15068 
12          398.9      0.28848      0.17435 
13          197.8      0.14300      0.19062 
14           26.9      0.01945      0.19549 
15          -77.3     -0.05588      0.19589 
16         -143.7     -0.10394      0.19629 
17         -202.0     -0.14610      0.19602 
18         -245.4     -0.17743      0.19872 
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19         -230.8     -0.16691      0.20536 
20         -142.9     -0.10332      0.20939 

 
Figure 8-1 Sample Autocorrelation Function 

crosscorrelation 
Computes the sample cross-correlation function of two stationary time series. 

Synopsis 
#include <imsls.h> 
float *imsls_f_crosscorrelation (int n_observations, float x[],  

float y[], int lagmax, ..., 0) 
The type double function is imsls_d_crosscorrelation. 

Required Arguments 
int n_observations  (Input) 

Number of observations in each time series.  n_observations must be 
greater than or equal to 2. 

float x[]  (Input)  
Array of length n_observations containing the first time series. 

float y[]  (Input)  
Array of length n_observations containing the second time series. 



 

 
 

Chapter 8: Time Series and Forecasting crosscorrelation � 547 

 

 

 

int lagmax  (Input)  
Maximum lag of cross-covariances and cross-correlations to be 
computed.  lagmax must be greater than or equal to 1 and less than 
n_observations. 

Return Value 
Pointer to an array of length 2*lagmax + 1 containing the cross-correlations 
between the time series x and y.  The kth element of this array contains the cross-
correlation between x and y at lag (k-lagmax) where k = 0, 1, …, 2*lagmax.  To 
release this space, use free.  If no solution can be computed, NULL is returned. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_crosscorrelation (int n_observations, float x[], 

float y[], int lagmax,  
IMSLS_RETURN_USER,  float crosscorrelations[], 
IMSLS_PRINT_LEVEL, int iprint, 
IMSLS_VARIANCES, float *x_variance, float *y_variance 
IMSLS_SE_CCF, float **standard_errors, int se_option, 
IMSLS_SE_CCF_USER, float standard_errors[], int se_option,  
IMSLS_CROSS_COVARIANCES, float **cross_covariances,  
IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[], 
IMSLS_INPUT_MEANS, float x_mean_in, float y_mean_in, 
IMSLS_OUTPUT_MEANS, float *x_mean_out, float *y_mean_out, 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float crosscorrelations[]  (Output) 

If specified, crosscorrelations is an array of length  
2*lagmax + 1 containing the cross-correlations between the time series 
x and y.  The kth element of this array contains the cross-correlation 
between x and y at lag (k-lagmax) where k = 0, 1, …, 2*lagmax. 

IMSLS_PRINT_LEVEL, int iprint  (Input) 
Printing option.  Default = 0. 

Iprint Action 
0 No printing is performed. 
1 Prints the means and variances. 
2 Prints the means, variances, and cross-covariances. 
3 Prints the means, variances, cross-covariances, cross-

correlations, and standard errors of cross-correlations. 

IMSLS_VARIANCES, float *x_variance, float *y_variance  (Output) 
If specified, x_variance is variance of the time series x and 
y_variance is variance of the time series y. 
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IMSLS_SE_CCF, float **standard_errors, int se_option  (Output) 
Address of a pointer to an array of length 2*lagmax + 1containing the 
standard errors of the cross-correlations between the time series x and y.  
Method of computation for standard errors of the cross-correlations is 
chosen by se_option. 

se_option Action 
1 Compute standard errors of cross-correlations using 

Bartlett’s formula. 
2 Compute standard errors of cross-correlations using 

Bartlett’s formula with the assumption of no cross-
correlation. 

IMSLS_SE_CCF_USER, float standard_errors[], int se_option  (Output) 
If specified, standard_errors is an array of length 2*lagmax + 1 
containing the standard errors of the cross-correlations between the time 
series x and y.  See IMSLS_SE_CC. 

IMSLS_CROSS_COVARIANCES, float **cross_covariances  (Output) 
Address of a pointer to an array of length 2*lagmax + 1 containing the 
cross-covariances between the time series x and y.  The kth element of 
this array contains the cross-covariances between x and y at lag 
 (k-lagmax) where k = 0, 1, …, 2*lagmax. 

IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[]  (Output) 
If specified, cross_covariances is an array of length 2*lagmax + 1 
the cross-covariances between the time series x and y.  See 
IMSLS_CROSS_COVARIANCES. 

IMSLS_INPUT_MEANS, float x_mean_in, float y_mean_in  (Input) 
If specified, x_mean_in is the user input of the estimate of the mean of 
the time series x and y_mean_in is the user input of the estimate of the 
mean of the time series y. 

IMSLS_OUTPUT_MEANS, float *x_mean_out, float *y_mean_out  (Output) 
If specified, x_mean_out is the mean of the time series x and 
y_mean_out is the mean of the time series y. 

Description 
Function imsls_f_crosscorrelation estimates the cross-correlation 
function of two jointly stationary time series given a sample of  
n = n_observations observations {Xt} and {Yt} for t = 1, 2, …, n.  

Let 

ˆ x� � x_mean  

be the estimate of the mean �X of the time series {Xt} where 
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The autocovariance function of {Xt}, �X(k), is estimated by 
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where K = lagmax. Note that  
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is equivalent to the sample variance x_variance. The autocorrelation function 
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The cross-covariance function 
XY(k) is estimated by 
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The cross-correlation function �XY(k) is estimated by 

� �
1 2

ˆ ( )ˆ ( ) 0, 1, ,
ˆ ˆ(0) (0)

XY
XY

X Y

kk k�
�

� �

� � � � K�  

The standard errors of the sample cross-correlations may be optionally computed 
according to argument se_option for the optional argument IMSLS_SE_CCF. 
One method is based on a general asymptotic expression for the variance of the 
sample cross-correlation coefficient of two jointly stationary time series with 
independent, identically distributed normal errors given by Bartlett (1978, page 
352). The theoretical formula is 
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For computational purposes, the autocorrelations �X(k) and �Y(k) and the cross-
correlations �XY(k) are replaced by their corresponding estimates for |k| 
 K, and 
the limits of summation are equal to zero for all k such that |k| > K. 

A second method evaluates Bartlett’s formula under the additional assumption 
that the two series have no cross-correlation. The theoretical formula is 
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For additional special cases of Bartlett’s formula, see Box and Jenkins (1976, 
page 377). 

An important property of the cross-covariance coefficient is 
XY(k) = 
YX(�k) for 
k � 0. This result is used in the computation of the standard error of the sample 
cross-correlation for lag k < 0. In general, the cross-covariance function is not 
symmetric about zero so both positive and negative lags are of interest. 

Example 
Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532–533) where  
X is the input gas rate in cubic feet/minute and Y is the percent CO� in the outlet 
gas. Function imsls_f_crosscorrelation is used to compute the cross-
covariances and cross-correlations between time series X and Y with lags from 
�lagmax = �10 through lag lagmax = 10. In addition, the estimated standard 
errors of the estimated cross-correlations are computed.  The standard errors are 
based on the additional assumption that all cross-correlations for X and Y are 
zero. 

 
#include "imsls.h" 
#include <stdio.h> 
 
#define nobs 296 
#define lagmax 10 
 
void main () 
{ 
  int i; 
  float data[nobs][2], x[nobs], y[nobs]; 
  float *secc = NULL, *ccv = NULL, *cc = NULL; 
  float xmean, ymean, xvar, yvar; 
 
  imsls_f_data_sets (7, IMSLS_X_COL_DIM, 2, IMSLS_RETURN_USER, data, 0); 
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  for (i = 0; i < nobs; i++) 
    { 
      x[i] = data[i][0]; 
      y[i] = data[i][1]; 
    } 
 
  cc = imsls_f_crosscorrelation (nobs, x, y, lagmax, 
     IMSLS_OUTPUT_MEANS, &xmean, &ymean, 
     IMSLS_VARIANCES, &xvar, &yvar, 
     IMSLS_SE_CCF, &secc, 2, 
     IMSLS_CROSS_COVARIANCES, &ccv, 0); 
 
  printf ("Mean of series X     = %g\n", xmean); 
  printf ("Variance of series X = %g\n\n", xvar); 
  printf ("Mean of series Y     = %g\n", ymean); 
  printf ("Variance of series Y = %g\n\n", yvar); 
 
  printf ("Lag            CCV           CC         SECC\n\n"); 
  for (i = 0; i < 2 * lagmax + 1; i++) 
    printf ("%-5d%13g%13g%13g\n", i - lagmax, ccv[i], cc[i], secc[i]); 
} 

Output 
Mean of series X     = -0.0568344 
Variance of series X = 1.14694 
 
Mean of series Y     = 53.5091 
Variance of series Y = 10.2189 
 
Lag            CCV           CC         SECC 
 
-10      -0.404502    -0.118154     0.162754 
-9       -0.508491    -0.148529      0.16247 
-8        -0.61437    -0.179456     0.162188 
-7       -0.705476    -0.206067     0.161907 
-6       -0.776167    -0.226716     0.161627 
-5       -0.831474    -0.242871     0.161349 
-4       -0.891316    -0.260351     0.161073 
-3       -0.980605    -0.286432     0.160798 
-2        -1.12477    -0.328542     0.160524 
-1        -1.34704    -0.393467     0.160252 
0         -1.65853    -0.484451     0.159981 
1         -2.04865    -0.598405     0.160252 
2         -2.48217    -0.725033     0.160524 
3         -2.88541     -0.84282     0.160798 
4         -3.16536    -0.924592     0.161073 
5         -3.25344    -0.950319     0.161349 
6         -3.13113    -0.914593     0.161627 
7         -2.83919     -0.82932     0.161907 
8         -2.45302    -0.716521     0.162188 
9         -2.05269    -0.599584      0.16247 
10        -1.69466    -0.495004     0.162754 
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multi_crosscorrelation 
Computes the multichannel cross-correlation function of two mutually stationary 
multichannel time series. 

Synopsis 
#include <imsls.h> 
float *imsls_f_multi_crosscorrelation (int n_observations_x,  

int n_channel_x, float x[], int n_observations_y,  
int n_channel_y, float y[], int lagmax, ..., 0) 

The type double function is imsls_d_multi_crosscorrelation. 

Required Arguments 
int n_observations_x  (Input) 

Number of observations in each channel of the first time series x.  
n_observations_x must be greater than or equal to two. 

int n_channel_x  (Input) 
Number of channels in the first time series x.  n_channel_x must be 
greater than or equal to one. 

float x[]  (Input)  
Array of length n_observations_x by n_channel_x containing the 
first time series. 

int n_observations_y  (Input) 
Number of observations in each channel of the second time series y.  
n_observations_y must be greater than or equal to two. 

int n_channel_y  (Input) 
Number of channels in the second time series y.  n_channel_y must 
be greater than or equal to one. 

float y[]  (Input)  
Array of length n_observations_y by n_channel_y containing the 
second time series. 

int lagmax  (Input)  
Maximum lag of cross-covariances and cross-correlations to be 
computed.  lagmax must be greater than or equal to one and less than 
the minimum of n_observations_x and n_observations_y. 

Return Value 
Pointer to an array of length n_channel_x * n_channel_y *  
(2 * lagmax + 1) containing the cross-correlations between the channels of x 
and y.  The mth element of this array contains the cross-correlation between 
channel i of the x series and channel j of the y series at lag (k-lagmax) where  
 i = 1, …, n_channel_x 
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 j = 1, …, n_channel_y 
 k = 0, 1, …, 2*lagmax, and  
 m = (n_channel_x*n_channel_y*k +(i*n_channel_x+ j)) 

To release this space, use free.  If no solution can be computed, NULL is return. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_multi_crosscorrelation (int n_observations_x, 

int n_channel_x, float x[], int n_observations_y,  
int n_channel_y, float y[], int lagmax,  
IMSLS_RETURN_USER,  float crosscorrelations[], 
IMSLS_PRINT_LEVEL, int iprint, 
IMSLS_VARIANCES, float **x_variance, float **y_variance, 
IMSLS_VARIANCES_USER, float x_variance[],  
float y_variance[],  
IMSLS_CROSS_COVARIANCES, float **cross_covariances,  
IMSLS_CROSS_COVARIANCES_USER,  
float cross_covariances[], 
IMSLS_INPUT_MEANS, float *x_mean_in, float *y_mean_in, 
IMSLS_OUTPUT_MEANS, float **x_mean_out,  
float **y_mean_out, 
IMSLS_OUTPUT_MEANS_USER, float x_mean_out[],  
float y_mean_out[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float crosscorrelations[]  (Output) 

If specified, crosscorrelations is a user-specified array of length 
n_channel_x * n_channel_y * (2*lagmax + 1) containing the 
cross-correlations between the channels of x and y.  See Return Value. 

IMSLS_PRINT_LEVEL, int iprint  (Input) 
Printing option.  Default = 0. 

iprint Action 
0 No printing is performed. 
1 Prints the means and variances. 
2 Prints the means, variances, and cross-covariances. 
3 Prints the means, variances, cross-covariances, and cross-

correlations. 

IMSLS_VARIANCES, float **x_variance, float **y_variance  (Output) 
If specified, x_variance is the address of a pointer to an array of 
length n_channel_x containing the variances of the channels of x and 
y_variance is the address of a pointer to an array of length 
n_channel_y containing the variances of the channels of y. 
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IMSLS_VARIANCES_USER, float x_variance[], float y_variance[] 
(Output) 
If specified, x_variance is an array of length n_channel_x 
containing the variances of the channels of x and y_variance is an 
array of length n_channel_y containing the variances of the channels 
of y.  See IMSLS_VARIANCES. 

IMSLS_CROSS_COVARIANCES, float **cross_covariances  (Output) 
Address of a pointer to an array of length n_channel_x * n_channel_y * 
(2*lagmax + 1) containing the cross-covariances between the channels of 
x and y.  The mth element of this array contains the cross-covariance 
between channel i of the x series and channel j of the y series at lag (k-
lagmax) where  
 i = 1, …, n_channel_x 
 j = 1, …, n_channel_y 
 k = 0, 1, …, 2*lagmax, and 
 m = (n_channel_x*n_channel_y*k +(i*n_channel_x+ j)). 

IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[]  (Output) 
If specified, cross_covariances is an array of length n_channel_x 
* n_channel_y * (2*lagmax + 1) containing  the cross-covariances 
between the channels of x and y.  See IMSLS_CROSS_COVARIANCES. 

IMSLS_INPUT_MEANS, float *x_mean_in, float *y_mean_in  (Input) 
If specified, x_mean_in is an array of length n_channel_x containing 
the user input of the estimate of the means of the channels of x and 
y_mean_in is an array of length n_channel_y containing the user 
input of the estimate of the means of the channels of y. 

IMSLS_OUTPUT_MEANS, float **x_mean_out, float **y_mean_out  (Output) 
If specified, x_mean_out is the address of a pointer to an array of 
length n_channel_x containing the means of the channels of x and 
y_mean_out is the address of a pointer to an array of length 
n_channel_y containing the means of the channels of y. 

IMSLS_OUTPUT_MEANS_USER, float x_mean_out[], float y_mean_out[]  
(Output) 
If specified, x_mean_out is an array of length n_channel_x 
containing the means of the channels of x and y_mean_out is an array 
of length n_channel_y containing the means of the channels of y.  See 
IMSLS_OUTPUT_MEANS. 

Description 
Function imsls_f_multi_crosscorrelation estimates the multichannel 
cross-correlation function of two mutually stationary multichannel time series. 
Define the multichannel time series X by 

X = (X�, X�, �, Xp) 

where 



 

 
 

Chapter 8: Time Series and Forecasting multi_crosscorrelation � 555 

 

 

 

Xj = (X�j, X�j, �, Xnj)T, j = 1, 2, �, p 

with n = n_observations_x and p = n_channel_x. Similarly, define the 
multichannel time series Y by 

Y = (Y�, Y�, �, Yq) 

where  

Yj = (Y�j, Y�j, �, Ymj)T, j = 1, 2, �, q 

with m = n_observations_y and q = n_channel_y. The columns of X and Y 
correspond to individual channels of multichannel time series and may be 
examined from a univariate perspective. The rows of X and Y correspond to 
observations of p-variate and q-variate time series, respectively, and may be 
examined from a multivariate perspective. Note that an alternative 
characterization of a multivariate time series X considers the columns to be 
observations of the multivariate time series while the rows contain univariate time 
series. For example, see Priestley (1981, page 692) and Fuller (1976, page 14). 

Let 

ˆ x_meanX� �  

be the row vector containing the means of the channels of X. In particular, 

� �1 2
ˆ ˆ ˆ ˆ, , ,

pX X X X� � � �� �  

where for j = 1, 2, …, p  
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Let 

ˆ _meanY y� �  

be similarly defined. The cross-covariance of lag k between channel i of X and 
channel j of Y is estimated by  
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where i = 1, …, p, j = 1, …, q, and K = lagmax. The summation on t extends over 
all possible cross-products with N equal to the number of cross-products in the 
sum  

Let 
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� �ˆ 0 x_varianceX� �  

be the row vector consisting of the estimated variances of the channels of X. In 
particular, 

1 2
ˆ ˆ ˆ ˆ(0) ( (0), (0), , (0))

pX X X X� � � �� �  

where 

2

1
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j j

n
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Let 

ˆ (0) y_varianceY� �  

be similarly defined. The cross-correlation of lag k between channel i of X and 
channel j of Y is estimated by 

( )
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Example 
Consider the Wolfer Sunspot Data (Y ) (Box and Jenkins 1976, page 530) along 
with data on northern light activity (X�) and earthquake activity (X�) (Robinson 
1967, page 204) to be a three-channel time series. Function 
imsls_f_multi_crosscorrelation is used to compute the cross-covariances 
and cross-correlations between X� and Y and between X� and Y with lags from 
�lagmax = �10 through lag lagmax = 10. 

#include "imsls.h" 
 
void main () { 
  int i, lagmax, nobsx, nchanx, nobsy, nchany; 
  float x[100 * 2], y[100], *result = NULL, *xvar = NULL, *yvar = NULL, 
    *xmean = NULL, *ymean = NULL, *ccv = NULL; 
  float data[100][4]; 
  char line[20]; 
 
  nobsx = nobsy = 100; 
  nchanx = 2; 
  nchany = 1; 
  lagmax = 10; 
 
  imsls_f_data_sets (8, IMSLS_X_COL_DIM, 4, IMSLS_RETURN_USER, data, 0); 
  for (i = 0; i < 100; i++) 
    { 
      y[i] = data[i][1]; 
      x[i * 2] = data[i][2]; 
      x[i * 2 + 1] = data[i][3]; 
    } 
 
  result = 
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    imsls_f_multi_crosscorrelation (nobsx, nchanx, &x[0], nobsy, nchany, 
        &y[0], lagmax, IMSLS_VARIANCES, &xvar, 
        &yvar, IMSLS_OUTPUT_MEANS, &xmean, &ymean, 
        IMSLS_CROSS_COVARIANCES, &ccv, 0); 
 
  imsls_f_write_matrix ("Channel means of x", 1, nchanx, xmean, 0); 
  imsls_f_write_matrix ("Channel variances of x", 1, nchanx, xvar, 0); 
  imsls_f_write_matrix ("Channel means of y", 1, nchany, ymean, 0); 
  imsls_f_write_matrix ("Channel variances of y", 1, nchany, yvar, 0); 
 
  printf ("\nMultichannel cross-covariance between x and y\n"); 
  for (i = 0; i < (2 * lagmax + 1); i++) 
    { 
      sprintf (line, "Lag K = %d", i - lagmax); 
      imsls_f_write_matrix (line, nchanx, nchany, 
       &ccv[nchanx * nchany * i], 0); 
    } 
 
  printf ("\nMultichannel cross-correlation between x and y\n"); 
  for (i = 0; i < (2 * lagmax + 1); i++) 
    { 
      sprintf (line, "Lag K = %d", i - lagmax); 
      imsls_f_write_matrix (line, nchanx, nchany, 
       &result[nchanx * nchany * i], 0); 
    } 
} 

Output 
 
   Channel means of x 
          1            2 
      63.43        97.97 
  
 Channel variances of x 
          1            2 
       2644         1978 
  
Channel means of y 
          46.94 
  
Channel variances of y 
             1384 
 
Multichannel cross-covariance between x and y 
  
  Lag K = -10 
1       -20.51 
2        70.71 
  
  Lag K = -9 
1        65.02 
2        38.14 
  
  Lag K = -8 
1        216.6 
2        135.6 
  
  Lag K = -7 
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1        246.8 
2        100.4 
  
  Lag K = -6 
1        142.1 
2         45.0 
  
  Lag K = -5 
1        50.70 
2       -11.81 
  
  Lag K = -4 
1        72.68 
2        32.69 
  
  Lag K = -3 
1        217.9 
2        -40.1 
  
  Lag K = -2 
1        355.8 
2       -152.6 
  
  Lag K = -1 
1        579.7 
2       -213.0 
  
   Lag K = 0 
1        821.6 
2       -104.8 
  
   Lag K = 1 
1        810.1 
2         55.2 
  
   Lag K = 2 
1        628.4 
2         84.8 
  
   Lag K = 3 
1        438.3 
2         76.0 
  
   Lag K = 4 
1        238.8 
2        200.4 
  
   Lag K = 5 
1        143.6 
2        283.0 
  
   Lag K = 6 
1        253.0 
2        234.4 
  
   Lag K = 7 
1        479.5 
2        223.0 
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   Lag K = 8 
1        724.9 
2        124.5 
  
   Lag K = 9 
1        925.0 
2        -79.5 
  
  Lag K = 10 
1        922.8 
2       -279.3 
 
Multichannel cross-correlation between x and y 
  
  Lag K = -10 
1     -0.01072 
2      0.04274 
  
  Lag K = -9 
1      0.03400 
2      0.02305 
  
  Lag K = -8 
1       0.1133 
2       0.0819 
  
  Lag K = -7 
1       0.1290 
2       0.0607 
  
  Lag K = -6 
1      0.07431 
2      0.02718 
  
  Lag K = -5 
1      0.02651 
2     -0.00714 
  
  Lag K = -4 
1      0.03800 
2      0.01976 
  
  Lag K = -3 
1       0.1139 
2      -0.0242 
  
  Lag K = -2 
1       0.1860 
2      -0.0923 
  
  Lag K = -1 
1       0.3031 
2      -0.1287 
  
   Lag K = 0 
1       0.4296 
2      -0.0633 
  
   Lag K = 1 
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1       0.4236 
2       0.0333 
  
   Lag K = 2 
1       0.3285 
2       0.0512 
  
   Lag K = 3 
1       0.2291 
2       0.0459 
  
   Lag K = 4 
1       0.1248 
2       0.1211 
  
   Lag K = 5 
1       0.0751 
2       0.1710 
  
   Lag K = 6 
1       0.1323 
2       0.1417 
  
   Lag K = 7 
1       0.2507 
2       0.1348 
  
   Lag K = 8 
1       0.3790 
2       0.0752 
  
   Lag K = 9 
1       0.4836 
2      -0.0481 
  
  Lag K = 10 
1       0.4825 
2      -0.1688 

partial_autocorrelation 
Computes the sample partial autocorrelation function of a stationary time series. 

Synopsis 
#include <imsls.h> 
float *imsls_f_partial_autocorrelation (int lagmax, int cf[], …, 

0) 

The type double function is imsls_d_partial_autocorrelation. 

Required Arguments 

int lagmax   (Input) 
Maximum lag of partial autocorrelations to be computed.  
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float cf[]   (Input) 
Array of length lagmax + 1 containing the autocorrelations of the time 
series x. 

Return Value 
Pointer to an array of length lagmax containing the partial autocorrelations of 
the time series x. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_partial_autocorrelation (int lagmax, float cf[],  

 IMSLS_RETURN_USER, float partial_autocorrelations[],  
 0) 

Optional Arguments 

IMSLS_RETURN_USER, float partial_autocorrelations[]   (Output) 
If specified, the partial autocorrelations are stored in an array of length 
lagmax provided by the user.  

Description 

Function imsls_f_partial_autocorrelation estimates the partial 
autocorrelations of a stationary time series given the K = lagmax sample 
autocorrelations  

� �ˆ k�  

for k = 0, 1, …, K. Consider the AR(k) process defined by 

1 1 2 2 ...t k t k t kk t kX X X X
� � �

� � � � � � � �  

where �kj denotes the j-th coefficient in the process. The set of estimates  

� �k̂k�  

for k = 1, …, K is the sample partial autocorrelation function. The autoregressive 
parameters 

� �k̂j�  

for j = 1, …, k are approximated by Yule-Walker estimates for successive AR(k) 
models where k = 1, …, K. Based on the sample Yule-Walker equations 

1 2
ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( 1) ( 2) ... ( ), 1, 2,...,k k kkj j j j k j� � � � � � � � � � � � � � � k  

a recursive relationship for k = 1, …, K was developed by Durbin (1960). The 
equations are given by  
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and  
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This procedure is sensitive to rounding error and should not be used if the 
parameters are near the nonstationarity boundary. A possible alternative would be 
to estimate {�kk} for successive AR(k) models using least or maximum 
likelihood. Based on the hypothesis that the true process is AR(p), Box and 
Jenkins (1976, page 65) note  

1ˆvar{ } 1kk k p
n

� � �� �  

See Box and Jenkins (1976, pages 82–84) for more information concerning the 
partial autocorrelation function. 

Example 
Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the 
number of sunspots observed each year from 1749 through 1924. The data set for 
this example consists of the number of sunspots observed from 1770 through 
1869. Routine imsls_f_partial_autocorrelation is used to compute the 
estimated partial autocorrelations. 

 
#include <imsls.h> 
#include <stdio.h> 
 
void main() 
{ 
   float *partial=NULL, data[176][2], x[100]; 
   int i, nobs = 100, lagmax = 20; 
   float *ac; 
 
   imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0); 
   for (i=0;i<nobs;i++) x[i] = data[21+i][1]; 
    
   ac = imsls_f_autocorrelation(100, x, lagmax, 0); 
   partial = imsls_f_partial_autocorrelation(lagmax, ac, 0); 
   imsls_f_write_matrix("Lag      PACF", 20, 1, partial, 0); 
} 
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Output 
 Lag      PACF 
 1     0.806 
 2    -0.635 
 3     0.078 
 4    -0.059 
 5    -0.001 
 6     0.172 
 7     0.109 
 8     0.110 
 9     0.079 
10     0.079 
11     0.069 
12    -0.038 
13     0.081 
14     0.033 
15    -0.035 
16    -0.131 
17    -0.155 
18    -0.119 
19    -0.016 
20    -0.004 

lack_of_fit 
Performs lack-of-fit test for a univariate time series or transfer function given the 
appropriate correlation function. 

Synopsis 
#include <imsls.h> 

float imsls_lack_of_fit (int n_observations, float cf[],  
int lagmax, int npfree,..., 0)  

Required Arguments 
int n_observations   (Input) 

Number of observations of the stationary time series.   

float cf[]  (Input) 
Array of length lagmax+1 containing the correlation function. 

int lagmax  (Input) 
Maximum lag of the correlation function. 

int npfree  (Input) 
Number of free parameters in the formulation of the time series model. 
npfree must be greater than or equal to zero and less than lagmax.   
Woodfield (1990) recommends npfree = p + q. 
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Return Value 

Pointer to an array of length 2 with the test statistic, Q, and its p-value, p.  Under 
the null hypothesis, Q has an approximate chi-squared distribution with  
lagmax-lagmin+1-npfree degrees of freedom. 

Synopsis with Optional Arguments 

  #include <imsls.h> 

  float *imsls_f_lack_of_fit (int n_observations, float cf[], int 
lagmax, int npfree, 
IMSLS_RETURN_USER, float stat[], 
IMSLS_LAGMIN, int lagmin,  
0) 

Optional Arguments 
  IMSLS_RETURN_USER, float stat[]  (Input) 

User defined array for storage of lack-of-fit statistics. 

  IMSLS_LAGMIN, int lagmin  (Input) 
Minimum lag of the correlation function.  lagmin corresponds to the 
lower bound of summation in the lack of fit test statistic.  Default value 
is 1. 

Description 
Routine imsls_f_lack_of_fit may be used to diagnose lack of fit in both 
ARMA and transfer function models. Typical arguments for these situations are  

 
Model LAGMIN LAGMAX NPFREE 

ARMA (p, q)  1 NOBS  p + q  
Transfer function  0 NOBS  r + s 

 

Function imsls_f_lack_of_fit performs a portmanteau lack of fit test for a 
time series or transfer function containing n observations given the appropriate 
sample correlation function 

ˆ ( )k�  

for k = L, L + 1, �, K where L = lagmin and K = lagmax.  

The basic form of the test statistic Q is 

1 ˆ( 2) ( ) (
K

k L

Q n n n k k�
�

�

� � �� )                                  

with L = 1 if  
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is an autocorrelation function. Given that the model is adequate, Q has a chi-
squared distribution with K � L + 1 � m degrees of freedom where m =  npfree 
is the number of parameters estimated in the model. If the mean of the time series 
is estimated, Woodfield (1990) recommends not including this in the count of the 
parameters estimated in the model. Thus, for an ARMA(p, q) model set npfree= 
p + q regardless of whether the mean is estimated or not. The original derivation 
for time series models is due to Box and Pierce (1970) with the above modified 
version discussed by Ljung and Box (1978). The extension of the test to transfer 
function models is discussed by Box and Jenkins (1976, pages 394–395). 

Example 
Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the 
number of sunspots observed each year from 1749 through 1924. The data set  
for this example consists of the number of sunspots observed from 1770 through 
1869. An ARMA(2,1) with nonzero mean is fitted using routine imsls_f_arma 
(page 517). The autocorrelations of the residuals are estimated using routine 
imsls_f_autocorrelation  (page  541). A portmanteau lack of fit test is 
computed using 10 lags with imsls_f_lack_of_fit.  

The warning message from imsls_f_arma in the output can be ignored.  
(See the example for routine imsls_f_arma for a full explanation of the warning 
message.) 

 
#include <imsls.h> 
#include <stdio.h> 
 
void main() 
{ 
  int   p = 2; 
  int   q = 1; 
  int   i; 
  int   n_observations = 100; 
  int   max_itereations = 0; 
  int   lagmin = 1; 
  int   lagmax = 10; 
  int   npfree = 4; 
  float data[176][2], x[100]; 
  float *parameters; 
  float *correlations;  
  float *residuals; 
  float tolerance = 0.125; 
  float *result; 
  
  /* Get sunspot data for 1770 through 1869, store it in x[].      */ 
  imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0); 
  for (i=0;i<n_observations;i++) x[i] = data[21+i][1]; 
  
  /* Get residuals from ARMA(2,1) for autocorrelation/lack of fit  */ 
  parameters = imsls_f_arma(n_observations, x, p, q, 
                            IMSLS_LEAST_SQUARES, 
                            IMSLS_CONVERGENCE_TOLERANCE, tolerance, 
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                            IMSLS_RESIDUAL, &residuals, 
                            0); 
  /* Get autocorrelations from residuals for lack of fit test      */ 
  /*     NOTE:  number of OBS is equal to number of residuals      */ 
 
correlations = imsls_f_autocorrelation(n_observations-p+lagmax, 
   residuals, lagmax, 
                                       0); 
 
  /*  Get lack of fit test statistic and p-value                   */ 
  /*     NOTE:  number of OBS is equal to original number of data  */ 
 
   result = imsls_f_lack_of_fit(n_observations,  correlations, lagmax,  
  npfree, 0); 
 
  /*  Print parameter estimates, test statistic, and p-value       */ 
  /*     NOTE: Test Statistic Q follows a Chi-squared dist.        */ 
 
 printf("Lack of Fit Statistic,  Q = \t%3.5f\n             P-value of Q 
          = \t %1.5f\n\n",result[0], result[1]); 
 
}  

Output 

 
***WARNING  ERROR  IMSLS_LEAST_SQUARES_FAILED from imsls_f_arma.  Least  
***         squares estimation of the parameters has failed to converge. 
***         Increase “length” and/or “tolerence” and/or  
***         “convergence_tolerence”.  The estimates of the parameters at 
***         the last iteration may be used as new starting values. 
 
Lack of Fit statistic (Q) =       14.572 
 
         P-value (PVALUE) =       0.9761 

garch 
Computes estimates of the parameters of a GARCH(p,q) model. 

Synopsis 
#include <imsls.h> 
float *imsls_f_garch (int p, int q, int m, float y[], float xguess[], 

…, 0) 

The type double function is imsls_d_garch. 

Required Arguments 

int p   (Input) 
Number of GARCH parameters. 

int q   (Input) 
Number of ARCH parameters. 
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int m   (Input) 
Length of the observed time series. 

 float y[]   (Input) 
Array of length m containing the observed time series data. 

float xguess[]   (Input) 
Array of length p + q + 1 containing the initial values for the 
parameter array x[]. 

Return Value 
Pointer to the parameter array x[] of length p + q + 1 containing the estimated 
values of sigma squared, followed by the q ARCH parameters, and the p GARCH 
parameters. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_garch (int p, int q, int m, float y[], float xguess[], 

IMSLS_MAX_SIGMA,   float  max_sigma, 

 IMSLS_A,   float  *a, 

 IMSLS_AIC,   float  *aic, 

 IMSLS_VAR,   float  *var, 
 IMSLS_VAR_USER,   float  var[], 
 IMSLS_VAR_COL_DIM,   int  var_col_dim, 

 IMSLS_RETURN_USER,   float  x[], 
 0) 

Optional Arguments 
IMSLS_MAX_SIGMA,   float  max_sigma,  (Input) 

Value of the upperbound on the first element (sigma) of the array of returned 
estimated coefficients.  Default = 10. 

IMSLS_A,   float  *a,  (Output) 
Value of Log-likelihood function evaluated at the estimated parameter 
array x. 

IMSLS_AIC,   float  *aic,  (Output) 
Value of Akaike Information Criterion evaluated at the estimated 
parameter array x. 

IMSLS_VAR,   float  *var,  (Output) 
Array of size (p+q+1)x(p+q+1) containing the variance-covariance 
matrix. 

IMSLS_VAR_USER,   float  var[],  (Output) 
Storage for array var is provided by the user.   
See IMSLS_VAR. 
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IMSLS_VAR_COL_DIM,   int  var_col_dim,  (Input) 
Column dimension (p+q+1)of the variance-covariance matrix. 

IMSLS_RETURN_USER,   float  x[],  (Output)  
If specified, x returns an array of length p + q + 1 containing the 
estimated values of sigma squared, followed by the q ARCH parameters, and 
the p GARCH parameters.  Storage for estimated parameter array x is 
provided by the user. 

Description 

The Generalized Autoregressive Conditional Heteroskedastic (GARCH) model 
for a time series � is defined as �tw

2 2 2 2

1 1

,

t t t
p q

t i t i
i i

w z

w

�

� � � � �
� �

� �

�
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where zt’s are independent and identically distributed standard normal random 
variables,  

� �

2

1

2 1 1

0 , 0, 0 and 

1.

i i

p q p q

i i
i i i

x i

� � �
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max_sigma
 

The above model is denoted as GARCH(p,q).   The �i and �i  coeffecients will be 
referred to as GARCH and ARCH coefficents, respectively.   When �i = 0,  
i = 1,2,…,p, the above model reduces to ARCH(q) which was proposed by Engle 
(1982). The nonnegativity conditions on the parameters imply a nonnegative 
variance and the condition on the sum of the �i’s and � i’s is required for wide 
sense stationarity. 

In the empirical analysis of observed data, GARCH(1,1) or GARCH(1,2) models 
have often found to appropriately account for conditional heteroskedasticity 
(Palm 1996).  This finding is similar to linear time series analysis based on 
ARMA models.  

It is important to notice that for the above models positive and negative past 
values have a symmetric impact on the conditional variance. In practice, many 
series may have strong asymmetric influence on the conditional variance.  To take 
into account this phenomena, Nelson (1991) put forward Exponential GARCH 
(EGARCH). Lai (1998) proposed and studied some properties of a general class 
of models that extended linear relationship of the conditional variance in ARCH 
and GARCH into nonlinear fashion.     

The maximum likelihood method is used in estimating the parameters in 
GARCH(p,q). The log-likelihood of the model for the observed series {wt} with 
length m = nobs is 
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Thus log(L) is maximized subject to the constraints on the αi, �i, and �. 

In this model, if q = 0, the GARCH model is singular since the estimated Hessian 
matrix is singular. 

The initial values of the parameter vector x entered in vector xguess must satisfy 
certain constraints.  The first element of xguess refers to �2 and must be greater 
than zero and less than max_sigma. The remaining p+q initial values must each 
be greater than or equal to zero and sum to a value less than one. 

To guarantee stationarity in model fitting,  
1

2 1 1
( ) 1

p q p q

i i
i i i

x i � �
� �

� � �

� �� � �  

is checked internally. The initial values should selected from values between zero 
and one.  

AIC is computed by  

     - 2 log (L) + 2(p+q+1), 

where log(L) is the value of the log-likelihood function. 

Statistical inferences can be performed outside the routine GARCH based on the 
output of the log-likelihood function (A), the Akaike Information Criterion 
(AIC), and the variance-covariance matrix (VAR). 

Example 
 The data for this example are generated to follow a GARCH(p,q) process by 

using a random number generation function sgarch .  The data set is analyzed 
and estimates of sigma, the ARCH parameters, and the GARCH parameters are 
returned.  The values of the Log-likelihood function and the Akaike Information 
Criterion are returned from the optional arguments IMSLS_A and IMSLS_AIC. 

 
#include <imsls.h> 
#include <math.h> 
 
static void  sgarch (int p, int q, int m, float x[], 
                float y[], float z[], float y0[], float sigma[]); 
#define M 1000 
#define N (P + Q + 1) 
#define P 2 
#define Q 1 
 
void main () 
{ 
    int        n, p, q, m; 
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    float      a, aic, wk1[M + 1000], wk2[M + 1000], 
                wk3[M + 1000], x[N], xguess[N],  y[M]; 
    float      *result; 
 
    imsls_random_seed_set (182198625); 
    m = M; 
    p = P; 
    q = Q; 
    n = p+q+1; 
    x[0] = 1.3; 
    x[1] = .2; 
    x[2] = .3; 
    x[3] = .4; 
    xguess[0] = 1.0; 
    xguess[1] = .1; 
    xguess[2] = .2; 
    xguess[3] = .3; 
    sgarch (p, q, m, x, y, wk1, wk2, wk3); 
    result = imsls_f_garch(p, q, m, y, xguess, 
   IMSLS_A, &a, 
   IMSLS_AIC, &aic,  
   0); 
    printf("Sigma estimate is\t%11.4f\n", result[0]); 
    printf("ARCH(1) estimate is\t%11.4f\n", result[1]); 
    printf("GARCH(1) estimate is\t%11.4f\n", result[2]); 
    printf("GARCH(2) estimate is\t%11.4f\n", result[3]); 
    printf("\nLog-likelihood function value is\t%11.4f\n", a); 
    printf("Akaike Information Criterion value is\t%11.4f\n", aic); 
    return; 
} 
 
static void sgarch (int p, int q, int m, float x[], 
                float y[], float z[], float y0[], float sigma[]) 
{ 
    int        i, j, l; 
    float      s1, s2, s3; 
 
   imsls_f_random_normal ( m + 1000, IMSLS_RETURN_USER, z, 0); 
 
    l = imsls_i_max (p, q); 
    l = imsls_i_max (l, 1); 
    for (i = 0; i < l; i++) y0[i] = z[i] * x[0]; 
 
    /* COMPUTE THE INITIAL VALUE OF SIGMA */ 
    s3 = 0.0; 
    if (imsls_i_max (p, q) >= 1) { 
 for (i = 1; i < (p + q + 1); i++) s3 += x[i]; 
    } 
    for (i = 0; i < l; i++) sigma[i] = x[0] / (1.0 - s3); 
 
    for (i = l; i < (m + 1000); i++) { 
 s1 = 0.0; 
 s2 = 0.0; 
 if (q >= 1) { 
     for (j = 0; j < q; j++) 
       s1 += x[j + 1] * y0[i - j - 1] * y0[i - j - 1]; 
 } 
 if (p >= 1) { 
     for (j = 0; j < p; j++)  



 

 
 

Chapter 8: Time Series and Forecasting kalman � 571 

 

 

 

       s2 += x[q + 1 + j] * sigma[i - j - 1]; 
 } 
 sigma[i] = x[0] + s1 + s2; 
 y0[i] = z[i] * sqrt (sigma[i]); 
    } 
    /* 
     * DISCARD THE FIRST 1000 SIMULATED OBSERVATIONS 
     */ 
    for (i = 0; i < m; i++) y[i] = y0[1000 + i]; 
    return; 
}    /* end of function */ 
 
Output 
Sigma estimate is 1.6480 
ARCH(1) estimate is 0.2427 
GARCH(1) estimate is 0.3175 
GARCH(2) estimate is 0.3335 
 
Log-likelihood function value is -2707.0903 
Akaike Information Criterion value is 5422.1807 
 

kalman 
Performs Kalman filtering and evaluates the likelihood function for the state-
space model. 

Synopsis 
#include <imsls.h> 
void imsls_f_kalman (int nb, float nb[], float covb[],  int *n,  

float *ss,  float *alndet, ..., 0) 

The type double function is imsls_d_kalman. 

Required Arguments 

int nb   (Input) 
Number of elements in the state vector. 

float b[]   (Input/Output) 
Array of length nb containing the estimated state vector. The input is the 
estimated state vector at time k given the observations through time  
k � 1. The output is the estimated state vector at time k + 1 given the 
observations through time k. On the first call to imsls_f_kalman, the 
input b must be the prior mean of the state vector at time 1. 

float covb[]   (Input/Output) 
Array of size nb  by nb  such that covb* �2 is the mean squared error 
matrix for b. 
Before the first call to imsls_f_kalman, covb * �2 must equal the 
variance-covariance matrix of the state vector. 
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int *n   (Input/Output) 
Pointer to the rank of the variance-covariance matrix for all the 
observations. n must be initialized to zero before the first call to 
imsls_f_kalman. In the usual case when the variance-covariance 
matrix is nonsingular, n equals the sum of the ny’s from the invocations 
to imsls_f_kalman. See optional argument IMSLS_UPDATE below for 
the definition of ny. 

float *ss   (Input/Output) 
Pointer to the generalized sum of squares. 
ss must be initialized to zero before the first call to imsls_f_kalman. 

The estimate of �2 is given by ss
n

. 

float *alndet   (Input/Output) 
Pointer to the natural log of the product of the nonzero eigenvalues of  
P where P * �2 is the variance-covariance matrix of the observations.   
Although alndet is computed, imsls_f_kalman avoids the explicit 
computation of P. alndet must be initialized to zero before the first 
call to  imsls_f_kalman. In the usual case when P is nonsingular, 
alndet is the natural log of the determinant of P. 

Synopsis with Optional Arguments 
#include <imsls.h> 
voidt *imsls_f_random_sample (int nb, float nb[], float covb[],  

 int *n,  float *ss, float *alndet,  
IMSLS_UPDATE, int ny, float *y, float *z, float *r, 
IMSLS_Z_COL_DIM, int z_col_dim, 
IMSLS_R_COL_DIM, int r_col_dim, 
IMSLS_T, float *t, 
IMSLS_T_COL_DIM, int t_col_dim, 
IMSLS_Q, float *q, 
IMSLS_Q_COL_DIM, int t_col_dim, 
IMSLS_TOLERANCE, float tolerance, 
IMSLS_V, float **v, 
IMSLS_V_USER, float v[], 
IMSLS_COVV, float **v, 
IMSLS_COVV_USER, float v[], 
 0) 

Optional Arguments 
IMSLS_UPDATE, int ny,  float *y,  float *z,  float *r   (Input) 

Perform computation of the update equations.  
ny: Number of observations for current update. 

 y: Array of length ny containing the observations. 
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 z: ny by nb array containing the matrix relating the observations to the 
state vector in the observation equation. 

 r: ny by ny array containing the matrix such that r * �2 is the variance-
covariance matrix of errors in the observation equation.  
�2 is a positive unknown scalar. Only elements in the upper triangle of r 
are referenced. 

IMSLS_Z_COL_DIM, int z_col_dim   (Input) 
Column dimension of the matrix z. 
Default: z_col_dim = nb  

IMSLS_R_COL_DIM, int r_col_dim   (Input) 
Column dimension of the matrix r. 
Default: r_col_dim = ny  

IMSLS_T, float *t   (Input) 
nb by nb transition matrix in the state equation  
Default: t = identity matrix  

IMSLS_T_COL_DIM, int r_col_dim   (Input) 
Column dimension of the matrix t. 
Default: t_col_dim = nb  

IMSLS_Q, float *q   (Input) 
nb by nb matrix such that q * �2 is the variance-covariance matrix of 
the error vector in the state equation.   
Default: There is no error term in the state equation. 

IMSLS_Q_COL_DIM, int q_col_dim   (Input) 
Column dimension of the matrix q. 
Default: q_col_dim = nb  

IMSLS_TOLERANCE, float tolerance   (Input) 
Tolerance used in determining linear dependence.    
Default: tolerance = 100.0*imsls_f_machine(4)  

IMSLS_V, float **v   (Output) 
Address to a pointer v to an array of length ny containing the one-step-
ahead prediction error. 

IMSLS_V_USER, float v[]   (Output) 
Storage for v is provided by the user. See IMSLS_V. 

IMSLS_COVV, float **covv   (Output) 
The address to a pointer of size ny by ny containing a matrix such that 
covv * �2 is the variance-covariance matrix of v. 

IMSLS_COVV_USER, float covv[]   (Output) 
Storage for covv is provided by the user. See IMSLS_COVV. 
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Description 
Routine imsls_f_kalman is based on a recursive algorithm given by Kalman 
(1960), which has come to be known as the Kalman filter. The underlying model 
is known as the state-space model. The model is specified stage by stage where 
the stages generally correspond to time points at which the observations become 
available. The routine imsls_f_kalman avoids many of the computations and 
storage requirements that would be necessary if one were to process all the data at 
the end of each stage in order to estimate the state vector. This is accomplished 
by using previous computations and retaining in storage only those items essential 
for processing of future observations. 

The notation used here follows that of Sallas and Harville (1981). Let yk (input in 
y using optional argument IMSLS_UPDATE) be the nk × 1 vector of observations 
that become available at time k. The subscript k is used here rather than t, which 
is more customary in time series, to emphasize that the model is expressed in 
stages k = 1, 2, � and that these stages need not correspond to equally spaced 
time points. In fact, they need not correspond to time points of any kind. The 
observation equation for the state-space model is 

yk = Zkbk + ek k = 1, 2, � 

Here, Zk (input in z using optional argument IMSLS_UPDATE) is an nk × q known 
matrix and bk is the q × 1 state vector. The state vector bk is allowed to change 
with time in accordance with the state equation 

bk�� = Tk��bk + wk�� k = 1, 2, � 

starting with b� = �� + w�. 

The change in the state vector from time k to k + 1 is explained in part by the 
transition matrix Tk�1 (the identity matrix by default, or optionally input using 
IMSLS_T), which is assumed known. It is assumed that the q-dimensional wks  
(k = 1, 2,…) are independently distributed multivariate normal with mean vector 
0 and variance-covariance matrix �2Qk, that the nk-dimensional eks (k = 1, 2,…) 
are independently distributed multivariate normal with mean vector 0 and 
variance-covariance matrix �2Rk, and that the wks and eks are independent of 
each other. Here, ��is the mean of b� and is assumed known, �2 is an unknown 
positive scalar. Qk+1(input in Q) and Rk (input in R) are assumed known. 

Denote the estimator of the realization of the state vector bk given the 
observations y�, y�, …, yj by  

|
ˆ

k j�  

By definition, the mean squared error matrix for  

|
ˆ

k j�  

is 
2 ˆ ˆ( )( T

k kk j k j k jC E b b� � �� � � )  
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At the time of the k-th invocation, we have 

1
ˆ

k k�
�

 

and  

Ck|k��, which were computed from the (k�1)-st invocation, input in b and covb, 
respectively. During the k-th invocation, routine imsls_f_kalman computes the 
filtered estimate 

|
ˆ

k k�  

along with Ck|k. These quantities are given by the update equations: 
1
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where 

1
ˆ

k k k k kv y Z �
�

� �  

and where  

1
T

k k k k k kH R Z C Z
�

� �  

Here, vk (stored in v) is the one-step-ahead prediction error, and �2Hk is the 
variance-covariance matrix for vk. Hk is stored in covv. The “start-up values” 
needed on the first invocation of imsls_f_kalman are 

11 0�̂ ��  

and C��� = Q� input via b and covb, respectively. Computations for the k-th 
invocation are completed by imsls_f_kalman computing the one-step-ahead 
estimate  

1
ˆ

k k�
�

 

along with Ck��|k given by the prediction equations: 
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1 11
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If both the filtered estimates and one-step-ahead estimates are needed by the user 
at each time point, imsls_f_kalman can be invoked twice for each time point—
first without IMSLS_T and IMSLS_Q  to produce 

ˆ
k k�  

and Ck|k, and second without IMSLS_UPDATE to produce 
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and Ck��|k (Without IMSLS_T and IMSLS_Q, the prediction equations are 
skipped. Without IMSLS_UPDATE, the update equations are skipped.).  

Often, one desires the estimate of the state vector more than one-step-ahead, i.e., 
an estimate of 

ˆ
k j�  

is needed where k > j + 1. At time j, imsls_f_kalman is invoked with 
IMSLS_UPDATE to compute 

1
ˆ

j j�
�

 

Subsequent invocations of imsls_f_kalman without IMSLS_UPDATE can 
compute 

2 3
ˆ ˆ ˆ, , ...,j j j j k� �
� � � j  

Computations for 

ˆ
k j�  

and Ck�j assume the variance-covariance matrices of the errors in the observation 
equation and state equation are known up to an unknown positive scalar 
multiplier, �2. The maximum likelihood estimate of �2 based on the observations 
y�, y�, …, ym, is given by 

2ˆ /SS N� �  

where 
1

1 1andm m
k k k k kN n SS v H �

� �
� � � �

T
kv  

N and SS are the input/output arguments n and ss. 

If �2 is known, the Rks and Qks can be input as the variance-covariance matrices 
exactly. The earlier discussion is then simplified by letting �2 = 1.  

In practice, the matrices Tk, Qk, and Rk are generally not completely known. They 
may be known functions of an unknown parameter vector �. In this case, 
imsls_f_kalman can be used in conjunction with an optimization program (see 
routine imsl_f_min_uncon_multivar, IMSL C/Math/Library, Chapter 8,  
“Optimization”) to obtain a maximum likelihood estimate of �. The natural 
logarithm of the likelihood function for y�, y�, …, ym differs by no more than an 
additive constant from 

2 2
1 2
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1 1
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(Harvey 1981, page 14, equation 2.21).  

Here, 

=1 ln[det( )]m
k kH�  

(stored in alndet) is the natural logarithm of the determinant of V where �2V is 
the variance-covariance matrix of the observations.  

Minimization of �2L(�, �2; y�, y�, �, ym) over all � and �2 produces maximum 
likelihood estimates. Equivalently, minimization of �2Lc(�; y�, y�, �, ym) where 

1 2
1

1 1( ; , , , ) ln ln[det( )]
2 2

m

c m
k

SSL y y y N H
N

�

�

� �
� � �� �

� �
�� k  

produces maximum likelihood estimates  
2ˆ ˆand /SS N� � �  

The minimization of �2Lc(�; y�, y�, �, ym) instead of �2L(�, �2; y�, y�, �, ym), 
reduces the dimension of the minimization problem by one. The two optimization 
problems are equivalent since  

2ˆ ( ) ( ) /SS N� � ��  

minimizes �2L(�, �2; y�, y�, �, ym) for all �, consequently,  
2ˆ ( )� �  

can be substituted for �2 in L(�, �2; y�, y�, �, ym) to give a function that differs 
by no more than an additive constant from Lc(�; y�, y�, �, ym).  

The earlier discussion assumed Hk to be nonsingular. If Hk is singular, a 
modification for singular distributions described by Rao (1973, pages 527–528) is 
used. The necessary changes in the preceding discussion are as follows: 
1. Replace  

1
kH �  

 by a generalized inverse. 
2. Replace det(Hk) by the product of the nonzero eigenvalues of Hk.  
3. Replace N by  

� �1
rankm

kk
H

�
�  

Maximum likelihood estimation of parameters in the Kalman filter is discussed by 
Sallas and Harville (1988) and Harvey (1981, pages 111–113). 

Example 1 
Routine imsls_f_kalman is used to compute the filtered estimates and one-
step-ahead estimates for a scalar problem discussed by Harvey (1981, pages  
116–117). The observation equation and state equation are given by 
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where the eks are identically and independently distributed normal with mean 0 
and variance �2, the wks are identically and independently distributed normal 
with mean 0 and variance 4�2, and b�is distributed normal with mean 4 and 
variance 16�2. Two invocations of imsls_f_kalman are needed for each time 
point in order to compute the filtered estimate and the one-step-ahead estimate. 
The first invocation does not use the optional arguments IMSLS_T and IMSLS_Q 
so that the prediction equations are skipped in the computations. The update 
equations are skipped in the computations in the second invocation. 

This example also computes the one-step-ahead prediction errors. Harvey (1981, 
page 117) contains a misprint for the value v� that he gives as 1.197. The correct 
value of v� = 1.003 is computed by imsls_f_kalman. 

.  
#include <stdio.h> 
#include <imsls.h> 
 
#define NB 1 
#define NOBS 4 
#define NY 1 
 
void main() 
{ 
    int         nb = NB, nobs = NOBS, ny = NY; 
    int         ldcovb, ldcovv, ldq, ldr, ldt, ldz; 
    int         i, iq, it, n, nout; 
    float       alndet, b[NB], covb[NB][NB], covv[NY][NY],  
                q[NB][NB], r[NY][NY], ss, 
                t[NB][NB], tol, v[NY], y[NY], z[NY][NB]; 
    float       ydata[] = {4.4, 4.0, 3.5, 4.6}; 
 
    z[0][0] = 1.0; 
    r[0][0] = 1.0; 
    q[0][0] = 4.0; 
    t[0][0] = 1.0; 
    b[0] = 4.0; 
    covb[0][0] = 16.0; 
 
    /* Initialize arguments for initial call to imsls_f_kalman. */ 
    n = 0; 
    ss = 0.0; 
    alndet = 0.0; 
    printf("k/j      b       covb n     ss      alndet     v       covv\n"); 
 
    for (i = 0; i < nobs; i++) { 
      /* Update */ 
      y[0] = ydata[i]; 
      imsls_f_kalman(nb, b, (float*)covb, &n, &ss, &alndet,  
       IMSLS_UPDATE, ny, y, z, r,  
       IMSLS_V_USER, v,  
       IMSLS_COVV_USER, covv,  
       0); 
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      printf("%d/%d %8.3f %8.3f %d %8.3f %8.3f %8.3f %8.3f\n",  
      i, i, b[0], covb[0][0], n, ss, alndet, v[0], covv[0][0]); 
 
      /* Prediction */ 
      imsls_f_kalman(nb, b, (float*)covb, &n, &ss, &alndet, 
       IMSLS_T, t, 
       IMSLS_Q, q, 
       0); 
       
      printf("%d/%d %8.3f %8.3f %d %8.3f %8.3f %8.3f %8.3f\n",  
      i+1, i, b[0], covb[0][0], n, ss, alndet, v[0], covv[0][0]); 
    } 
 
} 

Output 
k/j      b       covb n     ss      alndet     v       covv 
0/0    4.376    0.941 1    0.009    2.833    0.400   17.000 
1/0    4.376    4.941 1    0.009    2.833    0.400   17.000 
1/1    4.063    0.832 2    0.033    4.615   -0.376    5.941 
2/1    4.063    4.832 2    0.033    4.615   -0.376    5.941 
2/2    3.597    0.829 3    0.088    6.378   -0.563    5.832 
3/2    3.597    4.829 3    0.088    6.378   -0.563    5.832 
3/3    4.428    0.828 4    0.260    8.141    1.003    5.829 
4/3    4.428    4.828 4    0.260    8.141    1.003    5.829 

 

Example 2 
Routine imsls_f_kalman is used with routine 
imsl_f_min_uncon_multivar, (see IMSL C/Math/Library, Chapter 8, 
“Optimization”) to find a maximum likelihood estimate of the parameter � in a 
MA(1) time series represented by yk = 	k � �	k��. Routine 
imsls_f_random_arma  (see IMSL C/Stat/Library, Chapter 12, “Random 
Number Generation”) is used to generate 200 random observations from an 
MA(1) time series with � = 0.5 and �2 = 1. 

The MA(1) time series is cast as a state-space model of the following form (see 
Harvey 1981, pages 103–104, 112): 

� �

1

1 0

0 1
0 0

k k

k k

y b

b b
�

�

� �
� �� �
� �

kw
 

where the two-dimensional wks are independently distributed bivariate normal 
with mean 0 and variance �2 Qk and 
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The warning error that is printed as part of the output is not serious and indicates 
that imsl_f_min_uncon_multivar is generally used for multi-parameter 
minimization. 

 
#include <stdio.h> 
#include <math.h> 
#include <imsls.h> 
 
#define NOBS 200 
#define NTHETA 1 
#define NB 2 
#define NY 1 
 
float fcn(int ntheta, float theta[]); 
float *ydata; 
void main () 
{ 
    int  lagma[1]; 
    float pma[1]; 
    float *theta;  
 
    imsls_random_seed_set(123457); 
    pma[0] = 0.5; 
    lagma[0] = 1; 
    ydata = imsls_f_random_arma(200, 0, NULL, 1, pma,  

IMSLS_ACCEPT_REJECT_METHOD, 
IMSLS_NONZERO_MALAGS, lagma, 

    0); 
 
    theta = imsl_f_min_uncon_multivar(fcn, NTHETA, 0); 
 
    printf("* * * Final Estimate for THETA * * *\n"); 
    printf("Maximum likelihood estimate, THETA = %f\n", theta[0]); 
 
} 
 
float fcn(int ntheta, float theta[]) 
{ 
  int i, n; 
  float res, ss, alndet; 
  float t[] = {0.0, 1.0, 0.0, 0.0}; 
  float z[] = {1.0, 0.0}; 
  float q[NB][NB], r[NY][NY], b[NB], covb[NB][NB], y[NY]; 
  if (fabs(theta[0]) > 1.0) { 
    res = 1.0e10; 
  } else { 
    q[0][0] = 1.0; 
    q[0][1] = -theta[0]; 
    q[1][0] = -theta[0]; 
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    q[1][1] = theta[0]*theta[0]; 
     
    r[0][0] = 0.0; 
     
    b[0] = 0.0; 
    b[1] = 0.0; 
     
    covb[0][0] = 1.0 + theta[0]*theta[0]; 
    covb[0][1] = -theta[0]; 
    covb[1][0] = -theta[0]; 
    covb[1][1] = theta[0]*theta[0]; 
     
    n = 0; 
    ss = 0.0; 
    alndet = 0.0; 
     
    for (i = 0; i<NOBS; i++) { 
      y[0] = ydata[i]; 
      imsls_f_kalman(NB, b, (float*)covb, &n, &ss, &alndet,  
       IMSLS_UPDATE, NY, y, z, r,  
       IMSLS_Q, q,  
       IMSLS_T, t,  
       0); 
    } 
    res = n*log(ss/n) + alndet; 
  } 
  return(res); 
} 

Output 
 
*** WARNING_IMMEDIATE Error from imsl_f_min_uncon_multivar.  This routine 
***          may be inefficient for a problem of size "n" = 1. 
 
 
*** WARNING_IMMEDIATE Error from imsl_f_min_uncon_multivar.  The last global 
***          step failed to locate a lower point than the current X value.  
***          The current X may be an approximate local minimizer and no more 
***          accuracy is possible or the step tolerance may be too large 
***          where "step_tol" = 2.422181e-05 is given. 
 
* * * Final Estimate for THETA * * * 
Maximum likelihood estimate, THETA = 0.453256 
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Chapter 9: Multivariate Analysis

Routines 
Hierarchical Cluster Analysis 

Computes matrix of dissimilarities or similarities ........dissimilarities 586 
Hierarchical cluster analysis .............................cluster_hierarchical 590 
Retrieves cluster numbers in hierarchical  
cluster analysis........................................................ cluster_number 594 

K-means Cluster Analysis 
Performs a K-means (centroid) cluster analysis ...cluster_k_means 598 

Principal Component Analysis 
Computes principal components ..................principal_components 603 

Factor Analysis 
Extracts factor-loading estimates............................. factor_analysis 609 
Performs discriminant function analysis .........discriminant analysis 628 

Usage Notes 
Cluster Analysis 
Function imsls_f_cluster_k_means performs a K-means cluster analysis. 
Basic K-means clustering attempts to find a clustering that minimizes the within-
cluster sums-of-squares. In this method of clustering the data, matrix X is grouped 
so that each observation (row in X) is assigned to one of a fixed number, K, of 
clusters. The sum of the squared difference of each observation about its assigned 
cluster’s mean is used as the criterion for assignment. In the basic algorithm, 
observations are transferred from one cluster or another when doing so decreases 
the within-cluster sums-of-squared differences. When no transfer occurs in a pass 
through the entire data set, the algorithm stops. Function 
imsls_f_cluster_k_means is one implementation of the basic algorithm. 

The usual course of events in K-means cluster analysis is to use 
imsls_f_cluster_k_means to obtain the optimal clustering. The clustering is 
then evaluated by functions described in Chapter 1, “Basic Statistics,” and/or 
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other chapters in this manual. Often, K-means clustering with more than one value 
of K is performed, and the value of K that best fits the data is used. 

Clustering can be performed either on observations or variables. The discussion 
of the function imsls_f_cluster_k_means assumes the clustering is to be 
performed on the observations, which correspond to the rows of the input  
data matrix. If variables, rather than observations, are to be clustered, the  
data matrix should first be transposed. In the documentation for 
imsls_f_cluster_k_means, the words “observation” and “variable” are 
interchangeable. 

Principal Components 
The idea in principal components is to find a small number of linear combinations 
of the original variables that maximize the variance accounted for in the original 
data. This amounts to an eigensystem analysis of the covariance (or correlation) 
matrix. In addition to the eigensystem analysis, 
imsls_f_principal_components computes standard errors for the 
eigenvalues. Correlations of the original variables with the principal component 
scores also are computed. 

Factor Analysis 
Factor analysis and principal component analysis, while quite different in 
assumptions, often serve the same ends. Unlike principal components in which 
linear combinations yielding the highest possible variances are obtained, factor 
analysis generally obtains linear combinations of the observed variables 
according to a model relating the observed variable to hypothesized underlying 
factors, plus a random error term called the unique error or uniqueness. In factor 
analysis, the unique errors associated with each variable are usually assumed to 
be independent of the factors. Additionally, in the common factor model, the 
unique errors are assumed to be mutually independent. The factor analysis model 
is expressed in the following equation: 

x � � = �f + e 

where x is the p vector of observed values, � is the p vector of variable means,  
� is the p � k matrix of factor loadings, f is the k vector of hypothesized 
underlying random factors, e is the p vector of hypothesized unique random 
errors, p is the number of variables in the observed variables, and k is the number 
of factors. 

Because much of the computation in factor analysis was originally done by hand 
or was expensive on early computers, quick (but dirty) algorithms that made the 
calculations possible were developed. One result is the many factor extraction 
methods available today. Generally speaking, in the exploratory or model 
building phase of a factor analysis, a method of factor extraction that is not 
computationally intensive (such as principal components, principal factor, or 
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image analysis) is used. If desired, a computationally intensive method is then 
used to obtain the final factors. 

In exploratory factor analysis, the unrotated factor loadings obtained from the 
factor extraction are generally transformed (rotated) to simplify the interpretation 
of the factors. Rotation is possible because of the overparameterization in the 
factor analysis model. The method used for rotation may result in factors that are 
independent (orthogonal rotations) or correlated (oblique rotations). Prior 
information may be available (or hypothesized) in which case a Procrustes 
rotation could be used. When no prior information is available, an analytic 
rotation can be performed.  

The steps generally used in a factor analysis are summarized as follows: 

Steps in a Factor Analysis 
Step 1 

Calculate Covariance (Correlation) Matrix 
IMSL routine imsls_f_covariances  

(see Chapter 3, “Correlation and Covariance”) 

Step 2 
Initial Factor Extraction 

imsls_f_factor_analysis, page 609 

Step 3 

Factor Rotation  
using imsls_f_factor_analysis’ optional arguments 

Orthogonal Oblique 
No Prior Info.    
IMSLS_ORTHOMAX_ROTATION,  page 610 

No Prior Info. 
IMSLS_OBLIQUE_PROMAX_ROTATION,  
page 610 
IMSLS_DIRECT_OBLIMIN_ROTATION,  
page 610 
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION, 
page 610 

Prior Info. 
IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION, 
page 610 

Prior Info. 
IMSLS_OBLIQUE_PROCRUSTES_ROTATION,  
page 610 
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       Step 4 
Factor Structure and Variance 
imsls_f_factor_analysis 

optional argument 
IMSLS_FACTOR_STRUCTURE, 

page 610 

dissimilarities 
Computes a matrix of dissimilarities (or similarities) between the columns (or 
rows) of a matrix. 

Synopsis 
#include <imsls.h> 

float *imsls_f_dissimilarities (int nrow, int ncol, float *x, …, 0) 

The type double function is imsls_d_dissimilarities. 

Required Arguments 
int nrow  (Input) 

Number of rows in the matrix. 

int ncol  (Input) 
Number of columns in the matrix. 

float *x  (Input) 
Array of size nrow by ncol containing the matrix. 

Return Value 
An array of size m by m containing the computed dissimilarities or similarities, 
where m = nrow if optional argument IMSLS_ROWS is used, and m = ncol 
otherwise. 

Synopsis with Optional Arugments 
#include <imsls.h> 
float *imsls_f_dissimilarities (int nrow, int ncol, float *x, 

IMSLS_ROWS, or IMSLS_COLUMNS, 
IMSLS_INDEX, int ndstm,  int ind[], 
IMSLS_METHOD, int imeth, 
IMSLS_SCALE, int iscale, 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_RETURN_USER, float dist[], 
0) 
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Optional Arguments 
IMSLS_ROWS,  

or 

IMSLS_COLUMNS, (Input) 
Exactly one of these options can be present to indicate whether distances 
are computed between rows or columns of x. 
Default: Distances are computed between rows. 

IMSLS_INDEX, int ndstm,  int ind[],  (Input) 
Argument ind is an array of length ndstm containing the indices of the 
rows (columns if IMSLS_ROWS is used) to be used in computing the 
distance measure. 
Default:  All rows(columns) are used. 

IMSLS_METHOD, int imeth  (Input) 
Method to be used in computing the dissimilarities or similarities.   
Default: imeth = 0. 

imeth Method 

0 Euclidean distance (L� norm) 

1 Sum of the absolute differences (L� norm) 

2 Maximum difference (L� norm) 

3 Mahalanobis distance 

4 Absolute value of the cosine of the angle 
between the vectors 

5 Angle in radians (0, �) between the lines 
through the origin defined by the vectors 

6 Correlation coefficient 

7 Absolute value of the correlation 
coefficient 

8 Number of exact matches  

See the  Description section for a more detailed description of each measure. 

IMSLS_SCALE, int iscale  (Input) 
Scaling option.   (Input)  
iscale is not used for methods 3 through 8.  
Default: iscale = 0. 

iscale Scaling Performed 

0 No scaling is performed. 

1 Scale each column (row, if IMSLS_ROWS is 
used) by the standard deviation of the 
column (row). 
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iscale Scaling Performed 

2 Scale each column (row, if IMSLS_ROWS is 
used) by the range of the column (row). 

IMSLS_X_COL_DIM, int x_col_dim  (Input) 
Column dimension of x. 
Default: x_col_dim = ncol. 

IMSLS_RETURN_USER, float dist[]  (Output) 
User allocated array of size m by m containing the computed 
dissimilarities or similarities, where m = nrow if IMSLS_ROWS is used, 
and m = ncol otherwise.  

Description 
Function imsls_f_dissimilarities computes an upper triangular matrix 
(excluding the diagonal) of dissimilarities (or similarities) between the columns or 
rows of a matrix. Nine different distance measures can be computed. For the first 
three measures, three different scaling options can be employed. Output from 
imsls_f_dissimilarities is generally used as input to clustering or 
multidimensional scaling functions. 

The following discussion assumes that the distance measure is being computed 
between the columns of the matrix, i.e., that IMSLS_COLUMNS is used. If 
distances between the rows of the matrix are desired, use optional argument 
IMSLS_ROWS. 

For imeth = 0 to 2, each row of x is first scaled according to the value of 
iscale. The scaling parameters are obtained from the values in the row scaled as 
either the standard deviation of the row or the row range; the standard deviation is 
computed from the unbiased estimate of the variance. If iscale is 0, no scaling 
is performed, and the parameters in the following discussion are all 1.0. Once the 
scaling value (if any) has been computed, the distance between column i and 
column j is computed via the difference vector zk = (xk � yk)/sk, i = 1, �, ndstm, 
where xk denotes the k-th element in the i-th column, and yk denotes the 
corresponding element in the j-th column. For given zi, the metrics 0 to 2 are 
defined as: 

imeth Metric 

0     � �ndstm 2
1 ii

z
�

�  Euclidean distance 

1       ndstm

1 ii
z

�
�  L1 norm 

2     max i iz  L
�
 norm 
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Distance measures corresponding to imeth = 3 to 8 do not allow for scaling. 
These measures are defined via the column vectors X = (xi), Y = (yi), and  
Z = (xi � yi) as follows: 

iscale Scaling Performed 

3 1ˆZ Z�

�� �  Mahalanobis distance, where �  
is the usual unbiased sample estimate of the 
covariance matrix of the rows. 

ˆ

4 � � � �cos /T T TX Y X X Y Y� � �  the dot 
product of X and Y divided by the length of 
X times the length of Y . 

5 �, where � is defined in 4. 

6 � = the usual (centered) estimate of the 
correlation between X and Y. 

7 The absolute value of � (where � is defined 
in 6). 

8 The number of times xi = yi, where xi and yi 
are elements of X and Y. 

For the Mahalanobis distance, any variable used in computing the distance 
measure that is (numerically) linearly dependent upon the previous variables in 
the ind vector is omitted from the distance measure. 

Example 
The following example illustrates the use of imsls_f_dissimilarities for 
computing the Euclidean distance between the rows of a matrix. 

 
#include "imsls.h" 
 
void main() 
{ 
  int ncol=2, nrow = 4; 
  float x [4][2] = {1., 1.,  
       1., 0.,  
       1.,-1.,  
          1., 2.}; 
  float *dist; 
 
  dist = imsls_f_dissimilarities(nrow, ncol, (float*)x, 0); 
  imsls_f_write_matrix("dist", 4, 4, dist, 0); 
} 
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Output 
 
                      dist 
            1           2           3           4 
1           0           1           2           1 
2           0           0           1           2 
3           0           0           0           3 
4           0           0           0           0 
     

cluster_hierarchical 
Performs a hierarchical cluster analysis given a distance matrix. 

Synopsis  
#include <imsls.h> 
void imsls_f_cluster_hierarchical (int npt, float *dist, …, 0) 

The type double function is imsls_d_cluster_hierarchical. 

Required Arguments 
int npt  (Input) 

Number of data points to be clustered. 

float *dist  (Input/Ouput) 
An npt by npt symmetric matrix containing the distance (or similarity) 
matrix. 
dist is a symmetric matrix. On input, only the upper triangular part 
needs to be present. The function imsls_f_cluster_hierarchical 
saves the upper triangular part of dist in the lower triangle. On return 
from imsls_f_cluster_hierarchical, the upper triangular part of 
dist is restored, and the matrix is made symmetric.  

Synopsis with Optional Arugments 
#include <imsls.h> 
float *imsls_f_cluster_hierarchical (int npt, float *dist, 

IMSLS_METHOD, int imeth, 
IMSLS_TRANSFORMATION, int itrans, 
IMSLS_CLUSTERS, float **clevel,  int **iclson,  int **icrson, 
IMSLS_CLUSTERS_USER, float clevel[],  int iclson[],  int 
icrson[], 
0)  

Optional Arguments 
IMSLS_METHOD, int imeth  (Input) 

Option giving the clustering method to be used.   
Default: imeth = 0. 
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Imeth Method 

0 Single linkage (minimum distance) 

1 Complete linkage (maximum distance) 

2 Average distance within (average distance 
between objects within the merged cluster) 

3 Average distance between (average 
distance between objects in the two 
clusters) 

4 Ward’s method (minimize the within-
cluster sums of squares). For Ward’s 
method, the elements of dist are assumed 
to be Euclidean distances. 

IMSLS_TRANSFORMATION, int itrans  (Input) 
Option giving the method to be used for clustering.   
Default: itrans = 0. 

Imeth Method 

0 No transformation is required. The 
elements of dist are distances. 

1 Convert similarities to distances by 
multiplication by �1.0. 

2 Convert similarities (usually correlations) 
to distances by taking the reciprocal of the 
absolute value. 

IMSLS_CLUSTERS, float **clevel,  int **iclson,  int **icrson   (Output) 
Argument clevel is the address of an array of length npt � 1 
containing the level at which the clusters are joined.  clevel[k-1] 
contains the distance (or similarity) level at which cluster npt + k was 
formed. If the original data in dist was transformed via the optional 
argument IMSLS_TRANSFORMATION, the inverse transformation is 
applied to the values in clevel prior to exit from 
imsls_f_cluster_hierarchical. Argument iclson is the address 
of an array of length npt � 1 containing the left sons of each merged 
cluster.   Argument icrson is the address of an array of length npt � 1 
containing the right sons of each merged cluster.   Cluster  
npt + k is formed by merging clusters iclson[k-1] and icrson[k-1]. 

IMSLS_CLUSTERS_USER, float clevel[],  int iclson[],  int icrson[]   
(Output) 
Storage for arrays clevel, iclson, and icrson is provided by the 
user.  See IMSLS_CLUSTERS.    
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Description 
Function imsls_f_cluster_hierarchical conducts a hierarchical cluster 
analysis based upon the distance matrix, or by appropriate use of the 
IMSLS_TRANSFORMATION optional argument, based upon a similarity matrix. 
Only the upper triangular part of the matrix dist is required as input to 
imsls_f_cluster_hierarchical.  

Hierarchical clustering in imsls_f_cluster_hierarchical proceeds as 
follows. Initially, each data point is considered to be a cluster, numbered 1 to  
n = npt. 

1. If the data matrix contains similarities, they are converted to distances by 
the method specified by IMSLS_TRANSFORMATION. Set k = 1. 

2. A search is made of the distance matrix to find the two closest clusters. 
These clusters are merged to form a new cluster, numbered n + k. The 
cluster numbers of the two clusters joined at this stage are saved in 
icrson and iclson, and the distance measure between the two clusters 
is stored in clevel. 

3. Based upon the method of clustering, updating of the distance measure 
in the row and column of dist corresponding to the new cluster is 
performed. 

4. Set k = k + 1. If k < n, go to Step 2. 

The five methods differ primarily in how the distance matrix is updated after two 
clusters have been joined. The IMSLS_METHOD optional argument specifies how 
the distance of the cluster just merged with each of the remaining clusters will be 
updated. Function imsls_f_cluster_hierarchical allows five methods for 
computing the distances. To understand these measures, suppose in the following 
discussion that clusters “A” and “B” have just been joined to form cluster “Z”, 
and interest is in computing the distance of Z with another cluster called “C”. 

Z

dist

CBA  
Imeth Method 

0 Single linkage method. The distance from Z to C 
is the minimum of the distances (A to C, B to C). 

1 Complete linkage method. The distance from Z to 
C is the maximum of the distances (A to C, B to 
C). 

2 Average-distance-within-clusters method. The 
distance from Z to C is the average distance of all 
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Imeth Method 
objects that would be within the cluster formed 
by merging clusters Z and C. This average may 
be computed according to formulas given by 
Anderberg (1973, page 139). 

3 Average-distance-between-clusters method. The 
distance from Z to C is the average distance of 
objects within cluster Z to objects within cluster 
C. This average may be computed according to 
methods given by Anderberg (1973, page 140). 

4 Ward’s method. Clusters are formed so as to 
minimize the increase in the within-cluster sums 
of squares. The distance between two clusters is 
the increase in these sums of squares if the two 
clusters were merged. A method for computing 
this distance from a squared Euclidean distance 
matrix is given by Anderberg (1973, pages 
142�145). 

In general, single linkage will yield long thin clusters while complete linkage will 
yield clusters that are more spherical. Average linkage and Ward’s linkage tend to 
yield clusters that are similar to those obtained with complete linkage. 

Function imsls_f_cluster_hierarchical produces a unique representation 
of the binary cluster tree via the following three conventions; the fact that the tree 
is unique should aid in interpreting the clusters. First, when two clusters are 
joined and each cluster contains two or more data points, the cluster that was 
initially formed with the smallest level (in clevel) becomes the left son. Second, 
when a cluster containing more than one data point is joined with a cluster 
containing a single data point, the cluster with the single data point becomes the 
right son. Finally, when two clusters containing only one object are joined, the 
cluster with the smallest cluster number becomes the right son. 

Comments 

1. The clusters corresponding to the original data points are numbered from 
1 to npt. The npt � 1 clusters formed by merging clusters are numbered 
npt + 1 to npt + (npt � 1). 

2. Raw correlations, if used as similarities, should be made positive and 
transformed to a distance measure. One such transformation can be 
performed by specifying optional argument IMSLS_TRANSFORMATION, 
with itrans = 2 in imsls_f_cluster_hierarchical. 

3. The user may cluster either variables or observations in 
imsls_f_cluster_hierarchical since a dissimilarity matrix, not 
the original data, is used. Function imsls_f_dissimilarities 
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(page 586) may be used to compute the matrix dist for either the 
variables or observations. 

Example 
In the following example, the average distance within clusters method is used to 
perform a hierarchical cluster analysis of the Fisher iris data. Function 
imsls_f_data_sets (see Chapter 14, Utilities ) is first used to obtain the 
Fisher iris data. The example is typical in that after the program obtains the data, 
function imsls_f_dissimilarities (page 586) computes the distance matrix 
(dist) prior to calling imsls_f_cluster_hierarchical. 

 
#include "imsls.h" 
 
void main() 
{ 
  int  iscale=1, ncol=5, nrow=150, nvar=4, npt = 150;   
  int i, iclson[149], icrson[149], ind[4] = {1, 2, 3, 4}; 
  float clevel[149], *dist, *x; 
   
  x = imsls_f_data_sets(3, 0); 
   
  dist = imsls_f_dissimilarities(nrow, ncol, x,  
     IMSLS_INDEX, nvar, ind, 
     IMSLS_SCALE, iscale, 
     0); 
  imsls_f_cluster_hierarchical(npt, dist,  
  IMSLS_CLUSTERS_USER, clevel, iclson, icrson,  
  IMSLS_METHOD, 2, 
  0); 
   
  for (i=0;i<149;i+=15) printf("%6.2f\t", clevel[i]); 
  printf("\n"); 
  for (i=0;i<149;i+=15) printf("%6d\t", iclson[i]); 
  printf("\n"); 
  for (i=0;i<149;i+=15) printf("%6d\t", icrson[i]); 
  printf("\n");  
} 
 

Output 
  0.00    0.17    0.23    0.27    0.31    0.37    0.41    0.48    0.60    0.78 
   143     153      17     140      53     198     186     218     261     249 
   102      29       6     113      51      91     212     243     266     262  
     

cluster_number 
Computes cluster membership for a hierarchical cluster tree. 

Synopsis  
#include <imsls.h> 
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int *imsls_cluster_number (int npt, int *iclson, int *icrson, int k, …, 
0) 

Required Arguments 
int npt  (Input) 

Number of data points to be clustered. 

int *iclson  (Input) 
Vector of length npt � 1 containing the left son cluster numbers.   
Cluster npt + i is formed by merging clusters iclson[i-1] and 
icrson[i-1]. 

int *icrson  (Input) 
Vector of length npt � 1 containing the left son cluster numbers.   
Cluster npt + i is formed by merging clusters iclson[i-1] and 
icrson[i-1]. 

int k  (Input) 
Desired number of clusters.  

Return Value 
Vector of length npt containing the cluster membership of each observation.   

Synopsis with Optional Arugments 
#include <imsls.h> 
int *imsls_cluster_number (int npt, int *iclson, int *icrson, int k, 

IMSLS_OBS_PER_CLUSTERS, int **nclus, 
IMSLS_OBS_PER_CLUSTERS_USER, int nclus[], 
IMSLS_RETURN_USER, int iclus[], 
0) 

Optional Arguments 
IMSLS_OBS_PER_CLUSTERS, int **nclus   (Output) 

Address of a pointer to an internally allocated array of length k 
containing the number of observations in each cluster. 

IMSLS_OBS_PER_CLUSTERS_USER, int nclus[]   (Output)  
Storage for array nclus is provided by the user.  See 
IMSLS_OBS_PER_CLUSTERS.  

IMSLS_RETURN_USER, float iclus[]  (Output) 
User allocated array of length npt containing the cluster membership of 
each observation.  

Description 
Given a fixed number of clusters (K) and the cluster tree (vectors icrson and 
iclson) produced by the hierarchical clustering algorithm (see function 
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imsls_f_cluster_hierarchical, page 590), function 
imsls_cluster_number determines the cluster membership of each 
observation. The function imsls_cluster_number first determines the root 
nodes for the K distinct subtrees forming the K clusters and then traverses each 
subtree to determine the cluster membership of each observation. The function 
imsls_cluster_number also returns the number of observations found in each 
cluster. 

Example 1 
In the following example, cluster membership for K = 2 clusters is found for the 
displayed cluster tree. The output vector iclus contains the cluster numbers for 
each observation. 

9
8

6
7

5 3 1 4 2  
 

#include "imsls.h" 
 
void main() 
{ 
  int  k = 2, npt = 5, *iclus; 
  int iclson[] = {5, 6, 4, 7}; 
  int icrson[] = {3, 1, 2, 8}; 
   
  iclus = imsls_cluster_number(npt, iclson, icrson, k, 0); 
  imsls_i_write_matrix("iclus", 1, 5, iclus, 0);  
} 

Output 
       iclus 
 1   2   3   4   5 
 1   2   1   2   1     

Example 2 
This example illustrates the typical usage of imsls_cluster_number. The 
Fisher iris data (see function imsls_f_data_sets, see Chapter 14, Utilities) is 
clustered. First the distance between the irises are computed using function 
imsls_f_dissimilarities (page 586). The resulting distance matrix is then 
clustered using function imsls_f_cluster_hierarchical (page 590). The 
cluster membership for 5 clusters is then obtained via function 
imsls_cluster_number using the output from 
imsls_f_cluster_hierarchical. The need for 5 clusters can be obtained 
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either by theoretical means or by examining a cluster tree. The cluster 
membership for each of the iris observations is printed. 

 

 
#include "imsls.h" 
 
void main() 
{ 
  int ncol = 5, nrow = 150, nvar = 4, npt = 150, k = 5; 
  int i, j, *iclson, *icrson, *iclus, *nclus; 
  int ind[4] = {1, 2, 3, 4}; 
  float *clevel, dist[150][150], *x, f_rand; 
  int *p_iclus = NULL, *p_nclus = NULL; 
   
  x = imsls_f_data_sets (3, 0); 
  imsls_f_dissimilarities(nrow, ncol, x,  
     IMSLS_INDEX, nvar, ind, 
     IMSLS_RETURN_USER, dist, 
     0); 
   
  imsls_random_seed_set (4); 
  for (i = 0; i < npt; i++) 
    { 
      for (j = i + 1; j < npt; j++) 
 { 
   imsls_f_random_uniform (1, IMSLS_RETURN_USER, &f_rand, 0); 
   dist[i][j] = MAX (0.0, dist[i][j] + .001 * f_rand); 
   dist[j][i] = dist[i][j]; 
 } 
      dist[i][i] = 0.; 
    } 
  imsls_f_cluster_hierarchical (npt, (float*)dist,  
   IMSLS_CLUSTERS, &clevel, &iclson, &icrson,  
   0);   
   
  iclus = imsls_cluster_number (npt, iclson, icrson, k,  
    IMSLS_OBS_PER_CLUSTER, &nclus,  
    0); 
   
  imsls_i_write_matrix ("iclus", 25, 5, iclus, 0); 
  imsls_i_write_matrix ("nclus", 1, 5, nclus, 0); } 

Output 
         iclus 
     1   2   3   4   5 
 1   5   5   5   5   5 
 2   5   5   5   5   5 
 3   5   5   5   5   5 
 4   5   5   5   5   5 
 5   5   5   5   5   5 
 6   5   5   5   5   5 
 7   5   5   5   5   5 
 8   5   5   5   5   5 
 9   5   5   5   5   5 
10   5   5   5   5   5 
11   2   2   2   2   2 
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12   2   2   1   2   2 
13   1   2   2   2   2 
14   2   2   2   2   2 
15   2   2   2   2   2 
16   2   2   2   2   2 
17   2   2   2   2   2 
18   2   2   2   2   2 
19   2   2   2   1   2 
20   2   2   2   1   2 
21   2   2   2   2   2 
22   2   3   2   2   2 
23   2   2   2   2   2 
24   2   2   4   2   2 
25   2   2   2   2   2 
  
         nclus 
  1    2    3    4    5 
  4   93    1    2   50 

cluster_k_means 
Performs a K-means (centroid) cluster analysis. 

Synopsis 
#include <imsls.h> 
int *imsls_f_cluster_k_means (int n_observations, 

int n_variables, float x[], int n_clusters, 
float cluster_seeds, ..., 0) 

The type double function is imsls_d_cluster_k_means. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

int n_variables   (Input) 
Number of variables to be used in computing the metric. 

float x[]   (Input) 
Array of length n_observations � n_variables containing the 
observations to be clustered. 

int n_clusters   (Input) 
Number of clusters. 

float cluster_seeds[]   (Input) 
Array of length n_clusters � n_variables containing the cluster 
seeds, i.e., estimates for the cluster centers. 

Return Value 
The cluster membership for each observation is returned. 
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Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_cluster_k_means (int n_observations, 

int n_variables, float x[], int n_clusters, 
float cluster_seeds, 
IMSLS_WEIGHTS, float weights[], 
IMSLS_FREQUENCIES, float frequencies[], 
IMSLS_MAX_ITERATIONS, int max_iterations, 
IMSLS_CLUSTER_MEANS, float **cluster_means, 
IMSLS_CLUSTER_MEANS_USER, float cluster_means[], 
IMSLS_CLUSTER_SSQ, float **cluster_ssq, 
IMSLS_CLUSTER_SSQ_USER, float cluster_ssq[], 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_CLUSTER_MEANS_COL_DIM, 
 int cluster_means_col_dim, 
IMSLS_CLUSTER_SEEDS_COL_DIM, 
 int cluster_seeds_col_dim, 
IMSLS_CLUSTER_COUNTS, int **cluster_counts, 
IMSLS_CLUSTER_COUNTS_USER, int cluster_counts[], 
IMSLS_CLUSTER_VARIABLE_COLUMNS, 
 int cluster_variables[], 
IMSLS_RETURN_USER, int cluster_group[], 
0) 

Optional Arguments 
IMSLS_WEIGHTS, float weights[]   (Input) 

Array of length n_observations containing the weight of each 
observation of matrix x. 
Default: weights [ ] = 1 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array of length n_observations containing the frequency of each 
observation of matrix x. 
Default: frequencies [ ] = 1 

IMSLS_MAX_ITERATIONS, int max_iterations   (Input) 
Maximum number of iterations. 
Default: max_iterations = 30 

IMSLS_CLUSTER_MEANS, float **cluster_means   (Output) 
The address of a pointer to an internally allocated array of length 
n_clusters � n_variables containing the cluster means. 

IMSLS_CLUSTER_MEANS_USER, float cluster_means[]   (Output) 
Storage for array cluster_means is provided by the user. See 
IMSLS_CLUSTER_MEANS. 
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IMSLS_CLUSTER_SSQ, float **cluster_ssq   (Output) 
The address of a pointer to internally allocated array of length 
n_clusters containing the within sum-of-squares for each cluster. 

IMSLS_CLUSTER_SSQ_USER, float cluster_ssq[]   (Output) 
Storage for array cluster_ssq is provided by the user. See 
IMSLS_CLUSTER_SSQ. 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Column dimension of x. 
Default: x_col_dim = n_variables 

IMSLS_CLUSTER_MEANS_COL_DIM, int cluster_means_col_dim   (Input) 
Column dimension for the vector cluster_means. 
Default: cluster_means_col_dim = n_variables 

IMSLS_CLUSTER_SEEDS_COL_DIM, int cluster_seeds_col_dim   (Input) 
Column dimension for the vector cluster_seeds. 
Default: cluster_seeds_col_dim = n_variables 

IMSLS_CLUSTER_COUNTS, int **cluster_counts   (Output) 
The address of a pointer to an internally allocated array of length 
n_clusters containing the number of observations in each cluster. 

IMSLS_CLUSTER_COUNTS_USER, int cluster_counts[]   (Output) 
Storage for array cluster_counts is provided by the user. See 
IMSLS_CLUSTER_COUNTS. 

IMSLS_CLUSTER_VARIABLE_COLUMNS, int cluster_variables[]   (Input) 
Vector of length n_variables containing the columns of x to be used 
in computing the metric. Columns are numbered 0, 1, 2, ..., 
n_variables 
Default: cluster_variables [ ] = 0, 1, 2, �, n_variables 

IMSLS_RETURN_USER, int cluster_group[]   (Output) 
User-allocated array of length n_observations containing the cluster 
membership for each observation. 

Description 
Function imsls_f_cluster_k_means is an implementation of Algorithm 
AS 136 by Hartigan and Wong (1979). It computes K-means (centroid) Euclidean 
metric clusters for an input matrix starting with initial estimates of the K-cluster 
means. The function allows for missing values coded as NaN (Not a Number) and 
for weights and frequencies. 

Let p = n_variables be the number of variables to be used in computing the 
Euclidean distance between observations. The idea in K-means cluster analysis is 
to find a clustering (or grouping) of the observations so as to minimize the total 
within-cluster sums-of-squares. In this case, the total sums-of-squares within each 
cluster is computed as the sum of the centered sum-of-squares over all 
nonmissing values of each variable. That is, 
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where 	im denotes the row index of the m-th observation in the i-th cluster in the 
matrix X; ni is the number of rows of X assigned to group i; f denotes the 
frequency of the observation; w denotes its weight; 
 is 0 if the j-th variable on 
observation 	im is missing, otherwise 
 is 1; and 

ijx  

is the average of the nonmissing observations for variable j in group i. This 
method sequentially processes each observation and reassigns it to another cluster 
if doing so results in a decrease of the total within-cluster sums-of-squares. See 
Hartigan and Wong (1979) or Hartigan (1975) for details. 

Example 
This example performs K-means cluster analysis on Fisher’s iris data, which is 
obtained by function imsls_f_data_sets (Chapter 14, Utilities). The initial 
cluster seed for each iris type is an observation known to be in the iris type. 

#include <stdio.h> 
#include <imsls.h> 
 
main() 
{ 
#define N_OBSERVATIONS 150 
#define N_VARIABLES    4 
#define N_CLUSTERS     3 
    float        x[N_OBSERVATIONS][5]; 
    float        cluster_seeds[N_CLUSTERS][N_VARIABLES]; 
    float        cluster_means[N_CLUSTERS][N_VARIABLES]; 
    float        cluster_ssq[N_CLUSTERS]; 
    int          cluster_variables[N_VARIABLES] = {1, 2, 3, 4}; 
    int          cluster_counts[N_CLUSTERS]; 
    int          cluster_group[N_OBSERVATIONS]; 
    int          i; 
 
                 /* Retrieve the data set */ 
    imsls_f_data_sets(3, IMSLS_RETURN_USER, x, 0); 
                 /* Assign initial cluster seeds */ 
    for (i=0; i<N_VARIABLES; i++) { 
        cluster_seeds[0][i] = x[0][i+1]; 
        cluster_seeds[1][i] = x[50][i+1]; 
        cluster_seeds[2][i] = x[100][i+1]; 
    } 
 
                 /* Perform the analysis */ 
    imsls_f_cluster_k_means(N_OBSERVATIONS, N_VARIABLES, (float*)x, 
        N_CLUSTERS, (float*)cluster_seeds, 
        IMSLS_X_COL_DIM,          5, 
        IMSLS_CLUSTER_VARIABLE_COLUMNS,  cluster_variables, 
        IMSLS_CLUSTER_COUNTS_USER,     cluster_counts, 
        IMSLS_CLUSTER_MEANS_USER, cluster_means, 
        IMSLS_CLUSTER_SSQ_USER,   cluster_ssq, 
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        IMSLS_RETURN_USER,        cluster_group,  
        0); 
                /* Print results */ 
    imsls_i_write_matrix("Cluster Membership", 1, N_OBSERVATIONS, 
        cluster_group, 0); 
    imsls_f_write_matrix("Cluster Means", N_CLUSTERS, N_VARIABLES, 
        (float*)cluster_means, 0); 
    imsls_f_write_matrix("Cluster Sum of Squares", 1, N_CLUSTERS, 
        cluster_ssq, 0); 
    imsls_i_write_matrix("# Observations in Each Cluster", 1,  
        N_CLUSTERS, cluster_counts, 0); 
} 
  
                              Cluster Membership 
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20 
 1  1  1  1  1  1  1  1  1   1   1   1   1   1   1   1   1   1   1   1 
  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
  
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 
 1  1  1  1  1  1  1  1  1  1  2  2  3  2  2  2  2  2  2  2 
  
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 
 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  3  2  2 
  
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 
 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2 
  
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 
  2   3   2   3   3   3   3   2   3   3   3   3   3   3   2   2 
  
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 
  3   3   3   3   2   3   2   3   2   3   3   2   2   3   3   3 
  
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 
  3   3   2   3   3   3   3   2   3   3   3   2   3   3   3   2 
  
148 149 150 
  3   3   2 
  
                  Cluster Means 
            1           2           3           4 
1       5.006       3.428       1.462       0.246 
2       5.902       2.748       4.394       1.434 
3       6.850       3.074       5.742       2.071 
  
      Cluster Sum of Squares 
         1           2           3 
     15.15       39.82       23.88 
  
# Observations in Each Cluster 
           1    2    3 
          50   62   38 

Warning Errors 
IMSLS_NO_CONVERGENCE Convergence did not occur. 
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principal_components 
Computes principal components. 

Synopsis 

#include <imsls.h> 

float *imsls_f_principal_components (int n_variables, 
float covariances[], ..., 0) 

The type double function is imsls_d_principal_components. 

Required Arguments 

int n_variables   (Input) 
Order of the covariance matrix. 

float covariances[]   (Input) 
Array of length n_variables � n_variables containing the 
covariance or correlation matrix. 

Return Value 
An array of length n_variables containing the eigenvalues of the matrix 
covariances ordered from largest to smallest. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_principal_components (int n_variables, 

float covariances[], 
IMSLS_COVARIANCE_MATRIX, or 
IMSLS_CORRELATION_MATRIX, 
IMSLS_CUM_PERCENT, float **cum_percent, 
IMSLS_CUM_PERCENT_USER, float cum_percent[], 
IMSLS_EIGENVECTORS, float **eigenvectors, 
IMSLS_EIGENVECTORS_USER, float eigenvectors[], 
IMSLS_CORRELATIONS, float **correlations, 
IMSLS_CORRELATIONS_USER, float correlations[], 
IMSLS_STD_DEV, int n_degrees_freedom, float **std_dev, 
IMSLS_STD_DEV_USER, int n_degrees_freedom, 
 float std_dev[], 
IMSLS_COV_COL_DIM, int cov_col_dim,  
IMSLS_RETURN_USER, float eigenvalues[], 
0) 
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Optional Arguments 
IMSLS_COVARIANCE_MATRIX 

Treat the input vector covariances as a covariance matrix. This option 
is the default. 
or 

IMSLS_CORRELATION_MATRIX 
Treat the input vector covariances as a correlation matrix. 

IMSLS_CUM_PERCENT, float **cum_percent   (Output) 
The address of a pointer to an internally allocated array of length 
n_variables containing the cumulative percent of the total variances 
explained by each principal component. 

IMSLS_CUM_PERCENT_USER, float cum_percent[]   (Output) 
Storage for array cum_percent is provided by the user. See 
IMSLS_CUM_PERCENT. 

IMSLS_EIGENVECTORS, float **eigenvectors   (Output) 
The address of a pointer to an internally allocated array of length 
n_variables � n_variables containing the eigenvectors of 
covariances, stored columnwise. Each vector is normalized to have 
Euclidean length equal to the value one. Also, the sign of each vector is 
set so that the largest component in magnitude (the first of the largest if 
there are ties) is made positive. 

IMSLS_EIGENVECTORS_USER, float eigenvectors[]   (Output) 
Storage for array eigenvectors is provided by the user. See 
IMSLS_EIGENVECTORS. 

IMSLS_CORRELATIONS, float **correlations   (Output) 
The address of a pointer to an internally allocated array of length 
n_variables * n_variables containing the correlations of the 
principal components (the columns) with the observed/standardized 
variables (the rows). If IMSLS_COVARIANCE_MATRIX is specified, then 
the correlations are with the observed variables. Otherwise, the 
correlations are with the standardized (to a variance of 1.0) variables. In 
the principal component model for factor analysis, matrix 
correlations is the matrix of unrotated factor loadings. 

IMSLS_CORRELATIONS_USER, float correlations[]   (Output) 
Storage for array correlations is provided by the user. See 
IMSLS_CORRELATIONS. 

IMSLS_STD_DEV, int n_degrees_freedom, float **std_dev   
(Input/Output) 
Argument n_degrees_freedom contains the number of degrees of 
freedom in covariances. Argument std_dev is the address of a 
pointer to an internally allocated array of length n_variables 
containing the estimated asymptotic standard errors of the eigenvalues. 
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IMSLS_STD_DEV_USER, int n_degrees_freedom, float std_dev[]   
(Input/Output) 
Storage for array std_dev is provided by the user. See 
IMSLS_STD_DEV. 

IMSLS_COV_COL_DIM int cov_col_dim   (Input) 
Column dimension of covariances. 
Default: cov_col_dim = n_variables 

IMSLS_RETURN_USER, float eigenvalues[]   (Output) 
User-supplied array of length n_variables containing the eigenvalues 
of covariances ordered from largest to smallest. 

Description 
Function imsls_f_principal_components finds the principal components of 
a set of variables from a sample covariance or correlation matrix. The 
characteristic roots, characteristic vectors, standard errors for the characteristic 
roots, and the correlations of the principal component scores with the original 
variables are computed. Principal components obtained from correlation matrices 
are the same as principal components obtained from standardized (to unit 
variance) variables. 

The principal component scores are the elements of the vector y = �Tx, where  
� is the matrix whose columns are the characteristic vectors (eigenvectors) of the 
sample covariance (or correlation) matrix and x is the vector of observed (or 
standardized) random variables. The variances of the principal component scores 
are the characteristic roots (eigenvalues) of the covariance (correlation) matrix. 

Asymptotic variances for the characteristic roots were first obtained by Girschick 
(1939) and are given more recently by Kendall et al. (1983, p. 331). These 
variances are computed either for covariance matrices or for correlation matrices. 

The correlations of the principal components with the observed (or standardized) 
variables are given in the matrix correlations. When the principal 
components are obtained from a correlation matrix, correlations is the same 
as the matrix of unrotated factor loadings obtained for the principal components 
model for factor analysis. 

Examples 

Example 1 
In this example, eigenvalues of the covariance matrix are computed. 

#include <stdio.h> 
#include <imsls.h> 
#include <stdlib.h> 
 
main() 
{ 
#define N_VARIABLES 9 
 
    float  *values; 



 

 
 

606 � principal_components IMSL C/Stat/Library 

 

 

 

    static float covariances[N_VARIABLES][N_VARIABLES] = { 
        1.0,   0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639, 
        0.523, 1.0,   0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645, 
        0.395, 0.479, 1.0,   0.355, 0.27,  0.254, 0.452, 0.219, 0.504, 
        0.471, 0.506, 0.355, 1.0,   0.691, 0.791, 0.443, 0.285, 0.505, 
        0.346, 0.418, 0.27,  0.691, 1.0,   0.679, 0.383, 0.149, 0.409, 
        0.426, 0.462, 0.254, 0.791, 0.679, 1.0,   0.372, 0.314, 0.472, 
        0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,   0.385, 0.68, 
        0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0,   0.47, 
        0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68,  0.47,  1.0}; 
 
                     /* Perform analysis */ 
    values = imsls_f_principal_components(N_VARIABLES, covariances, 0); 
             
                     /* Print results. */ 
    imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, values, 0); 
 
                     /* Free allocated memory. */ 
    free(values); 
} 

Output 
                              Eigenvalues 
         1           2           3           4           5           6 
     4.677       1.264       0.844       0.555       0.447       0.429 
  
         7           8           9 
     0.310       0.277       0.196 

Example 2 
In this example, principal components are computed for a nine-variable 
correlation matrix. 

#include <stdio.h> 
#include <imsls.h> 
#include <stdlib.h> 
 
main() 
{ 
#define N_VARIABLES 9 
 
    float  *values, *eigenvectors, *std_dev, *cum_percent, *a; 
    static float covariances[N_VARIABLES][N_VARIABLES] = { 
        1.0,   0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639, 
        0.523, 1.0,   0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645, 
        0.395, 0.479, 1.0,   0.355, 0.27,  0.254, 0.452, 0.219, 0.504, 
        0.471, 0.506, 0.355, 1.0,   0.691, 0.791, 0.443, 0.285, 0.505, 
        0.346, 0.418, 0.27,  0.691, 1.0,   0.679, 0.383, 0.149, 0.409, 
        0.426, 0.462, 0.254, 0.791, 0.679, 1.0,   0.372, 0.314, 0.472, 
        0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,   0.385, 0.68, 
        0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0,   0.47, 
        0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68,  0.47,  1.0}; 
 
                        /* Perform analysis */ 
    values = imsls_f_principal_components(N_VARIABLES, covariances, 
        IMSLS_CORRELATION_MATRIX,  
        IMSLS_EIGENVECTORS,                    &eigenvectors, 
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        IMSLS_STD_DEV,                         100, &std_dev,  
        IMSLS_CUM_PERCENT,                     &cum_percent,  
        IMSLS_CORRELATIONS, &a,  
        0); 
 
                       /* Print results */ 
    imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, values, 0); 
    imsls_f_write_matrix("Eigenvectors", N_VARIABLES, N_VARIABLES,  
        eigenvectors, 0); 
    imsls_f_write_matrix("STD", 1, N_VARIABLES, std_dev, 0); 
    imsls_f_write_matrix("PCT", 1, N_VARIABLES, cum_percent, 0); 
    imsls_f_write_matrix("A", N_VARIABLES, N_VARIABLES, a, 0); 
 
                      /* Free allocated memory */ 
    free(values); 
    free(eigenvectors); 
    free (cum_percent); 
    free (std_dev); 
    free(a); 
} 

Output 
                              Eigenvalues 
         1           2           3           4           5           6 
     4.677       1.264       0.844       0.555       0.447       0.429 
  
         7           8           9 
     0.310       0.277       0.196 
  
 

                              Eigenvectors 
            1           2           3           4           5           6 
1      0.3462     -0.2354      0.1386     -0.3317     -0.1088      0.7974 
2      0.3526     -0.1108     -0.2795     -0.2161      0.7664     -0.2002 
3      0.2754     -0.2697     -0.5585      0.6939     -0.1531      0.1511 
4      0.3664      0.4031      0.0406      0.1196      0.0017      0.1152 
5      0.3144      0.5022     -0.0733     -0.0207     -0.2804     -0.1796 
6      0.3455      0.4553      0.1825      0.1114      0.1202      0.0697 
7      0.3487     -0.2714     -0.0725     -0.3545     -0.5242     -0.4355 
8      0.2407     -0.3159      0.7383      0.4329      0.0861     -0.1969 
9      0.3847     -0.2533     -0.0078     -0.1468      0.0459     -0.1498 
  
            7           8           9 
1      0.1735     -0.1240     -0.0488 
2      0.1386     -0.3032     -0.0079 
3      0.0099     -0.0406     -0.0997 
4     -0.4022     -0.1178      0.7060 
5      0.7295      0.0075      0.0046 
6     -0.3742      0.0925     -0.6780 
7     -0.2854     -0.3408     -0.1089 
8      0.1862     -0.1623      0.0505 
9     -0.0251      0.8521      0.1225 
  
                                  STD 
         1           2           3           4           5           6 
    0.6498      0.1771      0.0986      0.0879      0.0882      0.0890 
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         7           8           9 
    0.0944      0.0994      0.1113 
  
                                  PCT 
         1           2           3           4           5           6 
     0.520       0.660       0.754       0.816       0.865       0.913 
  
         7           8           9 
     0.947       0.978       1.000 
  
                                    A 
            1           2           3           4           5           6 
1      0.7487     -0.2646      0.1274     -0.2471     -0.0728      0.5224 
2      0.7625     -0.1245     -0.2568     -0.1610      0.5124     -0.1312 
3      0.5956     -0.3032     -0.5133      0.5170     -0.1024      0.0990 
4      0.7923      0.4532      0.0373      0.0891      0.0012      0.0755 
5      0.6799      0.5646     -0.0674     -0.0154     -0.1875     -0.1177 
6      0.7472      0.5119      0.1677      0.0830      0.0804      0.0456 
7      0.7542     -0.3051     -0.0666     -0.2641     -0.3505     -0.2853 
8      0.5206     -0.3552      0.6784      0.3225      0.0576     -0.1290 
9      0.8319     -0.2848     -0.0071     -0.1094      0.0307     -0.0981 
  
            7           8           9 
1      0.0966     -0.0652     -0.0216 
2      0.0772     -0.1596     -0.0035 
3      0.0055     -0.0214     -0.0442 
4     -0.2240     -0.0620      0.3127 
5      0.4063      0.0039      0.0021 
6     -0.2084      0.0487     -0.3003 
7     -0.1589     -0.1794     -0.0482 
8      0.1037     -0.0854      0.0224 
9     -0.0140      0.4485      0.0543 

Warning Errors 
IMSLS_100_DF Because the number of degrees of freedom 

in “covariances” and “n_degrees_freedom” 
is less than or equal to 0, 100 degrees of 
freedom will be used. 

IMSLS_COV_NOT_NONNEG_DEF “eigenvalues[#]” = #. One or more 
eigenvalues much less than zero are 
computed. The matrix “covariances” is not 
nonnegative definite. In order to continue 
computations of “eigenvalues” and 
“correlations,” these eigenvalues are treated 
as 0. 

IMSLS_FAILED_TO_CONVERGE The iteration for the eigenvalue failed to 
converge in 100 iterations before deflating. 

 



 

 
 

Chapter 9: Multivariate Analysis factor_analysis � 609 

 

 

 

factor_analysis 
Extracts initial factor-loading estimates in factor analysis with rotation options. 

Synopsis 

#include <imsls.h> 
float *imsls_f_factor_analysis (int n_variables, 

float covariances[], int n_factors, ..., 0) 

The type double function is imsls_d_factor_analysis. 

Required Arguments 

int n_variables   (Input) 
Number of variables. 

float covariances[]   (Input) 
Array of length n_variables*n_variables containing the variance-
covariance or correlation matrix. 

int n_factors   (Input) 
Number of factors in the model. 

Return Value 
An array of length n_variables*n_factors containing the matrix of factor 
loadings. 

Synopsis with Optional Arguments 
#include <imsls.h> 

float *imsls_f_factor_analysis (int n_variables, 
float covariances[], int n_factors, 
IMSLS_MAXIMUM_LIKELIHOOD, int df_covariances, or 
IMSLS_PRINCIPAL_COMPONENT, or 
IMSLS_PRINCIPAL_FACTOR, or 
IMSLS_UNWEIGHTED_LEAST_SQUARES,or 
IMSLS_GENERALIZED_LEAST_SQUARES, int df_covariances, or 
IMSLS_IMAGE, or 
IMSLS_ALPHA, int df_covariances, 
IMSLS_UNIQUE_VARIANCES_INPUT, float unique_variances[], 
IMSLS_UNIQUE_VARIANCES_OUTPUT,  
 float unique_variances[], 
IMSLS_MAX_ITERATIONS, int max_iterations, 
IMSLS_MAX_STEPS_LINE_SEARCH, 
 int max_steps_line_search, 
IMSLS_CONVERGENCE_EPS, float convergence_eps, 
IMSLS_SWITCH_EXACT_HESSIAN, float switch_epsilon, 
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IMSLS_EIGENVALUES, float **eigenvalues, 
IMSLS_EIGENVALUES_USER, float eigenvalues[], 
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, 
 float *p_value, 
IMSLS_TUCKER_RELIABILITY_COEFFICIENT,  float *coefficient, 
IMSLS_N_ITERATIONS, int *n_iterations, 
IMSLS_FUNCTION_MIN, float *function_min, 
IMSLS_LAST_STEP, float **last_step, 
IMSLS_LAST_STEP_USER, float last_step[], 
IMSLS_ORTHOMAX_ROTATION,  float w, int norm,  float **b,  
 float **t, 
IMSLS_ORTHOMAX_ROTATION_USER,  float w, int norm,  float b[],  
  float t[], 
IMSLS_ORTHOGONAL_PROCUSTES_ROTATION,  float target[],  
 float **b,  float **t, 
IMSLS_ORTHOGONAL_PROCUSTES_ROTATION_USER,   
 float target[],  float b[],  float t[], 
IMSLS_DIRECT_OBLIMIN_ROTATION,  float w, int norm,  float **b, 
  float **t, float **factor_correlations, 
IMSLS_DIRECT_OBLIMIN_ROTATION_USER,  float w, int norm,   
 float b[],  float t[],  float factor_correlations[], 
IMSLS_OBLIQUE_PROMAX_ROTATION,  float w,  float power[],  
 int norm,  float  **target,  float **b,  float **t, 
 float **factor_correlations, 
IMSLS_OBLIQUE_PROMAX_ROTATION_USER,  float w, float power[], 
 nt norm,  float  target[], float b[],  float t[],  
 loat factor_correlations[], 
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION,  float w,   
 float pivot[], int norm,  float  **target,  float **b,  
 float **t, float **factor_correlations, 
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION_USER,  float w,  
 loat pivot[], int norm,  float  target[], float b[],  
 float t[],  float factor_correlations[], 
IMSLS_OBLIQUE_PROCRUSTES_ROTATION,   float  target[],    
 float **b,  float **t, float **factor_correlations, 
IMSLS_OBLIQUE_PROCRUSTES_ROTATION_USER,   float  target[], 
 float b[],  float t[],  float factor_correlations[], 
IMSLS_FACTOR_STRUCTURE, float  **s, float  **fvar, 
IMSLS_FACTOR_STRUCTURE_USER, float s[], float  fvar[], 
IMSLS_COV_COL_DIM, int cov_col_dim, 
IMSLS_RETURN_USER, float factor_loadings[], 
0)  

Optional Arguments 
IMSLS_MAXIMUM_LIKELIHOOD, int df_covariances   (Input) 

Maximum likelihood (common factor model) method used to obtain the 
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estimates. Argument df_covariances is the number of degrees of 
freedom in covariances. 
or 

IMSLS_PRINCIPAL_COMPONENT 
Principal component (principal component model) method used to 
obtain the estimates. 
or 

IMSLS_PRINCIPAL_FACTOR 
Principal factor (common factor model) method used to obtain the 
estimates. 
or 

IMSLS_UNWEIGHTED_LEAST_SQUARES 
Unweighted least-squares (common factor model) method used to obtain 
the estimates. This option is the default. 
or 

IMSLS_GENERALIZED_LEAST_SQUARES, int df_covariances   (Input) 
Generalized least-squares (common factor model) method used to obtain 
the estimates. 
or 

IMSLS_IMAGE 
Image-factor analysis (common factor model) method used to obtain the 
estimates. 
or 

IMSLS_ALPHA, int df_covariances   (Input) 
Alpha-factor analysis (common factor model) method used to obtain the 
estimates. Argument df_covariances is the number of degrees of 
freedom in covariances. 

IMSLS_UNIQUE_VARIANCES_INPUT, float unique_variances[]   (Input) 
Array of length n_variables containing the initial estimates of the 
unique variances. 
Default: Initial estimates are taken as the constant 
1 � n_factors/2 * n_variables divided by the diagonal elements of 
the inverse of covariances. 

IMSLS_UNIQUE_VARIANCES_OUTPUT, float unique_variances[]   (Output) 
User-allocated array of length n_variables containing the estimated 
unique variances. 

IMSLS_MAX_ITERATIONS, int max_iterations   (Input) 
Maximum number of iterations in the iterative procedure. 
Default: max_iterations = 60 

IMSLS_MAX_STEPS_LINE_SEARCH, int max_steps_line_search   (Input) 
Maximum number of step halvings allowed during any one iteration. 
Default: max_steps_line_search = 10 
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IMSLS_CONVERGENCE_EPS, float convergence_eps   (Input) 
Convergence criterion used to terminate the iterations. For the 
unweighted least squares, generalized least squares or maximum 
likelihood methods, convergence is assumed when the relative change in 
the criterion is less than convergence_eps. For alpha-factor analysis, 
convergence is assumed when the maximum change (relative to the 
variance) of a uniqueness is less than convergence_eps. 
Default: convergence_eps = 0.0001 

IMSLS_SWITCH_EXACT_HESSIAN, float switch_epsilon   (Input) 
Convergence criterion used to switch to exact second derivatives. When 
the largest relative change in the unique standard deviation vector is less 
than switch_epsilon, exact second derivative vectors are used. 
Argument switch_epsilon is not used with the principal component, 
principal factor, image-factor analysis, or alpha-factor analysis methods. 
Default: switch_epsilon = 0.1 

IMSLS_EIGENVALUES, float **eigenvalues   (Output) 
The address of a pointer to an internally allocated array of length 
n_variables containing the eigenvalues of the matrix from which the 
factors were extracted. 

IMSLS_EIGENVALUES_USER, float eigenvalues[]   (Output) 
Storage for array eigenvalues is provided by the user. See 
IMSLS_EIGENVALUES. 

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, 
float *p_value   (Output) 
Number of degrees of freedom in chi-squared is df; chi_squared is 
the chi-squared test statistic for testing that n_factors common factors 
are adequate for the data; p_value is the probability of a greater chi-
squared statistic. 

IMSLS_TUCKER_RELIABILITY_COEFFICIENT, float *coefficient   
(Output) 
Tucker reliability coefficient. 

IMSLS_N_ITERATIONS, int *n_iterations   (Output) 
Number of iterations. 

IMSLS_FUNCTION_MIN, float *function_min   (Output) 
Value of the function minimum. 

IMSLS_LAST_STEP, float **last_step   (Output) 
Address of a pointer to an internally allocated array of length 
n_variables containing the updates of the unique variance estimates 
when convergence was reached (or the iterations terminated). 

IMSLS_LAST_STEP_USER, float last_step[]   (Output) 
Storage for array last_step is provided by the user. See 
IMSLS_LAST_STEP. 
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IMSLS_ORTHOMAX_ROTATION,  float w, int norm, float **b, float **t 
(Input/Output) 
Nonnegative constant w defines the rotation.  If norm =1, row 
normalization is performed.  Otherwise, row normalization is not 
performed.    b contains the address of a pointer to the internally 
allocated array of length n_variables*n_factors containing the 
rotated factor loading matrix.  t contains the address of a pointer to the 
internally allocated array of length n_factors*n_factors containing 
the rotation transformation matrix.  w = 0.0 results in quartimax 
rotations, w = 1.0 results in varimax rotations, and w = n_factors/2.0 
results in equamax rotations.  Other nonnegative values of w may also be 
used, but the best values for w are in the range (0.0, 5 * n_factors). 

IMSLS_ORTHOMAX_ROTATION_USER,  float w, int norm, float b[],  float t[] 
(Input/Output) 
Storage for b and t are provided by the user.  See 
IMSLS_ORTHOMAX_ROTATION. 

IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION,  float target[],  float **b,  
float **t (Input/Output) 
If specified,  the n_variables by n_factors target matrix target 
will be used to compute an orthogonal Procrustes rotation of the factor-
loading matrix.   b contains the address of a pointer to the internally 
allocated array of length n_variables*n_factors containing the 
rotated factor loading matrix.  t contains the address of a pointer to the 
internally allocated array of length n_factors*n_factors containing 
the rotation transformation matrix.   

IMSLS_ORTHOGONAL_PROCRUTES_ROTATION_USER,  float target[],   
float b[],  float t[] (Input/Output) 
Storage for b and t are provided by the user.  See 
IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION. 

IMSLS_DIRECT_OBLIMIN_ROTATION,  float w , int norm,  float **b,  
float **t,float **factor_correlations (Input/Output) 
Computes a direct oblimin rotation. Nonpositive constant w defines the 
rotation.  If norm =1, row normalization is performed.  Otherwise, row 
normalization is not performed.  b contains the address of a pointer to 
the internally allocated array of length n_variables*n_factors 
containing the rotated factor loading matrix.  t contains the address of a 
pointer to the internally allocated array of length 
n_factors*n_factors containing the rotation transformation matrix.  
factor_correlations contains the address of a pointer to the 
internally allocated array of length n_factors*n_factors containing 
the factor correlations.  The parameter w determines the type of direct 
oblimin rotation to be performed. In general w must be negative.            
w = 0.0 results in direct quartimin rotations.   As w approaches negative 
infinity, the orthogonality among factors will increase. 
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IMSLS_DIRECT_OBLIMIN_ROTATION_USER,  float w, int norm,  float b[],   
float t[], float factor_correlations[] (Input/Output) 
Storage for b, t and factor_correlations are provided by the user.  
See IMSLS_DIRECT_OBLIMIN_ROTATION. 

IMSLS_OBLIQUE_PROMAX_ROTATION,  float w,  float power[], int norm,    
float **target,  float **b,  float **t, 
float **factor_correlations,  (Input/Output) 
Computes an oblique promax rotation of the factor loading matrix using 
a power vector. Nonnegative constant w defines the rotation.  power, a 
vector of length n_factors containing the power vector.  If norm =1, 
row (Kaiser) normalization is performed.  Otherwise, row normalization 
is not performed.    b contains the address of a pointer to the internally 
allocated array of length n_variables*n_factors containing the 
rotated factor loading matrix.  t contains the address of a pointer to the 
internally allocated array of length n_factors*n_factors containing 
the rotation transformation matrix.  factor_correlations contains 
the address of a pointer to the internally allocated array of length 
n_factors*n_factors containing the factor correlations.  target 
contains the address of a pointer to the internally allocated array of 
length n_variables*n_factors containing the target matrix for 
rotation, derived from the orthomax rotation.   w is used in the orthomax 
rotation, see the optional argument  IMSLS_ORTHOMAX_ROTATION for 
common values of w. 

 All power[j] should be greater than 1.0, typically 4.0. Generally, the 
larger the values of power [j], the more oblique the solution will be. 

IMSLS_OBLIQUE_PROMAX_ROTATION_USER,  float w, float power[], int norm,  
float  target[],  float b[],  float  t[],  
float factor_correlations[], (Input/Output) 
 Storage for b, t, factor_correlations, and target are provided 
by the user.  See IMSLS_OBLIQUE_PROMAX_ROTATION. 

IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION,  float w,  float pivot[],  
int norm,  float  **target ,  float **b,  float **t, 
float **factor_correlations, (Input/Output) 
Computes an oblique pivotal promax rotation of the factor loading 
matrix using pivot constants. Nonnegative constant w defines the 
rotation.  pivot, a vector of length n_factors containing the pivot 
constants.  pivot[j] should be in the interval (0.0, 1.0). If norm =1, 
row (Kaiser) normalization is performed.  Otherwise, row normalization 
is not performed.    b contains the address of a pointer to the internally 
allocated array of length n_variables*n_factors containing the 
rotated factor loading matrix.  t contains the address of a pointer to the 
internally allocated array of length n_factors*n_factors containing 
the rotation transformation matrix.  factor_correlations contains 
the address of a pointer to the internally allocated array of length 
n_factors*n_factors containing the factor correlations.  target 
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contains the address of a pointer to the internally allocated array of 
length n_variables*n_factors containing the target matrix for 
rotation, derived from the orthomax rotation.   w is used in the orthomax 
rotation, see the optional argument IMSLS_ORTHOMAX_ROTATION for 
common values of w. 

IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION_USER,  float w, float pivot[], 
int norm,  float  target[], float b[],  float t[],  
float factor_correlations[],    (Input/Output) 
 Storage for b, t, factor_correlations, and target are provided 
by the user.  See IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION. 

IMSLS_OBLIQUE_PROCRUSTES_ROTATION,   float  **target,  float **b,  
float **t, float **factor_correlations (Input/Output) 
Computes an oblique procrustes rotation of the factor loading matrix 
using a target matrix. target is a hypothesized rotated factor loading 
matrix based upon prior knowledge with loadings chosen to the enhance 
interpretability. A simple structure solution will have most of the weights 
target[i][j] either zero or large in magnitude.  b contains the 
address of a pointer to the internally allocated array of length 
n_variables*n_factors containing the rotated factor loading matrix.  
t contains the address of a pointer to the internally allocated array of 
length n_factors*n_factors containing the rotation transformation 
matrix.  factor_correlations contains the address of a pointer to 
the internally allocated array of length  n_factors*n_factors 
containing the factor correlations.  

IMSLS_OBLIQUE_PROCRUSTES_ROTATION_USER,   float  target[],    
float b[],  float t[],  float factor_correlations[] (Input/Output) 
Storage for b, t, and factor_correlations are provided by the 
user.  See IMSLS_PROCRUSTES_ROTATION. 

IMSLS_FACTOR_STRUCTURE,float  **s, float  **fvar, (Output) 
Computes the factor structure and the variance explained by each factor.   
s contains the address of a pointer to the internally allocated array of 
length n_variables*n_factors containing the factor structure 
matrix. fvar contains the address of a pointer to the internally allocated 
array of length n_factors containing the variance accounted for by 
each of the n_factors rotated factors.  A factor rotation matrix is used 
to compute the factor structure and the variance.  One and only one 
rotation option argument can be specified.  

IMSLS_FACTOR_STRUCTURE_USER, float  s[], float  fvar[], (Output) 
Storage for s, and fvar are provided by the user.   
See IMSLS_FACTOR_STRUCTURE. 

IMSLS_COV_COL_DIM, int cov_col_dim   (Input) 
Column dimension of the matrix covariances. 
Default: cov_col_dim = n_variables 
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IMSLS_RETURN_USER, float factor_loadings[]   (Output) 
User-allocated array of length n_variables*n_factors containing 
the unrotated factor loadings. 

Description 
Function imsls_f_factor_analysis computes factor loadings in exploratory 
factor analysis models. Models available in imsls_f_factor_analysis are 
the principal component model for factor analysis and the common factor model 
with additions to the common factor model in alpha-factor analysis and image 
analysis. Methods of estimation include principal components, principal factor, 
image analysis, unweighted least squares, generalized least squares, and 
maximum likelihood. 

In the factor analysis model used for factor extraction, the basic model is given as 
� = ��T + 
, where � is the p � p population covariance matrix, � is the  
p � k matrix of factor loadings relating the factors f to the observed variables x, 
and 
 is the p � p matrix of covariances of the unique errors e. Here, 
p = n_variables and k = n_factors. The relationship between the factors, the 
unique errors, and the observed variables is given as x = �f + e, where in 
addition, the expected values of e, f, and x are assumed to be 0. (The sample 
means can be subtracted from x if the expected value of x is not 0.) It also is 
assumed that each factor has unit variance, the factors are independent of each 
other, and that the factors and the unique errors are mutually independent. In the 
common factor model, the elements of unique errors e also are assumed to be 
independent of one another so that the matrix 
 is diagonal. This is not the case 
in the principal component model in which the errors may be correlated. 

Further differences between the various methods concern the criterion that is 
optimized and the amount of computer effort required to obtain estimates. 
Generally speaking, the least-squares and maximum likelihood methods, which 
use iterative algorithms, require the most computer time with the principal factor, 
principal component and the image methods requiring much less time since the 
algorithms in these methods are not iterative. The algorithm in alpha-factor 
analysis is also iterative, but the estimates in this method generally require 
somewhat less computer effort than the least-squares and maximum likelihood 
estimates. In all methods, one eigensystem analysis is required on each iteration. 

Principal Component and Principal Factor Methods 

Both the principal component and principal factor methods compute the factor-
loading estimates as 

1/ 2ˆˆ �

��  

where � and the diagonal matrix � are the eigenvectors and eigenvalues of a 
matrix. In the principal component model, the eigensystem analysis is performed 
on the sample covariance (correlation) matrix S, while in the principal factor 
model, the matrix (S + 
) is used. If the unique error variances 
 are not known 
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in the principal factor mode, then imsls_f_factor_analysis obtains 
estimates for them. 

The basic idea in the principal component method is to find factors that maximize 
the variance in the original data that is explained by the factors. Because this 
method allows the unique errors to be correlated, some factor analysts insist that 
the principal component method is not a factor analytic method. Usually, 
however, the estimates obtained by the principal component model and factor 
analysis model will be quite similar. 

It should be noted that both the principal component and principal factor methods 
give different results when the correlation matrix is used in place of the 
covariance matrix. Indeed, any rescaling of the sample covariance matrix can lead 
to different estimates with either of these methods. A further difficulty with the 
principal factor method is the problem of estimating the unique error variances. 
Theoretically, these must be known in advance and be passed to 
imsls_f_factor_analysis using optional argument 
IMSLS_UNIQUE_VARIANCES_INPUT. In practice, the estimates of these 
parameters are produced by imsls_f_factor_analysis when 
IMSLS_UNIQUE_VARIANCES_INPUT is not specified. In either case, the resulting 
adjusted covariance (correlation) matrix 

ˆS ��  

may not yield the n_factors positive eigenvalues required for n_factors 
factors to be obtained. If this occurs, the user must either lower the number of 
factors to be estimated or give new unique error variance values. 

Least-squares and Maximum Likelihood Methods 

Unlike the previous two methods, the algorithm used to compute estimates in this 
section is iterative (see Jöreskog 1977). As with the principal factor model, the 
user may either initialize the unique error variances or allow 
imsls_f_factor_analysis to compute initial estimates. Unlike the principal 
factor method, imsls_f_factor_analysis optimizes the criterion function 
with respect to both 
 and �. (In the principal factor method, 
 is assumed to be 
known. Given 
, estimates for � may be obtained.) 

The major difference between the methods discussed in this section is in the 
criterion function that is optimized. Let S denote the sample covariance 
(correlation) matrix, and let � denote the covariance matrix that is to be estimated 
by the factor model. In the unweighted least-squares method, also called the 
iterated principal factor method or the minres method (see Harman 1976, p. 177), 
the function minimized is the sum-of-squared differences between S and �. This 
is written as �ul = 0.5 (trace (S � �)2). 

Generalized least-squares and maximum likelihood estimates are asymptotically 
equivalent methods. Maximum likelihood estimates maximize the (normal theory) 
likelihood {�ml = trace (�-1S) � log (��-1S|)}, while generalized least squares 
optimizes the function �gs = trace (�S-1 � I)2. 
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In all three methods, a two-stage optimization procedure is used. This proceeds 
by first solving the likelihood equations for � in terms of 
 and substituting the 
solution into the likelihood. This gives a criterion � (
, � (
)), which is 
optimized with respect to 
. In the second stage, the estimates  are obtained 
from the estimates for 
. 

�̂

The generalized least-squares and maximum likelihood methods allow for the 
computation of a statistic (IMSLS_CHI_SQUARED_TEST) for testing that 
n_factors common factors are adequate to fit the model. This is a chi-squared 
test that all remaining parameters associated with additional factors are 0. If the 
probability of a larger chi-squared is so small that the null hypothesis is rejected, 
then additional factors are needed (although these factors may not be of any 
practical importance). Failure to reject does not legitimize the model. The statistic 
IMSLS_CHI_SQUARED_TEST is a likelihood ratio statistic in maximum likelihood 
estimation. As such, it asymptotically follows a chi-squared distribution with 
degrees of freedom given by df. 

The Tucker and Lewis reliability coefficient, �, is returned by 
IMSLS_TUCKER_RELIABILITY_COEFFICIENT when the maximum likelihood 
or generalized least-squares methods are used. This coefficient is an estimate of 
the ratio of explained variation to the total variation in the data. It is computed as 
follows: 
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where �S� is the determinant of covariances, p = n_variables, 
k = n_variables, � is the optimized criterion, and d = df_covariances. 

Image Analysis Method 

The term image analysis is used here to denote the noniterative image method of 
Kaiser (1963). It is not the image analysis discussed by Harman (1976, p. 226). 
The image method (as well as the alpha-factor analysis method) begins with the 
notion that only a finite number from an infinite number of possible variables 
have been measured. The image factor pattern is calculated under the assumption 
that the ratio of the number of factors to the number of observed variables is near 
0, so that a very good estimate for the unique error variances (for standardized 
variables) is given as 1 minus the squared multiple correlation of the variable 
under consideration with all variables in the covariance matrix. 
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First, the matrix D2 = (diag (S-1) )-1 is computed where the operator “diag” 
results in a matrix consisting of the diagonal elements of its argument and S is the 
sample covariance (correlation) matrix. Then, the eigenvalues � and eigenvectors 
� of the matrix D-1SD-1 are computed. Finally, the unrotated image-factor pattern 
is computed as D� [(� � I)2�-1]1/2. 

Alpha-factor Analysis Method 

The alpha-factor analysis method of Kaiser and Caffrey (1965) finds factor-
loading estimates to maximize the correlation between the factors and the 
complete universe of variables of interest. The basic idea in this method is that 
only a finite number of variables out of a much larger set of possible variables is 
observed. The population factors are linearly related to this larger set, while the 
observed factors are linearly related to the observed variables. Let f denote the 
factors obtainable from a finite set of observed random variables, and let � denote 
the factors obtainable from the universe of observable variables. Then, the alpha 
method attempts to find factor-loading estimates so as to maximize the correlation 
between f and �. In order to obtain these estimates, the iterative algorithm of 
Kaiser and Caffrey (1965) is used. 

Rotation Methods 

The IMSLS_ORTHOMAX_ROTATION optional argument performs an orthogonal 
rotation according to an orthomax criterion. In this analytic method of rotation, 
the criterion function 

2
4 2
ir ir

i r r i
Q

p
�

� �
� �

� � � �
� �

�� � �  

is minimized by finding an orthogonal rotation matrix T such that (�ij) = � = AT 
where A is the matrix of unrotated factor loadings. Here, � � 0 is a user-specified 
constant (W) yielding a family of rotations, and p is the number of variables.  

Kaiser (row) normalization can be performed on the factor loadings prior to 
rotation by specifying the parameter norm =1. In Kaiser normalization, the rows 
of A are first “normalized” by dividing each row by the square root of the sum of 
its squared elements (Harman 1976). After the rotation is complete, each row of b 
is “denormalized” by multiplication by its initial normalizing constant.  

The method for optimizing Q proceeds by accumulating simple rotations where a 
simple rotation is defined to be one in which Q is optimized for two columns in � 
and for which the requirement that T be orthogonal is satisfied. A single iteration 
is defined to be such that each of the n_factors(n_factors � 1)/2 possible 
simple rotations is performed where n_factors is the number of factors. When 
the relative change in Q from one iteration to the next is less than EPS (the user-
specified convergence criterion), the algorithm stops. eps = 0.0001 is usually 
sufficient. Alternatively, the algorithm stops when the user-specified maximum 
number of iterations, max_iterations, is reached. max_iterations = 30 is 
usually sufficient.  
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The parameter in the rotation, �, is used to provide a family of rotations. When  
� = 0.0, a direct quartimax rotation results. Other values of � yield other rotations. 

The IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION optional argument performs 
orthogonal Procrustes rotation according to a method proposed by Schöneman 
(1966). Let k = n_factors denote the number of factors, p = n_variables 
denote the number of variables, A denote the p × k matrix of unrotated factor 
loadings, T denote the k × k orthogonal rotation matrix (orthogonality requires 
that TT T be a k × k identity matrix), and let X denote the target matrix. The basic 
idea in orthogonal Procrustes rotation is to find an orthogonal rotation matrix T 
such that B = AT and T provides a least-squares fit between the target matrix X 
and the rotated loading matrix B. Schöneman’s algorithm proceeds by finding the 
singular value decomposition of the matrix AT X = U�VT. The rotation matrix is 
computed as T = UVT. 

The IMSLS_DIRECT_OBLIMIN_ROTATION optional argument performs direct 
oblimin rotation. In this analytic method of rotation, the criterion function 

2 2 2 2
ir is ir is

r s i i i

Q
p
�

� � � �
�

� �
� �� �

� �
� � � �  

is minimized by finding a rotation matrix T such that (�ir) = � = AT and (TT T )�� 
is a correlation matrix. Here, � � 0 is a user-specified constant (w) yielding a 
family of rotations, and p is the number of variables. The rotation is said to be 
direct because it minimizes Q with respect to the factor loadings directly, ignoring 
the reference structure. 

Kaiser normalization can be performed on the factor loadings prior to rotation via 
the parameter norm. In Kaiser normalization (see Harman 1976), the rows of the 
factor loading matrix are first “normalized” by dividing each row by the square 
root of the sum of its squared elements. After the rotation is complete, each row 
of b is “denormalized” by multiplication by its initial normalizing constant. 

The method for optimizing Q is essentially the method first proposed by Jennrich 
and Sampson (1966). It proceeds by accumulating simple rotations where a 
simple rotation is defined to be one in which Q is optimized for a given factor in 
the plane of a second factor, and for which the requirement that  (TTT)�� be a 
correlation matrix is satisfied. An iteration is defined to be such that each of the 
n_factors[n_factors � 1] possible simple rotations is performed, where 
n_factors is the number of factors. When the relative change in Q from one 
iteration to the next is less than eps (the user-specified convergence criterion), 
the algorithm stops. eps = .0001 is usually sufficient. Alternatively, the algorithm 
stops when the user-specified maximum number of iterations, max_iterations, 
is reached. max_iterations = 30 is usually sufficient. 

The parameter in the rotation, �, is used to provide a family of rotations. Harman 
(1976) recommends that � be strictly less than or equal to zero. When � = 0.0, a 
direct quartimin rotation results. Other values of � yield other rotations. Harman 
(1976) suggests that the direct quartimin rotations yield the most highly correlated 
factors while more orthogonal factors result as � approaches ��. 
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IMSLS_OBLIQUE_PROMAX_ROTATION, 
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION, 
IMSLS_OBLIQUE_PROCRUSTES_ROTATION, optional arguments performs 
oblique rotations using the Promax, pivotal Promax, or oblique Procrustes 
methods. In all of these methods, a target matrix X is first either computed or 
specified by the user. The differences in the methods relate to how the target 
matrix is first obtained. 

Given a p × k target matrix, X, and a p × k orthogonal matrix of unrotated factor 
loadings, A, compute the rotation matrix T as follows: First regress each column 
of A on X yielding a k × k matrix �. Then, let � = diag(�T �) where diag denotes 
the diagonal matrix obtained from the diagonal of the square matrix. Standardize 
� to obtain T = ����� �. The rotated loadings are computed as B = AT while the 
factor correlations can be computed as the inverse of the T TT matrix. 

In the Promax method, the unrotated factor loadings are first rotated according to 
an orthomax criterion via optional argument IMSLS_ORTHOMAX_ROTATION . The 
target matrix X is taken as the elements of the B raised to a power greater than 
one but retaining the same sign as the original loadings. The column i of the 
rotated matrix B is raised to the power power[i]. A power of four is commonly 
used. Generally, the larger the power, the more oblique the solution. 

In the pivotal Promax method, the unrotated matrix is first rotated to an orthomax 
orthogonal solution as in the Promax case. Then, rather than raising the i-th 
column in B to the power pivot[i], the elements xij of X are obtained from the 
elements bij of B by raising the ij element of B to the power pivot[i]/bij. This 
has the effects of greatly increasing in X those elements in B that are greater in 
magnitude than the pivot elements pivot[i], and of greatly decreasing those 
elements that are less than pivot[i]. 

In the oblique Procrustes method, the elements of X are specified by the user as 
input to the routine via the target argument. No orthogonal rotation is 
performed in the oblique Procrustes method. 

Factor Structure and Variance  

The IMSLS_FACTOR_STRUCTURE optional argument computes the factor 
structure matrix (the matrix of correlations between the observed variables and 
the hypothesized factors) and the variance explained by each of the factors (for 
orthogonal rotations). For oblique rotations, IMSLS_FACTOR_STRUCTURE 
computes a measure of the importance of the factors, the sum of the squared 
elements in each column.  

Let � denote the diagonal matrix containing the elements of the variance of the 
original data along its diagonal. The estimated factor structure matrix S is 
computed as 

1
2 1( )TS A T� �� �  

while the elements of fvar are computed as the diagonal elements of 
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If the factors were obtained from a correlation matrix (or the factor variances for 
standardized variables are desired), then the variances should all be 1.0.   

Comments 
1. Function imsls_f_factor_analysis makes no attempt to solve for 

n_factors. In general, if n_factors is not known in advance, several 
different values of n_factors should be used and the most reasonable 
value kept in the final solution. 

2. Iterative methods are generally thought to be superior from a theoretical 
point of view, but in practice, often lead to solutions that differ little 
from the noniterative methods. For this reason, it is usually suggested 
that a noniterative method be used in the initial stages of the factor 
analysis and that the iterative methods be used when issues such as the 
number of factors have been resolved. 

3. Initial estimates for the unique variances can be input. If the iterative 
methods fail for these values, new initial estimates should be tried. These 
can be obtained by use of another factoring method. (Use the final 
estimates from the new method as the initial estimates in the old 
method.) 

Examples 

Example 1 
In this example, factor analysis is performed for a nine-variable matrix using the 
default method of unweighted least squares. 

#include <stdio.h> 
#include <imsls.h> 
#include <stdlib.h> 

main() 
{ 
#define N_VARIABLES 9 
#define N_FACTORS   3 
    float *a; 
 
    float covariances[N_VARIABLES][N_VARIABLES] = { 
        1.0,   0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639, 
        0.523, 1.0,   0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645, 
        0.395, 0.479, 1.0,   0.355, 0.27,  0.254, 0.452, 0.219, 0.504, 
        0.471, 0.506, 0.355, 1.0,   0.691, 0.791, 0.443, 0.285, 0.505, 
        0.346, 0.418, 0.27,  0.691, 1.0,   0.679, 0.383, 0.149, 0.409, 
        0.426, 0.462, 0.254, 0.791, 0.679, 1.0,   0.372, 0.314, 0.472, 
        0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,   0.385, 0.68, 
        0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0,   0.47, 
        0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68,  0.47,  1.0}; 
 
                        /* Perform analysis */ 
    a = imsls_f_factor_analysis (9, covariances, 3, 0); 
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                        /* Print results */ 
    imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS,  
        a, 0); 
 
    free(a); 
} 

Output 
         Unrotated Loadings 
            1           2           3 
1      0.7018     -0.2316      0.0796 
2      0.7200     -0.1372     -0.2082 
3      0.5351     -0.2144     -0.2271 
4      0.7907      0.4050      0.0070 
5      0.6532      0.4221     -0.1046 
6      0.7539      0.4842      0.1607 
7      0.7127     -0.2819     -0.0701 
8      0.4835     -0.2627      0.4620 
9      0.8192     -0.3137     -0.0199 

Example 2 
The following data were originally analyzed by Emmett (1949). There are 211 
observations on 9 variables. Following Lawley and Maxwell (1971), three factors 
are obtained by the method of maximum likelihood. 

#include <stdio.h> 
#include <imsls.h> 
#include <stdlib.h> 

main() 
{ 
#define N_VARIABLES 9 
#define N_FACTORS   3 
    float *a; 
    float *evals; 
    float chi_squared, p_value, reliability_coef, function_min; 
    int   chi_squared_df, n_iterations; 
    float uniq[N_VARIABLES]; 
 
    float covariances[N_VARIABLES][N_VARIABLES] = { 
        1.0,   0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639, 
        0.523, 1.0,   0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645, 
        0.395, 0.479, 1.0,   0.355, 0.27,  0.254, 0.452, 0.219, 0.504, 
        0.471, 0.506, 0.355, 1.0,   0.691, 0.791, 0.443, 0.285, 0.505, 
        0.346, 0.418, 0.27,  0.691, 1.0,   0.679, 0.383, 0.149, 0.409, 
        0.426, 0.462, 0.254, 0.791, 0.679, 1.0,   0.372, 0.314, 0.472, 
        0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,   0.385, 0.68, 
        0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0,   0.47, 
        0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68,  0.47,  1.0}; 
 
                           /* Perform analysis */ 
    a = imsls_f_factor_analysis (9, covariances, 3,  
        IMSLS_MAXIMUM_LIKELIHOOD,           210, 
        IMSLS_SWITCH_EXACT_HESSIAN,         0.01, 
        IMSLS_CONVERGENCE_EPS,              0.000001, 
        IMSLS_MAX_ITERATIONS,               30, 
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        IMSLS_MAX_STEPS_LINE_SEARCH,        10, 
        IMSLS_EIGENVALUES,                  &evals, 
        IMSLS_UNIQUE_VARIANCES_OUTPUT,      uniq, 
        IMSLS_CHI_SQUARED_TEST, 
            &chi_squared_df, 
            &chi_squared, 
            &p_value, 
        IMSLS_TUCKER_RELIABILITY_COEFFICIENT, &reliability_coef, 
        IMSLS_N_ITERATIONS,                 &n_iterations, 
        IMSLS_FUNCTION_MIN,                 &function_min, 
        0); 
 
                         /* Print results */ 
    imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS,  
        a, 0); 
    imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, evals, 0); 
    imsls_f_write_matrix("Unique Error Variances", 1, N_VARIABLES,  
        uniq, 0); 
    printf("\n\nchi_squared_df =    %d\n", chi_squared_df); 
    printf("chi_squared =       %f\n", chi_squared); 
    printf("p_value =           %f\n\n", p_value); 
    printf("reliability_coef = %f\n", reliability_coef); 
    printf("function_min =      %f\n", function_min); 
    printf("n_iterations =      %d\n", n_iterations); 
 
    free(evals); 
    free(a); 
} 

Output 
         Unrotated Loadings 
            1           2           3 
1      0.6642     -0.3209      0.0735 
2      0.6888     -0.2471     -0.1933 
3      0.4926     -0.3022     -0.2224 
4      0.8372      0.2924     -0.0354 
5      0.7050      0.3148     -0.1528 
6      0.8187      0.3767      0.1045 
7      0.6615     -0.3960     -0.0777 
8      0.4579     -0.2955      0.4913 
9      0.7657     -0.4274     -0.0117 
  
                              Eigenvalues 
         1           2           3           4           5           6 
     0.063       0.229       0.541       0.865       0.894       0.974 
  
         7           8           9 
     1.080       1.117       1.140 
  
                        Unique Error Variances 
         1           2           3           4           5           6 
    0.4505      0.4271      0.6166      0.2123      0.3805      0.1769 
  
         7           8           9 
    0.3995      0.4615      0.2309 
 
 
chi_squared_df =    12 
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chi_squared =       7.149356 
p_value =           0.847588 
 
reliability_coef = 1.000000 
function_min =      0.035017 
n_iterations =      5 

Example 3 
This example is a continuation of example 1 and illustrates the use of the 
IMSLS_FACTOR_STRUCTURE optional argument when the structure and an index 
of factor importance for obliquely rotated loadings are desired.   A direct oblimin 
rotation is used to compute the factors, derived from nine variables and using � = 
�1.  Note in this example that the elements of fvar are not variances since the 
rotation is oblique. 

 
#include <stdio.h> 
#include <imsls.h> 
#include <stdlib.h> 
void main() 
{ 
#define N_VARIABLES 9 
#define N_FACTORS   3 
    float *a; 
    float w= -1.0; 
    int   norm=1; 
    float *b, *t, *fcor; 
    float *s, *fvar; 
    float covariances[9][9] = { 
        1.0,   0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639, 
        0.523, 1.0,   0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645, 
        0.395, 0.479, 1.0,   0.355, 0.27,  0.254, 0.452, 0.219, 0.504, 
        0.471, 0.506, 0.355, 1.0,   0.691, 0.791, 0.443, 0.285, 0.505, 
        0.346, 0.418, 0.27,  0.691, 1.0,   0.679, 0.383, 0.149, 0.409, 
        0.426, 0.462, 0.254, 0.791, 0.679, 1.0,   0.372, 0.314, 0.472, 
        0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,   0.385, 0.68, 
        0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0,   0.47, 
        0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68,  0.47,  1.0}; 

 
                           /* Perform analysis */ 
    a = imsls_f_factor_analysis (9, (float *)covariances, 3, 
        IMSLS_MAXIMUM_LIKELIHOOD,           210, 
        IMSLS_SWITCH_EXACT_HESSIAN,         0.01, 
        IMSLS_CONVERGENCE_EPS,              0.00001, 
        IMSLS_MAX_ITERATIONS,               30, 
        IMSLS_MAX_STEPS_LINE_SEARCH,        10, 
        IMSLS_DIRECT_OBLIMIN_ROTATION, w, norm, &b, &t, &fcor, 
        IMSLS_FACTOR_STRUCTURE, &s, &fvar, 
        0); 
 
                         /* Print results */ 
 
    imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS, 
        a, 0); 
    imsls_f_write_matrix("Rotated Loadings", N_VARIABLES, N_FACTORS, 
        b, 0); 
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    imsls_f_write_matrix("Transformation Matrix", N_FACTORS, N_FACTORS, 
        t, 0);  
    imsls_f_write_matrix("Factor Correlation Matrix", N_FACTORS, N_FACTORS, 
        fcor, 0); 
    imsls_f_write_matrix("Factor Structure",  N_VARIABLES,  
        N_FACTORS,s,0); 
    imsls_f_write_matrix("Factor Variance", 1, N_FACTORS, fvar, 0); 
} 

Output 
         Unrotated Loadings 
            1           2           3 
1      0.6642     -0.3209      0.0735 
2      0.6888     -0.2471     -0.1933 
3      0.4926     -0.3022     -0.2224 
4      0.8372      0.2924     -0.0354 
5      0.7050      0.3148     -0.1528 
6      0.8187      0.3767      0.1045 
7      0.6615     -0.3960     -0.0777 
8      0.4579     -0.2955      0.4913 
9      0.7657     -0.4274     -0.0117 
  
          Rotated Loadings 
            1           2           3 
1      0.1128     -0.5144      0.2917 
2      0.1847     -0.6602     -0.0018 
3      0.0128     -0.6354     -0.0585 
4      0.7797     -0.1751      0.0598 
5      0.7147     -0.1813     -0.0959 
6      0.8520      0.0039      0.1820 
7      0.0354     -0.6844      0.1510 
8      0.0276     -0.0941      0.6824 
9      0.0729     -0.7100      0.2493 
  
        Transformation Matrix 
            1           2           3 
1       0.611      -0.462       0.203 
2       0.923       0.813      -0.249 
3       0.042       0.728       1.050 
  
      Factor Correlation Matrix 
            1           2           3 
1       1.000      -0.427       0.217 
2      -0.427       1.000      -0.411 
3       0.217      -0.411       1.000 
  
          Factor Structure 
            1           2           3 
1      0.3958     -0.6824      0.5275 
2      0.4662     -0.7383      0.3094 
3      0.2714     -0.6169      0.2052 
4      0.8675     -0.5326      0.3011 
5      0.7713     -0.4471      0.1339 
6      0.8899     -0.4347      0.3656 
7      0.3605     -0.7616      0.4398 
8      0.2161     -0.3861      0.7271 
9      0.4302     -0.8435      0.5568 
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          Factor Variance 
         1           2           3 
     2.170       2.560       0.914 
  
 

Warning Errors 
IMSLS_VARIANCES_INPUT_IGNORED When using the 

IMSLS_PRINCIPAL_COMPONENT 
option, the unique variances are 
assumed to be zero. Input for 
IMSLS_UNIQUE_VARIANCES_INPUT is 
ignored. 

IMSLS_TOO_MANY_ITERATIONS Too many iterations. Convergence is 
assumed. 

IMSLS_NO_DEG_FREEDOM  There are no degrees of freedom for the 
significance testing. 

IMSLS_TOO_MANY_HALVINGS  Too many step halvings. Convergence is 
assumed. 

IMSLS_NO_ROTATION n_factors = 1. No rotation is 
possible. 

IMSLS_SVD_ERROR An error occurred in the singular value 
decomposition of tran(A)*X.  The 
rotation matrix, T, may not be correct. 

Fatal Errors 
IMSLS_HESSIAN_NOT_POS_DEF  The approximate Hessian is not semi-

definite on iteration #. The computations 
cannot proceed. Try using different initial 
estimates. 

IMSLS_FACTOR_EVAL_NOT_POS  “eigenvalues[#]” = #. An eigenvalue 
corresponding to a factor is negative or 
zero. Either use different initial estimates 
for “unique_variances” or reduce the 
number of factors. 

IMSLS_COV_NOT_POS_DEF  “covariances” is not positive semi-definite. 
The computations cannot proceed. 

IMSLS_COV_IS_SINGULAR  The matrix “covariances” is singular. The 
computations cannot continue because 
variable # is linearly related to the 
remaining variables. 
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IMSLS_COV_EVAL_ERROR  An error occurred in calculating the 
eigenvalues of the adjusted (inverse) 
covariance matrix. Check “covariances.” 

IMSLS_ALPHA_FACTOR_EVAL_NEG In alpha factor analysis on iteration #, 
eigenvalue # is #. As all eigenvalues 
corresponding to the factors must be 
positive, either the number of factors must 
be reduced or new initial estimates for 
“unique_variances” must be given. 

IMSLS_RANK_LESS_THAN The rank of TRAN(A)*target = #. This 
must be greater than or equal to 
n_factors = #. 

discriminant_analysis 
Performs a linear or a quadratic discriminant function analysis among several 
known groups. 

Synopsis 

#include <imsls.h> 
void imsls_f_discriminant_analysis (int n_rows, int n_variables, 

float *x, int n_groups, ..., 0) 

The type double function is imsls_d_discriminant_analysis. 

Required Arguments 

int n_rows   (Input) 
Number of rows of x to be processed. 

int n_variables   (Input) 
Number of variables to be used in the discrimination. 

float *x   (Input) 
Array of size n_rows by n_variables + 1 containing the data. The 
first n_variables columns correspond to the variables, and the last 
column (column n_variables) contains the group numbers. The 
groups must be numbered 1, 2, ..., n_groups. 

int n_groups   (Input) 
Number of groups in the data. 

Synopsis with Optional Arguments 
#include <imsls.h> 

void imsls_f_discriminant_analysis (int n_rows, int n_variables, 
float *x, int n_groups,  
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IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,  
IMSLS_METHOD, int method, 
IMSLS_IDO, int ido, 
IMSLS_ROWS_ADD, 
IMSLS_ROWS_DELETE, 
IMSLS_PRIOR_EQUAL, 
IMSLS_PRIOR_PROPORTIONAL, 
IMSLS_PRIOR_INPUT, float prior_input[], 
IMSLS_PRIOR_OUTPUT, float **prior_output 
IMSLS_PRIOR_OUTPUT_USER, float prior_output[] 
IMSLS_GROUP_COUNTS, int **gcounts, 
IMSLS_GROUP_COUNTS_USER, int gcounts[] 
IMSLS_MEANS, float **means, 
IMSLS_MEANS_USER, float means[], 
IMSLS_COV, float **covariances, 
IMSLS_COV_USER, float covariances[], 
IMSLS_COEF, float **coefficients 
IMSLS_COEF_USER, float coefficients[], 
IMSLS_CLASS_MEMBERSHIP, int **class_membership, 
IMSLS_CLASS_MEMBERSHIP_USER, int class_membership[], 
IMSLS_CLASS_TABLE, float **class_table, 
IMSLS_CLASS_TABLE_USER, float class_table[], 
IMSLS_PROB, float **prob, 
IMSLS_PROB_USER, float prob[], 
IMSLS_MAHALANOBIS, float **d2, 
IMSLS_MAHALANOBIS_USER, float d2[], 
IMSLS_STATS, float **stats, 
IMSLS_STATS_USER, float stats[], 
IMSLS_N_ROWS_MISSING, int *nrmiss, 
0) 

Optional Arguments 
IMSLS_X_COL_DIM, int x_col_dim   (Input) 

Column dimension of array x. 
Default: x_col_dim = n_variables + 1 

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt   (Input) 
Each of the four arguments contains indices indicating column numbers 
of x in which particular types of data are stored. Columns are numbered 
0 � x_col_dim � 1. 

Parameter igrp contains the index for the column of x in which the 
group numbers are stored. 

Parameter ind contains the indices of the variables to be used in the 
analysis.  
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Parameters ifrq and iwt contain the column numbers of x in which the 
frequencies and weights, respectively, are stored. Set ifrq = �1 if there 
will be no column for frequencies. Set iwt = �1 if there will be no 
column for weights. Weights are rounded to the nearest integer. 
Negative weights are not allowed. 

Defaults: igrp = n_variables, ind[] = 0, 1, ..., n_variables � 1, 
ifrq = �1, and iwt = �1  

IMSLS_METHOD, int method   (Input) 
Method of discrimination. The method chosen determines whether linear 
or quadratic discrimination is used, whether the group covariance 
matrices are computed (the pooled covariance matrix is always 
computed), and whether the leaving-out-one or the reclassification 
method is used to classify each observation. 

method discrimination 
method 

covariances 
computed 

classification 
method 

1 linear pooled, group reclassification 
2 quadratic pooled, group reclassification 
3 linear pooled reclassification 
4 linear pooled, group leaving-out-one 
5 quadratic pooled, group leaving-out-one 
6 linear pooled leaving-out-one 

In the leaving-out-one method of classification, the posterior 
probabilities are adjusted so as to eliminate the effect of the observation 
from the sample statistics prior to its classification. In the classification 
method, the effect of the observation is not eliminated from the 
classification function. 

When optional argument IMSLS_IDO is specified, the following rules 
for mixing methods apply; Methods 1, 2, 4, and 5 can be intermixed, as 
can methods 3 and 6. Methods 1, 2, 4, and 5 cannot be intermixed with 
methods 3 and 6.  

Default: method = 1 

IMSLS_IDO, int ido   (Input) 
Processing option. See Comments 3 and 4 for more information. 

ido Action 
0 This is the only invocation; all the data are input at once. 

(Default) 
1 This is the first invocation with this data; additional calls will 

be made. Initialization and updating for the n_rows 
observations of x will be performed. 
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ido Action 
2 This is an intermediate invocation; updating for the n_rows 

observations of x will be performed. 
3 All statistics are updated for the n_rows observations. The 

discriminant functions and other statistics are computed. 
4 The discriminant functions are used to classify each of the 

n_rows observations of x. 
5 The covariance matrices are computed, and workspace is 

released. No further call to discriminant_analysis with 
ido greater than 1 should be made without first calling 
discriminant_analysis with ido = 1. 

6 Workspace is released. No further calls to 
discriminant_analysis with ido greater than 1 should be 
made without first calling discriminant_analysis with 
ido = 1. Invocation with this option is not required if a call has 
already been made with ido = 5. 

Default: ido = 0 
IMSLS_ROWS_ADD, or 
IMSLS_ROWS_DELETE   (Input) 

By default (or if IMSLS_ROWS_ADD is specified), then the observations 
in x are added to the discriminant statistics. If IMSLS_ROWS_DELETE is 
specified, then the observations are deleted. 

If ido = 0, these optional arguments are ignored (data is always added if 
there is only one invocation). 

IMSLS_PRIOR_EQUAL, or 
IMSLS_PRIOR_PROPORTIONAL, or 
IMSLS_PRIOR_INPUT, float prior_input[]   (Input) 

By default, (or if IMSLS_PRIOR_EQUAL is specified), equal prior 
probabilities are calculated as 1.0/n_groups. 

If IMSLS_PRIOR_PROPORTIONAL is specified, prior probabilities are 
calculated to be proportional to the sample size in each group.  

If IMSLS_PRIOR_INPUT is specified, then array prior_input is an 
array of length n_groups containing the prior probabilities for each 
group, such that the sum of all prior probabilities is equal to 1.0. Prior 
probabilities are not used if ido is equal to 1, 2, 5, or 6. 

IMSLS_PRIOR_OUTPUT, float **prior_output   (Output) 
Address of a pointer to an array of length n_groups containing the most 
recently calculated or input prior probabilities. If 
IMSLS_PRIOR_PROPORTIONAL is specified, every element of 
prior_output is equal to �1 until a call is made with ido equal to 0 or 
3, at which point the priors are calculated. Note that subsequent calls to 
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discriminant_analysis with IMSLS_PRIOR_PROPORTIONAL 
specified, and ido not equal to 0 or 3 will result in the elements of 
prior_output being reset to �1. 

IMSLS_PRIOR_OUTPUT_USER, float prior_output[]   (Output) 
Storage for array prior_output is provided by the user. See 
IMSLS_PRIOR_OUTPUT. 

IMSLS_GROUP_COUNTS, int **gcounts   (Output) 
Address of a pointer to an integer array of length n_groups containing 
the number of observations in each group. Array gcounts is updated 
when ido is equal to 0, 1, or 2. 

IMSLS_GROUP_COUNTS_USER, int gcounts[]   (Output) 
Storage for integer array gcounts is provided by the user. See 
IMSLS_GROUP_COUNTS. 

IMSLS_MEANS, float **means   (Output) 
Address of a pointer to an array of size n_groups by n_variables. 
The i-th row of means contains the group i variable means. Array means 
is updated when ido is equal to 0, 1, 2, or 5. The means are unscaled 
until a call is made with ido = 5. where the unscaled means are 
calculated as �wifi xi and the scaled means as 

i i i

i i

w f x
w f

�
�

 

where xi is the value of the i-th observation, wi is the weight of the i-th 
observation, and fi is the frequency of the i-th observation. 

IMSLS_MEANS_USER, float means[]   (Output) 
Storage for array means is provided by the user. See IMSLS_MEANS. 

IMSLS_COV, float **covariances   (Output) 
Address of a pointer to an array of size g by n variables by 
n_variables containing the within-group covariance matrices 
(methods 1, 2, 4, and 5 only) as the first g-1 matrices, and the pooled 
covariance matrix as the g-th matrix (that is, the first 
n_variables � n_variables elements comprise the group 1 
covariance matrix, the next n_variables � n_variables elements 
comprise the group 2 covariance, ..., and the last 
n_variables � n_variables elements comprise the pooled 
covariance matrix). If method is 3 or 6 then g is equal to 1. Otherwise, g 
is equal to n_groups + 1. Argument cov is updated when ido is equal 
to 0, 1, 2, 3, or 5. 

IMSLS_COV_USER, float covariances[]   (Output) 
Storage for array covariances is provided by the user. See 
IMSLS_COVARIANCES. 
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IMSLS_COEF, float **coefficients   (Output) 
Address of a pointer to an array of size n_groups by  
(n_variables + 1) containing the linear discriminant coefficients. The 
first column of coefficients contains the constant term, and the 
remaining columns contain the variable coefficients. Row i � 1 of 
coefficients corresponds to group i, for  
i = 1, 2, ..., n_variables + 1. Array coefficients are always 
computed as the linear discriminant function coefficients even when 
quadratic discrimination is specified. 

Array coefficients is updated when ido is equal to 0 or 3. 

IMSLS_COEF_USER, float coefficients[]   (Output) 
Storage for array coefficients is provided by the user. See 
IMSLS_COEFFICIENTS. 

IMSLS_CLASS_MEMBERSHIP, int **class_membership   (Output) 
Address of a pointer to an integer array of length n_rows containing the 
group to which the observation was classified. Array 
class_membership is updated when ido is equal to 0 or 4. 

If an observation has an invalid group number, frequency, or weight 
when the leaving-out-one method has been specified, then the 
observation is not classified and the corresponding elements of 
class_membership (and prob, see IMSLS_PROB) are set to zero. 

IMSLS_CLASS_MEMBERSHIP_USER, int class_membership[]   (Ouput) 
Storage for array class_membership is provided by the user. See 
IMSLS_CLASS_MEMBERSHIP. 

IMSLS_CLASS_TABLE, float **class_table   (Output) 
Address of a pointer to an array of size n_groups by n_groups 
containing the classification table. Array class_table is updated when 
ido is equal to 0, 1, or 4. Each observation that is classified and has a 
group number 1.0, 2.0, ..., n_groups is entered into the table. The rows 
of the table correspond to the known group membership. The columns 
refer to the group to which the observation was classified. Classification 
results accumulate with each call to 
imsls_f_discriminant_analysis with ido equal to 4. For 
example, if two calls with ido equal to 4 are made, the elements in 
class_table sum to the total number of valid observations in the two 
calls. 

IMSLS_CLASS_TABLE_USER, float class_table[]   (Output) 
Storage for array class_table is provided by the user. See 
IMSLS_CLASS_TABLE. 

IMSLS_PROB, float **prob   (Output) 
Address of a pointer to an array of size n_rows by n_groups 
containing the posterior probabilities for each observation. Argument 
prob is updated when ido is equal to 0 or 4. 
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IMSLS_PROB_USER, float prob[]   (Output) 
Storage for array prob is provided by the user. See IMSLS_PROB. 

IMSLS_MAHALANOBIS, float **d2   (Output) 
Address of a pointer to an array of size n_groups by n_groups 
containing the Mahalanobis distances  

2
ijD  

between the group means. Argument d2 is updated when ido is equal to 
0 or 3. 

For linear discrimination, the Mahalanobis distance is computed using 
the pooled covariance matrix. Otherwise, the Mahalanobis distance  

2
ijD  

between group means i and j is computed using the within covariance 
matrix for group i in place of the pooled covariance matrix. 

IMSLS_MAHALANOBIS_USER, float d2[]   (Output) 
Storage for array d2 is provided by the user. See IMSLS_MAHALANOBIS. 

IMSLS_STATS, float **stats   (Output) 
Address of a pointer to an array of length 4 + 2 � (n_groups + 1) 
containing various statistics of interest. Array stats is updated when 
ido is equal to 0, 1, 3, or 5. The first element of stats is the sum of the 
degrees of freedom for the within-covariance matrices. The second, 
third, and fourth elements of stats correspond to the chi-squared 
statistic, its degrees of freedom, and the probability of a greater  
chi-squared, respectively, of a test of the homogeneity of the within-
covariance matrices (not computed if method is equal to 3 or 6). The 
fifth through 5 + n_groups elements of stats contain the log of the 
determinants of each group’s covariance matrix (not computed if 
method is equal to 3 or 6) and of the pooled covariance matrix (element 
4 + n_groups). Finally, the last n_groups + 1 elements of stats 
contain the sum of the weights within each group, and in the last 
position, the sum of the weights in all groups. 

IMSLS_STATS_USER, float stats[]   (Output) 
Storage for array stats is provided by the user. See 
IMSLS_STATS_USER. 

IMSLS_N_ROWS_MISSING, int *nrmiss   (Output) 
Number of rows of data encountered in calls to 
discriminant_analysis containing missing values (NaN) for the 
classification, group, weight, and/or frequency variables. If a row of data 
contains a missing value (NaN) for any of these variables, that row is 
excluded from the computations. 

Array nrmiss is updated when ido is equal to 0, 1, 2, or 3. 
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Comments 
1. Common choices for the Bayesian prior probabilities are given by: 

prior_input[i] = 1.0�n_groups   (equal priors) 
prior_input[i] = gcounts�n_rows   (proportional priors) 
prior_input[i] = Past history or subjective judgment. 
In all cases, the priors should sum to 1.0. 

2. Two passes of the data are made. In the first pass, the statistics required 
to compute the discriminant functions are obtained (ido equal to 1, 2, 
and 3). In the second pass, the discriminant functions are used to classify 
the observations. When ido is equal to 0, all of the data are memory 
resident, and both passes are made in one call to 
imsls_f_discriminant_analysis. When ido > 0 (optional 
argument IMSLS_IDO is specified), a third call to 
imsls_f_discriminant_analysis involving no data is required 
with ido equal to 5 or 6. 

3. Here are a few rules and guidelines for the correct value of ido in a 
series of calls: 

1 Calls with ido = 0 or ido = 1 may be made at any time, subject 
to rule 2. These calls indicate that a new analysis is to begin, 
and therefore allocate memory and destroy all statistics from 
previous calls. 

2 Each series of calls to imsls_f_discriminant_analysis 
which begins with ido = 1 must end with ido equal to 5 or 6 to 
ensure the proper release of workspace, subject to rule 3. 

3 ido may not be 4 or 5 before a call with ido = 3 has been 
made. 

4 ido may not be 2, 3, 4, 5, or 6 
a) Immediately after a call with ido = 0. 
b) Before a call with ido = 1 has been made. 
c) Immediately after a call with ido equal to 5 or 6 has been 
made. 

The following is a valid sequence of ido’s: 

ido Explanation 
0 Data Set A: Perform a complete analysis. All data to be used in the 

analysis must be present in x. Since cleanup of workspace is automatic 
for ido = 0, no further calls are necessary. 

1 Data Set B: Begin analysis. The n_rows observations in x are used for 
initialization. 

2 Data Set B: Continue analysis. New observations placed in x are added 
to (or deleted from, see IMSLS_ROWS_DELETE) the analysis. 
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ido Explanation 
2 Data Set B: Continue analysis. n_rows new observations placed in x 

are added to (or deleted from, see IMSLS_ROWS_DELETE) the analysis. 
3 Data Set B: Continue analysis. n_rows new observations are added (or 

deleted) and discriminant functions and other statistics are computed. 
4 Data Set B: Classification of each of the n_rows observations in the 

current x matrix. 
5 Data Set B: End analysis. Covariance matrices are computed and 

workspace is released. This analysis could also have been ended by 
choosing ido = 6 

1 Data Set C: Begin analysis. Note that for this call to be valid the 
previous call must have been made with ido equal to 5 or 6. 

3 Data Set C: Continue analysis. 
4 Data Set C: Continue analysis. 
3 Data Set C: Continue analysis. 
6 Data Set C: End analysis. 

4. Because of the internal workspace allocation and saved variables, 
function imsls_f_discriminant_analysis must complete the 
analysis of a data set before beginning processing of the next data set. 

Return Value 
The return value is void. 

Description 
Function imsls_f_discriminant_analysis performs discriminant function 
analysis using either linear or quadratic discrimination. The output includes a 
measure of distance between the groups, a table summarizing the classification 
results, a matrix containing the posterior probabilities of group membership for 
each observation, and the within-sample means and covariance matrices. The 
linear discriminant function coefficients are also computed. 

By default (or if optional argument IMSLS_IDO is specified with ido = 0) all 
observations are input during one call, a method of operation that has the 
advantage of simplicity. Alternatively, one or more rows of observations can be 
input during separate calls. This method does not require that all observations be 
memory resident, a significant advantage with large data sets. Note, however, that 
the algorithm requires two passes of the data. During the first pass the 
discriminant functions are computed while in the second pass, the observations 
are classified. Thus, with the second method of operation, the data will usually 
need to be input twice. 
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Because both methods result in the same operations being performed, the 
algorithm is discussed as if only a few observations are input during each call. 
The operations performed during each call depend upon the ido parameter.  

The ido = 1 step is the initialization step. “Private” internally allocated saved 
variables corresponding to means, class_table, and covariances are 
initialized to zero, and other program parameters are set (copies of these private 
variables are written to the corresponding output variables upon return from the 
function call, assuming ido values such that the results are to be returned). 
Parameters n_rows, x, and method can be changed from one call to the next 
within the two sets {1, 2, 4, 5} and {3, 6} but not between these sets when 
ido > 1. That is, do not specify method = 1 in one call and method = 3 in 
another call without first making a call with ido = 1. 

After initialization has been performed in the ido = 1 step, the within-group 
means are updated for all valid observations in x. Observations with invalid 
group numbers are ignored, as are observation with missing values. The LU 
factorization of the covariance matrices are updated by adding (or deleting) 
observations via Givens rotations. 

The ido = 2 step is used solely for adding or deleting observations from the 
model as in the above paragraph. 

The ido = 3 step begins by adding all observations in x to the means and the 
factorizations of the covariance matrices. It continues by computing some 
statistics of interest: the linear discriminant functions, the prior probabilities (by 
default, or if IMSLS_PROPORTIONAL_PRIORS is specified), the log of the 
determinant of each of the covariance matrices, a test statistic for testing that all 
of the within-group covariance matrices are equal, and a matrix of Mahalanobis 
distances between the groups. The matrix of Mahalanobis distances is computed 
via the pooled covariance matrix when linear discrimination is specified; the row 
covariance matrix is used when the discrimination is quadratic. 

Covariance matrices are defined as follows: Let Ni denote the sum of the 
frequencies of the observations in group i and Mi denote the number of 
observations in group i. Then, if Si denotes the within-group i covariance matrix, 
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Where wj is the weight of the j-th observation in group i, fj is the frequency, xj is 
the j-th observation column vector (in group i), and x  denotes the mean vector of 
the observations in group i. The mean vectors are computed as 
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Given the means and the covariance matrices, the linear discriminant function for 
group i is computed as: 
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where ln (pi) is the natural log of the prior probability for the i-th group, x is the 
observation to be classified, and Sp denoted the pooled covariance matrix. 

Let S denote either the pooled covariance matrix of one of the within-group 
covariance matrices Si. (S will be the pooled covariance matrix in linear 
discrimination, and Si otherwise.) The Mahalanobis distance between group i and 
group j is computed as: 

� � � �2 1T

ij i j i jD x x S x x�� � �  

Finally, the asymptotic chi-squared test for the equality of covariance matrices is 
computed as follows (Morrison 1976, p. 252): 
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where ni is the number of degrees of freedom in the i-th sample covariance 
matrix, k is the number of groups, and  
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where p is the number of variables. 

When ido = 4, the estimated posterior probability of each observation x 
belonging to group is computed using the prior probabilities and the sample mean 
vectors and estimated covariance matrices under a multivariate normal 
assumption. Under quadratic discrimination, the within-group covariance 
matrices are used to compute the estimated posterior probabilities. The estimated 
posterior probability of an observation x belonging to group i is  
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For the leaving-out-one method of classification (method equal to 4, 5 or 6), the 
sample mean vector and sample covariance matrices in the formula for  

2
iD  

are adjusted so as to remove the observation x from their computation. For linear 
discrimination (method equal to 1, 2, 4, or 6), the linear discriminant function 
coefficients are actually used to compute the same posterior probabilities. 
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Using the posterior probabilities, each observation in x is classified into a group; 
the result is tabulated in the matrix class_table and saved in the vector 
class_membership. Matrix class_table is not altered at this stage if 
x[i][x_group] (by default, x_igrp = 0; see optional argument 
IMSLS_INDICES) contains a group number that is out of range. If the reclas-
sification method is specified, then all observations with no missing values in the 
n_variables classification variables are classified. When the leaving-out-one 
method is used, observations with invalid group numbers, weights, frequencies, or 
classification variables are not classified. Regardless of the frequency, a 1 is 
added (or subtracted) from class_table for each row of x that is classified and 
contains a valid group number. 

When method > 3, adjustment is made to the posterior probabilities to remove 
the effect of the observation in the classification rule. In this adjustment, each 
observation is presumed to have a weight of x[i][iwt] if  
iwt > �1 (and a weight of 1.0 if iwt = �1), and a frequency of 1.0. See 
Lachenbruch (1975, p. 36) for the required adjustment. 

Finally, when ido = 5, the covariance matrices are computed from their LU 
factorizations. Internally allocated and saved variables are cleaned up at this step 
(ido equal to 5 or 6). 

Example 1 
The following example uses liner discrimination with equal prior probabilities on 
Fisher’s (1936) iris data. This example illustrates the execution of 
imsls_f_discriminant_analysis when one call is made (i.e. using the 
default of ido = 0). 

#include <stdio.h> 
#include <stdlib.h> 
#include <imsls.h> 
 
main() { 
    int   n_groups = 3; 
    int   nrow, nvar, ncol, nrmiss; 
    float *x, *xtemp; 
    float *prior_out, *means, *cov, *coef; 
    float *table, *d2, *stats, *prob; 
    int   *counts, *cm; 
    static int perm[5] = {1, 2, 3, 4, 0}; 
 
    /* Retrieve the Fisher Iris Data Set */ 
    xtemp = imsls_f_data_sets(3, IMSLS_N_OBSERVATIONS, &nrow, 
        IMSLS_N_VARIABLES, &ncol, 0); 
    nvar = ncol - 1; 
 
    /* Move the group column to end of the the matrix */ 
    x = imsls_f_permute_matrix(nrow, ncol, xtemp, perm, 
        IMSLS_PERMUTE_COLUMNS, 0); 
    free(xtemp); 
 
    imsls_f_discriminant_analysis (nrow, nvar, x, n_groups,  
        IMSLS_METHOD, 3,  
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        IMSLS_GROUP_COUNTS, &counts, 
        IMSLS_COEF, &coef, 
        IMSLS_MEANS, &means, 
        IMSLS_STATS, &stats, 
        IMSLS_CLASS_MEMBERSHIP, &cm, 
        IMSLS_CLASS_TABLE, &table, 
        IMSLS_PROB, &prob, 
        IMSLS_MAHALANOBIS, &d2, 
        IMSLS_COV, &cov, 
        IMSLS_PRIOR_OUTPUT, &prior_out, 
        IMSLS_N_ROWS_MISSING, &nrmiss, 
        IMSLS_PRIOR_EQUAL,  
        IMSLS_METHOD, 3, 0); 
 
    imsls_i_write_matrix("Counts", 1, n_groups, counts, 0); 
    imsls_f_write_matrix("Coef", n_groups, nvar+1, coef, 0); 
    imsls_f_write_matrix("Means", n_groups, nvar, means, 0); 
    imsls_f_write_matrix("Stats", 12, 1, stats, 0); 
    imsls_i_write_matrix("Membership", 1, nrow, cm, 0); 
    imsls_f_write_matrix("Table", n_groups, n_groups, table, 0); 
    imsls_f_write_matrix("Prob", nrow, n_groups, prob, 0); 
    imsls_f_write_matrix("D2", n_groups, n_groups, d2, 0);   
    imsls_f_write_matrix("Covariance", nvar, nvar, cov, 0); 
    imsls_f_write_matrix("Prior OUT", 1, n_groups, prior_out, 0);  
    printf("\nnrmiss = %3d\n", nrmiss); 
 
    free(means); 
    free(stats); 
    free(counts); 
    free(coef); 
    free(cm); 
    free(table); 
    free(prob); 
    free(d2); 
    free(prior_out); 
    free(cov); 
} 

Output 
   Counts 
  1    2    3 
 50   50   50 
  
                            Coef 
            1           2           3           4           5 
1       -86.3        23.5        23.6       -16.4       -17.4 
2       -72.9        15.7         7.1         5.2         6.4 
3      -104.4        12.4         3.7        12.8        21.1 
  
                      Means 
            1           2           3           4 
1       5.006       3.428       1.462       0.246 
2       5.936       2.770       4.260       1.326 
3       6.588       2.974       5.552       2.026 
  
     Stats 
 1         147 
 2  .......... 
 3  .......... 
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 4  .......... 
 5  .......... 
 6  .......... 
 7  .......... 
 8         -10 
 9          50 
10          50 
11          50 
12         150 
  
                            Membership 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
  
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 
 1  1  1  1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  2 
  
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 
 2  2  2  2  2  2  2  2  2  2  3  2  2  2  2  2  2  2  2  2 
  
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 
 2  2  2  3  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2 
  
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 
  2   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
  
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 
  3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
  
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 
  3   3   2   3   3   3   3   3   3   3   3   3   3   3   3   3 
  
148  149  150 
  3    3    3 
  
                Table 
            1           2           3 
1          50           0           0 
2           0          48           2 
3           0           1          49 
  
                 Prob 
              1           2           3 
  1       1.000       0.000       0.000 
  2       1.000       0.000       0.000 
  3       1.000       0.000       0.000 
  4       1.000       0.000       0.000 
  5       1.000       0.000       0.000 
  6       1.000       0.000       0.000 
  7       1.000       0.000       0.000 
  8       1.000       0.000       0.000 
  9       1.000       0.000       0.000 
 10       1.000       0.000       0.000 
 11       1.000       0.000       0.000 
 12       1.000       0.000       0.000 
 13       1.000       0.000       0.000 
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 14       1.000       0.000       0.000 
 15       1.000       0.000       0.000 
 16       1.000       0.000       0.000 
 17       1.000       0.000       0.000 
 18       1.000       0.000       0.000 
 19       1.000       0.000       0.000 
 20       1.000       0.000       0.000 
 21       1.000       0.000       0.000 
 22       1.000       0.000       0.000 
 23       1.000       0.000       0.000 
 24       1.000       0.000       0.000 
 25       1.000       0.000       0.000 
 26       1.000       0.000       0.000 
 27       1.000       0.000       0.000 
 28       1.000       0.000       0.000 
 29       1.000       0.000       0.000 
 30       1.000       0.000       0.000 
 31       1.000       0.000       0.000 
 32       1.000       0.000       0.000 
 33       1.000       0.000       0.000 
 34       1.000       0.000       0.000 
 35       1.000       0.000       0.000 
 36       1.000       0.000       0.000 
 37       1.000       0.000       0.000 
 38       1.000       0.000       0.000 
 39       1.000       0.000       0.000 
 40       1.000       0.000       0.000 
 41       1.000       0.000       0.000 
 42       1.000       0.000       0.000 
 43       1.000       0.000       0.000 
 44       1.000       0.000       0.000 
 45       1.000       0.000       0.000 
 46       1.000       0.000       0.000 
 47       1.000       0.000       0.000 
 48       1.000       0.000       0.000 
 49       1.000       0.000       0.000 
 50       1.000       0.000       0.000 
 51       0.000       1.000       0.000 
 52       0.000       0.999       0.001 
 53       0.000       0.996       0.004 
 54       0.000       1.000       0.000 
 55       0.000       0.996       0.004 
 56       0.000       0.999       0.001 
 57       0.000       0.986       0.014 
 58       0.000       1.000       0.000 
 59       0.000       1.000       0.000 
 60       0.000       1.000       0.000 
 61       0.000       1.000       0.000 
 62       0.000       0.999       0.001 
 63       0.000       1.000       0.000 
 64       0.000       0.994       0.006 
 65       0.000       1.000       0.000 
 66       0.000       1.000       0.000 
 67       0.000       0.981       0.019 
 68       0.000       1.000       0.000 
 69       0.000       0.960       0.040 
 70       0.000       1.000       0.000 
 71       0.000       0.253       0.747 
 72       0.000       1.000       0.000 
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 73       0.000       0.816       0.184 
 74       0.000       1.000       0.000 
 75       0.000       1.000       0.000 
 76       0.000       1.000       0.000 
 77       0.000       0.998       0.002 
 78       0.000       0.689       0.311 
 79       0.000       0.993       0.007 
 80       0.000       1.000       0.000 
 81       0.000       1.000       0.000 
 82       0.000       1.000       0.000 
 83       0.000       1.000       0.000 
 84       0.000       0.143       0.857 
 85       0.000       0.964       0.036 
 86       0.000       0.994       0.006 
 87       0.000       0.998       0.002 
 88       0.000       0.999       0.001 
 89       0.000       1.000       0.000 
 90       0.000       1.000       0.000 
 91       0.000       0.999       0.001 
 92       0.000       0.998       0.002 
 93       0.000       1.000       0.000 
 94       0.000       1.000       0.000 
 95       0.000       1.000       0.000 
 96       0.000       1.000       0.000 
 97       0.000       1.000       0.000 
 98       0.000       1.000       0.000 
 99       0.000       1.000       0.000 
100       0.000       1.000       0.000 
101       0.000       0.000       1.000 
102       0.000       0.001       0.999 
103       0.000       0.000       1.000 
104       0.000       0.001       0.999 
105       0.000       0.000       1.000 
106       0.000       0.000       1.000 
107       0.000       0.049       0.951 
108       0.000       0.000       1.000 
109       0.000       0.000       1.000 
110       0.000       0.000       1.000 
111       0.000       0.013       0.987 
112       0.000       0.002       0.998 
113       0.000       0.000       1.000 
114       0.000       0.000       1.000 
115       0.000       0.000       1.000 
116       0.000       0.000       1.000 
117       0.000       0.006       0.994 
118       0.000       0.000       1.000 
119       0.000       0.000       1.000 
120       0.000       0.221       0.779 
121       0.000       0.000       1.000 
122       0.000       0.001       0.999 
123       0.000       0.000       1.000 
124       0.000       0.097       0.903 
125       0.000       0.000       1.000 
126       0.000       0.003       0.997 
127       0.000       0.188       0.812 
128       0.000       0.134       0.866 
129       0.000       0.000       1.000 
130       0.000       0.104       0.896 
131       0.000       0.000       1.000 
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132       0.000       0.001       0.999 
133       0.000       0.000       1.000 
134       0.000       0.729       0.271 
135       0.000       0.066       0.934 
136       0.000       0.000       1.000 
137       0.000       0.000       1.000 
138       0.000       0.006       0.994 
139       0.000       0.193       0.807 
140       0.000       0.001       0.999 
141       0.000       0.000       1.000 
142       0.000       0.000       1.000 
143       0.000       0.001       0.999 
144       0.000       0.000       1.000 
145       0.000       0.000       1.000 
146       0.000       0.000       1.000 
147       0.000       0.006       0.994 
148       0.000       0.003       0.997 
149       0.000       0.000       1.000 
150       0.000       0.018       0.982 
  
                 D2 
            1           2           3 
1         0.0        89.9       179.4 
2        89.9         0.0        17.2 
3       179.4        17.2         0.0 
  
                   Covariance 
            1           2           3           4 
1      0.2650      0.0927      0.1675      0.0384 
2      0.0927      0.1154      0.0552      0.0327 
3      0.1675      0.0552      0.1852      0.0427 
4      0.0384      0.0327      0.0427      0.0419 
  
                   Prior OUT 
         1           2           3 
    0.3333      0.3333      0.3333 
 
nrmiss =   0 

Example 2 
Continuing with Fisher’s iris data, the example below computes the quadratic 
discriminant functions using values of IDO greater than 0. In the first loop, all 
observations are added to the functions, one at a time. In the second loop, each of 
the observations is classified, one by one, using the leaving-out-one method. 

#include <stdio.h> 
#include <stdlib.h> 
#include <imsls.h> 
 
main() { 
    int   n_groups = 3; 
    int   nrow, nvar, ncol, i, nrmiss; 
    float *x, *xtemp; 
    float *prior_out, *means, *cov, *coef; 
    float *table, *d2, *stats, *prob; 
    int   *counts, *cm; 
    static int perm[5] = {1, 2, 3, 4, 0}; 
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    /* Retrieve the Fisher Iris Data Set */ 
    xtemp = imsls_f_data_sets(3, IMSLS_N_OBSERVATIONS, &nrow, 
        IMSLS_N_VARIABLES, &ncol, 0); 
    nvar = ncol - 1; 
 
    /* Move the group column to end of the the matrix */ 
    x = imsls_f_permute_matrix(nrow, ncol, xtemp, perm,  
        IMSLS_PERMUTE_COLUMNS, 0); 
    free(xtemp); 
 
    prior_out = (float *) malloc(n_groups*sizeof(float)); 
    counts    = (int *)   malloc(n_groups*sizeof(int)); 
    means     = (float *) malloc(n_groups*nvar*sizeof(float)); 
    cov       = (float *) malloc(nvar*nvar*(ngroups+1)*sizeof(float)); 
    coef      = (float *) malloc(n_groups*(nvar+1)*sizeof(float)); 
    table     = (float *) malloc(n_groups*n_groups*sizeof(float)); 
    d2        = (float *) malloc(n_groups*n_groups*sizeof(float)); 
    stats     = (float *) malloc((4+2*(n_groups+1))*sizeof(float)); 
    cm        = (int *)   malloc(nrow*sizeof(int)); 
    prob      = (float *) malloc(nrow*n_groups*sizeof(float)); 
 
    /*Initialize Analysis*/ 
    imsls_f_discriminant_analysis (0, nvar, x, n_groups,  
         IMSLS_IDO, 1, 
         IMSLS_METHOD, 2, 0); 
 
    /*Add In Each Observation*/ 
    for (i=0;i<nrow;i=i+1) { 
      imsls_f_discriminant_analysis (1, nvar, (x+i*ncol), n_groups,  
         IMSLS_IDO, 2, 0); 
    } 
 
    /*Remove observation 0 from the analysis */ 
    imsls_f_discriminant_analysis (1, nvar, (x+0), n_groups,  
         IMSLS_ROWS_DELETE, 
         IMSLS_IDO, 2, 0); 
 
    /*Add observation 0 back into the analysis */ 
    imsls_f_discriminant_analysis (1, nvar, (x+0), n_groups,  
         IMSLS_IDO, 2, 0); 
 
    /*Compute statistics*/ 
    imsls_f_discriminant_analysis (0, nvar, x, n_groups,  
         IMSLS_PRIOR_PROPORTIONAL, 
         IMSLS_PRIOR_OUTPUT_USER, prior_out, 
         IMSLS_IDO, 3, 0); 
 
    imsls_f_write_matrix("Prior OUT", 1, n_groups, prior_out, 0);  
 
    /*Classify One observation at a time, using proportional priors*/ 
    for (i=0;i<nrow;i=i+1) { 
      imsls_f_discriminant_analysis (1, nvar, (x+i*ncol), n_groups,  
         IMSLS_IDO, 4, 
         IMSLS_CLASS_MEMBERSHIP_USER, (cm+i), 
         IMSLS_PROB_USER, (prob+i*n_groups), 0); 
    } 
 
    /*Compute covariance matrices and release internal workspace*/ 
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    imsls_f_discriminant_analysis (0, nvar, x, n_groups,  
         IMSLS_IDO, 5,  
         IMSLS_COV_USER, cov,  
         IMSLS_GROUP_COUNTS_USER, counts, 
         IMSLS_COEF_USER, coef, 
         IMSLS_MEANS_USER, means, 
         IMSLS_STATS_USER, stats, 
         IMSLS_CLASS_TABLE_USER, table, 
         IMSLS_MAHALANOBIS_USER, d2, 
         IMSLS_N_ROWS_MISSING, &nrmiss, 0); 
 
    imsls_i_write_matrix("Counts", 1, n_groups, counts, 0); 
    imsls_f_write_matrix("Coef", n_groups, nvar+1, coef, 0); 
    imsls_f_write_matrix("Means", n_groups, nvar, means, 0); 
    imsls_f_write_matrix("Stats", 12, 1, stats, 0); 
    imsls_i_write_matrix("Membership", 1, nrow, cm, 0); 
    imsls_f_write_matrix("Table", n_groups, n_groups, table, 0); 
    imsls_f_write_matrix("Prob", nrow, n_groups, prob, 0); 
    imsls_f_write_matrix("D2", n_groups, n_groups, d2, 0);   
    imsls_f_write_matrix("Covariance", nvar, nvar, cov, 0); 
    printf("\nnrmiss = %3d\n", nrmiss); 
 
    free(means); 
    free(stats); 
    free(counts); 
    free(coef); 
    free(cm); 
    free(table); 
    free(prob); 
    free(d2); 
    free(prior_out); 
    free(cov); 
  
} 

Output 
             Prior OUT 
         1           2           3 
    0.3333      0.3333      0.3333 
  
   Counts 
  1    2    3 
 50   50   50 
  
                            Coef 
            1           2           3           4           5 
1       -86.3        23.5        23.6       -16.4       -17.4 
2       -72.9        15.7         7.1         5.2         6.4 
3      -104.4        12.4         3.7        12.8        21.1 
  
                      Means 
            1           2           3           4 
1       5.006       3.428       1.462       0.246 
2       5.936       2.770       4.260       1.326 
3       6.588       2.974       5.552       2.026 
  
     Stats 
 1       147.0 
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 2       143.8 
 3        20.0 
 4         0.0 
 5       -13.1 
 6       -10.9 
 7        -8.9 
 8       -10.0 
 9        50.0 
10        50.0 
11        50.0 
12       150.0 
  
                                Membership 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
  
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 
 1  1  1  1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  2 
  
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 
 2  2  2  2  2  2  2  2  2  2  3  2  2  2  2  2  2  2  2  2 
  
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 
 2  2  2  3  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2 
  
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 
  2   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
  
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 
  3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
  
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 
  3   3   2   3   3   3   3   3   3   3   3   3   3   3   3   3 
  
148 149 150 
  3   3   3 
  
                Table 
            1           2           3 
1          50           0           0 
2           0          48           2 
3           0           1          49 
  
                 Prob 
              1           2           3 
  1       1.000       0.000       0.000 
  2       1.000       0.000       0.000 
  3       1.000       0.000       0.000 
  4       1.000       0.000       0.000 
  5       1.000       0.000       0.000 
  6       1.000       0.000       0.000 
  7       1.000       0.000       0.000 
  8       1.000       0.000       0.000 
  9       1.000       0.000       0.000 
 10       1.000       0.000       0.000 
 11       1.000       0.000       0.000 
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 12       1.000       0.000       0.000 
 13       1.000       0.000       0.000 
 14       1.000       0.000       0.000 
 15       1.000       0.000       0.000 
 16       1.000       0.000       0.000 
 17       1.000       0.000       0.000 
 18       1.000       0.000       0.000 
 19       1.000       0.000       0.000 
 20       1.000       0.000       0.000 
 21       1.000       0.000       0.000 
 22       1.000       0.000       0.000 
 23       1.000       0.000       0.000 
 24       1.000       0.000       0.000 
 25       1.000       0.000       0.000 
 26       1.000       0.000       0.000 
 27       1.000       0.000       0.000 
 28       1.000       0.000       0.000 
 29       1.000       0.000       0.000 
 30       1.000       0.000       0.000 
 31       1.000       0.000       0.000 
 32       1.000       0.000       0.000 
 33       1.000       0.000       0.000 
 34       1.000       0.000       0.000 
 35       1.000       0.000       0.000 
 36       1.000       0.000       0.000 
 37       1.000       0.000       0.000 
 38       1.000       0.000       0.000 
 39       1.000       0.000       0.000 
 40       1.000       0.000       0.000 
 41       1.000       0.000       0.000 
 42       1.000       0.000       0.000 
 43       1.000       0.000       0.000 
 44       1.000       0.000       0.000 
 45       1.000       0.000       0.000 
 46       1.000       0.000       0.000 
 47       1.000       0.000       0.000 
 48       1.000       0.000       0.000 
 49       1.000       0.000       0.000 
 50       1.000       0.000       0.000 
 51       0.000       1.000       0.000 
 52       0.000       1.000       0.000 
 53       0.000       0.998       0.002 
 54       0.000       0.997       0.003 
 55       0.000       0.997       0.003 
 56       0.000       0.989       0.011 
 57       0.000       0.995       0.005 
 58       0.000       1.000       0.000 
 59       0.000       1.000       0.000 
 60       0.000       0.994       0.006 
 61       0.000       1.000       0.000 
 62       0.000       0.999       0.001 
 63       0.000       1.000       0.000 
 64       0.000       0.988       0.012 
 65       0.000       1.000       0.000 
 66       0.000       1.000       0.000 
 67       0.000       0.973       0.027 
 68       0.000       1.000       0.000 
 69       0.000       0.813       0.187 
 70       0.000       1.000       0.000 
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 71       0.000       0.336       0.664 
 72       0.000       1.000       0.000 
 73       0.000       0.699       0.301 
 74       0.000       0.972       0.028 
 75       0.000       1.000       0.000 
 76       0.000       1.000       0.000 
 77       0.000       0.998       0.002 
 78       0.000       0.861       0.139 
 79       0.000       0.992       0.008 
 80       0.000       1.000       0.000 
 81       0.000       1.000       0.000 
 82       0.000       1.000       0.000 
 83       0.000       1.000       0.000 
 84       0.000       0.154       0.846 
 85       0.000       0.943       0.057 
 86       0.000       0.996       0.004 
 87       0.000       0.999       0.001 
 88       0.000       0.999       0.001 
 89       0.000       1.000       0.000 
 90       0.000       0.999       0.001 
 91       0.000       0.981       0.019 
 92       0.000       0.997       0.003 
 93       0.000       1.000       0.000 
 94       0.000       1.000       0.000 
 95       0.000       0.999       0.001 
 96       0.000       1.000       0.000 
 97       0.000       1.000       0.000 
 98       0.000       1.000       0.000 
 99       0.000       1.000       0.000 
100       0.000       1.000       0.000 
101       0.000       0.000       1.000 
102       0.000       0.000       1.000 
103       0.000       0.000       1.000 
104       0.000       0.006       0.994 
105       0.000       0.000       1.000 
106       0.000       0.000       1.000 
107       0.000       0.004       0.996 
108       0.000       0.000       1.000 
109       0.000       0.000       1.000 
110       0.000       0.000       1.000 
111       0.000       0.006       0.994 
112       0.000       0.001       0.999 
113       0.000       0.000       1.000 
114       0.000       0.000       1.000 
115       0.000       0.000       1.000 
116       0.000       0.000       1.000 
117       0.000       0.033       0.967 
118       0.000       0.000       1.000 
119       0.000       0.000       1.000 
120       0.000       0.041       0.959 
121       0.000       0.000       1.000 
122       0.000       0.000       1.000 
123       0.000       0.000       1.000 
124       0.000       0.028       0.972 
125       0.000       0.001       0.999 
126       0.000       0.007       0.993 
127       0.000       0.057       0.943 
128       0.000       0.151       0.849 
129       0.000       0.000       1.000 
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130       0.000       0.020       0.980 
131       0.000       0.000       1.000 
132       0.000       0.009       0.991 
133       0.000       0.000       1.000 
134       0.000       0.605       0.395 
135       0.000       0.000       1.000 
136       0.000       0.000       1.000 
137       0.000       0.000       1.000 
138       0.000       0.050       0.950 
139       0.000       0.141       0.859 
140       0.000       0.000       1.000 
141       0.000       0.000       1.000 
142       0.000       0.000       1.000 
143       0.000       0.000       1.000 
144       0.000       0.000       1.000 
145       0.000       0.000       1.000 
146       0.000       0.000       1.000 
147       0.000       0.000       1.000 
148       0.000       0.001       0.999 
149       0.000       0.000       1.000 
150       0.000       0.061       0.939 
  
                 D2 
            1           2           3 
1         0.0       323.1       706.1 
2       103.2         0.0        17.9 
3       168.8        13.8         0.0 
  
  
                   Covariance 
            1           2           3           4 
1      0.1242      0.0992      0.0164      0.0103 
2      0.0992      0.1437      0.0117      0.0093 
3      0.0164      0.0117      0.0302      0.0061 
4      0.0103      0.0093      0.0061      0.0111 
 
nrmiss =   0 

Warning Errors 
IMSLS_BAD_OBS_1 In call #, row # of the data matrix, “x”, has group 

number = #. The group number must be an 
integer between 1.0 and “n_groups” = #, 
inclusively. This observation will be ignored. 

IMSLS_BAD_OBS_2 The leaving out one method is specified but this 
observation does not have a valid group number 
(Its group number is #.). This observation (row 
#) is ignored. 

IMSLS_BAD_OBS_3 The leaving out one method is specified but this 
observation does not have a valid weight or it 
does not have a valid frequency. This 
observation (row #) is ignored. 
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IMSLS_COV_SINGULAR_3 The group # covariance matrix is singular. 
“stats[1]” cannot be computed. “stats[1]” and 
“stats[3]” are set to the missing value code 
(NaN). 

Fatal Errors 
IMSLS_BAD_IDO_1 “ido” = #. Initial allocations must be performed 

by making a call to discriminant_analysis with 
“ido” = 1. 

IMSLS_BAD_IDO_2 “ido” = #. A new analysis may not begin until the 
previous analysis is terminated with “ido” equal 
to 5 or 6. 

IMSLS_COV_SINGULAR_1 The variance-covariance matrix for population 
number # is singular. The computations cannot 
continue. 

IMSLS_COV_SINGULAR_2 The pooled variance-covariance matrix is 
singular. The computations cannot continue. 

IMSLS_COV_SINGULAR_4 A variance-covariance matrix is singular. The 
index of the first zero element is equal to #. 
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Chapter 10: Survival and Reliability 
Analysis 

Routines 
10.1 Survival Analysis 

Computes Kaplan-Meier estimates of survival  
probabilties................................................kaplan_meier_estimates 654 
Analyzes survival and reliability data using Cox’s  
proportional hazards model ......................... prop_hazards_gen_lin 660  
Analyzes survival data using the generalized  
linear model .................................................................survival_glm 673 
Estimates using various parametric modes....... survival_estimates 697 

10.2 Reliability Analysis 
Estimates a reliability hazard function using a 
nonparametric approach.............................nonparam_hazard_rate 703  

10.3 Actuarial Tables 
Produces population and cohort life tables ......................life_tables 712 

Usage Notes 
The functions described in this chapter have primary application in the areas of 
reliability and life testing, but they may find application in any situation in which 
analysis of binomial events over time is of interest. Kalbfleisch and Prentice 
(1980), Elandt-Johnson and Johnson (1980), Lee (1980), Gross and Clark (1975), 
Lawless (1982), and Chiang (1968) and Tanner and Wong (1984) are references 
for discussing the models and methods desribed in this chapter.  
Function imsls_f_kaplan_meier_estimates (page 654) produces Kaplan-
Meier (product-limit) estimates of the survival distribution in a single population, 
and these can be printed using the IMSLS_PRINT optional argument.  
Function imsls_f_prop_hazards_gen_lin (page 660) computes the 
parameter estimates in a proportional hazards model.  
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Function imsls_f_survival_glm (page 673) fits any of several generalized 
linear models for survival data, and imsls_f_survival_estimates (page 
697) computes estimates of survival probabilities based upon the same models. 
Function imsls_f_nonparam_hazard_rate (page 703) performs 
nonparametric hazard rate estimation using kernel functions and quasi-
likelihoods.  
Function imsls_f_life_tables (page 712) computes and (optionally) prints 
an actuarial table based either upon a cohort followed over time or a cross-section 
of a population. 

kaplan_meier_estimates 
Computes Kaplan-Meier estimates of survival probabilities in stratified samples. 

Synopsis 
#include <imsls.h> 
float *imsls_f_kaplan_meier_estimates (int n_observations, int 

ncol, float x[],  ..., 0) 
The type double function is imsls_d_kaplan_meier_estimates. 

Required Arguments 
int n_observations  (Input) 

Number of observations. 

int ncol  (Input) 
Number of columns in x. 

float x[]  (Input)  
Two-dimensional data array of size n_observations*ncol. 

Return Value 
Pointer to an array of length n_observations*2.  The first column contains the 
estimated survival probabilities, and the second column contains Greenwood’s 
estimate of the standard deviation of these probabilities. If the i-th observation 
contains censor codes out of range or if a variable is missing, then the 
corresponding elements of the return value are set to missing (NaN, not a 
number). Similarly, if an element in the return value is not defined, then it is set to 
missing. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float * imsls_f_kaplan_meier_estimates (int n_observations, int 

ncol, float x[], 
IMSLS_RETURN_USER,  float table[], 
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IMSLS_PRINT, 
IMSLS_X_RESPONSE_COL, int irt, 
IMSLS_CENSOR_CODES_COL, int icen, 
IMSLS_FREQ_RESPONSE_COL_COL, int ifrq, 
IMSLS_STRATUM_NUMBER_COL, int igrp, 
IMSLS_SORTED, 
IMSLS_N_MISSING, int *nrmiss,  
0) 

Optional Arguments 
IMSLS_RETURN_USER, float table[]  (Output) 

User supplied storage of an array of length n_observations*2 containing 
the estimated survival probabilities and their associated standard 
deviations. See Return Value section. 

IMSLS_PRINT, (Input) 
Print Kaplan-Meier estimates of survival probabilities in stratified 
samples. 

IMSLS_X_RESPONSE_COL, int irt  (Input) 
Column index for the response times in the data array, x. The 
interpretation of these times as either right-censored or exact failure 
times depends on IMSLS_CENSOR_CODES_COL. 
Default:  irt = 0. 

IMSLS_CENSOR_CODES_COL, int icen (Input) 
Column index for the optional censoring codes in the data array, x.  If 
x[i, icen]= 0, the failure time x[i, irt] is treated as an exact time of 
failure.  Otherwise it is treated as a right-censored time.  
Default:  It is assumed that there is no censor code column in x. All 
observations are assumed to be exact failure times. 

IMSLS_FREQ_RESPONSE_COL_COL, int ifrq  (Input) 
Column index for the number of responses associated with each row in 
the data array, x.  
Default:  It is assumed that there is no frequency response column in x.  
Each observation in the data array is assumed to be for a single failure. 

IMSLS_STRATUM_NUMBER_COL, int igrp  (Input) 
Column index for the stratum number for each observation in the data 
array, x.  Column igrp of x contains a unique value for each stratum in 
the data. Kaplan-Meier estimates are computed within each stratum. 
Default: It is assumed that there is no stratum number column in x. The 
data is assumed to come from one stratum. 

IMSLS_SORTED,   (Input) 
If this option is used, column irt of x is assumed to be sorted in 
ascending order within each stratum. Otherwise, a detached sort is 
conducted prior to analysis. If sorting is performed, all censored 
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individuals are assumed to follow tied failures. 
Default:  Column irt of x is not sorted. 

IMSLS_N_MISSING, int *nrmiss  (Output) 
Number of rows of data in x containing missing values. 

Description 
Function imsls_f_kaplan_meier_estimates computes Kaplan-Meier (or 
product-limit) estimates of survival probabilities for a sample of failure times that 
can be right censored or exact times. A survival probability S(t) is defined as  
1 � F(t), where F(t) is the cumulative distribution function of the failure times (t). 
Greenwood’s estimate of the standard errors of the survival probability estimates 
are also computed. (See Kalbfleisch and Prentice, 1980, pages 13 and 14.)  

Let (ti, �i), for i = 1,…, n denote the failure censoring times and the censoring 
codes for the n observations in a single sample. Here, ti = xi-1, irt is a failure time if 
�i is 0, where �i = xi-1, icen. Also, ti is a right censoring time if �i is 1. Rows in x 
containing values other than 0 or 1 for �i are ignored. Let the number of 
observations in the sample that have not failed by time s��� be denoted by n���, 
where s��� is an ordered (from smallest to largest) listing of the distinct failure 
times (censoring times are omitted). Then the Kaplan-Meier estimate of the 
survival probabilities is a step function, which in the interval from s��� to s�i��� 
(including the lower endpoint) is given by 

( ) ( )

1 ( )

ˆ( )
i

j j

j j

n d
S t

n
�

� ��
� � �� �

� �
�  

where d�j� denotes the number of failures occurring at time s�j�, and n���  is the 
number of observation that have not failed prior tos�j�.  

Note that one row of X may correspond to more than one failed (or censored) 
observation when the frequency option is in effect (ifrq is specified). The 
Kaplan-Meier estimate of the survival probability prior to time s��� is 1.0, while 
the Kaplan-Meier estimate of the survival probability after the last failure time is 
not defined.  

Greenwood’s estimate of the variance of 

ˆ( )S t  

in the interval from s�i� to s�i��� is given as  

( )2
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Function imsls_f_kaplan_meier_estimates computes the single sample 
estimates of the survival probabilities for all samples of data included in x during 
a single call. This is accomplished through the igrp column of x, which if 
present, must contain a distinct code for each sample of observations. If igrp is 
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not specified, there is no grouping column, and all observations are assumed to 
come from the same sample.  

When failures and right-censored observations are tied and the data are to be 
sorted by imsls_f_kaplan_meier_estimates (IMSLS_SORTED optional 
argument is not used), imsls_f_kaplan_meier_estimates assumes that the 
time of censoring for the tied-censored observations is immediately after the tied 
failure (within the same sample). When the IMSLS_SORTED optional argument is 
used, the data are assumed to be sorted from smallest to largest according to 
column irt of x within each stratum. Furthermore, a small increment of time is 
assumed (theoretically) to elapse between the failed and censored observations 
that are tied (in the same sample). Thus, when the IMSLS_SORTED optional 
argument is used, the user must sort all of the data in x from smallest to largest 
according to column irt (and column igrp, if present). By appropriate sorting 
of the observations, the user can handle censored and failed observations that are 
tied in any manner desired. 

The IMSLS_PRINT option prints life tables.  One table for each stratum is 
printed. In addition to the survival probabilities at each failure point, the 
following is also printed: the number of individuals remaining at risk, 
Greenwood’s estimate of the standard errors for the survival probabilities, and the 
Kaplan-Meier log-likelihood. The Kaplan-Meier log-likelihood is computed as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ln ( )ln( ) lnj j j j j j j
j

d d n d n d n n� � � � ��� j  

where the sum is with respect to the distinct failure times s�j�, d�j� . 

Example 
The following example is taken from Kalbfleisch and Prentice (1980, page 1). 
The first column in x contains the death/censoring times for rats suffering from 
vaginal cancer. The second column contains information as to which of two forms 
of treatment were provided, while the third column contains the censoring code. 
Finally, the fourth column contains the frequency of each observation. The 
product-limit estimates of the survival probabilities are computed for both groups 
with one call to imsls_f_kaplan_meier_estimates.   

Function imsls_f_kaplan_meier_estimates could have been called with 
the IMSLS_SORTED optional argument if the censored observations had been 
sorted with respect to the failure time variable.  IMSLS_PRINT option is used to 
print the life tables. 

 
#include "imsls.h" 
 
void main () 
{ 
  int icen = 2, ifrq = 3, igrp = 1, ncol = 4, n_observations = 33; 
  float x[] = { 
    143, 5, 0, 1, 
    164, 5, 0, 1, 
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    188, 5, 0, 2, 
    190, 5, 0, 1, 
    192, 5, 0, 1, 
    206, 5, 0, 1, 
    209, 5, 0, 1, 
    213, 5, 0, 1, 
    216, 5, 0, 1, 
    220, 5, 0, 1, 
    227, 5, 0, 1, 
    230, 5, 0, 1, 
    234, 5, 0, 1, 
    246, 5, 0, 1, 
    265, 5, 0, 1, 
    304, 5, 0, 1, 
    216, 5, 1, 1, 
    244, 5, 1, 1, 
    142, 7, 0, 1, 
    156, 7, 0, 1, 
    163, 7, 0, 1, 
    198, 7, 0, 1, 
    205, 7, 0, 1, 
    232, 7, 0, 2, 
    233, 7, 0, 4, 
    239, 7, 0, 1, 
    240, 7, 0, 1, 
    261, 7, 0, 1, 
    280, 7, 0, 2, 
    296, 7, 0, 2, 
    323, 7, 0, 1, 
    204, 7, 1, 1, 
    344, 7, 1, 1 
  }; 
 
  imsls_f_kaplan_meier_estimates (n_observations, ncol, x, 
      IMSLS_PRINT, 
      IMSLS_FREQ_RESPONSE_COL_COL, ifrq, 
      IMSLS_CENSOR_CODES_COL, icen, 
      IMSLS_STRATUM_NUMBER_COL, igrp,  
      0); 
} 

Output 
 
                   Kaplan Meier Survival Probabilities 
                      For Group Value = 5 
  
       Number      Number                 Survival     Estimated 
      at risk     Failing        Time  Probability    Std. Error 
           19           1         143      0.94737      0.051228 
  
           18           1         164      0.89474      0.070406 
  
           17           2         188      0.78947      0.093529 
  
           15           1         190      0.73684       0.10102 
  
           14           1         192      0.68421       0.10664 
  



     

     
 

Chapter 10: Survival and Reliability Analysis kaplan_meier_estimates � 659 

     
     

 

           13           1         206      0.63158       0.11066 
  
           12           1         209      0.57895       0.11327 
  
           11           1         213      0.52632       0.11455 
  
           10           1         216      0.47368       0.11455 
  
            8           1         220      0.41447       0.11452 
  
            7           1         227      0.35526       0.11243 
  
            6           1         230      0.29605       0.10816 
  
            5           1         234      0.23684       0.10145 
  
            3           1         246      0.15789      0.093431 
  
            2           1         265     0.078947      0.072792 
  
            1           1         304            0  ............ 
 
 Total number in group    =      19 
 Total number failing     =      17 
 Product Limit Likelihood = -49.1692 
 
                   Kaplan Meier Survival Probabilities 
                      For Group Value = 7 
  
       Number      Number                 Survival     Estimated 
      at risk     Failing        Time  Probability    Std. Error 
           21           1         142      0.95238      0.046471 
  
           20           1         156      0.90476      0.064056 
  
           19           1         163      0.85714       0.07636 
  
           18           1         198      0.80952      0.085689 
  
           16           1         205      0.75893      0.094092 
  
           15           2         232      0.65774       0.10529 
  
           13           4         233      0.45536       0.11137 
  
            9           1         239      0.40476       0.10989 
  
            8           1         240      0.35417       0.10717 
  
            7           1         261      0.30357       0.10311 
  
            6           2         280      0.20238      0.090214 
  
            4           2         296      0.10119      0.067783 
  
            2           1         323     0.050595      0.049281 
 
 Total number in group    =      21 
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 Total number failing     =      19 
 Product Limit Likelihood = -50.4277 
 

prop_hazards_gen_lin 
Analyzes survival and reliability data using Cox’s proportional hazards model. 

Synopsis 
#include <imsls.h> 
float *imsls_f_prop_hazards_gen_lin (int n_observations,  

int n_columns, float x[], int nef, int n_var_effects[],  
int indices_effects[], int max_class, int *ncoef,  ..., 0) 

The type double function is imsls_d_prop_hazards_gen_lin. 

Required Arguments 
int n_observations  (Input) 

Number of observations. 

int n_columns  (Input) 
Number of columns in x. 

float x[]  (Input)  
Array of length n_observations * n_columns containing the data.  
When optional argument itie = 1, the observations in x must be 
grouped by stratum and sorted from largest to smallest failure time 
within each stratum, with the strata separated. 

int nef  (Input) 
Number of effects in the model.  In addition to effects involving 
classification variables, simple covariates and the product of simple 
covariates are also considered effects. 

int n_var_effects[]  (Input) 
Array of length nef containing the number of variables associated with 
each effect in the model. 

int indices_effects[]  (Input) 
Index array of length n_var_effects[0] + � + 
n_var_effects[nef-1] containing the column indices of x 
associated with each effect.  The first n_var_effects[0] elements of 
indices_effects contain the column indices of x for the variables in 
the first effect. The next n_var_effects[1] elements in 
indices_effects contain the column indices for the second effect, 
etc. 

int max_class  (Input) 
An upper bound on the total number of different values found among the 
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classification variables in x.  For example, if the model consisted of two 
class variables, one with the values {1, 2, 3, 4} and a second with the 
values {0, 1}, then then the total number of different classification 
values is 4+2=6, and max_class >= 6.  

int *ncoef  (Output)  
Number of estimated coefficients in the model. 

Return Value 
Pointer to an array of length ncoef*4, coef, containing the parameter estimates 

and associated statistics. 
Column Statistic 

1 Coefficient estimateβ  ˆ

2 Estimated standard deviation of the estimated coefficient. 
3 Asymptotic normal score for testing that the coefficient is 

zero against the two-sided alternative. 
4 p-value associated with the normal score in column 3. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float * imsls_f_prop_hazards_gen_lin (int n_observations,  

int n_columns, float x[], int nef, int n_var_effects[],  
int indices_effects[], int max_class, int *ncoef, 
IMSLS_RETURN_USER,  float cov[], 
IMSLS_PRINT_LEVEL, int iprint, 
IMSLS_MAX_ITERATIONS, int max_iterations, 
IMSLS_CONVERGENCE_EPS, float eps, 
IMSLS_RATIO, float ratio,  
IMSLS_X_RESPONSE_COL, int irt, 
IMSLS_CENSOR_CODES_COL, int icen,  
IMSLS_STRATIFICATION_COL, int istrat, 
IMSLS_CONSTANT_COL, int ifix, 
IMSLS_FREQ_RESPONSE_COL, int ifrq, 
IMSLS_TIES_OPTION, int itie, 
IMSLS_MAXIMUM_LIKELIHOOD, float algl,  
IMSLS_N_MISSING, int *nrmiss,  
IMSLS_STATISTICS, float **case,  
IMSLS_STATISTICS_USER, float case[], 
IMSLS_X_MEAN, float **xmean,  
IMSLS_X_MEAN_USER, float xmean[], 
IMSLS_VARIANCE_COVARIANCE_MATRIX, float **cov,  
IMSLS_VARIANCE_COVARIANCE_MATRIX_USER, float cov[], 
IMSLS_INITIAL_EST_INPUT, float in_coef[], 
IMSLS_UPDATE, float **gr,  
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IMSLS_UPDATE_USER, float gr[], 
IMSLS_DUMP, int n_class_var, int index_class_var[], 
IMSLS_STRATUM_NUMBER, int **igrp,  
IMSLS_STRATUM_NUMBER_USER, int igrp[], 
IMSLS_CLASS_VARIABLES, int **n_class_values,  
 float **class_values, 
IMSLS_CLASS_VARIABLES_USER, int n_class_values[], 
  float class_values[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float coef[]  (Output) 

If specified, coef is an array of length ncoef*4 containing the parameter 
estimates and associated statistics.  See Return Value. 

IMSLS_PRINT_LEVEL, int iprint  (Input) 
Printing option.  Default:  iprint = 0. 

Iprint Action 
0 No printing is performed. 
1 Printing is performed, but observational statistics are 

not printed. 
2 All output statistics are printed. 

IMSLS_MAX_ITERATIONS, int max_iterations  (Input) 
Maximum number of iterations.  max_iterations = 30 will usually be 
sufficient. Use  max_iterations = 0 to compute the Hessian and 
gradient, stored in cov and gr, at the initial estimates. When 
max_iterations = 0, IMSLS_INITIAL_EST_INPUT must be used. 
Default:  max_iterations = 30. 

IMSLS_CONVERGENCE_EPS, float eps  (Input) 
Convergence criterion.  Convergence is assumed when the relative change 
in algl from one iteration to the next is less than eps. If eps is zero,  
eps = 0.0001 is assumed. 
Default: eps = 0.0001. 

IMSLS_RATIO, float ratio  (Input) 
Ratio at which a stratum is split into two strata.  
Default: ratio = 1000.0. 
Let 

  ˆ=exp( )k kr z w� �

 be the observation proportionality constant, where zk is the design row 
vector for the k-th observation and wk is the optional fixed parameter 
specified by xk, ifix. Let r� be the minimum value rk in a stratum, 
where, for failed observations, the minimum is over all times less than or 
equal to the time of occurrence of the k-th observation. Let r� be the 
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maximum value of rk for the remaining observations in the group. Then, 
if r� > ratio r�, the observations in the group are divided into two 
groups at k. ratio = 1000 is usually a good value. Set ratio = �1.0 if 
no division into strata is to be made. 

IMSLS_X_RESPONSE_COL, int irt  (Input) 
Column index in x containing the response variable.  For point 
observations, xi, irt contains the time of the i-th event. For right-
censored observations, xi, irt contains the right-censoring time. Note that 
because imsls_f_prop_hazards_gen_lin only uses the order of the 
events, negative “times” are allowed. 
Default:  irt = 0. 

IMSLS_CENSOR_CODES_COL, int icen (Input) 
Column index in x containing the censoring code for each observation.  
Default:  A censoring code of 0 is assumed for all observations. 

x
i,icen

 Censoring 
0 Exact censoring time xi, irt. 
1 Right censored. The exact censoring time is greater than xi, irt. 

IMSLS_STRATIFICATION_COL, int istrat  (Input) 
Column number in x containing the stratification variable.  Column 
istrat in x contains a unique number for each stratum. The risk set for 
an observation is determined by its stratum. 
Default: All observations are considered to be in one stratum. 

IMSLS_CONSTANT_COL, int ifix  (Input) 
Column index in x containing a constant, wi, to be added to the linear 
response.  The linear response is taken to be ˆ

i iw z ��  
where wi is the observation constant, zi is the observation design row 
vector, and �̂  is the vector of estimated parameters. The “fixed” 
constant allows one to test hypotheses about parameters via the log-
likelihoods. 
Default: wi is assumed to be 0 for all observations. 

IMSLS_FREQ_RESPONSE_COL, int ifrq  (Input) 
Column index in x containing the number of responses for each 
observation. 
Default: A response frequency of 1 for each observation is assumed. 

IMSLS_TIES_OPTION, int itie  (Input) 
Method for handling ties.  Default:  itie = 0. 
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Itie Method 
0 Breslow’s approximate method. 
1 Failures are assumed to occur in the same order as the 

observations input in x. The observations in x must be sorted 
from largest to smallest failure time within each stratum, and 
grouped by stratum. All observations are treated as if their 
failure/censoring times were distinct when computing the log-
likelihood. 

IMSLS_MAXIMUM_LIKELIHOOD, float *algl  (Output) 
The maximized log-likelihood. 

IMSLS_N_MISSING, int *nrmiss  (Output) 
Number of rows of data in X that contain missing values in one or more 
columns irt, ifrq, ifix, icen, istrat, index_class_var, or 
indices_effects of x. 

IMSLS_STATISTICS, float **case  (Output) 
Address of a pointer to an array of length n_observations * 5  
containing the case statistics for each observation. 

Column Statistic 
1 Estimated survival probability at the observation time. 
2 Estimated observation influence or leverage. 
3 A residual estimate. 
4 Estimated cumulative baseline hazard rate. 
5 Observation proportionality constant. 

IMSLS_STATISTICS_USER, float case[]  (Output) 
Storage for case is provided by the user.  See IMSLS_STATISTICS. 

IMSLS_X_MEAN, float **xmean  (Output) 
Address of a pointer to an array of length ncoef containing the means of 
the design variables. 

IMSLS_X_MEAN_USER, float xmean[]  (Output) 
Storage for xmean is provided by the user.  See IMSLS_X_MEAN. 

IMSLS_VARIANCE_COVARIANCE_MATRIX, float **cov  (Output) 
Address of a pointer to an array of length ncoef*ncoef containing the 
estimated asymptotic variance-covariance matrix of the parameters.  For 
max_iterations = 0, the return value is the inverse of the Hessian of 
the negative of the log-likelihood, computed at the estimates input in 
in_coef. 
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IMSLS_VARIANCE_COVARIANCE_MATRIX_USER, float cov[]  (Output) 
Storage for cov is provided by the user.  See 
IMSLS_VARIANCE_COVARIANCE_MATRIX. 

IMSLS_INITIAL_EST_INPUT, float *in_coef  (Input) 
An array of length ncoef containing the initial estimates on input to 
prop_hazards_gen_lin.  
Default: all initial estimates are taken to be 0. 

IMSLS_UPDATE, float **gr  (Output) 
Address of a pointer to an array of length ncoef containing the last 
parameter updates (excluding step halvings).  For  
max_iterations = 0, gr contains the inverse of the Hessian times the 
gradient vector computed at the estimates input in in_coef. 

IMSLS_UPDATE_USER, float gr[]  (Output) 
Storage for gr is provided by the user.  See IMSLS_UPDATE. 

IMSLS_DUMP, int n_class_var, int index_class_var[]  (Input) 
Variable n_class_var is the number of classification variables.  
Dummy variables are generated for classification variables using the 
dummy_method = IMSLS_LEAVE_OUT_LAST of the IMSLS_DUMMY 
option of imsls_f_regressors_for_glm function (see Chapter 2, 
Regression).  Argument index_class_var is an index array of length 
n_class_var containing the column numbers of x that are the 
classification variables. (if n_class_var is is equal to zero, 
index_class_var is not used). 
Default: n_class_var = 0. 

IMSLS_STRATUM_NUMBER, int **igrp  (Output) 
Address of a pointer to an array of length n_observations giving the 
stratum number used for each observation.  If ratio is not �1.0, 
additional “strata” (other than those specified by column  
istrat of x) may be generated.  igrp also contains a record of the 
generated strata. See the description section for more detail. 

IMSLS_STRATUM_NUMBER_USER, int igrp[]  (Output) 
Storage for igrp is provided by the user.  See 
IMSLS_STRATUM_NUMBER. 

IMSLS_CLASS_VARIABLES, int **n_class_values, float **class_values  
(Output) 
n_class_values is an address of a pointer to an array of length 
n_class_var containing the number of values taken by each 
classification variable.  n_class_values[i] is the number of distinct 
values for the i-th classification variable.  class_values is an address 
of a pointer to an array of length n_class_values[0] + 
n_class_values[1] + … + n_class_values[n_class_var-1] 
containing the distinct values of the classification variables.   The first 
n_class_values[0] elements of class_values contain the values 
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for the first classification variable, the next n_class_values[1] 
elements contain the values for the second classification variable, etc. 

IMSLS_CLASS_VARIABLES_USER, int n_class_values[], float 
class_values[]  (Output) 
Storage for n_class_values and class_values is provided by the 
user.  The length of class_values will not be known in advance, use 
max_class as the maximum length of class_values.  See 
IMSLS_CLASS_VARIABLES. 

Description 
Function imsls_f_prop_hazards_gen_lin computes parameter estimates 
and other statistics in Proportional Hazards Generalized Linear Models. These 
models were first proposed by Cox (1972). Two methods for handling ties are 
allowed in imsls_f_prop_hazards_gen_lin. Time-dependent covariates are 
not allowed. The user is referred to Cox and Oakes (1984), Kalbfleisch and 
Prentice (1980), Elandt-Johnson and Johnson (1980), Lee (1980), or Lawless 
(1982), among other texts, for a thorough discussion of the Cox proportional 
hazards model. 

Let �(t, zi) represent the hazard rate at time t for observation number i with 
covariables contained as elements of row vector zi. The basic assumption in the 
proportional hazards model (the proportionality assumption) is that the hazard 
rate can be written as a product of a time varying function ��(t), which depends 
only on time, and a function �(zi), which depends only on the covariable values. 
The function �(zi) used in imsls_f_prop_hazards_gen_lin is given as  
�(zi) = exp(wi + �zi) where wi is a fixed constant assigned to the observation, and 
� is a vector of coefficients to be estimated. With this function one obtains a 
hazard rate �(t, zi) = ��(t) exp(wi + �zi). The form of ��(t) is not important in 
proportional hazards models. 

The constants wi may be known theoretically. For example, the hazard rate may 
be proportional to a known length or area, and the wi can then be determined 
from this known length or area. Alternatively, the wi may be used to fix a subset 
of the coefficients � (say, ��) at specified values. When wi is used in this way, 
constants wi = ��z�i are used, while the remaining coefficients in � are free to 
vary in the optimization algorithm. If user-specified constants are not desired, the 
user should set ifix to 0 so that wi = 0 will be used. 

With this definition of �(t, zi), the usual partial (or marginal, see Kalbfleisch and 
Prentice (1980)) likelihood becomes 

1 ( )

exp( )
exp( )

d

i

n
i i

i j R t j j

w z
L

w z
�

�
� �

�
�

� �
�  

where R(ti) denotes the set of indices of observations that have not yet failed at 
time ti (the risk set), ti denotes the time of failure for the i-th observation, nd is the 
total number of observations that fail. Right-censored observations (i.e., 
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observations that are known to have survived to time ti, but for which no time of 
failure is known) are incorporated into the likelihood through the risk set R(ti). 
Such observations never appear in the numerator of the likelihood. When itie = 
0, all observations that are censored at time ti are not included in R(ti), while all 
observations that fail at time ti are included in R(ti). 

If it can be assumed that the dependence of the hazard rate upon the covariate 
values remains the same from stratum to stratum, while the time-dependent term, 
��(t), may be different in different strata, then 
imsls_f_prop_hazards_gen_lin allows the incorporation of strata into the 
likelihood as follows. Let k index the m = istrat strata. Then, the likelihood is 
given by 

1 1 ( )

exp( )
exp( )
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ki
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ki ki

s
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� �  

In imsls_f_prop_hazards_gen_lin, the log of the likelihood is maximized 
with respect to the coefficients �. A quasi-Newton algorithm approximating the 
Hessian via the matrix of sums of squares and cross products of the first partial 
derivatives is used in the initial iterations (the “Q-N” method in the output). 
When the change in the log-likelihood from one iteration to the next is less than 
100*eps, Newton-Raphson iteration is used (the “N-R” method). If, during any 
iteration, the initial step does not lead to an increase in the log-likelihood, then 
step halving is employed to find a step that will increase the log-likelihood. 

Once the maximum likelihood estimates have been computed, 
imsls_f_prop_hazards_gen_lin computes estimates of a probability 
associated with each failure. Within stratum k, an estimate of the probability that 
the i-th observation fails at time ti given the risk set R(tki) is given by 
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A diagnostic “influence” or “leverage” statistic is computed for each noncensored 
observation as: 

1
ki ki s kil g H g�

� �� �  

where Hs is the matrix of second partial derivatives of the log-likelihood, and  

kig �  

is computed as:  
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Influence statistics are not computed for censored observations. 
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A “residual” is computed for each of the input observations according to methods 
given in Cox and Oakes (1984, page 108). Residuals are computed as 

( ) ( )

ˆexp( ) ˆexp( )ki kj

kj
ki ki ki

j R t l R t kl kl

d
r w z

w z
�

��
�

� �
� �

�  

where dkj is the number of tied failures in group k at time tkj. Assuming that the 
proportional hazards assumption holds, the residuals should approximate a 
random sample (with censoring) from the unit exponential distribution. By 
subtracting the expected values, centered residuals can be obtained. (The j-th 
expected order statistic from the unit exponential with censoring is given as 

1
1j l j h le

� � �
� �  

where h is the sample size, and censored observations are not included in the 
summation.) 

An estimate of the cumulative baseline hazard within group k is given as 

0
( )

ˆ ( ) ˆexp( )kj ki kj
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t t l R t kl kl

d
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w z ��
�

�
� �

�  

The observation proportionality constant is computed as  

ˆexp( )ki kiw z ��  

Programming Notes 
1. The covariate vectors zki are computed from each row of the input matrix 

x via function imsls_f_regressors_for_glm (see Chapter 2, 
Regression). Thus, class variables are easily incorporated into the zki. 
The reader is referred to the document for 
imsls_f_regressors_for_glm in the regression chapter for a more 
detailed discussion.  
Note that imsls_f_prop_hazards_gen_lin calls 
imsls_f_regressors_for_glm  with dummy_method = 
IMSLS_LEAVE_OUT_LAST of the IMSLS_DUMMY option. 

2. The average of each of the explanatory variables is subtracted from the 
variable prior to computing the product zki�. Subtraction of the mean 
values has no effect on the computed log-likelihood or the estimates 
since the constant term occurs in both the numerator and denominator of 
the likelihood. Subtracting the mean values does help to avoid invalid 
exponentiation in the algorithm and may also speed convergence. 

3. Function imsls_f_prop_hazards_gen_lin allows for two methods 
of handling ties. In the first method (itie = 1), the user is allowed to 
break ties in any manner desired. When this method is used, it is 
assumed that the user has sorted the rows in X from largest to smallest 
with respect to the failure/censoring times xi, irt within each stratum (and 
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across strata), with tied observations (failures or censored) broken in the 
manner desired. The same effect can be obtained with itie = 0 by 
adding (or subtracting) a small amount from each of the tied 
observations failure/ censoring times ti = xi, irt so as to break the ties in 
the desired manner. 

The second method for handling ties (itie = 0) uses an approximation for the 
tied likelihood proposed by Breslow (1974). The likelihood in Breslow’s method 
is as specified above, with the risk set at time ti including all observations that fail 
at time ti, while all observations that are censored at time ti are not included.  
(Tied censored observations are assumed to be censored immediately prior to the  
time ti). 

4. If IMSLS_INITIAL_EST_INPUT option is used, then it is assumed that the 
user has provided initial estimates for the model coefficients � in in_coef. 
When initial estimates are provided by the user, care should be taken to 
ensure that the estimates correspond to the generated covariate vector zki. If 
IMSLS_INITIAL_EST_INPUT option is not used, then initial estimates of 
zero are used for all of the coefficients. This corresponds to no effect from 
any of the covariate values. 

5. If a linear combination of covariates is monotonically increasing or 
decreasing with increasing failure times, then one or more of the estimated 
coefficients is infinite and extended maximum likelihood estimates must be 
computed. Such estimates may be written as ˆ ˆ ˆf� � �� � � where � = � at the 
supremum of the likelihood so that ˆ

f� is the finite part of the solution. In 
imsls_f_prop_hazards_gen_lin, it is assumed that extended maximum 
likelihood estimates must be computed if, within any group k, for any time t, 

ˆ ˆmin exp( ) max exp( )
ki ki

ki ki ki kit t t t
w z w z� � �

� �

� � �  

where � = ratio is specified by the user. Thus, for example, if � = 10000, 
then imsls_f_prop_hazards_gen_lin does not compute  extended 
maximum likelihood estimates until the estimated proportionality constant 

ˆexp( )ki kiw z ��  
is 10000 times larger for all observations prior to t than for all observations 
after t. When this occurs, imsls_f_prop_hazards_gen_lin computes 
estimates for ˆ

f� by splitting the failures in stratum k into two strata at t (see 
Bryson and Johnson 1981). Censored observations in stratum k are placed 
into a stratum based upon the associated value for  

ˆexp( )ki kiw z ��  
The results of the splitting are returned in igrp. 
The estimates ˆ

f� based upon the stratified likelihood represent the finite part 
of the extended maximum likelihood solution. Function 
imsls_f_prop_hazards_gen_lin does not compute � explicitly, but an 
estimate for� may be obtained in some circumstances by setting ratio = �1 

ˆ
ˆ
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and optimizing the log-likelihood without forming additional strata. The 
solution �̂ obtained will be such that ˆ ˆ ˆf� � �� �

2 3 3x� �� � �

� for some finite value of  
� > 0. At this solution, the Newton-Raphson algorithm will not have 
“converged” because the Newton-Raphson step sizes returned in gr will be 
large, at least for some variables. Convergence will be declared, however, 
because the relative change in the log-likelihood during the final iterations 
will be small.  

Example 
The following data are taken from Lawless (1982, page 287) and involve the 
survival of lung cancer patients based upon their initial tumor types and treatment 
type. In the first example, the likelihood is maximized with no strata present in 
the data. This corresponds to Example 7.2.3 in Lawless (1982, page 367). The 
input data is printed in the output. The model is given as:  

1 1 2ln( )= i jx x� � � ��  

where �i and �j correspond to dummy variables generated from column indices 5 
and 6 of x, respectively, x� corresponds to column index 2, x� corresponds to 
column index 3, and x� corresponds to column index 4 of x. 

#include "imsls.h" 
 
#define NOBS 40 
#define NCOL 7 
#define NCLVAR 2 
#define NEF 5 
 
void main () 
{ 
  int icen = 1, iprint = 2, maxcl = 6, ncoef; 
  int indef[NEF] = { 2, 3, 4, 5, 6 }; 
  int nvef[NEF] = { 1, 1, 1, 1, 1 }; 
  int indcl[NCLVAR] = { 5, 6 }; 
  float *coef, ratio = 10000.0; 
  float x[NOBS * NCOL] = { 
    411, 0, 7, 64, 5, 1, 0, 
    126, 0, 6, 63, 9, 1, 0, 
    118, 0, 7, 65, 11, 1, 0, 
    92, 0, 4, 69, 10, 1, 0, 
    8, 0, 4, 63, 58, 1, 0, 
    25, 1, 7, 48, 9, 1, 0, 
    11, 0, 7, 48, 11, 1, 0, 
    54, 0, 8, 63, 4, 2, 0, 
    153, 0, 6, 63, 14, 2, 0, 
    16, 0, 3, 53, 4, 2, 0, 
    56, 0, 8, 43, 12, 2, 0, 
    21, 0, 4, 55, 2, 2, 0, 
    287, 0, 6, 66, 25, 2, 0, 
    10, 0, 4, 67, 23, 2, 0, 
    8, 0, 2, 61, 19, 3, 0, 
    12, 0, 5, 63, 4, 3, 0, 
    177, 0, 5, 66, 16, 4, 0, 
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    12, 0, 4, 68, 12, 4, 0, 
    200, 0, 8, 41, 12, 4, 0, 
    250, 0, 7, 53, 8, 4, 0, 
    100, 0, 6, 37, 13, 4, 0, 
    999, 0, 9, 54, 12, 1, 1, 
    231, 1, 5, 52, 8, 1, 1, 
    991, 0, 7, 50, 7, 1, 1, 
    1, 0, 2, 65, 21, 1, 1, 
    201, 0, 8, 52, 28, 1, 1, 
    44, 0, 6, 70, 13, 1, 1, 
    15, 0, 5, 40, 13, 1, 1, 
    103, 1, 7, 36, 22, 2, 1, 
    2, 0, 4, 44, 36, 2, 1, 
    20, 0, 3, 54, 9, 2, 1, 
    51, 0, 3, 59, 87, 2, 1, 
    18, 0, 4, 69, 5, 3, 1, 
    90, 0, 6, 50, 22, 3, 1, 
    84, 0, 8, 62, 4, 3, 1, 
    164, 0, 7, 68, 15, 4, 1, 
    19, 0, 3, 39, 4, 4, 1, 
    43, 0, 6, 49, 11, 4, 1, 
    340, 0, 8, 64, 10, 4, 1, 
    231, 0, 7, 67, 18, 4, 1 
  }; 
 
  coef = imsls_f_prop_hazards_gen_lin (NOBS, NCOL, x, NEF, 
          nvef, indef, maxcl, &ncoef, 
          IMSLS_PRINT_LEVEL, iprint, 
          IMSLS_CENSOR_CODES_COL, icen, 
          IMSLS_RATIO, ratio, 
          IMSLS_DUMMY, NCLVAR, &indcl[0], 0); 
} 

Output 
 
                      Initial Estimates 
      1        2        3        4        5        6        7 
 0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000 
 
Method  Iteration  Step size  Maximum scaled     Log 
                               coef. update      likelihood 
  Q-N        0                                       -102.4 
  Q-N        1      1.0000           0.5034          -91.04 
  Q-N        2      1.0000           0.5782          -88.07 
  N-R        3      1.0000           0.1131          -87.92 
  N-R        4      1.0000          0.06958          -87.89 
  N-R        5      1.0000        0.0008145          -87.89 
 
Log-likelihood                -87.88778 
  
                 Coefficient Statistics 
    Coefficient      Standard    Asymptotic    Asymptotic 
                        error   z-statistic       p-value 
1        -0.585         0.137        -4.272         0.000 
2        -0.013         0.021        -0.634         0.526 
3         0.001         0.012         0.064         0.949 
4        -0.367         0.485        -0.757         0.449 
5        -0.008         0.507        -0.015         0.988 
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6         1.113         0.633         1.758         0.079 
7         0.380         0.406         0.936         0.349 
  
                   Asymptotic Coefficient Covariance 
              1             2             3             4             5 
1       0.01873      0.000253     0.0003345      0.005745       0.00975 
2                   0.0004235    -4.12e-005     -0.001663    -0.0007954 
3                                 0.0001397     0.0008111     -0.001831 
4                                                   0.235       0.09799 
5                                                                0.2568 
  
              6             7 
1      0.004264      0.002082 
2     -0.003079     -0.002898 
3     0.0005995      0.001684 
4        0.1184       0.03735 
5        0.1253      -0.01944 
6        0.4008       0.06289 
7                      0.1647 
  
                              Case Analysis 
        Survival     Influence      Residual    Cumulative         Prop. 
     Probability                                    hazard      constant 
 1          0.00          0.04          2.05          6.10          0.34 
 2          0.30          0.11          0.74          1.21          0.61 
 3          0.34          0.12          0.36          1.07          0.33 
 4          0.43          0.16          1.53          0.84          1.83 
 5          0.96          0.56          0.09          0.05          2.05 
 6          0.74  ............          0.13          0.31          0.42 
 7          0.92          0.37          0.03          0.08          0.42 
 8          0.59          0.26          0.14          0.53          0.27 
 9          0.26          0.12          1.20          1.36          0.88 
10          0.85          0.15          0.97          0.17          5.76 
11          0.55          0.31          0.21          0.60          0.36 
12          0.74          0.21          0.96          0.31          3.12 
13          0.03          0.06          3.02          3.53          0.86 
14          0.94          0.09          0.17          0.06          2.71 
15          0.96          0.16          1.31          0.05         28.89 
16          0.89          0.23          0.59          0.12          4.82 
17          0.18          0.09          2.62          1.71          1.54 
18          0.89          0.19          0.33          0.12          2.68 
19          0.14          0.23          0.72          1.96          0.37 
20          0.05          0.09          1.66          2.95          0.56 
21          0.39          0.22          1.17          0.94          1.25 
22          0.00          0.00          1.73         21.11          0.08 
23          0.08  ............          2.19          2.52          0.87 
24          0.00          0.00          2.46          8.89          0.28 
25          0.99          0.31          0.05          0.01          4.28 
26          0.11          0.17          0.34          2.23          0.15 
27          0.66          0.25          0.16          0.41          0.38 
28          0.87          0.22          0.15          0.14          1.02 
29          0.39  ............          0.45          0.94          0.48 
30          0.98          0.25          0.06          0.02          2.53 
31          0.77          0.26          1.03          0.26          3.90 
32          0.63          0.35          1.80          0.46          3.88 
33          0.82          0.26          1.06          0.19          5.47 
34          0.47          0.26          1.65          0.75          2.21 
35          0.51          0.32          0.39          0.67          0.58 
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36          0.22          0.18          0.49          1.53          0.32 
37          0.80          0.26          1.08          0.23          4.77 
38          0.70          0.16          0.26          0.36          0.73 
39          0.01          0.23          0.87          4.66          0.19 
40          0.08          0.20          0.81          2.52          0.32 
  
                           Last Coefficient Update 
          1            2            3            4            5            6 
-1.296e-008   2.269e-009  -5.894e-009  -4.782e-007  -1.787e-007   1.509e-007 
  
          7 
 4.327e-008 
  
                               Covariate Means 
          1            2            3            4            5            6 
       5.65        56.58        15.65         0.35         0.28         0.13 
  
          7 
       0.53 
 
Distinct Values For Each Class Variable  
Variable 1:           1           2           3           4 
  
Variable 2:           0           1 
  
                     Stratum Numbers For Each Observation 
 1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  
20 
 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   
1 
  
21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  
40 
 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   
1 
 
Number of Missing Values          0 

 

survival_glm 
Analyzes censored survival data using a generalized linear model. 

Synopsis 
#include <imsls.h> 
int imsls_f_survival_glm (int n_observations, int n_class, 

int n_continuous, int model, float x[], ..., 0) 
The type double function is imsls_d_survival_glm. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 
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int n_class   (Input) 
Number of classification variables. 

int n_continuous   (Input) 
Number of continuous variables. 

int model   (Input) 
Argument model specifies the model used to analyze the data. 

model PDF of the Response Variable 
0 Exponential 
1 Linear hazard 
2 Log-normal 
3 Normal 
4 Log-logistic 
5 Logistic 
6 Log least extreme value 
7 Least extreme value 
8 Log extreme value 
9 Extreme value 

10 Weibull 

See the “Description” section for more information about these models. 

float x[]   (Input) 
Array of size n_observations by (n_class + n_continuous) + m 
containing data for the independent variables, dependent variable, and 
optional parameters. 

The columns must be ordered such that the first n_class columns 
contain data for the class variables, the next n_continuous columns 
contain data for the continuous variables, and the next column contains 
the response variable. The final (and optional) m � 1 columns contain 
the optional parameters.  

Return Value 
An integer value indicating the number of estimated coefficients in the model. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int imsls_f_survival_glm (int n_observations, int n_class, 

int n_continuous, int model, float x[],  
IMSLS_X_COL_CENSORING, int icen, int ilt, int irt, 
IMSLS_X_COL_DIM, int x_col_dim, 
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IMSLS_X_COL_FREQUENCIES, int ifrq, 
IMSLS_X_COL_FIXED_PARAMETER, int ifix, 
IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[], 
 int iy 
IMSLS_EPS, float eps, 
IMSLS_MAX_ITERATIONS, int max_iterations, 
IMSLS_INTERCEPT, 
IMSLS_NO_INTERCEPT, 
IMSLS_INFINITY_CHECK, int lp_max 
IMSLS_NO_INFINITY_CHECK 
IMSLS_EFFECTS, int n_effects, int n_var_effects[],  
 int indices_effects, 
IMSLS_INITIAL_EST_INTERNAL, 
IMSLS_INITIAL_EST_INPUT, int n_coef_input, 
 float estimates[], 
IMSLS_MAX_CLASS, int max_class, 
IMSLS_CLASS_INFO, int **n_class_values, 
 float **class_values, 
IMSLS_CLASS_INFO_USER, int n_class_values[], 
 float class_values[], 
IMSLS_COEF_STAT, float **coef_statistics, 
IMSLS_COEF_STAT_USER, float coef_statistics[], 
IMSLS_CRITERION, float *criterion, 
IMSLS_COV, float **cov, 
IMSLS_COV_USER, float cov[], 
IMSLS_MEANS, float **means, 
IMSLS_MEANS_USER, float means[], 
IMSLS_CASE_ANALYSIS, float **case_analysis, 
IMSLS_CASE_ANALYSIS_USER, float case_analysis[], 
IMSLS_LAST_STEP, float **last_step,  
IMSLS_LAST_STEP_USER, float last_step[], 
IMSLS_OBS_STATUS, int **obs_status, 
IMSLS_OBS_STATUS_USER, int obs_status[], 
IMSLS_ITERATIONS, int *n, float **iterations,  
IMSLS_ITERATIONS_USER, int *n, float iterations[], 
IMSLS_SURVIVAL_INFO, Imsls_f_survival **survival_info 
IMSLS_N_ROWS_MISSING, int *n_rows_missing, 
0) 

Optional Arguments 
IMSLS_X_COL_DIM, int x_col_dim   (Input) 

Column dimension of input array x. 
Default: x_col_dim = n_class + n_continuous + 1 

IMSLS_X_COL_CENSORING, int icen, int ilt, int irt   (Input) 
Parameter icen is the column in x containing the censoring code for 
each observation. 
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x [i] [icen] Censoring type 
0 Exact failure at x [i] [irt] 
1 Right Censored. The response is greater than 

x [i] [irt]. 
2 Left Censored. The response is less than or 

equal to x [i] [irt]. 
3 Interval Censored. The response is greater 

than x [i] [irt], but less than or equal to 
x [i] [ilt]. 

Parameter ilt is the column number of x containing the upper endpoint 
of the failure interval for interval- and left-censored observations. If 
there are no left-censored or interval-censored observations, ilt should 
be set to �1. 

Parameter irt is the column number of x containing the lower endpoint 
of the failure interval for interval- and right-censored observations. If 
there are no left-censored or interval-censored observations, irt should 
be set to �1.  

Exact failure times are specified in column iy of x. By default, iy is 
column n_class + n_continuous of x. The default can be changed if 
keyword IMSLS_X_COL_VARIABLES is specified. 

Note that it is allowable to set iy = irt, since a row with an iy value 
will never have an irt value, and vice versa. This use is illustrated in 
Example 2. 

IMSLS_FREQUENCIES, int ifrq   (Input) 
Column number of x containing the frequency of response for each 
observation. 

IMSLS_FIXED_PARAMETER, int ifix   (Input) 
Column number in x containing a fixed parameter for each observation 
that is added to the linear response prior to computing the model 
parameter. The “fixed” parameter allows one to test hypothesis about the 
parameters via the log-likelihoods. 

IMSLS_X_COL_VARIABLES int iclass[], int icontinuous[], int iy   
(Input) 
This keyword allows specification of the variables to be used in the 
analysis, and overrides the default ordering of variables described for 
input argument x. Columns are numbered from 0 to x_col_dim � 1. To 
avoid errors, always specify the keyword IMSLS_X_COL_DIM when 
using this keyword. 
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Argument iclass is an index vector of length n_class containing the 
column numbers of x that correspond to classification variables.  

Argument icontinuous is an index vector of length n_continuous 
containing the column numbers of x that correspond to continuous 
variables.  

Argument iy corresponds to the column of x which contains the 
dependent variable.  

IMSLS_EPS, float eps   (Input) 
Argument eps is the convergence criterion. Convergence is assumed 
when the maximum relative change in any coefficient estimate is less 
than eps from one iteration to the next or when the relative change in 
the log-likelihood, criterion, from one iteration to the next is less than 
eps/100.0. 
Default: eps = 0.001 

IMSLS_MAX_ITERATIONS, int max_iterations   (Input) 
Maximum number of iterations. Use max_iterations = 0 to compute 
the Hessian, stored in cov, and the Newton step, stored in last_step, 
at the initial estimates (The initial estimates must be input. Use keyword 
IMSLS_INITIAL_EST_INPUT). 
Default: max_iterations = 30 

IMSLS_INTERCEPT, or 
IMSLS_NO_INTERCEPT, 

By default, or if IMSLS_INTERCEPT is specified, the intercept is 
automatically included in the model. If IMSLS_NO_INTERCEPT is 
specified, there is no intercept in the model (unless otherwise provided 
for by the user). 

IMSLS_INFINITY_CHECK, int lp_max   (Input) 
Remove a right- or left-censored observation from the log-likelihood 
whenever the probability of the observation exceeds 0.995. At 
convergence, use linear programming to check that all removed 
observations actually have infinite linear response 

ˆ
iz �  

obs_status [i] is set to 2 if the linear response is infinite (See optional 
argument IMSLS_OBS_STATUS). If not all removed observations have 
infinite linear response, re-compute the estimates based upon the 
observations with finite 

ˆ
iz �  

Parameter lp_max is the maximum number of observations that can be 
handled in the linear programming. Setting 
lp_max = n_observations is always sufficient.  
Default: No infinity checking; lp_max = 0 
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IMSLS_NO_INFINITY_CHECK 
Iterates without checking for infinite estimates. This option is the 
default. 

IMSLS_EFFECTS, int n_effects, int n_var_effects[], 
int indices_effects[]   (Input) 
Use this keyword to specify the effects in the model. 

Variable n_effects is the number of effects (sources of variation) in 
the model. Variable n_var_effects is an array of length n_effects 
containing the number of variables associated with each effect in the 
model.  

Argument indices_effects is an index array of length 
n_var_effects [0] + n_var_effects [1] + � + 
n_var_effects [n_effects � 1]. The first n_var_effects [0] 
elements give the column numbers of x for each variable in the first 
effect. The next n_var_effects[1] elements give the column numbers 
for each variable in the second effect. The last 
n_var_effects [n_effects � 1] elements give the column numbers 
for each variable in the last effect. 

IMSLS_INITIAL_EST_INTERNAL, or 
IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[]   

(Input) 
 By default, or if IMSLS_INIT_INTERNAL is specified, then unweighted 

linear regression is used to obtain initial estimates. If 
IMSLS_INITIAL_EST_INPUT is specified, then the n_coef_input 
elements of estimates contain initial estimates of the parameters 
(which requires that the user know the number of coefficients in the 
model prior to the call to survival_glm). See optional argument 
IMSLS_COEF_STAT for a description of the “nuisance” parameter, 
which is the first element of array estimates. 

IMSLS_MAX_CLASS, int max_class   (Input) 
An upper bound on the sum of the number of distinct values taken on by 
each classification variable. Internal workspace usage can be 
significantly reduced with an appropriate choice of max_class. 
Default: max_class = n_observations � n_class 

IMSLS_CLASS_INFO, int **n_class_values, float **class_values   
(Output) 
Argument n_class_values is the address of a pointer to the internally 
allocated array of length n_class containing the number of values 
taken by each classification variable; the i-th classification variable has 
n_class_values [i] distinct values. Argument class_values is the 
address of a pointer to the internally allocated array of length 

-1

0
[ ]

i

i
�

�
n_class

n_class_values  
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containing the distinct values of the classification variables in ascending 
order. The first n_class_values [0] elements of class_values 
contain the values for the first classification variables, the next 
n_class_values [1] elements contain the values for the second 
classification variable, etc.  

IMSLS_CLASS_INFO_USER, int n_class_values[], 
float class_values[]   (Output) 
Storage for arrays n_class_values and class_values is provided 
by the user. See IMSLS_CLASS_INFO. 

IMSLS_COEF_STAT, float **coef_statistics   (Output) 
Address of a pointer to an internally allocated array of size 
n_coefficients � 4 containing the parameter estimates and 
associated statistics: 

Column Statistic 
0 Coefficient estimate. 
1 Estimated standard deviation of the estimated 

coefficient. 
2 Asymptotic normal score for testing that the 

coefficient is zero. 
3 The p-value associated with the normal score in 

Column 2. 

When present in the model, the first coefficient in coef_statistics is 
the estimate of the “nuisance” parameter, and the remaining coefficients 
are estimates of the parameters associated with the “linear” model, 
beginning with the intercept, if present. Nuisance parameters are as 
follows: 

model  
0 No nuisance parameter 
1 Coefficient of the quadratic term in time, 	 

2-9 Scale parameter, 
 
10 Shape parameter, 	 

IMSLS_COEF_STAT_USER, float coef_statistics[]   (Output) 
Storage for array coef_statistics is provided by the user. See 
IMSLS_COEF_STAT. 

IMSLS_CRITERION, float *criterion   (Output) 
Optimized criterion. The criterion to be maximized is a constant plus the 
log-likelihood. 

IMSLS_COV, float **cov   (Output) 
Address of a pointer to the internally allocated array of size 
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n_coefficients by  n_coefficients containing the estimated 
asymptotic covariance matrix of the coefficients. For 
max_iterations = 0, this is the Hessian computed at the initial 
parameter estimates. 

IMSLS_COV_USER, float cov[]   (Ouput) 
Storage for array cov is provided by the user. See IMSLS_COV. 

IMSLS_MEANS, float **means   (Output) 
Address of a pointer to the internally allocated array containing the 
means of the design variables. The array is of length 
n_coefficients � m if IMSLS_NO_INTERCEPT is specified, and of 
length n_coefficients � m � 1 otherwise. Here, m is equal to 0 if 
model = 0, and equal to 1 otherwise. 

IMSLS_MEANS_USER, float means[]   (Output) 
Storage for array means is provided by the user. See IMSLS_MEANS. 

IMSLS_CASE_ANALYSIS, float **case_statistics   (Output) 
Address of a pointer to the internally allocated array of size 
n_observations by 5 containing the case analysis below: 

Column Statistic 
0 Estimated predicted value. 
1 Estimated influence or leverage. 
2 Estimated residual. 
3 Estimated cumulative hazard. 
4 Non-censored observations: Estimated density at the 

observation failure time and covariate values. 
Censored observations: The corresponding estimated 
probability. 

If max_iterations = 0, case_statistics is an array of length 
n_observations containing the estimated probability (for censored 
observations) or the estimated density (for non-censored observations) 

IMSLS_CASE_ANALYSIS_USER, float case_statistics[]   (Output) 
Storage for array case_statistics is provided by the user. See 
IMSLS_CASE_ANALYSIS. 

IMSLS_LAST_STEP, float **last_step   (Output) 
Address of a pointer to the internally allocated array of length 
n_coefficients containing the last parameter updates (excluding step 
halvings). Parameter last_step is computed as the inverse of the 
matrix of second partial derivatives times the vector of first partial 
derivatives of the log-likelihood. When max_iterations = 0, the 
derivatives are computed at the initial estimates. 
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IMSLS_LAST_STEP_USER, float last_step[]   (Output) 
Storage for array last_step is provided by the user. See 
IMSLS_LAST_STEP. 

IMSLS_OBS_STATUS, int **obs_status   (Output) 
Address of a pointer to the internally allocated array of length 
n_observations indicating which observations are included in the 
extended likelihood. 

obs_status [i] Status of Observation 

0 Observation i is in the likelihood 
1 Observation i cannot be in the likelihood because 

it contains at least one missing value in x. 
2 Observation i is not in the likelihood. Its estimated 

parameter is infinite. 

IMSLS_OBS_STATUS_USER, int obs_status[]   (Output) 
Storage for array obs_status is provided by the user. See 
IMSLS_OBS_STATUS. 

IMSLS_ITERATIONS, int *n, float **iterations   (Output) 
Address of a pointer to the internally allocated array of size, n by 5 
containing information about each iteration of the analysis, where n is 
equal to the number of iterations. 

column statistic 
0 Method of iteration 

Q-N Step = 0 
N-R Step = 1 

1 Iteration number 
2 Step size 
3 Maximum scaled coefficient update 
4 Log-likelihood 

IMSLS_ITERATIONS_USER, int *n, float iterations[]   (Output) 
Storage for array iterations is provided by the user. See 
IMSLS_ITERATIONS. 

IMSLS_SURVIVAL_INFO, Imsls_f_survival **survival_info   (Output) 
Address of the pointer to an internally allocated structure of type 
Imsls_f_survival containing information about the survival analysis. This 
structure is required input for function 
imsls_f_survival_estimates. 

IMSLS_N_ROWS_MISSING, int *n_rows_missing   (Output) 
Number of rows of data that contain missing values in one or more of the 
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following vectors or columns of x: iy, icen, ilt, irt, ifrq, ifix, 
iclass, icontinuous, or indices_effects. 

Comments 
1. Dummy variables are generated for the classification variables as 

follows: An ascending list of all distinct values of each classification 
variable is obtained and stored in class_values. Dummy variables are 
then generated for each but the last of these distinct values. Each dummy 
variable is zero unless the classification variable equals the list value 
corresponding to the dummy variable, in which case the dummy variable 
is one. See keyword IMSLS_LEAVE_OUT_LAST for optional argument 
IMSLS_DUMMY in imsls_f_regressors_for_glm (Chapter 2. 
“Regression”). 

2. The “product” of a classification variable with a covariate yields dummy 
variables equal to the product of the covariate with each of the dummy 
variables associated with the classification variable. 

3. The “product” of two classification variables yields dummy variables in 
the usual manner. Each dummy variable associated with the first 
classification variable multiplies each dummy variable associated with 
the second classification variable. The resulting dummy variables are 
such that the index of the second classification variable varies fastest. 

Description 
Function imsls_f_survival_glm computes the maximum likelihood estimates 
of parameters and associated statistics in generalized linear models commonly 
found in survival (reliability) analysis. Although the terminology used will be 
from the survival area, the methods discussed have applications in many areas of 
data analysis, including reliability analysis and event history analysis. These 
methods can be used anywhere a random variable from one of the discussed 
distributions is parameterized via one of the models available in 
imsls_f_survival_glm. Thus, while it is not advisable to do so, standard 
multiple linear regression can be performed by routine 
imsls_f_survival_glm. Estimates for any of 10 standard models can be 
computed. Exact, left-censored, right-censored, or interval-censored observations 
are allowed (note that left censoring is the same as interval censoring with the left 
endpoint equal to the left endpoint of the support of the distribution). 

Let � = xT� be the linear parameterization, where x is a design vector obtained by 
imsls_f_survival_glm via function imsls_f_regressors_for_glm from 
a row of x, and � is a vector of parameters associated with the linear model. Let  
T denote the random response variable and S(t) denote the probability that T > t. 
All models considered also allow a fixed parameter wi for observation i (input in 
column ifix of x). Use of this parameter is discussed below. There also may be 
nuisance parameters 	 > 0, or 
 > 0 to be estimated (along with �) in the various 
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models. Let � denote the cumulative normal distribution. The survival models 
available in imsls_f_survival_glm are: 

model Name S (t) 
0 Exponential exp [�t exp (wi + �)] 

1 Linear hazard 
� �

2

exp exp
2 i
tt w�

�
� �� �
� � �� 	
 �
� 
� �

 

2 Log-normal � �ln
1 it w�

�

� �� �
��� �

� �
 

3 Normal 
1 it w�

�

� �� �
��� �

� �
 

4 Log-logistic � � 1ln
{1 exp }it w�

�

�

� �� �
� � �

� �
 

5 Logistic 
1{1 exp }it w�

�

�

� �� �
� � �

� �
 

6 Log least extreme 
value 

� �ln
exp{ exp }it w�

�

� �� �
� � �

� �
 

7 Least extreme value 
exp{ exp }it w�

�

� �� �
� � �

� �
 

8 Log extreme value � �ln
1 exp{ exp }it w�

�

� �� �
� � � �

� �
 

9 Extreme value 
1 exp{ exp }it w�

�

� �� �
� � � �

� �
 

10 Weibull 

� �
exp{ }

exp i

t
w

�

�

� �
� � �

�� �� �
 

Note that the log-least-extreme-value model is a reparameterization of the 
Weibull model. Moreover, models 0, 1, 2, 4, 6, 8, and 10 require that T > 0, while 
all of the remaining models allow any value for T, �� < T < �. 

Each row vector in the data matrix can represent a single observation; or, through 
the use of vector frequencies, each row can represent several observations. Also 
note that classification variables and their products are easily incorporated into 
the models via the usual regression-type specifications. 

The constant parameter Wi is input in x and may be used for a number of 
purposes. For example, if the parameter in an exponential model is known to 
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depend upon the size of the area tested, volume of a radioactive mass, or 
population density, etc., then a multiplicative factor of the exponential parameter 
� = exp (x�) may be known apriori. This factor can be input in  
Wi (Wi is the log of the factor). 

An alternate use of Wi is as follows: It may be that � = exp (x1�1 + x2�2), where  
�2 is known. Letting Wi = x2�2, estimates for �1 can be obtained via 
imsls_f_survival_glm with the known fixed values for �2. Standard methods 
can then be used to test hypothesis about �1 via computed log-likelihoods. 

Computational Details 
The computations proceed as follows: 
1. The input parameters are checked for consistency and validity. 

� Estimates of the means of the “independent” or design variables are 
computed. Means are computed as 

i i

i

f x
x

f
�

�
�

 

2. If initial estimates are not provided by the user (see optional argument 
IMSLS_INITIAL_EST_INPUT), the initial estimates are calculated as 
follows: 

� Models 2-10  
A. Kaplan-Meier estimates of the survival probability, 

� �Ŝ t  

at the upper limit of each failure interval are obtained. (Because upper 
limits are used, interval- and left-censored data are assumed to be exact 
failures at the upper endpoint of the failure interval.) The Kaplan-Meier 
estimate is computed under the assumption that all failure distributions 
are identical (i.e., all �’s but the intercept, if present, are assumed to be 
zero).  

B. If there is an intercept in the model, a simple linear regression is 
performed predicting 

� �� �1 ˆ
iS S t w t� �� 	� 
 �  

where t� is computed at the upper endpoint of each failure interval,  
t� = t in models 3, 5, 7, and 9, and t� = ln (t) in models 2, 4, 6, 8, and 10, 
and wi is the fixed constant, if present.  

If there is no intercept in the model, then � is fixed at zero, and the 
model  

� �� �1 ˆ ˆ T
iS S t t w x� ��

�� � �  
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is fit instead. In this model, the coefficients � are used in place of the 
location estimate � above. Here 

�̂  

is estimated from the simple linear regression with � = 0. 
C. If the intercept is in the model, then in log-location-scale models 

(models 1-8),  

ˆ�̂ ��  

and the initial estimate of the intercept is assumed to be � . ˆ

In the Weibull model 

ˆ ˆ1/� ��  

and the intercept is assumed to be � . ˆ

Initial estimates of all parameters �, other than the intercept, are 
assumed to be zero. 

If there is no intercept in the model, the scale parameter is estimated as 
above, and the estimates  

�̂  

from Step 2 are used as initial estimates for the �’s. 

� Models 0 and 1 

For the exponential models (model = 0 or 1), the “average total time on” 
test statistic is used to obtain an estimate for the intercept. Specifically, let 
Tt denote the total number of failures divided by the total time on test. The 
initial estimates for the intercept is then ln(Tt). Initial estimates for the 
remaining parameters � are assumed to be zero, and if model = 1, the initial 
estimate for the linear hazard parameter � is assumed to be a small positive 
number. When the intercept is not in the model, the initial estimate for the 
parameter � is assumed to be a small positive number, and initial estimates 
of the parameters � are computed via multiple linear regression as in Part A. 

3. A quasi-Newton algorithm is used in the initial iterations based on a Hessian 
estimate 

ˆ
j l j li i

i

H l
� � � �

	
�  

where l�i
�
j is the partial derivative of the i-th term in the log-likelihood with 

respect to the parameter �j, and aj denotes one of the parameter to be 
estimated. 

When the relative change in the log-likelihood from one iteration to the next is 
0.1 or less, exact second partial derivatives are used for the Hessian so the 
Newton-Rapheson iteration is used. 
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If the initial step size results in an increase in the log-likelihood, the full step is 
used. If the log-likelihood decreases for the initial step size, the step size is 
halved, and a check for an increase in the log-likelihood performed. Step-halving 
is performed (as a simple line search) until an increase in the log-likelihood is 
detected, or until the step size becomes very small (the initial step size is 1.0). 
4. Convergence is assumed when the maximum relative change in any 

coefficient update from one iteration to the next is less than eps or when the 
relative change in the log-likelihood from one iteration to the next is less than 
eps/100. Convergence is also assumed after maxit iterations or when step 
halving leads to a very small step size with no increase in the log-likelihood. 

5. If requested (see optional argument IMSLS_INFINITY_CHECK), then the 
methods of Clarkson and Jennrich (1988) are used to check for the existence 
of infinite estimates in 

T
i ix� ��  

As an example of a situation in which infinite estimates can occur, suppose that 
observation j is right-censored with tj > 15 in a normal distribution model in 
which the mean is 

T
j j jx� � �� �  

where xj is the observation design vector. If the design vector xj for parameter �m 
is such that xjm = 1 and xim = 0 for all i 	 j, then the optimal estimate of �m occurs 
at 

ˆ
m� � �  

leading to an infinite estimate of both �m and 
j. In imsls_f_survival_glm, 
such estimates can be “computed”. 

In all models fit by imsls_f_survival_glm, infinite estimates can only occur 
when the optimal estimated probability associated with the left- or right-censored 
observation is 1. If infinity checking is on, left- or right-censored observations 
that have estimated probability greater than 0.995 at some point during the 
iterations are excluded from the log-likelihood, and the iterations proceed with a 
log-likelihood based on the remaining observations. This allows convergence of 
the algorithm when the maximum relative change in the estimated coefficients is 
small and also allows for a more precise determination of observations with 
infinite 

T
i ix� ��  

At convergence, linear programming is used to ensure that the eliminated 
observations have infinite 
i. If some (or all) of the removed observations should 
not have been removed (because their estimated 
i’s must be finite), then the 
iterations are restarted with a log-likelihood based upon the finite 
i observations. 
See Clarkson and Jennrich (1988) for more details. 
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When infinity checking is turned off (see optional argument 
IMSLS_NO_INFINITY_CHECK), no observations are eliminated during the 
iterations. In this case, the infinite estimates occur, some (or all) of the coefficient 
estimates 

�̂  

will become large, and it is likely that the Hessian will become (numerically) 
singular prior to convergence. 
6. The case statistics are computed as follows: Let Ii (�i)denote the log-

likelihood  
of the i-th observation evaluated at �i, let I�i denote the vector of derivatives 
of  
Ii with respect to all parameters, I�h,i denote the derivative of Ii with respect to 

 = xT�, H denote the Hessian, and E denote expectation. Then the columns 
of case_statistics are: 

A. Predicted values are computed as E (T/x) according to standard 
formulas. If model is 4 or 8, and if s � 1, then the expected values cannot 
be computed because they are infinite. 

B. Following Cook and Weisberg (1982), the influence (or leverage) of the 
i-th observation is assumed to be 

� � 1T

i iI H I�

� �  

This quantity is a one-step approximation of the change in the estimates 
when the i-th observation is deleted (ignoring the nuisance parameters). 

C. The “residual” is computed as I�h,i. 

D. The cumulative hazard is computed at the observation covariate values 
and, for interval observations, the upper endpoint of the failure interval. 
The cumulative hazard also can be used as a “residual” estimate. If the 
model is correct, the cumulative hazards should follow a standard 
exponential distribution. See Cox and Oakes (1984).  

Programming Notes 
Indicator (dummy) variables are created for the classification variables using 
function imsls_f_regressors_for_glm (Chapter 2, “Regression”) using 
keyword IMSLS_LEAVE_OUT_LAST as the argument to the IMSLS_DUMMY 
optional argument. 
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Examples 

Example 1 
This example is taken from Lawless (1982, p. 287) and involves the mortality of 
patients suffering from lung cancer. An exponential distribution is fit for the 
model 


 = � + �i + 
k + �6x3 + �7x4 + �8x5 

where �i is associated with a classification variable with four levels, and 
k  is 
associated with a classification variable with two levels. Note that because the 
computations are performed in single precision, there will be some small 
variation in the estimated coefficients across different machine environments. 

#include <imsls.h> 
 
main() { 
    static float x[40][7] = { 
        1.0,    0.0,    7.0,   64.0,    5.0,  411.0,    0.0,  
        1.0,    0.0,    6.0,   63.0,    9.0,  126.0,    0.0, 
        1.0,    0.0,    7.0,   65.0,   11.0,  118.0,    0.0, 
        1.0,    0.0,    4.0,   69.0,   10.0,   92.0,    0.0, 
        1.0,    0.0,    4.0,   63.0,   58.0,    8.0,    0.0, 
        1.0,    0.0,    7.0,   48.0,    9.0,   25.0,    1.0, 
        1.0,    0.0,    7.0,   48.0,   11.0,   11.0,    0.0, 
        2.0,    0.0,    8.0,   63.0,    4.0,   54.0,    0.0, 
        2.0,    0.0,    6.0,   63.0,   14.0,  153.0,    0.0, 
        2.0,    0.0,    3.0,   53.0,    4.0,   16.0,    0.0, 
        2.0,    0.0,    8.0,   43.0,   12.0,   56.0,    0.0, 
        2.0,    0.0,    4.0,   55.0,    2.0,   21.0,    0.0, 
        2.0,    0.0,    6.0,   66.0,   25.0,  287.0,    0.0, 
        2.0,    0.0,    4.0,   67.0,   23.0,   10.0,    0.0, 
        3.0,    0.0,    2.0,   61.0,   19.0,    8.0,    0.0, 
        3.0,    0.0,    5.0,   63.0,    4.0,   12.0,    0.0, 
        4.0,    0.0,    5.0,   66.0,   16.0,  177.0,    0.0, 
        4.0,    0.0,    4.0,   68.0,   12.0,   12.0,    0.0, 
        4.0,    0.0,    8.0,   41.0,   12.0,  200.0,    0.0, 
        4.0,    0.0,    7.0,   53.0,    8.0,  250.0,    0.0, 
        4.0,    0.0,    6.0,   37.0,   13.0,  100.0,    0.0, 
        1.0,    1.0,    9.0,   54.0,   12.0,  999.0,    0.0, 
        1.0,    1.0,    5.0,   52.0,    8.0,  231.0,    1.0, 
        1.0,    1.0,    7.0,   50.0,    7.0,  991.0,    0.0, 
        1.0,    1.0,    2.0,   65.0,   21.0,    1.0,    0.0, 
        1.0,    1.0,    8.0,   52.0,   28.0,  201.0,    0.0, 
        1.0,    1.0,    6.0,   70.0,   13.0,   44.0,    0.0, 
        1.0,    1.0,    5.0,   40.0,   13.0,   15.0,    0.0, 
        2.0,    1.0,    7.0,   36.0,   22.0,  103.0,    1.0, 
        2.0,    1.0,    4.0,   44.0,   36.0,    2.0,    0.0, 
        2.0,    1.0,    3.0,   54.0,    9.0,   20.0,    0.0, 
        2.0,    1.0,    3.0,   59.0,   87.0,   51.0,    0.0, 
        3.0,    1.0,    4.0,   69.0,    5.0,   18.0,    0.0, 
        3.0,    1.0,    6.0,   50.0,   22.0,   90.0,    0.0, 
        3.0,    1.0,    8.0,   62.0,    4.0,   84.0,    0.0, 
        4.0,    1.0,    7.0,   68.0,   15.0,  164.0,    0.0, 
        4.0,    1.0,    3.0,   39.0,    4.0,   19.0,    0.0, 
        4.0,    1.0,    6.0,   49.0,   11.0,   43.0,    0.0, 
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        4.0,    1.0,    8.0,   64.0,   10.0,  340.0,    0.0, 
        4.0,    1.0,    7.0,   67.0,   18.0,  231.0,    0.0}; 
    int   n_observations = 40; 
    int   n_class = 2; 
    int   n_continuous = 3; 
    int   model = 0; 
    int   n_coef; 
    int   icen = 6, ilt = -1, irt = 5; 
    int   lp_max = 40; 
    float *coef_stat; 
    char *fmt = "%12.4f"; 
    static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"}; 
 
    n_coef = imsls_f_survival_glm(n_observations, n_class,  
        n_continuous, model, &x[0][0],  
        IMSLS_X_COL_CENSORING, icen, ilt, irt,  
        IMSLS_INFINITY_CHECK, lp_max, 
        IMSLS_COEF_STAT, &coef_stat, 
        0);  
 
    imsls_f_write_matrix("Coefficient Statistics", n_coef, 4,  
        coef_stat,  
        IMSLS_WRITE_FORMAT, fmt,  
        IMSLS_NO_ROW_LABELS, 
        IMSLS_COL_LABELS, clabels, 
        0); 
} 

Output 

                Coefficient Statistics 
 coefficient          s.e.             z             p 
     -1.1027        1.3091       -0.8423        0.3998 
     -0.3626        0.4446       -0.8156        0.4149 
      0.1271        0.4863        0.2613        0.7939 
      0.8690        0.5861        1.4825        0.1385 
      0.2697        0.3882        0.6948        0.4873 
     -0.5400        0.1081       -4.9946        0.0000 
     -0.0090        0.0197       -0.4594        0.6460 
     -0.0034        0.0117       -0.2912        0.7710 

Example 2 
This example is the same as Example 1, but more optional arguments are 
demonstrated. 

#include <imsls.h> 
 
main() { 
    static float x[40][7] = { 
        1.0,    0.0,    7.0,   64.0,    5.0,  411.0,    0.0,  
        1.0,    0.0,    6.0,   63.0,    9.0,  126.0,    0.0, 
        1.0,    0.0,    7.0,   65.0,   11.0,  118.0,    0.0, 
        1.0,    0.0,    4.0,   69.0,   10.0,   92.0,    0.0, 
        1.0,    0.0,    4.0,   63.0,   58.0,    8.0,    0.0, 
        1.0,    0.0,    7.0,   48.0,    9.0,   25.0,    1.0, 
        1.0,    0.0,    7.0,   48.0,   11.0,   11.0,    0.0, 
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        2.0,    0.0,    8.0,   63.0,    4.0,   54.0,    0.0, 
        2.0,    0.0,    6.0,   63.0,   14.0,  153.0,    0.0, 
        2.0,    0.0,    3.0,   53.0,    4.0,   16.0,    0.0, 
        2.0,    0.0,    8.0,   43.0,   12.0,   56.0,    0.0, 
        2.0,    0.0,    4.0,   55.0,    2.0,   21.0,    0.0, 
        2.0,    0.0,    6.0,   66.0,   25.0,  287.0,    0.0, 
        2.0,    0.0,    4.0,   67.0,   23.0,   10.0,    0.0, 
        3.0,    0.0,    2.0,   61.0,   19.0,    8.0,    0.0, 
        3.0,    0.0,    5.0,   63.0,    4.0,   12.0,    0.0, 
        4.0,    0.0,    5.0,   66.0,   16.0,  177.0,    0.0, 
        4.0,    0.0,    4.0,   68.0,   12.0,   12.0,    0.0, 
        4.0,    0.0,    8.0,   41.0,   12.0,  200.0,    0.0, 
        4.0,    0.0,    7.0,   53.0,    8.0,  250.0,    0.0, 
        4.0,    0.0,    6.0,   37.0,   13.0,  100.0,    0.0, 
        1.0,    1.0,    9.0,   54.0,   12.0,  999.0,    0.0, 
        1.0,    1.0,    5.0,   52.0,    8.0,  231.0,    1.0, 
        1.0,    1.0,    7.0,   50.0,    7.0,  991.0,    0.0, 
        1.0,    1.0,    2.0,   65.0,   21.0,    1.0,    0.0, 
        1.0,    1.0,    8.0,   52.0,   28.0,  201.0,    0.0, 
        1.0,    1.0,    6.0,   70.0,   13.0,   44.0,    0.0, 
        1.0,    1.0,    5.0,   40.0,   13.0,   15.0,    0.0, 
        2.0,    1.0,    7.0,   36.0,   22.0,  103.0,    1.0, 
        2.0,    1.0,    4.0,   44.0,   36.0,    2.0,    0.0, 
        2.0,    1.0,    3.0,   54.0,    9.0,   20.0,    0.0, 
        2.0,    1.0,    3.0,   59.0,   87.0,   51.0,    0.0, 
        3.0,    1.0,    4.0,   69.0,    5.0,   18.0,    0.0, 
        3.0,    1.0,    6.0,   50.0,   22.0,   90.0,    0.0, 
        3.0,    1.0,    8.0,   62.0,    4.0,   84.0,    0.0, 
        4.0,    1.0,    7.0,   68.0,   15.0,  164.0,    0.0, 
        4.0,    1.0,    3.0,   39.0,    4.0,   19.0,    0.0, 
        4.0,    1.0,    6.0,   49.0,   11.0,   43.0,    0.0, 
        4.0,    1.0,    8.0,   64.0,   10.0,  340.0,    0.0, 
        4.0,    1.0,    7.0,   67.0,   18.0,  231.0,    0.0}; 
    int   n_observations = 40; 
    int   n_class = 2; 
    int   n_continuous = 3; 
    int   model = 0; 
    int   n_coef; 
    int   icen = 6, ilt = -1, irt = 5; 
    int   lp_max = 40; 
    int   n, *ncv, nrmiss, *obs; 
    float *iterations, *cv, criterion; 
    float *coef_stat, *casex; 
    char *fmt = "%12.4f"; 
    char *fmt2 = "%4d%4d%6.4f%8.4f%8.1f"; 
    static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"}; 
    static char *clabels2[] = {"", "Method", "Iteration", "Step Size", 
        "Coef Update", "Log-Likelihood"}; 
 
    n_coef = imsls_f_survival_glm(n_observations, n_class,  
        n_continuous, model, &x[0][0],  
        IMSLS_X_COL_CENSORING, icen, ilt, irt,  
        IMSLS_INFINITY_CHECK, lp_max, 
        IMSLS_COEF_STAT, &coef_stat, 
        IMSLS_ITERATIONS, &n, &iterations,  
        IMSLS_CASE_ANALYSIS, &casex, 
        IMSLS_CLASS_INFO, &ncv, &cv,  
        IMSLS_OBS_STATUS, &obs,  
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        IMSLS_CRITERION, &criterion, 
        IMSLS_N_ROWS_MISSING, &nrmiss,  
        0);  
 
    imsls_f_write_matrix("Coefficient Statistics", n_coef, 4,  
        coef_stat,  
        IMSLS_WRITE_FORMAT, fmt,  
        IMSLS_NO_ROW_LABELS, 
        IMSLS_COL_LABELS, clabels, 
        0); 
 
    imsls_f_write_matrix("Iteration Information", n, 5, iterations, 
        IMSLS_WRITE_FORMAT, fmt2,  
        IMSLS_NO_ROW_LABELS, 
        IMSLS_COL_LABELS, clabels2, 0); 
 
    printf("\nLog-Likelihood = %12.5f\n", criterion); 
 
    imsls_f_write_matrix("Case Analysis", 1, n_observations, casex,  
        IMSLS_WRITE_FORMAT, fmt,  
        0); 
 
    imsls_f_write_matrix( 
        "Distinct Values for Classification Variable 1", 
        1, ncv[0], &cv[0], IMSLS_NO_COL_LABELS, 0); 
 
    imsls_f_write_matrix( 
        "Distinct Values for Classification Variable 2", 
        1, ncv[1], &cv[ncv[0]], IMSLS_NO_COL_LABELS, 0); 
 
    imsls_i_write_matrix("Observation Status", 1, n_observations,  
        obs, 0);  
 
    printf("\nNumber of Missing Values = %2d\n", nrmiss); 
} 

Output 

                Coefficient Statistics 
 coefficient          s.e.             z             p 
     -1.1027        1.3091       -0.8423        0.3998 
     -0.3626        0.4446       -0.8156        0.4149 
      0.1271        0.4863        0.2613        0.7939 
      0.8690        0.5861        1.4825        0.1385 
      0.2697        0.3882        0.6948        0.4873 
     -0.5400        0.1081       -4.9946        0.0000 
     -0.0090        0.0197       -0.4594        0.6460 
     -0.0034        0.0117       -0.2912        0.7710 
  
                  Iteration Information 
Method  Iteration  Step Size  Coef Update  Log-Likelihood 
     0          0     ......     ........          -224.0 
     0          1     1.0000       0.9839          -213.4 
     1          2     1.0000       3.6033          -207.3 
     1          3     1.0000      10.1236          -204.3 
     1          4     1.0000       0.1430          -204.1 
     1          5     1.0000       0.0117          -204.1 
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Log-Likelihood =   -204.13916 
  
                            Case Analysis 
           1             2             3             4             5 
    262.6884        0.0450       -0.5646        1.5646        0.0008 
  
           6             7             8             9            10 
    153.7777        0.0042        0.1806        0.8194        0.0029 
  
          11            12            13            14            15 
    270.5347        0.0482        0.5638        0.4362        0.0024 
  
          16            17            18            19            20 
     55.3168        0.0844       -0.6631        1.6631        0.0034 
  
          21            22            23            24            25 
     61.6845        0.3765        0.8703        0.1297        0.0142 
  
          26            27            28            29            30 
    230.4414        0.0025       -0.1085        0.1085        0.8972 
  
          31            32            33            34            35 
    232.0135        0.1960        0.9526        0.0474        0.0041 
  
          36            37            38            39            40 
    272.8432        0.1677        0.8021        0.1979        0.0030 
  
 Distinct Values for Classification Variable 1 
         1           2           3           4 
  
Distinct Values for Classification Variable 2 
                    0           1 
  
                              Observation Status 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
 
Number of Missing Values =  0 

Example 3 
In this example, the same data and model as example 1 are used, but 
max_iterations is set to zero iterations with model coefficients restricted such 
that � = �1.25, �6 = �0.6, and the remaining six coefficients are equal to zero. A 
chi-squared statistic, with 8 degrees of freedom for testing the coefficients is 
specified as above (versus the alternative that it is not as specified), can be 
computed, based on the output, as  

2 1ˆTg g�
�

� �  

where  
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�̂  

is output in cov. The resulting test statistic, �2 = 6.107, based upon no iterations 
is comparable to likelihood ratio test that can be computed from the log-
likelihood output in this example (�206.6835) and the log-likelihood output in 
Example 2 (�204.1392). 

� �2 2 206.6835 204.1392 5.0886LR� � � �  

Neither statistic is significant at the � = 0.05 level. 

#include <imsls.h> 
 
main() { 
    static float x[40][7] = { 
        1.0,    0.0,    7.0,   64.0,    5.0,  411.0,    0.0,  
        1.0,    0.0,    6.0,   63.0,    9.0,  126.0,    0.0, 
        1.0,    0.0,    7.0,   65.0,   11.0,  118.0,    0.0, 
        1.0,    0.0,    4.0,   69.0,   10.0,   92.0,    0.0, 
        1.0,    0.0,    4.0,   63.0,   58.0,    8.0,    0.0, 
        1.0,    0.0,    7.0,   48.0,    9.0,   25.0,    1.0, 
        1.0,    0.0,    7.0,   48.0,   11.0,   11.0,    0.0, 
        2.0,    0.0,    8.0,   63.0,    4.0,   54.0,    0.0, 
        2.0,    0.0,    6.0,   63.0,   14.0,  153.0,    0.0, 
        2.0,    0.0,    3.0,   53.0,    4.0,   16.0,    0.0, 
        2.0,    0.0,    8.0,   43.0,   12.0,   56.0,    0.0, 
        2.0,    0.0,    4.0,   55.0,    2.0,   21.0,    0.0, 
        2.0,    0.0,    6.0,   66.0,   25.0,  287.0,    0.0, 
        2.0,    0.0,    4.0,   67.0,   23.0,   10.0,    0.0, 
        3.0,    0.0,    2.0,   61.0,   19.0,    8.0,    0.0, 
        3.0,    0.0,    5.0,   63.0,    4.0,   12.0,    0.0, 
        4.0,    0.0,    5.0,   66.0,   16.0,  177.0,    0.0, 
        4.0,    0.0,    4.0,   68.0,   12.0,   12.0,    0.0, 
        4.0,    0.0,    8.0,   41.0,   12.0,  200.0,    0.0, 
        4.0,    0.0,    7.0,   53.0,    8.0,  250.0,    0.0, 
        4.0,    0.0,    6.0,   37.0,   13.0,  100.0,    0.0, 
        1.0,    1.0,    9.0,   54.0,   12.0,  999.0,    0.0, 
        1.0,    1.0,    5.0,   52.0,    8.0,  231.0,    1.0, 
        1.0,    1.0,    7.0,   50.0,    7.0,  991.0,    0.0, 
        1.0,    1.0,    2.0,   65.0,   21.0,    1.0,    0.0, 
        1.0,    1.0,    8.0,   52.0,   28.0,  201.0,    0.0, 
        1.0,    1.0,    6.0,   70.0,   13.0,   44.0,    0.0, 
        1.0,    1.0,    5.0,   40.0,   13.0,   15.0,    0.0, 
        2.0,    1.0,    7.0,   36.0,   22.0,  103.0,    1.0, 
        2.0,    1.0,    4.0,   44.0,   36.0,    2.0,    0.0, 
        2.0,    1.0,    3.0,   54.0,    9.0,   20.0,    0.0, 
        2.0,    1.0,    3.0,   59.0,   87.0,   51.0,    0.0, 
        3.0,    1.0,    4.0,   69.0,    5.0,   18.0,    0.0, 
        3.0,    1.0,    6.0,   50.0,   22.0,   90.0,    0.0, 
        3.0,    1.0,    8.0,   62.0,    4.0,   84.0,    0.0, 
        4.0,    1.0,    7.0,   68.0,   15.0,  164.0,    0.0, 
        4.0,    1.0,    3.0,   39.0,    4.0,   19.0,    0.0, 
        4.0,    1.0,    6.0,   49.0,   11.0,   43.0,    0.0, 
        4.0,    1.0,    8.0,   64.0,   10.0,  340.0,    0.0, 
        4.0,    1.0,    7.0,   67.0,   18.0,  231.0,    0.0}; 
    int   n_observations = 40; 
    int   n_class = 2; 
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    int   n_continuous = 3; 
    int   model = 0; 
    int   icen = 6, ilt = -1, irt = 5; 
    int   lp_max = 40; 
    int   n_coef_input = 8; 
    static float estimates[8] = {-1.25, 0.0, 0.0, 0.0,  
        0.0, -0.6, 0.0, 0.0}; 
 
    int   n_coef; 
    float *coef_stat, *means, *cov; 
    float criterion, *last_step; 
 
    char *fmt = "%12.4f"; 
    static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"}; 
 
    n_coef = imsls_f_survival_glm(n_observations, n_class,  
        n_continuous, model, &x[0][0],  
        IMSLS_X_COL_CENSORING, icen, ilt, irt,  
        IMSLS_INFINITY_CHECK, lp_max, 
        IMSLS_INITIAL_EST_INPUT, n_coef_input, estimates,  
        IMSLS_MAX_ITERATIONS, 0,  
        IMSLS_COEF_STAT, &coef_stat, 
        IMSLS_MEANS, &means, 
        IMSLS_COV, &cov,  
        IMSLS_CRITERION, &criterion,  
        IMSLS_LAST_STEP, &last_step,  
        0);  
 
    imsls_f_write_matrix("Coefficient Statistics", n_coef, 4,  
        coef_stat,  
        IMSLS_WRITE_FORMAT, fmt,  
        IMSLS_NO_ROW_LABELS, 
        IMSLS_COL_LABELS, clabels, 
        0); 
 
    imsls_f_write_matrix("Covariate Means", 1, n_coef-1, means, 0); 
 
    imsls_f_write_matrix("Hessian", n_coef, n_coef, cov,  
        IMSLS_WRITE_FORMAT, fmt,  
        IMSLS_PRINT_UPPER,  
        0); 
 
    printf("\nLog-Likelihood = %12.5f\n", criterion); 
 
    imsls_f_write_matrix("Newton-Raphson Step", 1, n_coef, last_step,  
        IMSLS_WRITE_FORMAT, fmt, 0); 
 
} 

Output 

                Coefficient Statistics 
 coefficient          s.e.             z             p 
     -1.2500        1.3773       -0.9076        0.3643 
      0.0000        0.4288        0.0000        1.0000 
      0.0000        0.5299        0.0000        1.0000 
      0.0000        0.7748        0.0000        1.0000 
      0.0000        0.4051        0.0000        1.0000 
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     -0.6000        0.1118       -5.3652        0.0000 
      0.0000        0.0215        0.0000        1.0000 
      0.0000        0.0109        0.0000        1.0000 
  
                            Covariate Means 
         1           2           3           4           5           6 
      0.35        0.28        0.12        0.53        5.65       56.58 
  
         7 
     15.65 
  
                                Hessian 
              1             2             3             4             5 
1        1.8969       -0.0906       -0.1641       -0.1681        0.0778 
2                      0.1839        0.0996        0.1191        0.0358 
3                                    0.2808        0.1264       -0.0226 
4                                                  0.6003        0.0460 
5                                                                0.1641 
  
              6             7             8 
1       -0.0818       -0.0235       -0.0012 
2       -0.0005       -0.0008        0.0006 
3        0.0104        0.0005       -0.0021 
4        0.0193       -0.0016        0.0007 
5        0.0060       -0.0040        0.0017 
6        0.0125        0.0000        0.0003 
7                      0.0005       -0.0001 
8                                    0.0001 
 
Log-Likelihood =   -206.68349 
  
                         Newton-Raphson Step 
           1             2             3             4             5 
      0.1706       -0.3365        0.1333        1.2967        0.2985 
  
           6             7             8 
      0.0625       -0.0112       -0.0026 

Warning Errors 
IMSLS_CONVERGENCE_ASSUMED_1 Too many step halvings. 

Convergence is assumed. 

IMSLS_CONVERGENCE_ASSUMED_2 Too many step iterations. 
Convergence is assumed. 

IMSLS_NO_PREDICTED_1 “estimates[0]” > 1.0. The expected 
value for the log logistic 
distribution (“model” = 4) does 
not exist. Predicted values will not 
be calculated. 

IMSLS_NO_PREDICTED_2 “estimates[0]” > 1.0. The expected 
value for the log extreme value 
distribution(“model” = 8) does not 
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exist. Predicted values will not be 
calculated. 

IMSLS_NEG_EIGENVALUE The Hessian has at least one 
negative eigenvalue. An upper 
bound on the absolute value of the 
minimum eigenvalue is # 
corresponding to variable index #. 

IMSLS_INVALID_FAILURE_TIME_4 “x[#][“ilt”= #]” = # and 
“x[#][“irt”= #]” = #. The cen-
soring interval has length 0.0. The 
censoring code for this observation 
is being set to 0.0. 

Fatal Error 
IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of 

the classification variables exceeds 
“max_class” = #. 

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is 
specified, and “n_coef_input” = #. 
The model specified requires # 
coefficients. 

IMSLS_TOO_FEW_VALID_OBS “n_observations” = # and 
“n_rows_missing” = #. 
“n_observations”�
”n_rows_missing” must be greater 
than or equal to 2 in order to 
estimate the coefficients. 

IMSLS_SVGLM_1 For the exponential model 
(“model” = 0) with “n_effects” = # 
and no intercept, “n_coef” has 
been determined to equal 0. With 
no coefficients in the model, 
processing cannot continue. 

IMSLS_INCREASE_LP_MAX Too many observations are to be 
deleted from the model. Either use 
a different model or increase the 
workspace. 

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The 
number of distinct values for each 
classification variable must be 
greater than one. 
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survival_estimates 
Estimates survival probabilities and hazard rates for the various parametric 
models. 

Synopsis 
#include <imsls.h> 
int *imsls_f_survival_estimates (Imsls_f_survival *survival_info, 

int n_observations, float xpt[], float time, int npt, 
float delta, ..., 0) 

The type double function is imsls_d_survival_estimates. 

Required Arguments 

Imsls_f_survival *survival_info   (Input) 
Pointer to structure of type Imsls_f_survival containing the estimated 
survival coefficients and other related information. See 
imsls_f_survival_glm. 

int n_observations   (Input) 
Number of observations for which estimates are to be calculated. 

float xpt[]   (Input) 
Array xpt is an array of size n_observations by x_col_dim 
containing the groups of covariates for which estimates are desired, 
where x_col_dim is described in the documentation for 
imsls_f_survival_glm. The covariates must be specified exactly as 
in the call to imsls_f_survival_glm which produced 
survival_info. 

float time   (Input) 
Beginning of the time grid for which estimates are desired. Survival 
probabilities and hazard rates are computed for each covariate vector 
over the grid of time points time + i*delta for i = 0, 1, �, npt � 1. 

int npt   (Input) 
Number of points on the time grid for which survival probabilities are 
desired. 

float delta   (Input) 
Increment between time points on the time grid. 

Return Value 
An array of size npt by (2 � n_observations + 1) containing the estimated 
survival probabilities for the covariate groups specified in xpt. Column 0 
contains the survival time. Columns 1 and 2 contain the estimated survival 
probabilities and hazard rates, respectively, for the covariates in the first row of 
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xpt. In general, the survival and hazard for row i of xpt is contained in columns 
2i � 1 and 2i, respectively, for i = 1, 2, �, npt. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_survival_estimates (Imsls_f_survival survival_info, 

int n_observations, float xpt[], float time, int npt, 
float delta, 
IMSLS_XBETA, float **xbeta, 
IMSLS_XBETA_USER, float xbeta[], 
IMSLS_RETURN_USER, float sprob[], 
0) 

Optional Arguments 
IMSLS_XBETA, float **xbeta   (Output) 

Address of a pointer to an array of length n_observations containing 
the estimated linear response 

ˆw x��  

for each row of xpt. 

IMSLS_XBETA_USER, float xbeta[]   (Output) 
Storage for array xbeta is provided by the user. See IMSLS_XBETA. 

IMSLS_RETURN_USER, float sprob[]   (Output) 
User supplied array of size npt by (2 � n_observations + 1) 
containing the estimated survival probabilities for the covariate groups 
specified in xpt. Column 0 contains the survival time. Columns 1 and 2 
contain the estimated survival probabilities and hazard rates, 
respectively, for the covariates in the first row of xpt. In general, the 
survival and hazard for row i of xpt is contained in columns 2i � 1 and 
2i, respectively, for i = 1, 2, �, npt. 

Description 
Function imsls_f_survival_estimates computes estimates of survival 
probabilities and hazard rates for the parametric survival/reliability models fit by 
function imsls_f_survival_glm. 

Let 
 = xT� be the linear parameterization, where x is the design vector 
corresponding to a row of xpt (imsls_f_survival_estimates generates the 
design vector using function imsls_f_regressors_for_glm), and � is a 
vector of parameters associated with the linear model. Let T denote the random 
response variable and S(t) denote the probability that T > t. All models considered 
also allow a fixed parameter w (input in column ifix of xpt). Use of the 
parameter is discussed in function imsls_f_survival_glm. There also may be 
nuisance parameters � > 0 or � > 0. Let � denote the cumulative normal 
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distribution. The survival models available in imsls_f_survival_estimates 
are: 

model Name S (t) 
0 Exponential exp [�t exp (wi + 
)] 

1 Linear hazard 
� �

2

exp exp
2 i
tt w�

�
� �� �
� � �� �	 

� �
 �

 

2 Log-normal � �ln
1 it w�

�

� �� �
��� �

� �
 

3 Normal 
1 it w�

�

� �� �
��� �

� �
 

4 Log-logistic � � 1ln
{1 exp }it w�

�

�

� �� �
� � �

� �
 

5 Logistic 
1{1 exp }it w�

�

�

� �� �
� � �

� �
 

6 Log least extreme value � �ln
exp{ exp }it w�

�

� �� �
� � �

� �
 

7 Least extreme value 
exp{ exp }it w�

�

� �� �
� � �

� �
 

8 Log extreme value � �ln
1 exp{ exp }it w�

�

� �� �
� � � �

� �
 

9 Extreme value 
1 exp{ exp }it w�

�

� �� �
� � � �

� �
 

10 Weibull 

� �
exp{ }

exp i

t
w

�

�

� �
� � �

�� �� �
 

Let �(t) denote the hazard rate at time t. Then ��t) and S(t) are related at 

� � � �exp( )
t

S t s ds�
��

� �  

Models 0, 1, 2, 4, 6, 8, and 10 require that T > 0 (in which case assume  
�(s) = 0 for s < 0), while the remaining models allow arbitrary values for  
T, �� < T < �. The computations proceed in function 
imsls_f_survival_estimates as follows: 

1. The input arguments are checked for consistency and validity. 
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2. For each row of xpt, the explanatory variables are generated from the 
classification and variables and the covariates using function 
imsls_f_regressors_for_glm with 
dummy_method = IMSLS_LEAVE_OUT_LAST. Given the explanatory 
variables x, � is computed as � = xT�, where � is input in 
survival_info. 

3. For each point requested in the time grid, the survival probabilities and 
hazard rates are computed. 

Example 
This example is a continuation of the first example given for function 
imsls_f_survival_glm. Prior to calling survival_estimates, 
imsls_f_survival_glm is invoked to compute the parameter estimates 
(contained in the structure survival_info). The example is taken from Lawless 
(1982, p. 287) and involves the mortality of patients suffering from lung cancer. 

#include <imsls.h> 
#include <stdlib.h> 
main() { 
    static float x[40][7] = { 
        1.0,    0.0,    7.0,   64.0,    5.0,  411.0,    0.0,  
        1.0,    0.0,    6.0,   63.0,    9.0,  126.0,    0.0, 
        1.0,    0.0,    7.0,   65.0,   11.0,  118.0,    0.0, 
        1.0,    0.0,    4.0,   69.0,   10.0,   92.0,    0.0, 
        1.0,    0.0,    4.0,   63.0,   58.0,    8.0,    0.0, 
        1.0,    0.0,    7.0,   48.0,    9.0,   25.0,    1.0, 
        1.0,    0.0,    7.0,   48.0,   11.0,   11.0,    0.0, 
        2.0,    0.0,    8.0,   63.0,    4.0,   54.0,    0.0, 
        2.0,    0.0,    6.0,   63.0,   14.0,  153.0,    0.0, 
        2.0,    0.0,    3.0,   53.0,    4.0,   16.0,    0.0, 
        2.0,    0.0,    8.0,   43.0,   12.0,   56.0,    0.0, 
        2.0,    0.0,    4.0,   55.0,    2.0,   21.0,    0.0, 
        2.0,    0.0,    6.0,   66.0,   25.0,  287.0,    0.0, 
        2.0,    0.0,    4.0,   67.0,   23.0,   10.0,    0.0, 
        3.0,    0.0,    2.0,   61.0,   19.0,    8.0,    0.0, 
        3.0,    0.0,    5.0,   63.0,    4.0,   12.0,    0.0, 
        4.0,    0.0,    5.0,   66.0,   16.0,  177.0,    0.0, 
        4.0,    0.0,    4.0,   68.0,   12.0,   12.0,    0.0, 
        4.0,    0.0,    8.0,   41.0,   12.0,  200.0,    0.0, 
        4.0,    0.0,    7.0,   53.0,    8.0,  250.0,    0.0, 
        4.0,    0.0,    6.0,   37.0,   13.0,  100.0,    0.0, 
        1.0,    1.0,    9.0,   54.0,   12.0,  999.0,    0.0, 
        1.0,    1.0,    5.0,   52.0,    8.0,  231.0,    1.0, 
        1.0,    1.0,    7.0,   50.0,    7.0,  991.0,    0.0, 
        1.0,    1.0,    2.0,   65.0,   21.0,    1.0,    0.0, 
        1.0,    1.0,    8.0,   52.0,   28.0,  201.0,    0.0, 
        1.0,    1.0,    6.0,   70.0,   13.0,   44.0,    0.0, 
        1.0,    1.0,    5.0,   40.0,   13.0,   15.0,    0.0, 
        2.0,    1.0,    7.0,   36.0,   22.0,  103.0,    1.0, 
        2.0,    1.0,    4.0,   44.0,   36.0,    2.0,    0.0, 
        2.0,    1.0,    3.0,   54.0,    9.0,   20.0,    0.0, 
        2.0,    1.0,    3.0,   59.0,   87.0,   51.0,    0.0, 
        3.0,    1.0,    4.0,   69.0,    5.0,   18.0,    0.0, 
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        3.0,    1.0,    6.0,   50.0,   22.0,   90.0,    0.0, 
        3.0,    1.0,    8.0,   62.0,    4.0,   84.0,    0.0, 
        4.0,    1.0,    7.0,   68.0,   15.0,  164.0,    0.0, 
        4.0,    1.0,    3.0,   39.0,    4.0,   19.0,    0.0, 
        4.0,    1.0,    6.0,   49.0,   11.0,   43.0,    0.0, 
        4.0,    1.0,    8.0,   64.0,   10.0,  340.0,    0.0, 
        4.0,    1.0,    7.0,   67.0,   18.0,  231.0,    0.0}; 
 
    int   n_observations = 40; 
    int   n_estimates = 2; 
    int   n_class = 2; 
    int   n_continuous = 3; 
    int   model = 0; 
    int   icen = 6, ilt = -1, irt = 5; 
    int   lp_max = 40; 
    float time = 10.0; 
    int   npt = 10; 
    float delta = 20.0; 
 
    int   n_coef; 
    float *sprob; 
    Imsls_f_survival *survival_info; 
    char *fmt = "%12.2f%10.4f%10.6f%10.4f%10.6f"; 
    char *clabels[] = {"", "Time", "S1", "H1", "S2", "H2"}; 
 
    n_coef = imsls_f_survival_glm(n_observations, n_class,  
        n_continuous,  
        model, &x[0][0],  
        IMSLS_X_COL_CENSORING, icen, ilt, irt,  
        IMSLS_INFINITY_CHECK, lp_max, 
        IMSLS_SURVIVAL_INFO, &survival_info, 
        0);  
 
    sprob = imsls_f_survival_estimates(survival_info, n_estimates,  
        &x[0][0], time, npt, delta, 0);  
 
    imsls_f_write_matrix("Survival and Hazard Estimates",  
        npt, 2*n_estimates+1, sprob,  
        IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS,  
        IMSLS_COL_LABELS, clabels, 0); 
 
    free (survival_info); 
    free (sprob); 
} 

Output 

                Survival and Hazard Estimates 

        Time          S1          H1          S2          H2 
       10.00      0.9626    0.003807      0.9370    0.006503 
       30.00      0.8921    0.003807      0.8228    0.006503 
       50.00      0.8267    0.003807      0.7224    0.006503 
       70.00      0.7661    0.003807      0.6343    0.006503 
       90.00      0.7099    0.003807      0.5570    0.006503 
      110.00      0.6579    0.003807      0.4890    0.006503 
      130.00      0.6096    0.003807      0.4294    0.006503 
      150.00      0.5649    0.003807      0.3770    0.006503 
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      170.00      0.5235    0.003807      0.3310    0.006503 
      190.00      0.4852    0.003807      0.2907    0.006503 

Note that the hazard rate is constant over time for the exponential model. 

Warning Errors 
IMSLS_CONVERGENCE_ASSUMED_1 Too many step halvings. 

Convergence is assumed. 

IMSLS_CONVERGENCE_ASSUMED_2 Too many step iterations. 
Convergence is assumed. 

IMSLS_NO_PREDICTED_1 “estimates[0]” > 1.0. The expected 
value for the log logistic 
distribution (“model” = 4) does 
not exist. Predicted values will not 
be calculated. 

IMSLS_NO_PREDICTED_2 “estimates[0]” > 1.0. The expected 
value for the log extreme value 
distribution (“model” = 8) does 
not exist. Predicted values will not 
be calculated. 

IMSLS_NEG_EIGENVALUE  The Hessian has at least one 
negative eigenvalue. An upper 
bound on the absolute value of the 
minimum eigenvalue is # 
corresponding to variable index #. 

IMSLS_INVALID_FAILURE_TIME_4 “x[#][“ilt”= #]” = # and 
“x[#][“irt”= #]” = #. The cen-
soring interval has length 0.0. The 
censoring code for this observation 
is being set to 0.0. 

Fatal Error 
IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of 

the classification variables exceeds 
“max_class” = #. 

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is 
specified, and “n_coef_input” = #. 
The model specified requires # 
coefficients. 

IMSLS_TOO_FEW_VALID_OBS “n_observations” = %(i1) and 
“n_rows_missing” = #. 
“n_observations”�
”n_rows_missing” must be greater 
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than or equal to 2 in order to 
estimate the coefficients. 

IMSLS_SVGLM_1 For the exponential model 
(“model” = 0) with “n_effects” = # 
and no intercept, “n_coef” has 
been determined to equal 0. With 
no coefficients in the model, 
processing cannot continue. 

IMSLS_INCREASE_LP_MAX Too many observations are to be 
deleted from the model. Either use 
a different model or increase the 
workspace. 

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The 
number of distinct values for each 
classification variable must be 
greater than one. 

nonparam_hazard_rate 
Performs nonparametric hazard rate estimation using kernel functions and quasi-
likelihoods. 

Synopsis 
#include <imsls.h> 
float *imsls_f_nonparam_hazard_rate (int n_observations,  

float t[], int n_hazard,  float hazard_min,   
float hazard_increment, ..., 0) 

The type double function is imsls_d_nonparam_hazard_rate. 

Required Arguments 
int n_observations  (Input) 

Number of observations. 

float t[]  (Input)  
An array of n_observations containing the failure times.   If optional 
argument IMSLS_CENSOR_CODES is used, the values of t may be 
treated as exact failure times, as right-censored times, or a combination 
of exact and right censored times.  By default, all times in t are assumed 
to be exact failure times.  

int n_hazard (Input) 
Number of grid points at which to compute the hazard.   The function 
computes the hazard rates over the range given by:   
hazard_min + j * hazard_increment, for j = 0, �, n_hazard � 1. 



     

     
 

704 � nonparam_hazard_rate IMSL C/Stat/Library 

     
     

 

float hazard_min (Input) 
First grid value. 

float hazard_increment (Input) 
Increment between grid values. 

Return Value 
Pointer to an array of length n_hazard containing the estimated hazard rates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float * imsls_f_nonparam_hazard_rate (int n_observations,  

float t[], int n_hazard,  float hazard_min,  
float hazard_increment 
IMSLS_RETURN_USER,  float haz[], 
IMSLS_PRINT_LEVEL, int iprint, 
IMSLS_CENSOR_CODES, int censor_codes[],  
IMSLS_WEIGHT, int iwto,  
IMSLS_SORT_OPTION, int isort, 
IMSLS_K_GRID, int n_k, float k_min, float k_increment, 
IMSLS_BETA_GRID, int n_beta_grid, float beta_start,  
float beta_increment, 
IMSLS_N_MISSING, int *nmiss,  
IMSLS_ALPHA, float *alpha,  
IMSLS_BETA, float *beta, 
IMSLS_CRITERION, float *vml,  
IMSLS_K, int *k, 
IMSLS_SORTED_EVENT_TIMES, float **event_times,  
IMSLS_SORTED_EVENT_TIMES_USER, float event_times[], 
IMSLS_SORTED_CENSOR_CODES, int **isorted_censor, 
IMSLS_SORTED_CENSOR_CODES_USER, int isorted_censor[],  
0) 

Optional Arguments 
IMSLS_RETURN_USER, float haz[] (Output) 

If specified, haz is a user supplied array of length n_hazard containing 
the estimated hazard rates.  

IMSLS_PRINT_LEVEL, int iprint  (Input) 
Printing option.  Default:  iprint = 0. 
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iprint Action 

0 No printing is performed. 
1 The grid estimates and the optimized estimates are printed for 

each value of k. 

IMSLS_CENSOR_CODES, int censor_codes[] (Input) 
censor_codes is an array of length n_observations containing the 
censoring codes for each time in t.   If censor_codes[i]=0 the failure 
time t[i] is treated as an exact time of failure.  Otherwise it is treated as 
a right-censored time; that is, the exact time of failure is greater than 
t[i]. 
Default: All failure times are treated as exact times of failure with no 
censoring. 

IMSLS_WEIGHT_OPTION, int iwto  (Input) 
Weight option .  If iwto = 1, then  

is used for the i-th smallest 
observation. Otherwise, is used. 
Default:  iwto = 0. 

�� �ln 1 1/ i� � �weight n_observations
1/weight = n_obs� �i�ervations

IMSLS_SORT_OPTION, int isort  (Input) 
Sorting option .  If isort = 1, then the event times are not automatically 
sorted by the function. Otherwise, sorting is performed with exact failure 
times following tied right-censored times. 
Default:  isort = 0. 

IMSLS_K_GRID, int n_k, float k_min, float k_increment  (Input) 
Finds the optimal value of k over the range given by: kmin + (j � 1) * 
k_increment, for j = 1, �, n_k.  Where n_k is the number of values of 
k to be considered.  k_min is the minimum value for parameter k.   
k_increment is the increment between successive values of parameter 
k.  Parameter k is the number of nearest neighbors to be used in 
computing the k-th nearest neighbor distance.   
Default:  k_min is the smallest possible value of k, k_increment =2, 
and n_k will be at most 10 points. 

 IMSLS_BETA_GRID, int n_beta_grid, float beta_start, float 
beta_increment  (Input) 
For n_beta_grid > 0, a user-defined grid is used. This grid is defined 
as beta_start + (j � 1)*beta_increment, for j = 1, �, 
n_beta_grid.  beta_start is the first value to be used in the user-
defined grid and beta_increment is the increment between successive 
grid values of beta.  
Default:  The values in the initial beta search are given as follows: Let 
�
� = � 8, � 4, � 2, � 1, � 0.5,0.5,1, and 2, and 

ββ e
�

�	  
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   For each value of �, vml is computed at the optimizing �. The 
maximizing � is used to initiate the iterations.  If the initial �� is 
determined from the search to be less than �6, then it is presumed that � 
is infinite, and an analytic estimate of � based upon infinite � is used. 
Infinite � corresponds to a flat hazard rate. 

IMSLS_N_MISSING, int *nmiss  (Output) 
Number of missing (NaN, not a number) failure times in t. 

IMSLS_ALPHA, float *alpha  (Output) 
Optimal estimate for the parameter �. 

IMSLS_BETA, float *beta  (Output) 
Optimal estimate for the parameter �. 

IMSLS_CRITERION, float *vml  (Output) 
Optimum value of the criterion function. 

IMSLS_K, int *k  (Output) 
Optimal estimate for the parameter k. 

IMSLS_SORTED_EVENT_TIMES, float **event_times  (Output) 
Address of a pointer to an array of length n_observations containing 
the times of occurrence of the events, sorted from smallest to largest. 

IMSLS_SORTED_EVENT_TIMES_USER, float event_times[]  (Output) 
Storage for event_times is provided by the user.  See 
IMSLS_SORTED_EVENT_TIMES. 

IMSLS_SORTED_CENSOR_CODES, int **isorted_censor  (Output) 
Address of a pointer to an array of length n_observations containing 
the sorted censor codes.  Censor codes are sorted corresponding to the 
events event_times[i], with censored observations preceding tied 
failures. 

IMSLS_SORTED_CENSOR_CODES_USER, int isorted_censor[]  (Output) 
Storage for isorted_censor is provided by the user.  See 
IMSLS_SORTED_CENSOR_CODE. 

Description 
Function imsls_f_nonparam_hazard_rate is an implementation of the 
methods discussed by Tanner and Wong (1984) for estimating the hazard rate in 
survival or reliability data with right censoring. It uses the biweight kernel, 

2 215
16 (1 ) for 1

( )
0 elsew

x x
K x

� � �
� �
� here

 

and a modified likelihood to obtain data-based estimates of the smoothing 
parameters �, �, and k needed in the estimation of the hazard rate. For kernel 
K(x), define the “smoothed” kernel  
Ks(x � x(j) as follows: 
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jk jk
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K x x K
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� ��

� � � �� �
� �

 

where djk is the distance to the k-th nearest failure from x(j), and x(j) is the j-th 
ordered observation (from smallest to largest). For given � and �, the hazard at 
point x is then 

( )
1

( ) {(1 ) ( )}
N

i i s i
i

h x w K x x�

�

� � ��  

where N = n_observations, 	i is the i-th observation’s censor code (1 = 
censored, 0 = failed), and wi is the i-th ordered observation’s weight, which may 
be chosen as either 1/(N � i + 1), or  
ln(1 + 1/(N � i + 1)). Let 

0
( ) ( )

x
H x h s� � ds

)

 

The likelihood is given by 
(1 )

1 ({ ( ) exp( ( ))}iN
i i iL h x H x��

�
� �� , 

where 
 denotes product. Since the likelihood leads to degenerate estimates, 
Tanner and Wong (1984) suggest the use of a modified likelihood. The 
modification consists of deleting observation xi in the calculation of h(xi) and 
H(xi) when the likelihood term for xi is computed using the usual optimization 
techniques. � and � for given k can then be estimated. 

Estimates for � and � are computed as follows: for given �, a closed form 
solution is available for �. The problem is thus reduced to the estimation of �.  
A grid search for � is first performed. Experience indicates that if the initial 
estimate of � from this grid search is greater than, say, e�, then the modified 
likelihood is degenerate because the hazard rate does not change with time. In this 
situation, � should be taken to be infinite, and an estimate of � corresponding to 
infinite � should be directly computed. When the estimate of � from the grid 
search is less than e�, a secant algorithm is used to optimize the modified 
likelihood. The secant algorithm iteration stops when the change in � from one 
iteration to the next is less than 10��. Alternatively, the iterations may cease when 
the value of � becomes greater than e�, at which point an infinite � with a 
degenerate likelihood is assumed. 

To find the optimum value of the likelihood with respect to k, a user-specified 
grid of k-values is used. For each grid value, the modified likelihood is optimized 
with respect to � and �. That grid point, which leads to the smallest likelihood, is 
taken to be the optimal k. 

Programming Notes 
1. If sorting of the data is performed by imsls_f_nonparam_hazard_rate, 

then the sorted array will be such that all censored observations at a given 



     

     
 

708 � nonparam_hazard_rate IMSL C/Stat/Library 

     
     

 

time precede all failures at that time. To specify an arbitrary pattern of 
censored/failed observations at a given time point, the isort = 1 option 
must be used. In this case, it is assumed that the times have already been 
sorted from smallest to largest. 

2. The smallest value of k must be greater than the largest number of tied 
failures since djk must be positive for all j. (Censored observations are not 
counted.) Similarly, the largest value of k must be less than the total number 
of failures. If the grid specified for k includes values outside the allowable 
range, then a warning error is issued; but k is still optimized over the 
allowable grid values. 

3. The secant algorithm iterates on the transformed parameter �� = exp(� �). 
This assures a positive �, and it also seems to lead to a more desirable grid 
search. All results returned to the user are in the original parameterization, 
however. 

4. Since local minimums have been observed in the modified likelihood, it is 
recommended that more than one grid of initial values for � and � be used. 

5. Function imsls_f_nonparam_hazard_rate assumes that the hazard grid 
points are new data points. 

Example 
The following example is taken from Tanner and Wong (1984). The data are 
from Stablein, Carter, and Novak (1981) and involve the survival times of 
individuals with nonresectable gastric carcinoma. Only individuals treated with 
both radiation and chemotherapy are used. For each value of k from 18 to 22 with 
increment of 2, the default grid search for � is performed. Using the optimal value 
of � in the grid, the optimal parameter estimates of � and � are computed for 
each value of k. The final solution is the parameter estimates for the value of  
k which optimizes the modified likelihood (vml). Because the iprint = 1 is in 
effect, imsls_f_nonparam_hazard_rate prints all of the results in the output. 

#include "imsls.h" 
 
void main () 
{ 
  int n_observations = 45, iprint = 1, kmin = 18; 
  int increment_k = 2, n_k = 3, isort = 1, nmiss, *isorted_censor; 
  float *event_times, *haz; 
  int n_hazard=100; 
  float hazard_min = 0.0, hazard_inc = 10; 
 
  float t[] = { 17.0, 42.0, 44.0, 48.0, 60.0, 72.0, 74.0, 95.0, 
                         103.0, 108.0, 122.0, 144.0, 167.0, 170.0, 183.0, 
                         185.0, 193.0, 195.0, 197.0, 208.0, 234.0, 235.0, 
                         254.0, 307.0, 315.0, 401.0, 445.0, 464.0, 484.0, 
                         528.0, 542.0, 567.0, 577.0, 580.0, 795.0, 855.0, 
                         882.0, 892.0,1031.0,1033.0,1306.0,1335.0,1366.0, 
                         1452.0, 1472.0}; 
  float censor_codes[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
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                           0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
                           0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
                           0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
                           1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; 
 
  haz = imsls_f_nonparam_hazard_rate I  (n_observations, t, 
                                         n_hazard, hazard_min, hazard_inc, 
                                         IMSLS_K_GRID, n_k, kmin,  

increment_k, 
                                         IMSLS_PRINT_LEVEL, iprint, 
                                         IMSLS_N_MISSING, &nmiss, 
                                         IMSLS_SORT_OPTION, isort, 
                                         IMSLS_CENSOR_CODES, censor_codes, 
                                         IMSLS_SORTED_EVENT_TIMES,  

       &event_times, 
                                         IMSLS_SORTED_CENSOR_CODES, 
                                               &isorted_censor, 
                                         0); 
 
  printf ("\nnmiss = %d\n", nmiss); 
  imsls_f_write_matrix ("Sorted Event Times", 1, n_observations, 
                         event_times, IMSLS_WRITE_FORMAT, "%7.1f", 0);                       
  imsls_i_write_matrix ("Sorted Censors", 1, n_observations,  
                         isorted_censor, 0); 
  imsls_f_write_matrix ("Hazard Rates", 1, n_hazard, haz, 0); 
 
} 

Output 
 

                 *** Grid search for k =    18 *** 
         alpha                    beta                   vml 

         4.57832                 2980.96              -266.805 
         4.54312                 54.5982               -266.62 
         4.33646                 20.0855              -265.541 
         4.01933                 12.1825              -264.001 
         3.54274                 7.38906               -262.54 
         2.99058                 4.48169              -262.512 
         2.35154                 2.71828              -262.634 
         1.58417                 1.64872              -262.158 
        0.966332                       1              -262.868 

 
                 *** Optimal parameter estimates *** 

         alpha                    beta                   vml 
         1.69515                 1.76926              -262.119 

 
                 *** Grid search for k =    20 *** 

         alpha                    beta                   vml 
         4.05393                 2980.96              -266.526 
         4.03284                 54.5982              -266.401 
         3.90505                 20.0855              -265.648 
         3.68782                 12.1825              -264.402 
         3.30434                 7.38906              -262.666 
         2.82272                 4.48169               -262.08 
         2.25276                 2.71828              -262.445 
         1.55578                 1.64872              -261.772 
        0.955586                       1              -262.618 
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                 *** Optimal parameter estimates *** 
         alpha                    beta                   vml 

         1.54053                 1.63155              -261.771 
 

                 *** Grid search for k =    22 *** 
         alpha                    beta                   vml 
         3.65641                 2980.96              -267.595 
         3.64159                 54.5982              -267.499 
         3.55056                 20.0855              -266.904 
         3.38875                 12.1825              -265.859 
         3.07147                 7.38906              -264.066 
         2.64504                 4.48169              -263.039 
          2.1374                 2.71828              -263.335 
         1.51261                 1.64872               -262.64 
        0.936368                       1              -262.683 
 
                 *** Optimal parameter estimates *** 
         alpha                    beta                   vml 
         1.34217                 1.45001              -262.561 
 
             *** The final solution     (k =    20) *** 
         alpha                    beta                   vml 
         1.54053                 1.63155              -261.771 
 
nmiss = 0 
 
                          Sorted Event Times 
      1        2        3        4        5        6        7        8 
   17.0     42.0     44.0     48.0     60.0     72.0     74.0     95.0 
 
      9       10       11       12       13       14       15       16 
  103.0    108.0    122.0    144.0    167.0    170.0    183.0    185.0 
 
     17       18       19       20       21       22       23       24 
  193.0    195.0    197.0    208.0    234.0    235.0    254.0    307.0 
 
     25       26       27       28       29       30       31       32 
  315.0    401.0    445.0    464.0    484.0    528.0    542.0    567.0 
 
     33       34       35       36       37       38       39       40 
  577.0    580.0    795.0    855.0    882.0    892.0   1031.0   1033.0 
 
     41       42       43       44       45 
 1306.0   1335.0   1366.0   1452.0   1472.0 
 
                                Sorted Censors 
 1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19   
 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    
 
20 21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38     
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1    
 
39  40  41  42  43  44  45 
1    1   1   1   1   1   1 
 
                             Hazard Rates 
         1           2           3           4           5           6 
  0.000962    0.001111    0.001276    0.001451    0.001634    0.001819 
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         7           8           9          10          11          12 
  0.002004    0.002185    0.002359    0.002523    0.002675    0.002813 
 
        13          14          15          16          17          18 
  0.002935    0.003040    0.003126    0.003193    0.003240    0.003266 
 
        19          20          21          22          23          24 
  0.003273    0.003260    0.003229    0.003179    0.003114    0.003034 
 
        25          26          27          28          29          30 
  0.002941    0.002838    0.002727    0.002612    0.002495    0.002381 
 
        31          32          33          34          35          36 
  0.002273    0.002175    0.002084    0.001998    0.001917    0.001841 
 
        37          38          39          40          41          42 
  0.001771    0.001709    0.001655    0.001608    0.001569    0.001537 
 
        43          44          45          46          47          48 
  0.001510    0.001484    0.001459    0.001435    0.001411    0.001388 
 
        49          50          51          52          53          54 
  0.001365    0.001343    0.001323    0.001304    0.001285    0.001266 
 
        55          56          57          58          59          60 
  0.001247    0.001228    0.001208    0.001188    0.001167    0.001146 
 
        61          62          63          64          65          66 
  0.001125    0.001103    0.001081    0.001060    0.001040    0.001020 
 
        67          68          69          70          71          72 
  0.000999    0.000979    0.000958    0.000936    0.000913    0.000891 
 
        73          74          75          76          77          78 
  0.000868    0.000845    0.000821    0.000798    0.000775    0.000752 
 
        79          80          81          82          83          84 
  0.000730    0.000708    0.000685    0.000662    0.000640    0.000617 
 
        85          86          87          88          89          90 
  0.000595    0.000573    0.000552    0.000530    0.000510    0.000490 
 
        91          92          93          94          95          96 
  0.000471    0.000452    0.000434    0.000416    0.000399    0.000383 
 
        97          98          99         100 
  0.000366    0.000351    0.000336    0.000321 
 

Fatal Errors 
IMSLS_ALL_OBSERVATIONS_MISSING 

  All observations are missing (NaN, not a 
number) values. 
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life_tables 
Produces population and cohort life tables. 

Synopsis 
#include <imsls.h> 
float *imsls_f_life_tables (int n_classes, float age[], float a[], 

int n_cohort[],  ..., 0) 
The type double function is imsls_d_life_tables. 

Required Arguments 
int n_classes  (Input) 

Number of age classes. 

float age[]  (Input)  
Array of length n_classes + 1 containing the lowest age in each age 
interval, and in age[n_classes], the endpoint of the last age interval.  
Negative age[0] indicates that the age intervals are all of length 
|age[0]| and that the initial age interval is from 0.0 to |age[0]|. In 
this case, all other elements of age need not be specified.  
age[n_classes] need not be specified when getting a cohort table. 

float a[]  (Input)  
Array of length n_classes containing the fraction of those dying within 
each interval who die before the interval midpoint.  A common choice 
for all a[i] is 0.5. This choice may also be specified by setting a[0] to 
any negative value. In this case, the remaining values of a need not be 
specified. 

int n_cohort[]  (Input) 
Array of length n_classes containing the cohort sizes during each 
interval.  If the IMSL_POPULATION_LIFE_TABLE option is used, then 
n_cohort[i] contains the size of the population at the midpoint of 
interval i.  Otherwise, n_cohort[i] contains the size of the cohort at 
the beginning of interval i. When requesting a population table, the 
population sizes in n_cohort may need to be adjusted to correspond to 
the number of deaths in n_deaths. See the Description section for more 
information. 

Return Value 
Pointer to an array of length n_classes by 12 containing the life table.  The 
function returns a cohort table by default.  If the 
IMSL_POPULATION_LIFE_TABLE option is used, a population table is returned.  
Entries in the ith row are for the age interval defined by age[i].  Column 
definitions are described in the following table. 



     

     
 

Chapter 10: Survival and Reliability Analysis life_tables � 713 

     
     

 

Column Description 
0 Lowest age in the age interval. 
1 Fraction of those dying within the interval who die before the 

interval midpoint. 
2 Number surviving to the beginning of the interval. 
3 Number of deaths in the interval. 
4 Death rate in the interval. For cohort table, this column is set 

to NaN (not a number). 
5 Proportion dying in the interval. 
6 Standard error of the proportion dying in the interval. 
7 Proportion of survivors at the beginning of the interval. 
8 Standard error of the proportion of survivors at the beginning 

of the interval. 
9 Expected lifetime at the beginning of the interval. 
10 Standard error of the expected life at the beginning of the 

interval. 
11 Total number of time units lived by all of the population in 

the interval. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float * imsls_f_life_tables (int n_classes, float age[],  

float a[], int n_cohort[], 
IMSLS_RETURN_USER,  float table[], 
IMSLS_PRINT_LEVEL, int iprint, 
IMSLS_POPULATION_SIZE, int initial_pop, 
IMSLS_POPULATION_LIFE_TABLE, int *n_deaths,  
0) 

Optional Arguments 
IMSLS_RETURN_USER, float table[]  (Output) 

If specified, table is an user-specified array of length n_classes*12 
containing the life table. 

IMSLS_PRINT_LEVEL, int iprint  (Input) 
Printing option.  
Default:  iprint = 0. 
Iprint  Action 

0 No printing is performed. 
1 The life table is printed. 
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IMSLS_POPULATION_SIZE, int initial_pop  (Input) 
The population size at the beginning of the first age interval in 
requesting population table. A default value of 10,000 is used to allow 
easy entry of n_cohorts and n_deaths when numbers are available as 
percentages. 
Default:  initial_pop = 10000. 

IMSLS_POPULATION_LIFE_TABLE, int *n_deaths  (Input) 
Compute a population table.  n_deaths is an array of length n_classes 
containing the number of deaths in each age interval. 

Description 
Function imsls_f_life_tables computes population (current) or cohort life 
tables based upon the observed population sizes at the middle (for population 
table) or the beginning (for cohort table) of some userspecified age intervals. The 
number of deaths in each of these intervals must also be observed. 

The probability of dying prior to the middle of the interval, given that death 
occurs somewhere in the interval, may also be specified. Often, however, this 
probability is taken to be 0.5. For a discussion of the probability models 
underlying the life table here, see the references. 

Let ti, for i = 0, 1, �, tn denote the time grid defining the n age intervals, and note 
that the length of the age intervals may vary. Following Gross and Clark (1975, 
page 24), let di denote the number of individuals dying in age interval i, where 
age interval i ends at time ti. For population table, the death rate at the middle of 
the interval is given by ri = di/(Mihi), where Mi is the number of individuals alive 
at the middle of the interval, and hi = ti � ti-�, t� = 0. The number of individuals 
alive at the beginning of the interval may be estimated by Pi = Mi + (1 � ai)di 
where ai is the probability that an individual dying in the interval dies prior to the 
interval midpoint. For cohort table, Pi is input directly while the death rate in the 
interval, ri, is not needed. 

The probability that an individual dies during the age interval from ti-� to ti is 
given by qi = di/Pi. It is assumed that all individuals alive at the beginning of the 
last interval die during the last interval. Thus, qn = 1.0. The asymptotic variance 
of qi can be estimated by 

2 (1 ) /i i iq q� � �  

For population table, the number of individuals alive in the middle of the time 
interval (input in n_cohort[i]) must be adjusted to correspond to the number of 
deaths observed in the interval. Function imsls_f_life_tables assumes that 
the number of deaths observed in interval hi occur over a time period equal to hi. 
If di is measured over a period ui, where ui � di, then n_cohort[i] must be 
adjusted to correspond to di by multiplication by ui/hi, i.e., the value Mi input into 
imsls_f_life_tables as n_cohort[i] is computed as  

/i i iM M u h�

�  
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Let Si denote the number of survivors at time ti from a hypothetical (for 
population table) or observed (for cohort table) population. Then,  
S� = initial_pop for population table, and S� = n_cohort[0] for cohort table, 
and Si is given by Si = Si�� � 	i-1 where 	i = Siqi is the number of individuals who 
die in the i-th interval. The proportion of survivors in the interval is given by  
Vi = Si/S� while the asymptotic variance of Vi can be estimated as follows. 

21
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The expected lifetime at the beginning of the interval is calculated as the total 
lifetime remaining for all survivors alive at the beginning of the interval divided 
by the number of survivors at the beginning of the interval. If ei denotes this 
average expected lifetime, then the variance of ei can be estimated as (see Chiang 
1968) 
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where var(en) = 0.0. 

Finally, the total number of time units lived by all survivors in the time interval 
can be estimated as: 

[ (1i i i i iU h S a�� � �  

Example 
The following example is taken from Chiang (1968). The cohort life table has 
thirteen equally spaced intervals, so age[0] is set to �5.0. Similarly, the 
probabilities of death prior to the middle of the interval are all taken to be 0.5, so 
a[0] is set to �1.0. Since IMSLS_PRINT_LEVEL option is used, 
imsls_f_life_tables prints the life table. 

#include "imsls.h" 
 
#define N_CLASSES 13 
 
void main () 
{ 
  int iprint = 1; 
  int n_cohort[] = 
    { 270, 268, 264, 261, 254, 251, 248, 232, 166, 130, 76, 34, 13 }; 
  float age[N_CLASSES + 1], a[N_CLASSES]; 
  float *result; 
 
  age[0] = -5.0; 
  a[0] = -1.0; 
  result = imsls_f_life_tables (N_CLASSES, age, a, n_cohort, 
    IMSLS_PRINT_LEVEL, iprint, 0); 
} 



     

     
 

716 � life_tables IMSL C/Stat/Library 

     
     

 

Output 
 
 
                             Life Table 
Age Class         Age      PDHALF       Alive      Deaths  Death Rate 
        1           0         0.5         270           2  .......... 
        2           5         0.5         268           4  .......... 
        3          10         0.5         264           3  .......... 
        4          15         0.5         261           7  .......... 
        5          20         0.5         254           3  .......... 
        6          25         0.5         251           3  .......... 
        7          30         0.5         248          16  .......... 
        8          35         0.5         232          66  .......... 
        9          40         0.5         166          36  .......... 
       10          45         0.5         130          54  .......... 
       11          50         0.5          76          42  .......... 
       12          55         0.5          34          21  .......... 
       13          60         0.5          13          13  .......... 
  
Age Class        P(D)   Std(P(D))        P(S)   Std(P(S))    Lifetime 
        1    0.007407    0.005218           1           0       43.19 
        2     0.01493    0.007407      0.9926    0.005218       38.49 
        3     0.01136    0.006523      0.9778    0.008971       34.03 
        4     0.02682        0.01      0.9667     0.01092        29.4 
        5     0.01181    0.006779      0.9407     0.01437       25.14 
        6     0.01195    0.006859      0.9296     0.01557       20.41 
        7     0.06452      0.0156      0.9185     0.01665       15.63 
        8      0.2845     0.02962      0.8593     0.02116       11.53 
        9      0.2169     0.03199      0.6148     0.02962       10.12 
       10      0.4154     0.04322      0.4815     0.03041       7.231 
       11      0.5526     0.05704      0.2815     0.02737       5.592 
       12      0.6176     0.08334      0.1259     0.02019       4.412 
       13           1           0     0.04815     0.01303         2.5 
  
Age Class   Std(Life)  Time Units 
        1      0.6993        1345 
        2      0.6707        1330 
        3       0.623        1313 
        4       0.594        1288 
        5      0.5403        1263 
        6      0.5237        1248 
        7      0.5149        1200 
        8      0.4982         995 
        9      0.4602         740 
       10      0.4328         515 
       11      0.4361         275 
       12      0.4167       117.5 
       13           0        32.5 
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Chapter 11: Probability Distribution 
Functions and Inverses 

Routines 
11.1 Discrete Random Variables: Distribution Functions and  

Probability Functions 
Distribution Functions 
Binomial distribution function .......................................binomial_cdf 720 
Binomial probability function ........................................binomial_pdf 722 
Hypergeometric distribution function................ hypergeometric_cdf 723 
Hypergeometric probability function................. hypergeometric_pdf 725 
Poisson distribution function .........................................poisson_cdf 726 
Poisson probability function ..........................................poisson_pdf 728 
 

11.2 Continuous Random Variables 
Distribution Functions and Their Inverses 
Beta distribution function.................................................... beta_cdf 730 
Inverse beta distribution function ..........................beta_inverse_cdf 731 
Bivariate normal distribution function ............. bivariate_normal_cdf 732 
Chi-squared distribution function .......................... chi_squared_cdf 734 
Inverse chi-squared  
distribution function ..................................chi_squared_inverse_cdf 736 
Noncentral chi-squared  
distribution function ...........................................non_central_chi_sq 738 
Inverse of the noncentral chi-squared 
distribution function .................................... non_central_chi_sq_inv 740 
F distribution function..............................................................F_cdf 742 
Inverse F distribution function ................................... F_inverse_cdf 744 
Gamma distribution function .........................................gamma_cdf 745 
Inverse gamma distribution function ............... gamma_inverse_cdf 747 
Normal (Gaussian) distribution function......................... normal_cdf 748 
Inverse normal distribution function ................. normal_inverse_cdf 750 
Student’s t distribution function ................................................ t_cdf 751 
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Inverse Student’s t distribution function...................... t_inverse_cdf 753 
Noncentral Students’s t distribution function ......non_central_t_cdf 754 
Inverse of the noncentral Student’s t  
distribution function....................................... non_central_t_inv_cdf 757 
 

Usage Notes 
Definitions and discussions of the terms basic to this chapter can be found in 
Johnson and Kotz (1969, 1970a, 1970b). These are also good references for the 
specific distributions. 

In order to keep the calling sequences simple, whenever possible, the 
subprograms described in this chapter are written for standard forms of statistical 
distributions. Hence, the number of parameters for any given distribution may be 
fewer than the number often associated with the distribution. For example, while 
a gamma distribution is often characterized by two parameters (or even a third, 
“location”), there is only one parameter that is necessary, the “shape”.  
The “scale” parameter can be used to scale the variable to the standard gamma 
distribution. Also, the functions relating to the normal distribution, 
imsls_f_normal_cdf (page 748) and imsls_f_normal_inverse_cdf  
(page 750), are for a normal distribution with mean equal to zero and variance 
equal to one. For other means and variances, it is very easy for the user to 
standardize the variables by subtracting the mean and dividing by the square root 
of the variance. 

The distribution function for the (real, single-valued) random variable X is the 
function F defined for all real x by  

F(x) = Prob(X � x) 

where Prob(�) denotes the probability of an event. The distribution function is 
often called the cumulative distribution function (CDF). 

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for 
values less than the left endpoint and 1 for values greater than the right endpoint. 
The subprograms described in this chapter return the correct values for the 
distribution functions when values outside of the range of the random variable are 
input, but warning error conditions are set in these cases. 

Discrete Random Variables 

For discrete distributions, the function giving the probability that the random 
variable takes on specific values is called the probability function, defined by 

p(x) = Prob(X = x) 

The “PR” routines described in this chapter evaluate probability functions.  

The CDF for a discrete random variable is 
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� � � �
A

F x p�� k  

where A is the set such that k � x. The “DF” routines in this chapter evaluate 
cumulative distribution functions. Since the distribution function is a step 
function, its inverse does not exist uniquely. 

Continuous Distributions 

For continuous distributions, a probability function, as defined above, would not 
be useful because the probability of any given point is 0. For such distributions, 
the useful analog is the probability density function (PDF). The integral of the 
PDF is the probability over the interval, if the continuous random variable X has 
PDF f, then 

Prob( ) ( )b
aa X b f x dx� � � �  

The relationship between the CDF and the PDF is 

( ) ( )xF x f t
��

� � dt . 

The “_cdf” functions described in this chapter evaluate cumulative distribution 
functions. 

For (absolutely) continuous distributions, the value of F(x) uniquely determines  
x within the support of the distribution. The “_inverse_cdf” functions 
described in this chapter compute the inverses of the distribution functions, that 
is, given F(x) (called “P” for “probability”), a routine such as 
imsls_f_beta_inverse_cdf (page 731) computes x. The inverses are defined 
only over the open interval (0,1). 

Additional Comments 
Whenever a probability close to 1.0 results from a call to a distribution function 
or is to be input to an inverse function, it is often impossible to achieve good 
accuracy because of the nature of the representation of numeric values. In this 
case, it may be better to work with the complementary distribution function (one 
minus the distribution function). If the distribution is symmetric about some point 
(as the normal distribution, for example) or is reflective about some point (as the 
beta distribution, for example), the complementary distribution function has a 
simple relationship with the distribution function. For example, to evaluate the 
standard normal distribution at 4.0, using imsls_f_normal_inverse_cdf 
(page 750) directly, the result to six places is 0.999968. Only two of those digits 
are really useful, however. A more useful result may be 1.000000 minus this 
value, which can be obtained to six significant figures as 3.16713E-05 by 
evaluating imsls_f_normal_inverse_cdf at �4.0. For the normal 
distribution, the two values are related by �(x) = 1 � �(�x), where �(�) is the 
normal distribution function. Another example is the beta distribution with 
parameters 2 and 10. This distribution is skewed to the right, so evaluating 
imsls_f_beta_cdf (page 730) at 0.7, 0.999953 is obtained. A more precise 



     

     
 

720 � binomial_cdf IMSL C/Stat/Library 

     
     

 

result is obtained by evaluating imsls_f_beta_cdf with parameters 10 and 2 at 
0.3. This yields 4.72392E-5. (In both of these examples, it is wise not to trust the 
last digit.) 

Many of the algorithms used by routines in this chapter are discussed by 
Abramowitz and Stegun (1964). The algorithms make use of various expansions 
and recursive relationships and often use different methods in different regions.  

Cumulative distribution functions are defined for all real arguments, however, if 
the input to one of the distribution functions in this chapter is outside the range of 
the random variable, an error of Type 1 is issued, and the output is set to zero or 
one, as appropriate. A Type 1 error is of lowest severity, a “note”, and, by 
default, no printing or stopping of the program occurs. The other common errors 
that occur in the routines of this chapter are Type 2, “alert”, for a function value 
being set to zero due to underflow, Type 3, “warning”, for considerable loss of 
accuracy in the result returned, and Type 5, “terminal”, for incorrect and/or 
inconsistent input, complete loss of accuracy in the result returned, or inability to 
represent the result (because of overflow). When a Type 5 error occurs, the result 
is set to NaN (not a number, also used as a missing value code). 

binomial_cdf 
Evaluates the binomial distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_binomial_cdf (int k, int n, float p) 

The type double function is imsls_d_binomial_cdf. 

Required Arguments 

int k   (Input) 
Argument for which the binomial distribution function is to be 
evaluated. 

int n   (Input) 
Number of Bernoulli trials. 

float p   (Input) 
Probability of success on each trial. 

Return Value 
The probability that k or fewer successes occur in n independent Bernoulli trials, 
each of which has a probability p of success. 
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Description 
The imsls_f_binomial_cdf function evaluates the distribution function of a 
binomial random variable with parameters n and p. It does this by summing 
probabilities of the random variable taking on the specific values in its range. 
These probabilities are computed by the recursive relationship: 

� �
� �

� �
� �

1
1

1
n j p

Pr X j Pr X j
j p
� �

� � � �

�

 

To avoid the possibility of underflow, the probabilities are computed forward 
from 0 if k is not greater than n � p; otherwise, they are computed backward from 
n. The smallest positive machine number, �, is used as the starting value for 
summing the probabilities, which are rescaled by (1 � p)n� if forward 
computation is performed and by pn� if backward computation is used. 

For the special case of p = 0, imsls_f_binomial_cdf is set to 1; for the case 
p = 1, imsls_f_binomial_cdf is set to 1 if k = n and is set to 0 otherwise. 

Example 
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this 
example, the function finds the probability that X is less than or equal to 3. 

#include <imsls.h> 
 
void main() 
{ 
    int         k = 3; 
    int         n = 5; 
    float       p = 0.95; 
    float       pr; 
 
    pr = imsls_f_binomial_cdf(k,n,p); 
    printf("Pr(x <= 3) = %6.4f\n", pr); 
} 

Output 

Pr(x <= 3) = 0.0226 

Informational Errors 
IMSLS_LESS_THAN_ZERO Since “k” � # is less than zero, the 

distribution function is set to zero. 

IMSLS_GREATER_THAN_N The input argument, k, is greater than the 
number of Bernoulli trials, n. 
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binomial_pdf 
Evaluates the binomial probability function. 

Synopsis 
#include <imsls.h> 
float imsls_f_binomial_pdf (int k, int n, float p,..., 0) 

The type double function is imsls_d_binomial_pdf. 

Required Arguments 

int k   (Input) 
Argument for which the binomial probability function is to be evaluated. 

int n   (Input) 
Number of Bernoulli trials. 

float p   (Input) 
Probability of success on each trial. 

Return Value 
The probability that a binomial random variable takes on a value equal to k. 

Description 
The function imsls_f_binomial_pdf evaluates the probability that a binomial 
random variable with parameters n and p takes on the value k. It does this by 
computing probabilities of the random variable taking on the values in its range 
less than (or the values greater than) k. These probabilities are computed by the 
recursive relationship 

( 1 )Pr( ) Pr( 1)
(1 )

n j pX j X j
j p
� �

� � � �

�

 

To avoid the possibility of underflow, the probabilities are computed forward 
from 0, if k is not greater than n times p, and are computed backward from n, 
otherwise. The smallest positive machine number, �, is used as the starting value 
for computing the probabilities, which are rescaled by (1 � p)n� if forward 
computation is performed and by pn� if backward computation is done. 

For the special case of p = 0, imsls_f_binomial_pdf is set to 0 if k is greater 
than 0 and to 1 otherwise; and for the case p = 1, imsls_f_binomial_pdf is set 
to 0 if k is less than n and to 1 otherwise. 

Example 1 
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this 
example, we find the probability that X is equal to 3.  
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#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int k, n; 
  float p, prob; 
 
  k = 3; 
  n = 5; 
  p = 0.95; 
  prob = imsls_f_binomial_pdf(k, n, p); 
 
  printf("The probability that X is equal to 3 is %f\n", prob); 
 } 

Output 
The probability that X is equal to 3 is 0.021434 
 

hypergeometric_cdf 
Evaluates the hypergeometric distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_hypergeometric_cdf (int k, int n, int m, int l) 

The type double function is imsls_d_hypergeometric_cdf. 

Required Arguments 

int k   (Input) 
Argument for which the hypergeometric distribution function is to be 
evaluated. 

int n   (Input) 
Sample size. Argument n must be greater than or equal to k. 

int m   (Input) 
Number of defectives in the lot. 

int l   (Input) 
Lot size. Argument l must be greater than or equal to n and m. 

Return Value 
The probability that k or fewer defectives occur in a sample of size n drawn from 
a lot of size l that contains m defectives. 
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Description 
Function imsls_f_hypergeometric_cdf evaluates the distribution function of 
a hypergeometric random variable with parameters n, l, and m. The 
hypergeometric random variable x can be thought of as the number of items of a 
given type in a random sample of size n that is drawn without replacement from a 
population of size l containing m items of this type. The probability function is 

� �
� �� �

� �
� �for , 1, , min ,

m l m
j n j

l
n

Pr x = j j i i n m
�

�

� � � �  

where i = max (0, n � l + m). 

If k is greater than or equal to i and less than or equal to min (n, m), 
imsls_f_hypergeometric_cdf sums the terms in this expression for j going 
from i up to k; otherwise, 0 or 1 is returned, as appropriate. To avoid rounding in 
the accumulation, imsls_f_hypergeometric_cdf performs the summation 
differently, depending on whether or not k is greater than the mode of the 
distribution, which is the greatest integer less than or equal to 
(m + 1) (n + 1)/(l + 2). 

Example 
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and 
m = 70. In this example, evaluate the distribution function at 7. 

#include <imsls.h> 
 
void main() 
{ 
    int         k = 7; 
    int         l = 1000; 
    int         m = 70; 
    int         n = 100; 
    float       p; 
 
    p = imsls_f_hypergeometric_cdf(k,n,m,l); 
    printf("\nPr (x <= 7) = %6.4f", p); 
} 

Output 

Pr (x <= 7) = 0.599 

Informational Errors 
IMSLS_LESS_THAN_ZERO Since “k” � # is less than zero, the 

distribution function is set to zero. 

IMSLS_K_GREATER_THAN_N The input argument, k, is greater than the 
sample size. 
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Fatal Errors 
IMSLS_LOT_SIZE_TOO_SMALL Lot size must be greater than or equal to  

n and m. 

 

hypergeometric_pdf 
Evaluates the hypergeometric probability function. 

Synopsis 
#include <imsls.h> 
float imsls_f_hypergeometric_pdf (int k, int n, int m, int l) 

The type double function is imsls_d_hypergeometric_pdf. 

Required Arguments 
int k  (Input) 

Argument for which the hypergeometric probability function is to be 
evaluated. 

int n  (Input) 
Sample size.  n must be greater than zero and greater than or equal to k. 

int m  (Input) 
Number of defectives in the lot.  

int l   (Input) 
Lot size.  l must be greater than or equal to n and m. 

Return Value  
The probability that a hypergeometric random variable takes a value equal to k. 
This value is the probability that exactly k defectives occur in a sample of size n 
drawn from a lot of size l that contains m defectives. 

Description 
The function imsls_f_hypergeometic_pdf evaluates the probability function 
of a hypergeometric random variable with parameters n, l, and m. The 
hypergeometric random variable X can be thought of as the number of items of a 
given type in a random sample of size n that is drawn without replacement from a 
population of size l containing m items of this type. The probability function is  

� �� �
� �

Pr( ) for , 1, 2, min( , )
m l m
k n kX k k i i i n m

l
n

�

�
� � � � � �  
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where i = max(0, n � l + m). imsls_f_hypergeometic_pdf evaluates the 
expression using log gamma functions.  

Example  
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and 
m = 70. In this example, we evaluate the probability function at 7. 

 

include "imsls.h" 

void main() 

{ 

  int k=7, n=100, l=1000, m=70; 

  float pr; 

  pr = imsls_f_hypergeometic_pdf(k, n, m, l); 

  printf("  The probability that X is equal to 7 is %6.4f\n", pr); 

} 

Output 
  The probability that X is equal to 7 is 0.1628 
 

poisson_cdf 
Evaluates the Poisson distribution function. 

Synopsis 
#include <imsls.h>  
float imsls_f_poisson_cdf (int k, float theta) 

The type double function is imsls_d_poisson_cdf. 

Required Arguments 
int k   (Input) 

Argument for which the Poisson distribution function is to be evaluated. 

float theta   (Input) 
Mean of the Poisson distribution. Argument theta must be positive. 

Return Value 
The probability that a Poisson random variable takes a value less than or equal  
to k. 
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Description 
Function imsls_f_poisson_cdf evaluates the distribution function of a 
Poisson random variable with parameter theta. The mean of the Poisson random 
variable, theta, must be positive. The probability function (with � = theta) is 
as follows: 

� � / !, for 0, 1, 2,xf x e x x�
�

�

� � �  

The individual terms are calculated from the tails of the distribution to the mode 
of the distribution and summed. Function imsls_f_poisson_cdf uses the 
recursive relationship  

� � � � � �� �1 / 1 for 0,1, 2, ,f x f x x x k�� � � � ��  

with f (0) = e-q. 

 

Figure 11-1   Plot of Fp (k, �) 

Example 
Suppose X is a Poisson random variable with � = 10. In this example, we evaluate 
the probability that X is less than or equal to 7. 

#include <imsls.h> 
 
void main() 
{ 
    int         k = 7; 
    float       theta = 10.0; 
    float       p; 
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    p = imsls_f_poisson_cdf(k, theta); 
    printf("Pr(x <= 7) = %6.4f\n", p); 
} 

Output 

Pr(x <= 7) = 0.2202 

Informational Errors 
IMSLS_LESS_THAN_ZERO Since “k” � # is less than zero, the 

distribution function is set to zero. 

poisson_pdf 
Evaluates the Poisson probability function. 

Synopsis 
#include <imsls.h> 
float imsls_f_poisson_pdf (int k, float theta) 
The type double function is imsls_d_poisson_pdf. 

Required Arguments 
int k  (Input) 

Argument for which the Poisson distribution function is to be evaluated. 

float theta  (Input)  
Mean of the Poisson distribution.  theta must be positive. 

Return Value 
Function value, the probability that a Poisson random variable takes a value equal 
to k. 

Description 
Function imsls_f_poisson_pdf evaluates the probability function of a Poisson 
random variable with parameter theta. theta, which is the mean of the Poisson 
random variable, must be positive. The probability function (with � = theta) is 

f(x) = e�� �k/k!, for k = 0, 1, 2,	 

imsls_f_poisson_pdf evaluates this function directly, taking logarithms and 
using the log gamma function. 
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Figure 11-2   Poisson Probability Function 

Example 
Suppose X is a Poisson random variable with � = 10. In this example, we evaluate 
the probability function at 7. 

#include "imsls.h" 
 
void main () { 
  int k = 7; 
  float theta = 10.0; 
 
  printf ("The probability that X is equal to 7 is %g.\n", 
   imsls_f_poisson_pdf (k, theta)); 
} 

Output 
 
The probability that X is equal to 7 is 0.0900792. 
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beta_cdf 
Evaluates the beta probability distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_beta_cdf (float x, float pin, float qin) 

The type double function is imsls_d_beta_cdf. 

Required Arguments 

float x   (Input) 
Argument for which the beta probability distribution function is to be 
evaluated. 

float pin   (Input) 
First beta distribution parameter. Argument pin must be positive. 

float qin   (Input) 
Second beta distribution parameter. Argument qin must be positive. 

Return Value 
The probability that a beta random variable takes on a value less than or equal  
to x. 

Description 
Function imsls_f_beta_cdf evaluates the distribution function of a beta 
random variable with parameters pin and qin. This function is sometimes called 
the incomplete beta ratio and, with p = pin and q = qin, is denoted by Ix (p, q). It 
is given by 

� �
� � � �

� �
� �

11

0
, 1

x qp
x

p q
I p q t t dt

p q
�

�

� �
� �

� �
�  

where 
 (�) is the gamma function. The value of the distribution function by 
Ix (p, q) is the probability that the random variable takes a value less than or equal 
to x. 

The integral in the expression above is called the incomplete beta function and is 
denoted by �x(p, q). The constant in the expression is the reciprocal of the beta 
function (the incomplete function evaluated at 1) and is denoted by �(p, q). 

Function imsls_f_beta_cdf uses the method of Bosten and Battiste (1974). 
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Example 
Suppose X is a beta random variable with parameters 12 and 12 (X has a 
symmetric distribution). This example finds the probability that X is less than 0.6 
and the probability that X is between 0.5 and 0.6. (Since X is a symmetric beta 
random variable, the probability that it is less than 0.5 is 0.5.) 

#include <imsls.h> 
 
main() 
{ 
        float           p, pin, qin, x; 
 
        pin = 12.0; 
        qin = 12.0; 
        x = 0.6; 
        p = imsls_f_beta_cdf(x, pin, qin); 
        printf("The probability that X is less than 0.6 is %6.4f\n", 
                p); 
        x = 0.5; 
        p -= imsls_f_beta_cdf(x, pin, qin); 
        printf("The probability that X is between 0.5 and"); 
        printf(" 0.6 is %6.4f\n", p); 
} 

Output 

The probability that X is less than 0.6 is 0.8364 
The probability that X is between 0.5 and 0.6 is 0.3364 

beta_inverse_cdf 
Evaluates the inverse of the beta distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_beta_inverse_cdf (float p, float pin, float qin) 

The type double function is imsls_d_beta_inverse_cdf. 

Required Arguments 

float p   (Input) 
Probability for which the inverse of the beta distribution function is to be 
evaluated. Argument p must be in the open interval (0.0, 1.0). 

float pin   (Input) 
First beta distribution parameter. Argument pin must be positive. 

float qin   (Input) 
Second beta distribution parameter. Argument qin must be positive. 
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Return Value 
Function imsls_f_beta_inverse_cdf returns the inverse distribution function 
of a beta random variable with parameters pin and qin.  

Description 
With P = p, p = pin, and q = qin, the beta_inverse_cdf returns x such that 

� �

� � � �
� �

11

0
1

x qpp q
P t

p q
�

�

� �
� �
� �

� t dt  

where 
 (�) is the gamma function. The probability that the random variable takes 
a value less than or equal to x is P. 

Example 
Suppose X is a beta random variable with parameters 12 and 12 (X has a 
symmetric distribution). In this example, we find the value x such that the 
probability that X is less than or equal to x is 0.9. 

#include <imsls.h> 
 
main() 
{ 
        float           p, pin, qin, x; 
 
 
        pin = 12.0; 
        qin = 12.0; 
        p = 0.9; 
        x = imsls_f_beta_inverse_cdf(p, pin, qin); 
        printf(" X is less than %6.4f with probability 0.9.\n", 
                x); 
} 

Output 

X is less than 0.6299 with probability 0.9. 

bivariate_normal_cdf 
Evaluates the bivariate normal distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_bivariate_normal_cdf (float x, float y, float rho) 

The type double function is imsls_d_bivariate_normal_cdf. 
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Required Arguments 

float x   (Input) 
The x-coordinate of the point for which the bivariate normal distribution 
function is to be evaluated. 

float y   (Input) 
The y-coordinate of the point for which the bivariate normal distribution 
function is to be evaluated. 

float rho   (Input) 
Correlation coefficient. 

Return Value 
The probability that a bivariate normal random variable with correlation rho 
takes a value less than or equal to x and less than or equal to y. 

Description 
Function imsls_f_bivariate_normal_cdf evaluates the distribution function 
F of a bivariate normal distribution with means of zero, variances of one, and 
correlation of rho; that is, with � = rho, and |�| < 1, 

2 2

22

1 2( , ) exp
2(1 )2 1

yx u uv vF x y du dv�

�� � �� ��

� �� �
� �� �

�� � 	
� �  

To determine the probability that U � u� and V � v�, where (U, V)T is a bivariate 
normal random variable with mean 
 = (
U, 
V)T and variance-covariance matrix 

2

2
U UV

UV V

� �

� �

� �
� � � �

� �
 

transform (U, V)T to a vector with zero means and unit variances. The input  
to imsls_f_bivariate_normal_cdf would be  
X = (u� � 
U)/�U, Y = (v� � 
V)/�V, and � = �UV/(�U�V). 

Function imsls_f_bivariate_normal_cdf uses the method of Owen (1962, 
1965). Computation of Owen’s T-function is based on code by M. Patefield and 
D. Tandy (2000). For |�| = 1, the distribution function is computed based on the 
univariate statistic, Z = min(x, y), and on the normal distribution function 
imsls_f_normal_cdf  (page 748). 

Example 
Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and 
variance-covariance matrix as follows: 

1.0 0.9
0.9 1.0
� �
� �
� �
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In this example, we find the probability that X is less than �2.0 and Y is less than 
0.0. 

#include <imsls.h> 
 
main() 
{ 
        float           p, rho, x, y; 
 
        x = -2.0; 
        y = 0.0; 
        rho = 0.9; 
        p = imsls_f_bivariate_normal_cdf(x, y, rho); 
        printf(" The probability that X is less than -2.0\n" 
               " and Y is less than 0.0 is %6.4f\n", p); 
 
} 

Output 

The probability that X is less than -2.0 
and Y is less than 0.0 is 0.0228 

chi_squared_cdf 
Evaluates the chi-squared distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_chi_squared_cdf (float chi_squared, float df) 

The type double function is imsls_d_chi_squared_cdf. 

Required Arguments 

float chi_squared   (Input) 
Argument for which the chi-squared distribution function is to be 
evaluated. 

float df   (Input) 
Number of degrees of freedom of the chi-squared distribution. Argument 
df must be greater than or equal to 0.5. 

Return Value 
The probability that a chi-squared random variable takes a value less than or 
equal to chi_squared. 
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Description 
Function imsls_f_chi_squared_cdf evaluates the distribution function, F, of 
a chi-squared random variable x = chi_squared with � = df. Then, 

� �
� �

/ 2 / 2 1
/ 2 0

1
2 / 2

x t v
vF x e

v
� �

�
�

� t dt  

where 
 (�) is the gamma function. The value of the distribution function at the 
point x is the probability that the random variable takes a value less than or equal 
to x. 

For � > 65, imsls_f_chi_squared_cdf uses the Wilson-Hilferty 
approximation (Abramowitz and Stegun 1964, Equation 26.4.17) to the normal 
distribution, and function imsls_f_normal_cdf is used to evaluate the normal 
distribution function. 

For � � 65, imsls_f_chi_squared_cdf uses series expansions to evaluate the 
distribution function. If x < max (� / 2, 26), imsls_f_chi_squared_cdf uses 
the series 6.5.29 in Abramowitz and Stegun (1964); otherwise, it uses the 
asymptotic expansion 6.5.32 in Abramowitz and Stegun. 

Example 
Suppose X is a chi-squared random variable with two degrees of freedom. In this 
example, we find the probability that X is less than 0.15 and the probability that  
X is greater than 3.0. 

#include <imsls.h> 
 
void main() 
{ 
    float       chi_squared = 0.15;  
    float       df = 2.0; 
    float       p; 
 
    p    = imsls_f_chi_squared_cdf(chi_squared, df); 
    printf("%s %s %6.4f\n", "The probability that chi-squared\n", 
        "with 2 df is less than 0.15 is", p); 
 
    chi_squared = 3.0; 
    p    = 1.0 - imsls_f_chi_squared_cdf(chi_squared, df); 
    printf("%s %s %6.4f\n", "The probability that chi-squared\n", 
        "with 2 df is greater than 3.0 is", p); 
} 

Output 

The probability that chi-squared 
 with 2 df is less than 0.15 is 0.0723 
The probability that chi-squared 
 with 2 df is greater than 3.0 is 0.2231 
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Informational Errors 
IMSLS_ARG_LESS_THAN_ZERO Since “chi_squared” � # is less than zero, 

the distribution function is zero at 
“chi_squared.” 

Alert Errors 
IMSLS_NORMAL_UNDERFLOW Using the normal distribution for large 

degrees of freedom, underflow would have 
occurred. 

chi_squared_inverse_cdf 
Evaluates the inverse of the chi-squared distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_chi_squared_inverse_cdf (float p, float df) 

The type double function is imsls_d_chi_squared_inverse_cdf. 

Required Arguments 

float p   (Input) 
Probability for which the inverse of the chi-squared distribution function 
is to be evaluated. Argument p must be in the open interval (0.0, 1.0). 

float df   (Input) 
Number of degrees of freedom of the chi-squared distribution. Argument 
df must be greater than or equal to 0.5. 

Return Value 
The inverse at the chi-squared distribution function evaluated at p. The 
probability that a chi-squared random variable takes a value less than or equal to 
imsls_f_chi_squared_inverse_cdf is p. 

Description 
Function imsls_f_chi_squared_inverse_cdf evaluates the inverse 
distribution function of a chi-squared random variable with � = df and with 
probability p. That is, it determines 
x = imsls_f_chi_squared_inverse_cdf (p, df), such that  

� �
/ 2 / 2 1

/ 2 0

1
2 / 2

x t v
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v
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where 
 (�) is the gamma function. The probability that the random variable takes 
a value less than or equal to x is p. 

For � < 40, imsls_f_chi_squared_inverse_cdf uses bisection (if � � 2 or 
p > 0.98) or regula falsi to find the point at which the chi-squared distribution 
function is equal to p. The distribution function is evaluated using IMSL function 
imsls_f_chi_squared_cdf. 

For 40 � � < 100, a modified Wilson-Hilferty approximation 
(Abramowitz and Stegun 1964, Equation 26.4.18) to the normal distribution is 
used. IMSL function imsls_f_normal_cdf is used to evaluate the inverse of 
the normal distribution function. For � � 100, the ordinary Wilson-Hilferty 
approximation (Abramowitz and Stegun 1964, Equation 26.4.17) is used. 

Example 
In this example, we find the 99-th percentage point of a chi-squared random 
variable with 2 degrees of freedom and of one with 64 degrees of freedom. 

#include <imsls.h> 
 
void main () 
{     
    float       df, x; 
    float       p = 0.99; 
 
    df = 2.0; 
    x  = imsls_f_chi_squared_inverse_cdf(p, df); 
    printf("For p = .99 with  2 df, x = %7.3f.\n", x); 
 
    df = 64.0; 
    x  = imsls_f_chi_squared_inverse_cdf(p,df); 
    printf("For p = .99 with 64 df, x = %7.3f.\n", x); 
} 

Output 

For p = .99 with  2 df, x =   9.210. 
For p = .99 with 64 df, x =  93.217. 

Warning Errors 
IMSLS_UNABLE_TO_BRACKET_VALUE The bounds that enclose “p” could 

not be found. An approximation for 
imsls_f_chi_squared_inverse
_cdf is returned. 

IMSLS_CHI_2_INV_CDF_CONVERGENCE The value of the inverse chi-squared 
could not be found within a specified 
number of iterations. An 
approximation for 
imsls_f_chi_squared_inverse
_cdf is returned. 
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non_central_chi_sq 
Evaluates the noncentral chi-squared distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_non_central_chi_sq (float chi_squared, float df , float 

delta) 
The type double function is imsls_d_non_central_chi_sq. 

Required Arguments 
float chi_squared   (Input) 

Argument for which the noncentral chi-squared distribution function is 
to be evaluated. 

float df   (Input) 
Number of degrees of freedom of the noncentral chi-squared 
distribution. Argument df must be greater than or equal to 0.5 

float delta (Input) 
The noncentrality parameter.  delta must be nonnegative, and   
delta + df must be less than or equal to 200,000. 

Return Value 
The probability that a noncentral chi-squared random variable takes a value less 
than or equal to chi_squared. 

Description 
Function imsls_f_non_central_chi_sq evaluates the distribution function 
of a noncentral chi-squared random variable with df degrees of freedom and 
noncentrality parameter alam, that is, with v = df, � = alam, and  
x = chi_squared, 

2
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where 
(�) is the gamma function. This is a series of central chi-squared 
distribution functions with Poisson weights. The value of the distribution function 
at the point x is the probability that the random variable takes a value less than or 
equal to x.  

The noncentral chi-squared random variable can be defined by the distribution 
function above, or alternatively and equivalently, as the sum of squares of 
independent normal random variables. If Yi have independent normal 
distributions with means 
i and variances equal to one and 
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then X has a noncentral chi-squared distribution with n degrees of freedom and 
noncentrality parameter equal to 

2
1

n
i i��

�  

With a noncentrality parameter of zero, the noncentral chi-squared distribution is 
the same as the chi-squared distribution.  

Function imsls_f_non_central_chi_sq determines the point at which the 
Poisson weight is greatest, and then sums forward and backward from that point, 
terminating when the additional terms are sufficiently small or when a maximum 
of 1000 terms have been accumulated. The recurrence relation 26.4.8 of 
Abramowitz and Stegun (1964) is used to speed the evaluation of the central chi-
squared distribution functions. 

 

Figure 11-3   Noncentral Chi-squared Distribution Function 

Example 
In this example, imsls_f_non_central_chi_sq is used to compute the 
probability that a random variable that follows the noncentral chi-squared 
distribution with noncentrality parameter of 1 and with 2 degrees of freedom is 
less than or equal to 8.642. 

#include <imsls.h> 
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#include <stdio.h> 

void main() 

{ 

        float chsq = 8.642; 

        float df = 2.0; 

        float alam = 1.0; 

        float p; 

        p = imsls_f_non_central_chi_sq(chsq, df, alam); 

        printf("The probability that a noncentral chi-squared random\n" 

  "variable with %2.0f df and noncentrality parameter %3.1f is less\n" 

 
}  

 "than %5.3f is %5.3f.\n", df, alam, chsq, p); 

Output 

The probability that a noncentral chi-squared random 
variable with 2 df and noncentrality parameter 1.0 is less 
than 8.642 is 0.950 

 

non_central_chi_sq_inv 
Evaluates the inverse of the noncentral chi-squared function. 

Synopsis 
#include <imsls.h> 
float imsls_f_non_central_chi_sq_inv (float p, float df, float delta) 
The type double function is imsls_d_non_central_chi_sq_inv. 

Required Arguments 
float p   (Input) 

Probability for which the inverse of the noncentral chi-squared 
distribution function is to be evaluated. p must be in the open interval 
(0.0, 1.0). 

float df   (Input) 
Number of degrees of freedom of the noncentral chi-squared 
distribution. Argument df must be greater than or equal to 0.5 

float delta (Input) 
The noncentrality parameter.  delta must be nonnegative, and    
delta + df  must be less than or equal to 200,000. 
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Return Value 
The probability that a noncentral chi-squared random variable takes a value less 
than or equal to imsls_f_non_central_chi_sq_inv is p.  

Description 
Function imsls_f_non_central_chi_sq_inv evaluates the inverse 
distribution function of a noncentral chi-squared random variable with  
df degrees of freedom and noncentrality parameter delta; that is, with  
P = p, v = df, and  � = delta, it determines 
c
�
 (= imsls_f_non_central_chi_sq_inv (p, df, delta)), such that 
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where 
(�) is the gamma function. The probability that the random variable takes 
a value less than or equal to c

� is P. 

Function imsls_f_non_central_chi_sq_inv uses bisection and modified 
regula falsi to invert the distribution function, which is evaluated using  
routine imsls_f_non_central_chi_sq  (page 738). See 
imsls_f_non_central_chi_sq for an alternative definition of the noncentral 
chi-squared random variable in terms of normal random variables. 

Example 
In this example, we find the 95-th percentage point for a noncentral chi-squared 
random variable with 2 degrees of freedom and noncentrality parameter 1. 

#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 

        float p = .95; 

        int df = 2; 

        float delta = 1.0; 

        float chi_squared; 

        chi_squared = imsls_f_non_central_chi_sq_inv(p, df, delta); 

 printf("The 0.05 noncentral chi-squared critical value is %6.4f.\n", 

        chi_squared); 

} 



     

     
 

742 � F_cdf IMSL C/Stat/Library 

     
     

 

Output 

The 0.05 noncentral chi-squared critical value is  8.6422. 

F_cdf 
Evaluates the F distribution function.  

Synopsis 
#include <imsls.h> 
float imsls_f_F_cdf (float f, float df_numerator, 

float df_denominator) 

The type double function is imsls_d_F_cdf. 

Required Arguments 

float f   (Input) 
Point at which the F distribution function is to be evaluated. 

float df_numerator   (Input) 
The numerator degrees of freedom. Argument df_numerator must be 
positive. 

float df_denominator   (Input) 
The denominator degrees of freedom. Argument df_denominator 
must be positive. 

Return Value 
The probability that an F random variable takes a value less than or equal to the 
input point, f. 

Description 
Function imsls_f_F_cdf evaluates the distribution function of a Snedecor’s F 
random variable with df_numerator and df_denominator. The function is 
evaluated by making a transformation to a beta random variable, then evaluating 
the incomplete beta function. If X is an F variate with �1 and �2 degrees of 
freedom and Y = (�1X)/(�2 + �1X), then Y is a beta variate with parameters 
p = �1/2 and q = �2/2. Function imsls_f_F_cdf also uses a relationship between 
F random variables that can be expressed as 

FF(f, v1, v2) = 1 � FF(1/f, v2, v1) 

where FF is the distribution function for an F random variable. 
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Figure 11-4   Plot of FF(f, 1.0, 1.0) 

Example 
This example finds the probability that an F random variable with one numerator 
and one denominator degree of freedom is greater than 648. 

#include <imsls.h> 
 
main() 
{ 
    float       p; 
    float       F = 648.0; 
    float       df_numerator = 1.0; 
    float       df_denominator = 1.0; 
 
    p = 1.0 - imsls_f_F_cdf(F,df_numerator, df_denominator); 
    printf("%s %s %6.4f.\n", "The probability that an F(1,1) variate", 
        "is greater than 648 is", p); 
} 

Output 

The probability that an F(1,1) variate is greater than 648 is 0.0250. 
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F_inverse_cdf 
Evaluates the inverse of the F distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_F_inverse_cdf (float p, float df_numerator, 

float df_denominator) 

The type double function is imsls_d_F_inverse_cdf. 

Required Arguments 

float p   (Input) 
Probability for which the inverse of the F distribution function is to be 
evaluated. Argument p must be in the open interval (0.0, 1.0). 

float df_numerator   (Input) 
Numerator degrees of freedom. Argument df_numerator must be 
positive. 

float df_denominator   (Input) 
Denominator degrees of freedom. Argument df_denominator must be 
positive. 

Return Value 
The value of the inverse of the F distribution function evaluated at p. The 
probability that an F random variable takes a value less than or equal to 
imsls_f_F_inverse_cdf is p. 

Description 
Function imsls_f_F_inverse_cdf evaluates the inverse distribution function 
of a Snedecor’s F random variable with �1 = df_numerator numerator degrees 
of freedom and  �2 = df_denominator denominator degrees of freedom. The 
function is evaluated by making a transformation to a beta random variable, then 
evaluating the inverse of an incomplete beta function. If X is an F variate with �1 
and �2 degrees of freedom and Y = (�1X)/(�2 + �1X), then Y is a beta variate with 
parameters p = �1/2 and q = �2/2. If p � 0.5, imsls_f_F_ inverse_cdf uses 
this relationship directly; otherwise, it also uses a relationship between F random 
variables that can be expressed as follows: 

FF(f, v1, v2) = 1 � FF(1/f, v2, v1) 

Example 
This example finds the 99-th percentage point for an F random variable with 7 
and 1 degrees of freedom. 



     

     
 

Chapter 11: Probability Distribution Functions and Inverses gamma_cdf � 745 

     
     

 

#include <imsls.h> 
 
main() 
{ 
    float        df_denominator = 1.0; 
    float        df_numerator = 7.0; 
    float        f; 
    float        p = 0.99; 
 
    f = imsls_f_F_inverse_cdf(p, df_numerator, df_denominator); 
 
    printf("The F(7,1) 0.01 critical value is %6.3f\n", f); 
} 

Output 

The F(7,1) 0.01 critical value is 5928.370 

Fatal Errors 
IMSLS_F_INVERSE_OVERFLOW Function imsls_f_F_inverse_cdf 

overflows. This is because df_numerator 
or df_denominator and p are too large. 
The return value is set to machine infinity. 

gamma_cdf 
Evaluates the gamma distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_gamma_cdf (float x, float a) 

The type double function is imsls_d_gamma_cdf. 

Required Arguments 

float x   (Input) 
Argument for which the gamma distribution function is to be evaluated. 

float a   (Input) 
Shape parameter of the gamma distribution. This parameter must be 
positive. 

Return Value 
The probability that a gamma random variable takes a value less than or equal to 
x. 
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Description 
Function imsls_f_gamma_cdf evaluates the distribution function, F, of a 
gamma random variable with shape parameter a, 

� �
� �

1

0

1 x
t aF x e t

a
� �

�
�

� dt  

where 
(�) is the gamma function. (The gamma function is the integral from 0 to 
� of the same integrand as above.) The value of the distribution function at the 
point x is the probability that the random variable takes a value less than or equal 
to x. 

The gamma distribution is often defined as a two-parameter distribution with a 
scale parameter b (which must be positive) or as a three-parameter distribution in 
which the third parameter c is a location parameter. In the most general case, the 
probability density function over (c, �) is as follows: 
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If T is a random variable with parameters a, b, and c, the probability that T � t0 
can be obtained from imsls_f_gamma_cdf by setting x = (t0 � c)/b. 

If x is less than a or less than or equal to 1.0, imsls_f_gamma_cdf uses a  
series expansion; otherwise, a continued fraction expansion is used.  
(See Abramowitz and Stegun 1964.) 

Example 
Let X be a gamma random variable with a shape parameter of four. (In this case, 
it has an Erlang distribution since the shape parameter is an integer.) This 
example finds the probability that X is less than 0.5 and the probability that  
X is between 0.5 and 1.0. 

#include <imsls.h> 
 
main() 
{ 
    float       p, x; 
    float       a = 4.0; 
 
    x = 0.5; 
    p = imsls_f_gamma_cdf(x,a); 
    printf("The probability that X is less than 0.5 is %6.4f\n", p); 
 
    x = 1.0; 
    p = imsls_f_gamma_cdf(x,a) - p; 
    printf("The probability that X is between 0.5 and 1.0 is %6.4f\n", 
        p); 
} 
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Output 

The probability that X is less than 0.5 is 0.0018 
The probability that X is between 0.5 and 1.0 is 0.0172 

Informational Errors 
IMSLS_ARG_LESS_THAN_ZERO Since “x” � # is less than zero, the 

distribution function is zero at “x.” 

Fatal Errors 
IMSLS_X_AND_A_TOO_LARGE Since “x” � # and “a” � # are so large, the 

algorithm would overflow. 

 

gamma_inverse_cdf 
Evaluates the inverse of the gamma distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_gamma_inverse_cdf (float p, float a) 

The type double function is imsls_d_gamma_inverse_cdf. 

Required Arguments 
float p (Input) 

Probability for which the inverse of the gamma distribution function is to 
be evaluated. p must be in the open interval (0.0, 1.0). 

float a (Input) 
The shape parameter of the gamma distribution.  This parameter must be 
positive. 

Return Value 
The probability that a gamma random variable takes a value less than or equal to 
the returned value is p. 

Description 
Function imsls_f_gamma_inverse_cdf evaluates the inverse distribution 
function of a gamma random variable with shape parameter a, that is, it 
determines x (=imsls_f_gamma_inverse_cdf (p, a)), such that 

1

0

1
( )

x t aP e t
a

� �

�
�

� dt  
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where 
(�) is the gamma function. The probability that the random variable takes 
a value less than or equal to x is P. See the documentation for function 
imsls_f_gamma_cdf (page 745) for further discussion of the gamma 
distribution.  

Function imsls_f_gamma_inverse_cdf uses bisection and modified regula 
falsi to invert the distribution function, which is evaluated using function 
imsls_f_gamma_cdf. 

Example  
In this example, we find the 95-th percentage point for a gamma random variable 
with shape parameter of 4. 

 

include "imsls.h" 

void main() 

{ 

  float p = .95, a = 4.0, x; 

  x = imsls_f_gamma_inverse_cdf(p,a); 

  printf("The 0.05 gamma(4) critical value is %6.4f\n", x); 

} 

Output 
The 0.05 gamma(4) critical value is 7.7537 

normal_cdf 
Evaluates the standard normal (Gaussian) distribution function. 

Synopsis 
#include <imsls.h>  
float imsls_f_normal_cdf (float x) 

The type double function is imsls_d_normal_cdf. 

Required Arguments 

float x   (Input) 
Point at which the normal distribution function is to be evaluated. 

Return Value 
The probability that a normal random variable takes a value less than or equal  
to x. 
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Description 
Function imsls_f_normal_cdf evaluates the distribution function, �, of a 
standard normal (Gaussian) random variable as follows: 

� �
2 / 21

2

x
tx e

�

�

��

� � � dt  

The value of the distribution function at the point x is the probability that the 
random variable takes a value less than or equal to x. 

The standard normal distribution (for which imsls_f_normal_cdf is the 
distribution function) has mean of 0 and variance of 1. The probability that a 
normal random variable with mean 
 and variance �2 is less than y is given by 
imsls_f_normal_cdf evaluated at (y � 
)/�. 

 

Figure 11-5   Plot of �(x) 

Example 
Suppose X is a normal random variable with mean 100 and variance 225. This 
example finds the probability that X is less than 90 and the probability that X is 
between 105 and 110. 

#include <imsls.h>  
 
main() 
{ 
    float      p, x1, x2; 
 
    x1  = (90.0-100.0)/15.0; 
    p   = imsls_f_normal_cdf(x1); 
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    printf("The probability that X is less than 90 is %6.4f\n", p); 
 
    x1 = (105.0-100.0)/15.0; 
    x2 = (110.0-100.0)/15.0; 
    p  = imsls_f_normal_cdf(x2) - imsls_f_normal_cdf(x1); 
    printf("The probability that X is between 105 and 110 is %6.4f\n", 
        p);  
} 

Output 

The probability that X is less than 90 is 0.2525 
The probability that X is between 105 and 110 is 0.1169 

normal_inverse_cdf 
Evaluates the inverse of the standard normal (Gaussian) distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_normal_inverse_cdf (float p) 

The type double function is imsls_d_normal_inverse_cdf. 

Required Arguments 

float p   (Input) 
Probability for which the inverse of the normal distribution function is to 
be evaluated. Argument p must be in the open interval (0.0, 1.0). 

Return Value 
The inverse of the normal distribution function evaluated at p. The probability 
that a standard normal random variable takes a value less than or equal to 
imsls_f_normal_inverse_cdf is p. 

Description 
Function imsls_f_normal_inverse_cdf evaluates the inverse of the 
distribution function, �, of a standard normal (Gaussian) random variable, 
imsls_f_normal_inverse_cdf(p) = �-1(x), where 

� �
2 / 21

2

x
tx e

�

�

��

� � � dt  

The value of the distribution function at the point x is the probability that the 
random variable takes a value less than or equal to x. The standard normal 
distribution has a mean of 0 and a variance of 1. 
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Function imsls_f_normal_inverse_cdf (p) is evaluated by use of minimax 
rational-function approximations for the inverse of the error function. General 
descriptions of these approximations are given in Hart et al. (1968) and Strecok 
(1968). The rational functions used in imsls_f_normal_inverse_cdf are 
described by Kinnucan and Kuki (1968). 

Example 
This example computes the point such that the probability is 0.9 that a standard 
normal random variable is less than or equal to this point. 

#include <imsls.h> 
 
main() 
{ 
    float       x; 
    float       p = 0.9; 
 
    x = imsls_f_normal_inverse_cdf(p); 
    printf("The 90th percentile of a standard normal is %6.4f.\n", x); 
} 

Output 

The 90th percentile of a standard normal is 1.2816. 

t_cdf 
Evaluates the Student’s t distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_t_cdf (float t, float df) 

The type double function is imsls_d_t_cdf. 

Required Arguments 

float t   (Input) 
Argument for which the Student’s t distribution function is to be 
evaluated. 

float df   (Input) 
Degrees of freedom. Argument df must be greater than or equal to 1.0. 

Return Value 
The probability that a Student’s t random variable takes a value less than or equal 
to the input t. 
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Description 
Function imsls_f_t_cdf evaluates the distribution function of a Student’s t 
random variable with � = df degrees of freedom. If the square of  
t is greater than or equal to �, the relationship of a t to an F random variable (and 
subsequently, to a beta random variable) is exploited, and percentage points from 
a beta distribution are used. Otherwise, the method described by Hill (1970) is 
used. If � is not an integer, is greater than 19, or is greater than 200, a Cornish- 
Fisher expansion is used to evaluate the distribution function. If � is less than 20 
and |t| is less than 2.0, a trigonometric series is used (see Abramowitz and Stegun 
1964, Equations 26.7.3 and 26.7.4 with some rearrangement). For the remaining 
cases, a series given by Hill (1970) that converges well for large values of t is 
used. 

 

Figure 11-6   Plot of Ft (t, 6.0) 

Example 
This example finds the probability that a t random variable with 6 degrees of 
freedom is greater in absolute value than 2.447. The fact that t is symmetric about 
0 is used. 

#include <imsls.h> 
 
main () 
{ 
    float       p; 
    float       t = 2.447; 
    float       df = 6.0; 
 
    p  = 2.0*imsls_f_t_cdf(-t,df); 
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    printf("Pr(|t(6)| > 2.447) = %6.4f\n", p); 
} 

Output 

Pr(|t(6)| > 2.447) = 0.0500 

t_inverse_cdf 
Evaluates the inverse of the Student’s t distribution function. 

Synopsis 
#include <imsls.h>  
float imsls_f_t_inverse_cdf (float p, float df) 

The type double function is imsls_d_t_inverse_cdf. 

Required Arguments 

float p   (Input) 
Probability for which the inverse of the Student’s t distribution function 
is to be evaluated. Argument p must be in the open interval (0.0, 1.0). 

float df   (Input) 
Degrees of freedom. Argument df must be greater than or equal to 1.0. 

Return Value 
The inverse of the Student’s t distribution function evaluated at p. The probability 
that a Student’s t random variable takes a value less than or equal to 
imsls_f_t_inverse_cdf is p. 

Description 
Function imsls_f_t_inverse_cdf evaluates the inverse distribution function 
of a Student’s t random variable with � = df degrees of freedom. If � equals 1 or 
2, the inverse can be obtained in closed form. If � is between 1 and 2, the 
relationship of a t to a beta random variable is exploited and the inverse of the 
beta distribution is used to evaluate the inverse; otherwise, the algorithm of Hill 
(1970) is used. For small values of � greater than 2, Hill’s algorithm inverts an 
integrated expansion in 1/(1 + t2/�) of the t density. For larger values, an 
asymptotic inverse Cornish-Fisher type expansion about normal deviates is used. 

Example 
This example finds the 0.05 critical value for a two-sided t test with 6 degrees of 
freedom. 

#include <imsls.h> 
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void main() 
{ 
    float       df = 6.0; 
    float       p = 0.975; 
    float       t; 
 
    t  = imsls_f_t_inverse_cdf(p,df); 
 
    printf("The two-sided t(6) 0.05 critical value is %6.3f\n", t); 
} 

Output 

The two-sided t(6) 0.05 critical value is  2.447 

Informational Errors 
IMSLS_OVERFLOW Function imsls_f_t_inverse_cdf is set to 

machine infinity since overflow would occur 
upon modifying the inverse value for the F 
distribution with the result obtained from the 
inverse beta distribution. 

non_central_t_cdf 
Evaluates the noncentral Student’s t distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_non_central_t_cdf   (float t, int df , float delta) 
The type double function is imsls_d_non_central_t_cdf. 

Required Arguments 
float t   (Input) 
 Argument for which the noncentral Student’s t distribution function is to 

be evaluated. 
int df   (Input) 
 Number of degrees of freedom of the noncentral Student’s t  distribution. 

Argument df must be greater than or equal to 0.0 
float delta (Input)                                                                                             

The noncentrality parameter. 

Return Value 
The probability that a noncentral Student’s t random variable takes a value less 
than or equal to t. 
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Description 
Function imsls_f_non_central_t_cdf evaluates the distribution function  
F of a noncentral t random variable with df degrees of freedom and noncentrality 
parameter delta; that is, with v = df, � = delta , and t

�
 = t, 
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where 
(�) is the gamma function. The value of the distribution function at the 
point t

�
 is the probability that the random variable takes a value less than or equal 

to t
�
. 

The noncentral t random variable can be defined by the distribution function 
above, or alternatively and equivalently, as the ratio of a normal random variable 
and an independent chi-squared random variable. If w has a normal distribution 
with mean � and variance equal to one, u has an independent chi-squared 
distribution with v degrees of freedom, and 

/ /x w u v�  

then x has a noncentral t distribution with degrees of freedom and noncentrality 
parameter �. 

The distribution function of the noncentral t can also be expressed as a double 
integral involving a normal density function (see, for example, Owen 1962, page 
108). The function TNDF uses the method of Owen (1962, 1965), which uses 
repeated integration by parts on that alternate expression for the distribution 
function. 
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Figure 11-7   Noncentral Student’s t Distribution Function 

Example 
Suppose t is a noncentral t random variable with 6 degrees of freedom and 
noncentrality parameter 6. In this example, we find the probability that t is less 
than 12.0. (This can be checked using the table on page 111 of Owen 1962, with 
� = 0.866, which yields � = 1.664.) 

#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 

        float t = 12.0; 

        int df = 6; 

        float delta = 6.0; 

        float p; 

        p = imsls_f_non_central_t_cdf(t, df, delta); 

        printf("The probability that t is less than 12 is %6.4f.\n", p); 

} 
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Output 
The probability that T is less than 12.0 is 0.9501 

non_central_t_inv_cdf 
Evaluates the inverse of the noncentral Student’s t distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_non_central_t_inv_cdf (float p, int df , float delta) 
The type double function is imsls_d_non_central_t_inv_cdf. 

Required Arguments 
float p   (Input) 

A Probability for which the inverse of the noncentral Student's t 
distribution function is to be evaluated.  p must be in the open interval 
(0.0, 1.0). 

int df   (Input) 
Number of degrees of freedom of the noncentral Student’s t  distribution. 
Argument df must be greater than or equal to 0.0 

float delta (Input) 
The noncentrality parameter. 

Return Value 
The probability that a noncentral Student's t random variable takes a value less 
than or equal to t is p. 

Description 
Function imsls_f_non_central_t_inv_cdf evaluates the inverse 
distribution function of a noncentral t random variable with df degrees of 
freedom and noncentrality parameter delta; that is, with P = p, v = df, and  
� = delta, it determines t

�
 (= imsls_f_non_central_t_inv_cdf  

(p, df, delta )), such that 
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where 
(�) is the gamma function. The probability that the random variable takes 
a value less than or equal to t

�
 is P. See imsls_f_non_central_t_cdf  

(page 754) for an alternative definition in terms of normal and chi-squared 
random variables. The function  imsls_f_non_central_t_inv_cdf  uses 
bisection and modified regula falsi to invert the distribution function, which is 
evaluated using routine imsls_f_non_central_t_cdf. 
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Example 
In this example, we find the 95-th percentage point for a noncentral t random 
variable with 6 degrees of freedom and noncentrality parameter 6. 

#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 

        float p = .95; 

        int df = 6; 

        float delta = 6.0; 

        float t; 

        t = imsls_f_non_central_t_inv_cdf(p, df, delta); 

        printf("The 0.05 noncentral t critical value is %6.4f.\n", t); 
} 

Output 

The 0.05 noncentral t critical value is 11.995. 
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Chapter 12: Random Number 
Generation 

Routines 
12.1 Univariate Discrete Distributions 

Generates pseudorandom binomial numbers...... random_binomial 765 
Generates pseudorandom geometric  
numbers .............................................................random_geometric 766 
Generates pseudorandom  
hypergeometric numbers .......................... random_hypergeometric 768 
Generates pseudorandom  
logarithmic numbers ........................................ random_logarithmic 770 
Generates pseudorandom negative  
binomial numbers......................................... random_neg_binomial 772 
Generates pseudorandom Poisson numbers ....... random_poisson 774 
Generates pseudorandom discrete  
uniform numbers..................................... random_uniform_discrete 775 
Generates pseudorandom numbers from  
a general discrete distribution ................. random_general_discrete 777 
Sets up a table to generate pseudorandom numbers from  
a general discrete distribution .........................discrete_table_setup 781 
 

12.2 Univariate Continuous Distributions 
Generates pseudorandom beta numbers ...................random_beta 786 
Generates pseudorandom Cauchy numbers......... random_cauchy 788 
Generates pseudorandom chi_squared  
numbers ......................................................... random_chi_squared 789 
Generates pseudorandom exponential  
numbers .......................................................... random_exponential 791 
Generates pseudorandom mixed  
exponential numbers................................random_exponential_mix 792 
Generates pseudorandom gamma numbers.........random_gamma 794 
Generates peudorandom lognormal numbers ...random_lognormal 796 
Generates pseudorandom normal numbers...........random_normal 798 
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Generates pseudorandom numbers from a  
stable distribution......................................................random_stable 800  
Generates pseudorandom Student’s t................ random_student_t 802 
Generates pseudorandom triangular numbers .. random_triangular 803 
Generates pseudorandom uniform numbers ........ random_uniform 804 
Generates pseudorandom Von Mises  
numbers ........................................................... random_von_mises 806 
Generates pseudorandom Weibull numbers.......... random_weibull 808 
Generates pseudorandom numbers from a general  
continuous distribution........................random_general_continuous 810 
Sets up table to generate pseudorandom numbers from a general 
continuous distribution............................... continuous_table_setup 812 
 

12.3 Multivariate Continuous Distributions 
Generates multivariate  
normal vectors....................................random_normal_multivariate 815 
Generates a pseudorandom orthogonal matrix  
or a correlation matrix........................... random_orthogonal_matrix 816 
Generates pseudorandom numbers from a multivariate distribution 
determined from a given sample.............random_mvar_from_data 819 
Generates pseudorandom numbers from a  
multinomial distribution.................................... random_multinomial 821 
Generates pseudorandom points on a unit circle or  
K-dimensional sphere............................................. random_sphere 823 
Generates a pseudorandom  
two-way table................................................random_table_twoway 825 

12.4  Order Statistics 
Generates pseudorandom order statistics from a standard  
normal distribution ........................................random_order_normal 827 
Generates pseudorandom order statistics from a  
uniform (0, 1) distribution ............................random_order_uniform 829 

12.5 Stochastic Processes 
Generates pseudorandom ARMA  
process numbers....................................................... random_arma 831 
Generates pseudorandom numbers from a  
nonhomogeneous Poisson process ............................ random_npp 835 

12.6  Samples and Permutations 
Generates a pseudorandom permutation....... random_permutation 839 
Generates a simple pseudorandom sample  
of indices .................................................. random_sample_indices 840 
Generates a simple pseudorandom sample from  
a finite population .................................................. random_sample 842 
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12.7 Utility Functions 
Selects the uniform (0, 1) generator ........................ random_option 845 
Retrieves the uniform (0, 1) multiplicative congruential  
pseudorandom number generator .................... random_option_get 846 
Retrieves the current value of the seed .............. random_seed_get 847 
Retrieves a seed for the congruential  
generators ....................................... random_substream_seed_get 848 
Initializes a random seed .................................... random_seed_set 850 
Sets the current table used in the  
shuffled generator ............................................... random_table_set 851 
Retrieves the current table used in the 
shuffled generator ............................................... random_table_get 852 
Sets the current able used in the 
GFSR generator...................................... random_GFSR_table_set 853 
Retrieves the current table used in the 
GFSR generator...................................... random_GFSR_table_get 853 

12.7 Low-discrepancy sequence 
Generates a shuffled Faure sequence ................. faure_next_point 856 

Usage Notes 
Overview of Random Number Generation 

Sections 12.1 through 12.7 describe functions for the generation of random 
numbers that are useful for applications in Monte Carlo or simulation studies. 
Before using any of the random number generators, the generator must be 
initialized by selecting a seed or starting value. The user can do this by calling the 
function imsls_random_seed_set. If the user does not select a seed, one is 
generated using the system clock. A seed needs to be selected only once in a 
program, unless two or more separate streams of random numbers are maintained. 
Other utility functions in this chapter can be used to select the form of the basic 
generator to restart simulations and to maintain separate simulation streams. 

In the following discussions, the phrases “random numbers,” “random deviates,” 
“deviates,” and “variates” are used interchangeably. The phrase “pseudorandom” 
is sometimes used to emphasize that the numbers generated are really not 
“random” since they result from a deterministic process. The usefulness of 
pseudorandom numbers is derived from the similarity, in a statistical sense, of 
samples of the pseudorandom numbers to samples of observations from the 
specified distributions. In short, while the pseudorandom numbers are completely 
deterministic and repeatable, they simulate the realizations of independent and 
identically distributed random variables. 

Basic Uniform Generators 

The random number generators in this chapter use either a multiplicative 
congruential method or a generalized feedback shift register. The selection of the 
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type of generator is made by calling the routine imsls_random_option  
(page 845). If no selection is made explicitly, a multiplicative generator (with 
multiplier 16807) is used. Whatever distribution is being simulated, uniform 
(0, 1) numbers are first generated and then transformed if necessary. These 
routines are portable in the sense that, given the same seed and for a given type of 
generator, they produce the same sequence in all computer/compiler 
environments. There are many other issues that must be considered in developing 
programs for the methods described below (see Gentle 1981 and 1990). 

The Multiplicative Congruential Generators 

The form of the multiplicative congruential generators is 

xi � cxi-1mod (231 � 1) 

Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primitive 
root modulo 231 � 1 (which is a prime), then the generator will have a maximal 
period of 231 � 2. There are several other considerations, however. See Knuth 
(1981) for a good general discussion. The possible values for c in the generators 
are 16807, 397204094, and 950706376. The selection is made by the function 
imsls_random_option. The choice of 16807 will result in the fastest execution 
time, but other evidence suggests that the performance of 950706376 is best 
among these three choices (Fishman and Moore 1982). If no selection is made 
explicitly, the functions use the multiplier 16807, which has been in use for some 
time (Lewis et al. 1969). 

The generation of uniform (0,1) numbers is done by the function 
imsls_f_random_uniform. This function is portable in the sense that, given 
the same seed, it produces the same sequence in all computer/compiler 
environments. 

Shuffled Generators  

The user also can select a shuffled version of these generators using 
imsls_random_option. The shuffled generators use a scheme due to 
Learmonth and Lewis (1973). In this scheme, a table is filled with the first 128 
uniform (0,1) numbers resulting from the simple multiplicative congruential 
generator. Then, for each xi from the simple generator, the low-order bits of xi are 
used to select a random integer, j, from 1 to 128. The j-th entry in the table is then 
delivered as the random number; and xi, after being scaled into the unit interval, is 
inserted into the j-th position in the table. This scheme is similar to that of 
Bays and Durham (1976), and their analysis is applicable to this scheme as well. 

The Generalized Feedback Shift Register Generator 

The GFSR generator uses the recursion Xt = Xt-1563 � Xt-96. This generator, 
which is different from earlier GFSR generators, was proposed by Fushimi 
(1990), who discusses the theory behind the generator and reports on several 
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empirical tests of it. Background discussions on this type of generator can be 
found in Kennedy and Gentle (1980), pages 150�162. 

Setting the Seed 

The seed of the generator can be set in imsls_random_seed_set and can be 
retrieved by imsls_random_seed_get. Prior to invoking any generator in this 
section, the user can call imsls_random_seed_set to initialize the seed, which 
is an integer variable with a value between 1 and 2147483647. If it is not 
initialized by imsls_random_seed_set, a random seed is obtained from the 
system clock. Once it is initialized, the seed need not be set again. 

If the user wants to restart a simulation, imsls_random_seed_get can be used 
to obtain the final seed value of one run to be used as the starting value in a 
subsequent run. Also, if two simultaneous random number streams are desired in 
one run, imsls_random_seed_set and imsls_random_seed_get can be 
used before and after the invocations of the generators in each stream. 

If a shuffled generator or the GFSR generator is used, in addition to resetting the 
seed, the user must also reset some values in a table. For the shuffled generators, 
this is done using the routines imsls_f_random_table_get (page 851) and 
imsls_f_random_table_set (page 851); and for the GFSR generator; the 
table is retrieved and set by the routines imsls_random_GFSR_table_get 
(page 852) and imsls_random_GFSR_table_set (page  853). The tables for 
the shuffled generators are separate for single and double precision; so, if 
precisions are mixed in a program, it is necessary to manage each precision 
separately for the shuffled generators. 

Timing Considerations 

The generation of the uniform (0,1) numbers is done by the routine 
imsls_f_random_uniform (page 804). The particular generator selected in 
imsls_random_option (page 845), that is, the value of the multiplier and 
whether shuffling is done or whether the GFSR generator is used, affects the 
speed of imsls_f_random_uniform. The smaller multiplier (16807, selected 
by iopt = 1) is faster than the other multipliers. The multiplicative congruential 
generators that do not shuffle are faster than the ones that do. The GFSR 
generator is roughly as fast as the fastest multiplicative congruential generator, 
but the initialization for it (required only on the first invocation) takes longer than 
the generation of thousands of uniform random numbers. Precise statements of 
relative speeds depend on the computing system. 

Distributions Other than the Uniform 

The nonuniform generators use a variety of transformation procedures. All of the 
transformations used are exact (mathematically). The most straightforward 
transformation is the inverse CDF technique, but it is often less efficient than 
others involving acceptance/rejection and mixtures. See Kennedy and Gentle 
(1980) for discussion of these and other techniques. 
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Many of the nonuniform generators in this chapter use different algorithms 
depending on the values of the parameters of the distributions. This is particularly 
true of the generators for discrete distributions. Schmeiser (1983) gives an 
overview of techniques for generating deviates from discrete distributions. 

Although, as noted above, the uniform generators yield the same sequences on 
different computers, because of rounding, the nonuniform generators that use 
acceptance/rejection may occasionally produce different sequences on different 
computer/compiler environments. 

Although the generators for nonuniform distributions use fast algorithms, if a very 
large number of deviates from a fixed distribution are to be generated, it might be 
worthwhile to consider a table-sampling method, as implemented in the routines 
imsls_f_random_general_discrete (page 777), 
imsls_f_discrete_table_setup (page 781), 
imsls_f_random_general_continuous (page 810), and 
imsls_f_continuous_table_setup (page 812). After an initialization stage, 
which may take some time, the actual generation may proceed very fast. 

Tests 

Extensive empirical tests of some of the uniform random number generators 
available in imsls_f_random_uniform (page 804) are reported by Fishman 
and Moore (1982 and 1986). Results of tests on the generator using the multiplier 
16807 with and without shuffling are reported by Learmonth and Lewis (1973b). 
If the user wishes to perform additional tests, the routines in Chapter 7, “Tests of 
Goodness of Fit and Randomness,” may be of use. Often in Monte Carlo 
applications, it is appropriate to construct an ad hoc test that is sensitive to 
departures that are important in the given application. For example, in using 
Monte Carlo methods to evaluate a one-dimensional integral, autocorrelations of 
order one may not be harmful, but they may be disastrous in evaluating a two-
dimensional integral. Although generally the routines in this chapter for 
generating random deviates from nonuniform distributions use exact methods, 
and, hence, their quality depends almost solely on the quality of the underlying 
uniform generator, it is often advisable to employ an ad hoc test of goodness of fit 
for the transformations that are to be applied to the deviates from the nonuniform 
generator. 

Other Notes on Usage 

The generators for continuous distributions are available in both single and 
double-precision versions. This is merely for the convenience of the user; the 
double-precision versions should not be considered more “accurate,” except 
possibly for the multivariate distributions. 

 



     

     
 

Chapter 12: Random Number Generation random_binomial � 765 

     
     

 

random_binomial 
Generates pseudorandom numbers from a binomial distribution. 

Synopsis 
#include <imsls.h> 
int *imsls_f_random_binomial (int n_random, int n, float p, ..., 0) 

The type double function is imsls_d_random_binomial. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

int n   (Input) 
Number of Bernoulli trials. 

float p   (Input) 
Probability of success on each trial. Parameter p must be greater than 0.0 
and less than 1.0. 

Return Value 
An integer array of length n_random containing the random binomial deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_random_binomial (int n_random, int n, float p,  

IMSLS_RETURN_USER, int ir[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, int ir[]   (Output) 

User-supplied integer array of length n_random containing the random 
binomial deviates. 

Description 
Function imsls_f_random_binomial generates pseudorandom numbers from 
a binomial distribution with parameters n and p. Parameters n and p must be 
positive, and p must less than 1. The probability function (with n = n and p = p) is  

� � � � � �1 n xn x
xf x p p �

� �  

for x = 0, 1, 2, �, n. 
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The algorithm used depends on the values of n and p. If np < 10 or p is less than 
machine epsilon (see imsls_f_machine, Chapter 14, “Utilities”), the inverse 
CDF technique is used; otherwise, the BTPE algorithm of Kachitvichyanukul and 
Schmeiser (see Kachitvichyanukul 1982) is used. This is an acceptance/rejection 
method using a composition of four regions. (TPE=Triangle, Parallelogram, 
Exponential, left and right.) 

Example 
In this example, imsls_f_random_binomial generates five pseudorandom 
binomial deviates from a binomial distribution with parameters 20 and 0.5. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int   n_random = 5; 
    int   n = 20; 
    float p = 0.5; 
    int   *ir; 
 
    imsls_random_seed_set(123457); 
    ir = imsls_f_random_binomial(n_random, n, p, 0); 
    imsls_i_write_matrix("Binomial (20, 0.5) random deviates:",  
        1, n_random, ir, IMSLS_NO_COL_LABELS, 0); 
} 

Output 
Binomial (20, 0.5) random deviates: 
       14    9   12   10   12 

random_geometric 
Generates pseudorandom numbers from a geometric distribution. 

Synopsis 

#include <imsls.h> 
int *imsls_f_random_geometric (int n_random, float p, ..., 0) 
The type double function is imsls_d_random_geometric.  

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float p   (Input) 
Probability of succes on each trial. Parameter p must be positive and less 
than 1.0. 
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Return Value 
An integer array of length n_random containing the random geometric deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_random_geometric (int n_random, float p,  

IMSLS_RETURN_USER, int ir[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, int ir[]   (Output) 

User-supplied integer array of length n_random containing the random 
geometric deviates. 

Description 
Function imsls_f_random_geometric generates pseudorandom numbers from 
a geometric distribution with parameter P, where P is the probability of getting a 
success on any trial. A geometric deviate can be interpreted as the number of 
trials until the first success (including the trial in which the first success is 
obtained). The probability function is 

f(x) = P(1 � P)x-1 

for x = 1, 2, � and 0 < P < 1. 

The geometric distribution as defined above has mean 1/P. 

The i-th geometric deviate is generated as the smallest integer not less than  

(log (Ui))/(log (1 � P)), where the Ui are independent uniform(0, 1) random 
numbers (see Knuth 1981). 

The geometric distribution is often defined on 0, 1, 2, ..., with mean (1 � P)/P. 
Such deviates can be obtained by subtracting 1 from each element of ir (the 
returned vector of random deviates). 

Example 
In this example, imsls_f_random_geometric generates five pseudorandom 
geometric deviates from a geometric distribution with parameter an equal to 0.3. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int   n_random = 5; 
    float p = 0.3; 
    int *ir; 
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    imsls_random_seed_set(123457); 
    ir = imsls_f_random_geometric(n_random, p, 0); 
    imsls_i_write_matrix("Geometric(0.3) random deviates:",  
        1, n_random, ir, IMSLS_NO_COL_LABELS, 0); 
} 

Output  

Geometric(0.3) random deviates: 
       1   4   1   2   1 

random_hypergeometric 
Generates pseudorandom numbers from a hypergeometric distribution. 

Synopsis 

#include <imsls.h> 
int *imsls_f_random_hypergeometric (int n_random, int n, int m,  

int l, ..., 0) 

The type double function is imsls_d_random_hypergeometric. 

Required Arguments 
int n_random   (Input) 

Number of random numbers to generate. 

int n   (Input) 
Number of items in the sample. Parameter n must be positive. 

int m   (Input) 
Number of special items in the population, or lot. Parameter m must be 
positive. 

int l   (Input) 
Number of items in the lot. Parameter l must be greater than both n and 
m. 

Return Value 
An integer array of length n_random containing the random hypergeometric 
deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_random_hypergeometric (int n_random, int n, int m,  

int l, 
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IMSLS_RETURN_USER, int ir[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, int ir[]   (Output) 

User-supplied integer array of length n_random containing the random 
hypergeometric deviates. 

Description 
Function imsls_f_random_hypergeometric generates pseudorandom 
numbers from a hypergeometric distribution with parameters N, M, and L. The 
hypergeometric random variable X can be thought of as the number of items of a 
given type in a random sample of size N that is drawn without replacement from a 
population of size L containing M items of this type. The probability function is 

� �
� �� �

� �

M L M
x N x

L
N

f x
�

�

�  

for x = max (0, N � L + M), 1, 2, �, min (N, M) 

If the hypergeometric probability function with parameters N, M, and L evaluated 
at N � L + M (or at 0 if this is negative) is greater than the machine epsilon  
(see imsls_f_machine, Chapter 14, “Utilities”), and less than 1.0 minus the 
machine epsilon, then imsls_f_random_hypergeometric uses the inverse 
CDF technique. The routine recursively computes the hypergeometric 
probabilities, starting at x = max (0, N � L + M) and using the ratio 

� �

� �

1f X x
f X x

� �

�

 

(see Fishman 1978, p. 475). 

If the hypergeometric probability function is too small or too close to 1.0, the 
imsls_f_random_hypergeometric generates integer deviates uniformly in 
the interval [1, L � i] for i = 0, 1, ..., and at the i-th step, if the generated deviate is 
less than or equal to the number of special items remaining in the lot, the 
occurence of one special item is tallied and the number of remaining special items 
is decreased by one. This process continues until the sample size of the number of 
special items in the lot is reached, whichever comes first. This method can be 
much slower than the inverse CDF technique. The timing depends on N. If N is 
more than half of L (which in practical examples is rarely the case), the user may 
wish to modify the problem, replacing N by L � N, and to consider the generated 
deviates to be the number of special items not included in the sample. 
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Example 
In this example, imsls_f_random_hypergeometric generates five 
pseudorandom hypergeometric deviates from a hypergeometric distribution to 
simulate taking random samples of size 4 from a lot containing 20 items, of which 
12 are defective. The resulting hypergeometric deviates represent the numbers of 
defectives in each of the five samples of size 4. 

#include <imsls.h> 
#include <stdio.h> 
  
void main() 
{ 
    int n_random = 5; 
    int n = 4; 
    int m = 12; 
    int l = 20; 
    int *ir; 
 
    imsls_random_seed_set(123457); 
    ir = imsls_f_random_hypergeometric(n_random, n, m, l, 0); 
    imsls_i_write_matrix("Hypergeometric random deviates: ",  
        1, n_random, ir, IMSLS_NO_COL_LABELS, 0); 
} 

Output 

Hypergeometric random deviates:  
        4   2   3   3   3 

Fatal Errors 
IMSLS_LOT_SIZE_TOO_SMALL The lot size must be greater than the sample 

size and the number of defectives in the lot. 
Lot size = #. Sample size = #. Number of 
defectives in the lot = #. 

random_logarithmic 
Generates pseudorandom numbers from a logarithmic distribution. 

Synopsis 

#include <imsls.h> 

int *imsls_f_random_logarithmic (int n_random, float a, ..., 0) 

The type double function is imsls_d_random_logarithmic. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 
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float a   (Input) 
Parameter of the logarithmic distribution. Parameter a must be positive 
and less than 1.0. 

Return Value 
An integer array of length n_random containing the random logarithmic deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_random_logarithmic (int n_random, float a, 

IMSLS_RETURN_USER, int ir[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, int ir[]   (Output) 

User-supplied integer array of length n_random containing the random 
logarithmic deviates. 

Description 
Function imsls_f_random_logarithmic generates pseudorandom numbers 
from a logarithmic distribution with parameter a. The probability function is  

� �
� �ln 1

xaf x
x a

� �

�

 

for x = 1, 2, 3, ..., and 0 < a < 1 

The methods used are described by Kemp (1981) and depend on the value of a. If 
a is less than 0.95, Kemp’s algorithm LS, which is a “chop-down” variant of an 
inverse CDF technique, is used. Otherwise, Kemp’s algorithm LK, which gives 
special treatment to the highly probable values of 1 and 2 is used. 

Example 
In this example, imsls_f_random_logarithmic generates five pseudorandom 
logarithmic deviates from a logarithmic distribution with parameter a equal to 0.3. 

#include <imsls.h> 
#include <stdio.h> 
 
void main() 
{ 
    int   n_random = 5; 
    float a = 0.3; 
    int   *ir; 
 
    imsls_random_seed_set(123457); 
    ir = imsls_f_random_logarithmic(n_random, a, 0); 
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    imsls_i_write_matrix("logarithmic random deviates:",  
        1, n_random, ir, IMSLS_NO_COL_LABELS, 0); 
} 

Output  

logarithmic random deviates: 
      2   1   1   1   2 

random_neg_binomial 
Generates pseudorandom numbers from a negative binomial distribution. 

Synopsis 

#include <imsls.h> 
int *imsls_f_random_neg_binomial (int n_random, float rk, float p, 

..., 0) 
The type double function is imsls_d_random_neg_binomial. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float rk   (Input) 
Negative binomial parameter. Parameter rk must be positive. If rk is an 
integer, the generated deviates can be thought of as the number of 
failures in a sequence of Bernoulli trials before rk successes occur. 

float p   (Input) 
Probability of failure on each trial. Parameter p must be greater than 
machine epsilon (see imsls_f_machine, Chapter 14, “Utilities”) and 
less than 1.0. 

Return Value 
An integer array of length n_random containing the random negative binomial 
deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_random_neg_binomial (int n_random, float rk, float p, 

IMSLS_RETURN_USER, int ir[], 
0) 
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Optional Arguments 
IMSLS_RETURN_USER, int ir[]   (Output) 

User-supplied integer array of length n_random containing the random 
negative binomial deviates. 

Description 
Function imsls_f_random_neg_binomial generates pseudorandom numbers 
from a negative binomial distribution with parameters rk and p. Parameters rk 
and p must be positive and p must be less than 1. The probability function (with 
r = rk and p = p) is 

� � � �� �1 1 rr x x
xf x p� �

� � p  

for x = 0, 1, 2, ... 

If r is an integer, the distribution is often called the Pascal distribution and can be 
thought of as modeling the length of a sequence of Bernoulli trials until r 
successes are obtained, where p is the probability of getting a failure on any trial. 
In this form, the random variable takes values r, r + 1, r + 2, � and can be 
obtained from the negative binomial random variable defined above by adding  
r to the negative binomial variable. This latter form is also equivalent to the sum 
of r geometric random variables defined as taking values 1, 2, 3, ... 

If rp/(1 � p) is less than 100 and (1 � p)r is greater than the machine epsilon, 
imsls_f_random_neg_binomial uses the inverse CDF technique; otherwise, 
for each negative binomial deviate, imsls_f_random_neg_binomial 
generates a gamma (r, p/(1 � p)) deviate Y and then generates a Poisson deviate 
with parameter Y. 

Example 
In this example, imsls_f_random_neg_binomial generates five 
pseudorandom negative binomial deviates from a negative binomial (Pascal) 
distribution with parameters r equal to 4 and p equal to 0.3. 

#include <imsls.h> 
#include <stdio.h> 
 
void main() 
{ 
    int   n_random = 5; 
    float rk = 4.0; 
    float p = 0.3; 
    int   *ir; 
 
    imsls_random_seed_set(123457); 
    ir = imsls_f_random_neg_binomial(n_random, rk, p, 0); 
    imsls_i_write_matrix( 
        "Negative Binomial (4.0, 0.3) random deviates: ",  
        1, n_random, ir, IMSLS_NO_COL_LABELS, 0); 
} 
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Output 

Negative Binomial (4.0, 0.3) random deviates:  
               5   1   3   2   3 

random_poisson 
Generates pseudorandom numbers from a Poisson distribution. 

Synopsis 
#include <imsls.h> 
int *imsls_random_poisson (int n_random, float theta, ..., 0) 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float theta   (Input) 
Mean of the Poisson distribution. Argument theta must be positive. 

Return Value 
An array of length n_random containing the random Poisson deviates.  

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_random_poisson (int n_random, float theta, 

IMSLS_RETURN_USER, int r[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, int r[]   (Output) 

User-supplied array of length n_random containing the random Poisson 
deviates. 

Description 
Function imsls_random_poisson generates pseudorandom numbers from a 
Poisson distribution with positive mean theta. The probability function (with 
� = theta) is 

� � � � / ! for 0, 1, 2, ...xf x e x x��
� � �  

If theta is less than 15, imsls_random_poisson uses an inverse CDF method; 
otherwise, the PTPE method of Schmeiser and Kachitvichyanukul (1981) (see 
also Schmeiser 1983) is used. The PTPE method uses a composition of four 
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regions, a triangle, a parallelogram, and two negative exponentials. In each region 
except the triangle, acceptance/rejection is used. The execution time of the 
method is essentially insensitive to the mean of the Poisson. 

Function imsls_random_seed_set can be used to initialize the seed of the 
random number generator; function imsls_random_option can be used to 
select the form of the generator. 

Example 
In this example, imsls_random_poisson is used to generate five 
pseudorandom deviates from a Poisson distribution with mean equal to 0.5. 

#include <imsls.h> 
 
#define N_RANDOM  5 
 
void main() 
{ 
    int         *r; 
    int         seed = 123457; 
    float       theta = 0.5; 
 
    imsls_random_seed_set (seed); 
    r = imsls_random_poisson (N_RANDOM, theta, 0); 
    imsls_i_write_matrix ("Poisson(0.5) random deviates", 1, N_RANDOM, r, 
0); 
} 

Output 

Poisson(0.5) random deviates 
      1   2   3   4   5 
      2   0   1   0   1 

 

random_uniform_discrete 
Generates pseudorandom numbers from a discrete uniform distribution. 

Synopsis 
#include <imsls.h> 
int *imsls_f_random_uniform_discrete (int n_random, int k, ..., 0) 
The type double function is imsls_d_random_uniform_discrete.  

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 
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int k   (Input) 
Parameter of the discrete uniform distribution. The integers 1, 2, ..., k 
occur with equal probability. Parameter k must be positive. 

Return Value 
An integer array of length n_random containing the random discrete uniform 
deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 

int *imsls_f_random_uniform_discrete (int n_random, int k,  
IMSLS_RETURN_USER, int ir[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, int ir[]   (Output) 

User-supplied integer array of length n_random containing the random 
discrete uniform deviates. 

Description 
Function imsls_f_random_uniform_discrete generates pseudorandom 
numbers from a uniform discrete distribution over the integers 1, 2, ...k. A 
random integer is generated by multiplying k by a uniform (0, 1) random number, 
adding 1.0, and truncating the result to an integer. This, of course, is equivalent to 
sampling with replacement from a finite population of size k 

Example 
In this example, imsls_f_random_uniform_discrete generates five 
pseudorandom discrete uniform deviates from a discrete uniform distribution over 
the integers 1 to 6. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int n_random = 5; 
    int k = 6; 
    int *ir; 
  
    imsls_random_seed_set(123457); 
    ir = imsls_f_random_uniform_discrete(n_random, k, 0); 
    imsls_i_write_matrix("Discrete uniform (1, 6) random deviates:" ,  
        1, n_random, ir, IMSLS_NO_COL_LABELS, 0); 
  
} 
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Output 

Discrete uniform (1, 6) random deviates: 
            6   2   5   4   6 
 

random_general_discrete 
Generates pseudorandom numbers from a general discrete distribution using an 
alias method or optionally a table lookup method. 

Synopsis 
#include <imsls.h> 
int *imsls_f_random_general_discrete (int n_random, int imin, int 

nmass, float probs[],..., 0) 

The type double function is imsls_d_random_general_discrete. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

int imin   (Input) 
Smallest value the random deviate can assume.    
This is the value corresponding to the probability in probs[0]. 

int nmass   (Input) 
Number of mass points in the discrete distribution. 

float probs[]   (Input) 
Array of length nmass containing probabilities associated with the 
individual mass points.  The elements of probs must be nonnegative 
and must sum to 1.0.  

 If the optional argument IMSLS_TABLE is used, then probs is a vector 
of length at least nmass + 1 containing in the first nmass positions the 
cumulative probabilities and, possibly, indexes to speed access to the 
probabilities.  
IMSL routine imsls_f_discrete_table_setup (page 781) can be 
used to initialize probs properly. If no elements of probs are used as 
indexes, probs [nmass] is 0.0 on input. The value in probs[0] is the 
probability of imin. The value in probs [nmass-1] must be exactly 1.0 
(since this is the CDF at the upper range of the distribution.)  

Return Value 
An integer array of length n_random containing the random discrete deviates.  
To release this space, use free. 
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Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_random_general_discrete (int n_random, int imin, int 

nmass, float probs[], 
IMSLS_GET_INDEX_VECTORS, int **iwk, float **wk, 
IMSLS_GET_INDEX_VECTORS_USER, int iwk[], float wk[], 
IMSLS_SET_INDEX_VECTORS, int iwk[], float wk[], 
IMSLS_RETURN_USER, int ir[], 
IMSLS_TABLE,  
 0) 

Optional Arguments 
IMSLS_GET_INDEX_VECTORS, int **iwk, float **wk   (Output) 

Retrieve indexing vectors that can be used to increase efficiency when 
multiple calls will be made to imsls_f_random_general_discrete 
with the same values in probs. 

IMSLS_GET_INDEX_VECTORS_USER, int iwk[], float wk[]   (Output) 
User-supplied arrays of length nmass used for retrieve indexing vectors 
that can be used to increase efficiency when multiple calls will be made 
to imsls_f_random_general_discrete with the same values in 
probs.   

IMSLS_SET_INDEX_VECTORS,  int *iwk, float *wk   (Input) 
Arrays of length nmass  that can be used to increase efficiency when 
multiple calls will be made to imsls_f_random_general_discrete 
the same values in probs.  These arrays are obtained by using one of the 
options IMSLS_GET_INDEX_VECTORS or 
IMSLS_GET_INDEX_VECTORS_USER  in the first call to 
imsls_f_random_general_discrete. 

IMSLS_TABLE (Input) 
Generate pseudorandom numbers from a general discrete distribution 
using a table lookup method.  If this option is used, then probs is a 
vector of length at least nmass + 1 containing in the first nmass 
positions the cumulative probabilities and, possibly, indexes to speed 
access to the probabilities.  

IMSLS_RETURN_USER, int ir[]  (Output) 
User-supplied array of length n_random containing the random discrete 
deviates. 

Description 
Routine imsls_f_random_general_discrete generates pseudorandom 
numbers from a discrete distribution with probability function given in the vector 
probs; that is 
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Pr(X = i) = pj 

for i = i�, i� + 1, …, i� + nm � 1 where j = i � i� + 1, pj = probs[j-1],  
i� = imin, and nm = nmass. 

The algorithm is the alias method, due to Walker (1974), with modifications 
suggested by Kronmal and Peterson (1979). The method involves a setup phase, 
in which the vectors iwk and wk are filled. After the vectors are filled, the 
generation phase is very fast.  To increase efficiency, the first call to 
imsls_f_random_general_discrete can retrieve the arrays iwk and wk 
using the optional arguments IMSLS_GET_INDEX_VECTORS or 
IMSLS_GET_INDEX_VECTORS_USER , then subsequent calls can be made using 
the optional argument IMSLS_SET_INDEX_VECTORS. 

If the optional argument IMSLS_TABLE is used, 
imsls_f_random_general_discrete generates pseudorandom deviates 
from a discrete distribution, using the table probs, which contains the cumulative 
probabilities of the distribution and, possibly, indexes to speed the search of the 
table. The routine imsls_f_discrete_table_setup (page 781) can be used 
to set up the table probs. imsls_f_random_general_discrete uses the 
inverse CDF method to generate the variates. 

Example 1 
In this example, imsls_f_random_general_discrete is used to generate 
five pseudorandom variates from the discrete distribution: 

Pr(X = 1) = .05 

Pr(X = 2) = .45 

Pr(X = 3) = .31 

Pr(X = 4) = .04 

Pr(X = 5) = .15 

When imsls_f_random_general_discrete is called the first time, 
IMSLS_GET_INDEX_VECTORS is used to initialize the index vectors iwk and wk. 
In the next call, IMSLS_GET_INDEX_VECTORS is used, so the setup phase is 
bypassed. 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int nr = 5, nmass = 5, iopt = 0, imin = 1, *iwk, *ir; 
 
  float probs[] = {.05, .45, .31, .04, .15}; 
  float *wk; 
 
  imsls_random_seed_set(123457); 
 
   
  ir = imsls_f_random_general_discrete(nr, imin, nmass, probs,  
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           IMSLS_GET_INDEX_VECTORS, &iwk, &wk,  
           0); 
   
  imsls_i_write_matrix("Random deviates", 1, 5, ir, 
         IMSLS_NO_COL_LABELS, 
         0); 
  free(ir); 
 
  ir = imsls_f_random_general_discrete(nr, imin, nmass, probs,  
           IMSLS_SET_INDEX_VECTORS, iwk, wk,  
           0); 
 
  imsls_i_write_matrix("Random deviates", 1, 5, ir,  
         IMSLS_NO_COL_LABELS,  
         0); 
 
} 

Output 
  Random deviates 
 3   2   2   3   5 
  
  Random deviates 
 1   3   4   5   3 
 

Example 2 
In this example, imsls_f_discrete_table_setup (page 781) is used to set 
up a table and then imsls_f_random_general_discrete is used to generate 
five pseudorandom variates from the binomial distribution with parameters 20 
and 0.5. 

#include <stdio.h> 
#include <imsls.h> 
 
float prf(int ix); 
void main() 
{ 
  int nndx = 12, imin = 0, nmass = 21, nr = 5; 
  float del = 0.00001, *cumpr;  
  int *ir = NULL; 
 
 
  cumpr = imsls_f_discrete_table_setup (prf,  del, nndx,  &imin, &nmass, 0); 
 
  imsls_random_seed_set(123457); 
 
  ir = imsls_f_random_general_discrete(nr, imin, nmass, cumpr,  
           IMSLS_TABLE, 0); 
 
  imsls_i_write_matrix("Binomial (20, 0.5) random deviates", 1, 5, ir,   
         IMSLS_NO_COL_LABELS,  
         0); 
 
} 
 
float prf(int ix) 
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{ 
  int n = 20; 
  float  p = .5; 
  return imsls_f_binomial_probability (ix, n, p); 
} 

Output 
 
Binomial (20, 0.5) random deviates 
       14    9   12   10   12 

discrete_table_setup 
 Sets up table to generate pseudorandom numbers from a general discrete 
distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_discrete_table_setup (float prf(),  float del,  

int nndx, int *imin, int *nmass, ..., 0) 

The type double function is imsls_d_discrete_table_setup. 

Required Arguments 

float prf(int ix) (Input) 
User-supplied function to compute the probability associated with each 
mass point of the distribution  The argument to the function is the point 
at which the probability function is to be evaluated. ix can range from 
imin to the value at which the cumulative probability is greater than or 
equal to 1.0 � del. 

float del   (Input) 
Maximum absolute error allowed in computing the cumulative 
probability.  
Probabilities smaller than del are ignored; hence, del should be a small 
positive number. If del is too small, however, the return value, cumpr 
[nmass-1] must be exactly 1.0 since that value is compared to  
1.0 � del. 

int nndx   (Input) 
The number of elements of cumpr available to be used as indexes.    
nndx must be greater than or equal to 1. In general, the larger nndx is, 
to within sixty or seventy percent of nmass, the more efficient the 
generation of random numbers using 
imsls_f_random_general_discrete will be. 

int *imin   (Input/Output) 
Pointer to a scalar containing the smallest value the random deviate can 
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assume.   (Input/Output) 
imin is not used if optional argument  IMSLS_INDEX_ONLY is used. By 
default, prf is evaluated at imin. If this value is less than del, imin is 
incremented by 1 and again prf is evaluated at imin. This process is 
continued until prf(imin) � del. imin is output as this value and the 
return value cumpr [0] is output as prf(imin). 

int *nmass   (Input/Output) 
Pointer to a scalar containing  the number of mass points in the 
distribution.   Input, if IMSLS_INDEX_ONLY is used; otherwise, output. 
By default, nmass is the smallest integer such that  
prf(imin + nmass � 1) > 1.0 � del. nmass does include the points 
iminin + j for which prf(iminin + j) < del, for j = 0, 1, �,  
iminout � iminin, where iminin denotes the input value of imin and 
iminout denotes its output value. 

Return Value 
Array, cumpr, of length nmass + nndx containing in the first nmass positions, 
the cumulative probabilities and in some of the remaining positions, indexes to 
speed access to the probabilities. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_f_discrete_table_setup (float prf(), float del, int nndx, 

int *imin, int *nmass, 
IMSLS_INDEX_ONLY,  
IMSLS_RETURN_USER, float cumpr[], int lcumpr, 
IMSLS_FCN_W_DATA, float prf(), void *data, 
 0) 

Optional Arguments 
IMSLS_INDEX_ONLY (Intput) 

Fill only the index portion of the result, cumpr, using the values in the 
first nmass positions. prf is not used and may be a dummy function; 
also, imin is not used.  The optional argument IMSLS_RETURN_USER is 
required if IMSLS_INDEX_ONLY is used. 

IMSLS_RETURN_USER, float cumpr[], int lcumpr  (Input/Output) 
cumpr is a user-allocated array of length nmass + nndx containing in 
the first nmass positions, the cumulative probabilities and in some of the 
remaining positions, indexes to speed access to the probabilities. 
lcumpr  is the actual length of cumpr as specified in the calling 
function. Since, by default,  the logical length of cumpr is determined in 
imsls_f_discrete_table_setup, lcumpr is used for error 
checking.  If the option  IMSLS_INDEX_ONLY is used,  then only the 
index portion of cumpr are filled. 
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IMSLS_FCN_W_DATA, float prf(int ix), void *data, (Input) 
User-supplied function to compute the probability associated with each 
mass point of the distribution, which also accepts a pointer to data that is 
supplied by the user.  data is a pointer to the data to be passed to the 
user-supplied function.  See the Introduction, Passing Data to User-
Supplied Functions at the beginning of this manual for more details. 

Description 
Routine imsls_f_discrete_table_setup sets up a table that routine 
imsls_f_random_general_discrete (page 777) uses to generate 
pseudorandom deviates from a discrete distribution. The distribution can be 
specified either by its probability function prf or by a vector of values of the 
cumulative probability function. Note that prf is not the cumulative probability 
distribution function. If the cumulative probabilities are already available in 
cumpr, the only reason to call imsls_f_discrete_table_setup is to form an 
index vector in the upper portion of cumpr so as to speed up the generation of 
random deviates by the routine imsls_f_random_general_discrete. 

Example 1 
In this example, imsls_f_discrete_table_setup is used to set up a table to 
generate pseudorandom variates from the discrete distribution: 

Pr(X = 1) = .05 

Pr(X = 2) = .45 

Pr(X = 3) = .31 

Pr(X = 4) = .04 

Pr(X = 5) = .15 

In this simple example, we input the cumulative probabilities directly in cumpr 
and request 3 indexes to be computed (nndx = 4). Since the number of mass 
points is so small, the indexes would not have much effect on the speed of the 
generation of the random variates. 

 
#include <stdio.h> 
#include <imsls.h> 
 
float prf(int ix); 
void main() 
{ 
  int i, lcumpr = 9, ir[5]; 
  int nndx = 4, imin = 1, nmass = 5, nr = 5; 
 
  float cumpr[9], del = 0.00001, *p_cumpr = NULL; 
  i = 0; 
  cumpr[i++] = .05; 
  cumpr[i++] = .5; 
  cumpr[i++] = .81; 
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  cumpr[i++] = .85; 
  cumpr[i++] = 1.0; 
   
 imsls_f_discrete_table_setup (prf,  del, 
          nndx,  &imin, &nmass,  
          IMSLS_INDEX_ONLY,  
          IMSLS_RETURN_USER, cumpr, lcumpr,  
          0); 
 imsls_f_write_matrix("Cumulative probabilities and indexes", 
        1, lcumpr, cumpr, 0); 
 
} 
 
float prf(int ix) 
{ 
  return 0.; 
 
} 

Output 
 

                 Cumulative probabilities and indexes 
         1           2           3           4           5           6 
      0.05        0.50        0.81        0.85        1.00        3.00 
  
         7           8           9 
      1.00        2.00        5.00 

Example 2 
This example, imsls_f_random_general_discrete is used to set up a table 
to generate binomial variates with parameters 20 and 0.5. The routine 
imsls_f_binomial_probabililty  (Chapter 11, Probability Distribution 
Functions and Inverses) is used to compute the probabilities. 

 
#include <stdio.h> 
#include <imsls.h> 

 
float prf(int ix); 
void main() 
{ 
  int lcumpr = 33; 
  int nndx = 12, imin = 0, nmass = 21, nr = 5; 
  float del = 0.00001, *cumpr;  
  int *ir = NULL; 
 
 
  cumpr = imsls_f_discrete_table_setup (prf,  del, nndx,  &imin, &nmass, 0); 
 
  printf("The smallest point with positive probability using \n"); 
  printf("the given del is %d and all points after \n", imin); 
  printf("point number %d (counting from the input value\n", nmass); 
  printf("of IMIN) have zero probability.\n"); 
  imsls_f_write_matrix("Cumulative probabilities and indexes",  
         nmass+nndx, 1, cumpr,   
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         IMSLS_WRITE_FORMAT, "%11.7f", 0); 
 
} 
 
float prf(int ix) 
{ 
  int n = 20; 
  float  p = .5; 
  return imsls_f_binomial_probability(ix, n, p); 
} 
 
 

Output 
 

The smallest point with positive probability using  
the given del is 1 and all points after  
point number 19 (counting from the input value 
of IMIN) have zero probability. 
  
Cumulative probabilities and indexes 
            1    0.0000191 
            2    0.0002003 
            3    0.0012875 
            4    0.0059080 
            5    0.0206938 
            6    0.0576583 
            7    0.1315873 
            8    0.2517219 
            9    0.4119013 
           10    0.5880987 
           11    0.7482781 
           12    0.8684127 
           13    0.9423417 
           14    0.9793062 
           15    0.9940920 
           16    0.9987125 
           17    0.9997997 
           18    0.9999809 
           19    1.0000000 
           20   11.0000000 
           21    1.0000000 
           22    7.0000000 
           23    8.0000000 
           24    9.0000000 
           25    9.0000000 
           26   10.0000000 
           27   11.0000000 
           28   11.0000000 
           29   12.0000000 
           30   13.0000000 
           31   19.0000000 
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random_beta 
Generates pseudorandom numbers from a beta distribution. 

Synopsis 
#include <imsls.h>  
float *imsls_f_random_beta (int n_random, float pin, float qin, ..., 0) 

The type double function is imsls_d_random_beta. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float pin   (Input) 
First beta distribution parameter. Argument pin must be positive. 

float qin   (Input) 
Second beta distribution parameter. Argument qin must be positive. 

Return Value 
If no optional arguments are used, imsls_f_random_beta returns an array of 
length n_random containing the random standard beta deviates. To release this 
space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_random_beta (int n_random, float pin, float qin, 

IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float r[]   (Output) 

Array of length n_random containing the random standard beta 
deviates. 

Description 
Function imsls_f_random_beta generates pseudorandom numbers from a beta 
distribution with parameters pin and qin, both of which must be positive. With 
p = pin and q = qin, the probability density function is  

� �
� �

� � � �
� �

11 1 for 0qpp q
f x x x x

p q
�

�

� �
� �
� �

1� �  

where � (�) is the gamma function. 
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The algorithm used depends on the values of p and q. Except for the trivial cases 
of p = 1 or q = 1, in which the inverse CDF method is used, all of the methods use 
acceptance/rejection. If p and q are both less than 1, the method of Jöhnk (1964) 
is used. If either p or q is less than 1 and the other is greater than 1, the method of 
Atkinson (1979) is used. If both p and q are greater than 1, algorithm BB (Cheng 
1978), which requires very little setup time, is used if n_random is less than 4; 
and algorithm B4PE of Schmeiser  and Babu (1980) is used if n_random is 
greater than or equal to 4. Note that for p and q both greater than 1, calling 
imsls_f_random_beta in a loop getting less than four variates on each call will 
not yield the same set of deviates as calling imsls_f_random_beta once and 
getting all the deviates at once because two different algorithms are used. 

The values returned in r are less than 1.0 and greater than 	, where 	 is the 
smallest positive number such that 1.0 � 	 is less than 1.0. 

Function imsls_random_seed_set can be used to initialize the seed of the 
random number generator; function imsls_random_option can be used to 
select the form of the generator. 

Example 
In this example, imsls_f_random_beta generates five pseudorandom beta  
(3, 2) variates. 

#include <imsls.h> 
 
main() 
{ 
 
    int         n_random = 5; 
    int         seed = 123457; 
    float       pin = 3.0; 
    float       qin = 2.0; 
    float       *r; 
 
    imsls_random_seed_set (seed);       
    r = imsls_f_random_beta (n_random, pin, qin, 0); 
    imsls_f_write_matrix("Beta (3,2) random deviates", 1, n_random,  
                          r, 0); 
} 

Output 

                Beta (3,2) random deviates 
         1           2           3           4           5 
    0.2814      0.9483      0.3984      0.3103      0.8296 
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random_cauchy 
Generates pseudorandom numbers from a Cauchy distribution. 

Synopsis 

#include <imsls.h> 

float *imsls_f_random_cauchy (int n_random, ..., 0) 

The type double function is imsls_d_random_cauchy. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

Return Value 
An array of length n_random containing the random Cauchy deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_cauchy (int n_random, 

IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float r[]   (Output) 

User-supplied array of length n_random containing the random Cauchy 
deviates. 

Description 
Function imsls_f_random_cauchy generates pseudorandom numbers from a 
Cauchy distribution. The probability density function is  

� �
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where T is the median and T � S is the first quartile. This function first generates 
standard Cauchy random numbers (T = 0 and S = 1) using the technique described 
below, and then scales the values using T and S.  

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform 
(0, 1) deviate, u, as tan [
 (u � 0.5)]. Rather than evaluating a tangent directly, 
however, random_cauchy generates two uniform (�1, 1) deviates, x1 and x2. 
These values can be thought of as sine and cosine values. If  
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is less than or equal to 1, then x1/x2 is delivered as the unscaled Cauchy deviate; 
otherwise, x1 and x2 are rejected and two new uniform (�1, 1) deviates are 
generated. This method is also equivalent to taking the ration of two independent 
normal deviates. 

Example 
In this example, imsls_f_random_cauchy generates five pseudorandom 
Cauchy numbers. The generator used is a simple multiplicative congruential with 
a multiplier of 16807. 

#include <imsls.h> 
#include <stdio.h> 
 
void main() 
{ 
    int n_random = 5; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_cauchy(n_random, 0); 
    printf("Cauchy random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n",  
        r[0], r[1], r[2], r[3], r[4]); 
 
} 

Output 
Cauchy random deviates:   3.5765  0.9353 15.5797  2.0815 -0.1333 

random_chi_squared 
Generates pseudorandom numbers from a chi-squared distribution. 

Synopsis 

#include <imsls.h> 
float *imsls_f_random_chi_squared (int n_random, float df, ..., 0) 
The type double function is imsls_d_random_chi_squared. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float df   (Input) 
Degrees of freedom. Parameter df must be positive. 
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Return Value 
An array of length n_random containing the random chi-squared deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_chi_squared (int n_random, float df,  

IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float r[]   (Output) 

User-supplied array of length n_random containing the random chi-
squared deviates. 

Description 
Function imsls_f_random_chi_squared generates pseudorandom numbers 
from a chi-squared distribution with df degrees of freedom. If df is an even 
integer less than 17, the chi-squared deviate r is generated as  
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where n = df/2 and the ui are independent random deviates from a uniform (0, 1) 
distribution. If df is an odd integer less than 17, the chi-squared deviate is 
generated in the same way, except the square of a normal deviate is added to the 
expression above. If df is is greater than 16 or is not an integer, and if it is not too 
large to cause overflow in the gamma random number generator, the chi-squared 
deviate is generated as a special case of a gamma deviate, using function 
imsls_f_random_gamma (page 794). If overflow would occur in 
imsls_f_random_gamma, the chi-squared deviate is generated in the manner 
described above, using the logarithm of the product of uniforms, but scaling the 
quantities to prevent underflow and overflow. 

Example 
In this example, imsls_f_random_chi_squared generates five pseudorandom 
chi-squared deviates with five degrees of freedom. 

#include <imsls.h> 
#include <stdio.h> 
  
void main() 
{ 
    int   n_random = 5; 
    float df = 5.0; 
    float *r; 
 
    imsls_random_seed_set(123457); 
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    r = imsls_f_random_chi_squared(n_random, df, 0); 
    imsls_f_write_matrix("Chi-Squared random deviates: ",  
        1, n_random, r, IMSLS_NO_COL_LABELS, 0); 
  
} 

Output  

               Chi-Squared random deviates:  
     12.09        0.48        1.80       14.87        1.75 

random_exponential 
Generates pseudorandom numbers from a standard exponential distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_exponential (int n_random, ..., 0) 

The type double function is imsls_d_random_exponential. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

Return Value 
An array of length n_random containing the random standard exponential 
deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_exponential (int n_random, 

IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float r[]   (Output) 

User-supplied array of length n_random containing the random standard 
exponential deviates. 

Description 
Function imsls_f_random_exponential generates pseudorandom numbers 
from a standard exponential distribution. The probability density function is 
f (x) = e-x, for x > 0. Function imsls_f_random_exponential uses an 
antithetic inverse CDF technique; that is, a uniform random deviate U is 
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generated, and the inverse of the exponential cumulative distribution function is 
evaluated at 1.0 � U to yield the exponential deviate. 

Deviates from the exponential distribution with mean � can be generated by using 
imsls_f_random_exponential and then multiplying each entry in r by �. 

Example 
In this example, imsls_f_random_exponential generates five pseudorandom 
deviates from a standard exponential distribution. 

#include <imsls.h> 
 
#define N_RANDOM    5 
 
main() 
 
{ 
        int             seed = 123457; 
        int             n_random = N_RANDOM; 
        float           *r; 
 
        imsls_random_seed_set(seed); 
        r = imsls_f_random_exponential(n_random, 0); 
        printf("%s: %8.4f%8.4f%8.4f%8.4f\n", 
               "Exponential random deviates", 
               r[0], r[1], r[2], r[3], r[4]); 
} 

Output 

Exponential random deviates:   0.0344  1.3443  0.2662  0.5633 

random_exponential_mix 
Generates pseudorandom numbers from a mixture of two exponential 
distributions. 

Synopsis 

#include <imsls.h> 
float *imsls_f_random_exponential_mix (int n_random, float theta1, 

float theta2, float p, ..., 0) 
The type double function is imsls_d_random_exponential_mix.  

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float theta1   (Input) 
Mean of the exponential distribution which has the larger mean. 
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float theta2   (Input) 
Mean of the exponential distribution which has the smaller mean. 
Parameter theta2 must be positive and less than or equal to theta1. 

float p   (Input) 
Mixing parameter. Parameter p must be non-negative and less than or 
equal to theta1/(theta1 � theta2). 

Return Value 
An array of length n_random containing the random deviates of a mixture of two 
exponential distributions. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_exponential_mix (int n_random, float theta1, 

float theta2, float p,  
IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float r[]   (Output) 

User-supplied array of length n_random containing the random 
deviates. 

Description 
Function imsls_f_random_exponential_mix generates pseudorandom 
numbers from a mixture of two exponential distributions. The probability density 
function is  

� � 1 2/ /

1 2

1x xp pf x e e� �

� �

� �
�

� �  

for x > 0, where p = p, �1 = theta1, and �2 = theta2. 

In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parameter  
p is interpretable as a probability; and imsls_f_random_exponential_mixed 
with probability p generates an exponential deviate with mean �1, and with 
probability 1 � p generates an exponential with mean �2. When p is greater than 
1, but less than �1/(�1 � �2), then either an exponential deviate with mean �1 or 
the sum of two exponentials with means �1 and �2 is generated. The probabilities 
are q = p � (p � 1) (�1/�2) and 1 � q, respectively, for the single exponential and 
the sum of the two exponentials. 
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Example 
In this example, imsls_f_random_exponential_mix is used to generate five 
pseudorandom deviates from a mixture of exponentials with means 2 and 1, 
respecctively, and with mixing parameter 0.5. 

#include <imsls.h> 
#include <stdio.h> 
  
void main() 
{ 
    int   n_random = 5; 
    float theta1 = 2.0; 
    float theta2 = 1.0; 
    float p = 0.5; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_exponential_mix(n_random, theta1, theta2, p, 0); 
    imsls_f_write_matrix("Mixed exponential random deviates: ",  
        1, n_random, r, IMSLS_NO_COL_LABELS, 0); 
  
} 

Output  

            Mixed exponential random deviates:  
     0.070       1.302       0.630       1.976       0.372 

random_gamma 
Generates pseudorandom numbers from a standard gamma distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_gamma (int n_random, float a, ..., 0) 

The type double function is imsls_d_random_gamma. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float a   (Input) 
Shape parameter of the gamma distribution. This parameter must be 
positive. 

Return Value 
An array of length n_random containing the random standard gamma deviates.  
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Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_gamma (int n_random, float a, 

IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 
IMSLS_USER_RETURN, float r[]   (Output) 

User-supplied array of length n_random containing the random standard 
gamma deviates. 

Description 
Function imsls_f_random_gamma generates pseudorandom numbers from a 
gamma distribution with shape parameter a and unit scale parameter. The 
probability density function is 

� �
� �

11 for 0a xf x x e x
a

� �

� �
�

 

Various computational algorithms are used depending on the value of the shape 
parameter a. For the special case of a = 0.5, squared and halved normal deviates 
are used; for the special case of a = 1.0, exponential deviates are generated. 
Otherwise, if a is less than 1.0, an acceptance-rejection method due to Ahrens, 
described in Ahrens and Dieter (1974), is used. If a is greater than 1.0, a ten-
region rejection procedure developed by Schmeiser and Lal (1980) is used. 

Deviates from the two-parameter gamma distribution with shape parameter a and 
scale parameter b can be generated by using imsls_f_random_gamma and then 
multiplying each entry in r by b. The following statements (in single precision) 
would yield random deviates from a gamma (a, b) distribution. 
float *r; 
r = imsls_f_random_gamma(n_random, a, 0); 
for (i=0; i<n_random; i++) *(r+i) *= b; 

The Erlang distribution is a standard gamma distribution with the shape parameter 
having a value equal to a positive integer; hence, imsls_f_random_gamma 
generates pseudorandom deviates from an Erlang distribution with no 
modifications required. 

Function imsls_random_seed_set can be used to initialize the seed of the 
random number generator; function imsls_random_option can be used to 
select the form of the generator. 

Example 
In this example, imsls_f_random_gamma generates five pseudorandom 
deviates from a gamma (Erlang) distribution with shape parameter equal to 3.0. 
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#include <imsls.h> 
 
void main() 
{ 
    int         seed = 123457; 
    int         n_random = 5; 
    float       a = 3.0; 
    float       *r; 
 
    imsls_random_seed_set(seed); 
    r = imsls_f_random_gamma(n_random, a, 0); 
    imsls_f_write_matrix("Gamma(3) random deviates", 1, n_random, r, 0); 
} 

Output 

                 Gamma(3) random deviates 
         1           2           3           4           5 
     6.843       3.445       1.853       3.999       0.779 

random_lognormal 
Generates pseudorandom numbers from a lognormal distribution. 

Synopsis 

#include <imsls.h> 
float *imsls_f_random_lognormal (int n_random, float mean, 

float std, ..., 0) 
The type double function is imsls_d_random_lognormal.  

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float mean   (Input) 
Mean of the underlying normal distribution. 

float std   (Input) 
Standard deviation of the underlying normal distribution. 

Return Value 
An array of length n_random containing the random deviates of a lognormal 
distribution. The log of each element of the vector has a normal distribution with 
mean mean and standard deviation std. 

Synopsis with Optional Arguments 
#include <imsls.h> 
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float *imsls_f_random_lognormal (int n_random, float mean, 
float std,  
IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float r[]   (Output) 

User-supplied array of length n_random containing the random 
lognormal deviates. 

Description 
Function imsls_f_random_lognormal generates pseudorandom numbers from 
a lognormal distribution with parameters mean and std. The scale parameter in 
the underlying normal distribution, std, must be positive. The method is to 
generate normal deviates with mean mean and standard deviation std and then to 
exponentiate the normal deviates. 

With � = mean and � = std, the probability density function for the lognormal 
distribution is 

� � � �
2

2

1 1exp ln
22

f x x
x

�
�� �

� �
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� �
 

for x > 0. The mean and variance of the lognormal distribution are exp (� + �2/2) 
and exp (
� + 2�2) � exp (
� + �2), respectively. 

Example 
In this example, imsls_f_random_lognormal is used to generate five 
pseudorandom lognormal deviates with a mean of 0 and standard deviation of 1. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int   n_random = 5; 
    float mean = 0.0; 
    float std = 1.0; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_lognormal(n_random, mean, std, 0); 
    imsls_f_write_matrix("lognormal random deviates:", 
        1, n_random, r, IMSLS_NO_COL_LABELS, 0); 
} 

Output  

                lognormal random deviates: 
     7.780       2.954       1.086       3.588       0.293 
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random_normal 
Generates pseudorandom numbers from a normal, N (�, �2), distribution. 

Synopsis 

#include <imsls.h>  
float *imsls_f_random_normal (int n_random, ..., 0) 

The type double function is imsls_d_random_normal. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

Return Value 
An array of length n_random containing the random normal deviates.  

Synopsis with Optional Arguments 
#include <imsls.h>  

float *imsls_f_random_normal (int n_random, 
IMSLS_MEAN, float mean, 
IMSLS_VARIANCE, float variance, 
IMSLS_ACCEPT_REJECT_METHOD, 
IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 
IMSLS_MEAN, float mean   (Input) 

Parameter mean contains the mean, �, of the N(�, �2) from which 
random normal deviates are to be generated. 
Default: mean = 0.0 

IMSLS_VARIANCE, float variance   (Input) 
Parameter variance contains the variance of the N (�, �2) from which 
random normal deviates are to be generated. 
Default: variance = 1.0 

IMSLS_ACCEPT_REJECT_METHOD 
By default, random numbers are generated using an inverse CDF 
technique. When optional argument IMSLS_ACCEPT_REJECT_METHOD 
is specified, an acceptance/ rejection method is used instead. See the 
“Description” section for details about each method. 
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IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the generated 
random standard normal deviates. 

Description 
By default, function imsls_f_random_normal generates pseudorandom 
numbers from a normal (Gaussian) distribution using an inverse CDF technique. 
In this method, a uniform (0, 1) random deviate is generated. The inverse of the 
normal distribution function is then evaluated at that point, using the function 
imsls_f_normal_inverse_cdf (Chapter 11, Probablility Distribution 
Functions and Inverses). 

If optional argument IMSLS_ACCEPT_REJECT_METHOD is specified, function 
imsls_f_random_normal generates pseudorandom numbers using an 
acceptance/rejection technique due to Kinderman and Ramage (1976). In this 
method, the normal density is represented as a mixture of densities over which a 
variety of acceptance/rejection method due to Marsaglia (1964), Marsaglia and 
Bray (1964), and Marsaglia et al. (1964) are applied. This method is faster than 
the inverse CDF technique. 

Remarks 
Function imsls_random_seed_set can be used to initialize the seed of the 
random number generator; function imsls_random_option can be used to 
select the form of the generator. 

Example 
In this example, imsls_f_random_normal generates five pseudorandom 
deviates from a standard normal distribution. 

#include <imsls.h> 
#define N_RANDOM  5 
 
void main() 
{ 
    int         seed = 123457; 
    int         n_random = N_RANDOM; 
    float       *r; 
 
    imsls_random_seed_set (seed); 
    r = imsls_f_random_normal(n_random, 0); 
    printf("%s:\n%8.4f%8.4f%8.4f%8.4f%8.4f\n", 
           "Standard normal random deviates", 
           r[0], r[1], r[2], r[3], r[4]); 
} 

Output 

Standard normal random deviates: 
1.8279 -0.6412  0.7266  0.1747  1.0145 
1.8280  
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random_stable 
Generates pseudorandom numbers from a stable distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_stable (int n_random, float alpha,  

float bprime, ..., 0) 

The type double function is imsls_d_random_stable. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float alpha   (Input) 
Characteristic exponent of the stable distribution.  This parameter must 
be positive and less than or equal to 2. 

float bprime   (Input) 
Skewness parameter of the stable distribution. When bprime = 0, the 
distribution is symmetric. Unless alpha = 1, bprime is not the usual 
skewness parameter of the stable distribution. bprime must be greater 
than or equal to � 1 and less than or equal to 1. 

Return Value 
An integer array of length n_random containing the random deviates. To release 
this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_binomial (int n_random, float alpha,  

float bprime,  
IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float r[]   (Output) 

User-supplied array of length n_random containing the random 
deviates. 
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Description 
Function imsls_f_random_stable generates pseudorandom numbers from a 
stable distribution with parameters alpha and bprime. alpha is the usual 
characteristic exponent parameter � and bprime is related to the usual skewness 
parameter � of the stable distribution. With the restrictions 0 < � � 2  
and � 1 � � � 1, the characteristic function of the distribution is 

�(t) = exp[�| t |� exp(�
i�(1 � |1 � �|)sign(t)/2)]    for � � 1 

and 

�(t) = exp[�| t |(1 + 2i� ln| t |)sign(t)/
)]    for � = 1 

When � = 0, the distribution is symmetric. In this case, if � = 2, the distribution is 
normal with mean 0 and variance 2; and if � = 1, the distribution is Cauchy. 

The parameterization using bprime and the algorithm used here are due to 
Chambers, Mallows, and Stuck (1976). The relationship between bprime = �� 
and the standard � is 

�� = �tan(
(1 � �)/2) tan(�
�(1 � |1 � �|)/2) for � � 1 

and 

�� = � for � = 1 

The algorithm involves formation of the ratio of a uniform and an exponential 
random variate. 

Example 
In this example, imsls_f_random_stable is used to generate five 
pseudorandom symmetric stable variates with characteristic exponent 1.5. The 
tails of this distribution are heavier than those of a normal distribution, but not so 
heavy as those of a Cauchy distribution. The variance of this distribution does not 
exist, however. (This is the case for any stable distribution with characteristic 
exponent less than 2.) 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int  nr = 5; 
  float alpha = 1.5, bprime = 0.0, *r; 
 
  imsls_random_seed_set(123457); 
   
  r = imsls_f_random_stable(nr, alpha, bprime, 0); 
  imsls_f_write_matrix("Stable random deviates", 5, 1, r,  
            IMSLS_NO_ROW_LABELS, 0); 
 
} 
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 Output 
Stable random deviates 
           4.409 
           1.056 
           2.546 
           5.672 
           2.166 

random_student_t 
Generates pseudorandom numbers from a Student’s t distribution. 

Synopsis 

#include <imsls.h> 

float *imsls_f_random_student_t (int n_random, float df, ..., 0) 

The type double function is imsls_d_random_student_t. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float df   (Input) 
Degrees of freedom. Parameter df must be positive. 

Return Value 
An array of length n_random containing the random deviates of a Student’s t 
distribution. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_student_t (int n_random, float df, 

IMSLS_RETURN_USER, float r[], 
IMSLS_MEAN, float mean,  
IMSLS_VARIANCE, float variance, 
0) 

Optional Arguments 
IMSLS_MEAN, float mean   (Input) 

Mean of the Student’s t distribution. 
Default: mean = 0.0 

IMSLS_VARIANCE, float variance   (Input) 
Variance of the Student’s t distribution. 
Default: variance = 1.0 
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IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the random 
Student’s t deviates. 

Description 
Function imsls_f_random_student_t generates pseudorandom numbers from 
a Student’s t distribution with df degrees of freedom, using a method suggested 
by Kinderman et al. (1977). The method (“TMX” in the reference) involves a 
representation of the t density as the sum of a triangular density over (�2, 2) and 
the difference of this and the t density. The mixing probabilities depend on the 
degrees of freedom of the t distribution. If the triangular density is chosen, the 
variate is generated as the sum of two uniforms; otherwise, an 
acceptance/rejection method is used to generate the difference density. 

random_triangular 
Generates pseudorandom numbers from a triangular distribution on the interval 
(0, 1). 

Synopsis 

#include <imsls.h> 

float *imsls_f_random_triangular (int n_random, ..., 0) 

The type double function is imsls_d_random_triangular. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

Return Value 
An array of length n_random containing the random deviates of a triangular 
distribution. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_triangular (int n_random, 

IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float r[]   (Output) 

User-supplied array of length n_random containing the random 
triangular deviates. 
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Description 
Function imsls_f_random_triangular generates pseudorandom numbers 
from a triangular distribution over the unit interval. The probability density 
function is f (x) = 4x, for 0 � x � 0.5, and f (x) = 4 (1 � x), for 0.5 � x � 1. An 
inverse CDF technique is used. 

Example 
In this example, imsls_f_random_triangular is used to generate five 
pseudorandom deviates from a triangular distribution. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int   n_random = 5; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_triangular(n_random, 0); 
    imsls_f_write_matrix("Triangular random deviates:", 
        1, n_random, r, IMSLS_NO_COL_LABELS, 0); 
} 

Output  

                Triangular random deviates: 
    0.8700      0.3610      0.6581      0.5360      0.7215 

random_uniform 
Generates pseudorandom numbers from a uniform (0, 1) distribution. 

Synopsis 
#include <imsls.h>  

float *imsls_f_random_uniform (int n_random, �, 0) 

The type double function is imsls_d_random_uniform. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

Return Value 
An array of length n_random containing the random uniform (0, 1) deviates. 



     

     
 

Chapter 12: Random Number Generation random_uniform � 805 

     
     

 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_random_uniform (int n_random, 

IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float r[]   (Output) 

User-supplied array of length n_random containing the random uniform 
(0, 1) deviates. 

Description 
Function imsls_f_random_uniform generates pseudorandom numbers from a 
uniform (0, 1) distribution using a multiplicative congruential method. The form 
of the generator is as follows: 

xi � cxi-1mod (231 � 1) 

Each xi is then scaled into the unit interval (0, 1). The possible values for c in the 
generators are 16807, 397204094, and 950706376. The selection is made by the 
function imsls_random_option. The choice of 16807 will result in the fastest 
execution time. If no selection is made explicitly, the functions use the multiplier 
16807. 

Function imsls_random_seed_set can be used to initialize the seed of the 
random number generator; function imsls_random_option can be used to 
select the form of the generator. 

The user can select a shuffled version of these generators. In this scheme, a table 
is filled with the first 128 uniform (0, 1) numbers resulting from the simple 
multiplicative congruential generator. Then, for each xi from the simple generator, 
the low-order bits of xi are used to select a random integer, j, from 1 to 128. The 
j-th entry in the table is then delivered as the random number, and xi, after being 
scaled into the unit interval, is inserted into the j-th position in the table. 

The values returned by imsls_f_random_uniform are positive and less than 
1.0. However, some values returned may be smaller than the smallest relative 
spacing; hence, it may be the case that some value, for example r [i], is such that 
1.0 � r [i] = 1.0. 

Deviates from the distribution with uniform density over the interval (a, b) can be 
obtained by scaling the output from imsls_f_random_uniform. The following 
statements (in single precision) would yield random deviates from a uniform  
(a, b) distribution. 
float *r; 
r = imsls_f_random_uniform (n_random, 0); 
for (i=0; i<n_random; i++) r[i] = r[i]*(b-a) + a; 
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Example 
In this example, imsls_f_random_uniform generates five pseudorandom 
uniform numbers. Since function imsls_random_option is not called, the 
generator used is a simple multiplicative congruential one with a multiplier of 
16807. 

#include <imsls.h> 
#include <stdio.h> 
 
#define N_RANDOM  5 
 
void main() 
{ 
    float     *r; 
 
    imsls_random_seed_set(123457); 
 
    r = imsls_f_random_uniform(N_RANDOM, 0); 
 
    printf("Uniform random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n", 
            r[0], r[1], r[2], r[3], r[4]); 
} 

Output 

Uniform random deviates:   0.9662  0.2607  0.7663  0.5693  0.8448 

random_von_mises 
Generates pseudorandom numbers from a von mises distribution. 

Synopsis 

#include <imsls.h> 
float *imsls_f_random_von_mises (int n_random, float c, �, 0) 

The type double function is imsls_d_random_von_mises.  

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float c   (Input) 
Parameter of the von Mises distribution. This parameter must be greater 
than one-half of machine epsilon (On many machines, the lower bound 
for c is 10-3). 
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Return Value 
An array of length n_random containing the random deviates of a von Mises 
distribution. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_von_mises (int n_random, float c, 

IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float r[]   (Output) 

User-supplied array of length n_random containing the random von 
mises deviates. 

Description 
Function imsls_f_random_von_mises generates pseudorandom numbers from 
a von Mises distribution with parameter c, which must be positive. With c = c, 
the probability density function is  

� �
� �

� �
0

1 exp cos
2

f x c
I c�

� x� �� �  

for �
 < x < 
, where I0 (c) is the modified Bessel function of the first kind of 
order 0. The probability density is equal to 0 outside the interval (�
, 
). 

The algorithm is an acceptance/rejection method using a wrapped Cauchy 
distribution as the majorizing distribution. It is due to Nest and Fisher (1979). 

Example 
In this example, imsls_f_random_von_mises is used to generate five 
pseudorandom von Mises variates with c = 1. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int   n_random = 5; 
    float c = 1.0; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_von_mises(n_random, c, 0); 
    imsls_f_write_matrix("Von Mises random deviates:", 
        1, n_random, r, IMSLS_NO_COL_LABELS, 0); 
} 
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Output 

                Von Mises random deviates: 
     0.247      -2.433      -1.022      -2.172      -0.503 

random_weibull 
Generates pseudorandom numbers from a Weibull distribution. 

Synopsis 

#include <imsls.h> 
float *imsls_f_random_weibull (int n_random, float a, �, 0) 
The type double function is imsls_d_random_weibull.  

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float a   (Input) 
Shape parameter of the Weibull distribution. This parameter must be 
positive. 

Return Value 
An array of length n_random containing the random deviates of a Weibull 
distribution. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_weibull (int n_random, float a, 

IMSLS_B, float b, 
IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 
IMSLS_B, float b   (Input) 

Scale parameter of the two parameter Weibull distribution. 
Default: b = 1.0 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the random Weibull 
deviates. 
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Description 
Function imsls_f_random_weibull generates pseudorandom numbers from a 
Weibull distribution with shape parameter a and scale parameter b. The 
probability density function is 

� � � �1 expa af x abx bx�

� �  

for x � �, a > 0, and b > 0. Function imsls_f_random_weibull uses an 
antithetic inverse CDF technique to generate a Weibull variate; that is, a uniform 
random deviate U is generated and the inverse of the Weibull cumulative 
distribution function is evaluated at 1.0 � U to yield the Weibull deviate. 

Note that the Rayleigh distribution with probability density function 

� �
� �� �2 2/ 2

2

1 x
r x xe

�

�

�

�  

for x � 0 is the same as a Weibull distribution with shape parameter a equal to 2 
and scale parameter b equal to  

2�  

Example 
In this example, imsls_f_random_weibull is used to generate five 
pseudorandom deviates from a two-parameter Weibull distribution with shape 
parameter equal to 2.0 and scale parameter equal to 6.0—a Rayleigh distribution 
with the following parameter: 

3 2� �  

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int   n_random = 5; 
    float a = 3.0; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_weibull(n_random, a, 0); 
    imsls_f_write_matrix("Weibull random deviates:", 
        1, n_random, r, IMSLS_NO_COL_LABELS, 0); 
} 

Output 

                 Weibull random deviates: 
     0.325       1.104       0.643       0.826       0.552 
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Warning Errors 
IMSLS_SMALL_A The shape parameter is so small that a relatively 

large proportion of the values of deviates from 
the Weibull cannot be represented.  

random_general_continuous 
Generates pseudorandom numbers from a general continuous distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_general_continuous (int n_random, int ndata, 

float table[],..., 0) 

The type double function is imsls_d_random_general_continuous. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

int ndata   (Input) 
Number of points at which the CDF is evaluated for interpolation. 
ndata must be greater than or equal to 4.  

float *table   (Input/Ouput) 
ndata by 5 table to be used for interpolation of the cumulative 
distribution function. 
The first column of table contains abscissas of the cumulative 
distribution function in ascending order, the second column contains the 
values of the CDF (which must be strictly increasing beginning with 0.0 
and ending at 1.0) and the remaining columns contain values used in 
interpolation. This table is set up using routine 
imsls_f_continous_table_setup (page 812). 

Return Value 
An array of length n_random containing the random discrete deviates. To release 
this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_random_general_continuous (int n_random, int ndata, 

float table[], 
IMSLS_TABLE_COL_DIM, int table_col_dim,  
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IMSLS_RETURN_USER, float r[], 
 0) 

Optional Arguments 
IMSLS_TABLE_COL_DIM, int table_col_dim   (Intput) 

Column dimension of the matrix table. 
Default: table_col_dim = 5  

IMSLS_RETURN_USER, float r[]  (Output) 
User-supplied array of length n_random containing the random 
continuous deviates. 

Description 
Routine imsls_f_random_general_continuous generates pseudorandom 
numbers from a continuous distribution using the inverse CDF technique, by 
interpolation of points of the distribution function given in table, which is set up 
by routine imsls_f_continuous_table_setup (page 812). A strictly 
monotone increasing distribution function is assumed. The interpolation is by an 
algorithm attributable to Akima (1970), using piecewise cubics. The use of this 
technique for generation of random numbers is due to Guerra, Tapia, and 
Thompson (1976), who give a description of the algorithm and accuracy 
comparisons between this method and linear interpolation. The relative errors 
using the Akima interpolation are generally considered very good. 

Example 1 
In this example, imsls_f_continuous_table_setup (page 812) is used to 
set up a table for generation of beta pseudorandom deviates. The CDF for this 
distribution is computed by the routine imsls_f_beta_cdf (Chapter 11, 
Probability Distribution Functions and Inverses). The table contains 100 points at 
which the CDF is evaluated and that are used for interpolation. 

 
#include <stdio.h> 
#include <imsls.h> 
 
float cdf(float); 
void main() 
{ 
  int i, iopt=0, ndata= 100; 
  float table[100][5], x = 0.0, *r; 
 
  for (i=0;i<ndata;i++) { 
    table[i][0] = x; 
    x += .01; 
  } 
 
  imsls_f_continuous_table_setup(cdf, iopt, ndata, (float*)table); 
 
  imsls_random_seed_set(123457); 
  r = imsls_f_random_general_continuous (5,  ndata, table, 0); 
  imsls_f_write_matrix("Beta (3, 2) random deviates", 5, 1, r, 0);  
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} 
 
float cdf(float x) 
{ 
  return imsls_f_beta_cdf(x, 3., 2.); 
} 

Output 
*** WARNING  Error  from imsls_f_continuous_table_setup.  The values of the 
***          CDF in the second column of table did not begin at 0.0 and end 
***          at 1.0, but they have been adjusted. Prior to adjustment, 
***          table[0][1] = 0.000000e+00 and table[ndata-1][1]= 9.994079e-01. 
  
Beta (3, 2) random deviates 
       1      0.9208 
       2      0.4641 
       3      0.7668 
       4      0.6536 
       5      0.8171 
   

continuous_table_setup 
Sets up table to generate pseudorandom numbers from a general continuous 
distribution. 

Synopsis 
#include <imsls.h> 
void imsls_f_continuous_table_setup (float cdf(), int iopt, int 

ndata, float *table, ..., 0) 

The type double function is imsls_d_continuous_table_setup. 

Required Arguments 

float cdf(float x) (Input) 
User-supplied function to compute the cumulative distribution function.  
The argument to the function is the point at which the distribution 
function is to be evaluated 

int iopt   (Input) 
Indicator of the extent to which table is initialized prior to calling 
imsls_f_continuous_table_setup.   

iopt Action 
0 imsls_f_continuous_table_setup fills the last four 

columns of table. The user inputs the points at which the CDF 
is to be evaluated in the first column of table. These must be 
in ascending order. 
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1 imsls_f_continuous_table_setup fills the last three 
columns of table. The user supplied function cdf is not used 
and may be a dummy function; instead, the cumulative 
distribution function is specified in the first two columns of 
table. The abscissas (in the first column) must be in ascending 
order and the function must be strictly monotonically 
increasing. 

int ndata   (Input) 
Number of points at which the CDF is evaluated for interpolation. 
ndata must be greater than or equal to 4.  

float *table   (Input/Ouput) 
ndata by 5 table to be used for interpolation of the cumulative 
distribution function. 
The first column of table contains abscissas of the cumulative 
distribution function in ascending order, the second column contains the 
values of the CDF (which must be strictly increasing), and the remaining 
columns contain values used in interpolation. The first row of table 
corresponds to the left limit of the support of the distribution and the  
last row corresponds to the right limit of the support; that is,  
table[0][1] = 0.0 and table[ndata-1][ 1] = 1.0. 

Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_f_continuous_table_setup (float cdf(), int iopt,  

int ndata, float table[], 
IMSLS_TABLE_COL_DIM,  
IMSLS_FCN_W_DATA, float cdf(), void *data, 
 0) 

Optional Arguments 
IMSLS_TABLE_COL_DIM, int table_col_dim   (Intput) 

Column dimension of the array table. 
Default: table_col_dim = 5  

IMSLS_FCN_W_DATA, float cdf(float x), void *data, (Input) 
User-supplied function to compute the cumulative distribution function, 
which also accepts a pointer to data that is supplied by the user.  data is 
a pointer to the data to be passed to the user-supplied function.  See the 
Introduction, Passing Data to User-Supplied Functions at the beginning 
of this manual for more details. 

Description 
Routine imsls_f_continuous_table_setup sets up a table that routine 
imsls_f_random_general_continuous (page 810) can use to generate 
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pseudorandom deviates from a continuous distribution. The distribution is 
specified by its cumulative distribution function, which can be supplied either in 
tabular form in table or by a function cdf. See the documentation for the 
routine imsls_f_random_general_continuous for a description of the 
method. 

Example 1 
In this example, imsls_f_continuous_table_setup is used to set up a  
table to generate pseudorandom variates from a beta distribution. This example  
is continued in the documentation for routine 
imsls_f_random_general_continuous (page 810) to generate the random 
variates. 

 
#include <stdio.h> 
#include <imsls.h> 
 
float cdf(float); 
void main() 
{ 
  int i, iopt=0, ndata= 100; 
  float table[100][5], x = 0.0; 
 
  for (i=0;i<ndata;i++) { 
    table[i][0] = x; 
    x += .01; 
  } 
 
  imsls_f_continuous_table_setup(cdf, iopt, ndata, table); 
  printf("The first few values from the table:\n"); 
  for (i=0;i<10;i++) printf("%4.2f\t%8.4f\n", table[i][0], table[i][1]); 
 
} 
 
float cdf(float x) 
{ 
  return imsls_f_beta_cdf(x, 3., 2.); 
} 

Output 
 
*** WARNING  Error  from imsls_f_continuous_table_setup.  The values of the 
***          CDF in the second column of table did not begin at 0.0 and end 
***          at 1.0, but they have been adjusted. Prior to adjustment, 
***          table[0][1] = 0.000000e+00 and table[ndata-1][1]= 9.994079e-01. 
  
The first few values from the table: 
0.00   0.0000 
0.01   0.0000 
0.02   0.0000 
0.03   0.0001 
0.04   0.0002 
0.05   0.0005 
0.06   0.0008 
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0.07   0.0013 
0.08   0.0019 
0.09   0.0027  

random_normal_multivariate 
Generates pseudorandom numbers from a multivariate normal distribution. 

Synopsis 
#include <imsls.h>  
float *imsls_f_random_normal_multivariate (int n_vectors, 

int length, float *covariances, �, 0) 

The type double function is imsls_d_random_normal_multivariate. 

Required Arguments 

int n_vectors   (Input) 
Number of random multivariate normal vectors to generate. 

int length   (Input) 
Length of the multivariate normal vectors. 

float *covariances   (Input) 
Array of size length � length containing the variance-covariance 
matrix. 

Return Value 
An array of length n_vectors � length containing the random multivariate 
normal vectors stored consecutively.  

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_random_normal_multivariate (int n_vectors, 

int length, float *covariances, 
IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float r[]   (Output) 

User-supplied array of length n_vectors � length containing the 
random multivariate normal vectors stored consecutively. 

Description 
Function imsls_f_random_normal_multivariate generates pseudorandom 
numbers from a multivariate normal distribution with mean vector consisting of 
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all zeros and variance-covariance matrix imsls_f_covariances. First, the 
Cholesky factor of the variance-covariance matrix is computed. Then, 
independent random normal deviates with mean 0 and variance 1 are generated, 
and the matrix containing these deviates is postmultiplied by the Cholesky factor. 
Because the Cholesky factorization is performed in each invocation, it is best to 
generate as many random vectors as needed at once. 

Deviates from a multivariate normal distribution with means other than 0 can be 
generated by using imsls_f_random_normal_multivariate and then by 
adding the vectors of means to each row of the result. 

Example 
In this example, imsls_f_random_normal_multivariate generates five 
pseudorandom normal vectors of length 2 with variance-covariance matrix equal 
to the following: 

0.500 0.375
0.375 0.500
� �
� �
� �

 

#include <imsls.h> 
 
void main() 
{ 
    int n_vectors = 5; 
    int length = 2; 
    float covariances[] = {.5, .375, .375, .5}; 
    float *random; 
 
    imsls_random_seed_set (123457); 
    random = imsls_f_random_normal_multivariate (n_vectors, length,  
        covariances, 0); 
 
    imsls_f_write_matrix ("multivariate normal random deviates", 
        n_vectors, length, random, 0); 
} 

Output 

multivariate normal random deviates 
                 1           2 
     1       1.451       1.246 
     2       0.766      -0.043 
     3       0.058      -0.669 
     4       0.903       0.463 
     5      -0.867      -0.933 
 

random_orthogonal_matrix 
Generates a pseudorandom orthogonal matrix or a correlation matrix. 
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Synopsis 
#include <imsls.h> 
float *imsls_f_random_orthogonal_matrix (int n, ..., 0) 

The type double function is imsls_d_random_orthogonal_matrix. 

Required Arguments 

int n   (Input) 
The order of the matrix to be generated. 

Return Value 
n by n random orthogonal matrix. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_orthogonal_matrix (int n,  

IMSLS_EIGENVALUES, float *eignevalues[], 
IMSLS_A_MATRIX, float *a, 
IMSLS_A_COL_DIM, int a_col_dim, 
IMSLS_RETURN_USER, float r[], 
 0) 

Optional Arguments 
IMSLS_EIGENVALUES, float *eigenvalues   (Input) 

A vector of length n containing the eigenvalues of the correlation matrix 
to be generated.   The elements of eigenvalues must be positive, they 
must sum to n, and they cannot all be equal. 

IMSLS_A_MATRIX, float *a   (Input) 
n by n random orthogonal matrix.   A random correlation matrix is 
generated using the orthogonal matrix input in a.  The option 
IMSLS_EIGENVALUES must also be supplied if IMSLS_A_MATRIX is 
used. 

IMSLS_A_COL_DIM, int a_col_dim   (Input) 
Column dimension of the matrix a. 
Default: a_col_dim = n  

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n � n containing the random correlation 
matrix. 

Description 
Routine imsls_f_random_orthogonal_matrix generates a pseudorandom 
orthogonal matrix from the invariant Haar measure. For each column, a random 
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vector from a uniform distribution on a hypersphere is selected and then is 
projected onto the orthogonal complement of the columns already formed. The 
method is described by Heiberger (1978). (See also Tanner and Thisted 1982.) 

If the optional argument IMSLS_EIGENVALUES is used, a correlation matrix is 
formed by applying a sequence of planar rotations to the matrix AT DA, where  
D = diag(eigenvalues[0], �, eigenvalues [n-1]), so as to yield ones along 
the diagonal. The planar rotations are applied in such an order that in the two by 
two matrix that determines the rotation, one diagonal element is less than 1.0 and 
one is greater than 1.0. This method is discussed by Bendel and Mickey (1978) 
and by Lin and Bendel (1985). 

The distribution of the correlation matrices produced by this method is not 
known. Bendel and Mickey (1978) and Johnson and Welch (1980) discuss the 
distribution. 

For larger matrices, rounding can become severe; and the double precision results 
may differ significantly from single precision results. 

Example 
In this example, imsls_f_random_orthogonal_matrix is used to generate a 
4 by 4 pseudorandom correlation matrix with eigenvalues in the ratio 1:2:3:4.  

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int   i, n = 4; 
  float *a, *cor; 
  float ev[] = {1., 2., 3., 4.}; 
   
  for (i=0;i<4;i++) ev[i] = 4.*ev[i]/10.; 
 
  imsls_random_seed_set(123457); 
   
  a = imsls_f_random_orthogonal_matrix(n, 0); 
  imsls_f_write_matrix("Random orthogonal matrix",  
         4, 4, (float*)a, 0); 
 
  cor = imsls_f_random_orthogonal_matrix(n,  
       IMSLS_EIGENVALUES, ev,  
       IMSLS_A_MATRIX, a,  
       0); 
  imsls_f_write_matrix("Random correlation matrix",  
         4, 4, (float*)cor, 0); 
 
} 

 Output 
 
            Random orthogonal matrix 
            1           2           3           4 
1     -0.8804     -0.2417      0.4065     -0.0351 
2      0.3088     -0.3002      0.5520      0.7141 
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3     -0.3500      0.5256     -0.3874      0.6717 
4     -0.0841     -0.7584     -0.6165      0.1941 
  
            Random correlation matrix 
            1           2           3           4 
1       1.000      -0.236      -0.326      -0.110 
2      -0.236       1.000       0.191      -0.017 
3      -0.326       0.191       1.000      -0.435 
4      -0.110      -0.017      -0.435       1.000 
 

random_mvar_from_data 
Generates pseudorandom numbers from a multivariate distribution determined 
from a given sample. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_mvar_from_data (int n_random,  int ndim,  int 

nsamp,  float x[],  int nn, ..., 0) 

The type double function is imsls_d_random_mvar_from_data. 

Required Arguments 

int n_random   (Input) 
Number of random multivariate vectors to generate. 

int ndim   (Input) 
The length of the multivariate vectors, that is, the number of dimensions. 

int nsamp   (Input) 
Number of given data points from the distribution to be simulated. 

float x[]   (Input) 
Array of size nsamp  �  ndim matrix containing the given sample. 

int nn   (Input) 
Number of nearest neighbors of the randomly selected point in x that are 
used to form the output point in the result. 

Return Value 
n_random � ndim matrix containing the random multivariate vectors in its rows. 
To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float * imsls_f_random_mvar_from_data (int n_random,  int ndim,   

int nsamp,  float x[],  int nn, 
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IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_RETURN_USER, float r[], 
 0) 

Optional Arguments 
IMSLS_X_COL_DIM, int x_col_dim   (Input) 

Column dimension of the matrix x. 
Default: x_col_dim = ndim  

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random � ndim containing the random 
correlation matrix. 

Description 
Given a sample of size n (= nsamp) of observations of a k-variate random 
variable, imsls_f_random_mvar_from_data generates a pseudorandom 
sample with approximately the same moments as the given sample. The sample 
obtained is essentially the same as if sampling from a Gaussian kernel estimate of 
the sample density. (See Thompson 1989.) Routine 
imsls_f_random_mvar_from_data  uses methods described by Taylor and 
Thompson (1986). 

Assume that the (vector-valued) observations xi are in the rows of x. An 
observation, xj, is chosen randomly; its nearest m (= nn) neighbors, 

1 2
, ,...,

mj j jx x x  

are determined; and the mean 

jx  

of those nearest neighbors is calculated. Next, a random sample 

u�, u�, �, um is generated from a uniform distribution with lower bound 

� �
2

3 11 m
m m

�

�  

and upper bound 

� �
2

3 11 
m

m m
�

�  

The random variate delivered is 

� �
1

m

l jl j
l

u x x x
�

� �� j  

The process is then repeated until n_random such simulated variates are 
generated and stored in the rows of the result. 
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Example 
In this example, imsls_f_random_mvar_from_data  is used to generate 5 
pseudorandom vectors of length 4 using the initial and final systolic pressure and 
the initial and final diastolic pressure from Data Set A in Afifi and Azen (1979) 
as the fixed sample from the population to be modeled. (Values of these four 
variables are in the seventh, tenth, twenty-first, and twenty-fourth columns of data 
set number nine in routine imsls_f_data_sets, Chapter 14, Utilities.) 

 
#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int i, nrrow, nrcol, nr = 5, k=4, nsamp = 113, nn = 5; 
  float x[113][4], rdata[113][34], *r; 
 
  imsls_random_seed_set(123457); 
 
 
  imsls_f_data_sets(9,  
      IMSLS_N_OBSERVATIONS, &nrrow, 
      IMSLS_N_VARIABLES, &nrcol,  
      IMSLS_RETURN_USER, rdata,  
      0); 
  for (i=0;i<nrrow;i++) x[i][0] = rdata[i][6]; 
  for (i=0;i<nrrow;i++) x[i][1] = rdata[i][9]; 
  for (i=0;i<nrrow;i++) x[i][2] = rdata[i][20]; 
  for (i=0;i<nrrow;i++) x[i][3] = rdata[i][23]; 
 
  r = imsls_f_random_mvar_from_data(nr, k, nsamp, x, nn, 0); 
  imsls_f_write_matrix("Random variates", 5, 4, r, 0); 
 } 

 Output 
 
                 Random variates 
            1           2           3           4 
1       162.8        90.5       153.7       104.9 
2       153.4        78.3       176.7        85.2 
3        93.7        48.2       153.5        71.4 
4       101.8        54.2       113.1        56.3 
5        91.7        58.8        48.4        28.1 
 

random_multinomial 
Generates pseudorandom numbers from a multinomial distribution. 

Synopsis 
#include <imsls.h> 
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int *imsls_random_multinomial (int n_random, int n, int k,  
float p[], ..., 0) 

Required Arguments 

int n_random   (Input) 
Number of random multinomial vectors to generate. 

int n   (Input) 
Multinomial parameter indicating the number of independent trials. 

int k   (Input) 
The number of mutually exclusive outcomes on any trial.  k is the length 
of the multinomial vectors. k must be greater than or equal to 2. 

float p[]   (Input) 
Vector of length k containing the probabilities of the possible outcomes. 
The elements of p must be positive and must sum to 1.0. 

Return Value 
n_random by k matrix containing the random multinomial vectors in its rows.  
To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_random_multinomial (int n_random, int n, int k,  

float p[], 
IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float r[]   (Output) 

User-supplied array of length n_random � k containing the random 
deviates. 

Description 
Routine imsls_random_multinomial generates pseudorandom numbers from 
a K-variate multinomial distribution with parameters n and p. k and n must be 
positive. Each element of p must be positive and the elements must sum to 1. The 
probability function (with n = n, k = k, and pi = p[i+1]) is 

� � 1 2
1 2 1 2

1 2

!, ,..., ...
! !... !

kxx x
k k

k

nf x x x p p p
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�  

for xi � 0 and 
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The deviate in each row of r is produced by generation of the binomial deviate 
x
�
�with parameters n and pi and then by successive generations of the conditional 

binomial deviates xj given x
�
, x

�
, …, xj-� with parameters n � x� � x� � … � xj-� and 

pj /(1 � p
�
 � p

�
 � … � pj-�). 

Example 
In this example, imsls_random_multinomial is used to generate five 
pseudorandom 3-dimensional multinomial variates with parameters n = 20 and  
p = [0.1, 0.3, 0.6]. 

 
#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int nr = 5, n = 20, k = 3, *ir; 
  float p[3] = {.1, .3, .6}; 
 
  imsls_random_seed_set(123457); 
 
  ir = imsls_random_multinomial(nr, n, k, p, 0); 
 
  imsls_i_write_matrix("Multinomial random_deviates", 5, 3, ir,  
         IMSLS_NO_ROW_LABELS,  
         IMSLS_NO_COL_LABELS, 0); 
} 

 Output 
Multinomial random_deviates 
         5    4   11 
         3    6   11 
         3    3   14 
         5    5   10 
         4    5   11 
 

random_sphere 
Generates pseudorandom points on a unit circle or K-dimensional sphere 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_sphere (int n_random, int k,..., 0) 

The type double function is imsls_d_random_sphere. 
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Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

int k (Input) 
Dimension of the circle (k = 2) or of the sphere. 

Return Value 
n_random by k matrix containing the random Cartesian coordinates on the unit 
circle or sphere. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_sphere (int n_random, int k,  

IMSLS_RETURN_USER, float r[], 
 0) 

Optional Arguments 
IMSLS_RETURN_USER, float r[]  (Output) 

User-supplied array of size n_random by k containing the random 
Cartesian coordinates on the unit circle or sphere. 

Description 
Routine imsls_f_random_sphere generates pseudorandom coordinates of 
points that lie on a unit circle or a unit sphere in K-dimensional space. For points 
on a circle (k = 2), pairs of uniform (� 1, 1) points are generated and accepted 
only if they fall within the unit circle (the sum of their squares is less than 1), in 
which case they are scaled so as to lie on the circle. 

For spheres in three or four dimensions, the algorithms of Marsaglia (1972) are 
used. For three dimensions, two independent uniform (� 1, 1) deviates U� and U� 
are generated and accepted only if the sum of their squares S� is less than 1. Then, 
the coordinates 

1 1 1 2 2 1 32 1 , 2 1 , and 1 2 1Z U S Z U S Z� � � � � � S  

are formed. For four dimensions, U�, U�, and S� are produced as described above. 
Similarly, U�, U�, and S� are formed. The coordinates are then 

� �1 1 2 2 3 3 1, , 1 / 2Z U Z U Z U S S� � � �  

and 

� �4 4 11 / 2Z U S� � S  
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For spheres in higher dimensions, K independent normal deviates are generated 
and scaled so as to lie on the unit sphere in the manner suggested by Muller 
(1959). 

Example 
In this example, imsls_f_random_sphere is used to generate two uniform 
random deviates from the surface of the unit sphere in three space. 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int n_random = 2; 
  int k = 3; 
  float *z; 
  char *rlabel[] = {"First point",  
      "Second point"}; 
 
  imsls_random_seed_set(123457); 
 
  z = imsls_f_random_sphere(n_random, k, 0); 
   
  imsls_f_write_matrix("Coordinates", n_random, k, z,  
         IMSLS_ROW_LABELS, rlabel,  
         IMSLS_NO_COL_LABELS, 
         0); 
 } 
 

Output 
 
                   Coordinates 
First point       0.8893      0.2316      0.3944 
Second point      0.1901      0.0396     -0.9810 

 

random_table_twoway 
Generates a pseudorandom two-way table. 

Synopsis 
#include <imsls.h> 
int *imsls_random_table_twoway (int nrow, int ncol, int nrtot[],  

int nctot[],..., 0) 

Required Arguments 

int nrow   (Input) 
Number of rows in the table. 
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int ncol   (Input) 
Number of columns in the table. 

int nrtot[]   (Input) 
Array of length nrow containing the row totals. 

int nctot[]   (Input) 
Array of length ncol containing the column totals.   (Input) 
The elements of nrtot and nctot must be nonnegative and must sum 
to the same quantity. 

Return Value 
nrow by ncol random matrix with the given row and column totals. To release 
this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_random_table_twoway (int nrow, int ncol, int nrtot[],  

int nctot[], 
IMSLS_RETURN_USER, int ir[], 
 0) 

Optional Arguments 
IMSLS_RETURN_USER, int ir[]  (Output) 

User-supplied array of size nrow by ncol containing the random matrix 
with the given row and column totals. 

Description 
Routine imsls_random_table_twoway generates pseudorandom entries for a 
two-way contingency table with fixed row and column totals. The method 
depends on the size of the table and the total number of entries in the table. If the 
total number of entries is less than twice the product of the number of rows and 
columns, the method described by Boyette (1979) and by Agresti, Wackerly, and 
Boyette (1979) is used. In this method, a work vector is filled with row indices so 
that the number of times each index appears equals the given row total. This 
vector is then randomly permuted and used to increment the entries in each row 
so that the given row total is attained. 

For tables with larger numbers of entries, the method of Patefield (1981) is used. 
This method can be considerably faster in these cases. The method depends on 
the conditional probability distribution of individual elements, given the entries in 
the previous rows. The probabilities for the individual elements are computed 
starting from their conditional means. 
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Example 
In this example, imsls_random_table_twoway is used to generate a two by 
three table with row totals 3 and 5, and column totals 2, 4, and 2. 

 
#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int *itable, nrow = 2, ncol = 3; 
  int nrtot[2] = {3, 5}; 
  int nctot[3] = {2, 4, 2}; 
  char *title = "A random contingency table with fixed marginal totals"; 
 
  imsls_random_seed_set(123457); 
 
 
  itable = imsls_random_table_twoway(nrow, ncol, nrtot, nctot, 0); 
      
  imsls_i_write_matrix(title, nrow, ncol, itable,  
         IMSLS_NO_ROW_LABELS, 
         IMSLS_NO_COL_LABELS, 
         0); 
  } 

Output 
A random contingency table with fixed marginal totals 
                      0   2   1 
                      2   2   1 

random_order_normal 
Generates pseudorandom order statistics from a standard normal distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_order_normal (int ifirst,  int ilast, int n,..., 

0) 

The type double function is imsls_d_random_order_normal. 

Required Arguments 

int ifirst (Input) 
First order statistic to generate. 

int ilast (Input) 
Last order statistic to generate.   
ilast must be greater than or equal to ifirst. The full set of order 
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statistics from ifirst to ilast is generated. If only one order statistic 
is desired, set ilast = ifirst.  

int n (Input) 
Size of the sample from which the order statistics arise. 

Return Value 
An array of length ilast + 1 � ifirst containing the random order statistics in 
ascending order.  
The first element is the ifirst order statistic in a random sample of size n from 
the standard normal distribution. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_order_normal (int ifirst, int ilast, int n,  

IMSLS_RETURN_USER, float r[], 
 0) 

Optional Arguments 
IMSLS_RETURN_USER, float r[]  (Output) 

User-supplied array of length ilast + 1 � ifirst containing the 
random order statistics in ascending order. 

Description 
Routine imsls_f_random_order_normal generates the ifirst through the 
ilast order statistics from a pseudorandom sample of size N from a normal  
(0, 1) distribution. Routine imsls_f_random_order_normal uses the routine 
imsls_f_random_order_uniform (page 829) to generate order statistics from 
the uniform (0, 1) distribution and then obtains the normal order statistics using 
the inverse CDF transformation. 

Each call to imsls_f_random_order_normal yields an independent event so 
order statistics from different calls may not have the same order relations with 
each other. 

Example 
In this example, imsls_f_random_order_normal is used to generate the 
fifteenth through the nineteenth order statistics from a sample of size twenty. 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  float *r = NULL; 
 
  imsls_random_seed_set(123457); 
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  r = imsls_f_random_order_normal(15, 19, 20, 0); 
 
  printf("The 15th through the 19th order statistics from a \n"); 
  printf("random sample of size 20 from a normal distribution\n"); 
  imsls_f_write_matrix("", 5, 1, r, 0); 
} 
 

Output 
The 15th through the 19th order statistics from a  
random sample of size 20 from a normal distribution 
  
1      0.4056 
2      0.4681 
3      0.4697 
4      0.9067 
5      0.9362 

 

random_order_uniform 
Generates pseudorandom order statistics from a uniform (0, 1) distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_order_uniform (int ifirst, int ilast,  

int n,..., 0) 

The type double function is imsls_d_random_order_uniform. 

Required Arguments 

int ifirst (Input) 
First order statistic to generate. 

int ilast   (Input) 
Last order statistic to generate.   
ilast must be greater than or equal to ifirst. The full set of order 
statistics from ifirst to ilast is generated. If only one order statistic 
is desired, set ilast = ifirst.  

int n (Input) 
Size of the sample from which the order statistics arise. 

Return Value 
An array of length ilast + 1 � ifirst containing the random order statistics in 
ascending order.   
The first element is the ifirst order statistic in a random sample of size n from 
the uniform (0, 1) distribution. To release this space, use free. 
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Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_order_uniform (int ifirst, int ilast, int n,  

IMSLS_RETURN_USER, float r[], 
 0) 

Optional Arguments 
IMSLS_RETURN_USER, float r[]  (Output) 

User-supplied array of length ilast + 1 � ifirst containing the 
random order statistics in ascending order. 

Description 
Routine imsls_f_random_order_uniform generates the ifirst through the 
ilast order statistics from a pseudorandom sample of size n from a uniform  
(0, 1) distribution. Depending on the values of ifirst and ilast, different 
methods of generation are used to achieve greater efficiency. If ifirst = 1 and 
ilast = n, that is, if the full set of order statistics are desired, the spacings 
between successive order statistics are generated as ratios of exponential variates. 
If the full set is not desired, a beta variate is generated for one of the order 
statistics, and the others are generated as extreme order statistics from conditional 
uniform distributions. Extreme order statistics from a uniform distribution can be 
obtained by raising a uniform deviate to an appropriate power. 

Each call to imsls_f_random_order_uniform yields an independent event. 
This means, for example, that if on one call the fourth order statistic is requested 
and on a second call the third order statistic is requested, the “fourth” may be 
smaller than the “third”. If both the third and fourth order statistics from a given 
sample are desired, they should be obtained from a single call to 
imsls_f_random_order_uniform (by specifying ifirst less than or equal 
to 3 and ilast greater than or equal to 4). 

Example 
In this example, imsls_f_random_order_uniform is used to generate the 
fifteenth through the nineteenth order statistics from a sample of size twenty. 

 
#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  float *r = NULL; 
 
  imsls_random_seed_set(123457); 
 
  r = imsls_f_random_order_uniform(15, 19, 20, 0); 
 
  printf("The 15th through the 19th order statistics from a \n"); 
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  printf("random sample of size 20 from a uniform distribution\n"); 
  imsls_f_write_matrix("", 5, 1, r, 0); 
} 
 

Output 
The 15th through the 19th order statistics from a  
random sample of size 20 from a uniform distribution 
  
1      0.6575 
2      0.6802 
3      0.6807 
4      0.8177 
5      0.8254 

random_arma 
Generates a time series from a specific ARMA model. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_arma (int n_observations, int p, float ar[], 

int q, float ma[], ..., 0) 
The type double function is imsls_d_random_arma.  

Required Arguments 

int n_observations   (Input) 
Number of observations to be generated. Parameter n_observations 
must be greater than or equal to one. 

int p   (Input) 
Number of autoregressive parameters. Paramater p must be greater than 
or equal to zero. 

float ar[]   (Input) 
Array of length p containing the autoregressive parameters. 

int q   (Input) 
Number of moving average parameters. Parameter q must be greater 
than or equal to zero. 

float ma[]   (Input) 
Array of length q containing the moving average parameters. 

Return Value 
An array of length n_observations containing the generated time series. 

Synopsis with Optional Arguments 
#include <imsls.h> 
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float *imsls_f_random_arma (int n_observations, int p, float ar[],  
int q, float ma[],  
IMSLS_ARMA_CONSTANT, float constant, 
IMSLS_VAR_NOISE, float *a_variance, 
IMSLS_INPUT_NOISE, float *a_input, 
IMSLS_OUTPUT_NOISE, float **a_return, 
IMSLS_OUTPUT_NOISE_USER, float a_return[], 
IMSLS_NONZERO_ARLAGS, int *ar_lags, 
IMSLS_NONZERO_MALAGS, int *ma_lags, 
IMSLS_INITIAL_W, float *w_initial, 
IMSLS_ACCEPT_REJECT_METHOD, 
IMSLS_RETURN_USER, float w[], 
0) 

Optional Arguments 
IMSLS_ARMA_CONSTANT, float constant   (Input) 

Overall constant. See “Description”. 
Default: constant = 0 

IMSLS_VAR_NOISE, float a_variance   (Input) 
If IMSLS_VAR_NOISE is specified (and IMSLS_INPUT_NOISE is not 
specified) the noise at will be generated from a normal distribution with 
mean 0 and variance a_variance. 
Default: a_variance = 1.0 

IMSLS_INPUT_NOISE, float *a_input   (Input) 
If IMSLS_INPUT_NOISE is specified, the user will provide an array of 
length n_observations + max (ma_lags[i]) containing the random 
noises. If this option is specified, then IMSLS_VAR_NOISE should not be 
specified (a warning message will be issued and the option 
IMSLS_VAR_NOISE will be ignored). 

IMSLS_OUTPUT_NOISE, float **a_return   (Output) 
An address of a pointer to an internally allocated array of length 
n_observations + max (ma_lags[i]) containing the random noises. 

IMSLS_OUTPUT_NOISE_USER, float a_return[]   (Output) 
Storage for array a_return is provided by user. See 
IMSLS_OUTPUT_NOISE. 

IMSLS_NONZERO_ARLAGS, int ar_lags[]   (Input) 
An array of length p containing the order of the nonzero autoregressive 
parameters. 
Default: ar_lags = [1, 2, ..., p] 

IMSLS_NONZERO_MALAGS, int ma_lags   (Input) 
An array of length q containing the order of the nonzero moving average 
parameters. 
Default: ma_lags = [1, 2, ..., q] 
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IMSLS_INITIAL_W, float w_initial[]   (Input) 
Array of length max (ar_lags[i]) containing the initial values of the 
time series. 
Default: all the elements in w_initial = 
constant/(1 � ar [0] � ar [1] � � � ar [p � 1]) 

IMSLS_ACCEPT_REJECT_METHOD   (Input) 
If IMSLS_ACCEPT_REJECT_METHOD is specified, the random noises 
will be generated from a normal distribution using an 
acceptance/rejection method. If IMSLS_ACCEPT_REJECT_METHOD is 
not specified, the random noises will be generated using an inverse 
normal CDF method. This argument will be ignored if 
IMSLS_INPUT_NOISE is specified. 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the generated time 
series. 

Description 
Function imsls_f_random_arma simulates an ARMA(p, q) process, {Wt}, for  
t = 1, 2, ..., n (with n = n_observations, p = p, and q = q). The model is  

� � � �0t tB W B A t� � �� � �Z  

� �

� �

2
1 2

2
1 2

1 ...

1 ...

P
p

q
q

B B B B

B B B B

� � �� � � � � �

� � �� � � � ��
 

Let � be the mean of the time series {Wt}. The overall constant �0 (constant) is  
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Time series whose innovations have a nonnormal distribution may be simulated 
by providing the appropriate innovations in a_input and start values in 
w_initial. 

The time series is generated according to the followng model: 

X[i] = constant + ar[0] � X[i � ar_lags[0] ] + … + 

ar[p � 1] � X[i � ar_lags[p � 1] ] + 

A[i] � ma[0] � A[i � ma_lags[0] ] � … � 

ma[q � 1] � A[i � ma_lags[q � 1] ] 

where the constant is related to the mean of the series,  

W  

as follows: 
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� �constant (1 ar 0 ... ar[q 1])W� � � � � �  

and where 

X[t] = W[t], t = 0, 1, …, n_observations � 1 

and 

W[t] = w_initial[t + p],  t = �p, �p + 1, …, �2, �1 

and A is either a_input (if IMSLS_INPUT_NOISE is specified) or a_return 
(otherwise). 

Examples 

Example 1 
In this example, imsls_f_random_arma is used to generate a time series of 
length five, using an ARMA model with three autoregressive parameters and two 
moving average parameters. The start values are 0.1000, 0.0500, and 0.0375. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int   n_random = 5; 
    int   np = 3; 
    float phi[3] = {0.5, 0.25, 0.125}; 
    int   nq = 2; 
    float theta[2] = {-0.5, -0.25}; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_arma(n_random, np, phi, nq, theta, 0); 
    imsls_f_write_matrix("ARMA random deviates:", 
        1, n_random, r, IMSLS_NO_COL_LABELS, 0); 
} 

Output 

                   ARMA random deviates: 
     0.863       0.809       1.904       0.110       2.266 

Example 2 
In this example, a time series of length 5 is generated using an ARMA model with 
4 autoregressive parameters and 2 moving average parameters. The start values 
are 0.1, 0.05 and 0.0375. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
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    int   n_random = 5; 
    int   np = 3; 
    float phi[3] = {0.5, 0.25, 0.125}; 
    int   nq = 2; 
    float theta[2] = {-0.5, -0.25}; 
    float wi[3] = {0.1, 0.05, 0.0375}; 
    float theta0 = 1.0; 
    float avar   = 0.1; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_arma(n_random, np, phi, nq, theta,  
        IMSLS_ACCEPT_REJECT_METHOD, 
        IMSLS_INITIAL_W, wi, 
        IMSLS_ARMA_CONSTANT, theta0, 
        IMSLS_VAR_NOISE, avar, 
        0); 
    imsls_f_write_matrix("ARMA random deviates:", 
        1, n_random, r, IMSLS_NO_COL_LABELS, 0); 
} 

Output 

                   ARMA random deviates: 
     1.403       2.220       2.286       2.888       2.832 

Warning Errors 
IMSLS_RNARM_NEG_VAR VAR(a) = “a_variance” = #, VAR(a) must be 

greater than 0. The absolute value of # is used for 
VAR(a). 

IMSLS_RNARM_IO_NOISE Both IMSLS_INPUT_NOISE and 
IMSLS_OUTPUT_NOISE are specified. 
IMSLS_INPUT_NOISE is used. 

random_npp 
Generates pseudorandom numbers from a nonhomogeneous Poisson process. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_npp (float tbegin, float tend, float ftheta(), 

float theta_min, float theta_max,  int neub, int *ne, ..., 0) 

The type double function is imsls_d_random_npp. 

Required Arguments 

float tbegin   (Input) 
Lower endpoint of the time interval of the process.  
tbegin must be nonnegative. Usually, tbegin = 0. 
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float tend   (Input) 
Upper endpoint of the time interval of the process.  
tend must be greater than tbegin. 

float ftheta(float t) (Input) 
User-supplied function to provide the value of the rate of the process as 
a function of time. This function must be defined over the interval from 
tbegin to tend and must be nonnegative in that interval.  

float theta_min   (Input) 
Minimum value of the rate function ftheta() in the interval (tbegin, 
tend).    
If the actual minimum is unknown, set theta_min = 0.0. 

float theta_max   (Input) 
Maximum value of the rate function ftheta() in the interval (tbegin, 
tend).  
If the actual maximum is unknown, set theta_max to a known upper 
bound of the maximum. The efficiency of imsls_f_random_npp is 
less the greater theta_max exceeds the true maximum. 

int neub   (Input) 
Upper bound on the number of events to be generated. 
In order to be reasonably sure that the full process through time tend is 
generated, calculate neub as neub = X + 10.0 * SQRT(X), where  
X = theta_max * (tend � tbegin).  

int *ne    (Output) 
Number of events actually generated. 
If ne is less that neub, the time tend is reached before neub events are 
realized. 

Return Value 
An array of length neub containing the the times to events in the first ne 
elements. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_npp (float tbegin, float tend, float ftheta(), 

float theta_min, float theta_max,  int neub, int *ne, 
IMSLS_RETURN_USER, float r[], 
IMSLS_FCN_W_DATA, float ftheta(), void *data, 
0) 
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dt

Optional Arguments 
IMSLS_RETURN_USER, float r[]   (Output) 

User-supplied array of length neub containing the the times to events in 
the first ne elements. 

IMSLS_FCN_W_DATA, float ftheta(float t), void *data, (Input) 
User-supplied function to provide the value of the rate of the process as 
a function of time, which also accepts a pointer to data that is supplied 
by the user.  data is a pointer to the data to be passed to the user-
supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 

Description 
Routine imsls_f_random_npp simulates a one-dimensional nonhomogeneous 
Poisson process with rate function ftheta in a fixed interval (tbegin, tend]. 

Let �(t) be the rate function and t� = tbegin and t� = tend. Routine 
imsls_f_random_npp uses a method of thinning a nonhomogeneous Poisson 
process {N�(t), t � t�} with rate function ��(t) � �(t) in (t�, t�], where the number 
of events, N�, in the interval (t�, t�] has a Poisson distribution with parameter 

� �
1

0
0

t

t
t dt� �� �  

The function 

� � � �
0

t
t t�

�

� � �  

 

is called the integrated rate function.) In imsls_f_random_npp, ��(t) is taken 
to be a constant ��(= theta_max) so that at time ti, the time of the next event  
ti + 1 is obtained by generating and cumulating exponential random numbers  

* *
1, 2,, ,...,i iE E  

with parameter ��, until for the first time 

� �* *
, 1, , /...j i i i j iu t E E� �� �

*
�  

where the uj,i are independent uniform random numbers between 0 and 1. This 
process is continued until the specified number of events, neub, is realized or 
until the time, tend, is exceeded. This method is due to Lewis and Shedler 
(1979), who also review other methods. The most straightforward (and most 
efficient) method is by inverting the integrated rate function, but often this is not 
possible. 

If theta_max is actually greater than the maximum of �(t) in (t�, t�], the routine 
will work, but less efficiently. Also, if �(t) varies greatly within the interval, the 
efficiency is reduced. In that case, it may be desirable to divide the time interval 
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into subintervals within which the rate function is less variable. This is possible 
because the process is without memory. 

If no time horizon arises naturally, tend must be set large enough to allow for the 
required number of events to be realized. Care must be taken, however, that 
ftheta is defined over the entire interval. 

After simulating a given number of events, the next event came be generated by 
setting tbegin to the time of the last event (the sum of the elements in R) and 
calling imsls_f_random_npp again. Cox and Lewis (1966) discuss modeling 
applications of nonhomogeneous Poisson processes. 

Example 
In this example, imsls_f_random_npp is used to generate the first five events 
in the time 0 to 20 (if that many events are realized) in a nonhomogeneous 
process with rate function 

�(t) = 0.6342 e0.001427t 

for 0 < t � 20. 

Since this is a monotonically increasing function of t, the minimum is at t = 0 and 
is 0.6342, and the maximum is at t = 20 and is 0.6342 e0.02854�= 0.652561. 

 
#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int i, neub = 5, ne; 
  float  *r, tmax= .652561, tmin = .6342, tbeg=0., tend=20.; 
 
  imsls_random_seed_set(123457); 
 
  r = imsls_f_random_npp(tbeg, tend, ftheta, tmin, tmax, neub, &ne, 0); 
   
  printf("Inter-event times for the first %d events in the process:\n", ne); 
  for (i=0; i<ne; i++) printf("\t%f\n", r[i]); 
 
} 
 

Output 
Inter-event times for the first 5 events in the process: 
 0.052660 
 0.407979 
 0.258399 
 0.019767 
 0.167641  
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random_permutation 
Generates a pseudorandom permutation. 

Synopsis 
#include <imsls.h> 
int *imsls_random_permutation (int k, ..., 0) 

Required Arguments 

int k   (Input) 
Number of integers to be permuted. 

Return Value 
An array of length k containing the random permutation of the integers from  
1 to k. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_random_permutation (int k,  

 IMSLS_RETURN_USER, int ir[], 
 0) 

Optional Arguments 
IMSLS_RETURN_USER, int ir[]  (Output) 

User-supplied array of length k containing the random permutation of 
the integers from 1 to k. 

Description 
Routine imsls_random_permutation generates a pseudorandom permutation 
of the integers from 1 to k. It begins by filling a vector of length k with the 
consecutive integers 1 to k. Then, with M initially equal to k, a random index  
J between 1 and M (inclusive) is generated. The element of the vector with the 
index M and the element with index J swap places in the vector. M is then 
decremented by 1 and the process repeated until M = 1. 

Example 
In this example, imsls_random_permutation is called to produce a 
pseudorandom permutation of the integers from 1 to 10. 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
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  int *ir, k = 10; 
 
  imsls_random_seed_set(123457); 
 
  ir = imsls_random_permutation(k, 0); 
   
  printf("Random permutation of the integers from 1 to 10\n");   
  imsls_i_write_matrix("", 1, k, ir,  
         IMSLS_NO_COL_LABELS, 0); 
 } 
 

Output 
Random permutation of the integers from 1 to 10 
  
  5    9    2    8    1    6    4    7    3   10 

 

random_sample_indices 
Generates a simple pseudorandom sample of indices. 

Synopsis 
#include <imsls.h> 
int *imsls_random_sample_indices (int nsamp, int npop, ..., 0) 

Required Arguments 

int nsamp   (Input) 
Sample size desired. 

int npop  (Input) 
Number of items in the population. 

Return Value 
An array  of length nsamp containing the indices of the sample. To release this 
space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_random_sample_indices (int nsamp, int npop,  

 IMSLS_RETURN_USER, int ir[], 
 0) 
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Optional Arguments 
IMSLS_RETURN_USER, int ir[]  (Output) 

User-supplied array of length nsamp containing the indices of the 
sample. 

Description 
Routine imsls_random_sample_indices generates the indices of a 
pseudorandom sample,without replacement, of size nsamp numbers from a 
population of size npop. If nsamp is greater than npop/2, the integers from 1 to 
npop are selected sequentially with a probability conditional on the number 
selected and the number remaining to be considered. If, when the i-th population 
index is considered, j items have been included in the sample, then the index i is 
included with probability (nsamp � j)/(npop + 1 � i). 

If nsamp is not greater than npop/2, a O(nsamp) algorithm due to Ahrens and 
Dieter (1985) is used. Of the methods discussed by Ahrens and Dieter, the one 
called SG* is used in imsls_random_sample_indices. It involves a 
preliminary selection of q indices using a geometric distribution for the distances 
between each index and the next one. If the preliminary sample size q is less than 
nsamp, a new preliminary sample is chosen, and this is continued until a 
preliminary sample greater in size than nsamp is chosen. This preliminary sample 
is then thinned using the same kind of sampling as described above for the case in 
which the sample size is greater than half of the population size. Routine 
imsls_random_sample_indices does not store the preliminary sample 
indices, but rather restores the state of the generator used in selecting the sample 
initially, and then passes through once again, making the final selection as the 
preliminary sample indices are being generated. 

Example 
In this example, imsls_random_sample_indices is used to generate the 
indices of a pseudorandom sample of size 5 from a population of size 100. 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int *ir, nsamp = 5, npop = 100; 
 
  imsls_random_seed_set(123457); 
 
  ir = imsls_random_sample_indices(nsamp, npop, 0); 
   
  imsls_i_write_matrix("Random Sample", 1, nsamp, ir,  
         IMSLS_NO_COL_LABELS, 0); 
 } 
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Output 
                    
     Random Sample 

  2   22   53   61   79 

random_sample 
Generates a simple pseudorandom sample from a finite population. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_sample (int nrow, int nvar, float population[], 

int nsamp,..., 0) 

The type double function is imsls_d_random_sample. 

Required Arguments 

int nrow   (Input) 
Number of rows of data in population. 

int nvar   (Input) 
Number of variables in the population and in the sample. 

float population[]   (Input) 
nrow by nvar matrix containing the population to be sampled. If either 
of the optional arguments IMSLS_FIRST_CALL or 
IMSLS_ADDITIONAL_CALL are specified, then population contains a 
different part of the population on each invocation, otherwise 
population contains the entire population. 

int nsamp   (Input) 
The sample size desired. 

Return Value 
nsamp by nvar matrix containing the sample. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_sample (int nrow, int nvar, float population[], 

int nsamp, 
IMSLS_FIRST_CALL, int **index, int *npop 
IMSLS_FIRST_CALL_USER, int index[], int *npop 
IMSLS_ADDITIONAL_CALL, int *index, int *npop, float *samp, 
IMSLS_POPULATION_COL_DIM, int population_col_dim, 
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IMSLS_RETURN_USER, int samp[], 
 0) 

Optional Arguments 
IMSLS_FIRST_CALL, int **index,  int *npop   (Output) 

This is the first invocation with this data; additional calls  to  
imsls_f_random_sample may be made to add to the population.  
Additional calls  should be made using the optional argument 
IMSLS_ADDITIONAL_CALL .  Argument index is the address of a 
pointer to an internally allocated array of length nsamp containing the 
indices of the sample in the population.  Argument npop returns the  
number of items in the population.  If the population is input a few items 
at a time, the first call to imsls_f_random_sample should use 
IMSLS_FIRST_CALL, and subsequent calls should use 
IMSLS_ADDITIONAL_CALL.  See example 2.        

IMSLS_FIRST_CALL_USER, int index[], int *npop   (Output) 
Storage for index is provided by the user.  See IMSLS_FIRST_CALL.  

IMSLS_ADDITIONAL_CALL, int *index,  int *npop, float *samp   
(Input/Output) 
This is an additional invocation of imsls_f_random_sample, and 
updating for the subpopulation in population is performed. Argument 
index is a pointer to an array of length nsamp containing the indices of 
the sample in the population, as returned using optional argument 
IMSLS_FIRST_CALL.  Argument npop, also obtained using optional 
argument IMSLS_FIRST_CALL, returns the  number of items in the 
population.  It is not necessary to know the number of items in the 
population in advance. npop is used to cumulate the population size and 
should not be changed between calls to imsls_f_random_sample.  
Argument samp  is a pointer to the array of size nsamp by nvar 
containing the sample.  samp  is the result of calling 
imsls_f_random_sample with optional argument 
IMSLS_FIRST_CALL.   See example 2 

IMSLS_POPULATION_COL_DIM, int population_col_dim   (Input) 
Column dimension of the matrix population. 
Default: x_col_dim = nvar  

IMSLS_RETURN_USER, int samp[]  (Output) 
User-supplied array of size nrow by nvar containing the sample.  This 
option should not be used if IMSLS_ADDITIONAL_CALL is used. 
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Description 
Routine imsls_f_random_sample generates a pseudorandom sample from a 
given population, without replacement, using an algorithm due to McLeod and 
Bellhouse (1983). 

The first nsamp items in the population are included in the sample. Then, for each 
successive item from the population, a random item in the sample is replaced by 
that item from the population with probability equal to the sample size divided by 
the number of population items that have been encountered at that time. 

Example 1 
In this example, imsls_f_random_sample is used to generate a sample of size 
5 from a population stored in the matrix population.  

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int nrow = 176, nvar = 2, nsamp = 5; 
  float *population;  
  float *sample;  
 
  population = imsls_f_data_sets(2, 0); 
 
  imsls_random_seed_set(123457); 
 
  sample = imsls_f_random_sample(nrow, nvar, population, nsamp, 0); 
      
  imsls_f_write_matrix("The sample", nsamp, nvar, sample,  
         IMSLS_NO_ROW_LABELS, 
         IMSLS_NO_COL_LABELS, 
         0); 
} 

Output 
      The sample 
      1764          36 
      1828          62 
      1923           6 
      1773          35 
      1769         106 

 

Example 2 
Routine imsls_f_random_sample is now used to generate a sample of size 5 
from the same population as in the example above except the data are input to 
RNSRS one observation at a time. This is the way imsls_f_random_sample 
may be used to sample from a file on disk or tape. Notice that the number of 
records need not be known in advance. 

#include <stdio.h> 
#include <imsls.h> 



     

     
 

Chapter 12: Random Number Generation random_option � 845 

     
     

 

 
void main() 
{ 
  int i, nrow = 176, nvar = 2, nsamp = 5; 
  int *index, npop; 
  float *population;  
  float *sample;  
 
  population = imsls_f_data_sets(2, 0); 
 
  imsls_random_seed_set(123457); 
 
  sample = imsls_f_random_sample(1, 2, population, nsamp,  
     IMSLS_FIRST_CALL, &index, &npop, 
     0); 
  for (i = 1; i < 176; i++) { 
    imsls_f_random_sample(1, 2, &population[2*i], nsamp,  
     IMSLS_ADDITIONAL_CALL, index, &npop, sample,  
     0); 
  } 
  printf("The population size is %d\n", npop); 
  imsls_i_write_matrix("Indices of random sample", 5, 1, index, 0); 
 
 
  imsls_f_write_matrix("The sample", nsamp, nvar, sample,  
         IMSLS_NO_ROW_LABELS, 
         IMSLS_NO_COL_LABELS, 
         0); 
 } 

Output 
The population size is 176 
  
Indices of random sample 
         1    16 
         2    80 
         3   175 
         4    25 
         5    21 
  
      The sample 
      1764          36 
      1828          62 
      1923           6 
      1773          35 
      1769         106 

random_option 
Selects the uniform (0, 1) multiplicative congruential pseudorandom number 
generator or a generalized feedback shift register (GFSR) method. 

Synopsis 
#include <imsls.h> 
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void imsls_random_option (int generator_option) 

Required Arguments 

int generator_option   (Input) 
Indicator of the generator. Argument generator_option is used to 
choose the multiplier and whether or not shuffling is done, or the GFSR 
method. 

generator_option Generator 
1 The multiplier 16807 is used. 
2 The multiplier 16807 is used with shuffling. 
3 The multiplier 397204094 is used. 
4 The multiplier 397204094 is used with shuffling. 
5 The multiplier 950706376 is used. 
6 The multiplier 950706376 is used with shuffling. 
7 GFSR, with the recursion Xt = Xt-���� � Xt-�� is 

used 

Description 
The uniform pseudorandom number generators use a multiplicative congruential 
method, with or without shuffling. The value of the multiplier and whether or not 
to use shuffling are determined by imsls_random_option. The description of 
function imsls_f_random_uniform may provide some guidance in the choice 
of the form of the generator. If no selection is made explicitly, the generators use 
the multiplier 16807 without shuffling. This form of the generator has been in use 
for some time (see Lewis et al. 1969). 

Example 
See function imsls_random_GFSR_table_get (page 853). 

random_option_get 
Retrieves the uniform (0, 1) multiplicative congruential pseudorandom number 
generator. 

Synopsis 
#include <imsls.h> 
int imsls_random_option_get () 

Return Value 
Indicator of the generator. 
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result Generator 

1 The multiplier 16807 is used. 
2 The multiplier 16807 is used with shuffling. 
3 The multiplier 397204094 is used. 
4 The multiplier 397204094 is used with shuffling. 
5 The multiplier 950706376 is used. 
6 The multiplier 950706376 is used with shuffling. 
7 GFSR, with the recursion Xt = Xt-���� � Xt-�� is 

used 

Description 
The routine imsls_random_option_get retrieves the uniform (0, 1) 
multiplicative congruential pseudorandom number generator or the GRSR method. 
The uniform pseudorandom number generators use a multiplicative congruential 
method, with or without shuffling. The value of the multiplier and whether or not 
to use shuffling are determined by imsls_random_option.  

 

random_seed_get 
Retrieves the current value of the seed used in the random number generators. 

Synopsis 
#include <imsls.h> 
int imsls_random_seed_get ( ) 

Return Value 
The value of the seed. 

Description 
Function imsls_random_seed_get retrieves the current value of the “seed” 
used in the random number generators. A reason for doing this would be to restart 
a simulation, using function imsls_random_seed_set to reset the seed. 

Example 
This example illustrates the statements required to restart a simulation using 
imsls_random_seed_get and imsls_random_seed_set. The example 
shows that restarting the sequence of random numbers at the value of the seed last 
generated is the same as generating the random numbers all at once. 
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#include <imsls.h> 
 
#define     N_RANDOM     5 
 
main() 
{ 
    int         seed = 123457; 
    float      *r1, *r2, *r; 
      
    imsls_random_seed_set(seed); 
    r1 = imsls_f_random_uniform(N_RANDOM, 0); 
    imsls_f_write_matrix ("First Group of Random Numbers", 1, 
                           N_RANDOM, r1, 0); 
    seed = imsls_random_seed_get(); 
 
    imsls_random_seed_set(seed); 
    r2 = imsls_f_random_uniform(N_RANDOM, 0); 
    imsls_f_write_matrix ("Second Group of Random Numbers", 1,  
                           N_RANDOM, r2, 0); 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_uniform(2*N_RANDOM, 0); 
    imsls_f_write_matrix ("Both Groups of Random Numbers", 1,  
                           2*N_RANDOM, r, 0); 
} 

Output 

               First Group of Random Numbers 
         1           2           3           4           5 
    0.9662      0.2607      0.7663      0.5693      0.8448 
  
              Second Group of Random Numbers 
         1           2           3           4           5 
    0.0443      0.9872      0.6014      0.8964      0.3809 
  
                     Both Groups of Random Numbers 
         1           2           3           4           5           6 
    0.9662      0.2607      0.7663      0.5693      0.8448      0.0443 
  
         7           8           9          10 
    0.9872      0.6014      0.8964      0.3809 

random_substream_seed_get 
Retrieves a seed for the congruential generators that do not do shuffling that will 
generate random numbers beginning 100,000 numbers farther along. 

Synopsis 
#include <imsls.h> 
int imsls_random_substream_seed_get (int iseed1) 
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Required Arguments 

int iseed1   (Input) 
The seed that yields the first stream. 

Return Value 
The seed that yields a stream beginning 100,000 numbers beyond the stream that 
begins with iseed1. 

Description 
Given a seed, iseed1, imsls_random_substream_seed_get determines 
another seed, such that if one of the IMSL multiplicative congruential generators, 
using no shuffling, went through 100,000 generations starting with iseed1, the 
next number in that sequence would be the first number in the sequence that 
begins with the returned seed. 

Note that imsls_random_substream_seed_get works only when a 
multiplicative congruential generator without shuffling is used. This means that 
either the routine imsls_random_option has not been called at all or that it has 
been last called with generator_option taking a value of 1, 3, or 5. 

For many of the IMSL generators for nonuniform distributions that do not use the 
inverse CDF method, the distance between the sequences generated starting with 
iseed1 and starting with the returned seed may be less than 100,000. This is 
because the nonuniform generators that use other techniques may require more 
than one uniform deviate for each output deviate. 

The reason that one may want two seeds that generate sequences a known 
distance apart is for blocking Monte Carlo experiments or for running parallel 
streams 

Example 
In this example, imsls_random_substream_seed_get is used to determine 
seeds for 4 separate streams, each 200,000 numbers apart, for a multiplicative 
congruential generator without shuffling. (Since imsls_random_option is not 
invoked to select a generator, the multiplier is 16807.) Since the streams are 
200,000 numbers apart,  each seed requires two invocations of 
imsls_random_substream_seed_get. All of the streams are non-
overlapping, since the period of the underlying generator is 2,147,483,646.  The 
resulting seed are then verified by checking the seed after generating random 
sequences of length 200,000. 

 
#include <imsls.h> 
 
main() 
{ 
  int i, is1, is2, is3, is4; 
  float *r; 
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  is1 = 123457; 
  is2 = imsls_random_substream_seed_get(is1); 
  is2 = imsls_random_substream_seed_get(is2); 
  is3 = imsls_random_substream_seed_get(is2); 
  is3 = imsls_random_substream_seed_get(is3); 
  is4 = imsls_random_substream_seed_get(is3); 
  is4 = imsls_random_substream_seed_get(is4); 
  printf("Seeds for four separate streams:\n"); 
  printf("%d\t%d\t%d\t%d\n\n", is1, is2, is3, is4); 
 
  imsls_random_seed_set(is1); 
  for (i=0;i<3;i++) { 
    r = imsls_f_random_uniform(200000, 0); 
    printf("seed after %d random numbers: %d\n", (i+1)*200000,  
    imsls_random_seed_get()); 
    if (r) free(r); 
  } 
} 

Output 
Seeds for four separate streams: 
123457 2016130173 85016329 979156171 
 
seed after 200000 random numbers: 2016130173 
seed after 400000 random numbers: 85016329 
seed after 600000 random numbers: 979156171 
 

random_seed_set 
Initializes a random seed for use in the random number generators. 

Synopsis 
#include <imsls.h> 
void imsls_random_seed_set (int seed) 

Required Arguments 

int seed   (Input) 
The seed of the random number generator. The argument seed must be 
in the range (0, 2147483646). If seed is 0, a value is computed using 
the system clock; hence, the results of programs using the random 
number generators will be different at various times. 

Description 
Function imsls_random_seed_set is used to initialize the seed used in the 
random number generators. The form of the generators is as follows: 

xi � cxi-1mod (231 � 1) 
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The value of x0 is the seed. If the seed is not initialized prior to invocation of any 
of the functions for random number generation by calling 
imsls_random_seed_set, the seed is initialized by the system clock. The seed 
can be reinitialized to a clock-dependent value by calling 
imsls_random_seed_set with seed set to 0. 

The effect of imsls_random_seed_set is to set some global values used by the 
random number generators. A common use of imsls_random_seed_set is in 
conjunction with function imsls_random_seed_get to restart a simulation. 

Example 
See function imsls_random_seed_get (page 850). 

random_table_set 
Sets the current table used in the shuffled generator. 

Synopsis 
#include <imsls.h> 
void imsls_f_random_table_set (float table[]) 

The type double function is imsls_d_random_table_set. 

Required Arguments 

float table[]   (Input) 
Array of length 128 used in the shuffled generators. 

Description 
The values in table are initialized by the IMSL random number generators. The 
values are all positive in except if the user wishes to reinitialize the array, in 
which case the first element of the array is input as a nonpositive value. (Usually, 
one should avoid reinitializing these arrays, but it might be necessary sometimes 
in restarting a simulation.) If the first element of table is set to a nonpositive 
value on the call to imsls_random_table_set, on the next invocation of a 
routine to generate random numbers using a shuffled method , the appropriate 
array will be reinitialized. 

Example 
See function imsls_random_GFSR_table_get (page 853). 
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random_table_get 
Retrieves the current table used in the shuffled generator. 

Synopsis 
#include <imsls.h> 
void  imsls_f_random_table_get (float **table, ..., 0) 

The type double function is imsls_d_random_table_get. 

Required Arguments 

float **table   (Output) 
Address of a pointer to an array of length 128 containing the table used 
in the  shuffled generators. Typically,  float *table is  declared and 
&table is used as an argument. 

Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_random_table_get (float **table, 

IMSLS_RETURN_USER, float r[], 
 0) 

Optional Arguments 
IMSLS_RETURN_USER, float r[]   (Output) 

User-supplied array of length 1565 containing the table used in the  
GFSR generators. 

Description 
The values in table are initialized by the IMSL random number generators. The 
values are all positive except if the user wishes to reinitialize the array, in which 
case the first element of the array is input as a nonpositive value. (Usually, one 
should avoid reinitializing these arrays, but it might be necessary sometimes in 
restarting a simulation.) If the first element of table is set to a nonpositive value 
on the call to imsls_random_table_set, on the next invocation of a routine to 
generate random numbers using a shuffled method , the appropriate array will be 
reinitialized. 

Example 
See function imsls_random_GFSR_table_get (page 853). 
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random_GFSR_table_set 
Sets the current table used in the GFSR generator. 

Synopsis 
#include <imsls.h> 
void imsls_random_GFSR_table_set (int table[]) 

Required Arguments 

int table []  (Input) 
Array of length 1565 used in the GFSR generators. 

Description 
The values in table are initialized by the IMSL random number generators. The 
values are all positive except if the user wishes to reinitialize the array, in which 
case the first element of the array is input as a nonpositive value. (Usually, one 
should avoid reinitializing these arrays, but it might be necessary sometimes in 
restarting a simulation.) If the first element of table is set to a nonpositive value 
on the call to imsls_random_GFSR_table_set, on the next invocation of a 
routine to generate random numbers using a GFSR method , the appropriate array 
will be reinitialized. 

Example 
See function imsls_random_GFSR_table_get (page 853). 

random_GFSR_table_get 
Retrieves the current table used in the GFSR generator. 

Synopsis 
#include <imsls.h> 
void imsls_random_GFSR_table_get (int **table, ..., 0) 

Required Arguments 

int **table   (Output) 
Address of a pointer to an array of length 1565 containing the table used 
in the  GFSR generators.  Typically,  int *table is  declared and 
&table is used as an argument. 

Synopsis with Optional Arguments 
#include <imsls.h> 
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void imsls_random_GFSR_table_get (int **table, 
IMSLS_RETURN_USER, int r[], 
 0) 

Optional Arguments 
IMSLS_RETURN_USER, int r[]   (Output) 

User-supplied array of length 1565 containing the table used in the 
GFSR generators. 

Description 
The values in table are initialized by the IMSL random number generators. The 
values are all positive except if the user wishes to reinitialize the array, in which 
case the first element of the array is input as a nonpositive value. (Usually, one 
should avoid reinitializing these arrays, but it might be necessary sometimes in 
restarting a simulation.) If the first element of table is set to a nonpositive value 
on the call to imsls_random_GFSR_table_set, on the next invocation of a 
routine to generate random numbers using a GFSR method, the appropriate array 
will be reinitialized. 

Example 
In this example, three separate simulation streams are used, each with a different 
form of the generator. Each stream is stopped and restarted. (Although this 
example is obviously an artificial one, there may be reasons for maintaining 
separate streams and stopping and restarting them because of the nature of the 
usage of the random numbers coming from the separate streams.) 

 
#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  float *r, *table; 
  int  nr, iseed1, iseed2, iseed7; 
  int *itable; 
 
  nr = 5; 
  iseed1 = 123457; 
  iseed2 = 123457; 
  iseed7 = 123457; 
 
  /* Begin first stream, iopt = 1 (by default) */ 
  imsls_random_seed_set (iseed1); 
  r = imsls_f_random_uniform (nr, 0); 
  iseed1 = imsls_random_seed_get (); 
  imsls_f_write_matrix ("First stream output", 1, 5, r, 
   IMSLS_NO_COL_LABELS, 
   IMSLS_NO_ROW_LABELS, 0); 
  printf("    Output seed\t%d\n\n", iseed1); 
  free(r); 
 



     

     
 

Chapter 12: Random Number Generation random_GFSR_table_get � 855 

     
     

 

  /* Begin second stream, iopt = 2 */ 
  imsls_random_option (2); 
  imsls_random_seed_set (iseed2); 
  r = imsls_f_random_uniform (nr, 0); 
  iseed2 = imsls_random_seed_get (); 
  imsls_f_random_table_get (&table, 0); 
  imsls_f_write_matrix ("Second stream output", 1, 5, r, 
   IMSLS_NO_COL_LABELS, 
   IMSLS_NO_ROW_LABELS, 0); 
  printf("    Output seed\t%d\n\n", iseed2); 
  free(r); 
 
  /* Begin third stream, iopt = 7 */ 
  imsls_random_option (7); 
  imsls_random_seed_set (iseed7); 
  r = imsls_f_random_uniform (nr, 0); 
  iseed7 = imsls_random_seed_get (); 
  imsls_random_GFSR_table_get (&itable, 0); 
  imsls_f_write_matrix ("Third stream output", 1, 5, r, 
   IMSLS_NO_COL_LABELS, 
   IMSLS_NO_ROW_LABELS, 0); 
  printf("    Output seed\t%d\n\n", iseed7); 
  free(r); 
 
  /* Reinitialize seed and resume first stream */ 
  imsls_random_option (1); 
  imsls_random_seed_set (iseed1); 
  r = imsls_f_random_uniform (nr, 0); 
  iseed1 = imsls_random_seed_get (); 
  imsls_f_write_matrix ("First stream output", 1, 5, r, 
   IMSLS_NO_COL_LABELS, 
   IMSLS_NO_ROW_LABELS, 0); 
  printf("    Output seed\t%d\n\n", iseed1); 
  free(r); 
 
  /*  
   * Reinitialize seed and table for shuffling and 
   * resume second stream  
   */ 
  imsls_random_option (2); 
  imsls_random_seed_set (iseed2); 
  imsls_f_random_table_set (table); 
  r = imsls_f_random_uniform (nr, 0); 
  iseed2 = imsls_random_seed_get (); 
  imsls_f_write_matrix ("Second stream output", 1, 5, r, 
   IMSLS_NO_COL_LABELS, 
   IMSLS_NO_ROW_LABELS, 0); 
  printf("    Output seed\t%d\n\n", iseed2); 
  free(r); 
 
  /*  
   * Reinitialize seed and table for GFSR and  
   * resume third stream. 
   */ 
  imsls_random_option (7); 
  imsls_random_seed_set (iseed7); 
  imsls_random_GFSR_table_set (itable); 
  r = imsls_f_random_uniform (nr, 0); 
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  iseed7 = imsls_random_seed_get (); 
  imsls_f_write_matrix ("Third stream output", 1, 5, r, 
   IMSLS_NO_COL_LABELS, 
   IMSLS_NO_ROW_LABELS, 0); 
  printf("    Output seed\t%d\n\n", iseed7); 
  free(r); 

 
} 

 Output 
 
                    First stream output 
    0.9662      0.2607      0.7663      0.5693      0.8448 
 Output seed 1814256879 
 
  
                   Second stream output 
    0.7095      0.1861      0.4794      0.6038      0.3790 
 Output seed 1965912801 
 
  
                    Third stream output 
    0.3914      0.0263      0.7622      0.0281      0.8997 
 Output seed 1932158269 
 
  
                    First stream output 
    0.0443      0.9872      0.6014      0.8964      0.3809 
 Output seed 817878095 
 
  
                   Second stream output 
    0.2557      0.4788      0.2258      0.3455      0.5811 
 Output seed 2108806573 
 
  
                    Third stream output 
    0.7519      0.5084      0.9070      0.0910      0.6917 
 Output seed 1485334679 
 

faure_next_point 
Computes a shuffled Faure sequence. 

Synopsis 
#include <imsls.h> 
Imsls_faure* imsls_faure_sequence_init (int ndim, �, 0) 
float* imsls_f_faure_next_point (Imsls_faure *state, �, 0) 
void imsls_faure_sequence_free (Imsls_faure *state) 
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The type double function is imsls_d_faure_next_point. The functions 
imsls_faure_sequence_init and imsls_faure_sequence_free  
are precision independent. 

Required Arguments for imsls_faure_sequence_init 
int ndim   (Input) 

The dimension of the hyper-rectangle. 

Return Value for imsls_faure_sequence_init 
Returns a structure that contains information about the sequence. The structure 
should be freed using imsls_faure_sequence_free after it is no longer 
needed. 

Required Arguments for imsls_faure_next_point 
Imsls_faure *state   (Input/Output) 

Structure created by a call to imsls_faure_sequence_init. 

Return Value for imsls_faure_next_point 
Returns the next point in the shuffled Faure sequence.  To release this space, use 
free. 

Required Arguments for imsls_faure_sequence_free 
Imsls_faure *state   (Input/Output) 

Structure created by a call to imsls_faure_sequence_init. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_faure_sequence_init (int ndim, 

IMSLS_BASE, int base, 
IMSLS_SKIP, int skip, 
0) 

float*  imsls_f_faure_next_point (Imsls_faure *state, 
IMSLS_RETURN_USER, float *user, 
IMSLS_RETURN_SKIP, int *skip, 
0) 

Optional Arguments 
IMSLS_BASE, int base   (Input) 

The base of the Faure sequence. 
Default: The smallest prime greater than or equal to ndim. 

IMSLS_SKIP, int *skip   (Input) 
The number of points to be skipped at the beginning of the Faure 
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sequence. 
Default: / 2 1m �� �� �base , where m log  /logB� � �� �base  and B is the largest 
representable integer.  

IMSLS_RETURN_USER, float *user   (Output) 
User-supplied array of length ndim containing the current point in the 
sequence. 

IMSLS_RETURN_SKIP, int *skip   (Output) 
The current point in the sequence. The sequence can be restarted by 
initializing a new sequence using this value for IMSLS_SKIP, and using 
the same dimension for ndim. 

Description 
Discrepancy measures the deviation from uniformity of a point set.  

The discrepancy of the point set � �1,..., 0,1 , 1d
nx x d� � , is   

� � � �
� �

;
sup ,

E

A E ndD En n
�� �  

where the supremum is over all subsets of [0, 1]d of the form 

� �1
0, 0 0 1, 1... , ,

d jE t t t� � � ���� � �� � j d ,  

� is the Lebesque measure, and � �;A E n is the number of the xj contained in E.  

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there 
exists a constant c(d), depending only on d, such that  

� �
� �

� �log dndD c dn n
�  

for all n>1. 

Generalized Faure sequences can be defined for any prime base b�d. The lowest 
bound for the discrepancy is obtained for the smallest prime b�d, so the optional 
argument IMSLS_BASE defaults to the smallest prime greater than or equal to the 
dimension. 

The generalized Faure sequence x1, x2, …, is computed as follows:  

Write the positive integer n in its b-ary expansion,  

0

( ) i
i

i

n a n
�

�

�� b  

where ai(n) are integers, � �0 ia n b� � . 
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d�

The j-th coordinate of xn is 

( ) ( ) 1

0 0

( ) , 1j j k
n kd d

k d

x c a n b j
� �

� �

� �

� ���  

The generator matrix for the series, ( )jck d ,  is defined to be 

( )j d k
k d k dc j c�

�  

and  is an element of the Pascal matrix, k dc

� �
!

! !
0

k d

d k d
c d cc

k d

�
��

�� �
� ��

 

It is faster to compute a shuffled Faure sequence than to compute the Faure 
sequence itself. It can be shown that this shuffling preserves the low-discrepancy 
property. 

The shuffling used is the b-ary Gray code. The function G(n) maps the positive 
integer n into the integer given by its b-ary expansion. 

The sequence computed by this function is x(G(n)), where x is the generalized 
Faure sequence.  

Example 
In this example, five points in the Faure sequence are computed. The points are in 
the three-dimensional unit cube. 
Note that imsls_faure_sequence_init is used to create a structure that holds 
the state of the sequence. Each call to imsls_f_faure_next_point returns the 
next point in the sequence and updates the Imsls_faure structure. The final call to 
imsls_faure_sequence_free frees data items, stored in the structure, that 
were allocated by imsls_faure_sequence_init.  

 
#include "stdio.h" 
#include "imsl.h" 
 
 
void main() 
{ 
 Imsl_faure *state; 
 float  *x; 
 int        ndim = 3; 
 int        k; 
  
 state = imsl_faure_sequence_init(ndim, 0); 
 
 for (k = 0;  k < 5;  k++) { 
  x = imsl_f_faure_next_point(state, 0); 
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  printf("%10.3f %10.3f  %10.3f\n", x[0], x[1], x[2]); 
             free(x); 
 } 
 
 imsl_faure_sequence_free(state); 
} 
 

Output 
 
     0.334      0.493       0.064 
     0.667      0.826       0.397 
     0.778      0.270       0.175 
     0.111      0.604       0.509 
     0.445      0.937       0.842 
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 Chapter 13: Printing Functions 

Routines 
Print a matrix or vector..................................................write_matrix 861 
Set the page width and length.................................................. page 867 
Set the printing options ...............................................write_options 868 

write_matrix 
Prints a rectangular matrix (or vector) stored in contiguous memory locations. 

Synopsis 
#include <imsls.h> 
void imsls_f_write_matrix (char *title, int nra, int nca, float a[], 

…, 0) 

For int a[], use imsls_i_write_matrix.  
For double a[], use imsls_d_write_matrix. 

Required Arguments 

char *title   (Input) 
Matrix title. Use \n within a title to create a new line. Long titles are 
automatically wrapped. 

int nra   (Input) 
Number of rows in the matrix. 

int nca   (Input) 
Number of columns in the matrix. 

float a[]   (Input) 
Array of size nra � nca containing the matrix to be printed. 
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Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_f_write_matrix (char *title, int nra, int nca, float a[], 

IMSLS_TRANSPOSE, 
IMSLS_A_COL_DIM, int a_col_dim, 
IMSLS_PRINT_ALL, or 
IMSLS_PRINT_LOWER, or 
IMSLS_PRINT_UPPER, or 
IMSLS_PRINT_LOWER_NO_DIAG, or 
IMSLS_PRINT_UPPER_NO_DIAG, 
IMSLS_WRITE_FORMAT, char *fmt, 
IMSLS_NO_ROW_LABELS, or 
IMSLS_ROW_NUMBER, or 
IMSLS_ROW_NUMBER_ZERO, or 
IMSLS_ROW_LABELS, char *rlabel[], 
IMSLS_NO_COL_LABELS, or 
IMSLS_COL_NUMBER, or 
IMSLS_COL_NUMBER_ZERO, or 
IMSLS_COL_LABELS, char *clabel[], 
0) 

Optional Arguments 
IMSLS_TRANSPOSE 

Print aT. 

IMSLS_A_COL_DIM, int a_col_dim   (Input) 
Column dimension of a. 
Default: a_col_dim = nca 

IMSLS_PRINT_ALL, or 
IMSLS_PRINT_LOWER, or 
IMSLS_PRINT_UPPER, or 
IMSLS_PRINT_LOWER_NO_DIAG, or 
IMSLS_PRINT_UPPER_NO_DIAG 

Exactly one of these optional arguments can be specified to 
indicate that either a triangular part of the matrix or the entire 
matrix is to be printed. If omitted, the entire matrix is printed. 

Keyword Action 
IMSLS_PRINT_ALL Entire matrix is printed (the 

default). 
IMSLS_PRINT_LOWER Lower triangle of the matrix is 

printed, including the diagonal. 
IMSLS_PRINT_UPPER Upper triangle of the matrix is 

printed, including the diagonal. 
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Keyword Action 
IMSLS_PRINT_LOWER_NO_DIAG Lower triangle of the matrix is 

printed, without the diagonal. 
IMSLS_PRINT_UPPER_NO_DIAG Upper triangle of the matrix is 

printed, without the diagonal. 

IMSLS_WRITE_FORMAT, char *fmt   (Input) 
Character string containing a list of C conversion specifications (formats) 
to be used when printing the matrix. Any list of C conversion 
specifications suitable for the data type can be given. For example, 
fmt = "%10.3f" specifies the conversion character f for the entire 
matrix. For the conversion character f, the matrix must be of type float or 
double. Alternatively,fmt = "%10.3e%10.3e%10.3f%10.3f%10.3f" 
specifies the conversion character e for columns 1 and 2 and the 
conversion character f for columns 3, 4, and 5. If the end of fmt is 
encountered and if some columns of the matrix remain, format control 
continues with the first conversion specification in fmt. 

Aside from restarting the format from the beginning, other exceptions to 
the usual C formatting rules are as follows: 

1. Characters not associated with a conversion specification are not 
allowed. For example, in the format fmt = "1%d2%d", the characters  
1 and 2 are not allowed and result in an error. 

2. A conversion character d can be used for floating-point values (matrices 
of type float or double). The integer part of the floating-point value is 
printed. 

3. For printing numbers whose magnitudes are unknown, the conversion 
character g is useful; however, the decimal points will generally not be 
aligned when printing a column of numbers. The w (or W) conversion 
character is a special conversion character used by this function to select 
a conversion specification so that the decimal points will be aligned. The 
conversion specification ending with w is specified as "%n.dw". Here, n 
is the field width and d is the number of significant digits generally 
printed. Valid values for n are 3, 4, …, 40. Valid values for d are 1, 2, 
…, n � 2. If fmt specifies one conversion specification ending with w, 
all elements of a are examined to determine one conversion specification 
for printing. If fmt specifies more than one conversion specification, 
separate conversion specifications are generated for each conversion 
specification ending with w. Set fmt = "10.4w" for a single conversion 
specification selected automatically with field width 10 and with four 
significant digits. 

IMSLS_NO_ROW_LABELS, or 
IMSLS_ROW_NUMBER, or 
IMSLS_ROW_NUMBER_ZERO, or 
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IMSLS_ROW_LABELS, char *rlabel[]   (Input) 
If IMSLS_ROW_LABELS is specified, rlabel is a vector of length nra 
containing pointers to the character strings comprising the row labels. 
Here, nra is the number of rows in the printed matrix. Use \n within a 
label to create a new line. Long labels are automatically wrapped. If no 
row labels are desired, use the IMSLS_NO_ROW_LABELS optional 
argument. If the numbers 1, 2,  …, nra are desired, use the 
IMSLS_ROW_NUMBER optional argument. If the numbers 0, 1, 2, …, 
nra � 1 are desired, use the IMSLS_ROW_NUMBER_ZERO optional 
argument. If none of these optional arguments is used, the numbers 1, 2, 
3, …, nra are used for the row labels by default whenever nra > 1.  
If nra = 1, the default is no row labels. 

IMSLS_NO_COL_LABELS, or 
IMSLS_COL_NUMBER, or 
IMSLS_COL_NUMBER_ZERO, or 
IMSLS_COL_LABELS, char *clabel[]   (Input) 

If IMSLS_COL_LABELS is specified, clabel is a vector of length 
nca + 1 containing pointers to the character strings comprising the 
column headings. The heading for the row labels is clabel [0]; 
clabel [i], i = 1, …, nca, is the heading for the i-th column. Use \n 
within a label to create a new line. Long labels are automatically 
wrapped. If no column labels are desired, use the 
IMSLS_NO_COL_LABELS optional argument. If the numbers 1, 2, …, 
nca, are desired, use the IMSLS_COL_NUMBER optional argument. If the 
numbers 0, 1, …, nca � 1 are desired, use the 
IMSLS_COL_NUMBER_ZERO optional argument. If none of these optional 
arguments is used, the numbers 1, 2, 3, …, nca are used for the column 
labels by default whenever nca > 1. If nca = 1, the default is no column 
labels. 

Description 
Function imsls_write_matrix prints a real rectangular matrix (stored in a) 
with optional row and column labels (specified by rlabel and clabel, 
respectively, regardless of whether a or aT is printed). An optional format, fmt, 
can be used to specify a conversion specification for each column of the matrix. 

In addition, the write matrix functions can restrict printing to the elements of the 
upper or lower triangles of a matrix by using the IMSLS_PRINT_UPPER, 
IMSLS_PRINT_LOWER, IMSLS_PRINT_UPPER_NO_DIAG, and 
IMSLS_PRINT_LOWER_NO_DIAG options. Generally, these options are used with 
symmetric matrices, but this is not required. Vectors can be printed by specifying 
a row or column dimension of 1. 

Output is written to the file specified by the function imsls_output_file 
(Chapter 14, “Utilities”). The default output file is standard output (corresponding 
to the file pointer stdout). A page width of 78 characters is used. Page width 
and page length can be reset by invoking function imsls_page (page 867). 
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Horizontal centering, the method for printing large matrices, paging, the method 
for printing NaN (Not a Number), and whether or not a title is printed on each 
page can be selected by invoking function imsls_write_options (page 868). 

Examples 

Example 1 
This example is representative of the most common situation in which no optional 
arguments are given. 

#include <imsls.h> 
 
#define NRA 3 
#define NCA 4 
 
main() 
{ 
    int     i, j; 
    float   a[NRA][NCA]; 
 
    for (i = 0; i < NRA; i++) { 
        for (j = 0; j < NCA; j++) { 
            a[i][j] = (i+1+(j+1)*0.1); 
        } 
 
    } 
                                /* Write matrix */ 
    imsls_f_write_matrix ("matrix\na", NRA, NCA, (float*) a, 0); 
} 

Output 

                     matrix 
                        a 
            1           2           3           4 
1         1.1         1.2         1.3         1.4 
2         2.1         2.2         2.3         2.4 
3         3.1         3.2         3.3         3.4 

Example 2 

In this example, some of the optional arguments available in the 
imsls_write_matrix functions are demonstrated. 

#include <imsls.h> 
 
#define NRA     3 
#define NCA     4 
 
main() 
{ 
    int         i, j; 
    float       a[NRA][NCA]; 
    char        *fmt = "%10.6W"; 
    char        *rlabel[] = {"row 1", "row 2", "row 3"}; 
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    char        *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"}; 
 
    for (i = 0; i < NRA; i++) { 
        for (j = 0; j < NCA; j++) { 
            a[i][j] = (i+1+(j+1)*0.1); 
        } 
    } 
                                /* Write matrix */ 
    imsls_f_write_matrix ("matrix\na", NRA, NCA, (float *)a,  
        IMSLS_WRITE_FORMAT, fmt,  
        IMSLS_ROW_LABELS, rlabel,  
        IMSLS_COL_LABELS, clabel,  
        IMSLS_PRINT_UPPER_NO_DIAG, 
        0); 
} 

Output 

                       matrix 
                          a 
            col 2       col 3       col 4             
row 1         1.2         1.3         1.4             
row 2                     2.3         2.4             
row 3                                 3.4             

Example 3 

In this example, a row vector of length four is printed. 

#include <imsls.h> 
 
#define NRA 1 
#define NCA 4 
 
main() 
{ 
    int         i; 
    float       a[NCA]; 
    char        *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"}; 
 
    for (i = 0; i < NCA; i++) {    
    a[i] = i + 1; 
   } 
                                /* Write matrix */ 
    imsls_f_write_matrix ("matrix\na", NRA, NCA, a,  
        IMSLS_COL_LABELS, clabel, 
        0); 
} 

Output 

                    matrix 
                       a 
     col 1       col 2       col 3       col 4 
         1           2           3           4 
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page 
Sets or retrieves the page width or length. 

Synopsis 
#include <imsls.h> 
void imsls_page (Imsls_page_options option, int *page_attribute) 

Required Arguments 

Imsls_page_options option   (Input) 
Option giving which page attribute is to be set or retrieved. The possible 
values are shown in the table below. 

Keyword Description 
IMSLS_SET_PAGE_WIDTH Sets the page width. 
IMSLS_GET_PAGE_WIDTH Retrieves the page width. 
IMSLS_SET_PAGE_LENGTH Sets the page length. 
IMSLS_GET_PAGE_LENGTH Retrieves the page length. 

int *page_attribute   (Input, if the attribute is set; Output, otherwise.) 
The value of the page attribute to be set or retrieved. The page width is 
the number of characters per line of output (default 78), and the page 
length is the number of lines of output per page (default 60). Ten or 
more characters per line and 10 or more lines per page are required. 

Example 
The following example illustrates the use of imsls_page to set the page width to 
40 characters. Function imsls_f_write_matrix is then used to print a  
3 � 4 matrix A, where aij = i + j/10. 

#include <imsls.h> 
 
#define NRA 3 
#define NCA 4 
main() 
{ 
    int         i, j, page_attribute; 
    float       a[NRA][NCA]; 
 
    for (i = 0; i < NRA; i++) { 
        for (j = 0; j < NCA; j++) { 
            a[i][j] = (i+1) + (j+1)/10.0; 
        } 
    } 
    page_attribute = 40; 
    imsls_page(IMSLS_SET_PAGE_WIDTH, &page_attribute); 
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    imsls_f_write_matrix("a", NRA, NCA, (float *)a, 0); 
} 

Output 
                  a 
            1           2           3 
1         1.1         1.2         1.3 
2         2.1         2.2         2.3 
3         3.1         3.2         3.3 
  
            4 
1         1.4 
2         2.4 
3         3.4 

write_options 
Sets or retrieves an option for printing a matrix. 

Synopsis 
#include <imsls.h> 
void imsls_write_options (Imsls_write_options option, 

int *option_value) 

Required Arguments 

Imsls_write_options option   (Input) 
Option giving the type of the printing attribute to set or retrieve. 

Keyword for Setting Keyword for Retrieving Attribute Description 
IMSLS_SET_DEFAULTS  uses the default settings 

for all parameters 
IMSLS_SET_CENTERING IMSLS_GET_CENTERING horizontal centering 
IMSLS_SET_ROW_WRAP IMSLS_GET_ROW_WRAP row wrapping 
IMSLS_SET_PAGING IMSLS_GET_PAGING paging 
IMSLS_SET_NAN_CHAR IMSLS_GET_NAN_CHAR method for printing NaN 
IMSLS_SET_TITLE_PAGE IMSLS_GET_TITLE_PAGE whether or not titles 

appear on each page 
IMSLS_SET_FORMAT IMSLS_GET_FORMAT default format for real 

and complex numbers 

int *option_value   (Input, if option is to be set; Output, otherwise) 
Value of the option attribute selected by option. The values to be used 
when setting attributes are described in a table in the description section. 
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Description 
Function imsls_write_options allows the user to set or retrieve an option for 
printing a matrix. Options controlled by imsls_write_options are horizontal 
centering, method for printing large matrices, paging, method for printing NaN, 
method for printing titles, and the default format for real and complex numbers. 
(NaN can be retrieved by functions imsls_f_machine and imsls_d_machine 
(Chapter 14, “Utilities”).  

The following values can be used for the attributes: 

Keyword Value Meaning 

CENTERING 0 
1 

Matrix is left justified. 
Matrix is centered. 

ROW_WRAP 0 
 

m 

Complete row is printed before the next 
row is printed. Wrapping is used if 
necessary. 
Here, m is a positive integer. Let n1 be 
the maximum number of columns that fit 
across the page, as determined by the 
widths in the conversion specifications 
starting with column 1. First, columns 1 
through n1 are printed for rows 1 through 
m. Let n2 be the maximum number of 
columns that fit across the page, starting 
with column n1+1. Second, columns n1+1 
through n1+n2 are printed for rows 1 
through m. This continues until the last 
columns are printed for rows 1 through 
m. Printing continues in this fashion for 
the next m rows, etc. 
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Keyword Value Meaning 

PAGING �2 
�1 

 
 

0 
 
 
 
k 

No paging occurs. 
Paging is on. Every invocation of an 
function imsls_write_matrix begins 
on a new page, and paging occurs within 
each invocation as is needed. 
Paging is on. The first invocation of an 
imsls_f_write_f_matrix function 
begins on a new page, and subsequent 
paging occurs as is needed. Paging 
occurs in the second and all subsequent 
calls to an imsls_f_write_matrix 
function only as needed. 
Turn paging on and set the number of 
lines printed on the current page to k 
lines. If k is greater than or equal to the 
page length, then the first invocation of 
an imsls_write_matrix function 
begins on a new page. In any case, 
subsequent paging occurs as is needed. 

NAN_CHAR 0 
1 

. . . . . . . . . . is printed for NaN. 
A blank field is printed for NaN. 

TITLE_PAGE 0 
1 

Title appears only on first page. 
Title appears on the first page and all 
continuation pages. 

FORMAT 0 
1 
2 

Format is "%10.4x". 
Format is "%12.6w". 
Format is "%22.5e". 

The w conversion character used by the FORMAT option is a special conversion 
character that can be used to automatically select a pretty C conversion 
specification ending in either e, f, or d. The conversion specification ending with 
w is specified as "%n.dw". Here, n is the field width, and d is the number of 
significant digits generally printed. 

Function imsls_write_options can be invoked repeatedly before using a 
function imsls_f_write_matrix to print a matrix. The matrix printing 
functions retrieve the values set by imsls_write_options to determine the 
printing options. It is not necessary to call imsls_write_options if a default 
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value of a printing option is desired. The defaults are as follows: 

Keyword Default Value Meaning 

CENTERING 0 left justified 
ROW_WRAP 1000 lines before wrapping 
PAGING �2 no paging 
NAN_CHAR 0 . . . . . . . . . . . . . . 
TITLE_PAGE 0 title appears only on the 

first page 
FORMAT 0 %10.4w 

Example 
The following example illustrates the effect of imsls_write_options when 
printing a 3 � 4 real matrix A with function imsls_f_write_matrix, where 
aij = i + j/10. The first call to imsls_f_write_options sets horizontal 
centering so that the matrix is printed centered horizontally on the page. In the 
next invocation of imsls_f_write_matrix, the left-justification option has 
been set by function imsls_write_options so the matrix is left justified when 
printed. 

#include <imsls.h> 
 
#define NRA 4 
#define NCA 3 
 
main() 
{ 
    int         i, j, option_value; 
    float       a[NRA][NCA]; 
 
    for (i = 0; i < NRA; i++) { 
        for (j = 0; j < NCA; j++) { 
            a[i][j] = (i+1) + (j+1)/10.0; 
        } 
    } 
                                /* Activate centering option */ 
    option_value = 1; 
    imsls_write_options (IMSLS_SET_CENTERING, &option_value); 
                                /* Write a matrix */ 
    imsls_f_write_matrix ("a", NRA, NCA, (float*) a, 0); 
                                /* Activate left justification */ 
    option_value = 0; 
    imsls_write_options (IMSLS_SET_CENTERING, &option_value); 
    imsls_f_write_matrix ("a", NRA, NCA, (float*) a, 0); 
} 
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Output 

                                       a 
                                 1           2           3 
                     1         1.1         1.2         1.3 
                     2         2.1         2.2         2.3 
                     3         3.1         3.2         3.3 
                     4         4.1         4.2         4.3 
  
                  a 
            1           2           3 
1         1.1         1.2         1.3 
2         2.1         2.2         2.3 
3         3.1         3.2         3.3 
4         4.1         4.2         4.3 
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Chapter 14: Utilities 

Routines 
14.1 Set Output Files 

Set output files ................................................................ output_file 874 
Get library version and license number ............................... version 878 

14.2 Error Handling 
Error message options................................................error_options 879 
Get error code.................................................................error_code 885 

14.3 Constants 
Integer machine constants...................................machine (integer) 886 
Float machine constants .......................................... machine (float) 888 
Common data sets........................................................... data_sets 890 

14.4 Mathematical Support 
Matrix-vector, matrix-matrix,  
vector-vector products ...............................................mat_mul_rect 893 
Rearrange elements of vector ................................permute_vector 897 
Interchange rows and columns of matrices ............permute_matrix 898 
Evaluate the binomial coeficient ...................... binomial_coefficient 900 
Evaluate the complete beta function......................................... beta 901 
Evaluate the real incomplete beta function ............beta_incomplete 903 
Evaluate the log of the real beta function........................... log_beta 904 
Evaluate the real gamma function .......................................gamma 905 
Evaluate the incomplete gamma function........ gamma_incomplete 907 
Evaluate the logarithm of the absolute value 
of the gamma function .................................................. log_gamma 909 
Return the number of CPU seconds used .............................. ctime 911 
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output_file 
Sets the output file or the error message output file. 

Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_output_file ( 

IMSLS_SET_OUTPUT_FILE, FILE *ofile, 
IMSLS_GET_OUTPUT_FILE, FILE **pofile, 
IMSLS_SET_ERROR_FILE, FILE *efile, 
IMSLS_GET_ERROR_FILE, FILE **pefile, 
0) 

Optional Arguments 
IMSLS_SET_OUTPUT_FILE, FILE *ofile   (Input) 

Sets the output file to ofile. 
Default: ofile = stdout 

IMSLS_GET_OUTPUT_FILE, FILE **pofile   (Output) 
Sets the FILE pointed to by pofile to the current output file. 

IMSLS_SET_ERROR_FILE, FILE *efile   (Input) 
Sets the error message output file to efile. 
Default: efile = stderr 

IMSLS_GET_ERROR_FILE, FILE **pefile   (Output) 
Sets the FILE pointed to by pefile to the error message output file. 

Description 
This function allows the file used for printing by IMSL functions to be changed.  

If multiple threads are used then default settings are valid for each thread. When 
using threads it is possible to set different output files for each thread by calling 
imsls_output_file from within each thread.  See Example 2 for more details. 

 

Examples 

Example 1 
This example opens the file myfile and sets the output file to this new file. 
Function imsls_f_write_matrix then writes to this file. 

#include <stdio.h> 
#include <imsls.h> 
 
main() 
{ 
    FILE         *ofile; 
    float       x[] = {3.0, 2.0, 1.0}; 
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    imsls_f_write_matrix ("x (default file)", 1, 3, x, 0); 
 
    ofile = fopen("myfile", "w"); 
    imsls_output_file(IMSLS_SET_OUTPUT_FILE, ofile, 
                     0); 
    imsls_f_write_matrix ("x (myfile)", 1, 3, x, 0); 
} 

Output 

         x (default file) 
         1           2           3 
         3           2           1 

File myfile 
x (myfile) 
1           2           3 
3           2           1 
 

Example 2 
The following example illustrates how to direct output from IMSL routines that 
run in separate threads to different files.  First, two threads are created, each 
calling a different IMSL function, then the results are printed by calling 
imsls_f_write_matrix from within each thread. Note that 
imsls_output_file is called from within each thread to change the default 
output file.   

 

#include <pthread.h> 

#include <stdio.h> 

#include "imsls.h" 

void *ex1(void* arg); 

void *ex2(void* arg); 

void main() 

{ 

  pthread_t       thread1; 

  pthread_t       thread2; 

 

  /* Disable IMSL signal trapping. */ 

  imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0); 

 

  /* Create two threads. */ 
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  if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0) 

    perror("pthread_create"), exit(1);  

  if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0) 

    perror("pthread_create"), exit(1);  

   

  /* Wait for threads to finish. */ 

  if (pthread_join(thread1, NULL) != 0) 

    perror("pthread_join"),exit(1); 

  if (pthread_join(thread2, NULL) != 0) 

    perror("pthread_join"),exit(1); 

   

} 

void *ex1(void* arg) 

{ 

  float *rand_nums = NULL; 

  FILE  *file_ptr; 

  /* Open a file to write the result in. */ 

  file_ptr = fopen("ex1.out", "w"); 

  /* Set the output file for this thread. */ 

  imsls_output_file(IMSLS_SET_OUTPUT_FILE, file_ptr, 0); 

  /* Compute 5 random numbers. */ 

  imsls_random_seed_set(12345); 

  rand_nums = imsls_f_random_uniform(5, 0); 

  /* Output random numbers. */ 

  imsls_f_write_matrix("Random Numbers", 5, 1, rand_nums, 0); 

  if (rand_nums) free(rand_nums); 

  fclose(file_ptr); 

} 

void *ex2(void* arg) 

{  

  int n_intervals=10; 

  int n_observations=30; 



 

 
 

Chapter 14: Utilities output_file � 877 

 
 

 

  float *table; 

  float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 

        2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 

        0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 

        1.89, 0.90, 2.05}; 

  FILE  *file_ptr; 

  /* Open a file to write the result in. */ 

  file_ptr = fopen("ex2.out", "w"); 

  /* Set the output file for this thread. */ 

  imsls_output_file(IMSLS_SET_OUTPUT_FILE, file_ptr, 0); 

  table = imsls_f_table_oneway (n_observations, x, n_intervals, 0); 

  imsls_f_write_matrix("counts", 1, n_intervals, table, 0); 

   

  if (table) free(table); 

  fclose(file_ptr); 

} 

ex1.out 
Random Numbers 

 1      0.4919 

 2      0.3909 

 3      0.2645 

 4      0.1814 

 5      0.7546 

ex2.out 
                                counts 

         1           2           3           4           5           6 

         4           8           5           5           3           1 

  

         7           8           9          10 

         3           0           0           1 
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version 
Returns information describing the version of the library, serial number, operating 
system, and compiler. 

Synopsis 

#include <imsls.h> 
char *imsls_version (Imsls_keyword code) 

Required Arguments 

Imsls_keyword code   (Input) 
Index indicating which value is to be returned. It must be 
IMSLS_LIBRARY_VERSION, IMSLS_OS_VERSION, 
IMSLS_COMPILER_VERSION, or IMSLS_LICENSE_NUMBER. 

Return Value 
The requested value is returned. If code is out of range, then NULL is returned. 
Use free to release the returned string. 

Description 
Function imsls_version returns information describing the version of the 
library, the version of the operating system under which it was compiled, the 
compiler used, and the IMSL serial number.  

Example 
This example prints all the values returned by imsls_version on a particular 
machine. The output is omitted because the results are system dependent. 

#include <imsls.h> 
 
main() 
{ 
    char    *library_version, *os_version; 
    char    *compiler_version, *license_number; 
 
    library_version  = imsls_version(IMSLS_LIBRARY_VERSION); 
    os_version       = imsls_version(IMSLS_OS_VERSION); 
    compiler_version = imsls_version(IMSLS_COMPILER_VERSION); 
    license_number   = imsls_version(IMSLS_LICENSE_NUMBER); 
 
    printf("Library version = %s\n", library_version); 
    printf("OS version = %s\n", os_version); 
    printf("Compiler version = %s\n", compiler_version); 
    printf("Serial number = %s\n", license_number); 
} 
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error_options 
Sets various error handling options. 

Synopsis with Optional Arguments 
#include <imsls.h>  

void imsls_error_options ( 
IMSLS_SET_PRINT, Imsls_error type, int setting,  
IMSLS_SET_STOP, Imsls_error type, int setting,  
IMSLS_SET_TRACEBACK, Imsls_error type, int setting,  
IMSLS_FULL_TRACEBACK, int setting,  
IMSLS_GET_PRINT, Imsls_error type, int *psetting,  
IMSLS_GET_STOP, Imsls_error type, int *psetting,  
IMSLS_GET_TRACEBACK, Imsls_error type, int *psetting,  
IMSLS_SET_ERROR_FILE, FILE *file, 
IMSLS_GET_ERROR_FILE, FILE **pfile, 
IMSLS_ERROR_MSG_PATH, char *path, 
IMSLS_ERROR_MSG_NAME, char *name, 
IMSLS_ERROR_PRINT_PROC, Imsls_error_print_proc print_proc, 
IMSLS_SET_SIGNAL_TRAPPING, int setting,  
 0) 

Optional Arguments 
IMSLS_SET_PRINT, Imsls_error type, int setting   (Input) 

Printing of type type error messages is turned off if setting is 0; 
otherwise, printing is turned on. 
Default: Printing turned on for IMSLS_WARNING, IMSLS_FATAL, 
IMSLS_TERMINAL, IMSLS_FATAL_IMMEDIATE, and 
IMSLS_WARNING_IMMEDIATE messages 

IMSLS_SET_STOP, Imsls_error type, int setting   (Input) 
Stopping on type type error messages is turned off if setting is 0; 
otherwise, stopping is turned on.  
Default: Stopping turned on for IMSLS_FATAL and IMSLS_TERMINAL 
and IMSLS_FATAL_IMMEDIATE messages 

IMSLS_SET_TRACEBACK, Imsls_error type, int setting   (Input) 
Printing of a traceback on type type error messages is turned off if 
setting is 0; otherwise, printing of the traceback turned on.  
Default: Traceback turned off for all message types 

IMSLS_FULL_TRACEBACK, int setting   (Input) 
Only documented functions are listed in the traceback if setting is 0; 
otherwise, internal function names also are listed. 
Default: Full traceback turned off 
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IMSLS_GET_PRINT, Imsls_error type, int *psetting   (Output) 
Sets the integer pointed to by psetting to the current setting for 
printing of type type error messages. 

IMSLS_GET_STOP, Imsls_error type, int *psetting   (Output) 
Sets the integer pointed to by psetting to the current setting for 
stopping on type type error messages. 

IMSLS_GET_TRACEBACK, Imsls_error type, int *psetting   (Output) 
Sets the integer pointed to by psetting to the current setting for 
printing of a traceback for type type error messages. 

IMSLS_SET_ERROR_FILE, FILE *file   (Input) 
Sets the error output file. 
Default: file = stderr 

IMSLS_GET_ERROR_FILE, FILE **pfile   (Output) 
Sets the FILE * pointed to by pfile to the error output file. 

IMSLS_ERROR_MSG_PATH, char *path   (Input) 
Sets the error message file path. On UNIX systems, this is a colon-
separated list of directories to be searched for the file containing the 
error messages. 
Default: system dependent 

IMSLS_ERROR_MSG_NAME, char *name   (Input) 
Sets the name of the file containing the error messages. 
Default: file = "imsls_e.bin" 

IMSLS_ERROR_PRINT_PROC, Imsls_error_print_proc print_proc   (Input) 
Sets the error printing function. The procedure print_proc has the 
form void print_proc (Imsls_error type, long code, 
char *function_name, char *message). 

In this case, type is the error message type number (IMSLS_FATAL, 
etc.), code is the error message code number 
(IMSLS_MAJOR_VIOLATION, etc.), function_name is the name of the 
function setting the error, and message is the error message to be printed. 
If print_proc is NULL, then the default error printing function is used. 

IMSLS_SET_SIGNAL_TRAPPING, int setting   (Input) 
C/Stat/Library will use its own signal handler if setting is 1; otherwise 
the C/Stat/Library signal handler is not used.  If C/Stat/Library is called 
from a multi-threaded application, signal handling by C/Stat/Library 
must be turned off.  See Example 3 for details. 

 Default: setting = 1 

Return Value 
The return value is void. 
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Description 
This function allows the error handling system to be customized.  

If multiple threads are used then default settings are valid for each thread but can 
be altered for each individual thread. When using threads it is necessary to set 
options (excluding IMSLS_SET_SIGNAL_TRAPPING ) for each thread by calling 
imsls_error_options  from within each thread.  

The IMSL signal-trapping mechanism must be disabled when multiple threads are 
used. The IMSL signal-trapping mechanism can be disabled by making the 
following call before any threads are created: 

imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0); 

 See Example 3 and Example 4 for multithreaded examples. 

Examples 

Example 1 
In this example, the IMSLS_TERMINAL print setting is retrieved. Next, stopping 
on IMSLS_TERMINAL errors is turned off, output to standard output is redirected, 
and an error is deliberately caused by calling imsls_error_options with an 
illegal value. 

#include <imsls.h> 
#include <stdio.h> 
 
main() 
{ 
    int         setting; 
                              /* Turn off stopping on IMSLS_TERMINAL */ 
                              /* error messages and write error */ 
                              /* messages to standard output */ 
    imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 
                       IMSLS_SET_ERROR_FILE, stdout, 
                       0); 
                              /* Call imsls_error_options() with */ 
                              /* an illegal value */ 
    imsls_error_options(-1); 
                              /* Get setting for IMSLS_TERMINAL */ 
    imsls_error_options(IMSLS_GET_PRINT, IMSLS_TERMINAL, &setting, 
                       0); 
    printf("IMSLS_TERMINAL error print setting = %d\n", setting); 
} 

Output 
*** TERMINAL Error from imsls_error_options.  There is an error with 
*** argument number 1.  This may be caused by an incorrect number of 
*** values following a previous optional argument name. 
 
IMSLS_TERMINAL error print setting = 1 



 

 
 

882 � error_options IMSL C/Stat/Library 

 
 

 

Example 2 
In this example, IMSL’s error printing function has been substituted for the 
standard function. Only the first four lines are printed below. 

#include <imsls.h> 
#include <stdio.h> 
 
void         print_proc(Imsls_error, long, char*, char*); 
 
main() 
{ 
                           /* Turn off tracebacks on IMSLS_TERMINAL */ 
                           /* error messages and use a custom */ 
                           /* print function */ 
    imsls_error_options(IMSLS_ERROR_PRINT_PROC, print_proc, 
                       0); 
                           /* Call imsls_error_options() with an */ 
                           /* illegal value */ 
    imsls_error_options(-1); 
} 
 
void print_proc(Imsls_error type, long code, char *function_name, 
                char *message) 
{ 
    printf("Error message type %d\n", type); 
    printf("Error code %d\n", code); 
    printf("From function %s\n", function_name); 
    printf("%s\n", message); 
} 

Output  

Error message type 5 
Error code 103 
From function imsls_error_options 
There is an error with argument number 1.  This may be caused by an 
incorrect number of values following a previous optional argument name. 

Example 3 
In this example, two threads are created and error options is called within each 
thread to set the error handling options slightly different for each thread.  Since 
we expect to generate terminal errors in each thread, we must turn off stopping on 
terminal errors for each thread. Also notice that imsls_error_options is 
called from main to disable the IMSL signal-trapping mechanism.   
See Example 4 for a similar example, using WIN32 threads. Note since multiple 
threads are executing, the order of the errors output may differ on some systems. 

 
#include <pthread.h> 
#include <stdio.h> 
#include "imsls.h" 
 
void *ex1(void* arg); 
void *ex2(void* arg); 
void main() 
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{ 
  pthread_t       thread1; 
  pthread_t       thread2; 
 
  /* Disable IMSL signal trapping. */ 
  imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0); 
 
  /* Create two threads. */ 
  if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0) 
    perror("pthread_create"), exit(1);  
  if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0) 
    perror("pthread_create"), exit(1);  
   
  /* Wait for threads to finish. */ 
  if (pthread_join(thread1, NULL) != 0) 
    perror("pthread_join"),exit(1); 
  if (pthread_join(thread2, NULL) != 0) 
    perror("pthread_join"),exit(1); 
   
} 
 
void *ex1(void* arg) 
{ 
  float res; 
  /*  
   * Call imsls_error_options to set the error handling 
   * options for this thread. 
   */ 
  imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 0); 
  res = imsls_f_beta(-1.0, .5); 
} 
void *ex2(void* arg) 
{  
  float res; 
  /*  
   * Call imsls_error_options to set the error handling 
   * options for this thread.  Notice that tracebacks are 
   * turned on for IMSLS_TERMINAL errors. 
   */ 
  imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 
           IMSLS_SET_TRACEBACK, IMSLS_TERMINAL, 1, 0); 
  res = imsls_f_gamma(-1.0); 
} 

 

Output  
 
*** TERMINAL Error from imsls_f_beta.  Both "x" = -1.000000e+00 and "y" = 
***          5.000000e-01 must be greater than zero. 
 
 
*** TERMINAL Error from imsls_f_gamma.  The argument for the function can 
***          not be a negative integer. Argument "x" = -1.000000e+00. 
 
Here is a traceback of the calls in reverse order. 
  Error Type        Error Code               Routine 
  ----------        ----------               ------- 
 IMSLS_TERMINAL    IMSLS_NEGATIVE_INTEGER    imsls_f_gamma 
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Example 4 
In this example the WIN32 API is used to demonstrate the same functionality as 
shown in Example 3 above.  Note since multiple threads are executing, the order 
of the errors output may differ on some systems. 

 
#include <windows.h> 
#include <stdio.h> 
#include "imsls.h" 
 
DWORD WINAPI ex1(void *arg);   
DWORD WINAPI ex2(void *arg); 
   
int main(int argc, char* argv[])  
{ 
 HANDLE thread[2]; 
   
 imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0); 
 
 thread[0] = CreateThread(NULL, 0, ex1, NULL, 0, NULL); 
 thread[1] = CreateThread(NULL, 0, ex2, NULL, 0, NULL); 
 
 WaitForMultipleObjects(2, thread, TRUE, INFINITE); 
   
} 
DWORD WINAPI ex1(void *arg)   
{ 
  float res; 
  /*  
   * Call imsls_error_options to set the error handling 
   * options for this thread. 
   */ 
imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 
        0); 
  res = imsls_f_beta(-1.0, .5); 
 return(0); 
}  
DWORD WINAPI ex2(void *arg)   
{ 
  float res; 
  /*  
   * Call imsls_error_options to set the error handling 
   * options for this thread.  Notice that tracebacks are 
   * turned on for IMSLS_TERMINAL errors. 
   */ 
  imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 
        IMSLS_SET_TRACEBACK, IMSLS_TERMINAL, 1, 
        0); 
  res = imsls_f_gamma(-1.0); 
  return(0); 
}  
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Output  
 
*** TERMINAL Error from imsls_f_beta.  Both "x" = -1.000000e+000 and "y" = 
***          5.000000e-001 must be greater than zero. 
 
 
*** TERMINAL Error from imsls_f_gamma.  The argument for the function can 
***          not be a negative integer. Argument "x" = -1.000000e+000. 
 
Here is a traceback of the calls in reverse order. 
  Error Type        Error Code               Routine 
  ----------        ----------               ------- 
 IMSLS_TERMINAL    IMSLS_NEGATIVE_INTEGER    imsls_f_gamma USER 

error_code 
Gets the code corresponding to the error message from the last function called. 

Synopsis 

#include <imsls.h> 
long imsls_error_code ( ) 

Return Value 
This function returns the error message code from the last function called.  The 
include file imsls.h defines a name for each error code. 

Example 
In this example, stopping on IMSLS_TERMINAL error messages is turned off and 
an error is then generated by calling function imsls_error_options with an 
illegal value for IMSLS_SET_PRINT. The error message code number is then 
retrieved and printed. In imsls.h, IMSLS_INTEGER_OUT_OF_RANGE is defined to 
be 132. 

#include <imsls.h> 
#include <stdio.h> 
 
main() 
{ 
    long        code; 
                                /* Turn off stopping IMSLS_TERMINAL */ 
                                /* messages and print error messages */ 
                                /* on standard output */ 
    imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 
                       IMSLS_SET_ERROR_FILE, stdout, 
                       0); 
                                /* Call imsls_error_options() with */ 
                                /* an illegal value */ 
    imsls_error_options(IMSLS_SET_PRINT, 100, 0, 
                       0); 
                                /* Get the error message code */ 
    code = imsls_error_code(); 
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    printf("error code = %d\n", code); 
} 

Output 
*** TERMINAL error from imsls_error_options.  "type" must be between 1 and 
***          5, but "type" = 100. 
 
error code = 132 

machine (integer) 
Returns integer information describing the computer’s arithmetic. 

Synopsis 

#include <imsls.h> 
int imsls_i_machine (int n) 

Required Arguments 

int n   (Input) 
Index indicating which value is to be returned. It must be between 0 and 
12. 

Return Value 
The requested value is returned. If n is out of range, NaN is returned. 

Description 
Function imsls_i_machine returns information describing the computer’s 
arithmetic. This can be used to make programs machine independent. 

imsls_i_machine(0) = Number of bits per byte 

Assume that integers are represented in M-digit, base-A form as  

0

M
k

k
k

x A�

�

�  

where � is the sign and 0 � xk < A for k = 0, �, M. Then, 
 

n Definition 
0 C, bits per character 
1 A, the base 
2 Ms, the number of base-A digits in a short int 

3 1,  the largest sMA short int�  
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n Definition 
4 Ml, the number of base-A digits in a long int 

5 1,  the largest lMA l� ong int  

Assume that floating-point numbers are represented in N-digit, base B form as 

1

N
E k

k
k

B x B�
�

�

�  

where � is the sign and 0 � xk < B for k = 1, �, N and E$ � E � E". Then 

n Definition 
6 B, the base 
7 Nf, the number of base-B digits in float 

8 min ,  the smallest  exponent
f

E float  

9 max ,  the largest  exponent
f

E float  

10 Nd, the number of base-B digits in double 

11 min ,  the largest  
d

E long int  

12 max ,  the number of base-  digits in  
d

E B double  

Example 
In this example, all the values returned by imsls_i_machine on a machine with 
IEEE (Institute for Electrical and Electronics Engineer) arithmetic are printed. 

#include <imsls.h> 
 
main() 
{ 
    int         n, ans; 
 
    for (n = 0;  n <= 12;  n++) { 
        ans = imsls_i_machine(n); 
        printf("imsls_i_machine(%d) = %d\n", n, ans); 
    } 
} 

Output 

imsls_i_machine(0) = 8 
imsls_i_machine(1) = 2 
imsls_i_machine(2) = 15 
imsls_i_machine(3) = 32767 
imsls_i_machine(4) = 31 
imsls_i_machine(5) = 2147483647 
imsls_i_machine(6) = 2 
imsls_i_machine(7) = 24 
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imsls_i_machine(8) = -125 
imsls_i_machine(9) = 128 
imsls_i_machine(10) = 53 
imsls_i_machine(11) = -1021 
imsls_i_machine(12) = 1024 

machine (float) 
Returns information describing the computer’s floating-point arithmetic. 

Synopsis 

#include <imsls.h>  
float imsls_f_machine (int n) 

The type double function is imsls_d_machine. 

Required Arguments 

int n   (Input) 
Index indicating which value is to be returned. The index must be 
between 1 and 8. 

Return Value 
The requested value is returned. If n is out of range, NaN is returned. 

Description 
Function imsls_f_machine returns information describing the computer’s 
floating-point arithmetic. This can be used to make programs machine 
independent. In addition, some of the functions are also important in setting 
missing values. 

Assume that float numbers are represented in Nf-digit, base B form as 

1

fN
E k

k
k

B x B�
�

�

�  

where � is the sign; 0 � xk < B for k = 1, 2, �, Nf; and 

min maxf f
E E E� �  

Note that B = imsls_i_machine(6); Nf = imsls_i_machine(7);  

min (8)
f

E � imsls_i_machine  

and 

max (9)
f

E � imsls_i_machine  
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The ANSI/IEEE 754-1985 standard for binary arithmetic uses NaN as the result 
of various otherwise illegal operations, such as computing 0/0. On computers that 
do not support NaN, a value larger than imsls_d_machine(2) is returned for 
imsls_f_machine(6). On computers that do not have a special representation 
for infinity, imsls_f_machine(2) returns the same value as 
imsls_f_machine(7). 

Function imsls_f_machine is defined by the following table: 

n Definition 
1 min 1,  the smallest positive numberfEB �  

2 max (1 ),  the largest numberf fE NB B�

�  

3 ,  the smallest relative spacingfNB�  

4 1 ,  the largest relative spacingfNB �  

5 log10(B) 

6 NaN 
7 positive machine infinity 
8 negative machine infinity 

Function imsls_d_machine retrieves machine constants that define the 
computer’s double arithmetic. Note that for double B = imsls_i_machine(6), 
Nd = imsls_i_machine(10),  

min (11)
d

E � imsls_i_machine  

and 

max (12)
d

E � imsls_i_machine  

Missing values in functions are always indicated by NaN. This is 
imsls_f_machine(6) in single precision and imsls_d_machine(6) in double 
precision. There is no missing-value indicator for integers. Users will almost 
always have to convert from their missing value indicators to NaN. 

Example 
In this example, all eight values returned by imsls_f_machine and by 
imsls_d_machine on a machine with IEEE arithmetic are printed. 

#include <imsls.h> 
 
main() 
{ 
    int             n; 
    float           fans; 
    double          dans; 
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    for (n = 1;  n <= 8;  n++) { 
        fans = imsls_f_machine(n); 
        printf("imsls_f_machine(%d) = %g\n", n, fans); 
    } 
 
    for (n = 1;  n <= 8;  n++) { 
        dans = imsls_d_machine(n); 
        printf("imsls_d_machine(%d) = %g\n", n, dans); 
    } 
} 

Output 

imsls_f_machine(1) = 1.17549e-38 
imsls_f_machine(2) = 3.40282e+38 
imsls_f_machine(3) = 5.96046e-08 
imsls_f_machine(4) = 1.19209e-07 
imsls_f_machine(5) = 0.30103 
imsls_f_machine(6) = NaN 
imsls_f_machine(7) = Inf 
imsls_f_machine(8) = -Inf 
imsls_d_machine(1) = 2.22507e-308 
imsls_d_machine(2) = 1.79769e+308 
imsls_d_machine(3) = 1.11022e-16 
imsls_d_machine(4) = 2.22045e-16 
imsls_d_machine(5) = 0.30103 
imsls_d_machine(6) = NaN 
imsls_d_machine(7) = Inf 
imsls_d_machine(8) = -Inf 

data_sets 
Retrieves a commonly analyzed data set. 

Synopsis 

#include <imsls.h> 
float *imsls_f_data_sets (int data_set_choice, ..., 0) 

The type double function is imsls_d_data_sets. 

Required Arguments 

int data_set_choice   (Input) 
Data set indicator. Set data_set_choice = 0 to print a description of 
all nine data sets. In this case, any optional arguments are ignored. 

data_set_choice N_observations n_variables Description of 
Data Set 

1 16 7 Longley 
2 176 2 Wolfer sunspot 
3 150 5 Fisher iris 
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data_set_choice N_observations n_variables Description of 
Data Set 

4 144 1 Box and Jenkins 
Series G 

5 13 5 Draper and Smith 
Appendix B 

6 197 1 Box and Jenkins 
Series A 

7 296 2 Box and Jenkins 
Series J 

8 100 4 Robinson 
Multichannel 
Time Series 

9 113 34 Afifi and Azen 
Data Set A 

Return Value  
If data_set_choice � 0, the requested data set is returned. If 
data_set_choice = 0 or an error occurs, NULL is returned. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_data_sets (int data_set_choice, 

IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_N_OBSERVATIONS, int *n_observations, 
IMSLS_N_VARIABLES, int *n_variables, 
IMSLS_PRINT_NONE, 
IMSLS_PRINT_BRIEF, 
IMSLS_PRINT_ALL, 
IMSLS_RETURN_USER, float x[], 
0) 

Optional Arguments 
IMSLS_X_COL_DIM, int x_col_dim   (Input) 

Column dimension of user allocated space. 

IMSLS_N_OBSERVATIONS, int *n_observations   (Output) 
Number of observations or rows in the output matrix. 

IMSLS_N_VARIABLES, int *n_variables   (Output) 
Number of variables or columns in the output matrix. 

IMSLS_PRINT_NONE 
No printing is performed. This option is the default. 
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IMSLS_PRINT_BRIEF 
Rows 1 through 10 of the data set are printed. 

IMSLS_PRINT_ALL 
All rows of the data set are printed. 

IMSLS_RETURN_USER, float x[]   (Output) 
User-supplied array containing the data set. 

Description 
Function imsls_f_data_sets retrieves a standard data set frequently cited in 
statistics text books or in this manual. The following tables gives the references 
for each data set: 

data_set_choice Reference 
1 Longley (1967) 
2 Anderson (1971, p.660) 
3 Fisher (1936); Mardia et al. (1979, Table 1.2.2) 
4 Box and Jenkins (1976, p. 531) 
5 Draper and Smith (1981, pp. 629-630) 
6 Box and Jenkins (1976, p. 525) 
7 Box and Jenkins (1976, pp. 532-533) 
8 Robinson (1976, p. 204) 
9 Afifi and Azen (1979, pp. 16-22) 

Example 
In this example, imsls_f_data_sets is used to copy the Draper and Smith 
(1981, Appendix B) data set into x. 

#include <imsls.h> 
 
main() 
{ 
    float *x; 
 
    x = imsls_f_data_sets (5, 0); 
 
    imsls_f_write_matrix("Draper and Smith, Appendix B", 13, 5, x, 0); 
} 

Output 

                 Draper and Smith, Appendix B 
             1           2           3           4           5 
 1         7.0        26.0         6.0        60.0        78.5 
 2         1.0        29.0        15.0        52.0        74.3 
 3        11.0        56.0         8.0        20.0       104.3 
 4        11.0        31.0         8.0        47.0        87.6 
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 5         7.0        52.0         6.0        33.0        95.9 
 6        11.0        55.0         9.0        22.0       109.2 
 7         3.0        71.0        17.0         6.0       102.7 
 8         1.0        31.0        22.0        44.0        72.5 
 9         2.0        54.0        18.0        22.0        93.1 
10        21.0        47.0         4.0        26.0       115.9 
11         1.0        40.0        23.0        34.0        83.8 
12        11.0        66.0         9.0        12.0       113.3 
13        10.0        68.0         8.0        12.0       109.4 

mat_mul_rect 
Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix 
product, a bilinear form, or any triple product. 

Synopsis 

#include <imsls.h> 

float *imsls_f_mat_mul_rect (char *string, ..., 0) 

The type double function is imsls_d_mat_mul_rect. 

Required Arguments 

char *string (Input) 
String indicating operation to be performed. See the “Description” 
section below for more details.” 

Return Value 
The result of the operation. This is always a pointer to a float, even if the result is 
a single number. If no answer was computed, NULL is returned. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_mat_mul_rect (char *string, 

IMSLS_A_MATRIX, int nrowa, int ncola, float a[], 
IMSLS_A_COL_DIM, int a_col_dim, 
IMSLS_B_MATRIX, int nrowb, int ncolb, float b[], 
IMSLS_B_COL_DIM, int b_col_dim, 
IMSLS_X_VECTOR, int nx, float *x, 
IMSLS_Y_VECTOR, int ny, float *y, 
IMSLS_RETURN_USER, float ans[], 
IMSLS_RETURN_COL_DIM, int return_col_dim, 
0) 
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Optional Arguments 
IMSLS_A_MATRIX, int nrowa, int ncola, float a[]   (Input) 

The nrowa � ncola matrix A. 

IMSLS_A_COL_DIM, int a_col_dim   (Input) 
Column dimension of A.  
Default: a_col_dim = ncola 

IMSLS_B_MATRIX, int nrowb, int ncolb, float b[]   (Input) 
The nrowb � ncolb matrix A.  

IMSLS_B_COL_DIM, int b_col_dim   (Input) 
Column dimension of B. 
Default: b_col_dim = ncolb 

IMSLS_X_VECTOR, int nx, float *x   (Input) 
Vector x of size nx. 

IMSLS_Y_VECTOR, int ny, float *y   (Input) 
Vector y of size ny. 

IMSLS_RETURN_USER, float ans[]   (Output) 
User-allocated array containing the result. 

IMSLS_RETURN_COL_DIM, int return_col_dim   (Input) 
Column dimension of the answer. 
Default: return_col_dim = the number of columns in the answer 

Description 
This function computes a matrix-vector product, a matrix-matrix product, a 
bilinear form of a matrix, or a triple product according to the specification given 
by string. For example, if “A*x” is given, Ax is computed. In string, the 
matrices A and B and the vectors x and y can be used. Any of these four names 
can be used with trans, indicating transpose. The vectors x and y are treated as 
n � 1 matrices. 

If string contains only one item, such as “x” or “trans(A)”, then a copy of the 
array, or its transpose, is returned. If string contains one multiplication, such as 
“A*x” or “B*A”, then the indicated product is returned. Some other legal values 
for string are “trans(y)*A”, “A*trans(B)”, “x*trans(y)”, or 
“trans(x)*y”. 

The matrices and/or vectors referred to in string must be given as optional 
arguments. If string is “B*x”, then IMSLS_B_MATRIX and IMSLS_X_VECTOR 
must be given. 
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Example 
Let A, B, x, and y equal the following matrices: 

3 2 7 3
1 2 9

7 4 2 4
5 4 7

9 1 1 2
A B x

� � � � �
� �

�
� � � � �� � �� �

��� � � � �
� �

�
� � � � � �� � � � � �

 

The arrays AT, Ax, xTAT, AB, BTAT, xTy, xyT and xTAy are computed and 
printed. 

#include <imsls.h> 
 
main() 
{ 
    float       A[] = {1, 2, 9, 
                       5, 4, 7}; 
    float       B[] = {3, 2, 
                       7, 4, 
                       9, 1}; 
    float       x[] = {7, 2, 1}; 
    float       y[] = {3, 4, 2}; 
    float       *ans; 
 
    ans = imsls_f_mat_mul_rect("trans(A)", 
        IMSLS_A_MATRIX, 2, 3, A, 
        0); 
    imsls_f_write_matrix("trans(A)", 3, 2, ans, 0); 
 
    ans = imsls_f_mat_mul_rect("A*x", 
        IMSLS_A_MATRIX, 2, 3, A, 
        IMSLS_X_VECTOR, 3, x, 
        0); 
    imsls_f_write_matrix("A*x", 1, 2, ans, 0); 
 
    ans = imsls_f_mat_mul_rect("trans(x)*trans(A)", 
        IMSLS_A_MATRIX, 2, 3, A, 
        IMSLS_X_VECTOR, 3, x, 
        0); 
    imsls_f_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0); 
 
    ans = imsls_f_mat_mul_rect("A*B", 
        IMSLS_A_MATRIX, 2, 3, A, 
        IMSLS_B_MATRIX, 3, 2, B, 
        0); 
    imsls_f_write_matrix("A*B", 2, 2, ans, 0); 
 
    ans = imsls_f_mat_mul_rect("trans(B)*trans(A)", 
        IMSLS_A_MATRIX, 2, 3, A, 
        IMSLS_B_MATRIX, 3, 2, B, 
        0); 
    imsls_f_write_matrix("trans(B)*trans(A)", 2, 2, ans, 0); 
 
    ans = imsls_f_mat_mul_rect("trans(x)*y", 
        IMSLS_X_VECTOR, 3, x, 
        IMSLS_Y_VECTOR, 3, y, 
        0); 
    imsls_f_write_matrix("trans(x)*y", 1, 1, ans, 0); 
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    ans = imsls_f_mat_mul_rect("x*trans(y)", 
        IMSLS_X_VECTOR, 3, x, 
        IMSLS_Y_VECTOR, 3, y, 
        0); 
    imsls_f_write_matrix("x*trans(y)", 3, 3, ans, 0); 
 
    ans = imsls_f_mat_mul_rect("trans(x)*A*y", 
        IMSLS_A_MATRIX, 2, 3, A, 
                                /* use only the first 2 components of x */ 
        IMSLS_X_VECTOR, 2, x, 
        IMSLS_Y_VECTOR, 3, y, 
        0); 
    imsls_f_write_matrix("trans(x)*A*y", 1, 1, ans, 0); 
} 

Output 

        trans(A) 
            1           2 
1           1           5 
2           2           4 
3           9           7 
  
          A*x 
         1           2 
        20          50 
  
   trans(x)*trans(A) 
         1           2 
        20          50 
  
           A*B 
            1           2 
1          98          19 
2         106          33 
  
    trans(B)*trans(A) 
            1           2 
1          98         106 
2          19          33 
  
trans(x)*y 
        31 
  
             x*trans(y) 
            1           2           3 
1          21          28          14 
2           6           8           4 
3           3           4           2 
  
trans(x)*A*y 
        293 
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permute_vector 
Rearranges the elements of a vector as specified by a permutation. 

Synopsis 

#include <imsls.h> 

float *imsls_f_permute_vector (int n_elements, float x[], 
int permutation[], Imsls_permute permute, ..., 0) 

The type double function is imsls_d_permute_vector. 

Required Arguments 

int n_elements   (Input) 
Number of elements in the input vector x. 

float x[]   (Input) 
Array of length n_elements to be permuted. 

int permutation[]   (Input) 
Array of length n_elements containing the permutation. 

Imsls_permute permute (Input) 
Keyword of type Imsls_permute. Argument permute must be either 
IMSLS_FORWARD_PERMUTATION or IMSLS_BACKWARD_PERMUTATION. 
If IMSLS_FORWARD_PERMUTATION is specified, then a forward 
permutation is performed, i.e., x(permutation[i]) is moved to 
location i in the return vector. If IMSLS_BACKWARD_PERMUTATION is 
specified, then a backward permutation is performed, i.e., x[i] is 
moved to location permutation[i] in the return vector. 

Return Value 
An array of length n_elements containing the input vector x permuted. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_permute_vector (int n_elements, float x[], 

int permutation[], Imsls_permute permute, 
IMSLS_RETURN_USER, float permuted_result[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float permuted_result[](Output) 

User-allocated array containing the result of the permutation. 
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Description 
Function imsls_f_permute_vector rearranges the elements of a vector 
according to a permutation vector. The function can perform both forward and 
backward permutation. 

Example 
This example rearranges the vector x using permutation. A forward 
permutation is performed. 

#include <imsls.h> 
 
void main() 
{ 
    float x[] = {5.0, 6.0, 1.0, 4.0}; 
    int permutation[] = {2, 0, 3, 1}; 
    float     *output; 
    int        n_elements = 4; 
 
    output = imsls_f_permute_vector (n_elements, x, permutation, 
        IMSLS_FORWARD_PERMUTATION, 0); 
 
    imsls_f_write_matrix ("permuted result", 1, n_elements, output, 
                           IMSLS_COL_NUMBER_ZERO, 0); 
} 

Output 

                permuted result 
         0           1           2           3 
         1           5           4           6 

permute_matrix 
Permutes the rows or columns of a matrix. 

Synopsis 

#include <imsls.h> 

float *imsls_f_permute_matrix (int n_rows, int n_columns, float a[], 
int permutation[], Imsls_permute permute, ..., 0) 

The type double function is imsls_d_permute_matrix. 

Required Arguments 

int n_rows   (Input) 
Number of rows in the input matrix a. 

int n_columns   (Input) 
Number of columns in the input matrix a. 
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float a[]   (Input) 
Matrix of size n_rows � n_columns to be permuted. 

int permutation[]   (Input) 
Array of length n_elements containing the permutation. 

Imsls_permute permute   (Input) 
Keyword of type Imsls_permute. Argument permute must be either 
IMSLS_PERMUTE_ROWS, if the rows of a are to be interchanged, or 
IMSLS_PERMUTE_COLUMNS, if the columns of a are to be interchanged.  

Return Value 
Array of size n_rows � n_columns containing the permuted input matrix a. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_permute_matrix (int n_rows, int n_columns, 

float a[],  
int permutation[], Imsls_permute permute, 
IMSLS_RETURN_USER, float permuted_result[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float permuted_result[]   (Output) 

User-allocated array of size n_rows � n_columns containing the result 
of the permutation. 

Description 
Function imsls_f_permute_matrix interchanges the rows or columns of a 
matrix using a permutation vector. The function permutes a column (row) at a 
time using function imsls_f_permute_vector. This process is continued until 
all the columns (rows) are permuted. On completion, let B = result and 
pi = permutation [i], then Bij = Apij for all i, j. 

Example 
This example permutes the columns of a matrix a. 

#include <imsls.h> 
 
void main() 
{ 
    float a[] = {3.0, 5.0, 1.0, 2.0, 4.0, 
                 3.0, 5.0, 1.0, 2.0, 4.0, 
                 3.0, 5.0, 1.0, 2.0, 4.0}; 
    int permutation[] = {2, 3, 0, 4, 1}; 
    float     *output; 
    int        n_rows = 3; 
    int        n_columns = 5; 
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    output = imsls_f_permute_matrix (n_rows, n_columns, a, permutation, 
        IMSLS_PERMUTE_COLUMNS, 
        0); 
 
    imsls_f_write_matrix ("permuted matrix", n_rows, n_columns, output, 
        IMSLS_ROW_NUMBER_ZERO,  
        IMSLS_COL_NUMBER_ZERO, 
        0); 
} 

Output 

                       permuted matrix 
            0           1           2           3           4 
0           1           2           3           4           5 
1           1           2           3           4           5 
2           1           2           3           4           5 

binomial_coefficient 
Evaluates the binomial coefficient. 

Synopsis 

#include <imsls.h> 

int imsls_f_binomial_coefficient (int n, int m) 

The type double procedure is imsls_d_binomial_coefficient. 

Required Arguments 

int n   (Input) 
First parameter of the binomial coefficient. Argument n must be 
nonnegative. 

int m   (Input) 
Second parameter of the binomial coefficient. Argument m must be 
nonnegative. 

Return Value 
The binomial coefficient  

n
m

� �
� �
� �

 

is returned. 

Description 
The binomial function is defined to be  
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with n � m � 0. Also, n must not be so large that the function overflows. 

Example 

In this example, � �9
5  is computed and printed. 

#include <stdio.h> 
#include <imsls.h> 
 
main() 
{ 
    int       n = 9; 
    int       m = 5; 
    int       ans; 
     
    ans = imsls_f_binomial_coefficient(n, m); 
    printf("binomial coefficient = %d\n", ans); 
} 

Output 

   
binomial coefficient = 126 

beta 
Evaluates the complete beta function. 

Synopsis 

#include <imsls.h> 

float imsls_f_beta (float a, float b) 

The type double procedure is imsls_d_beta. 

Required Arguments 

float a   (Input) 
First beta parameter. It must be positive. 

float b   (Input) 
Second beta parameter. It must be positive. 

Return Value 
The value of the beta function �(a, b). If no result can be computed, then NaN is 
returned. 
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Description 
The beta function, �(a, b), is defined to be 

� �
� � � �

� �
� �
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Example 
Evaluate the beta function �(0.5, 0.2). 

#include <imsls.h> 
 
main() 
{ 
    float       x = 0.5; 
    float       y = 0.2; 
    float       ans; 
 
    ans = imsls_f_beta(x, y); 
    printf("beta(%f,%f) = %f\n", x, y, ans); 
} 

Output 

beta(0.500000,0.200000) = 6.268653 

 

Figure 14�1   Plot of � (x, b) 

The beta function requires that a > 0 and b > 0. It underflows for large arguments. 
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Alert Errors 
IMSLS_BETA_UNDERFLOW The arguments must not be so large that the 

result underflows. 

Fatal Errors 
IMSLS_ZERO_ARG_OVERFLOW One of the arguments is so close to zero 

that the result overflows. 

beta_incomplete 
Evaluates the real incomplete beta function Ix = �x (a, b)/�(a, b). 

Synopsis 

#include <imsls.h> 

float imsls_f_beta_incomplete (float x, float a, float b) 

The type double procedure is imsls_d_beta_incomplete. 

Required Arguments 

float x   (Input) 
Point at which the incomplete beta function is to be evaluated. 

float a   (Input) 
Point at which the incomplete beta function is to be evaluated. 

float b   (Input) 
Point at which the incomplete beta function is to be evaluated. 

Return Value 
The value of the incomplete beta function. 

Description 
The incomplete beta function is defined to be 

� �
� �

� � � �
� �
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�
�

� � ��  

The incomplete beta function requires that 0 � x � 1, a > 0, and b > 0. It 
underflows for sufficiently small x and large a. This underflow is not reported as 
an error. Instead, the value zero is returned. 

Example 
Evaluate the log of the incomplete beta function I0.61 =�0.61 (2.2,3.7)/�(2.2,3.7). 
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#include <imsls.h> 
 
main() 
{ 
    float       x = 0.61; 
    float       a = 2.2; 
    float       b = 3.7; 
    float       ans; 
 
    ans = imsls_f_beta_incomplete(x, a, b); 
    printf("beta incomplete = %f\n", ans); 
} 
beta incomplete = 0.8822; 

log_beta 
Evaluates the logarithm of the real beta function ln �(x, y). 

Synopsis 

#include <imsls.h> 

float imsls_f_log_beta (float x, float y) 

The type double procedure is imsls_d_log_beta. 

Required Arguments 

float x   (Input) 
Point at which the logarithm of the beta function is to be evaluated. It 
must be positive. 

float y   (Input) 
Point at which the logarithm of the beta function is to be evaluated. It 
must be positive. 

Return Value 
The value of the logarithm of the beta function �(x, y). 

Description  
The beta function, �(x, y), is defined to be 
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and imsls_f_log_beta returns ln �(x, y). 

The logarithm of the beta function requires that x > 0 and y > 0. It can overflow 
for very large arguments. 
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Warning Errors 
IMSLS_X_IS_TOO_CLOSE_TO_NEG_1 The result is accurate to less than 

one precision because the 
expression �x/(x + y) is too close 
to �1. 

Example 
Evaluate the log of the beta function ln �(0.5, 0.2). 

#include <imsls.h> 
 
main() 
{ 
    float       x = 0.5; 
    float       y = 0.2; 
    float       ans; 
 
    ans = imsls_f_log_beta(x, y); 
    printf("log beta(%f,%f) = %f\n", x, y, ans); 
} 

Output 

log beta(0.500000,0.200000) = 1.835562 

gamma 
Evaluates the real gamma function. 

Synopsis 

#include <imsls.h> 

float imsls_f_gamma (float x) 

The type double procedure is imsls_d_gamma. 

Required Arguments 

float x   (Input) 
Point at which the gamma function is to be evaluated. 

Return Value 
The value of the gamma function ��x). 

Description 
The gamma function, ��x), is defined to be 
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For x < 0, the above definition is extended by analytic continuation. 

The gamma function is not defined for integers less than or equal to zero. It 
underflows for x << 0 and overflows for large x. It also overflows for values near 
negative integers. 

 

Figure 14-2   Plot of �(x) and 1/�(x) 

Alert Errors 
IMSLS_SMALL_ARG_UNDERFLOW The argument x must be large 

enough that ��x) does not 
underflow. The underflow limit 
occurs first for arguments close to 
large negative half integers. Even 
though other arguments away from 
these half integers may yield 
machine-representable values of 
��x), such arguments are 
considered illegal.  

Warning Errors 
IMSLS_NEAR_NEG_INT_WARN The result is accurate to less than 

one-half precision because x is too 
close to a negative integer. 
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Example 
In this example, ��1.5) is computed and printed. 

#include <stdio.h> 
#include <imsls.h> 
 
main() 
{ 
    float       x = 1.5; 
    float       ans; 
     
    ans = imsls_f_gamma(x); 
    printf("Gamma(%f) = %f\n", x, ans); 
} 

Output 
Gamma(1.500000) = 0.886227 

Fatal Errors 
IMSLS_ZERO_ARG_OVERFLOW The argument for the gamma function is too 

close to zero. 

IMSLS_NEAR_NEG_INT_FATAL The argument for the function is too close 
to a negative integer. 

IMSLS_LARGE_ARG_OVERFLOW The function overflows because x is too 
large. 

IMSLS_CANNOT_FIND_XMIN The algorithm used to find x$ failed. This 
error should never occur. 

IMSLS_CANNOT_FIND_XMAX The algorithm used to find x" failed. This 
error should never occur. 

gamma_incomplete 
Evaluates the incomplete gamma function 	�a, x). 

Synopsis 

#include <imsls.h> 

float imsls_f_gamma_incomplete (float a, float x) 

The type double procedure is imsls_d_gamma_incomplete. 

Required Arguments 

float a   (Input) 
Parameter of the incomplete gamma function is to be evaluated. It must 
be positive. 
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float x   (Input) 
Point at which the incomplete gamma function is to be evaluated. It must 
be nonnegative. 

Return Value  
The value of the incomplete gamma function 	(a, x). 

Description 
The incomplete gamma function, 	�a, x), is defined to be 

� � 1

0
,

x a ta x t e dt�
� �

� �  

for x > 0. The incomplete gamma function is defined only for a > 0. Although  
	(a, x) is well defined for x > �
, this algorithm does not calculate 	(a, x) for 
negative x. For large a and sufficiently large x, 	(a, x) may overflow. 	(a, x) is 
bounded by �(a), and users may find this bound a useful guide in determining 
legal values for a. 

 

Figure 14-3   Contour Plot of 	(a, x) 
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Example  
Evaluates the incomplete gamma function at a = 1 and x = 3. 

#include <stdio.h> 
#include <imsls.h> 
 
main() 
{ 
    float       x = 3.0; 
    float       a = 1.0; 
    float       ans; 
 
    ans = imsls_f_gamma_incomplete(a, x); 
    printf("incomplete gamma(%f,%f) = %f\n", a, x, ans); 
} 

Output   
incomplete gamma(1.000000,3.000000) = 0.950213 

Fatal Errors 
IMSLS_NO_CONV_200_TS_TERMS The function did not converge in 

200 terms of Taylor series. 

IMSLS_NO_CONV_200_CF_TERMS The function did not converge in 
200 terms of the continued 
fraction. 

log_gamma 
Evaluates the logarithm of the absolute value of the gamma function log ���x)�. 

Synopsis 

#include <imsls.h> 

float imsls_f_log_gamma (float x) 

The type double procedure is imsls_d_log_gamma. 

Required Arguments 

float x   (Input) 
Point at which the logarithm of the absolute value of the gamma function 
is to be evaluated. 

Return Value  
The value of the logarithm of gamma function log ���x)�. 
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Description 
The logarithm of the absolute value of the gamma function log ���x)� is computed. 

 

Figure 14-4   Plot of log���x)� 

Example 
In this example, log ���3.5)� is computed and printed. 

#include <stdio.h> 
#include <imsls.h> 
 
main() 
{ 
    float       x = 3.5; 
    float       ans; 
    ans = imsls_f_log_gamma(x); 
    printf("log gamma(%f) = %f\n", x, ans); 
} 

Output 
log gamma(3.500000) = 1.200974 
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Warning Errors 
IMSLS_NEAR_NEG_INT_WARN The result is accurate to less than 

one-half precision because x is too 
close to a negative integer. 

Fatal Errors 
IMSLS_NEGATIVE_INTEGER The argument for the function 

cannot be a negative integer. 

IMSLS_NEAR_NEG_INT_FATAL The argument for the function is 
too close to a negative integer. 

IMSLS_LARGE_ABS_ARG_OVERFLOW �x� must not be so large that the 
result overflows. 

ctime 
Returns the number of CPU seconds used. 

Synopsis 

#include <imsls.h> 

double imsls_ctime () 

Return Value 
The number of CPU seconds used by the program. 

Example 
The CPU time needed to compute 

1,000,000

0k
k

�

�  

is obtained and printed. The time needed is machine dependent. The CPU time 
needed will varies slightly from run to run on the same machine. 

#include <imsls.h> 
 
main() 
{ 
    int     k; 
    double  sum, time; 
                                /* Sum 1 million values */ 
    for (sum=0, k=1;  k<=1000000; k++) 
         sum += k; 
                                /* Get amount of CPU time used */ 
    time = imsls_ctime(); 
    printf("sum = %f\n", sum); 
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    printf("time = %f\n", time); 
} 

Output 
sum = 500000500000.000000 
time = 0.820000 
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Reference Material 

User Errors 
IMSL functions attempt to detect user errors and handle them in a way that 
provides as much information to the user as possible. To do this, various levels of 
severity of errors are recognized, and the extent of the error in the context of the 
purpose of the function also is considered; a trivial error in one situation can be 
serious in another. IMSL attempts to report as many errors as can reasonably be 
detected. Multiple errors present a difficult problem in error detection because 
input is interpreted in an uncertain context after the first error is detected. 

What Determines Error Severity 
In some cases, the user’s input may be mathematically correct, but because of 
limitations of the computer arithmetic and of the algorithm used, it is not possible 
to compute an answer accurately. In this case, the assessed degree of accuracy 
determines the severity of the error. In cases where the function computes several 
output quantities, some are not computable but most are, an error condition exists. 
The severity of the error depends on an assessment of the overall impact of the 
error. 

Kinds of Errors and Default Actions 
Five levels of severity of errors are defined in IMSL C/Stat/Library. Each level 
has an associated PRINT attribute and a STOP attribute. These attributes have 
default settings (YES or NO), but they may also be set by the user. The purpose 
of having multiple error types is to provide independent control of actions to be 
taken for errors of different levels of severity. Upon return from an IMSL 
function, exactly one error state exists. (A code 0 “error” is no error.) Even if 
more than one informational error occurs, only one message is printed (if the 
PRINT attribute is YES). Multiple errors for which no corrective action within 
the calling program is reasonable or necessary result in the printing of multiple 
messages (if the PRINT attribute for their severity level is YES). Errors of any of 
the severity levels except IMSLS_TERMINAL may be informational errors. The 
include file, imsls.h, defines each of IMSLS_NOTE, IMSLS_ALERT, 
IMSLS_WARNING, IMSLS_FATAL, IMSLS_TERMINAL, 
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IMSLS_WARNING_IMMEDIATE, and IMSLS_FATAL_IMMEDIATE as enumerated 
data type Imsls_error. 

IMSLS_NOTE. A note is issued to indicate the possibility of a trivial error or 
simply to provide information about the computations.  
Default attributes: PRINT=NO, STOP=NO 

IMSLS_ALERT. An alert indicates that a function value has been set to 0 due to 
underflow.  
Default attributes: PRINT=NO, STOP=NO 

IMSLS_WARNING. A warning indicates the existence of a condition that may 
require corrective action by the user or calling function. A warning error may be 
issued because the results are accurate to only a few decimal places; because 
some of the output may be erroneous, but most of the output is correct; or because 
some assumptions underlying the analysis technique are violated. Usually no 
corrective action is necessary, and the condition can be ignored. 
Default attributes: PRINT=YES, STOP=NO 

IMSLS_FATAL. A fatal error indicates the existence of a condition that may be 
serious. In most cases, the user or calling function must take corrective action to 
recover.  
Default attributes: PRINT=YES, STOP=YES 

IMSLS_TERMINAL. A terminal error is serious. It usually is the result of an 
incorrect specification, such as specifying a negative number as the number of 
equations. These errors can also be caused by various programming errors 
impossible to diagnose correctly in C. The resulting error message may be 
perplexing to the user. In such cases, the user is advised to compare carefully the 
actual arguments passed to the function with the dummy argument descriptions 
given in the documentation. Special attention should be given to checking 
argument order and data types. 

A terminal error is not an informational error, because corrective action within 
the program is generally not reasonable. In normal use, execution is terminated 
immediately when a terminal error occurs. Messages relating to more than one 
terminal error are printed if they occur.  
Default attributes: PRINT=YES, STOP=YES 

IMSLS_WARNING_IMMEDIATE. An immediate warning error is identical to a 
warning error, except it is printed immediately.  
Default attributes: PRINT=YES, STOP=NO 

IMSLS_FATAL_IMMEDIATE. An immediate fatal error is identical to a fatal error, 
except it is printed immediately.  
Default attributes: PRINT=YES, STOP=YES 

The user can set PRINT and STOP attributes by calling function  
imsls_error_options as described in Chapter 14, “Utilities.” 
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Errors in Lower-level Functions 
It is possible that a user’s program may call an IMSL function that in turn calls a 
nested sequence of lower-level IMSL functions. If an error occurs at a lower level 
in such a nest of functions and if the lower-level function cannot pass the 
information up to the original user-called function, then a traceback of the 
functions is produced. The only common situation in which this can occur is 
when an IMSL function calls a user-supplied routine that in turn calls another 
IMSL function. 

Functions for Error Handling 
The user may interact in two ways with the IMSL error-handling system: (1) to 
change the default actions and (2) to determine the code of an informational error 
so as to take corrective action. The IMSL functions to use are 
imsls_error_options and imsls_error_code. Function 
imsls_error_options sets the actions to be taken when errors occur. Function 
imsls_error_code retrieves the integer code for an informational error. These 
functions are documented in Chapter 14, "Utilities." 

Threads and Error Handling 
If multiple threads are used then default settings are valid for each thread  
but can be altered for each individual thread. When using threads it is  
necessary to set options using imsls_error_options (excluding 
IMSLS_SET_SIGNAL_TRAPPING ) for each thread by calling 
imsls_error_options  from within each thread.  

The IMSL signal-trapping mechanism must be disabled when multiple threads  
are used. The IMSL signal-trapping mechanism can be disabled by making the 
following call before any threads are created: 

imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0); 

 See Chapter 14, “Utilities”, examples 3 and 4 of imsls_error_options for 
multithreaded examples. 

Use of Informational Error to Determine Program Action 
In the program segment below, a factor analysis is to be performed on the matrix 
covariances. If it is determined that the matrix is singular (and often this is not 
immediately obvious), the program is to take a different branch. 
     x = imsls_f_factor_analysis (nobs, covariances,  
             n_factors, 0); 
     if (imsls_error_code() == IMSLS_COV_IS_SINGULAR) { 
            /*  Handle a singular matrix  */ 
     } 
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Additional Examples 
See functions imsls_error_options and imsls_error_code in Chapter 14, 
“Utilities” for additional examples. 
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Product Support 

Contacting Visual Numerics Support 
Users within support warranty may contact Visual Numerics regarding the use of 
the IMSL C Numerical Libraries.  Visual Numerics can consult on the following 
topics: 

� Clarity of documentation 

� Possible Visual Numerics-related programming problems 

� Choice of IMSL Libraries functions or procedures for a particular problem 

� Evolution of the IMSL Libraries 

Not included in these consultation topics are mathematical/statistical consulting 
and debugging of your program. 

Consultation 
Contact Visual Numerics Product Support emailing: 

� support@houston.vni.com 

Electronic addresses are not handled uniformly across the major networks, and 
some local conventions for specifying electronic addresses might cause further 
variations to occur;  contact your E-mail postmaster for further details. 

The following describes the procedure for consultation with Visual Numerics: 

1. Include license number 

2. Include the product name and version number:  IMSL C/Stat/Library  
Version 5.5 

3. Include compiler and operating system version numbers 
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4. Include the name of the routine for which assistance is needed and a 
description of the problem 

 



 

 
 

IMSL C/Stat/library Appendix A: References � A-1 

 

 

 

Appendix A: References 

Abramowitz and Stegun 

Abramowitz, Milton and Irene A. Stegun (editors) (1964), Handbook of 
Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 
National Bureau of Standards, Washington. 

Afifi and Azen 

Afifi, A.A. and S.P. Azen (1979), Statistical Analysis: A Computer Oriented 
Approach, 2d ed., Academic Press, New York. 

Agresti, Wackerly, and Boyette 

Agresti, Alan, Dennis Wackerly, and James M. Boyette (1979), Exact conditional 
tests for cross-classifications: Approximation of attained significance levels, 
Psychometrika, 44, 75-83. 

Ahrens and Dieter 

Ahrens, J.H. and U. Dieter (1974), Computer methods for sampling from gamma, 
beta, Poisson, and binomial distributions, Computing, 12, 223�246. 

Ahrens, J.H., and U. Dieter (1985), Sequential random sampling, ACM 
Transactions on Mathematical Software, 11, 157�169. 

Anderberg 
Anderberg, Michael R. (1973), Cluster Analysis for Applications, Academic 
Press, New York. 

Anderson 

Anderson, T.W. (1971), The Statistical Analysis of Time Series, John Wiley & 
Sons, New York. 

Anderson and Bancroft 

Anderson, R.L. and T.A. Bancroft (1952), Statistical Theory in Research, 
McGraw-Hill Book Company, New York. 



 

 
 

A-2 � Appendix A: References IMSL C/Stat/Library 

 

 

 

Atkinson 

Atkinson, A.C. (1979), A family of switching algorithms for the computer 
generation of beta random variates, Biometrika, 66, 141�145. 

Atkinson, A.C. (1985), Plots, Transformations, and Regression, Claredon Press, 
Oxford. 

Barrodale and Roberts 

Barrodale, I., and F.D.K. Roberts (1973), An improved algorithm for discrete L� 
approximation, SIAM Journal on Numerical Analysis, 10, 839�848.  

Barrodale, I., and F.D.K. Roberts (1974), Solution of an overdetermined system 
of equations in the l� norm, Communications of the ACM, 17, 319�320. 

Barrodale, I., and C. Phillips (1975), Algorithm 495. Solution of an 
overdetermined system of linear equations in the Chebyshev norm, ACM 
Transactions on Mathematical Software, 1, 264�270.  

Bartlett, M. S. 

Bartlett, M.S. (1935), Contingency table interactions, Journal of the Royal 
Statistics Society Supplement, 2, 248�252. 

Bartlett, M. S. (1937) Some examples of statistical methods of research in 
agriculture and applied biology, Supplement to the Journal of the Royal 
Statistical Society, 4, 137-183. 

Bartlett, M. (1937), The statistical conception of mental factors, British Journal 
of Psychology, 28, 97–104.  

Bartlett, M.S. (1946), On the theoretical specification and sampling properties of 
autocorrelated time series, Supplement to the Journal of the Royal Statistical 
Society, 8, 27–41.  

Bartlett, M.S. (1978), Stochastic Processes, 3rd. ed., Cambridge University Press, 
Cambridge.  

Bays and Durham 

Bays, Carter and S.D. Durham (1976), Improving a poor random number 
generator, ACM Transactions on Mathematical Software, 2, 59�64. 

Bendel and Mickey  

Bendel, Robert B., and M. Ray Mickey (1978), Population correlation matrices 
for sampling experiments, Communications in Statistics, B7, 163�182. 



 

 
 

IMSL C/Stat/library Appendix A: References � A-3 

 

 

 

Best and Fisher  

Best, D.J., and N.I. Fisher (1979), Efficient simulation of the von Mises 
distribution, Applied Statistics, 28, 152�157. 

Bishop et al 

Bishop, Yvonne M.M., Stephen E. Feinberg, and Paul W. Holland (1975), 
Discrete Multivariate Analysis: Theory and Practice, MIT Press, Cambridge, 
Mass. 

Bjorck and Golub 

Bjorck, Ake, and Gene H. Golub (1973), Numerical Methods for Computing 
Angles Between Subspaces, Mathematics of Computation, 27, 579�594. 

Blom 

Blom, Gunnar (1958), Statistical Estimates and Transformed Beta-Variables, 
John Wiley & Sons, New York. 

Bosten and Battiste 

Bosten, Nancy E. and E.L. Battiste (1974), Incomplete beta ratio, 
Communications of the ACM, 17, 156s�157. 

Box and Jenkins 

Box, George E.P. and Gwilym M. Jenkins (1976), Time Series Analysis: 
Forecasting and Control, revised ed., Holden-Day, Oakland. 

Box and Pierce 

Box, G.E.P., and David A. Pierce (1970), Distribution of residual 
autocorrelations in autoregressive-integrated moving average time series models, 
Journal of the American Statistical Association, 65, 1509–1526. 

Box and Tidwell 

Box, G.E.P. and P.W. Tidwell (1962), Transformation of the independent 
variables, Technometrics, 4, 531�550. 

Boyette 

Boyette, James M. (1979), Random RC tables with given row and column totals, 
Applied Statistics, 28, 329�332.  

Bradley 

Bradley, J.V. (1968), Distribution-Free Statistical Tests, Prentice-Hall, New 
Jersey.  



 

 
 

A-4 � Appendix A: References IMSL C/Stat/Library 

 

 

 

Breslow 
Breslow, N.E. (1974), Covariance analysis of censored survival data, Biometrics, 
30, 89�99. 

Brown 

Brown, Morton E. (1983), MCDP4F, two-way and multiway frequency tables-
measures of association and the log-linear model (complete and incomplete 
tables), in BMDP Statistical Software, 1983 Printing with Additions, (edited by 
W.J. Dixon), University of California Press, Berkeley. 

Brown and Benedetti 

Brown, Morton B. and Jacqualine K. Benedetti (1977), Sampling behavior and 
tests for correlation in two-way contingency tables, Journal of the American 
Statistical Association, 42, 309�315. 

Cheng 

Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape 
parameters, Communications of the ACM, 21, 317�322. 

Chiang 

Chiang, Chin Long (1968), Introduction to Stochastic Processes in Statistics, 
John Wiley & Sons, New York.  

Conover 

Conover, W.J. (1980), Practical Nonparametric Statistics, 2d ed., John Wiley & 
Sons, New York. 

Conover and Iman 

Conover, W.J. and Ronald L. Iman (1983), Introduction to Modern Business 
Statistics, John Wiley & Sons, New York. 

Conover, W. J., Johnson, M. E., and Johnson, M. M 

Conover, W. J., Johnson, M. E., and Johnson, M. M. (1981) A comparative study 
of tests for homogeneity of variances, with applications to the outer continental 
shelf bidding data, Technometrics, 23, 351-361. 

Cook and Weisberg 

Cook, R. Dennis and Sanford Weisberg (1982), Residuals and Influence in 
Regression, Chapman and Hall, New York. 



 

 
 

IMSL C/Stat/library Appendix A: References � A-5 

 

 

 

Cooper 

Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution 
integrals, Applied Statistics, 17, 190�192. 

Cox 
Cox, David R. (1970), The Analysis of Binary Data, Methuen, London.  

Cox, D.R. (1972), Regression models and life tables (with discussion), Journal of 
the Royal Statistical Society, Series B, Methodology, 34, 187–220.  

Cox and Lewis 
Cox, D.R., and P.A.W. Lewis (1966), The Statistical Analysis of Series of Events, 
Methuen, London.  

Cox and Oakes 
Cox, D.R., and D. Oakes (1984), Analysis of Survival Data, Chapman and Hall, 
London. 

Cox and Stuart 

Cox, D.R., and A. Stuart (1955), Some quick sign tests for trend in location and 
dispersion, Biometrika, 42, 80�95.  

D'Agostino and Stevens 

D'Agostino, Ralph B. and Michael A. Stevens (1986), Goodness-of-Fit 
Techniques, Marcel Dekker, New York. 

Dallal and Wilkinson 

Dallal, Gerald E. and Leland Wilkinson (1986), An analytic approximation to the 
distribution of Lilliefor's test statistic for normality, The American Statistician, 
40, 294�296. 

Dennis and Schnabel 

Dennis, J.E., Jr. and Robert B. Schnabel (1983), Numerical Methods for 
Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood 
Cliffs, New Jersey. 

Devore 

Devore, Jay L (1982), Probability and Statistics for Engineering and Sciences, 
Brooks/Cole Publishing Company, Monterey, Calif. 



 

 
 

A-6 � Appendix A: References IMSL C/Stat/Library 

 

 

 

Draper and Smith 

Draper, N.R. and H. Smith (1981), Applied Regression Analysis, 2d ed., John 
Wiley & Sons, New York. 

Durbin 

Durbin, J. (1960), The fitting of time series models, Revue Institute 
Internationale de Statistics, 28, 233–243.  

Efroymson 

Efroymson, M.A. (1960), Multiple regression analysis, Mathematical Methods 
for Digital Computers, Volume 1, (edited by A. Ralston and H. Wilf), John Wiley 
& Sons, New York, 191�203. 

Ekblom 

Ekblom, Hakan (1973), Calculation of linear best Lp-approximations, BIT, 13, 
292�300.  

Ekblom, Hakan (1987), The L�-estimate as limiting case of an Lp or Huber-
estimate, in Statistical Data Analysis Based on the L�-Norm and Related Methods 
(edited by Yadolah Dodge), North-Holland, Amsterdam, 109�116.  

Elandt-Johnson and Johnson 

Elandt-Johnson, Regina C., and Norman L. Johnson (1980), Survival Models and 
Data Analysis, John Wiley & Sons, New York, 172�173. 

Emmett 

Emmett, W.G. (1949), Factor analysis by Lawless method of maximum 
likelihood, British Journal of Psychology, Statistical Section, 2, 90�97. 

Engle 

Engle, C. (1982), Autoregressive conditional heteroskedasticity with estimates of 
the variance of U.K. inflation, Econometrica ,  50, 987�1008. 

Fisher 

Fisher, R.A. (1936), The use of multiple measurements in taxonomic problems, 
The Annals of Eugenics, 7, 179�188. 

Fishman 

Fishman, George S. (1978), Principles of Discrete Event Simulation, John Wiley 
& Sons, New York. 



 

 
 

IMSL C/Stat/library Appendix A: References � A-7 

 

 

 

Fishman and Moore 

Fishman, George S. and Louis R. Moore (1982), A statistical evaluation of 
multiplicative congruential random number generators with modulus , Journal of 
the American Statistical Association, 77, 129�136. 

Forsythe 

Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting 
data with a digital computer, SIAM Journal on Applied Mathematics, 5, 74�88. 

Fuller 
Fuller, Wayne A. (1976), Introduction to Statistical Time Series, John Wiley & 
Sons, New York. 

Furnival and Wilson 

Furnival, G.M. and R.W. Wilson, Jr. (1974), Regressions by leaps and bounds, 
Technometrics, 16, 499�511. 

Fushimi 
Fushimi, Masanori (1990), Random number generation with the recursion  
Xt = Xt-3p �Xt-3q, Journal of Computational and Applied Mathematics, 31, 
105�118. 

Gentleman 

Gentleman, W. Morven (1974), Basic procedures for large, sparse or weighted 
linear least squares problems, Applied Statistics, 23, 448�454. 

Gibbons 

Gibbons, J.D. (1971), Nonparametric Statistical Inference, McGraw-Hill, New 
York. 

Girschick 

Girschick, M.A. (1939), On the sampling theory of roots of determinantal 
equations, Annals of Mathematical Statistics, 10, 203�224. 

Golub and Van Loan 

Golub, Gene H. and Charles F. Van Loan (1983), Matrix Computations, Johns 
Hopkins University Press, Baltimore, Md. 

Gonin and Money 

Gonin, Rene, and Arthur H. Money (1989), Nonlinear Lp-Norm Estimation, 
Marcel Dekker, New York.  



 

 
 

A-8 � Appendix A: References IMSL C/Stat/Library 

 

 

 

Goodnight 

Goodnight, James H. (1979), A tutorial on the SWEEP operator, The American 
Statistician, 33, 149�158. 

Graybill 

Graybill, Franklin A. (1976), Theory and Application of the Linear Model, 
Duxbury Press, North Scituate, Mass. 

Griffin and Redish 

Griffin, R. and K.A. Redish (1970), Remark on Algorithm 347: An efficient 
algorithm for sorting with minimal storage, Communications of the ACM,  
13, 54. 

Gross and Clark 

Gross, Alan J., and Virginia A. Clark (1975), Survival Distributions: Reliability 
Applications in the Biomedical Sciences, John Wiley & Sons, New York. 

Gruenberger and Mark 

Gruenberger, F., and A.M. Mark (1951), The d� test of random digits, 
Mathematical Tables and Other Aids in Computation, 5, 109�110. 

Guerra et al. 

Guerra, Victor O., Richard A. Tapia, and James R. Thompson (1976), A random 
number generator for continuous random variables based on an interpolation 
procedure of Akima, in Proceedings of the Ninth Interface Symposium on 
Computer Science and Statistics, (edited by David C. Hoaglin and Roy E. 
Welsch), Prindle, Weber & Schmidt, Boston, 228�230. 

Haldane 

Haldane, J.B.S. (1939), The mean and variance of  when used as a test of 
homogeneity, when expectations are small, Biometrika, 31, 346. 

Harman 

Harman, Harry H. (1976), Modern Factor Analysis, 3d ed. revised, University of 
Chicago Press, Chicago. 

Hart et al 

Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K. 
Mesztenyi, John R. Rice, Henry G. Thacher, Jr., and Christoph Witzgall (1968), 
Computer Approximations, John Wiley & Sons, New York. 



 

 
 

IMSL C/Stat/library Appendix A: References � A-9 

 

 

 

Hartigan 

Hartigan, John A. (1975), Clustering Algorithms, John Wiley & Sons, New York. 

Hartigan and Wong 

Hartigan, J.A. and M.A. Wong (1979), Algorithm AS 136: A K-means clustering 
algorithm, Applied Statistics, 28, 100�108. 

Hayter 

Hayter, Anthony J. (1984), A proof of the conjecture that the Tukey-Kramer 
multiple comparisons procedure is conservative, Annals of Statistics, 12, 61�75. 

Heiberger 

Heiberger, Richard M. (1978), Generation of random orthogonal matrices, 
Applied Statistics, 27, 199�206. 

Hemmerle. 

Hemmerle, William J. (1967), Statistical Computations on a Digital Computer, 
Blaisdell Publishing Company, Waltham, Mass. 

Herraman 

Herraman, C. (1968), Sums of squares and products matrix, Applied Statistics, 
17, 289�292. 

Hill 

Hill, G.W. (1970), Student's t-distribution, Communications of the ACM, 13,  
617�619.  

Hill, G.W. (1970), Student's t-quantiles, Communications of the ACM, 13,  
619�620. 

Hinkelmann, K and Kemthorne 

Hinkelmann, K and Kemthorne, O (1994) Design and Analysis of Experiments – 
Vol 1, John Wiley. 

Hinkley 

Hinkley, David (1977), On quick choice of power transformation, Applied 
Statistics, 26, 67�69. 

Hoaglin and Welsch 

Hoaglin, David C. and Roy E. Welsch (1978), The hat matrix in regression and 
ANOVA, The American Statistician, 32, 17�22. 



 

 
 

A-10 � Appendix A: References IMSL C/Stat/Library 

 

 

 

Hocking 

Hocking, R.R. (1972), Criteria for selection of a subset regression: Which one 
should be used?, Technometrics, 14, 967�970. 

Hocking, R.R. (1973), A discussion of the two-way mixed model, The American 
Statistician, 27, 148�152.  

Hocking, R.R. (1985), The Analysis of Linear Models, Brooks/Cole Publishing 
Company, Monterey, California.  

Huber 

Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York. 

Hughes and Saw 

Hughes, David T., and John G. Saw (1972), Approximating the percentage points 
of Hotelling’s generalized  statistic, Biometrika, 59, 224�226.  T0

2

Iman and Davenport 

Iman, R.L., and J.M. Davenport (1980), Approximations of the critical region of 
the Friedman statistic, Communications in Statistics, A9(6),  
571�595. 

Jennrich and Robinson 

Jennrich, R.I. and S.M. Robinson (1969), A Newton-Raphson algorithm for 
maximum likelihood factor analysis, Psychometrika, 34, 111�123.  

Jennrich and Sampson 
Jennrich, R.I. and P.F. Sampson (1966), Rotation for simple loadings, 
Psychometrika, 31, 313–323. 

John 

John, Peter W.M. (1971), Statistical Design and Analysis of Experiments, 
Macmillan Company, New York. 

Jöhnk 

Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten 
Zufallszahlen, Metrika, 8, 5�15. 

Johnson and Kotz 

Johnson, Norman L., and Samuel Kotz (1969), Discrete Distributions, Houghton 
Mifflin Company, Boston.  



 

 
 

IMSL C/Stat/library Appendix A: References � A-11 

 

 

 

Johnson, Norman L., and Samuel Kotz (1970a), Continuous Univariate 
Distributions-1, John Wiley & Sons, New York.  

Johnson, Norman L., and Samuel Kotz (1970b), Continuous Univariate 
Distributions-2, John Wiley & Sons, New York.  

Johnson and Welch  

Johnson, D.G., and W.J. Welch (1980), The generation of pseudo-random 
correlation matrices, Journal of Statistical Computation and Simulation, 11,  
55�69.  

Jonckheere 

Jonckheere, A.R. (1954), A distribution-free k-sample test against ordered 
alternatives, Biometrika, 41, 133�143. 

Jöreskog 

Jöreskog, K.G. (1977), Factor analysis by least squares and maximum-likelihood 
methods, Statistical Methods for Digital Computers, (edited by Kurt Enslein, 
Anthony Ralston, and Herbert S. Wilf), John Wiley & Sons, New York,  
125�153. 

Kachitvichyanukul 

Kachitvichyanukul, Voratas (1982), Computer generation of Poisson, binomial, 
and hypergeometric random variates, Ph.D. dissertation, Purdue University, 
West Lafayette, Indiana. 

Kaiser 

Kaiser, H.F. (1963), Image analysis, Problems in Measuring Change, (edited by 
C. Harris), University of Wisconsin Press, Madison, Wis. 

Kaiser and Caffrey 

Kaiser, H.F. and J. Caffrey (1965), Alpha factor analysis, Psychometrika, 30,  
1�14. 

Kalbfleisch and Prentice 

Kalbfleisch, John D., and Ross L. Prentice (1980), The Statistical Analysis of 
Failure Time Data, John Wiley & Sons, New York.  

Kemp 

Kemp, A.W., (1981), Efficient generation of logarithmically distributed pseudo-
random variables, Applied Statistics, 30, 249�253. 



 

 
 

A-12 � Appendix A: References IMSL C/Stat/Library 

 

 

 

Kendall and Stuart 

Kendall, Maurice G. and Alan Stuart (1973), The Advanced Theory of Statistics, 
Volume 2: Inference and Relationship, 3d ed., Charles Griffin & Company, 
London.  

Kendall, Maurice G. and Alan Stuart (1979), The Advanced Theory of Statistics,  
Volume 2: Inference and Relationship, 4th ed., Oxford University Press, New 
York. 

Kendall et al. 

Kendall, Maurice G., Alan Stuart, and J. Keith Ord (1983), The Advanced Theory 
of Statistics, Volume 3: Design and Analysis, and Time Series, 4th. ed., Oxford 
University Press, New York. 

Kennedy and Gentle 

Kennedy, William J., Jr. and James E. Gentle (1980), Statistical Computing, 
Marcel Dekker, New York. 

Kuehl, R. O.  

Kuehl, R. O. (2000) Design of Experiments: Statistical Principles of Research 
Design and Analysis, 2nd edition, Duxbury Press. 

Kim and Jennrich 

Kim, P.J., and R.I. Jennrich (1973), Tables of the exact sampling distribution of 
the two sample Kolmogorov-Smirnov criterion Dmn (m < n), in Selected Tables in 
Mathematical Statistics, Volume 1, (edited by H. L. Harter and D.B. Owen), 
American Mathematical Society, Providence, Rhode Island.  

Kinderman and Ramage 

Kinderman, A.J., and J.G. Ramage (1976), Computer generation of normal 
random variables, Journal of the American Statistical Association, 71, 893�896.  

Kinderman et al. 

Kinderman, A.J., J.F. Monahan, and J.G. Ramage (1977), Computer methods for 
sampling from Student’s t distribution, Mathematics of Computation 31,  
1009�1018. 

Kinnucan and Kuki 

Kinnucan, P. and H. Kuki (1968), A Single Precision INVERSE Error Function 
Subroutine, Computation Center, University of Chicago. 



 

 
 

IMSL C/Stat/library Appendix A: References � A-13 

 

 

 

Kirk 

Kirk, Roger E. (1982), Experimental Design: Procedures for the Behavioral 
Sciences, 2d ed., Brooks/Cole Publishing Company, Monterey, Calif. 

Knuth 

Knuth, Donald E. (1981), The Art of Computer Programming, Volume 2: 
Seminumerical Algorithms, 2d ed., Addison-Wesley, Reading, Mass. 

Kshirsagar 

Kshirsagar, Anant M. (1972), Multivariate Analysis, Marcel Dekker, New York.  

Lachenbruch 

Lachenbruch, Peter A. (1975), Discriminant Analysis, Hafner Press, London.  

Lai 

Lai, D. (1998a), Local asymptotic normality for location-scale type processes. 
Far East Journal of Theorectical Statistics, (in press). 

Lai, D. (1998b), Asymptotic distributions of the correlation integral based 
statistics. Journal of Nonparametric Statistics, (in press). 

Lai, D. (1998c), Asymptotic distributions of the estimated BDS statistic and 
residual analysis of AR Models on the Canadian lynx data. Journal  
of Biological Systems, (in press). 

Laird and Oliver 

Laird, N.M., and D. Fisher (1981), Covariance analysis of censored survival data 
using log-linear analysis techniques, JASA 76, 1231�1240. 

Lawless 

Lawless, J.F. (1982), Statistical Models and Methods for Lifetime Data, John 
Wiley & Sons, New York.  

Lawley and Maxwell 

Lawley, D.N. and A.E. Maxwell (1971), Factor Analysis as a Statistical Method, 
2d ed., Butterworth, London. 

Learmonth and Lewis 

Learmonth, G.P. and P.A.W. Lewis (1973), Naval Postgraduate School Random 
Number Generator Package LLRANDOM, NPS55LW73061A, Naval 
Postgraduate School, Monterey, Calif. 



 

 
 

A-14 � Appendix A: References IMSL C/Stat/Library 

 

 

 

Lee 

Lee, Elisa T. (1980), Statistical Methods for Survival Data Analysis, Lifetime 
Learning Publications, Belmont, Calif.  

Lehmann 

Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on Ranks, 
Holden-Day, San Francisco. 

Levenberg 

Levenberg, K. (1944), A method for the solution of certain problems in least 
squares, Quarterly of Applied Mathematics, 2, 164�168. 

Levene, H. 

Levene, H. (1960) In Contributions to Probability and Statistics: Essays in 
Honor of Harold Hotelling, I. Olkin et al. editors, Stanford University Press,  
278-292. 

Lewis et al. 

Lewis, P.A.W., A.S. Goodman, and J.M. Miller (1969), A pseudorandom number 
generator for the System/360, IBM Systems Journal, 8, 136�146. 

Liffiefors 

Lilliefors, H.W. (1967), On the Kolmogorov-Smirnov test for normality with 
mean and variance unknown, Journal of the American Statistical Association, 62, 
534�544. 

Ljung and Box 

Ljung, G.M., and G.E.P. Box (1978), On a measure of lack of fit in time series 
models, Biometrika, 65, 297–303.  

Longley 

Longley, James W. (1967), An appraisal of least-squares programs for the 
electronic computer from the point of view of the user, Journal of the American 
Statistical Association, 62, 819�841. 

Marsaglia 

Marsaglia, George (1964), Generating a variable from the tail of a normal 
distribution, Technometrics, 6, 101�102.  

Marsaglia, G. (1968), Random numbers fall mainly in the planes, Proceedings of 
the National Academy of Sciences, 61, 25�28.  



 

 
 

IMSL C/Stat/library Appendix A: References � A-15 

 

 

 

Marsaglia, G. (1972), The structure of linear congruential sequences, in 
Applications of Number Theory to Numerical Analysis, (edited by S. K. 
Zaremba), Academic Press, New York, 249�286.  

Marsaglia, George (1972), Choosing a point from the surface of a sphere,  
The Annals of Mathematical Statistics, 43, 645�646.  

McKean and Schrader 

McKean, Joseph W., and Ronald M. Schrader (1987), Least absolute errors 
analysis of variance, in Statistical Data Analysis Based on the L�-Norm and 
Related Methods (edited by Yadolah Dodge), North-Holland, Amsterdam,  
297�305.  

McKeon 

McKeon, James J. (1974), F approximations to the distribution of Hotelling’s 
, Biometrika, 61, 381�383.  T0

2

McCullagh and Nelder 

McCullagh, P., and J.A. Nelder, (1983), Generalized Linear Models, Chapman 
and Hall, London. 

Maindonald 

Maindonald, J.H. (1984), Statistical Computation, John Wiley & Sons, New 
York.  

Marazzi 

Marazzi, Alfio (1985), Robust affine invariant covariances in ROBETH, 
ROBETH-85 document No. 6, Division de Statistique et Informatique, Institut 
Universitaire de Medecine Sociale et Preventive, Laussanne.  

Mardia et al. 

Mardia, K.V. (1970), Measures of multivariate skewness and kurtosis with 
applications, Biometrics, 57, 519�530.  

Mardia, K.V., J.T. Kent, J.M. Bibby (1979), Multivariate Analysis, Academic 
Press, New York.  

Mardia and Foster 

Mardia, K.V. and K. Foster (1983), Omnibus tests of multinormality based on 
skewness and kurtosis, Communications in Statistics A, Theory and Methods, 12, 
207�221. 



 

 
 

A-16 � Appendix A: References IMSL C/Stat/Library 

 

 

 

Marquardt 

Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear 
parameters, SIAM Journal on Applied Mathematics, 11, 431�441. 

Marsaglia 

Marsaglia, George (1964), Generating a variable from the tail of a normal 
distribution, Technometrics, 6, 101�102.  

Marsaglia and Bray 

Marsaglia, G. and T.A. Bray (1964), A convenient method for generating normal 
variables, SIAM Review, 6, 260�264.  

Marsaglia et al. 

Marsaglia, G., M.D. MacLaren, and T.A. Bray (1964), A fast procedure for 
generating normal random variables, Communications of the ACM, 7, 4�10. 

Merle and Spath 

Merle, G., and H. Spath (1974), Computational experiences with discrete Lp 
approximation, Computing, 12, 315�321. 

Miller 

Miller, Rupert G., Jr. (1980), Simultaneous Statistical Inference, 2d ed., 
Springer-Verlag, New York. 

Milliken and Johnson 

Milliken, George A. and Dallas E. Johnson (1984), Analysis of Messy Data, 
Volume 1: Designed Experiments, Van Nostrand Reinhold, New York. 

Moran 

Moran, P.A.P. (1947), Some theorems on time series I, Biometrika, 34,  
281�291. 

Moré et al. 

Moré, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User Guide for [4] 
MINPACK-1, Argonne National Laboratory Report ANL-80_74, Argonne, Ill. 

Morrison 

Morrison, Donald F. (1976), Multivariate Statistical Methods, 2nd. ed. McGraw-
Hill Book Company, New York.  



 

 
 

IMSL C/Stat/library Appendix A: References � A-17 

 

 

 

Muller 

Muller, M.E. (1959), A note on a method for generating points uniformly on  
N-dimensional spheres, Communications of the ACM, 2, 19�20. 

Nelson 

Nelson, D. B.  (1991), Conditional heteroskedasticity in asset returns: A new 
approach. Econometrica, , 59, 347�370. 

Nelson 

Nelson, Peter (1989), Multiple Comparisons of Means Using Simultaneous 
Confidence Intervals, Journal of Quality Technology, 21, 232�241. 

Neter 

Neter, John (1983), Applied Linear Regression Models, Richard D. Irwin, 
Homewood, Ill.  

Neter and Wasserman 

Neter, John and William Wasserman (1974), Applied Linear Statistical Models, 
Richard D. Irwin, Homewood, Ill. 

Noether 

Noether, G.E. (1956), Two sequential tests against trend, Journal of the American 
Statistical Association, 51, 440�450. 

Owen 

Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing 
Company, Reading, Mass. 

Owen, D.B. (1965), A special case of the bivariate non-central t distribution, 
Biometrika, 52, 437�446. 

Palm 

Palm, F. C.  (1996), GARCH models of volatility. In Handbook of Statistics,  
Vol. 14, 209-240. Eds: Maddala and Rao. Elsevier,New York.  

Patefield 

Patefield, W.M. (1981), An efficient method of generating R � C tables with 
given row and column totals, Applied Statistics, 30, 91�97. 



 

 
 

A-18 � Appendix A: References IMSL C/Stat/Library 

 

 

 

Patefield and Tandy 
Patefield, W.M. (1981), and Tandy D. (2000) Fast and Accurate Calculation of 
Owen’s T-Function, J. Statistical Software, 5, Issue 5. 

Peixoto 

Peixoto, Julio L. (1986), Testable hypotheses in singular fixed linear models, 
Communications in Statistics: Theory and Methods, 15,  
1957�1973. 

Petro 

Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting 
with minimal storage, Communications of the ACM, 13, 624. 

Pillai 

Pillai, K.C.S. (1985), Pillai’s trace, in Encyclopedia of Statistical Sciences, 
Volume 6, (edited by Samuel Kotz and Norman L. Johnson), John Wiley & Sons, 
New York, 725�729.  

Pregibon 

Pregibon, Daryl (1981), Logistic regression diagnostics, The Annals of Statistics, 
9, 705�724.  

Prentice 

Prentice, Ross L. (1976), A generalization of the probit and logit methods for 
dose response curves, Biometrics, 32, 761�768. 

Priestley 
Priestley, M.B. (1981), Spectral Analysis and Time Series, Volumes 1 and 2, 
Academic Press, New York. 

Rao 

Rao, C. Radhakrishna (1973), Linear Statistical Inference and Its Applications, 
2d ed., John Wiley & Sons, New York. 

Robinson 

Robinson, Enders A. (1967), Multichannel Time Series Analysis with Digital 
Computer Programs, Holden-Day, San Francisco. 

Royston 

Royston, J.P. (1982a), An extension of Shapiro and Wilk's W test for normality to 
large samples, Applied Statistics, 31, 115�124. 



 

 
 

IMSL C/Stat/library Appendix A: References � A-19 

 

 

 

Royston, J.P. (1982b), The W test for normality, Applied Statistics, 31, 176�180. 

Royston, J.P. (1982c), Expected normal order statistics (exact and approximate), 
Applied Statistics, 31, 161�165. 

Sallas 

Sallas, William M. (1990), An algorithm for an Lp norm fit of a multiple linear 
regression model, American Statistical Association 1990 Proceedings of the 
Statistical Computing Section, 131�136.  

Sallas and Lionti 

Sallas, William M. and Abby M. Lionti (1988), Some useful computing formulas 
for the nonfull rank linear model with linear equality restrictions, IMSL 
Technical Report 8805, IMSL, Houston. 

Savage 

Savage, I. Richard (1956), Contributions to the theory of rank order statistics-the 
two-sample case, Annals of Mathematical Statistics, 27, 590�615. 

Scheffe 

Scheffe, Henry (1959), The Analysis of Variance, John Wiley & Sons, New York.  

Schmeiser 

Schmeiser, Bruce (1983), Recent advances in generating observations from 
discrete random variates, Computer Science and Statistics: Proceedings of the 
Fifteenth Symposium on the Interface, (edited by James E. Gentle), North-
Holland Publishing Company, Amsterdam, 154�160. 

Schmeiser and Babu 

Schmeiser, Bruce W. and A.J.G. Babu (1980), Beta variate generation via 
exponential majorizing functions, Operations Research, 28, 917�926.  

Schmeiser and Kachitvichyanukul 

Schmeiser, Bruce and Voratas Kachitvichyanukul (1981), Poisson Random 
Variate Generation, Research Memorandum 81�4, School of Industrial 
Engineering, Purdue University, West Lafayette, Ind. 

Schmeiser and Lal 

Schmeiser, Bruce W. and Ram Lal (1980), Squeeze methods for generating 
gamma variates, Journal of the American Statistical Association, 75, 679�682. 



 

 
 

A-20 � Appendix A: References IMSL C/Stat/Library 

 

 

 

Searle 

Searle, S.R. (1971), Linear Models, John Wiley & Sons, New York. 

Seber 

Seber, G.A.F. (1984), Multivariate Observations, John Wiley & Sons, New York.  

Snedecor and Cochran  

Snedecor and Cochran (1967) Statistical Methods, 6th edition, Iowa State 
University Press. 

Snedecor, George W.  & Cochran, William G.  

Snedecor, George W.  and Cochran, William G. (1967) Statistical Methods, 6th 
edition, Iowa State University Press, 296-298. 

Shampine 

Shampine, L.F. (1975), Discrete least-squares polynomial fits, Communications 
of the ACM, 18, 179�180.  

Siegal 

Siegal, Sidney (1956), Nonparametric Statistics for the Behavioral Sciences, 
McGraw-Hill, New York. 

Singleton 

Singleton, R.C. (1969), Algorithm 347: An efficient algorithm for sorting with 
minimal storage, Communications of the ACM, 12, 185�187. 

Smirnov 

Smirnov, N.V. (1939), Estimate of deviation between empirical distribution 
functions in two independent samples (in Russian), Bulletin of Moscow 
University, 2, 3�16. 

Smith and Dubey 

Smith, H., and S. D. Dubey (1964), "Some reliability problems in the chemical 
industry", Industrial Quality Control, 21 (2), 1964, 64-70. 

Snedecor and Cochran 

Snedecor, George W. and William G. Cochran (1967), Statistical Methods, 6th 
ed., Iowa State University Press, Ames, Iowa. 



 

 
 

IMSL C/Stat/library Appendix A: References � A-21 

 

 

 

Sposito 

Sposito, Vincent A. (1989), Some properties of Lp-estimators, in Robust 
Regression: Analysis and Applications (edited by Kenneth D. Lawrence and 
Jeffrey L. Arthur), Marcel Dekker, New York, 23�58. 

Spurrier and Isham 

Spurrier, John D. and Steven P. Isham (1985), Exact simultaneous confidence 
intervals for pairwise comparisons of three normal means, Journal of the 
American Statistical Association, 80, 438�442. 

Stablein, Carter, and Novak 
Stablein, D.M, W.H. Carter, and J.W. Novak (1981), Analysis of survival data 
with nonproportional hazard functions, Controlled Clinical Trials, 2, 149–159. 

Stahel 

Stahel, W. (1981), Robuste Schatzugen: Infinitesimale Opimalitat und 
Schatzugen von Kovarianzmatrizen, Dissertation no. 6881, ETH, Zurich. 

Steel and Torrie 

Steel and Torrie (1960) Principles and Procedures of Statistics, McGraw-Hill. 

Stephens 

Stephens, M.A. (1974), EDF statistics for goodness of fit and some comparisons, 
Journal of the American Statistical Association, 69, 730�737. 

Stirling 

Stirling, W.D. (1981), Least squares subject to linear constraints, Applied 
Statistics, 30, 204�212. (See correction, p. 357.) 

Stoline 

Stoline, Michael R. (1981), The status of multiple comparisons: simultaneous 
estimation of all pairwise comparisons in one-way ANOVA designs,  
The American Statistician, 35, 134�141. 

Strecok 

Strecok, Anthony J. (1968), On the calculation of the inverse of the error 
function, Mathematics of Computation, 22, 144�158.  



 

 
 

A-22 � Appendix A: References IMSL C/Stat/Library 

 

 

 

Tanner and Wong 
Tanner, Martin A., and Wing H. Wong (1983), The estimation of the hazard 
function from randomly censored data by the kernel method, Annals of Statistics, 
11, 989–993.  

Tanner, Martin A., and Wing H. Wong (1984), Data-based nonparametric 
estimation of the hazard function with applications to model diagnostics and 
exploratory analysis, Journal of the American Statistical Association, 79, 123–
456. 

Taylor and Thompson  

Taylor, Malcolm S., and James R. Thompson (1986), Data based random number 
generation for a multivariate distribution via stochastic simulation, 
Computational Statistics & Data Analysis, 4, 93�101.  

Tezuka 

Tezuka, S. (1995), Uniform Random Numbers: Theory and Practice. Academic 
Publishers, Boston. 

Thompson 

Thompson, James R, (1989), Empirical Model Building, John Wiley & Sons, 
New York. 

Tucker and Lewis 

Tucker, Ledyard and Charles Lewis (1973), A reliability coefficient for maximum 
likelihood factor analysis, Psychometrika, 38, 1�10. 

Tukey 

Tukey, John W. (1962), The future of data analysis, Annals of Mathematical 
Statistics, 33, 1�67. 

Velleman and Hoaglin 

Velleman, Paul F. and David C. Hoaglin (1981), Applications, Basics, and 
Computing of Exploratory Data Analysis, Duxbury Press, Boston. 

Verdooren 

Verdooren, L. R. (1963), Extended tables of critical values for Wilcoxon's test 
statistic, Biometrika, 50, 177�186. 

Wallace 

Wallace, D.L. (1959), Simplified Beta-approximations to the Kruskal-Wallis H-
test, Journal of the American Statistical Association, 54, 225�230. 



 

 
 

IMSL C/Stat/library Appendix A: References � A-23 

 

 

 

Weisberg 

Weisberg, S. (1985), Applied Linear Regression, 2d ed., John Wiley & Sons, 
New York. 

Woodfield 

Woodfield, Terry J. (1990), Some notes on the Ljung-Box portmanteau statistic, 
American Statistical Association 1990 Proceedings of the Statistical Computing 
Section, 155–160. 

Yates, F. 

Yates, F. (1936) A new method of arranging variety trials involving a large 
number of varieties.  Journal of Agricultural Science, 26, 424-455. 



 

 
 

A-24 � Appendix A: References IMSL C/Stat/Library 

 

 

 

 
 
 



 

 
 

Appendix B:  Alphabetical Summary of Routines IMSL C/Stat/Library � B- 1 

 

 

 

Appendix B:  Alphabetical Summary 
of Routines 

 

Function Purpose Statement Page 
anova_balanced Analyzes a balanced complete experimental design for 

a fixed, random, or mixed model. 
256 

anova_factorial Analyzes a balanced factorial design with fixed effects. 239 

anova_nested Analyzes a completely nested random model with 
possibly unequal numbers in the subgroups. 

247 

anova_oneway Analyzes a one-way classification model. 230 

arma Computes least-square estimates of parameters for an 
ARMA model. 

517 

arma_forecast Computes forecasts and their associated probability 
limits for an ARMA model. 

527 

autocorrelation Computes the sample autocorrelation function of a 
stationary time series. 

541 

beta Evaluates the complete beta function. 901 

beta_cdf Evaluates the beta probability distribution function. 730 

beta_incomplete Evaluates the real incomplete beta function. 903 

beta_inverse_cdf Evaluates the inverse of the beta distribution function. 731 

binomial_cdf Evaluates the binomial distribution function. 720 

binomial_coefficient Evaluates the binomial coefficient. 900 

binomial_pdf Evaluates the binomial probability function.  722 

bivariate_normal_cdf Evaluates the bivariate normal distribution function. 732 

box_cox_transform Performs a Box-Cox transformation. 537 

categorical_glm Analyzes categorical data using logistic, Probit, 
Poisson, and other generalized linear models. 

425 

chi_squared_cdf Evaluates the chi-squared distribution function. 734 
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Function Purpose Statement Page 
chi_squared_inverse_cdf Evaluates the inverse of the chi-squared distribution 

function. 
736 

chi_squared_test Performs a chi-squared goodness-of-fit test. 482 

cluster_hierarchical Performs a hierarchical cluster analysis given a 
distance matrix. 

590 

cluster_k_means Performs a K-means (centroid) cluster analysis. 598 

cluster_number Computes cluster membership for a hierarchical cluster 
tree. 

594 

cochran_q_test Performs a Cochran Q test for related observations. 472 

contingency_table Performs a chi-squared analysis of a two-way 
contingency table. 

404 

continuous_table_setup Sets up table to generate pseudorandom numbers from 
a general continuous distribution. 

812 

covariances Computes the sample variance-covariance or 
correlation matrix. 

185 

cox_stuart_trends_test Performs the Cox and Stuart’ sign test for trends in 
location and dispersion. 

452 

crd_factorial Analyzes data from balanced and unbalanced 
completely randomized experiments. 

267 

crosscorrelation Computes the sample cross-correlation function of two 
stationary time series 

546 

ctime Returns the number of CPU seconds used. 911 

data_sets Retrieves a commonly analyzed data set. 890 

difference Differences a seasonal or nonseasonal time series. 532 

discrete_table_setup Sets up a table to generate pseudorandom numbers 
from a general discrete distribution. 

781 

discriminant_analysis Performs discriminant function analysis. 628 

dissimilarities Computes a matrix of dissimilarities (or similarities) 
between the columns (or rows) of a matrix. 

586 

error_code Returns the code corresponding to the error message 
from the last function called. 

885 

error_options Sets various error handling options. 879 

exact_enumeration Computes exact probabilities in a two-way contingency 
table, using the total enumeration method. 

417 

exact_network Computes exact probabilities in a two-way contingency 
table using the network algorithm. 

419 
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Function Purpose Statement Page 
F_cdf Evaluates the F distribution function. 742 

F_inverse_cdf Evaluates the inverse of the F distribution function. 744 

factor_analysis Extracts initial factor-loading estimates in factor 
analysis. 

609 

faure_next_point Computes a shuffled Faure sequence 856 

friedmans_test Performs Friedman’s test for a randomized complete 
block design. 

467 

gamma Evaluates the real gamma functions. 905 

gamma_cdf Evaluates the gamma distribution function. 745 

gamma_incomplete Evaluates the incomplete gamma function. 907 

gamma_inverse_cdf Evaluates the inverse of the gamma distribution 
function. 

747 

garch Computes estimates of the parameters of  
a GARCH(p, q) model 

566 

homogeneity Conducts Bartlett’s and Levene’s tests of the 
homogeneity of variance assumption in analysis of 
variance. 

378 

hypergeometric_cdf Evaluates the hypergeometric distribution function. 723 

hypergeometric_pdf Evaluates the hypergeometric probability function. 725 

hypothesis_partial Constructs a completely testable hypothesis. 96 

hypothesis_scph Sums of cross products for a multivariate hypothesis. 101 

hypothesis_test Tests for the multivariate linear hypothesis. 106 

k_trends_test Performs k-sample trends test against ordered 
alternatives. 

475 

kalman Performs Kalman filtering and evaluates the likelihood 
function for the state-space model.  

571 

kaplan_meier_estimates Computes Kaplan-Meier estimates of survival 
probabilities in stratified samples. 

654 

kolmogorov_one Performs a Kolmogorov-Smirnov’s one-sample test for 
continuos distributions. 

494 

kolmogorov_two Performs a Kolmogorov-Smirnov’s two-sample test 497 

kruskal_wallis_test Performs a Kruskal-Wallis’s test for identical 
population medians.  

465 

lack_of_fit Performs lack-of-fit test for an univariate time series or 
transfer function given the appropriate correlation 
function. 

563 
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Function Purpose Statement Page 
latin_square Analyzes data from latin-square experiments. 288 

lattice Analyzes balanced and partially-balanced lattice 
experiments. 

297 

life_tables Produces population and cohort life tables. 712 

Lnorm_regression Fits a multiple linear regression model using criteria 
other than least squares. 

168 

log_beta Evaluates the log of the real beta function. 904 

log_gamma Evaluates the logarithm of the absolute value of the 
gamma function. 

909 

machine (float) Returns information describing the computer's floating-
point arithmetic. 

888 

machine (integer) Returns integer information describing the computer's 
arithmetic. 

886 

mat_mul_rect Computes the transpose of a matrix, a matrix-vector 
product, a matrix-matrix product, a bilinear form, or 
any triple product. 

893 

multi_crosscorrelation Computes the multichannel cross-correlation function 
of two mutually stationary multichannel time series. 

552 

multiple_comparisons Performs Student-Newman-Keuls multiple 
comparisons test. 

385 

multivar_normality_test Computes Mardia’s multivariate measures of skewness 
and kurtosis and tests for multivariate normality. 

501 

noether_cyclical_trend Performs the Noether’s test for cyclical trend. 449 

non_central_chi_sq Evaluates the noncentral chi-squared distribution 
function. 

738 

non_central_chi_sq_inv Evaluates the inverse of the noncentral chi-squared 
function. 

740 

non_central_t_cdf Evaluates the noncentral Student’s t distribution 
function. 

754 

non_central_t_inv_cdf Evaluates the inverse of the noncentral Student’s t 
distribution function. 

757 

nonlinear_optimization Fits a nonlinear regression model using Powell's 
algorithm. 

159 

nonlinear_regression Fits a nonlinear regression model. 149 

nonparam_hazard_rate Performs nonparametric hazard rate estimation using 
kernel functions and quasi-likelihoods. 

703 
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Function Purpose Statement Page 
normal_cdf Evaluates the standard normal (Gaussian) distribution 

function. 
748 

normal_inverse_cdf Evaluates the inverse of the standard normal 
(Gaussian) distribution function. 

750 

normal_one_sample Computes statistics for mean and variance inferences 
using a sample from a normal population. 

7 

normal_two_sample Computes statistics for mean and variance inferences 
using samples from two normal population. 

11 

normality_test Performs a test for normality. 490 

output_file Sets the output file or the error message output file. 874 

page Sets or retrieves the page width or length. 867 

partial_autocorrelation Computes the sample partial autocorrelation function 
of a stationary time series.  

560 

partial_covariances Computes partial covariances or partial correlations 
from the covariance or correlation matrix. 

193 

permute_matrix Permutes the rows or columns of a matrix. 898 

permute_vector Rearranges the elements of a vector as specified by a 
permutation. 

 897 

poisson_cdf Evaluates the Poisson distribution function. 726 

poisson_pdf Evaluates the Poisson probability function. 728 

poly_prediction Computes predicted values, confidence intervals, and 
diagnostics after fitting a polynomial regression model. 

140 

poly_regression Performs a polynomial least-squares regression. 132 

pooled_covariances Computes a pooled variance-covariance from the 
observations. 

198 

principal_components Computes principal components. 603 

prop_hazard_gen_lin Analyzes time event data via the proportional hazards 
model. 

660 

random_arma Generates pseudorandom ARMA process numbers. 831 

random_beta Generates pseudorandom numbers from a beta 
distribution. 

786 

random_binomial Generates pseudorandom binomial numbers. 765 

random_cauchy Generates pseudorandom numbers from a Cauchy 
distribution. 

 788 

random_chi_squared Generates pseudorandom numbers from a chi-squared 
distribution. 

789 
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Function Purpose Statement Page 
random_exponential Generates pseudorandom numbers from a standard 

exponential distribution. 
791 

random_exponential_mix Generates pseudorandom mixed numbers from a 
standard exponential distribution. 

792 

random_gamma Generates pseudorandom numbers from a standard 
gamma distribution. 

794 

random_general_continuous Generates pseudorandom numbers from a general  
continuous distribution. 

810 

random_general_discrete Generates pseudorandom numbers from a general 
discrete distribution using an alias method or optionally 
a table lookup method.  

777 

random_geometric Generates pseudorandom numbers from a geometric 
distribution. 

766 

random_GFSR_table_get Retrieves the current table used in the GFSR generator. 853 

random_GFSR_table_set Sets the current table used in the GFSR generator. 853 

random_hypergeometric Generates pseudorandom numbers from a 
hypergeometric distribution. 

768 

random_logarithmic Generates pseudorandom numbers from a logarithmic 
distribution. 

770 

random_lognormal Generates pseudorandom numbers from a lognormal 
distribution. 

796 

random_multinomial Generates pseudorandom numbers from a multinomial 
distribution. 

821 

random_mvar_from_data Generates pseudorandom numbers from a multivariate 
distribution determined from a given sample. 

819 

random_neg_binomial Generates pseudorandom numbers from a negative 
binomial distribution. 

772 

random_normal Generates pseudorandom numbers from a standard 
normal distribution using an inverse CDF method. 

798 

random_normal_multivariate Generates pseudorandom numbers from a multivariate 
normal distribution. 

 815 

random_npp Generates pseudorandom numbers from a 
nonhomogeneous Poisson process. 

835 

random_option Selects the uniform (0, 1) multiplicative congruential 
pseudorandom number generator. 

845 

random_option_get Retrieves the uniform (0, 1) multiplicative congruential 
pseudorandom number generator. 

846 
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Function Purpose Statement Page 
random_order_normal Generates pseudorandom order statistics from a 

standard normal distribution. 
827 

random_order_uniform Generates pseudorandom order statistics from a 
uniform (0, 1) distribution  

829 

random_orthogonal_matrix Generates a pseudorandom orthogonal matrix  
or a correlation matrix. 

816 

random_permutation Generates a pseudorandom permutation. 839 

random_poisson Generates pseudorandom numbers from a Poisson 
distribution. 

774 

random_sample Generates a simple pseudorandom sample from a finite 
population. 

842 

random_sample_indices Generates a simple pseudorandom sample of indices. 840 

random_seed_get Retrieves the current value of the seed used in the 
IMSL random number generators. 

847 

random_seed_set Initializes a random seed for use in the IMSL random 
number generators. 

850 

random_sphere Generates pseudorandom points on a unit circle or K-
dimensional sphere. 

823 

random_stable Sets up a table to generate pseudorandom numbers 
from a general discrete distribution. 

800 

random_student_t Generates pseudorandom Student's  t. 802 

random_substream_seed_get Retrieves  a seed for the congruential generators that 
do not do shuffling that will generate random numbers 
beginning 100,000 numbers farther along.  

848 

random_table_get Retrieves the current table used in the shuffled 
generator. 

852 

random_table_set Sets the current table used in the shuffled generator. 851 

random_table_twoway Generates a pseudorandom two-way table. 825 

random_triangular Generates pseudorandom numbers from a triangular 
distribution. 

803 

random_uniform Generates pseudorandom numbers from a uniform (0, 
1) distribution. 

804 

random_uniform_discrete Generates pseudorandom numbers from a discrete 
uniform distribution. 

775 

random_von_mises Generates pseudorandom numbers from a von Mises 
distribution. 

806 
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Function Purpose Statement Page 
random_weibull Generates pseudorandom numbers from a Weibull 

distribution. 
808 

randomness_test Performs a test for randomness. 505 

ranks Computes the ranks, normal scores, or exponential 
scores for a vector of observations. 

36 

rcbd_factorial Analyzes data from balanced and unbalanced 
randomized complete-block experiments. 

279 

regression Fits a multiple linear regression model using least 
squares. 

64 

regression_prediction Computes predicted values, confidence intervals, and 
diagnostics after fitting a regression model. 

85 

regression_selection Selects the best multiple linear regression models. 112 

regression_stepwise Builds multiple linear regression models using forward 
selection, backward selection or stepwise selection. 

123 

regression_summary Produces summary statistics for a regression model 
given the information from the fit. 

77 

regressors_for_glm Generates regressors for a general linear model. 56 

robust_covariances Computes a robust estimate of a covariance matrix and 
mean vector. 

204 

sign_test Performs a sign test. 442 

simple_statistics Computes basic univariate statistics. 2 

sort_data Sorts observations by specified keys, with option to 
tally cases into a multi-way frequency table. 

27 

split_plot Analyzes a wide variety of split-plot experiments with 
fixed, mixed or random factors. 

316 

split_split_plot Analyzes data from split-split-plot experiments. 329 

strip_plot Analyzes data from strip-plot experiments. 345 

strip_split_plot Analyzes data from strip-split-plot experiments. 355 

survival_estimates Estimates using various parametric models. 697 

survival_glm Analyzes survival data using a generalized linear 
model. 

673 

t_cdf Evaluates the Student's t distribution function. 751 

t_inverse_cdf Evaluates the inverse of the Student's  t distribution 
function. 

753 

table_oneway Tallies observations into one-way frequency table. 18 

table_twoway Tallies observations into a two-way frequency table. 22 
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Function Purpose Statement Page 
tie_statistics Computes tie statistics for a sample of observations. 458 

version Returns integer information describing the version of 
the library, license number, operating system, and 
compiler. 

878 

wilcoxon_rank_sum Performs a Wilcoxon rank sum test. 460 

wilcoxon_sign_rank Performs a Wilcoxon sign rank test. 445 

write_matrix Prints a rectangular matrix (or vector) stored in 
contiguous memory locations. 

861 

write_options Sets or retrieves an option for printing a matrix. 868 

yates Estimates missing observations in designed 
experiments using Yate’s method. 

390 
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Index 

A 

alpha factor analysis 619 
ANOVA 

balanced 256 
factorial 239 
multiple comparisons 385 
nested 247 
oneway 230 

ANSI C vii 
ARIMA models 

forecasts 527 
least-square estimates 517 

association, measures of 410 
Autoregressive Moving Average 

Model 516 

B 

backward selection 123 
balanced 256 
balanced experimental design 256 
beta distribution function 730 

inverse 731 
beta distribution, simulation 786 
beta functions 901, 903, 904 
binomial coefficient 900 
binomial distribution 720 
binomial distributions 760, 765, 772, 

781, 812, 1, 6, 7 
binomial probability 722 
bivariate normal distribution 

function 732 
Bonferroni method 234 
Box-Cox transformation 537 

C 

Cartesian coordinates 824 
cauchy distributions 788 
chi-squared analysis 404 

chi-squared distribution function 
734, 736 

chi-squared distributions 789 
chi-squared goodness-of-fit test 482 
chi-squared statistics 403, 408 
chi-squared test 481 
classification model 

one-way 230 
cluster analysis 583, 598 
cluster membership 594, 2 
cluster_hierarchical 590 
cluster_number 594 
Cochran Q test 472 
coefficient 

excess (kurtosis) 2 
skewness 2 
variation 6 

compiler 878 
computer constants 886, 888 
confidence intervals 140 

mean 3 
constants 886, 888 
contingency coefficient 408 
contingency tables 417, 419 

two-way 404 
correlation matrix 185, 816, 6, 7 
correlations 193 
counts 2, 27 
covariances 204 
Cox and Stuart sign test 452 
CPU 911 
Cramer’s V 408 
Crd factorial 267 

factorial experiments 273 
pooled location interaction 273 
unbalanced 267, 2 
unbalanced completely 

randomized experiments 267 
crosscorrelation 546 
cross-correlation function 515, 546, 

552, 654, 660, 703, 712, 2, 4 

D 

data sets 890 
deviation, standard 2 
diagnostic checking 516 
diagnostics 140 
discrete uniform distributions 775 
discriminant function analysis 628 
dissimilarities 586 
distribution functions 

beta 730 
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inverse 731 
bivariate normal 732 
chi-squared 734 

inverse 736 
chi-squared, noncentral 738, 740 

inverse 740 
F_cdf 

inverse 742 
F_inverse_cdf 744 
gamma 745 
Gaussian 748 
hypergeometric 723 
inverse 750 
normal 748 
Poisson 726 
Student’s t 751 

inverse 753 
Student’s t, noncentral 754 

inverse 757 
Dunn-Sidák method 234 

E 

eigensystem analysis 584 
empirical tests 764 
error handling xiii, 879, 885, 913 
error messages 874 
estimate of scale 

simple robust 6 
excess 5 
exponential distribution, simulation 

791 
exponential scores 36 

F 

F statistic 16 
factor analysis 584, 609 
factorial 239 
factorial design 

analysis 239 
Faure 858 
Faure sequence 856, 857 

faure_next_point 857 
finite difference gradient 159 
finite population 842 
Fisher’s LSD 235 
forecasting 516 
forecasts 

ARMA models 527 
GARCH 566 

forward selection 123 
frequency tables 18, 22 

multi-way 27 
Friedman’s test 467 

G 

gamma distribution function 745 
gamma distribution, simulation 794 
gamma functions 905, 907, 909 
gamma_inverse_cdf 747 
GARCH 

(Generalized Autoregressive 
Conditional Heteroskedastic ) 
566 

Gaussian distribution functions 748 
inverse 750 

general continuous distribution 810 
general discrete distribution 777, 

778, 781, 812, 1, 2, 7 
general distributions 481 
general linear models 56 
Generalized Feedback Shift Register 

762 
generalized feedback shift register 

method 761 
generalized linear models 403 
geometric distributions 766 
GFSR 846 
GFSR generator 762, 853 
goodness-of-fit tests 481 
Gray code 859 

H 

Haar measure 817 
hierarchical cluster analysis 590, 2 
hierarchical cluster tree 594 
Homogeneity 378 
hypergeometric distribution function 

723 
hypergeometric distributions 768 
hypergeometric_pdf 725 
hyper-rectangle 857 
hypothesis 96, 101, 106 

I 
image analysis 618 
integrated rate function 837 

K 

Kalman filtering 571 
Kaplan_meier estimates 655 
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Kaplan_meier_estimates 654 
Kaplan-Meier estimates 3 

computes 654 
Kappa analysis 403 
K-dimensional sphere 823 
kernel functions 654, 703, 4 
K-means analysis 598 
Kolmogorov one-sample test 494 
Kolmogorov two-sample test 497 
Kruskal-Wallis test 465 
k-sample trends test 475 
kurtosis 2, 5 

L 

lack-of-fit test 563 
lack-of-fit tests 52 
Latin square 288 
Lattice 297 

3x3 balanced-lattice 302 
balanced lattice experiments 302 
intra-Block Error 303 
partially-balanced lattice 

experiments 297, 302 
Least Absolute Value 55, 168, 172, 

180 
Least Maximum Value 55, 168, 184 
Least Squares 

Alternatives 
Least Absolute Value 55 
Least Maximum Value 55 
Lp Norm 55 

least-squares fit 64, 168, 247, 256, 
445, 449, 452, 458, 467, 494, 
497, 560 

Lebesque measure 858 
library version 878 
linear dependence 48 
linear discriminant function analysis 

628 
linear regression 

multiple 44 
simple 44 

logarithmic distributions 770 
low-discrepancy 859 
Lp Norm 55, 173 

M 

MAD (Median Absolute Deviation) 
6 

Mardia’s multivariate measures 503 
Mardia’s multivariate tests 501 

matrices 586, 893, 2 
matrix of dissimilarities 586, 2 
matrix storage modes ix 
maximum 2, 5 
maximum likelihood estimates 577 
mean 2, 5, 7, 9 

for two normal populations 11 
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