
C Numerical Library™
User's Guide
VOLUME 4 o f 4 : C Stat Library™ [CHAPTERS 8 -14]

V E R S I O N 5 . 5

Visual Numerics, Inc.
Corporate Headquarters
2500 Wilcrest Drive, Ste 200
Houston, Texas 77042-2759
USA

PHONE: 713-784-3131
FAX: 713-781-9260
e-mail: info@vni.com

Visual Numerics
International Ltd.
Centennial Court
Suite 1, North Wing
Easthampstead Road
BRACKNELL BERSHIRE
RG12 1YQ
United Kingdom

PHONE: +44-1-344-45-8700
FAX: +44-1-344-45-8748
e-mail: info@vniuk.co.uk

Visual Numerics SARL
Tour Europe
33 Place des Corolles Cedex
F-92049 Paris La Defense
France

PHONE: +33-1-46-93-94-20
FAX: +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics S. A. de C.V.
Florencia 57 Piso 10-01
Col. Juarez
Mexico D. F. C. P. 06000
Mexico
PHONE: +52-5514-9730 or 9628
FAX: +52-5514-5880

Visual Numerics International GmbH
Zettachring 10
D-70567 Stuttgart
Germany

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Japan, Inc
GOBANCHO HIKARI Building 4th Floor
14 Goban-cho ChIiyoda-KU
Tokyo, 113
JAPAN

PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

Visual Numerics, Inc.
7/F, #510, Chung Hsiao E. Road
Section 5
Taipei, TAIWAN 110
Republic of China

PHONE: (886) 2-727-2255
FAX: (886) 2-727-6798
e-mail: info@vni.com.tw

World Wide Web site: http://www.vni.com

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-Mapo-Dong, Mapo-gu
Seoul 121-050
Korea

PHONE:+82-2-3273-2632 or 2633
FAX: +82-2-3273-2634
e-mail: info@vni.co.kr

COPYRIGHT NOTICE: Copyright 1990-2003, an unpublished work by Visual Numerics, Inc. All rights reserved.

VISUAL NUMERICS, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Visual Numerics, Inc., shall not be liable for errors contained herein or for incidental, consequential, or other indirect
damages in connection with the furnishing, performance, or use of this material.

TRADEMARK NOTICE: IMSL, Visual Numerics, IMSL FORTRAN Numerical Libraries, IMSL Productivity Toolkit, IMSL
Libraries Environment and Installation Assurance Test, C Productivity Tools, FORTRAN Productivity Tools, IMSL C/Math/Library,
IMSL C/Stat/Library, IMSL Fortran 90 MP Library, and IMSL Exponent Graphics are registered trademarks or trademarks of Visual
Numerics, Inc., in the U.S. and other countries. Sun, SunOS, and Solaris are registered trademarks or trademarks of Sun Microsystems,
Inc. SPARC and SPARCompiler are registered trademarks or trademarks of SPARC International, Inc. Silicon Graphics is a registerd
trademark of Silicon Graphics, Inc. IBM, AIX, and RS/6000 are registered trademarks or trademarks of International Business
Machines Corporation. HP is a trademark of Hewlett-Packard. Silicon Graphics and IRIX are registered trademarks or trademarks of
Silicon Graphics, Inc. DEC and AXP are registered trademarks or trademarks of Digital Equipment Corporation. All other trademarks
are the property of their respective owners.

Use of this document is governed by a Visual Numerics Software License Agreement. This document contains confidential and
proprietary information constituting valuable trade secrets. No part of this document may be reproduced or transmitted in any form
without the prior written consent of Visual Numerics.

RESTRICTED RIGHTS LEGEND: This documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by
the U.S. Government is subject to the restrictions set forth in subparagraph (c)(1)(ll) of the Rights in Technical Data and Computer
Software clause at DFAR 252.227-7013, and in subparagraphs (a) through (d) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR Supplement, when applicable. Contractor/Manufacturer is
Visual Numerics, Inc., 2500 Wilcrest Drive, Ste 200, Houston, Texas 77042.

IMSL Fortran and C and Java
Application Development Tools

IMSL C/Stat/Library CStat Library /V2 Table of Contents • i

CStat Library /V2 Table of Contents

Chapter 8: Time Series and Forecasting 515

Chapter 9: Multivariate Analysis 583

Chapter 10: Survival and Reliability Analysis 653

Chapter 11: Probability Distribution Functions and Inverses 717

Chapter 12: Random Number Generation 759

Chapter 13: Printing Functions 861

Chapter 14: Utilities 873

Reference Material 913

Product Support 917

Appendix A: References A-1

Appendix B: Alphabetical Summary of Routines B-1

Index i

Chapter 8: Time Series and Forecasting Routines � 515

Chapter 8: Time Series and
Forecasting

Routines
 ARIMA Models

Computes least-squares or method of moments estimates
of parameters...arma 517
Computes forecasts and
their associated probability limitsarma_forecast 527
Performs differencing on a time series difference 532

Model Construction and Evaluation Utilities
Performs a Box-Cox transformation box_cox_transform 537
Sample autocorrelation function autocorrelation 541
Computes the sample cross correlation function... crosscorrelation 546
Computes the multichannel cross-correlation
function ..multi_crosscorrelation 552
Sample partial autocorrelation function........ partial_autocorrelation 560
Lack-of-fit test based on the
corrleation function...lack_of_fit 563

GARCH Modeling
Computes estimates of the parameters of
a GARCH(p,q) model..garch 566

Frequency Domain Modeling
Performs Kalman filtering and evaluates the likelihood
function for the state-space model....................................... kalman 571

Usage Notes
The functions in this chapter assume the time series does not contain any missing
observations. If missing values are present, they should be set to NaN
(see the routine imsls_f_machine, Chapter 14), and the routine will return an

516 � Usage Notes IMSL C/Stat/Library

appropriate error message. To enable fitting of the model, the missing values
must be replaced by appropriate estimates.

General Methodology

A major component of the model identification step concerns determining
if a given time series is stationary. The sample correlation functions
computed by routines imsls_f_autocorrelation (page541),
imsls_f_crosscorrelation (page 546),
imsls_f_multi_crosscorrelation (page 552), and
imsls_f_partial_autocorrelation (page 560) may be used to diagnose
the presence of nonstationarity in the data, as well as to indicate the type of
transformation required to induce stationarity. The family of power
transformations provided by routine imsls_f_box_cox_transform
(page 537) coupled with the ability to difference the transformed data using
routine imsls_f_difference (page 532) affords a convenient method of
transforming a wide class of nonstationary time series to stationarity.

The “raw” data, transformed data, and sample correlation functions also provide
insight into the nature of the underlying model. Typically, this information is
displayed in graphical form via time series plots, plots of the lagged data, and
various correlation function plots.

The observed time series may also be compared with time series generated from
various theoretical models to help identify possible candidates for model fitting.
The routine imsls_f_random_arma (see Chapter 12, Random Number
Generation) may be used to generate a time series according to a specified
autoregressive moving average model.

Time Domain Methodology
Once the data are transformed to stationarity, a tentative model in the time
domain is often proposed and parameter estimation, diagnostic checking and
forecasting are performed.

ARIMA Model (Autoregressive Integrated Moving Average)
A small, yet comprehensive, class of stationary time-series models consists of the
nonseasonal ARMA processes defined by

�(B) (Wt � �) = �(B)At, t � Z

where Z = {..., �2, �1, 0, 1, 2, ...} denotes the set of integers, B is the backward
shift operator defined by BkWt = Wt-k, � is the mean of Wt, and the following
equations are true:

�(B) = 1 � �1B � �2B2 � ... � �pBp, p � 0

�(B) = 1 � �1B � �2B2 � ... � �qBq, q � 0

The model is of order (p, q) and is referred to as an ARMA (p, q) model.

Chapter 8: Time Series and Forecasting arma � 517

An equivalent version of the ARMA (p, q) model is given by

�(B) Wt = �0 + �(B)At, t � Z

where �0 is an overall constant defined by the following:

0
1

1
p

i
i

� � �
�

� �
� �� �

� �
�

See Box and Jenkins (1976, pp. 92�93) for a discussion of the meaning and
usefulness of the overall constant.

If the “raw” data, {Zt}, are homogeneous and nonstationary, then differencing
using imsls_f_difference (page 532) induces stationarity, and the model is
called ARIMA (AutoRegressive Integrated Moving Average). Parameter
estimation is performed on the stationary time series Wt, = �dZt , where
�d = (1 � B)d is the backward difference operator with period 1 and order d,
d > 0.

Typically, the method of moments includes argument IMSLS_METHOD_OF_MOMENTS
in a call to function imsls_f_arma (page 517) for preliminary parameter estimates.
These estimates can be used as initial values into the least-squares procedure by
including argument IMSLS_LEAST_SQUARES in a call to function imsls_f_arma.
Other initial estimates provided by the user can be used. The least-squares procedure
can be used to compute conditional or unconditional least-squares estimates of the
parameters, depending on the choice of the backcasting length. The parameter
estimates from either the method of moments or least-squares procedures can be
input to function imsls_f_arma_forecast (page 527) through the arma_info
structure. The functions for preliminary parameter estimation, least-squares
parameter estimation, and forecasting follow the approach of Box and Jenkins
(1976, Programs 2�4, pp. 498�509).

arma
Computes least-square estimates of parameters for an ARMA model.

Synopsis
#include <imsls.h>
float *imsls_f_arma (int n_observations, float z[], int p, int q, ...,

0)

The type double function is imsls_d_arma.

Required Arguments

int n_observations (Input)
Number of observations.

518 � arma IMSL C/Stat/Library

float z[] (Input)
Array of length n_observations containing the observations.

int p (Input)
Number of autoregressive parameters.

int q (Input)
Number of moving average parameters.

Return Value
Pointer to an array of length 1 + p + q with the estimated constant, AR, and MA
parameters. If IMSLS_NO_CONSTANT is specified, the 0-th element of this array is
0.0.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_arma (int n_observations, float z[], int p, int q,

IMSLS_NO_CONSTANT, or
IMSLS_CONSTANT,
IMSLS_AR_LAGS, int ar_lags[],
IMSLS_MA_LAGS, int ma_lags[],
IMSLS_METHOD_OF_MOMENTS, or
IMSLS_LEAST_SQUARES,
IMSLS_BACKCASTING, int length, float tolerance,
IMSLS_CONVERGENCE_TOLERANCE,
 float convergence_tolerance,
IMSLS_RELATIVE_ERROR, float relative_error,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_MEAN_ESTIMATE, float *z_mean,
IMSLS_INITIAL_ESTIMATES, float ar[], float ma[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_PARAM_EST_COV, float **param_est_cov,
IMSLS_PARAM_EST_COV_USER, float param_est_cov[],
IMSLS_AUTOCOV, float **autocov,
IMSLS_AUTOCOV_USER, float autocov[],
IMSLS_SS_RESIDUAL, float *ss_residual,
IMSLS_RETURN_USER, float *constant, float ar[], float ma[],
IMSLS_ARMA_INFO, Imsls_f_arma **arma_info,
0)

Optional Arguments
IMSLS_NO_CONSTANT, or
IMSLS_CONSTANT

If IMSLS_NO_CONSTANT is specified, the time series is not centered
about its mean, z_mean. If IMSLS_CONSTANT, the default, is specified,
the time series is centered about its mean.

Chapter 8: Time Series and Forecasting arma � 519

IMSLS_AR_LAGS, int ar_lags[] (Input)
Array of length p containing the order of the autoregressive parameters.
The elements of ar_lags must be greater than or equal to 1.
Default: ar_lags = [1, 2, ..., p]

IMSLS_MA_LAGS, int ma_lags[] (Input)
Array of length q containing the order of the moving average
parameters. The ma_lags elements must be greater than or equal to 1.
Default: ma_lags = [1, 2, ..., q]

IMSLS_METHOD_OF_MOMENTS, or
IMSLS_LEAST_SQUARES

If IMSLS_METHOD_OF_MOMENTS is specified, the autoregressive and
moving average parameters are estimated by a method of moments
procedure. If IMSLS_LEAST_SQUARES is specified, the autoregressive
and moving average parameters are estimated by a least-squares
procedure.

IMSLS_BACKCASTING, int length, float tolerance (Input)
If IMSLS_BACKCASTING is specified, length is the maximum length of
backcasting and must be greater than or equal to 0. Argument
tolerance is the tolerance level used to determine convergence of the
backcast algorithm. Typically, tolerance is set to a fraction of an
estimate of the standard deviation of the time series.
Default: length = 10; tolerance = 0.01 � standard deviation of z

IMSLS_CONVERGENCE_TOLERANCE, float convergence_tolerance (Input)
Tolerance level used to determine convergence of the nonlinear least-
squares algorithm. Argument convergence_tolerance represents the
minimum relative decrease in sum of squares between two iterations
required to determine convergence. Hence, convergence_tolerance
must be greater than or equal to 0. The default value is max
{10-10, eps2/3} for single precision and max {10-20, eps2/3} for double
precision, where eps = imsls_f_machine(4) for single precision and
eps = imsls_d_machine(4) for double precision.

IMSLS_RELATIVE_ERROR, float relative_error (Input)
Stopping criterion for use in the nonlinear equation solver used in both
the method of moments and least-squares algorithms.
Default: relative_error = 100 � imsls_f_machine(4)
See documentation for function imsls_f_machine (Chapter 14,
“Utilities”).

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations allowed in the nonlinear equation solver
used in both the method of moments and least-squares algorithms.
Default: max_iterations = 200

IMSLS_MEAN_ESTIMATE, float *z_mean (Input or Input/Output)
On input, z_mean is an initial estimate of the mean of the time series z.

520 � arma IMSL C/Stat/Library

On return, z_mean contains an update of the mean.
If IMSLS_NO_CONSTANT and IMSLS_LEAST_SQUARES are specified,
z_mean is not used in parameter estimation.

IMSLS_INITIAL_ESTIMATES, float ar[], float ma[] (Input)
If specified, ar is an array of length p containing preliminary estimates
of the autoregressive parameters, and ma is an array of length q
containing preliminary estimates of the moving average parameters;
otherwise, these are computed internally. IMSLS_INITIAL_ESTIMATES
is only applicable if IMSLS_LEAST_SQUARES is also specified.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length
n_observations � max (ar_lags [i]) + length containing the
residuals (including backcasts) at the final parameter estimate point in
the first n_observations � max (ar_lags [i]) + nb, where nb is
the number of values backcast.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See
IMSLS_RESIDUAL.

IMSLS_PARAM_EST_COV, float **param_est_cov (Output)
Address of a pointer to an internally allocated array of size np � np,
where np = p + q + 1 if z is centered about z_mean, and np = p + q
if z is not centered. The ordering of variables in param_est_cov is
z_mean, ar, and ma. Argument np must be 1 or larger.

IMSLS_PARAM_EST_COV_USER, float param_est_cov[] (Output)
Storage for array param_est_cov is provided by the user. See
IMSLS_PARAM_EST_COV.

IMSLS_AUTOCOV, float **autocov (Output)
Address of a pointer to an array of length p + q + 1 containing the
variance and autocovariances of the time series z. Argument
autocov [0] contains the variance of the series z. Argument
autocov [k] contains the autocovariance of lag k, where
k = 1, ..., p + q + 1.

IMSLS_AUTOCOV_USER, float autocov[] (Output)
Storage for array autocov is provided by the user. See
IMSLS_AUTOCOV.

IMSLS_SS_RESIDUAL, float *ss_residual (Output)
If specified, ss_residual contains the sum of squares of the random
shock, ss_residual = residual [1]2 + ... + residual [na]2.

IMSLS_RETURN_USER, float *constant, float ar[], float ma[] (Output)
If specified, constant is the constant parameter estimate, ar is an array
of length p containing the final autoregressive parameter estimates, and
ma is an array of length q containing the final moving average parameter
estimates.

Chapter 8: Time Series and Forecasting arma � 521

IMSLS_ARMA_INFO, Imsls_f_arma **arma_info (Output)
Address of a pointer to an internally allocated structure of type
Imsls_f_arma that contains information necessary in the call to
imsls_forecast.

Description
Function imsls_f_arma computes estimates of parameters for a nonseasonal
ARMA model given a sample of observations, {Wt}, for t = 1, 2, ..., n, where
n = n_observations. There are two methods, method of moments and least
squares, from which to choose. The default is method of moments.

Two methods of parameter estimation, method of moments and least squares, are
provided. The user can choose the method of moments algorithm with the
optional argument IMSLS_METHOD_OF_MOMENTS. The least-squares algorithm is
used if the user specifies IMSLS_LEAST_SQUARES. If the user wishes to use the
least-squares algorithm, the preliminary estimates are the method of moments
estimates by default. Otherwise, the user can input initial estimates by specifying
optional argument IMSLS_INITIAL_ESTIMATES. The following table lists the
appropriate optional arguments for both the method of moments and least-squares
algorithm:

Method of Moments only Least Squares only Both Method of Moments
and Least Squares

IMSLS_METHOD_OF_MOMENTS IMSLS_LEAST_SQUARES IMSLS_RELATIVE_ERROR
 IMSLS_CONSTANT

(or IMSLS_NO_CONSTANT)
IMSLS_MAX_ITERATIONS

 IMSLS_AR_LAGS IMSLS_MEAN_ESTIMATE
 IMSLS_MA_LAGS IMSLS_AUTOCOV(_USER)
 IMSLS_BACKCASTING IMSLS_RETURN_USER
 IMSLS_CONVERGENCE_TOLERANCE IMSLS_ARMA_INFO
 IMSLS_INITIAL_ESTIMATES
 IMSLS_RESIDUAL (_USER)
 IMSLS_PARAM_EST_COV (_USER)
 IMSLS_SS_RESIDUAL

Method of Moments Estimation

Suppose the time series {Zt} is generated by an ARMA (p, q) model of the form

�(B)Zt = �0 + �(B)At

for t � {0, 	1, 	2, ...}

Let = w_mean be the estimate of the mean � of the time series{Zt}, where
 equals the following:
�̂

�̂

522 � arma IMSL C/Stat/Library

1

for known
ˆ 1 for unknown

n

t
t

Z
n

� �

�
�

�

�
�

� �
�
�
�

The autocovariance function is estimated by

� � � � �
1

1ˆ ˆ
n k

t t k
t

k Z Z
n

� �

�

�

�

� �� ��̂�

,

,

 0

for k = 0, 1, ..., K, where K = p + q. Note that � (0) is an estimate of the sample
variance.

ˆ

Given the sample autocovariances, the function computes the method of moments
estimates of the autoregressive parameters using the extended Yule-Walker
equations as follows:

ˆ ˆ ˆ� �� �

where

� �
� �

� �

1
ˆ ˆ ˆ, ,

ˆ ˆ | | , , 1,

ˆ ˆ , 1,

T

p

ij

i

q i j i j p

q i i p

� � �

�

� �

�

� � � � �

� � �

�

�

�

The overall constant �0 is estimated by the following:

0

1

ˆ for 0
ˆ

ˆˆ 1 for
p

i
i

p

p

�

�
� �

�

��
�

� � ��
� �	
�

� �

�

The moving average parameters are estimated based on a system of nonlinear
equations given K = p + q + 1 autocovariances,
(k) for k = 1, ..., K, and p
autoregressive parameters �i for i = 1, ..., p.

Let Z�t = �(B)Zt. The autocovariances of the derived moving average process
Z�t = �(B)At are estimated by the following relation:

� �

� �

� �� � 0
0 0

ˆ for 0
ˆ ˆ ˆ ˆˆ for 1, 1

p p

i j
i j

k p
k

k i j p

�

�
� � � �

� �

��
�

� � �
� � � 	 ��

��

The iterative procedure for determining the moving average parameters is based
on the relation

� �
� �

� �

2 2 2
1

2
1 1

1 ... for 0

... for 1

q A

k k q k q A

k
k

k
� �

� � � � � � � ��
� � �

�� � � � � � � � � 	�

Chapter 8: Time Series and Forecasting arma � 523

where
(k) denotes the autocovariance function of the original Zt process.

Let � = (�0, �1, ..., �q)T and f = (f0, f1, ..., fq)T, where

0

for 0

θ / for 1, ...,
A

j
j

j

j q

� �

� �

� � �

�
�
�

and

� �
0

ˆ for 0,1, ...,
q j

j i i j
i

f j j
�

�

�

�� � � �� �� q

Then, the value of � at the (i + 1)-th iteration is determined by the following:

� �
11i i iT f� �

�
�

� �
i

The estimation procedure begins with the initial value

� �0 ˆ(0 , 0, , 0 T
� � �� �)

and terminates at iteration i when either ||f i|| is less than relative_error or
i equals max_iterations. The moving average parameter estimates are
obtained from the final estimate of � by setting

0
ˆ / for 1, ,j j j q� � �� � � �

The random shock variance is estimated by the following:

2
1

2
0

ˆˆ ˆσ(0) () for 0
σ̂

for 0

p

i
iA

i q

q
�

� � � �
�

� �

�
�
�
�
�

�

See Box and Jenkins (1976, pp. 498�500) for a description of a function that
performs similar computations.

Least-squares Estimation

Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the
form,

�(B) (Zt � �) = �(B)At for t � {0, 	1, 	2, …}

where B is the backward shift operator, � is the mean of Zt, and

� � � � � � � �

� � � � � � � �

1 2
1 2

1 2
1 2

1 ... for 0

θ 1 θ θ ... θ for 0

l pl l
p

l l l q
q

B B B B p

B B B B q

� �

� � �

�� � � � � � � � � �

� � � � � �

with p autoregressive and q moving average parameters. Without loss of
generality, the following is assumed:

524 � arma IMSL C/Stat/Library

1
 lf (1)
 lf (2)
 …
 lf (p)

1
 lq (1)
 lq (2)
 …
 lq (q)

so that the nonseasonal ARMA model is of order (p�, q�), where p� = lq (p) and
q� = lq (q). Note that the usual hierarchical model assumes the following:

lf (i) = i, 1
 i
 p

lq (j) = j, 1
 j
 q

Consider the sum-of-squares function

� � � �
2

1
, ,

n

T t
T

S A� � �
� �

� �

where

� � � �, , ,t tA E A Z� � �� �� � �

and T is the backward origin. The random shocks {At} are assumed to be
independent and identically distributed

� �20, AN �

random variables. Hence, the log-likelihood function is given by

� � � � � �
� �

2

, ,
, , , , , ln

2
T

A A
A

S
l f n

� � �
� � � � � � � �

�
� � �

where f (�, �, �) is a function of �, �, and �.

For T = 0, the log-likelihood function is conditional on the past values of both
Zt and At required to initialize the model. The method of selecting these initial
values usually introduces transient bias into the model (Box and Jenkins 1976,
pp. 210�211). For T = �, this dependency vanishes, and estimation problem
concerns maximization of the unconditional log-likelihood function. Box and
Jenkins (1976, p. 213) argue that

� � � �2, , / 2 AS � � � �
�

dominates

� �2, , , Al � � � �

The parameter estimates that minimize the sum-of-squares function are called
least-squares estimates. For large n, the unconditional least-squares estimates are
approximately equal to the maximum likelihood-estimates.

In practice, a finite value of T will enable sufficient approximation of the
unconditional sum-of-squares function. The values of [AT] needed to compute
the unconditional sum of squares are computed iteratively with initial values of
Zt obtained by back forecasting. The residuals (including backcasts), estimate of

Chapter 8: Time Series and Forecasting arma � 525

1

t

random shock variance, and covariance matrix of the final parameter estimates
also are computed. ARIMA parameters can be computed by using
imsls_f_difference (page 532), with imsls_f_arma.

Examples

Example 1
Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. The method of moments estimates

0 1 2
ˆ ˆˆ ˆθ ,φ ,φ , and θ

for the ARMA(2, 1) model

0 0 1 2 2 1 1t t t tz z z A
� � �

� � � A� � � � � �

where the errors At are independently normally distributed with mean zero and
variance

2
A�

#include <imsls.h>

void main()
{
 int p = 2;
 int q = 1;
 int i;
 int n_observations = 100;
 int max_iterations = 0;
 float w[176][2];
 float z[100];
 float *parameters;
 float relative_error = 0.0;

 imsls_f_data_sets(2, IMSLS_X_COL_DIM,
 2, IMSLS_RETURN_USER, w,
 0);
 for (i=0; i<n_observations; i++) z[i] = w[21+i][1];

 parameters = imsls_f_arma(n_observations, &z[0], p, q,
 IMSLS_RELATIVE_ERROR, relative_error,
 IMSLS_MAX_ITERATIONS, max_iterations,
 0);
 printf("AR estimates are %11.4f and %11.4f.\n",
 parameters[1], parameters[2]);
 printf("MA estimate is %11.4f.\n", parameters[3]);
}

526 � arma IMSL C/Stat/Library

Output
AR estimates are 1.2443 and -0.5751.
MA estimate is -0.1241.

Example 2
The data for this example are the same as that for the initial example. Preliminary
method of moments estimates are computed by default, and the method of least
squares is used to find the final estimates. Note that at the end of the output, a
warning error appears. In most cases, this error message can be ignored. There
are three general reasons this error can occur:

1. Convergence is declared using the criterion based on tolerance, but the
gradient of the residual sum-of-squares function is nonzero. This occurs
in this example. Either the message can be ignored or tolerance can
be reduced to allow more iterations and a slightly more accurate
solution.

2. Convergence is declared based on the fact that a very small step was
taken, but the gradient of the residual sum-of-squares function was
nonzero. This message can usually be ignored. Sometimes, however, the
algorithm is making very slow progress and is not near a minimum.

3. Convergence is not declared after 100 iterations.

Trying a smaller value for tolerance can help determine what caused the error
message.

#include <imsls.h>

void main()
{
 int p = 2;
 int q = 1;
 int i;
 int n_observations = 100;
 float w[176][2];
 float z[100];
 float *parameters;
 float tolerance = 0.125;

 imsls_f_data_sets(2, IMSLS_X_COL_DIM,
 2, IMSLS_RETURN_USER, w,
 0);
 for (i=0; i<n_observations; i++) z[i] = w[21+i][1];

 parameters = imsls_f_arma(n_observations, &z[0], p, q,
 IMSLS_LEAST_SQUARES,
 IMSLS_CONVERGENCE_TOLERANCE,
 tolerance,
 0);
 printf("AR estimates are %11.4f and %11.4f.\n",
 parameters[1], parameters[2]);
 printf("MA estimate is %11.4f.\n", parameters[3]);

}

Chapter 8: Time Series and Forecasting arma_forecast � 527

Output
*** WARNING Error IMSLS_LEAST_SQUARES_FAILED from imsls_f_arma. Least
*** squares estimation of the parameters has failed to converge.
*** Increase "length" and/or "tolerance" and/or
*** "convergence_tolerance". The estimates of the parameters at
 the
*** last iteration may be used as new starting values.

AR estimates are 1.3926 and -0.7329.
MA estimate is -0.1375.

Warning Errors
IMSLS_LEAST_SQUARES_FAILED Least-squares estimation of the

parameters has failed to converge.
Increase “length” and/or
“tolerance” and/or
“convergence_tolerance.” The
estimates of the parameters at the
last iteration may be used as new
starting values.

arma_forecast
Computes forecasts and their associated probability limits for an ARMA model.

Synopsis
#include <imsls.h>
float *imsls_f_arma_forecast (Imsls_f_arma *arma_info,

int n_predict, ..., 0)

The type double function is imsls_d_arma_forecast.

Required Arguments

Imsls_f_arma *arma_info (Input)
Pointer to a structure of type Imsls_f_arma that is passed from the
imsls_f_arma function.

int n_predict (Input)
Maximum lead time for forecasts. Argument n_predict must be
greater than 0.

Return Value
Pointer to an array of length n_predict � (backward_origin + 3) containing
the forecasts up to n_predict steps ahead and the information necessary to
obtain pairwise confidence intervals. More information is given in the description
of argument IMSLS_RETURN_USER.

528 � arma_forecast IMSL C/Stat/Library

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_arma_forecast (Imsls_f_arma *arma_info,

int n_predict,
IMSLS_CONFIDENCE, float confidence,
IMSLS_BACKWARD_ORIGIN, int backward_origin,
IMSLS_RETURN_USER, float forecasts[],
0)

Optional Arguments
IMSLS_CONFIDENCE, float confidence (Input)

Value in the exclusive interval (0, 100) used to specify the confidence
percent probability limits of the forecasts. Typical choices for
confidence are 90.0, 95.0, and 99.0.
Default: confidence = 95.0

IMSLS_BACKWARD_ORIGIN, int backward_origin (Input)
If specified, the maximum backward origin. Argument
backward_origin must be greater than or equal to 0 and less than or
equal to n_observations � max (maxar, maxma), where maxar = max
(ar_lags [i]), maxma = max (ma_lags [j]), and
n_observations = the number of observations in the series, as input in
function imsls_arma. Forecasts at origins
n_observations � backward_origin through n_observations
are generated.
Default: backward_origin � 0

IMSLS_RETURN_USER, float forecasts[] (Output)
If specified, a user-specified array of length
n_predict � (backward_origin + 3) as defined below.

Column Content
j forecasts for lead times l = 1, ..., n_predict at origins

n_observations � backward_origin � 1 + j, where j = 0,
..., backward_origin

backward_origin + 2 deviations from each forecast that give the confidence
percent probability limits

backward_origin + 3 psi weights of the infinite order moving average form of the
model

If specified, the forecasts for lead times l = 1, ..., n_predict at origins
n_observations � backward_origin � 1 + j, where
j = 1, ..., backward_origin + 1.

Chapter 8: Time Series and Forecasting arma_forecast � 529

Description
The Box-Jenkins forecasts and their associated probability limits for a
nonseasonal ARMA model are computed given a sample of
n = n_observations {Zt} for t = 1, 2, ..., n.

Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the
form

�(B)Zt = �0 + �(B)At

for t � {0, 	1, 	2, ...}, where B is the backward shift operator, �0 is the constant,
and

� �
� � � � � �

� � � � � � � �

1

2

2
2

2
1

1

1

1

1

...

...

l l
p

l l

l

l
q

B B B B

B B B B

� �

� �

�

�

� � � � � � � � �

� � � � � � � � �

p

q

with p autoregressive and q moving average parameters. Without loss of
generality, the following is assumed:

1
 lf (1)
 lf (2)
 …
 lf (p)

1
 lq (1)
 lq (2)
 …
 lq (q)

so that the nonseasonal ARMA model is of order (p�, q�), where p� = lq(p) and
q� = lq(q). Note that the usual hierarchical model assumes the following:

lf (i) = i, 1
 i
 p

lq (j) = j, 1
 j
 q

The Box-Jenkins forecast at origin t for lead time l of Zt+1 is defined in terms of
the difference equation

� � � � � �

� � � � � � � � � �

0 1 1

1 11 1

ˆ ...

... ...

t pt l l t l l p

t l t l t l l qt l l t l l q

Z l Z Z

A A A A A

� �

� �

� � � �

� � � �� � � � �

� � � � � � �

� � � � � � � � � �

� � � �
� � � �

� � � � � �
� � � � � �

where the following is true:

� �
� �

for 0, 1, 2, ...
ˆ for 1, 2, ...

t k
t k

t

Z k
Z

Z k k
�

�

� � ���
� �

���

� �
� �1

ˆ 1 for 0, 1, 2, ...
0 for 1, 2, ...

t k t k
t k

Z Z k
A

k
� � �

�

� � � ��
� �

���

�

A

The 100(1 � �) percent probability limits for Zt+l are given by

� �
1/ 2

1
2

1/ 2
1

ˆ 1
l

t j
j

Z l z � �

�

�

� �
� �� �

� �
�

530 � arma_forecast IMSL C/Stat/Library

where z(1-a/2) is the 100(1 � �/2) percentile of the standard normal distribution
2
A�

(returned from imsls_f_arma) and

� �2
j�

are the parameters of the random shock form of the difference equation. Note that
the forecasts are computed for lead times l = 1, 2, ..., L at origins
t = (n � b), (n � b + 1), ..., n, where L = n_predict and b = backward_origin.

The Box-Jenkins forecasts minimize the mean-square error

� �
2ˆ

t l tE Z Z l
�

� ��� �

Also, the forecasts can be easily updated according to the following equation:

� � � �1 1
ˆ ˆ 1t t l tZ l Z l A�

� �
� � �

This approach and others are discussed in Chapter 5 of Box and Jenkins (1976).

Example
Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Function imsls_f_arma_forecast computes forecasts and 95-percent
probability limits for the forecasts for an ARMA(2, 1) model fit using function
imsls_f_arma with the method of moments option. With
backward_origin = 3, columns zero through three of forecasts provide
forecasts given the data through 1866, 1867, 1868, and 1869, respectively.
Column four gives the deviations from the forecast for computing probability
limits, and column six gives the psi weights, which can be used to update
forecasts when more data is available. For example, the forecast for the 102-nd
observation (year 1871) given the data through the 100-th observation (year
1869) is 77.21; and 95-percent probability limits are given by 77.21 56.30.
After observation 101 (Z101 for year 1870) is available, the forecast can be
updated by using

�

� �
1/ 2

1
2

/ 2
1

ˆ 1
l

t j
j

Z l z
�

� �

�

�

� �
� �� �

� �
� A

with the psi weight (�1 = 1.37) and the one-step-ahead forecast error for
observation 101 (Z101 � 83.72) to give the following:

77.21 + 1.37 � (Z101 � 83.72)

Since this updated forecast is one step ahead, the 95-percent probability limits are
now given by the forecast 33.22. �

#include <imsls.h>

Chapter 8: Time Series and Forecasting arma_forecast � 531

void main()
{
 int p = 2;
 int q = 1;
 int i;
 int n_observations = 100;
 int max_iterations = 0;
 int n_predict = 12;
 int backward_origin = 3;
 float w[176][2];
 float z[100];
 float *parameters;
 float rel_error = 0.0;
 float *forecasts;
 Imsls_f_arma *arma_info;

 char *col_labels[] = {
 "Lead Time",
 "Forecast From 1866",
 "Forecast From 1867",
 "Forecast From 1868",
 "Forecast From 1869",
 "Dev. for Prob. Limits",
 "Psi"};

 imsls_f_data_sets(2, IMSLS_X_COL_DIM,
 2, IMSLS_RETURN_USER, w,
 0);
 for (i=0; i<n_observations; i++) z[i] = w[21+i][1];

 parameters = imsls_f_arma(n_observations, &z[0], p, q,
 IMSLS_RELATIVE_ERROR,
 rel_error,
 IMSLS_MAX_ITERATIONS,
 max_iterations,
 IMSLS_ARMA_INFO,
 &arma_info,
 0);
 printf("Method of Moments initial estimates:\n");
 printf("AR estimates are %11.4f and %11.4f.\n",
 parameters[1], parameters[2]);
 printf("MA estimate is %11.4f.\n", parameters[3]);

 forecasts = imsls_f_arma_forecast(arma_info, n_predict,
 IMSLS_BACKWARD_ORIGIN,
 backward_origin,
 0);

 imsls_f_write_matrix("* * * Forecast Table * * *\n",
 n_predict, backward_origin+3,
 forecasts,
 IMSLS_COL_LABELS, col_labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);
}

532 � difference IMSL C/Stat/Library

Output
Method of Moments initial estimates:
AR estimates are 1.2443 and -0.5751.
MA estimate is -0.1241.

 * * * Forecast Table * * *

Lead Time Forecast From Forecast From Forecast From Forecast From
 1866 1867 1868 1869
 1 18.2833 16.6151 55.1893 83.7196
 2 28.9182 32.0189 62.7606 77.2092
 3 41.0101 45.8275 61.8922 63.4608
 4 49.9387 54.1496 56.4571 50.0987
 5 54.0937 56.5623 50.1939 41.3803
 6 54.1282 54.7780 45.5268 38.2174
 7 51.7815 51.1701 43.3221 39.2965
 8 48.8417 47.7072 43.2631 42.4582
 9 46.5335 45.4736 44.4577 45.7715
 10 45.3524 44.6861 45.9781 48.0758
 11 45.2103 44.9909 47.1827 49.0371
 12 45.7128 45.8230 47.8072 48.9080

Lead Time Dev. for Prob. Psi
 Limits
 1 33.2179 1.3684
 2 56.2980 1.1274
 3 67.6168 0.6158
 4 70.6432 0.1178
 5 70.7515 -0.2076
 6 71.0869 -0.3261
 7 71.9074 -0.2863
 8 72.5337 -0.1687
 9 72.7498 -0.0452
 10 72.7653 0.0407
 11 72.7779 0.0767
 12 72.8225 0.0720

difference
Differences a seasonal or nonseasonal time series.

Synopsis

#include <imsls.h>

float *imsls_f_difference (int n_observations, float z[],
int n_differences, int periods[], ..., 0)

The type double function is imsls_d_difference.

Required Arguments

int n_observations (Input)
Number of observations.

Chapter 8: Time Series and Forecasting difference � 533

float z[] (Input)
Array of length n_observations containing the time series.

int n_differences (Input)
Number of differences to perform. Argument n_differences must be
greater than or equal to 1.

int periods[] (Input)
Array of length n_differences containing the periods at which z is to
be differenced.

Return Value
Pointer to an array of length n_observations containing the differenced series.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_difference (int n_observations, float z[],

int n_differences, int periods[],
IMSLS_ORDERS, int orders[],
IMSLS_LOST, int *n_lost,
IMSLS_EXCLUDE_FIRST, or
IMSLS_SET_FIRST_TO_NAN,
IMSLS_RETURN_USER, float w[],
0)

Optional Arguments
IMSLS_ORDERS, int orders[] (Input)

Array of length n_differences containing the order of each difference
given in periods. The elements of orders must be greater than or equal to
0.

IMSLS_LOST, int *n_lost (Output)
Number of observations lost because of differencing the time series z.

IMSLS_EXCLUDE_FIRST, or
IMSLS_SET_FIRST_TO_NAN

If IMSLS_EXCLUDE_FIRST is specified, the first n_lost are excluded
from w due to differencing. The differenced series w is of length
n_observations � n_lost. If IMSLS_SET_FIRST_TO_NAN is
specified, the first n_lost observations are set to NaN (Not a Number).
This is the default if neither IMSLS_EXCLUDE_FIRST nor
IMSLS_SET_FIRST_TO_NAN is specified.

IMSLS_RETURN_USER, float w[] (Output)
If specified, w contains the differenced series. If
IMSLS_EXCLUDE_FIRST also is specified, w is of length
n_observations. If IMSLS_SET_FIRST_TO_NAN is specified or
neither IMSLS_EXCLUDE_FIRST nor IMSLS_SET_FIRST_TO_NAN is
specified, w is of length n_observations � n_lost.

534 � difference IMSL C/Stat/Library

Description
Function imsls_f_difference performs m = n_differences successive
backward differences of period si = periods [i � 1] and order
di = orders [i � 1] for i = 1, ..., m on the n = n_observations observations
{Zt} for t = 1, 2, ..., n.

Consider the backward shift operator B given by

BkZt = Zt-k

for all k. Then, the backward difference operator with period s is defined by the
following:

�sZt = (1 � Bs) Zt = Zt � Zt-s for s � 0

Note that BsZt and �sZt are defined only for t = (s + 1), ..., n. Repeated
differencing with period s is simply

� �
� �

� �
0

!1 1
! !

dd jd s sj
s t t

j

d
tZ B Z B Z

j d j
�

� � � � �
�

�

where d � 0 is the order of differencing. Note that
d
s tZ�

is defined only for t = (sd + 1), ..., n.

The general difference formula used in the function imsls_f_difference is
given by

1 2

1 2

NaN for 1, ...,

for 1, ...,m

m

L
t dd d

s s s t L

t n
W

Z t n

���
� �

� � � � ��� � n

jd

where nL represents the number of observations “lost” because of differencing
and NaN represents the missing value code. See the functions
imsls_f_machine and imsls_d_machine (Chapter 14, “Utilities”) to retrieve
missing values. Note that

L j
j

n s��

A homogeneous, stationary time series can be arrived at by appropriately
differencing a homogeneous, nonstationary time series (Box and Jenkins 1976,
p. 85). Preliminary application of an appropriate transformation followed by
differencing of a series can enable model identification and parameter estimation
in the class of homogeneous stationary autoregressive moving average models.

Chapter 8: Time Series and Forecasting difference � 535

Examples

Example 1
Consider the Airline Data (Box and Jenkins 1976, p. 531) consisting of the
monthly total number of international airline passengers from January 1949
through December 1960. Function imsls_f_difference is used to compute

Wt = �1�12Zt = (Zt � Zt-12) � (Zt-1 � Zt-13)

for t = 14, 15, ..., 24.
#include <imsls.h>

void main()

{
 int i;
 int n_observations = 24;
 int n_differences = 2;
 int periods[2] = {1, 12};
 float *z;
 float *difference;

 z = imsls_f_data_sets (4, 0);
 difference = imsls_f_difference (n_observations, z,
 n_differences, periods,
 0);
 printf ("i\tz[i]\tdifference[i]\n");
 for (i = 0; i < n_observations; i++)
 printf ("%d\t%f\t%f\n", i, z[i], difference[i]);

}

Output
 i z[i] difference[i]
 0 112.000000 NaN
 1 118.000000 NaN
 2 132.000000 NaN
 3 129.000000 NaN
 4 121.000000 NaN
 5 135.000000 NaN
 6 148.000000 NaN
 7 148.000000 NaN
 8 136.000000 NaN
 9 119.000000 NaN
10 104.000000 NaN
11 118.000000 NaN
12 115.000000 NaN
13 126.000000 5.000000
14 141.000000 1.000000
15 135.000000 -3.000000
16 125.000000 -2.000000
17 149.000000 10.000000
18 170.000000 8.000000
19 170.000000 0.000000
20 158.000000 0.000000

536 � difference IMSL C/Stat/Library

21 133.000000 -8.000000
22 114.000000 -4.000000
23 140.000000 12.000000

Example 2
The data for this example is the same as that for the initial example. The first
n_lost observations are excluded from W due to differencing, and n_lost is
also output.

#include <imsls.h>

void main()
{

 int i;
 int n_observations = 24;
 int n_differences = 2;
 int periods[2] = {1, 12};
 int n_lost;
 float *z;
 float *difference;
 /* Get airline data */
 z = imsls_f_data_sets (4, 0);
 /* Compute differenced time series when observations
 lost are excluded from the differencing */
 difference = imsls_f_difference (n_observations, z,
 n_differences, periods,
 IMSLS_EXCLUDE_FIRST,
 IMSLS_LOST, &n_lost,
 0);
 /* Print the number of lost observations */
 printf ("n_lost equals %d\n", n_lost);
 printf ("\n\ni\tz[i]\t difference[i]\n");
 /* Print the original time series and the differenced
 time series */
 for (i = 0; i < n_observations - n_lost; i++)
 printf ("%d\t%f\t%f\n", i, z[i], difference[i]);
}

Output
n_lost equals 13

 i z[i] difference[i]
 0 112.000000 5.000000
 1 118.000000 1.000000
 2 132.000000 -3.000000
 3 129.000000 -2.000000
 4 121.000000 10.000000
 5 135.000000 8.000000
 6 148.000000 0.000000
 7 148.000000 0.000000
 8 136.000000 -8.000000
 9 119.000000 -4.000000
10 104.000000 12.000000

Chapter 8: Time Series and Forecasting box_cox_transform � 537

Fatal Errors
IMSLS_PERIODS_LT_ZERO “period[#]” = #. All elements of “period”

must be greater than 0.

IMSLS_ORDER_NEGATIVE “order[#]” = #. All elements of “order”
must be nonnegative.

IMSLS_Z_CONTAINS_NAN “z[#]” = NaN; “z” can not contain missing
values. There may be other elements of “z”
that are equal to NaN.

box_cox_transform
Performs a forward or an inverse Box-Cox (power) transformation.

Synopsis
#include <imsls.h>
float *imsls_f_box_cox_transform (int n_observations, float z[],

float power, ..., 0)
The type double function is imsls_d_box_cox_transform.

Required Arguments

int n_observations (Input)
Number of observations in z.

float z[] (Input)
Array of length n_observations containing the observations.

float power (Input)
Exponent parameter in the Box-Cox (power) transformation.

Return Value
Pointer to an internally allocated array of length n_observations containing
the transformed data. To release this space, use free. If no value can be
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_box_cox_transform (int n_observations, float z[],
float power,
IMSLS_SHIFT, float shift,
IMSLS_INVERSE_TRANSFORM,
IMSLS_RETURN_USER, float x[]
0)

538 � box_cox_transform IMSL C/Stat/Library

Optional Arguments
IMSLS_SHIFT, float shift (Input)

Shift parameter in the Box-Cox (power) transformation. Parameter shift
must satisfy the relation min (z(i)) + shift > 0.
Default: shift = 0.0.

IMSLS_INVERSE_TRANSFORM
If IMSLS_INVERSE_TRANSFORM is specified, the inverse transform is
performed.

IMSLS_RETURN_USER, float x[] (Output)
User-allocated array of length n_observations containing the
transformed data.

Description
Function imsls_f_box_cox_transform performs a forward or an inverse
Box-Cox (power) transformation of n = n_observations observations {Zt} for
t = 1, 2, ..., n.

The forward transformation is useful in the analysis of linear models or models
with nonnormal errors or nonconstant variance (Draper and Smith 1981, p. 222).
In the time series setting, application of the appropriate transformation and
subsequent differencing of a series can enable model identification and parameter
estimation in the class of homogeneous stationary autoregressive-moving average
models. The inverse transformation can later be applied to certain results of the
analysis, such as forecasts and prediction limits of forecasts, in order to express
the results in the scale of the original data. A brief note concerning the choice of
transformations in the time series models is given in Box and Jenkins (1976,
p. 328).

The class of power transformations discussed by Box and Cox (1964) is defined
by

� �

� �

1
0

ln 0

t

t

t

Z
X

Z

�

�
�

�

� �

� � �
��

� �
� � ��

where Zt + � > 0 for all t. Since

� �
� �

0

1
lim lnt

t

Z
Z

�

�

�
�

��

� �

� �

the family of power transformations is continuous.

Let � = power and � = shift; then, the computational formula used by
imsls_f_box_cox_transform is given by

Chapter 8: Time Series and Forecasting box_cox_transform � 539

� �

� �

0

ln 0
t

t

t

Z
X

Z

�

� �

� �

� � ��
� �

� ���

where Zt + � > 0 for all t. The computational and Box-Cox formulas differ only in
the scale and origin of the transformed data. Consequently, the general analysis of
the data is unaffected (Draper and Smith 1981, p. 225).

The inverse transformation is computed by

� �

1/ 0

0
t

t
t

Z

exp
X

Z

�
� �

� �

� �

� �

��
� �
��

where {Zt} now represents the result computed by
imsls_f_box_cox_transform for a forward transformation of the original
data using parameters � and �.

Examples

Example 1
The following example performs a Box-Cox transformation with power = 2.0 on
10 data points.

#include <imsls.h>

void main() {
 int n_observations = 10;
 float power = 2.0;
 float *x;
 static float z[10] ={
 1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0};

 /* Transform Data using Box Cox Transform */
 x = imsls_f_box_cox_transform(n_observations, z, power, 0);

 imsls_f_write_matrix("Transformed Data", 1, n_observations, x, 0);

 free(x);
}

Output
 Transformed Data
 1 2 3 4 5 6
 1.0 4.0 9.0 16.0 25.0 30.2

 7 8 9 10
 42.2 56.2 64.0 100.0

Example 2
This example extends the first example—an inverse transformation is applied to
the transformed data to return to the orignal data values.

#include <imsls.h>

540 � box_cox_transform IMSL C/Stat/Library

void main() {
 int n_observations = 10;
 float power = 2.0;
 float *x, *y;
 static float z[10] ={
 1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0};

 /* Transform Data using Box Cox Transform */
 x = imsls_f_box_cox_transform(n_observations, z, power, 0);

 imsls_f_write_matrix("Transformed Data", 1, n_observations, x, 0);

 /* Perform an Inverse Transform on the Transformed Data */
 y = imsls_f_box_cox_transform(n_observations, x, power,
 IMSLS_INVERSE_TRANSFORM, 0);

 imsls_f_write_matrix("Inverse Transformed Data", 1, n_observations, y,
0);

 free(x);
 free(y);
}

Output
 Transformed Data
 1 2 3 4 5 6
 1.0 4.0 9.0 16.0 25.0 30.2

 7 8 9 10
 42.2 56.2 64.0 100.0

 Inverse Transformed Data
 1 2 3 4 5 6
 1.0 2.0 3.0 4.0 5.0 5.5

 7 8 9 10
 6.5 7.5 8.0 10.0

Fatal Errors
IMSLS_ILLEGAL_SHIFT “shift” = # and the smallest element of “z”

is “z[#]” = #. “shift” plus “z[#]” = #. “shift”
+ “z[i]” must be greater than 0 for i = 1, ...,
“n_observations”. “n_observations” = #.

IMSLS_BCTR_CONTAINS_NAN One or more elements of “z” is equal to
NaN (Not a number). No missing values are
allowed. The smallest index of an element
of “z” that is equal to NaN is #.

IMSLS_BCTR_F_UNDERFLOW Forward transform. “power” = #. “shift” =
#. The minimum element of “z” is “z[#]” =
#. (“z[#]”+ “shift”) ^ “power” will
underflow.

Chapter 8: Time Series and Forecasting autocorrelation � 541

IMSLS_BCTR_F_OVERFLOW Forward transformation. “power” = #.
“shift” = #. The maximum element of “z” is
“z[#]” = #. (“z[#]” + “shift”) ^ “power” will
overflow.

IMSLS_BCTR_I_UNDERFLOW Inverse transformation. “power” = #. The
minimum element of “z” is “z[#]” = #.
exp(“z[#]”) will underflow.

IMSLS_BCTR_I_OVERFLOW Inverse transformation. “power” = #. The
maximum element of “z[#]” = #.
exp(“z[#]”) will overflow.

IMSLS_BCTR_I_ABS_UNDERFLOW Inverse transformation. “power” = #. The
element of “z” with the smallest absolute
value is “z[#]” = #. “z[#]” ^ (1/ “power”)
will underflow.

IMSLS_BCTR_I_ABS_OVERFLOW Inverse transformation. “power” = #. The
element of “z” with the largest absolute
value is “z[#]” = #. “z[#]” ^ (1/ “power”)
will overflow.

autocorrelation
Computes the sample autocorrelation function of a stationary time series.

Synopsis
#include <imsls.h>
float *imsls_f_autocorrelation (int n_observations, float x[],

int lagmax, ...
0)

The type double function is imsls_d_autocorrelation.

Required Arguments
int n_observations (Input)

Number of observations in the time series x. n_observations must
be greater than or equal to 2.

float x[] (Input)
Array of length n_observations containing the time series.

int lagmax (Input)
Maximum lag of autocovariance, autocorrelations, and standard errors of
autocorrelations to be computed. lagmax must be greater than or equal
to 1 and less than n_observations.

542 � autocorrelation IMSL C/Stat/Library

Return Value
Pointer to an array of length lagmax + 1 containing the autocorrelations of the
time series x. The 0-th element of this array is 1. The k-th element of this array
contains the autocorrelation of lag k where k = 1, ..., lagmax.

Synopsis with Optional Arguments

#include <imsls.h>
float imsls_f_autocorrelation (int n_observations, float x[],

int lagmax,
IMSLS_RETURN_USER, float autocorrelations[],
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_ACV, float **autocovariances,
IMSLS_ACV_USER, float autocovariances[],
IMSLS_SEAC, float **standard_errors, int
 se_option,
IMSLS_SEAC_USER, float standard_errors[],
 int se_option,
IMSLS_X_MEAN_IN, float x_mean_in,
IMSLS_X_MEAN_OUT, float *x_mean_out,
0)

Optional Arguments
IMSLS_RETURN_USER, float autocorrelations[] (Output)

If specified, autocorrelations is an array of length lagmax + 1
containing the autocorrelations of the time series x. The
oth element of this array is 1. The kth element of this array contains
the autocorrelation of lag k where k = 1, ..., lagmax.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option. Default = 0.

Iprint Action
0 No printing is performed.
1 Prints the mean and variance.
2 Prints the mean, variance, and autocovariances.
3 Prints the mean, variance, autocovariances,

autocorrelations, and standard errors of
autocorrelations.

IMSLS_ACV, float **autocovariances (Output)
Address of a pointer to an array of length lagmax + 1 containing the
variance and autocovariances of the time series x. The 0-th element of
this array is the variance of the time series x. The kth element contains
the autocovariance of lag k where k = 1, ..., lagmax.

Chapter 8: Time Series and Forecasting autocorrelation � 543

IMSLS_ACV_USER, float autocovariances[] (Output)
If specified, autocovariances is an array of length lagmax + 1
containing the variance and autocovariances of the time series x.
See IMSLS_ACV.

IMSLS_SEAC, float **standard_errors, int se_option (Output)
Address of a pointer to an array of length lagmax containing the
standard errors of the autocorrelations of the time series x.
Method of computation for standard errors of the autocorrelations is
chosen by se_option.

Se_option Action
1 Compute the standard errors of autocorrelations using

Barlett’s formula.
2 Compute the standard errors of autocorrelations

using Moran’s formula.

IMSLS_SEAC_USER, float standard_errors[], int se_option (Output)
If specified, autocovariances is an array of length lagmax containing
the standard errors of the autocorrelations of the time series x.
See IMSLS_SEAC.

IMSLS_X_MEAN_IN, float x_mean_in (Input)
User input the estimate of the time series x.

IMSLS_X_MEAN_OUT, float *x_mean_out (Output)
If specified, x_mean_out is the estimate of the mean of the time
series x.

Description
Function imsls_f_autocorrelation estimates the autocorrelation function
of a stationary time series given a sample of n = n_observations
observations {Xt} for t = 1, 2, …, n.

Let

�̂ � x_mean

be the estimate of the mean � of the time series {Xt} where

1

, know
ˆ 1 unknown

n

t
t

X
n

� �

�
�

�

�
�

� �
�
�
�

n

The autocovariance function
(k) is estimated by

1

1ˆ ˆ ˆ() ()(), 0,1, ,
n k

t t k
t

k X X k
n

� � �

�

�

�

� � � �� � K

544 � autocorrelation IMSL C/Stat/Library

where K = lagmax. Note that

� �ˆ 0�

is an estimate of the sample variance. The autocorrelation function �(k) is
estimated by

ˆ ()ˆ () , 0,1, ,
ˆ (0)

kk k�
�

�
� � � K

Note that

� �ˆ 0 1� �

by definition.

The standard errors of the sample autocorrelations may be optionally computed
according to argument se_option for the optional argument IMSLS_SEAC.
One method (Bartlett 1946) is based on a general asymptotic expression for the
variance of the sample autocorrelation coefficient of a stationary time series with
independent, identically distributed normal errors. The theoretical formula is

� � 2 21ˆvar (k) () () () 4 () () () 2 () ()
i

i i k i k i k i k i k
n

� � � � � � � � �

�

���

2� �� � � � � � �� ��

where

ˆ ()k�

assumes � is unknown. For computational purposes, the autocorrelations r(k) are
replaced by their estimates

ˆ ()k�

for |k|
 K, and the limits of summation are bounded because of the assumption
that r(k) = 0 for all k such that |k| > K.

A second method (Moran 1947) utilizes an exact formula for the variance of the
sample autocorrelation coefficient of a random process with independent,
identically distributed normal errors. The theoretical formula is

� �� �
� �

ˆvar
2

n kk
n n

�
�

�

�

where � is assumed to be equal to zero. Note that this formula does not depend on
the autocorrelation function.

Example
Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Function imsls_f_autocorrelation with optional arguments computes

Chapter 8: Time Series and Forecasting autocorrelation � 545

the estimated autocovariances, estimated autocorrelations, and estimated standard
errors of the autocorrelations.

#include <imsls.h>
#include <stdio.h>

void main()
{
 float *result=NULL, data[176][2], x[100], xmean;
 int i, nobs = 100, lagmax = 20;
 float *acv=NULL, *seac=NULL;

 imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0);
 for (i=0;i<nobs;i++) x[i] = data[21+i][1];

 result = imsls_f_autocorrelation(nobs, x, lagmax,
 IMSLS_X_MEAN_OUT, &xmean,
 IMSLS_ACV, &acv,
 IMSLS_SEAC, &seac, 1,
 0);
 printf("Mean = %8.3f\n", xmean);
 printf("Variance = %8.1f\n", acv[0]);
 printf("\nLag\t ACV\t\t AC\t\t SEAC\n");
 printf("%2d\t%8.1f\t%8.5f\n", 0, acv[0], result[0]);
 for(i=1; i<21; i++)
 printf("%2d\t%8.1f\t%8.5f\t%8.5f\n", i, acv[i], result[i],
 seac[i-1]);

}

Output

Mean = 46.976
Variance = 1382.9

Lag ACV AC SEAC

 0 1382.9 1.00000
 1 1115.0 0.80629 0.03478
 2 592.0 0.42809 0.09624
 3 95.3 0.06891 0.15678
 4 -236.0 -0.17062 0.20577
 5 -370.0 -0.26756 0.23096
 6 -294.3 -0.21278 0.22899
 7 -60.4 -0.04371 0.20862
 8 227.6 0.16460 0.17848
 9 458.4 0.33146 0.14573
10 567.8 0.41061 0.13441
11 546.1 0.39491 0.15068
12 398.9 0.28848 0.17435
13 197.8 0.14300 0.19062
14 26.9 0.01945 0.19549
15 -77.3 -0.05588 0.19589
16 -143.7 -0.10394 0.19629
17 -202.0 -0.14610 0.19602
18 -245.4 -0.17743 0.19872

546 � crosscorrelation IMSL C/Stat/Library

19 -230.8 -0.16691 0.20536
20 -142.9 -0.10332 0.20939

Figure 8-1 Sample Autocorrelation Function

crosscorrelation
Computes the sample cross-correlation function of two stationary time series.

Synopsis
#include <imsls.h>
float *imsls_f_crosscorrelation (int n_observations, float x[],

float y[], int lagmax, ..., 0)
The type double function is imsls_d_crosscorrelation.

Required Arguments
int n_observations (Input)

Number of observations in each time series. n_observations must be
greater than or equal to 2.

float x[] (Input)
Array of length n_observations containing the first time series.

float y[] (Input)
Array of length n_observations containing the second time series.

Chapter 8: Time Series and Forecasting crosscorrelation � 547

int lagmax (Input)
Maximum lag of cross-covariances and cross-correlations to be
computed. lagmax must be greater than or equal to 1 and less than
n_observations.

Return Value
Pointer to an array of length 2*lagmax + 1 containing the cross-correlations
between the time series x and y. The kth element of this array contains the cross-
correlation between x and y at lag (k-lagmax) where k = 0, 1, …, 2*lagmax. To
release this space, use free. If no solution can be computed, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_crosscorrelation (int n_observations, float x[],

float y[], int lagmax,
IMSLS_RETURN_USER, float crosscorrelations[],
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_VARIANCES, float *x_variance, float *y_variance
IMSLS_SE_CCF, float **standard_errors, int se_option,
IMSLS_SE_CCF_USER, float standard_errors[], int se_option,
IMSLS_CROSS_COVARIANCES, float **cross_covariances,
IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[],
IMSLS_INPUT_MEANS, float x_mean_in, float y_mean_in,
IMSLS_OUTPUT_MEANS, float *x_mean_out, float *y_mean_out,
0)

Optional Arguments
IMSLS_RETURN_USER, float crosscorrelations[] (Output)

If specified, crosscorrelations is an array of length
2*lagmax + 1 containing the cross-correlations between the time series
x and y. The kth element of this array contains the cross-correlation
between x and y at lag (k-lagmax) where k = 0, 1, …, 2*lagmax.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option. Default = 0.

Iprint Action
0 No printing is performed.
1 Prints the means and variances.
2 Prints the means, variances, and cross-covariances.
3 Prints the means, variances, cross-covariances, cross-

correlations, and standard errors of cross-correlations.

IMSLS_VARIANCES, float *x_variance, float *y_variance (Output)
If specified, x_variance is variance of the time series x and
y_variance is variance of the time series y.

548 � crosscorrelation IMSL C/Stat/Library

IMSLS_SE_CCF, float **standard_errors, int se_option (Output)
Address of a pointer to an array of length 2*lagmax + 1containing the
standard errors of the cross-correlations between the time series x and y.
Method of computation for standard errors of the cross-correlations is
chosen by se_option.

se_option Action
1 Compute standard errors of cross-correlations using

Bartlett’s formula.
2 Compute standard errors of cross-correlations using

Bartlett’s formula with the assumption of no cross-
correlation.

IMSLS_SE_CCF_USER, float standard_errors[], int se_option (Output)
If specified, standard_errors is an array of length 2*lagmax + 1
containing the standard errors of the cross-correlations between the time
series x and y. See IMSLS_SE_CC.

IMSLS_CROSS_COVARIANCES, float **cross_covariances (Output)
Address of a pointer to an array of length 2*lagmax + 1 containing the
cross-covariances between the time series x and y. The kth element of
this array contains the cross-covariances between x and y at lag
 (k-lagmax) where k = 0, 1, …, 2*lagmax.

IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[] (Output)
If specified, cross_covariances is an array of length 2*lagmax + 1
the cross-covariances between the time series x and y. See
IMSLS_CROSS_COVARIANCES.

IMSLS_INPUT_MEANS, float x_mean_in, float y_mean_in (Input)
If specified, x_mean_in is the user input of the estimate of the mean of
the time series x and y_mean_in is the user input of the estimate of the
mean of the time series y.

IMSLS_OUTPUT_MEANS, float *x_mean_out, float *y_mean_out (Output)
If specified, x_mean_out is the mean of the time series x and
y_mean_out is the mean of the time series y.

Description
Function imsls_f_crosscorrelation estimates the cross-correlation
function of two jointly stationary time series given a sample of
n = n_observations observations {Xt} and {Yt} for t = 1, 2, …, n.

Let

ˆ x� � x_mean

be the estimate of the mean �X of the time series {Xt} where

Chapter 8: Time Series and Forecasting crosscorrelation � 549

1

known
ˆ 1 unknown

X X
n

X
t X

t
X

n

� �

�
�

�

�
�

� �
�
�
�

The autocovariance function of {Xt}, �X(k), is estimated by

1

1ˆ ˆ ˆ() ()(), 0, 1, ,
n k

X t X t k X
t

k X X k
n

� � �

�

�

�

� � � �� � K

where K = lagmax. Note that

ˆ (0)X�

is equivalent to the sample variance x_variance. The autocorrelation function
�X(k) is estimated by

ˆ ()ˆ () 0,1, ,
ˆ (0)

X
X

X

k
k k

�
�

�
� � � K

Y

Note that

ˆ (0) 1X� �

by definition. Let

� � � �ˆˆ ˆy_mean, ,andY Y k k� � ��

be similarly defined.

The cross-covariance function
XY(k) is estimated by

1

1

1 ˆ ˆ()() 0,1, ,
ˆ ()

1 ˆ ˆ()() 1, 2, ,

n k

t X t k Y
t

XY n

t X t k Y
t k

X Y k K
n

k
X Y k

n

� �

�

� �

�

�

�

�

� �

�
� � ��

�
� �
� � � � � �
��

�

�

�

� K�

The cross-correlation function �XY(k) is estimated by

� �
1 2

ˆ ()ˆ () 0, 1, ,
ˆ ˆ(0) (0)

XY
XY

X Y

kk k�
�

� �

� � � � K�

The standard errors of the sample cross-correlations may be optionally computed
according to argument se_option for the optional argument IMSLS_SE_CCF.
One method is based on a general asymptotic expression for the variance of the
sample cross-correlation coefficient of two jointly stationary time series with
independent, identically distributed normal errors given by Bartlett (1978, page
352). The theoretical formula is

550 � crosscorrelation IMSL C/Stat/Library

� � �

� �

� �

XY

2 2 2

1ˆvar () () () () ()

2 () () () () ()

1 1() () ()
2 2

X Y XY XY
i

XY X XY XY Y

XY X X Y

k i i i k
n k

k i i k i i k

k i i i

� � � � �

� � � � �

� � � �

�

���

� � �
�

� � � �

�� �
� � �� �	

 ��

� i k�

�

For computational purposes, the autocorrelations �X(k) and �Y(k) and the cross-
correlations �XY(k) are replaced by their corresponding estimates for |k|
 K, and
the limits of summation are equal to zero for all k such that |k| > K.

A second method evaluates Bartlett’s formula under the additional assumption
that the two series have no cross-correlation. The theoretical formula is

� �XY
1ˆvar () () () 0X Y

i

k i i
n k

� � �

�

���

� �

�
� k

For additional special cases of Bartlett’s formula, see Box and Jenkins (1976,
page 377).

An important property of the cross-covariance coefficient is
XY(k) =
YX(�k) for
k � 0. This result is used in the computation of the standard error of the sample
cross-correlation for lag k < 0. In general, the cross-covariance function is not
symmetric about zero so both positive and negative lags are of interest.

Example
Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532–533) where
X is the input gas rate in cubic feet/minute and Y is the percent CO� in the outlet
gas. Function imsls_f_crosscorrelation is used to compute the cross-
covariances and cross-correlations between time series X and Y with lags from
�lagmax = �10 through lag lagmax = 10. In addition, the estimated standard
errors of the estimated cross-correlations are computed. The standard errors are
based on the additional assumption that all cross-correlations for X and Y are
zero.

#include "imsls.h"
#include <stdio.h>

#define nobs 296
#define lagmax 10

void main ()
{
 int i;
 float data[nobs][2], x[nobs], y[nobs];
 float *secc = NULL, *ccv = NULL, *cc = NULL;
 float xmean, ymean, xvar, yvar;

 imsls_f_data_sets (7, IMSLS_X_COL_DIM, 2, IMSLS_RETURN_USER, data, 0);

Chapter 8: Time Series and Forecasting crosscorrelation � 551

 for (i = 0; i < nobs; i++)
 {
 x[i] = data[i][0];
 y[i] = data[i][1];
 }

 cc = imsls_f_crosscorrelation (nobs, x, y, lagmax,
 IMSLS_OUTPUT_MEANS, &xmean, &ymean,
 IMSLS_VARIANCES, &xvar, &yvar,
 IMSLS_SE_CCF, &secc, 2,
 IMSLS_CROSS_COVARIANCES, &ccv, 0);

 printf ("Mean of series X = %g\n", xmean);
 printf ("Variance of series X = %g\n\n", xvar);
 printf ("Mean of series Y = %g\n", ymean);
 printf ("Variance of series Y = %g\n\n", yvar);

 printf ("Lag CCV CC SECC\n\n");
 for (i = 0; i < 2 * lagmax + 1; i++)
 printf ("%-5d%13g%13g%13g\n", i - lagmax, ccv[i], cc[i], secc[i]);
}

Output
Mean of series X = -0.0568344
Variance of series X = 1.14694

Mean of series Y = 53.5091
Variance of series Y = 10.2189

Lag CCV CC SECC

-10 -0.404502 -0.118154 0.162754
-9 -0.508491 -0.148529 0.16247
-8 -0.61437 -0.179456 0.162188
-7 -0.705476 -0.206067 0.161907
-6 -0.776167 -0.226716 0.161627
-5 -0.831474 -0.242871 0.161349
-4 -0.891316 -0.260351 0.161073
-3 -0.980605 -0.286432 0.160798
-2 -1.12477 -0.328542 0.160524
-1 -1.34704 -0.393467 0.160252
0 -1.65853 -0.484451 0.159981
1 -2.04865 -0.598405 0.160252
2 -2.48217 -0.725033 0.160524
3 -2.88541 -0.84282 0.160798
4 -3.16536 -0.924592 0.161073
5 -3.25344 -0.950319 0.161349
6 -3.13113 -0.914593 0.161627
7 -2.83919 -0.82932 0.161907
8 -2.45302 -0.716521 0.162188
9 -2.05269 -0.599584 0.16247
10 -1.69466 -0.495004 0.162754

552 � multi_crosscorrelation IMSL C/Stat/Library

multi_crosscorrelation
Computes the multichannel cross-correlation function of two mutually stationary
multichannel time series.

Synopsis
#include <imsls.h>
float *imsls_f_multi_crosscorrelation (int n_observations_x,

int n_channel_x, float x[], int n_observations_y,
int n_channel_y, float y[], int lagmax, ..., 0)

The type double function is imsls_d_multi_crosscorrelation.

Required Arguments
int n_observations_x (Input)

Number of observations in each channel of the first time series x.
n_observations_x must be greater than or equal to two.

int n_channel_x (Input)
Number of channels in the first time series x. n_channel_x must be
greater than or equal to one.

float x[] (Input)
Array of length n_observations_x by n_channel_x containing the
first time series.

int n_observations_y (Input)
Number of observations in each channel of the second time series y.
n_observations_y must be greater than or equal to two.

int n_channel_y (Input)
Number of channels in the second time series y. n_channel_y must
be greater than or equal to one.

float y[] (Input)
Array of length n_observations_y by n_channel_y containing the
second time series.

int lagmax (Input)
Maximum lag of cross-covariances and cross-correlations to be
computed. lagmax must be greater than or equal to one and less than
the minimum of n_observations_x and n_observations_y.

Return Value
Pointer to an array of length n_channel_x * n_channel_y *
(2 * lagmax + 1) containing the cross-correlations between the channels of x
and y. The mth element of this array contains the cross-correlation between
channel i of the x series and channel j of the y series at lag (k-lagmax) where
 i = 1, …, n_channel_x

Chapter 8: Time Series and Forecasting multi_crosscorrelation � 553

 j = 1, …, n_channel_y
 k = 0, 1, …, 2*lagmax, and
 m = (n_channel_x*n_channel_y*k +(i*n_channel_x+ j))

To release this space, use free. If no solution can be computed, NULL is return.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_multi_crosscorrelation (int n_observations_x,

int n_channel_x, float x[], int n_observations_y,
int n_channel_y, float y[], int lagmax,
IMSLS_RETURN_USER, float crosscorrelations[],
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_VARIANCES, float **x_variance, float **y_variance,
IMSLS_VARIANCES_USER, float x_variance[],
float y_variance[],
IMSLS_CROSS_COVARIANCES, float **cross_covariances,
IMSLS_CROSS_COVARIANCES_USER,
float cross_covariances[],
IMSLS_INPUT_MEANS, float *x_mean_in, float *y_mean_in,
IMSLS_OUTPUT_MEANS, float **x_mean_out,
float **y_mean_out,
IMSLS_OUTPUT_MEANS_USER, float x_mean_out[],
float y_mean_out[],
0)

Optional Arguments
IMSLS_RETURN_USER, float crosscorrelations[] (Output)

If specified, crosscorrelations is a user-specified array of length
n_channel_x * n_channel_y * (2*lagmax + 1) containing the
cross-correlations between the channels of x and y. See Return Value.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option. Default = 0.

iprint Action
0 No printing is performed.
1 Prints the means and variances.
2 Prints the means, variances, and cross-covariances.
3 Prints the means, variances, cross-covariances, and cross-

correlations.

IMSLS_VARIANCES, float **x_variance, float **y_variance (Output)
If specified, x_variance is the address of a pointer to an array of
length n_channel_x containing the variances of the channels of x and
y_variance is the address of a pointer to an array of length
n_channel_y containing the variances of the channels of y.

554 � multi_crosscorrelation IMSL C/Stat/Library

IMSLS_VARIANCES_USER, float x_variance[], float y_variance[]
(Output)
If specified, x_variance is an array of length n_channel_x
containing the variances of the channels of x and y_variance is an
array of length n_channel_y containing the variances of the channels
of y. See IMSLS_VARIANCES.

IMSLS_CROSS_COVARIANCES, float **cross_covariances (Output)
Address of a pointer to an array of length n_channel_x * n_channel_y *
(2*lagmax + 1) containing the cross-covariances between the channels of
x and y. The mth element of this array contains the cross-covariance
between channel i of the x series and channel j of the y series at lag (k-
lagmax) where
 i = 1, …, n_channel_x
 j = 1, …, n_channel_y
 k = 0, 1, …, 2*lagmax, and
 m = (n_channel_x*n_channel_y*k +(i*n_channel_x+ j)).

IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[] (Output)
If specified, cross_covariances is an array of length n_channel_x
* n_channel_y * (2*lagmax + 1) containing the cross-covariances
between the channels of x and y. See IMSLS_CROSS_COVARIANCES.

IMSLS_INPUT_MEANS, float *x_mean_in, float *y_mean_in (Input)
If specified, x_mean_in is an array of length n_channel_x containing
the user input of the estimate of the means of the channels of x and
y_mean_in is an array of length n_channel_y containing the user
input of the estimate of the means of the channels of y.

IMSLS_OUTPUT_MEANS, float **x_mean_out, float **y_mean_out (Output)
If specified, x_mean_out is the address of a pointer to an array of
length n_channel_x containing the means of the channels of x and
y_mean_out is the address of a pointer to an array of length
n_channel_y containing the means of the channels of y.

IMSLS_OUTPUT_MEANS_USER, float x_mean_out[], float y_mean_out[]
(Output)
If specified, x_mean_out is an array of length n_channel_x
containing the means of the channels of x and y_mean_out is an array
of length n_channel_y containing the means of the channels of y. See
IMSLS_OUTPUT_MEANS.

Description
Function imsls_f_multi_crosscorrelation estimates the multichannel
cross-correlation function of two mutually stationary multichannel time series.
Define the multichannel time series X by

X = (X�, X�, �, Xp)

where

Chapter 8: Time Series and Forecasting multi_crosscorrelation � 555

Xj = (X�j, X�j, �, Xnj)T, j = 1, 2, �, p

with n = n_observations_x and p = n_channel_x. Similarly, define the
multichannel time series Y by

Y = (Y�, Y�, �, Yq)

where

Yj = (Y�j, Y�j, �, Ymj)T, j = 1, 2, �, q

with m = n_observations_y and q = n_channel_y. The columns of X and Y
correspond to individual channels of multichannel time series and may be
examined from a univariate perspective. The rows of X and Y correspond to
observations of p-variate and q-variate time series, respectively, and may be
examined from a multivariate perspective. Note that an alternative
characterization of a multivariate time series X considers the columns to be
observations of the multivariate time series while the rows contain univariate time
series. For example, see Priestley (1981, page 692) and Fuller (1976, page 14).

Let

ˆ x_meanX� �

be the row vector containing the means of the channels of X. In particular,

� �1 2
ˆ ˆ ˆ ˆ, , ,

pX X X X� � � �� �

where for j = 1, 2, …, p

1

known
ˆ 1 unknown

j j

j

j

X X

n
X

tj X
t

X
n

� �

�

�

�

�
�

� �
�
�
�

Let

ˆ _meanY y� �

be similarly defined. The cross-covariance of lag k between channel i of X and
channel j of Y is estimated by

,

,

1 ˆ ˆ()() 0,1, ,
ˆ ()

1 ˆ ˆ()() 1, 2, ,

i j

i j

i j

ti X t k j Y
t

X Y

ti X t k j Y
t

X Y k K
N

k
X Y k

N

� �

�

� �

�

�

�
� � ���

� �
� � � � � �
��

�

�

�

� K�

where i = 1, …, p, j = 1, …, q, and K = lagmax. The summation on t extends over
all possible cross-products with N equal to the number of cross-products in the
sum

Let

556 � multi_crosscorrelation IMSL C/Stat/Library

� �ˆ 0 x_varianceX� �

be the row vector consisting of the estimated variances of the channels of X. In
particular,

1 2
ˆ ˆ ˆ ˆ(0) ((0), (0), , (0))

pX X X X� � � �� �

where

2

1

1ˆ ˆ(0)) 1,2, ,
j j

n

X tj X
t

X j
n

� �

�

� � �� � p

Let

ˆ (0) y_varianceY� �

be similarly defined. The cross-correlation of lag k between channel i of X and
channel j of Y is estimated by

()

1 2

ˆ
ˆ () 0, 1, ,

ˆ ˆ(0) (0)

i j

i j

i j

X Y k
X Y

X Y

k k
�

�

� �

� �
� �
� �

� K� �

Example
Consider the Wolfer Sunspot Data (Y) (Box and Jenkins 1976, page 530) along
with data on northern light activity (X�) and earthquake activity (X�) (Robinson
1967, page 204) to be a three-channel time series. Function
imsls_f_multi_crosscorrelation is used to compute the cross-covariances
and cross-correlations between X� and Y and between X� and Y with lags from
�lagmax = �10 through lag lagmax = 10.

#include "imsls.h"

void main () {
 int i, lagmax, nobsx, nchanx, nobsy, nchany;
 float x[100 * 2], y[100], *result = NULL, *xvar = NULL, *yvar = NULL,
 *xmean = NULL, *ymean = NULL, *ccv = NULL;
 float data[100][4];
 char line[20];

 nobsx = nobsy = 100;
 nchanx = 2;
 nchany = 1;
 lagmax = 10;

 imsls_f_data_sets (8, IMSLS_X_COL_DIM, 4, IMSLS_RETURN_USER, data, 0);
 for (i = 0; i < 100; i++)
 {
 y[i] = data[i][1];
 x[i * 2] = data[i][2];
 x[i * 2 + 1] = data[i][3];
 }

 result =

Chapter 8: Time Series and Forecasting multi_crosscorrelation � 557

 imsls_f_multi_crosscorrelation (nobsx, nchanx, &x[0], nobsy, nchany,
 &y[0], lagmax, IMSLS_VARIANCES, &xvar,
 &yvar, IMSLS_OUTPUT_MEANS, &xmean, &ymean,
 IMSLS_CROSS_COVARIANCES, &ccv, 0);

 imsls_f_write_matrix ("Channel means of x", 1, nchanx, xmean, 0);
 imsls_f_write_matrix ("Channel variances of x", 1, nchanx, xvar, 0);
 imsls_f_write_matrix ("Channel means of y", 1, nchany, ymean, 0);
 imsls_f_write_matrix ("Channel variances of y", 1, nchany, yvar, 0);

 printf ("\nMultichannel cross-covariance between x and y\n");
 for (i = 0; i < (2 * lagmax + 1); i++)
 {
 sprintf (line, "Lag K = %d", i - lagmax);
 imsls_f_write_matrix (line, nchanx, nchany,
 &ccv[nchanx * nchany * i], 0);
 }

 printf ("\nMultichannel cross-correlation between x and y\n");
 for (i = 0; i < (2 * lagmax + 1); i++)
 {
 sprintf (line, "Lag K = %d", i - lagmax);
 imsls_f_write_matrix (line, nchanx, nchany,
 &result[nchanx * nchany * i], 0);
 }
}

Output

 Channel means of x
 1 2
 63.43 97.97

 Channel variances of x
 1 2
 2644 1978

Channel means of y
 46.94

Channel variances of y
 1384

Multichannel cross-covariance between x and y

 Lag K = -10
1 -20.51
2 70.71

 Lag K = -9
1 65.02
2 38.14

 Lag K = -8
1 216.6
2 135.6

 Lag K = -7

558 � multi_crosscorrelation IMSL C/Stat/Library

1 246.8
2 100.4

 Lag K = -6
1 142.1
2 45.0

 Lag K = -5
1 50.70
2 -11.81

 Lag K = -4
1 72.68
2 32.69

 Lag K = -3
1 217.9
2 -40.1

 Lag K = -2
1 355.8
2 -152.6

 Lag K = -1
1 579.7
2 -213.0

 Lag K = 0
1 821.6
2 -104.8

 Lag K = 1
1 810.1
2 55.2

 Lag K = 2
1 628.4
2 84.8

 Lag K = 3
1 438.3
2 76.0

 Lag K = 4
1 238.8
2 200.4

 Lag K = 5
1 143.6
2 283.0

 Lag K = 6
1 253.0
2 234.4

 Lag K = 7
1 479.5
2 223.0

Chapter 8: Time Series and Forecasting multi_crosscorrelation � 559

 Lag K = 8
1 724.9
2 124.5

 Lag K = 9
1 925.0
2 -79.5

 Lag K = 10
1 922.8
2 -279.3

Multichannel cross-correlation between x and y

 Lag K = -10
1 -0.01072
2 0.04274

 Lag K = -9
1 0.03400
2 0.02305

 Lag K = -8
1 0.1133
2 0.0819

 Lag K = -7
1 0.1290
2 0.0607

 Lag K = -6
1 0.07431
2 0.02718

 Lag K = -5
1 0.02651
2 -0.00714

 Lag K = -4
1 0.03800
2 0.01976

 Lag K = -3
1 0.1139
2 -0.0242

 Lag K = -2
1 0.1860
2 -0.0923

 Lag K = -1
1 0.3031
2 -0.1287

 Lag K = 0
1 0.4296
2 -0.0633

 Lag K = 1

560 � partial_autocorrelation IMSL C/Stat/Library

1 0.4236
2 0.0333

 Lag K = 2
1 0.3285
2 0.0512

 Lag K = 3
1 0.2291
2 0.0459

 Lag K = 4
1 0.1248
2 0.1211

 Lag K = 5
1 0.0751
2 0.1710

 Lag K = 6
1 0.1323
2 0.1417

 Lag K = 7
1 0.2507
2 0.1348

 Lag K = 8
1 0.3790
2 0.0752

 Lag K = 9
1 0.4836
2 -0.0481

 Lag K = 10
1 0.4825
2 -0.1688

partial_autocorrelation
Computes the sample partial autocorrelation function of a stationary time series.

Synopsis
#include <imsls.h>
float *imsls_f_partial_autocorrelation (int lagmax, int cf[], …,

0)

The type double function is imsls_d_partial_autocorrelation.

Required Arguments

int lagmax (Input)
Maximum lag of partial autocorrelations to be computed.

Chapter 8: Time Series and Forecasting partial_autocorrelation � 561

tA

float cf[] (Input)
Array of length lagmax + 1 containing the autocorrelations of the time
series x.

Return Value
Pointer to an array of length lagmax containing the partial autocorrelations of
the time series x.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_partial_autocorrelation (int lagmax, float cf[],

 IMSLS_RETURN_USER, float partial_autocorrelations[],
 0)

Optional Arguments

IMSLS_RETURN_USER, float partial_autocorrelations[] (Output)
If specified, the partial autocorrelations are stored in an array of length
lagmax provided by the user.

Description

Function imsls_f_partial_autocorrelation estimates the partial
autocorrelations of a stationary time series given the K = lagmax sample
autocorrelations

� �ˆ k�

for k = 0, 1, …, K. Consider the AR(k) process defined by

1 1 2 2 ...t k t k t kk t kX X X X
� � �

� � � � � � � �

where �kj denotes the j-th coefficient in the process. The set of estimates

� �k̂k�

for k = 1, …, K is the sample partial autocorrelation function. The autoregressive
parameters

� �k̂j�

for j = 1, …, k are approximated by Yule-Walker estimates for successive AR(k)
models where k = 1, …, K. Based on the sample Yule-Walker equations

1 2
ˆ ˆ ˆˆ ˆ ˆ ˆ() (1) (2) ... (), 1, 2,...,k k kkj j j j k j� � � � � � � � � � � � � � � k

a recursive relationship for k = 1, …, K was developed by Durbin (1960). The
equations are given by

562 � partial_autocorrelation IMSL C/Stat/Library

1
1 1,

1
1 1,

ˆ (1) 1
ˆ ˆˆ ˆ() ()

2, ...,ˆ ˆ1 ()

k
kk j k j

k
j k j

k

k k j
k K

j

�

� �

�

� �

� �

� � � �� � � �
�

�� � �

�
�
�
�
�

and

1
1 1,

1
1 1,

ˆ (1) 1
ˆ ˆˆ ˆ() ()

2, ...,ˆ ˆ1 ()

k
kk j k j

k
j k j

k

k k j
k K

j

�

� �

�

� �

� �

� � � �� � � �
�

�� � �

�
�
�
�
�

This procedure is sensitive to rounding error and should not be used if the
parameters are near the nonstationarity boundary. A possible alternative would be
to estimate {�kk} for successive AR(k) models using least or maximum
likelihood. Based on the hypothesis that the true process is AR(p), Box and
Jenkins (1976, page 65) note

1ˆvar{ } 1kk k p
n

� � �� �

See Box and Jenkins (1976, pages 82–84) for more information concerning the
partial autocorrelation function.

Example
Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Routine imsls_f_partial_autocorrelation is used to compute the
estimated partial autocorrelations.

#include <imsls.h>
#include <stdio.h>

void main()
{
 float *partial=NULL, data[176][2], x[100];
 int i, nobs = 100, lagmax = 20;
 float *ac;

 imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0);
 for (i=0;i<nobs;i++) x[i] = data[21+i][1];

 ac = imsls_f_autocorrelation(100, x, lagmax, 0);
 partial = imsls_f_partial_autocorrelation(lagmax, ac, 0);
 imsls_f_write_matrix("Lag PACF", 20, 1, partial, 0);
}

Chapter 8: Time Series and Forecasting lack_of_fit � 563

Output
 Lag PACF
 1 0.806
 2 -0.635
 3 0.078
 4 -0.059
 5 -0.001
 6 0.172
 7 0.109
 8 0.110
 9 0.079
10 0.079
11 0.069
12 -0.038
13 0.081
14 0.033
15 -0.035
16 -0.131
17 -0.155
18 -0.119
19 -0.016
20 -0.004

lack_of_fit
Performs lack-of-fit test for a univariate time series or transfer function given the
appropriate correlation function.

Synopsis
#include <imsls.h>

float imsls_lack_of_fit (int n_observations, float cf[],
int lagmax, int npfree,..., 0)

Required Arguments
int n_observations (Input)

Number of observations of the stationary time series.

float cf[] (Input)
Array of length lagmax+1 containing the correlation function.

int lagmax (Input)
Maximum lag of the correlation function.

int npfree (Input)
Number of free parameters in the formulation of the time series model.
npfree must be greater than or equal to zero and less than lagmax.
Woodfield (1990) recommends npfree = p + q.

564 � lack_of_fit IMSL C/Stat/Library

Return Value

Pointer to an array of length 2 with the test statistic, Q, and its p-value, p. Under
the null hypothesis, Q has an approximate chi-squared distribution with
lagmax-lagmin+1-npfree degrees of freedom.

Synopsis with Optional Arguments

 #include <imsls.h>

 float *imsls_f_lack_of_fit (int n_observations, float cf[], int
lagmax, int npfree,
IMSLS_RETURN_USER, float stat[],
IMSLS_LAGMIN, int lagmin,
0)

Optional Arguments
 IMSLS_RETURN_USER, float stat[] (Input)

User defined array for storage of lack-of-fit statistics.

 IMSLS_LAGMIN, int lagmin (Input)
Minimum lag of the correlation function. lagmin corresponds to the
lower bound of summation in the lack of fit test statistic. Default value
is 1.

Description
Routine imsls_f_lack_of_fit may be used to diagnose lack of fit in both
ARMA and transfer function models. Typical arguments for these situations are

Model LAGMIN LAGMAX NPFREE

ARMA (p, q) 1 NOBS p + q
Transfer function 0 NOBS r + s

Function imsls_f_lack_of_fit performs a portmanteau lack of fit test for a
time series or transfer function containing n observations given the appropriate
sample correlation function

ˆ ()k�

for k = L, L + 1, �, K where L = lagmin and K = lagmax.

The basic form of the test statistic Q is

1 ˆ(2) () (
K

k L

Q n n n k k�
�

�

� � ��)

with L = 1 if

Chapter 8: Time Series and Forecasting lack_of_fit � 565

� �ˆ k�

is an autocorrelation function. Given that the model is adequate, Q has a chi-
squared distribution with K � L + 1 � m degrees of freedom where m = npfree
is the number of parameters estimated in the model. If the mean of the time series
is estimated, Woodfield (1990) recommends not including this in the count of the
parameters estimated in the model. Thus, for an ARMA(p, q) model set npfree=
p + q regardless of whether the mean is estimated or not. The original derivation
for time series models is due to Box and Pierce (1970) with the above modified
version discussed by Ljung and Box (1978). The extension of the test to transfer
function models is discussed by Box and Jenkins (1976, pages 394–395).

Example
Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set
for this example consists of the number of sunspots observed from 1770 through
1869. An ARMA(2,1) with nonzero mean is fitted using routine imsls_f_arma
(page 517). The autocorrelations of the residuals are estimated using routine
imsls_f_autocorrelation (page 541). A portmanteau lack of fit test is
computed using 10 lags with imsls_f_lack_of_fit.

The warning message from imsls_f_arma in the output can be ignored.
(See the example for routine imsls_f_arma for a full explanation of the warning
message.)

#include <imsls.h>
#include <stdio.h>

void main()
{
 int p = 2;
 int q = 1;
 int i;
 int n_observations = 100;
 int max_itereations = 0;
 int lagmin = 1;
 int lagmax = 10;
 int npfree = 4;
 float data[176][2], x[100];
 float *parameters;
 float *correlations;
 float *residuals;
 float tolerance = 0.125;
 float *result;

 /* Get sunspot data for 1770 through 1869, store it in x[]. */
 imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0);
 for (i=0;i<n_observations;i++) x[i] = data[21+i][1];

 /* Get residuals from ARMA(2,1) for autocorrelation/lack of fit */
 parameters = imsls_f_arma(n_observations, x, p, q,
 IMSLS_LEAST_SQUARES,
 IMSLS_CONVERGENCE_TOLERANCE, tolerance,

566 � garch IMSL C/Stat/Library

 IMSLS_RESIDUAL, &residuals,
 0);
 /* Get autocorrelations from residuals for lack of fit test */
 /* NOTE: number of OBS is equal to number of residuals */

correlations = imsls_f_autocorrelation(n_observations-p+lagmax,
 residuals, lagmax,
 0);

 /* Get lack of fit test statistic and p-value */
 /* NOTE: number of OBS is equal to original number of data */

 result = imsls_f_lack_of_fit(n_observations, correlations, lagmax,
 npfree, 0);

 /* Print parameter estimates, test statistic, and p-value */
 /* NOTE: Test Statistic Q follows a Chi-squared dist. */

 printf("Lack of Fit Statistic, Q = \t%3.5f\n P-value of Q
 = \t %1.5f\n\n",result[0], result[1]);

}

Output

***WARNING ERROR IMSLS_LEAST_SQUARES_FAILED from imsls_f_arma. Least
*** squares estimation of the parameters has failed to converge.
*** Increase “length” and/or “tolerence” and/or
*** “convergence_tolerence”. The estimates of the parameters at
*** the last iteration may be used as new starting values.

Lack of Fit statistic (Q) = 14.572

 P-value (PVALUE) = 0.9761

garch
Computes estimates of the parameters of a GARCH(p,q) model.

Synopsis
#include <imsls.h>
float *imsls_f_garch (int p, int q, int m, float y[], float xguess[],

…, 0)

The type double function is imsls_d_garch.

Required Arguments

int p (Input)
Number of GARCH parameters.

int q (Input)
Number of ARCH parameters.

Chapter 8: Time Series and Forecasting garch � 567

int m (Input)
Length of the observed time series.

 float y[] (Input)
Array of length m containing the observed time series data.

float xguess[] (Input)
Array of length p + q + 1 containing the initial values for the
parameter array x[].

Return Value
Pointer to the parameter array x[] of length p + q + 1 containing the estimated
values of sigma squared, followed by the q ARCH parameters, and the p GARCH
parameters.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_garch (int p, int q, int m, float y[], float xguess[],

IMSLS_MAX_SIGMA, float max_sigma,

 IMSLS_A, float *a,

 IMSLS_AIC, float *aic,

 IMSLS_VAR, float *var,
 IMSLS_VAR_USER, float var[],
 IMSLS_VAR_COL_DIM, int var_col_dim,

 IMSLS_RETURN_USER, float x[],
 0)

Optional Arguments
IMSLS_MAX_SIGMA, float max_sigma, (Input)

Value of the upperbound on the first element (sigma) of the array of returned
estimated coefficients. Default = 10.

IMSLS_A, float *a, (Output)
Value of Log-likelihood function evaluated at the estimated parameter
array x.

IMSLS_AIC, float *aic, (Output)
Value of Akaike Information Criterion evaluated at the estimated
parameter array x.

IMSLS_VAR, float *var, (Output)
Array of size (p+q+1)x(p+q+1) containing the variance-covariance
matrix.

IMSLS_VAR_USER, float var[], (Output)
Storage for array var is provided by the user.
See IMSLS_VAR.

568 � garch IMSL C/Stat/Library

i t i

IMSLS_VAR_COL_DIM, int var_col_dim, (Input)
Column dimension (p+q+1)of the variance-covariance matrix.

IMSLS_RETURN_USER, float x[], (Output)
If specified, x returns an array of length p + q + 1 containing the
estimated values of sigma squared, followed by the q ARCH parameters, and
the p GARCH parameters. Storage for estimated parameter array x is
provided by the user.

Description

The Generalized Autoregressive Conditional Heteroskedastic (GARCH) model
for a time series � is defined as �tw

2 2 2 2

1 1

,

t t t
p q

t i t i
i i

w z

w

�

� � � � �
� �

� �

�

� � �� �

where zt’s are independent and identically distributed standard normal random
variables,

� �

2

1

2 1 1

0 , 0, 0 and

1.

i i

p q p q

i i
i i i

x i

� � �

� �
� �

� � �

� � � �

� � �� � �

max_sigma

The above model is denoted as GARCH(p,q). The �i and �i coeffecients will be
referred to as GARCH and ARCH coefficents, respectively. When �i = 0,
i = 1,2,…,p, the above model reduces to ARCH(q) which was proposed by Engle
(1982). The nonnegativity conditions on the parameters imply a nonnegative
variance and the condition on the sum of the �i’s and � i’s is required for wide
sense stationarity.

In the empirical analysis of observed data, GARCH(1,1) or GARCH(1,2) models
have often found to appropriately account for conditional heteroskedasticity
(Palm 1996). This finding is similar to linear time series analysis based on
ARMA models.

It is important to notice that for the above models positive and negative past
values have a symmetric impact on the conditional variance. In practice, many
series may have strong asymmetric influence on the conditional variance. To take
into account this phenomena, Nelson (1991) put forward Exponential GARCH
(EGARCH). Lai (1998) proposed and studied some properties of a general class
of models that extended linear relationship of the conditional variance in ARCH
and GARCH into nonlinear fashion.

The maximum likelihood method is used in estimating the parameters in
GARCH(p,q). The log-likelihood of the model for the observed series {wt} with
length m = nobs is

Chapter 8: Time Series and Forecasting garch � 569

2 2 2

1 1

2 2 2 2

1 1

1 1log() log(2) / log ,
2 2 2

 .

m m

t t t
t t

p q

t i t i i t i
i i

mL y

where w

� �

� � � � �

� �

� �

� �

� � � �

� � �

� �

� �

�

�

Thus log(L) is maximized subject to the constraints on the αi, �i, and �.

In this model, if q = 0, the GARCH model is singular since the estimated Hessian
matrix is singular.

The initial values of the parameter vector x entered in vector xguess must satisfy
certain constraints. The first element of xguess refers to �2 and must be greater
than zero and less than max_sigma. The remaining p+q initial values must each
be greater than or equal to zero and sum to a value less than one.

To guarantee stationarity in model fitting,
1

2 1 1
() 1

p q p q

i i
i i i

x i � �
� �

� � �

� �� � �

is checked internally. The initial values should selected from values between zero
and one.

AIC is computed by

 - 2 log (L) + 2(p+q+1),

where log(L) is the value of the log-likelihood function.

Statistical inferences can be performed outside the routine GARCH based on the
output of the log-likelihood function (A), the Akaike Information Criterion
(AIC), and the variance-covariance matrix (VAR).

Example
 The data for this example are generated to follow a GARCH(p,q) process by

using a random number generation function sgarch . The data set is analyzed
and estimates of sigma, the ARCH parameters, and the GARCH parameters are
returned. The values of the Log-likelihood function and the Akaike Information
Criterion are returned from the optional arguments IMSLS_A and IMSLS_AIC.

#include <imsls.h>
#include <math.h>

static void sgarch (int p, int q, int m, float x[],
 float y[], float z[], float y0[], float sigma[]);
#define M 1000
#define N (P + Q + 1)
#define P 2
#define Q 1

void main ()
{
 int n, p, q, m;

570 � garch IMSL C/Stat/Library

 float a, aic, wk1[M + 1000], wk2[M + 1000],
 wk3[M + 1000], x[N], xguess[N], y[M];
 float *result;

 imsls_random_seed_set (182198625);
 m = M;
 p = P;
 q = Q;
 n = p+q+1;
 x[0] = 1.3;
 x[1] = .2;
 x[2] = .3;
 x[3] = .4;
 xguess[0] = 1.0;
 xguess[1] = .1;
 xguess[2] = .2;
 xguess[3] = .3;
 sgarch (p, q, m, x, y, wk1, wk2, wk3);
 result = imsls_f_garch(p, q, m, y, xguess,
 IMSLS_A, &a,
 IMSLS_AIC, &aic,
 0);
 printf("Sigma estimate is\t%11.4f\n", result[0]);
 printf("ARCH(1) estimate is\t%11.4f\n", result[1]);
 printf("GARCH(1) estimate is\t%11.4f\n", result[2]);
 printf("GARCH(2) estimate is\t%11.4f\n", result[3]);
 printf("\nLog-likelihood function value is\t%11.4f\n", a);
 printf("Akaike Information Criterion value is\t%11.4f\n", aic);
 return;
}

static void sgarch (int p, int q, int m, float x[],
 float y[], float z[], float y0[], float sigma[])
{
 int i, j, l;
 float s1, s2, s3;

 imsls_f_random_normal (m + 1000, IMSLS_RETURN_USER, z, 0);

 l = imsls_i_max (p, q);
 l = imsls_i_max (l, 1);
 for (i = 0; i < l; i++) y0[i] = z[i] * x[0];

 /* COMPUTE THE INITIAL VALUE OF SIGMA */
 s3 = 0.0;
 if (imsls_i_max (p, q) >= 1) {
 for (i = 1; i < (p + q + 1); i++) s3 += x[i];
 }
 for (i = 0; i < l; i++) sigma[i] = x[0] / (1.0 - s3);

 for (i = l; i < (m + 1000); i++) {
 s1 = 0.0;
 s2 = 0.0;
 if (q >= 1) {
 for (j = 0; j < q; j++)
 s1 += x[j + 1] * y0[i - j - 1] * y0[i - j - 1];
 }
 if (p >= 1) {
 for (j = 0; j < p; j++)

Chapter 8: Time Series and Forecasting kalman � 571

 s2 += x[q + 1 + j] * sigma[i - j - 1];
 }
 sigma[i] = x[0] + s1 + s2;
 y0[i] = z[i] * sqrt (sigma[i]);
 }
 /*
 * DISCARD THE FIRST 1000 SIMULATED OBSERVATIONS
 */
 for (i = 0; i < m; i++) y[i] = y0[1000 + i];
 return;
} /* end of function */

Output
Sigma estimate is 1.6480
ARCH(1) estimate is 0.2427
GARCH(1) estimate is 0.3175
GARCH(2) estimate is 0.3335

Log-likelihood function value is -2707.0903
Akaike Information Criterion value is 5422.1807

kalman
Performs Kalman filtering and evaluates the likelihood function for the state-
space model.

Synopsis
#include <imsls.h>
void imsls_f_kalman (int nb, float nb[], float covb[], int *n,

float *ss, float *alndet, ..., 0)

The type double function is imsls_d_kalman.

Required Arguments

int nb (Input)
Number of elements in the state vector.

float b[] (Input/Output)
Array of length nb containing the estimated state vector. The input is the
estimated state vector at time k given the observations through time
k � 1. The output is the estimated state vector at time k + 1 given the
observations through time k. On the first call to imsls_f_kalman, the
input b must be the prior mean of the state vector at time 1.

float covb[] (Input/Output)
Array of size nb by nb such that covb* �2 is the mean squared error
matrix for b.
Before the first call to imsls_f_kalman, covb * �2 must equal the
variance-covariance matrix of the state vector.

572 � kalman IMSL C/Stat/Library

int *n (Input/Output)
Pointer to the rank of the variance-covariance matrix for all the
observations. n must be initialized to zero before the first call to
imsls_f_kalman. In the usual case when the variance-covariance
matrix is nonsingular, n equals the sum of the ny’s from the invocations
to imsls_f_kalman. See optional argument IMSLS_UPDATE below for
the definition of ny.

float *ss (Input/Output)
Pointer to the generalized sum of squares.
ss must be initialized to zero before the first call to imsls_f_kalman.

The estimate of �2 is given by ss
n

.

float *alndet (Input/Output)
Pointer to the natural log of the product of the nonzero eigenvalues of
P where P * �2 is the variance-covariance matrix of the observations.
Although alndet is computed, imsls_f_kalman avoids the explicit
computation of P. alndet must be initialized to zero before the first
call to imsls_f_kalman. In the usual case when P is nonsingular,
alndet is the natural log of the determinant of P.

Synopsis with Optional Arguments
#include <imsls.h>
voidt *imsls_f_random_sample (int nb, float nb[], float covb[],

 int *n, float *ss, float *alndet,
IMSLS_UPDATE, int ny, float *y, float *z, float *r,
IMSLS_Z_COL_DIM, int z_col_dim,
IMSLS_R_COL_DIM, int r_col_dim,
IMSLS_T, float *t,
IMSLS_T_COL_DIM, int t_col_dim,
IMSLS_Q, float *q,
IMSLS_Q_COL_DIM, int t_col_dim,
IMSLS_TOLERANCE, float tolerance,
IMSLS_V, float **v,
IMSLS_V_USER, float v[],
IMSLS_COVV, float **v,
IMSLS_COVV_USER, float v[],
 0)

Optional Arguments
IMSLS_UPDATE, int ny, float *y, float *z, float *r (Input)

Perform computation of the update equations.
ny: Number of observations for current update.

 y: Array of length ny containing the observations.

Chapter 8: Time Series and Forecasting kalman � 573

 z: ny by nb array containing the matrix relating the observations to the
state vector in the observation equation.

 r: ny by ny array containing the matrix such that r * �2 is the variance-
covariance matrix of errors in the observation equation.
�2 is a positive unknown scalar. Only elements in the upper triangle of r
are referenced.

IMSLS_Z_COL_DIM, int z_col_dim (Input)
Column dimension of the matrix z.
Default: z_col_dim = nb

IMSLS_R_COL_DIM, int r_col_dim (Input)
Column dimension of the matrix r.
Default: r_col_dim = ny

IMSLS_T, float *t (Input)
nb by nb transition matrix in the state equation
Default: t = identity matrix

IMSLS_T_COL_DIM, int r_col_dim (Input)
Column dimension of the matrix t.
Default: t_col_dim = nb

IMSLS_Q, float *q (Input)
nb by nb matrix such that q * �2 is the variance-covariance matrix of
the error vector in the state equation.
Default: There is no error term in the state equation.

IMSLS_Q_COL_DIM, int q_col_dim (Input)
Column dimension of the matrix q.
Default: q_col_dim = nb

IMSLS_TOLERANCE, float tolerance (Input)
Tolerance used in determining linear dependence.
Default: tolerance = 100.0*imsls_f_machine(4)

IMSLS_V, float **v (Output)
Address to a pointer v to an array of length ny containing the one-step-
ahead prediction error.

IMSLS_V_USER, float v[] (Output)
Storage for v is provided by the user. See IMSLS_V.

IMSLS_COVV, float **covv (Output)
The address to a pointer of size ny by ny containing a matrix such that
covv * �2 is the variance-covariance matrix of v.

IMSLS_COVV_USER, float covv[] (Output)
Storage for covv is provided by the user. See IMSLS_COVV.

574 � kalman IMSL C/Stat/Library

Description
Routine imsls_f_kalman is based on a recursive algorithm given by Kalman
(1960), which has come to be known as the Kalman filter. The underlying model
is known as the state-space model. The model is specified stage by stage where
the stages generally correspond to time points at which the observations become
available. The routine imsls_f_kalman avoids many of the computations and
storage requirements that would be necessary if one were to process all the data at
the end of each stage in order to estimate the state vector. This is accomplished
by using previous computations and retaining in storage only those items essential
for processing of future observations.

The notation used here follows that of Sallas and Harville (1981). Let yk (input in
y using optional argument IMSLS_UPDATE) be the nk × 1 vector of observations
that become available at time k. The subscript k is used here rather than t, which
is more customary in time series, to emphasize that the model is expressed in
stages k = 1, 2, � and that these stages need not correspond to equally spaced
time points. In fact, they need not correspond to time points of any kind. The
observation equation for the state-space model is

yk = Zkbk + ek k = 1, 2, �

Here, Zk (input in z using optional argument IMSLS_UPDATE) is an nk × q known
matrix and bk is the q × 1 state vector. The state vector bk is allowed to change
with time in accordance with the state equation

bk�� = Tk��bk + wk�� k = 1, 2, �

starting with b� = �� + w�.

The change in the state vector from time k to k + 1 is explained in part by the
transition matrix Tk�1 (the identity matrix by default, or optionally input using
IMSLS_T), which is assumed known. It is assumed that the q-dimensional wks
(k = 1, 2,…) are independently distributed multivariate normal with mean vector
0 and variance-covariance matrix �2Qk, that the nk-dimensional eks (k = 1, 2,…)
are independently distributed multivariate normal with mean vector 0 and
variance-covariance matrix �2Rk, and that the wks and eks are independent of
each other. Here, ��is the mean of b� and is assumed known, �2 is an unknown
positive scalar. Qk+1(input in Q) and Rk (input in R) are assumed known.

Denote the estimator of the realization of the state vector bk given the
observations y�, y�, …, yj by

|
ˆ

k j�

By definition, the mean squared error matrix for

|
ˆ

k j�

is
2 ˆ ˆ()(T

k kk j k j k jC E b b� � �� � �)

Chapter 8: Time Series and Forecasting kalman � 575

At the time of the k-th invocation, we have

1
ˆ

k k�
�

and

Ck|k��, which were computed from the (k�1)-st invocation, input in b and covb,
respectively. During the k-th invocation, routine imsls_f_kalman computes the
filtered estimate

|
ˆ

k k�

along with Ck|k. These quantities are given by the update equations:
1

1 1

1
1 1

ˆ ˆ T
k k kk k k k k k

T
k k kk k k k k k k k

C Z H v

C C C Z H Z C

� �
�

� �

�

� �

� �

� � 1�

where

1
ˆ

k k k k kv y Z �
�

� �

and where

1
T

k k k k k kH R Z C Z
�

� �

Here, vk (stored in v) is the one-step-ahead prediction error, and �2Hk is the
variance-covariance matrix for vk. Hk is stored in covv. The “start-up values”
needed on the first invocation of imsls_f_kalman are

11 0�̂ ��

and C��� = Q� input via b and covb, respectively. Computations for the k-th
invocation are completed by imsls_f_kalman computing the one-step-ahead
estimate

1
ˆ

k k�
�

along with Ck��|k given by the prediction equations:

11

1 11

ˆ ˆ
kk k k k

T
k kk k k k

T

C T C T Q

� �
��

� ��

�

� � 1k�

If both the filtered estimates and one-step-ahead estimates are needed by the user
at each time point, imsls_f_kalman can be invoked twice for each time point—
first without IMSLS_T and IMSLS_Q to produce

ˆ
k k�

and Ck|k, and second without IMSLS_UPDATE to produce

576 � kalman IMSL C/Stat/Library

1
ˆ

k k�
�

and Ck��|k (Without IMSLS_T and IMSLS_Q, the prediction equations are
skipped. Without IMSLS_UPDATE, the update equations are skipped.).

Often, one desires the estimate of the state vector more than one-step-ahead, i.e.,
an estimate of

ˆ
k j�

is needed where k > j + 1. At time j, imsls_f_kalman is invoked with
IMSLS_UPDATE to compute

1
ˆ

j j�
�

Subsequent invocations of imsls_f_kalman without IMSLS_UPDATE can
compute

2 3
ˆ ˆ ˆ, , ...,j j j j k� �
� � � j

Computations for

ˆ
k j�

and Ck�j assume the variance-covariance matrices of the errors in the observation
equation and state equation are known up to an unknown positive scalar
multiplier, �2. The maximum likelihood estimate of �2 based on the observations
y�, y�, …, ym, is given by

2ˆ /SS N� �

where
1

1 1andm m
k k k k kN n SS v H �

� �
� � � �

T
kv

N and SS are the input/output arguments n and ss.

If �2 is known, the Rks and Qks can be input as the variance-covariance matrices
exactly. The earlier discussion is then simplified by letting �2 = 1.

In practice, the matrices Tk, Qk, and Rk are generally not completely known. They
may be known functions of an unknown parameter vector �. In this case,
imsls_f_kalman can be used in conjunction with an optimization program (see
routine imsl_f_min_uncon_multivar, IMSL C/Math/Library, Chapter 8,
“Optimization”) to obtain a maximum likelihood estimate of �. The natural
logarithm of the likelihood function for y�, y�, …, ym differs by no more than an
additive constant from

2 2
1 2

2 1

1 1

1(, ; , , ,) ln
2

1 1ln[det()]
2 2

m

m m
T

k k
k k

L y y y N

k kH v H v

� � �

�
� �

� �

� �

� �� �

�

Chapter 8: Time Series and Forecasting kalman � 577

(Harvey 1981, page 14, equation 2.21).

Here,

=1 ln[det()]m
k kH�

(stored in alndet) is the natural logarithm of the determinant of V where �2V is
the variance-covariance matrix of the observations.

Minimization of �2L(�, �2; y�, y�, �, ym) over all � and �2 produces maximum
likelihood estimates. Equivalently, minimization of �2Lc(�; y�, y�, �, ym) where

1 2
1

1 1(; , , ,) ln ln[det()]
2 2

m

c m
k

SSL y y y N H
N

�

�

� �
� � �� �

� �
�� k

produces maximum likelihood estimates
2ˆ ˆand /SS N� � �

The minimization of �2Lc(�; y�, y�, �, ym) instead of �2L(�, �2; y�, y�, �, ym),
reduces the dimension of the minimization problem by one. The two optimization
problems are equivalent since

2ˆ () () /SS N� � ��

minimizes �2L(�, �2; y�, y�, �, ym) for all �, consequently,
2ˆ ()� �

can be substituted for �2 in L(�, �2; y�, y�, �, ym) to give a function that differs
by no more than an additive constant from Lc(�; y�, y�, �, ym).

The earlier discussion assumed Hk to be nonsingular. If Hk is singular, a
modification for singular distributions described by Rao (1973, pages 527–528) is
used. The necessary changes in the preceding discussion are as follows:
1. Replace

1
kH �

 by a generalized inverse.
2. Replace det(Hk) by the product of the nonzero eigenvalues of Hk.
3. Replace N by

� �1
rankm

kk
H

�
�

Maximum likelihood estimation of parameters in the Kalman filter is discussed by
Sallas and Harville (1988) and Harvey (1981, pages 111–113).

Example 1
Routine imsls_f_kalman is used to compute the filtered estimates and one-
step-ahead estimates for a scalar problem discussed by Harvey (1981, pages
116–117). The observation equation and state equation are given by

578 � kalman IMSL C/Stat/Library

1 1 1,2,3,4
k k k

k k k

y b e
b b w k

� �

� �

� � �

where the eks are identically and independently distributed normal with mean 0
and variance �2, the wks are identically and independently distributed normal
with mean 0 and variance 4�2, and b�is distributed normal with mean 4 and
variance 16�2. Two invocations of imsls_f_kalman are needed for each time
point in order to compute the filtered estimate and the one-step-ahead estimate.
The first invocation does not use the optional arguments IMSLS_T and IMSLS_Q
so that the prediction equations are skipped in the computations. The update
equations are skipped in the computations in the second invocation.

This example also computes the one-step-ahead prediction errors. Harvey (1981,
page 117) contains a misprint for the value v� that he gives as 1.197. The correct
value of v� = 1.003 is computed by imsls_f_kalman.

.
#include <stdio.h>
#include <imsls.h>

#define NB 1
#define NOBS 4
#define NY 1

void main()
{
 int nb = NB, nobs = NOBS, ny = NY;
 int ldcovb, ldcovv, ldq, ldr, ldt, ldz;
 int i, iq, it, n, nout;
 float alndet, b[NB], covb[NB][NB], covv[NY][NY],
 q[NB][NB], r[NY][NY], ss,
 t[NB][NB], tol, v[NY], y[NY], z[NY][NB];
 float ydata[] = {4.4, 4.0, 3.5, 4.6};

 z[0][0] = 1.0;
 r[0][0] = 1.0;
 q[0][0] = 4.0;
 t[0][0] = 1.0;
 b[0] = 4.0;
 covb[0][0] = 16.0;

 /* Initialize arguments for initial call to imsls_f_kalman. */
 n = 0;
 ss = 0.0;
 alndet = 0.0;
 printf("k/j b covb n ss alndet v covv\n");

 for (i = 0; i < nobs; i++) {
 /* Update */
 y[0] = ydata[i];
 imsls_f_kalman(nb, b, (float*)covb, &n, &ss, &alndet,
 IMSLS_UPDATE, ny, y, z, r,
 IMSLS_V_USER, v,
 IMSLS_COVV_USER, covv,
 0);

Chapter 8: Time Series and Forecasting kalman � 579

 printf("%d/%d %8.3f %8.3f %d %8.3f %8.3f %8.3f %8.3f\n",
 i, i, b[0], covb[0][0], n, ss, alndet, v[0], covv[0][0]);

 /* Prediction */
 imsls_f_kalman(nb, b, (float*)covb, &n, &ss, &alndet,
 IMSLS_T, t,
 IMSLS_Q, q,
 0);

 printf("%d/%d %8.3f %8.3f %d %8.3f %8.3f %8.3f %8.3f\n",
 i+1, i, b[0], covb[0][0], n, ss, alndet, v[0], covv[0][0]);
 }

}

Output
k/j b covb n ss alndet v covv
0/0 4.376 0.941 1 0.009 2.833 0.400 17.000
1/0 4.376 4.941 1 0.009 2.833 0.400 17.000
1/1 4.063 0.832 2 0.033 4.615 -0.376 5.941
2/1 4.063 4.832 2 0.033 4.615 -0.376 5.941
2/2 3.597 0.829 3 0.088 6.378 -0.563 5.832
3/2 3.597 4.829 3 0.088 6.378 -0.563 5.832
3/3 4.428 0.828 4 0.260 8.141 1.003 5.829
4/3 4.428 4.828 4 0.260 8.141 1.003 5.829

Example 2
Routine imsls_f_kalman is used with routine
imsl_f_min_uncon_multivar, (see IMSL C/Math/Library, Chapter 8,
“Optimization”) to find a maximum likelihood estimate of the parameter � in a
MA(1) time series represented by yk = 	k � �	k��. Routine
imsls_f_random_arma (see IMSL C/Stat/Library, Chapter 12, “Random
Number Generation”) is used to generate 200 random observations from an
MA(1) time series with � = 0.5 and �2 = 1.

The MA(1) time series is cast as a state-space model of the following form (see
Harvey 1981, pages 103–104, 112):

� �

1

1 0

0 1
0 0

k k

k k

y b

b b
�

�

� �
� �� �
� �

kw

where the two-dimensional wks are independently distributed bivariate normal
with mean 0 and variance �2 Qk and

580 � kalman IMSL C/Stat/Library

2

1 2

2

1

1
2, 3, ..., 200k

Q

Q k

� � ��
�

�� �

��
� �

�� �

� �
� �
� �

� �
� �
� �

The warning error that is printed as part of the output is not serious and indicates
that imsl_f_min_uncon_multivar is generally used for multi-parameter
minimization.

#include <stdio.h>
#include <math.h>
#include <imsls.h>

#define NOBS 200
#define NTHETA 1
#define NB 2
#define NY 1

float fcn(int ntheta, float theta[]);
float *ydata;
void main ()
{
 int lagma[1];
 float pma[1];
 float *theta;

 imsls_random_seed_set(123457);
 pma[0] = 0.5;
 lagma[0] = 1;
 ydata = imsls_f_random_arma(200, 0, NULL, 1, pma,

IMSLS_ACCEPT_REJECT_METHOD,
IMSLS_NONZERO_MALAGS, lagma,

 0);

 theta = imsl_f_min_uncon_multivar(fcn, NTHETA, 0);

 printf("* * * Final Estimate for THETA * * *\n");
 printf("Maximum likelihood estimate, THETA = %f\n", theta[0]);

}

float fcn(int ntheta, float theta[])
{
 int i, n;
 float res, ss, alndet;
 float t[] = {0.0, 1.0, 0.0, 0.0};
 float z[] = {1.0, 0.0};
 float q[NB][NB], r[NY][NY], b[NB], covb[NB][NB], y[NY];
 if (fabs(theta[0]) > 1.0) {
 res = 1.0e10;
 } else {
 q[0][0] = 1.0;
 q[0][1] = -theta[0];
 q[1][0] = -theta[0];

Chapter 8: Time Series and Forecasting kalman � 581

 q[1][1] = theta[0]*theta[0];

 r[0][0] = 0.0;

 b[0] = 0.0;
 b[1] = 0.0;

 covb[0][0] = 1.0 + theta[0]*theta[0];
 covb[0][1] = -theta[0];
 covb[1][0] = -theta[0];
 covb[1][1] = theta[0]*theta[0];

 n = 0;
 ss = 0.0;
 alndet = 0.0;

 for (i = 0; i<NOBS; i++) {
 y[0] = ydata[i];
 imsls_f_kalman(NB, b, (float*)covb, &n, &ss, &alndet,
 IMSLS_UPDATE, NY, y, z, r,
 IMSLS_Q, q,
 IMSLS_T, t,
 0);
 }
 res = n*log(ss/n) + alndet;
 }
 return(res);
}

Output

*** WARNING_IMMEDIATE Error from imsl_f_min_uncon_multivar. This routine
*** may be inefficient for a problem of size "n" = 1.

*** WARNING_IMMEDIATE Error from imsl_f_min_uncon_multivar. The last global
*** step failed to locate a lower point than the current X value.
*** The current X may be an approximate local minimizer and no more
*** accuracy is possible or the step tolerance may be too large
*** where "step_tol" = 2.422181e-05 is given.

* * * Final Estimate for THETA * * *
Maximum likelihood estimate, THETA = 0.453256

582 � kalman IMSL C/Stat/Library

Chapter 9: Multivariate Analysis Routines � 583

Chapter 9: Multivariate Analysis

Routines
Hierarchical Cluster Analysis

Computes matrix of dissimilarities or similaritiesdissimilarities 586
Hierarchical cluster analysiscluster_hierarchical 590
Retrieves cluster numbers in hierarchical
cluster analysis.. cluster_number 594

K-means Cluster Analysis
Performs a K-means (centroid) cluster analysis ...cluster_k_means 598

Principal Component Analysis
Computes principal componentsprincipal_components 603

Factor Analysis
Extracts factor-loading estimates............................. factor_analysis 609
Performs discriminant function analysisdiscriminant analysis 628

Usage Notes
Cluster Analysis
Function imsls_f_cluster_k_means performs a K-means cluster analysis.
Basic K-means clustering attempts to find a clustering that minimizes the within-
cluster sums-of-squares. In this method of clustering the data, matrix X is grouped
so that each observation (row in X) is assigned to one of a fixed number, K, of
clusters. The sum of the squared difference of each observation about its assigned
cluster’s mean is used as the criterion for assignment. In the basic algorithm,
observations are transferred from one cluster or another when doing so decreases
the within-cluster sums-of-squared differences. When no transfer occurs in a pass
through the entire data set, the algorithm stops. Function
imsls_f_cluster_k_means is one implementation of the basic algorithm.

The usual course of events in K-means cluster analysis is to use
imsls_f_cluster_k_means to obtain the optimal clustering. The clustering is
then evaluated by functions described in Chapter 1, “Basic Statistics,” and/or

584 � Usage Notes IMSL C/Stat/Library

other chapters in this manual. Often, K-means clustering with more than one value
of K is performed, and the value of K that best fits the data is used.

Clustering can be performed either on observations or variables. The discussion
of the function imsls_f_cluster_k_means assumes the clustering is to be
performed on the observations, which correspond to the rows of the input
data matrix. If variables, rather than observations, are to be clustered, the
data matrix should first be transposed. In the documentation for
imsls_f_cluster_k_means, the words “observation” and “variable” are
interchangeable.

Principal Components
The idea in principal components is to find a small number of linear combinations
of the original variables that maximize the variance accounted for in the original
data. This amounts to an eigensystem analysis of the covariance (or correlation)
matrix. In addition to the eigensystem analysis,
imsls_f_principal_components computes standard errors for the
eigenvalues. Correlations of the original variables with the principal component
scores also are computed.

Factor Analysis
Factor analysis and principal component analysis, while quite different in
assumptions, often serve the same ends. Unlike principal components in which
linear combinations yielding the highest possible variances are obtained, factor
analysis generally obtains linear combinations of the observed variables
according to a model relating the observed variable to hypothesized underlying
factors, plus a random error term called the unique error or uniqueness. In factor
analysis, the unique errors associated with each variable are usually assumed to
be independent of the factors. Additionally, in the common factor model, the
unique errors are assumed to be mutually independent. The factor analysis model
is expressed in the following equation:

x � � = �f + e

where x is the p vector of observed values, � is the p vector of variable means,
� is the p � k matrix of factor loadings, f is the k vector of hypothesized
underlying random factors, e is the p vector of hypothesized unique random
errors, p is the number of variables in the observed variables, and k is the number
of factors.

Because much of the computation in factor analysis was originally done by hand
or was expensive on early computers, quick (but dirty) algorithms that made the
calculations possible were developed. One result is the many factor extraction
methods available today. Generally speaking, in the exploratory or model
building phase of a factor analysis, a method of factor extraction that is not
computationally intensive (such as principal components, principal factor, or

Chapter 9: Multivariate Analysis Usage Notes � 585

image analysis) is used. If desired, a computationally intensive method is then
used to obtain the final factors.

In exploratory factor analysis, the unrotated factor loadings obtained from the
factor extraction are generally transformed (rotated) to simplify the interpretation
of the factors. Rotation is possible because of the overparameterization in the
factor analysis model. The method used for rotation may result in factors that are
independent (orthogonal rotations) or correlated (oblique rotations). Prior
information may be available (or hypothesized) in which case a Procrustes
rotation could be used. When no prior information is available, an analytic
rotation can be performed.

The steps generally used in a factor analysis are summarized as follows:

Steps in a Factor Analysis
Step 1

Calculate Covariance (Correlation) Matrix
IMSL routine imsls_f_covariances

(see Chapter 3, “Correlation and Covariance”)

Step 2
Initial Factor Extraction

imsls_f_factor_analysis, page 609

Step 3

Factor Rotation
using imsls_f_factor_analysis’ optional arguments

Orthogonal Oblique
No Prior Info.
IMSLS_ORTHOMAX_ROTATION, page 610

No Prior Info.
IMSLS_OBLIQUE_PROMAX_ROTATION,
page 610
IMSLS_DIRECT_OBLIMIN_ROTATION,
page 610
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION,
page 610

Prior Info.
IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION,
page 610

Prior Info.
IMSLS_OBLIQUE_PROCRUSTES_ROTATION,
page 610

586 � dissimilarities IMSL C/Stat/Library

 Step 4
Factor Structure and Variance
imsls_f_factor_analysis

optional argument
IMSLS_FACTOR_STRUCTURE,

page 610

dissimilarities
Computes a matrix of dissimilarities (or similarities) between the columns (or
rows) of a matrix.

Synopsis
#include <imsls.h>

float *imsls_f_dissimilarities (int nrow, int ncol, float *x, …, 0)

The type double function is imsls_d_dissimilarities.

Required Arguments
int nrow (Input)

Number of rows in the matrix.

int ncol (Input)
Number of columns in the matrix.

float *x (Input)
Array of size nrow by ncol containing the matrix.

Return Value
An array of size m by m containing the computed dissimilarities or similarities,
where m = nrow if optional argument IMSLS_ROWS is used, and m = ncol
otherwise.

Synopsis with Optional Arugments
#include <imsls.h>
float *imsls_f_dissimilarities (int nrow, int ncol, float *x,

IMSLS_ROWS, or IMSLS_COLUMNS,
IMSLS_INDEX, int ndstm, int ind[],
IMSLS_METHOD, int imeth,
IMSLS_SCALE, int iscale,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_RETURN_USER, float dist[],
0)

Chapter 9: Multivariate Analysis dissimilarities � 587

Optional Arguments
IMSLS_ROWS,

or

IMSLS_COLUMNS, (Input)
Exactly one of these options can be present to indicate whether distances
are computed between rows or columns of x.
Default: Distances are computed between rows.

IMSLS_INDEX, int ndstm, int ind[], (Input)
Argument ind is an array of length ndstm containing the indices of the
rows (columns if IMSLS_ROWS is used) to be used in computing the
distance measure.
Default: All rows(columns) are used.

IMSLS_METHOD, int imeth (Input)
Method to be used in computing the dissimilarities or similarities.
Default: imeth = 0.

imeth Method

0 Euclidean distance (L� norm)

1 Sum of the absolute differences (L� norm)

2 Maximum difference (L� norm)

3 Mahalanobis distance

4 Absolute value of the cosine of the angle
between the vectors

5 Angle in radians (0, �) between the lines
through the origin defined by the vectors

6 Correlation coefficient

7 Absolute value of the correlation
coefficient

8 Number of exact matches

See the Description section for a more detailed description of each measure.

IMSLS_SCALE, int iscale (Input)
Scaling option. (Input)
iscale is not used for methods 3 through 8.
Default: iscale = 0.

iscale Scaling Performed

0 No scaling is performed.

1 Scale each column (row, if IMSLS_ROWS is
used) by the standard deviation of the
column (row).

588 � dissimilarities IMSL C/Stat/Library

iscale Scaling Performed

2 Scale each column (row, if IMSLS_ROWS is
used) by the range of the column (row).

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.
Default: x_col_dim = ncol.

IMSLS_RETURN_USER, float dist[] (Output)
User allocated array of size m by m containing the computed
dissimilarities or similarities, where m = nrow if IMSLS_ROWS is used,
and m = ncol otherwise.

Description
Function imsls_f_dissimilarities computes an upper triangular matrix
(excluding the diagonal) of dissimilarities (or similarities) between the columns or
rows of a matrix. Nine different distance measures can be computed. For the first
three measures, three different scaling options can be employed. Output from
imsls_f_dissimilarities is generally used as input to clustering or
multidimensional scaling functions.

The following discussion assumes that the distance measure is being computed
between the columns of the matrix, i.e., that IMSLS_COLUMNS is used. If
distances between the rows of the matrix are desired, use optional argument
IMSLS_ROWS.

For imeth = 0 to 2, each row of x is first scaled according to the value of
iscale. The scaling parameters are obtained from the values in the row scaled as
either the standard deviation of the row or the row range; the standard deviation is
computed from the unbiased estimate of the variance. If iscale is 0, no scaling
is performed, and the parameters in the following discussion are all 1.0. Once the
scaling value (if any) has been computed, the distance between column i and
column j is computed via the difference vector zk = (xk � yk)/sk, i = 1, �, ndstm,
where xk denotes the k-th element in the i-th column, and yk denotes the
corresponding element in the j-th column. For given zi, the metrics 0 to 2 are
defined as:

imeth Metric

0 � �ndstm 2
1 ii

z
�

� Euclidean distance

1 ndstm

1 ii
z

�
� L1 norm

2 max i iz L
�
 norm

Chapter 9: Multivariate Analysis dissimilarities � 589

Distance measures corresponding to imeth = 3 to 8 do not allow for scaling.
These measures are defined via the column vectors X = (xi), Y = (yi), and
Z = (xi � yi) as follows:

iscale Scaling Performed

3 1ˆZ Z�

�� � Mahalanobis distance, where �
is the usual unbiased sample estimate of the
covariance matrix of the rows.

ˆ

4 � � � �cos /T T TX Y X X Y Y� � � the dot
product of X and Y divided by the length of
X times the length of Y .

5 �, where � is defined in 4.

6 � = the usual (centered) estimate of the
correlation between X and Y.

7 The absolute value of � (where � is defined
in 6).

8 The number of times xi = yi, where xi and yi
are elements of X and Y.

For the Mahalanobis distance, any variable used in computing the distance
measure that is (numerically) linearly dependent upon the previous variables in
the ind vector is omitted from the distance measure.

Example
The following example illustrates the use of imsls_f_dissimilarities for
computing the Euclidean distance between the rows of a matrix.

#include "imsls.h"

void main()
{
 int ncol=2, nrow = 4;
 float x [4][2] = {1., 1.,
 1., 0.,
 1.,-1.,
 1., 2.};
 float *dist;

 dist = imsls_f_dissimilarities(nrow, ncol, (float*)x, 0);
 imsls_f_write_matrix("dist", 4, 4, dist, 0);
}

590 � cluster_hierarchical IMSL C/Stat/Library

Output

 dist
 1 2 3 4
1 0 1 2 1
2 0 0 1 2
3 0 0 0 3
4 0 0 0 0

cluster_hierarchical
Performs a hierarchical cluster analysis given a distance matrix.

Synopsis
#include <imsls.h>
void imsls_f_cluster_hierarchical (int npt, float *dist, …, 0)

The type double function is imsls_d_cluster_hierarchical.

Required Arguments
int npt (Input)

Number of data points to be clustered.

float *dist (Input/Ouput)
An npt by npt symmetric matrix containing the distance (or similarity)
matrix.
dist is a symmetric matrix. On input, only the upper triangular part
needs to be present. The function imsls_f_cluster_hierarchical
saves the upper triangular part of dist in the lower triangle. On return
from imsls_f_cluster_hierarchical, the upper triangular part of
dist is restored, and the matrix is made symmetric.

Synopsis with Optional Arugments
#include <imsls.h>
float *imsls_f_cluster_hierarchical (int npt, float *dist,

IMSLS_METHOD, int imeth,
IMSLS_TRANSFORMATION, int itrans,
IMSLS_CLUSTERS, float **clevel, int **iclson, int **icrson,
IMSLS_CLUSTERS_USER, float clevel[], int iclson[], int
icrson[],
0)

Optional Arguments
IMSLS_METHOD, int imeth (Input)

Option giving the clustering method to be used.
Default: imeth = 0.

Chapter 9: Multivariate Analysis cluster_hierarchical � 591

Imeth Method

0 Single linkage (minimum distance)

1 Complete linkage (maximum distance)

2 Average distance within (average distance
between objects within the merged cluster)

3 Average distance between (average
distance between objects in the two
clusters)

4 Ward’s method (minimize the within-
cluster sums of squares). For Ward’s
method, the elements of dist are assumed
to be Euclidean distances.

IMSLS_TRANSFORMATION, int itrans (Input)
Option giving the method to be used for clustering.
Default: itrans = 0.

Imeth Method

0 No transformation is required. The
elements of dist are distances.

1 Convert similarities to distances by
multiplication by �1.0.

2 Convert similarities (usually correlations)
to distances by taking the reciprocal of the
absolute value.

IMSLS_CLUSTERS, float **clevel, int **iclson, int **icrson (Output)
Argument clevel is the address of an array of length npt � 1
containing the level at which the clusters are joined. clevel[k-1]
contains the distance (or similarity) level at which cluster npt + k was
formed. If the original data in dist was transformed via the optional
argument IMSLS_TRANSFORMATION, the inverse transformation is
applied to the values in clevel prior to exit from
imsls_f_cluster_hierarchical. Argument iclson is the address
of an array of length npt � 1 containing the left sons of each merged
cluster. Argument icrson is the address of an array of length npt � 1
containing the right sons of each merged cluster. Cluster
npt + k is formed by merging clusters iclson[k-1] and icrson[k-1].

IMSLS_CLUSTERS_USER, float clevel[], int iclson[], int icrson[]
(Output)
Storage for arrays clevel, iclson, and icrson is provided by the
user. See IMSLS_CLUSTERS.

592 � cluster_hierarchical IMSL C/Stat/Library

Description
Function imsls_f_cluster_hierarchical conducts a hierarchical cluster
analysis based upon the distance matrix, or by appropriate use of the
IMSLS_TRANSFORMATION optional argument, based upon a similarity matrix.
Only the upper triangular part of the matrix dist is required as input to
imsls_f_cluster_hierarchical.

Hierarchical clustering in imsls_f_cluster_hierarchical proceeds as
follows. Initially, each data point is considered to be a cluster, numbered 1 to
n = npt.

1. If the data matrix contains similarities, they are converted to distances by
the method specified by IMSLS_TRANSFORMATION. Set k = 1.

2. A search is made of the distance matrix to find the two closest clusters.
These clusters are merged to form a new cluster, numbered n + k. The
cluster numbers of the two clusters joined at this stage are saved in
icrson and iclson, and the distance measure between the two clusters
is stored in clevel.

3. Based upon the method of clustering, updating of the distance measure
in the row and column of dist corresponding to the new cluster is
performed.

4. Set k = k + 1. If k < n, go to Step 2.

The five methods differ primarily in how the distance matrix is updated after two
clusters have been joined. The IMSLS_METHOD optional argument specifies how
the distance of the cluster just merged with each of the remaining clusters will be
updated. Function imsls_f_cluster_hierarchical allows five methods for
computing the distances. To understand these measures, suppose in the following
discussion that clusters “A” and “B” have just been joined to form cluster “Z”,
and interest is in computing the distance of Z with another cluster called “C”.

Z

dist

CBA
Imeth Method

0 Single linkage method. The distance from Z to C
is the minimum of the distances (A to C, B to C).

1 Complete linkage method. The distance from Z to
C is the maximum of the distances (A to C, B to
C).

2 Average-distance-within-clusters method. The
distance from Z to C is the average distance of all

Chapter 9: Multivariate Analysis cluster_hierarchical � 593

Imeth Method
objects that would be within the cluster formed
by merging clusters Z and C. This average may
be computed according to formulas given by
Anderberg (1973, page 139).

3 Average-distance-between-clusters method. The
distance from Z to C is the average distance of
objects within cluster Z to objects within cluster
C. This average may be computed according to
methods given by Anderberg (1973, page 140).

4 Ward’s method. Clusters are formed so as to
minimize the increase in the within-cluster sums
of squares. The distance between two clusters is
the increase in these sums of squares if the two
clusters were merged. A method for computing
this distance from a squared Euclidean distance
matrix is given by Anderberg (1973, pages
142�145).

In general, single linkage will yield long thin clusters while complete linkage will
yield clusters that are more spherical. Average linkage and Ward’s linkage tend to
yield clusters that are similar to those obtained with complete linkage.

Function imsls_f_cluster_hierarchical produces a unique representation
of the binary cluster tree via the following three conventions; the fact that the tree
is unique should aid in interpreting the clusters. First, when two clusters are
joined and each cluster contains two or more data points, the cluster that was
initially formed with the smallest level (in clevel) becomes the left son. Second,
when a cluster containing more than one data point is joined with a cluster
containing a single data point, the cluster with the single data point becomes the
right son. Finally, when two clusters containing only one object are joined, the
cluster with the smallest cluster number becomes the right son.

Comments

1. The clusters corresponding to the original data points are numbered from
1 to npt. The npt � 1 clusters formed by merging clusters are numbered
npt + 1 to npt + (npt � 1).

2. Raw correlations, if used as similarities, should be made positive and
transformed to a distance measure. One such transformation can be
performed by specifying optional argument IMSLS_TRANSFORMATION,
with itrans = 2 in imsls_f_cluster_hierarchical.

3. The user may cluster either variables or observations in
imsls_f_cluster_hierarchical since a dissimilarity matrix, not
the original data, is used. Function imsls_f_dissimilarities

594 � cluster_number IMSL C/Stat/Library

(page 586) may be used to compute the matrix dist for either the
variables or observations.

Example
In the following example, the average distance within clusters method is used to
perform a hierarchical cluster analysis of the Fisher iris data. Function
imsls_f_data_sets (see Chapter 14, Utilities) is first used to obtain the
Fisher iris data. The example is typical in that after the program obtains the data,
function imsls_f_dissimilarities (page 586) computes the distance matrix
(dist) prior to calling imsls_f_cluster_hierarchical.

#include "imsls.h"

void main()
{
 int iscale=1, ncol=5, nrow=150, nvar=4, npt = 150;
 int i, iclson[149], icrson[149], ind[4] = {1, 2, 3, 4};
 float clevel[149], *dist, *x;

 x = imsls_f_data_sets(3, 0);

 dist = imsls_f_dissimilarities(nrow, ncol, x,
 IMSLS_INDEX, nvar, ind,
 IMSLS_SCALE, iscale,
 0);
 imsls_f_cluster_hierarchical(npt, dist,
 IMSLS_CLUSTERS_USER, clevel, iclson, icrson,
 IMSLS_METHOD, 2,
 0);

 for (i=0;i<149;i+=15) printf("%6.2f\t", clevel[i]);
 printf("\n");
 for (i=0;i<149;i+=15) printf("%6d\t", iclson[i]);
 printf("\n");
 for (i=0;i<149;i+=15) printf("%6d\t", icrson[i]);
 printf("\n");
}

Output
 0.00 0.17 0.23 0.27 0.31 0.37 0.41 0.48 0.60 0.78
 143 153 17 140 53 198 186 218 261 249
 102 29 6 113 51 91 212 243 266 262

cluster_number
Computes cluster membership for a hierarchical cluster tree.

Synopsis
#include <imsls.h>

Chapter 9: Multivariate Analysis cluster_number � 595

int *imsls_cluster_number (int npt, int *iclson, int *icrson, int k, …,
0)

Required Arguments
int npt (Input)

Number of data points to be clustered.

int *iclson (Input)
Vector of length npt � 1 containing the left son cluster numbers.
Cluster npt + i is formed by merging clusters iclson[i-1] and
icrson[i-1].

int *icrson (Input)
Vector of length npt � 1 containing the left son cluster numbers.
Cluster npt + i is formed by merging clusters iclson[i-1] and
icrson[i-1].

int k (Input)
Desired number of clusters.

Return Value
Vector of length npt containing the cluster membership of each observation.

Synopsis with Optional Arugments
#include <imsls.h>
int *imsls_cluster_number (int npt, int *iclson, int *icrson, int k,

IMSLS_OBS_PER_CLUSTERS, int **nclus,
IMSLS_OBS_PER_CLUSTERS_USER, int nclus[],
IMSLS_RETURN_USER, int iclus[],
0)

Optional Arguments
IMSLS_OBS_PER_CLUSTERS, int **nclus (Output)

Address of a pointer to an internally allocated array of length k
containing the number of observations in each cluster.

IMSLS_OBS_PER_CLUSTERS_USER, int nclus[] (Output)
Storage for array nclus is provided by the user. See
IMSLS_OBS_PER_CLUSTERS.

IMSLS_RETURN_USER, float iclus[] (Output)
User allocated array of length npt containing the cluster membership of
each observation.

Description
Given a fixed number of clusters (K) and the cluster tree (vectors icrson and
iclson) produced by the hierarchical clustering algorithm (see function

596 � cluster_number IMSL C/Stat/Library

imsls_f_cluster_hierarchical, page 590), function
imsls_cluster_number determines the cluster membership of each
observation. The function imsls_cluster_number first determines the root
nodes for the K distinct subtrees forming the K clusters and then traverses each
subtree to determine the cluster membership of each observation. The function
imsls_cluster_number also returns the number of observations found in each
cluster.

Example 1
In the following example, cluster membership for K = 2 clusters is found for the
displayed cluster tree. The output vector iclus contains the cluster numbers for
each observation.

9
8

6
7

5 3 1 4 2

#include "imsls.h"

void main()
{
 int k = 2, npt = 5, *iclus;
 int iclson[] = {5, 6, 4, 7};
 int icrson[] = {3, 1, 2, 8};

 iclus = imsls_cluster_number(npt, iclson, icrson, k, 0);
 imsls_i_write_matrix("iclus", 1, 5, iclus, 0);
}

Output
 iclus
 1 2 3 4 5
 1 2 1 2 1

Example 2
This example illustrates the typical usage of imsls_cluster_number. The
Fisher iris data (see function imsls_f_data_sets, see Chapter 14, Utilities) is
clustered. First the distance between the irises are computed using function
imsls_f_dissimilarities (page 586). The resulting distance matrix is then
clustered using function imsls_f_cluster_hierarchical (page 590). The
cluster membership for 5 clusters is then obtained via function
imsls_cluster_number using the output from
imsls_f_cluster_hierarchical. The need for 5 clusters can be obtained

Chapter 9: Multivariate Analysis cluster_number � 597

either by theoretical means or by examining a cluster tree. The cluster
membership for each of the iris observations is printed.

#include "imsls.h"

void main()
{
 int ncol = 5, nrow = 150, nvar = 4, npt = 150, k = 5;
 int i, j, *iclson, *icrson, *iclus, *nclus;
 int ind[4] = {1, 2, 3, 4};
 float *clevel, dist[150][150], *x, f_rand;
 int *p_iclus = NULL, *p_nclus = NULL;

 x = imsls_f_data_sets (3, 0);
 imsls_f_dissimilarities(nrow, ncol, x,
 IMSLS_INDEX, nvar, ind,
 IMSLS_RETURN_USER, dist,
 0);

 imsls_random_seed_set (4);
 for (i = 0; i < npt; i++)
 {
 for (j = i + 1; j < npt; j++)
 {
 imsls_f_random_uniform (1, IMSLS_RETURN_USER, &f_rand, 0);
 dist[i][j] = MAX (0.0, dist[i][j] + .001 * f_rand);
 dist[j][i] = dist[i][j];
 }
 dist[i][i] = 0.;
 }
 imsls_f_cluster_hierarchical (npt, (float*)dist,
 IMSLS_CLUSTERS, &clevel, &iclson, &icrson,
 0);

 iclus = imsls_cluster_number (npt, iclson, icrson, k,
 IMSLS_OBS_PER_CLUSTER, &nclus,
 0);

 imsls_i_write_matrix ("iclus", 25, 5, iclus, 0);
 imsls_i_write_matrix ("nclus", 1, 5, nclus, 0); }

Output
 iclus
 1 2 3 4 5
 1 5 5 5 5 5
 2 5 5 5 5 5
 3 5 5 5 5 5
 4 5 5 5 5 5
 5 5 5 5 5 5
 6 5 5 5 5 5
 7 5 5 5 5 5
 8 5 5 5 5 5
 9 5 5 5 5 5
10 5 5 5 5 5
11 2 2 2 2 2

598 � cluster_k_means IMSL C/Stat/Library

12 2 2 1 2 2
13 1 2 2 2 2
14 2 2 2 2 2
15 2 2 2 2 2
16 2 2 2 2 2
17 2 2 2 2 2
18 2 2 2 2 2
19 2 2 2 1 2
20 2 2 2 1 2
21 2 2 2 2 2
22 2 3 2 2 2
23 2 2 2 2 2
24 2 2 4 2 2
25 2 2 2 2 2

 nclus
 1 2 3 4 5
 4 93 1 2 50

cluster_k_means
Performs a K-means (centroid) cluster analysis.

Synopsis
#include <imsls.h>
int *imsls_f_cluster_k_means (int n_observations,

int n_variables, float x[], int n_clusters,
float cluster_seeds, ..., 0)

The type double function is imsls_d_cluster_k_means.

Required Arguments

int n_observations (Input)
Number of observations.

int n_variables (Input)
Number of variables to be used in computing the metric.

float x[] (Input)
Array of length n_observations � n_variables containing the
observations to be clustered.

int n_clusters (Input)
Number of clusters.

float cluster_seeds[] (Input)
Array of length n_clusters � n_variables containing the cluster
seeds, i.e., estimates for the cluster centers.

Return Value
The cluster membership for each observation is returned.

Chapter 9: Multivariate Analysis cluster_k_means � 599

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_cluster_k_means (int n_observations,

int n_variables, float x[], int n_clusters,
float cluster_seeds,
IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_CLUSTER_MEANS, float **cluster_means,
IMSLS_CLUSTER_MEANS_USER, float cluster_means[],
IMSLS_CLUSTER_SSQ, float **cluster_ssq,
IMSLS_CLUSTER_SSQ_USER, float cluster_ssq[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_CLUSTER_MEANS_COL_DIM,
 int cluster_means_col_dim,
IMSLS_CLUSTER_SEEDS_COL_DIM,
 int cluster_seeds_col_dim,
IMSLS_CLUSTER_COUNTS, int **cluster_counts,
IMSLS_CLUSTER_COUNTS_USER, int cluster_counts[],
IMSLS_CLUSTER_VARIABLE_COLUMNS,
 int cluster_variables[],
IMSLS_RETURN_USER, int cluster_group[],
0)

Optional Arguments
IMSLS_WEIGHTS, float weights[] (Input)

Array of length n_observations containing the weight of each
observation of matrix x.
Default: weights [] = 1

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency of each
observation of matrix x.
Default: frequencies [] = 1

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations.
Default: max_iterations = 30

IMSLS_CLUSTER_MEANS, float **cluster_means (Output)
The address of a pointer to an internally allocated array of length
n_clusters � n_variables containing the cluster means.

IMSLS_CLUSTER_MEANS_USER, float cluster_means[] (Output)
Storage for array cluster_means is provided by the user. See
IMSLS_CLUSTER_MEANS.

600 � cluster_k_means IMSL C/Stat/Library

IMSLS_CLUSTER_SSQ, float **cluster_ssq (Output)
The address of a pointer to internally allocated array of length
n_clusters containing the within sum-of-squares for each cluster.

IMSLS_CLUSTER_SSQ_USER, float cluster_ssq[] (Output)
Storage for array cluster_ssq is provided by the user. See
IMSLS_CLUSTER_SSQ.

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.
Default: x_col_dim = n_variables

IMSLS_CLUSTER_MEANS_COL_DIM, int cluster_means_col_dim (Input)
Column dimension for the vector cluster_means.
Default: cluster_means_col_dim = n_variables

IMSLS_CLUSTER_SEEDS_COL_DIM, int cluster_seeds_col_dim (Input)
Column dimension for the vector cluster_seeds.
Default: cluster_seeds_col_dim = n_variables

IMSLS_CLUSTER_COUNTS, int **cluster_counts (Output)
The address of a pointer to an internally allocated array of length
n_clusters containing the number of observations in each cluster.

IMSLS_CLUSTER_COUNTS_USER, int cluster_counts[] (Output)
Storage for array cluster_counts is provided by the user. See
IMSLS_CLUSTER_COUNTS.

IMSLS_CLUSTER_VARIABLE_COLUMNS, int cluster_variables[] (Input)
Vector of length n_variables containing the columns of x to be used
in computing the metric. Columns are numbered 0, 1, 2, ...,
n_variables
Default: cluster_variables [] = 0, 1, 2, �, n_variables

IMSLS_RETURN_USER, int cluster_group[] (Output)
User-allocated array of length n_observations containing the cluster
membership for each observation.

Description
Function imsls_f_cluster_k_means is an implementation of Algorithm
AS 136 by Hartigan and Wong (1979). It computes K-means (centroid) Euclidean
metric clusters for an input matrix starting with initial estimates of the K-cluster
means. The function allows for missing values coded as NaN (Not a Number) and
for weights and frequencies.

Let p = n_variables be the number of variables to be used in computing the
Euclidean distance between observations. The idea in K-means cluster analysis is
to find a clustering (or grouping) of the observations so as to minimize the total
within-cluster sums-of-squares. In this case, the total sums-of-squares within each
cluster is computed as the sum of the centered sum-of-squares over all
nonmissing values of each variable. That is,

Chapter 9: Multivariate Analysis cluster_k_means � 601

� �
2

, ,
1 1 1

i

im im im im

K

j

np

v v v v j ij
i j m

f w x x
� � �

� � � ��� �

where 	im denotes the row index of the m-th observation in the i-th cluster in the
matrix X; ni is the number of rows of X assigned to group i; f denotes the
frequency of the observation; w denotes its weight;
 is 0 if the j-th variable on
observation 	im is missing, otherwise
 is 1; and

ijx

is the average of the nonmissing observations for variable j in group i. This
method sequentially processes each observation and reassigns it to another cluster
if doing so results in a decrease of the total within-cluster sums-of-squares. See
Hartigan and Wong (1979) or Hartigan (1975) for details.

Example
This example performs K-means cluster analysis on Fisher’s iris data, which is
obtained by function imsls_f_data_sets (Chapter 14, Utilities). The initial
cluster seed for each iris type is an observation known to be in the iris type.

#include <stdio.h>
#include <imsls.h>

main()
{
#define N_OBSERVATIONS 150
#define N_VARIABLES 4
#define N_CLUSTERS 3
 float x[N_OBSERVATIONS][5];
 float cluster_seeds[N_CLUSTERS][N_VARIABLES];
 float cluster_means[N_CLUSTERS][N_VARIABLES];
 float cluster_ssq[N_CLUSTERS];
 int cluster_variables[N_VARIABLES] = {1, 2, 3, 4};
 int cluster_counts[N_CLUSTERS];
 int cluster_group[N_OBSERVATIONS];
 int i;

 /* Retrieve the data set */
 imsls_f_data_sets(3, IMSLS_RETURN_USER, x, 0);
 /* Assign initial cluster seeds */
 for (i=0; i<N_VARIABLES; i++) {
 cluster_seeds[0][i] = x[0][i+1];
 cluster_seeds[1][i] = x[50][i+1];
 cluster_seeds[2][i] = x[100][i+1];
 }

 /* Perform the analysis */
 imsls_f_cluster_k_means(N_OBSERVATIONS, N_VARIABLES, (float*)x,
 N_CLUSTERS, (float*)cluster_seeds,
 IMSLS_X_COL_DIM, 5,
 IMSLS_CLUSTER_VARIABLE_COLUMNS, cluster_variables,
 IMSLS_CLUSTER_COUNTS_USER, cluster_counts,
 IMSLS_CLUSTER_MEANS_USER, cluster_means,
 IMSLS_CLUSTER_SSQ_USER, cluster_ssq,

602 � cluster_k_means IMSL C/Stat/Library

 IMSLS_RETURN_USER, cluster_group,
 0);
 /* Print results */
 imsls_i_write_matrix("Cluster Membership", 1, N_OBSERVATIONS,
 cluster_group, 0);
 imsls_f_write_matrix("Cluster Means", N_CLUSTERS, N_VARIABLES,
 (float*)cluster_means, 0);
 imsls_f_write_matrix("Cluster Sum of Squares", 1, N_CLUSTERS,
 cluster_ssq, 0);
 imsls_i_write_matrix("# Observations in Each Cluster", 1,
 N_CLUSTERS, cluster_counts, 0);
}

 Cluster Membership
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 1

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 2 3 2 3 3 3 3 2 3 3 3 3 3 3 2 2

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2

148 149 150
 3 3 2

 Cluster Means
 1 2 3 4
1 5.006 3.428 1.462 0.246
2 5.902 2.748 4.394 1.434
3 6.850 3.074 5.742 2.071

 Cluster Sum of Squares
 1 2 3
 15.15 39.82 23.88

Observations in Each Cluster
 1 2 3
 50 62 38

Warning Errors
IMSLS_NO_CONVERGENCE Convergence did not occur.

Chapter 9: Multivariate Analysis principal_components � 603

principal_components
Computes principal components.

Synopsis

#include <imsls.h>

float *imsls_f_principal_components (int n_variables,
float covariances[], ..., 0)

The type double function is imsls_d_principal_components.

Required Arguments

int n_variables (Input)
Order of the covariance matrix.

float covariances[] (Input)
Array of length n_variables � n_variables containing the
covariance or correlation matrix.

Return Value
An array of length n_variables containing the eigenvalues of the matrix
covariances ordered from largest to smallest.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_principal_components (int n_variables,

float covariances[],
IMSLS_COVARIANCE_MATRIX, or
IMSLS_CORRELATION_MATRIX,
IMSLS_CUM_PERCENT, float **cum_percent,
IMSLS_CUM_PERCENT_USER, float cum_percent[],
IMSLS_EIGENVECTORS, float **eigenvectors,
IMSLS_EIGENVECTORS_USER, float eigenvectors[],
IMSLS_CORRELATIONS, float **correlations,
IMSLS_CORRELATIONS_USER, float correlations[],
IMSLS_STD_DEV, int n_degrees_freedom, float **std_dev,
IMSLS_STD_DEV_USER, int n_degrees_freedom,
 float std_dev[],
IMSLS_COV_COL_DIM, int cov_col_dim,
IMSLS_RETURN_USER, float eigenvalues[],
0)

604 � principal_components IMSL C/Stat/Library

Optional Arguments
IMSLS_COVARIANCE_MATRIX

Treat the input vector covariances as a covariance matrix. This option
is the default.
or

IMSLS_CORRELATION_MATRIX
Treat the input vector covariances as a correlation matrix.

IMSLS_CUM_PERCENT, float **cum_percent (Output)
The address of a pointer to an internally allocated array of length
n_variables containing the cumulative percent of the total variances
explained by each principal component.

IMSLS_CUM_PERCENT_USER, float cum_percent[] (Output)
Storage for array cum_percent is provided by the user. See
IMSLS_CUM_PERCENT.

IMSLS_EIGENVECTORS, float **eigenvectors (Output)
The address of a pointer to an internally allocated array of length
n_variables � n_variables containing the eigenvectors of
covariances, stored columnwise. Each vector is normalized to have
Euclidean length equal to the value one. Also, the sign of each vector is
set so that the largest component in magnitude (the first of the largest if
there are ties) is made positive.

IMSLS_EIGENVECTORS_USER, float eigenvectors[] (Output)
Storage for array eigenvectors is provided by the user. See
IMSLS_EIGENVECTORS.

IMSLS_CORRELATIONS, float **correlations (Output)
The address of a pointer to an internally allocated array of length
n_variables * n_variables containing the correlations of the
principal components (the columns) with the observed/standardized
variables (the rows). If IMSLS_COVARIANCE_MATRIX is specified, then
the correlations are with the observed variables. Otherwise, the
correlations are with the standardized (to a variance of 1.0) variables. In
the principal component model for factor analysis, matrix
correlations is the matrix of unrotated factor loadings.

IMSLS_CORRELATIONS_USER, float correlations[] (Output)
Storage for array correlations is provided by the user. See
IMSLS_CORRELATIONS.

IMSLS_STD_DEV, int n_degrees_freedom, float **std_dev
(Input/Output)
Argument n_degrees_freedom contains the number of degrees of
freedom in covariances. Argument std_dev is the address of a
pointer to an internally allocated array of length n_variables
containing the estimated asymptotic standard errors of the eigenvalues.

Chapter 9: Multivariate Analysis principal_components � 605

IMSLS_STD_DEV_USER, int n_degrees_freedom, float std_dev[]
(Input/Output)
Storage for array std_dev is provided by the user. See
IMSLS_STD_DEV.

IMSLS_COV_COL_DIM int cov_col_dim (Input)
Column dimension of covariances.
Default: cov_col_dim = n_variables

IMSLS_RETURN_USER, float eigenvalues[] (Output)
User-supplied array of length n_variables containing the eigenvalues
of covariances ordered from largest to smallest.

Description
Function imsls_f_principal_components finds the principal components of
a set of variables from a sample covariance or correlation matrix. The
characteristic roots, characteristic vectors, standard errors for the characteristic
roots, and the correlations of the principal component scores with the original
variables are computed. Principal components obtained from correlation matrices
are the same as principal components obtained from standardized (to unit
variance) variables.

The principal component scores are the elements of the vector y = �Tx, where
� is the matrix whose columns are the characteristic vectors (eigenvectors) of the
sample covariance (or correlation) matrix and x is the vector of observed (or
standardized) random variables. The variances of the principal component scores
are the characteristic roots (eigenvalues) of the covariance (correlation) matrix.

Asymptotic variances for the characteristic roots were first obtained by Girschick
(1939) and are given more recently by Kendall et al. (1983, p. 331). These
variances are computed either for covariance matrices or for correlation matrices.

The correlations of the principal components with the observed (or standardized)
variables are given in the matrix correlations. When the principal
components are obtained from a correlation matrix, correlations is the same
as the matrix of unrotated factor loadings obtained for the principal components
model for factor analysis.

Examples

Example 1
In this example, eigenvalues of the covariance matrix are computed.

#include <stdio.h>
#include <imsls.h>
#include <stdlib.h>

main()
{
#define N_VARIABLES 9

 float *values;

606 � principal_components IMSL C/Stat/Library

 static float covariances[N_VARIABLES][N_VARIABLES] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
 0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

 /* Perform analysis */
 values = imsls_f_principal_components(N_VARIABLES, covariances, 0);

 /* Print results. */
 imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, values, 0);

 /* Free allocated memory. */
 free(values);
}

Output
 Eigenvalues
 1 2 3 4 5 6
 4.677 1.264 0.844 0.555 0.447 0.429

 7 8 9
 0.310 0.277 0.196

Example 2
In this example, principal components are computed for a nine-variable
correlation matrix.

#include <stdio.h>
#include <imsls.h>
#include <stdlib.h>

main()
{
#define N_VARIABLES 9

 float *values, *eigenvectors, *std_dev, *cum_percent, *a;
 static float covariances[N_VARIABLES][N_VARIABLES] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
 0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

 /* Perform analysis */
 values = imsls_f_principal_components(N_VARIABLES, covariances,
 IMSLS_CORRELATION_MATRIX,
 IMSLS_EIGENVECTORS, &eigenvectors,

Chapter 9: Multivariate Analysis principal_components � 607

 IMSLS_STD_DEV, 100, &std_dev,
 IMSLS_CUM_PERCENT, &cum_percent,
 IMSLS_CORRELATIONS, &a,
 0);

 /* Print results */
 imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, values, 0);
 imsls_f_write_matrix("Eigenvectors", N_VARIABLES, N_VARIABLES,
 eigenvectors, 0);
 imsls_f_write_matrix("STD", 1, N_VARIABLES, std_dev, 0);
 imsls_f_write_matrix("PCT", 1, N_VARIABLES, cum_percent, 0);
 imsls_f_write_matrix("A", N_VARIABLES, N_VARIABLES, a, 0);

 /* Free allocated memory */
 free(values);
 free(eigenvectors);
 free (cum_percent);
 free (std_dev);
 free(a);
}

Output
 Eigenvalues
 1 2 3 4 5 6
 4.677 1.264 0.844 0.555 0.447 0.429

 7 8 9
 0.310 0.277 0.196

 Eigenvectors
 1 2 3 4 5 6
1 0.3462 -0.2354 0.1386 -0.3317 -0.1088 0.7974
2 0.3526 -0.1108 -0.2795 -0.2161 0.7664 -0.2002
3 0.2754 -0.2697 -0.5585 0.6939 -0.1531 0.1511
4 0.3664 0.4031 0.0406 0.1196 0.0017 0.1152
5 0.3144 0.5022 -0.0733 -0.0207 -0.2804 -0.1796
6 0.3455 0.4553 0.1825 0.1114 0.1202 0.0697
7 0.3487 -0.2714 -0.0725 -0.3545 -0.5242 -0.4355
8 0.2407 -0.3159 0.7383 0.4329 0.0861 -0.1969
9 0.3847 -0.2533 -0.0078 -0.1468 0.0459 -0.1498

 7 8 9
1 0.1735 -0.1240 -0.0488
2 0.1386 -0.3032 -0.0079
3 0.0099 -0.0406 -0.0997
4 -0.4022 -0.1178 0.7060
5 0.7295 0.0075 0.0046
6 -0.3742 0.0925 -0.6780
7 -0.2854 -0.3408 -0.1089
8 0.1862 -0.1623 0.0505
9 -0.0251 0.8521 0.1225

 STD
 1 2 3 4 5 6
 0.6498 0.1771 0.0986 0.0879 0.0882 0.0890

608 � principal_components IMSL C/Stat/Library

 7 8 9
 0.0944 0.0994 0.1113

 PCT
 1 2 3 4 5 6
 0.520 0.660 0.754 0.816 0.865 0.913

 7 8 9
 0.947 0.978 1.000

 A
 1 2 3 4 5 6
1 0.7487 -0.2646 0.1274 -0.2471 -0.0728 0.5224
2 0.7625 -0.1245 -0.2568 -0.1610 0.5124 -0.1312
3 0.5956 -0.3032 -0.5133 0.5170 -0.1024 0.0990
4 0.7923 0.4532 0.0373 0.0891 0.0012 0.0755
5 0.6799 0.5646 -0.0674 -0.0154 -0.1875 -0.1177
6 0.7472 0.5119 0.1677 0.0830 0.0804 0.0456
7 0.7542 -0.3051 -0.0666 -0.2641 -0.3505 -0.2853
8 0.5206 -0.3552 0.6784 0.3225 0.0576 -0.1290
9 0.8319 -0.2848 -0.0071 -0.1094 0.0307 -0.0981

 7 8 9
1 0.0966 -0.0652 -0.0216
2 0.0772 -0.1596 -0.0035
3 0.0055 -0.0214 -0.0442
4 -0.2240 -0.0620 0.3127
5 0.4063 0.0039 0.0021
6 -0.2084 0.0487 -0.3003
7 -0.1589 -0.1794 -0.0482
8 0.1037 -0.0854 0.0224
9 -0.0140 0.4485 0.0543

Warning Errors
IMSLS_100_DF Because the number of degrees of freedom

in “covariances” and “n_degrees_freedom”
is less than or equal to 0, 100 degrees of
freedom will be used.

IMSLS_COV_NOT_NONNEG_DEF “eigenvalues[#]” = #. One or more
eigenvalues much less than zero are
computed. The matrix “covariances” is not
nonnegative definite. In order to continue
computations of “eigenvalues” and
“correlations,” these eigenvalues are treated
as 0.

IMSLS_FAILED_TO_CONVERGE The iteration for the eigenvalue failed to
converge in 100 iterations before deflating.

Chapter 9: Multivariate Analysis factor_analysis � 609

factor_analysis
Extracts initial factor-loading estimates in factor analysis with rotation options.

Synopsis

#include <imsls.h>
float *imsls_f_factor_analysis (int n_variables,

float covariances[], int n_factors, ..., 0)

The type double function is imsls_d_factor_analysis.

Required Arguments

int n_variables (Input)
Number of variables.

float covariances[] (Input)
Array of length n_variables*n_variables containing the variance-
covariance or correlation matrix.

int n_factors (Input)
Number of factors in the model.

Return Value
An array of length n_variables*n_factors containing the matrix of factor
loadings.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_factor_analysis (int n_variables,
float covariances[], int n_factors,
IMSLS_MAXIMUM_LIKELIHOOD, int df_covariances, or
IMSLS_PRINCIPAL_COMPONENT, or
IMSLS_PRINCIPAL_FACTOR, or
IMSLS_UNWEIGHTED_LEAST_SQUARES,or
IMSLS_GENERALIZED_LEAST_SQUARES, int df_covariances, or
IMSLS_IMAGE, or
IMSLS_ALPHA, int df_covariances,
IMSLS_UNIQUE_VARIANCES_INPUT, float unique_variances[],
IMSLS_UNIQUE_VARIANCES_OUTPUT,
 float unique_variances[],
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_MAX_STEPS_LINE_SEARCH,
 int max_steps_line_search,
IMSLS_CONVERGENCE_EPS, float convergence_eps,
IMSLS_SWITCH_EXACT_HESSIAN, float switch_epsilon,

610 � factor_analysis IMSL C/Stat/Library

IMSLS_EIGENVALUES, float **eigenvalues,
IMSLS_EIGENVALUES_USER, float eigenvalues[],
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,
 float *p_value,
IMSLS_TUCKER_RELIABILITY_COEFFICIENT, float *coefficient,
IMSLS_N_ITERATIONS, int *n_iterations,
IMSLS_FUNCTION_MIN, float *function_min,
IMSLS_LAST_STEP, float **last_step,
IMSLS_LAST_STEP_USER, float last_step[],
IMSLS_ORTHOMAX_ROTATION, float w, int norm, float **b,
 float **t,
IMSLS_ORTHOMAX_ROTATION_USER, float w, int norm, float b[],
 float t[],
IMSLS_ORTHOGONAL_PROCUSTES_ROTATION, float target[],
 float **b, float **t,
IMSLS_ORTHOGONAL_PROCUSTES_ROTATION_USER,
 float target[], float b[], float t[],
IMSLS_DIRECT_OBLIMIN_ROTATION, float w, int norm, float **b,
 float **t, float **factor_correlations,
IMSLS_DIRECT_OBLIMIN_ROTATION_USER, float w, int norm,
 float b[], float t[], float factor_correlations[],
IMSLS_OBLIQUE_PROMAX_ROTATION, float w, float power[],
 int norm, float **target, float **b, float **t,
 float **factor_correlations,
IMSLS_OBLIQUE_PROMAX_ROTATION_USER, float w, float power[],
 nt norm, float target[], float b[], float t[],
 loat factor_correlations[],
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION, float w,
 float pivot[], int norm, float **target, float **b,
 float **t, float **factor_correlations,
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION_USER, float w,
 loat pivot[], int norm, float target[], float b[],
 float t[], float factor_correlations[],
IMSLS_OBLIQUE_PROCRUSTES_ROTATION, float target[],
 float **b, float **t, float **factor_correlations,
IMSLS_OBLIQUE_PROCRUSTES_ROTATION_USER, float target[],
 float b[], float t[], float factor_correlations[],
IMSLS_FACTOR_STRUCTURE, float **s, float **fvar,
IMSLS_FACTOR_STRUCTURE_USER, float s[], float fvar[],
IMSLS_COV_COL_DIM, int cov_col_dim,
IMSLS_RETURN_USER, float factor_loadings[],
0)

Optional Arguments
IMSLS_MAXIMUM_LIKELIHOOD, int df_covariances (Input)

Maximum likelihood (common factor model) method used to obtain the

Chapter 9: Multivariate Analysis factor_analysis � 611

estimates. Argument df_covariances is the number of degrees of
freedom in covariances.
or

IMSLS_PRINCIPAL_COMPONENT
Principal component (principal component model) method used to
obtain the estimates.
or

IMSLS_PRINCIPAL_FACTOR
Principal factor (common factor model) method used to obtain the
estimates.
or

IMSLS_UNWEIGHTED_LEAST_SQUARES
Unweighted least-squares (common factor model) method used to obtain
the estimates. This option is the default.
or

IMSLS_GENERALIZED_LEAST_SQUARES, int df_covariances (Input)
Generalized least-squares (common factor model) method used to obtain
the estimates.
or

IMSLS_IMAGE
Image-factor analysis (common factor model) method used to obtain the
estimates.
or

IMSLS_ALPHA, int df_covariances (Input)
Alpha-factor analysis (common factor model) method used to obtain the
estimates. Argument df_covariances is the number of degrees of
freedom in covariances.

IMSLS_UNIQUE_VARIANCES_INPUT, float unique_variances[] (Input)
Array of length n_variables containing the initial estimates of the
unique variances.
Default: Initial estimates are taken as the constant
1 � n_factors/2 * n_variables divided by the diagonal elements of
the inverse of covariances.

IMSLS_UNIQUE_VARIANCES_OUTPUT, float unique_variances[] (Output)
User-allocated array of length n_variables containing the estimated
unique variances.

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations in the iterative procedure.
Default: max_iterations = 60

IMSLS_MAX_STEPS_LINE_SEARCH, int max_steps_line_search (Input)
Maximum number of step halvings allowed during any one iteration.
Default: max_steps_line_search = 10

612 � factor_analysis IMSL C/Stat/Library

IMSLS_CONVERGENCE_EPS, float convergence_eps (Input)
Convergence criterion used to terminate the iterations. For the
unweighted least squares, generalized least squares or maximum
likelihood methods, convergence is assumed when the relative change in
the criterion is less than convergence_eps. For alpha-factor analysis,
convergence is assumed when the maximum change (relative to the
variance) of a uniqueness is less than convergence_eps.
Default: convergence_eps = 0.0001

IMSLS_SWITCH_EXACT_HESSIAN, float switch_epsilon (Input)
Convergence criterion used to switch to exact second derivatives. When
the largest relative change in the unique standard deviation vector is less
than switch_epsilon, exact second derivative vectors are used.
Argument switch_epsilon is not used with the principal component,
principal factor, image-factor analysis, or alpha-factor analysis methods.
Default: switch_epsilon = 0.1

IMSLS_EIGENVALUES, float **eigenvalues (Output)
The address of a pointer to an internally allocated array of length
n_variables containing the eigenvalues of the matrix from which the
factors were extracted.

IMSLS_EIGENVALUES_USER, float eigenvalues[] (Output)
Storage for array eigenvalues is provided by the user. See
IMSLS_EIGENVALUES.

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,
float *p_value (Output)
Number of degrees of freedom in chi-squared is df; chi_squared is
the chi-squared test statistic for testing that n_factors common factors
are adequate for the data; p_value is the probability of a greater chi-
squared statistic.

IMSLS_TUCKER_RELIABILITY_COEFFICIENT, float *coefficient
(Output)
Tucker reliability coefficient.

IMSLS_N_ITERATIONS, int *n_iterations (Output)
Number of iterations.

IMSLS_FUNCTION_MIN, float *function_min (Output)
Value of the function minimum.

IMSLS_LAST_STEP, float **last_step (Output)
Address of a pointer to an internally allocated array of length
n_variables containing the updates of the unique variance estimates
when convergence was reached (or the iterations terminated).

IMSLS_LAST_STEP_USER, float last_step[] (Output)
Storage for array last_step is provided by the user. See
IMSLS_LAST_STEP.

Chapter 9: Multivariate Analysis factor_analysis � 613

IMSLS_ORTHOMAX_ROTATION, float w, int norm, float **b, float **t
(Input/Output)
Nonnegative constant w defines the rotation. If norm =1, row
normalization is performed. Otherwise, row normalization is not
performed. b contains the address of a pointer to the internally
allocated array of length n_variables*n_factors containing the
rotated factor loading matrix. t contains the address of a pointer to the
internally allocated array of length n_factors*n_factors containing
the rotation transformation matrix. w = 0.0 results in quartimax
rotations, w = 1.0 results in varimax rotations, and w = n_factors/2.0
results in equamax rotations. Other nonnegative values of w may also be
used, but the best values for w are in the range (0.0, 5 * n_factors).

IMSLS_ORTHOMAX_ROTATION_USER, float w, int norm, float b[], float t[]
(Input/Output)
Storage for b and t are provided by the user. See
IMSLS_ORTHOMAX_ROTATION.

IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION, float target[], float **b,
float **t (Input/Output)
If specified, the n_variables by n_factors target matrix target
will be used to compute an orthogonal Procrustes rotation of the factor-
loading matrix. b contains the address of a pointer to the internally
allocated array of length n_variables*n_factors containing the
rotated factor loading matrix. t contains the address of a pointer to the
internally allocated array of length n_factors*n_factors containing
the rotation transformation matrix.

IMSLS_ORTHOGONAL_PROCRUTES_ROTATION_USER, float target[],
float b[], float t[] (Input/Output)
Storage for b and t are provided by the user. See
IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION.

IMSLS_DIRECT_OBLIMIN_ROTATION, float w , int norm, float **b,
float **t,float **factor_correlations (Input/Output)
Computes a direct oblimin rotation. Nonpositive constant w defines the
rotation. If norm =1, row normalization is performed. Otherwise, row
normalization is not performed. b contains the address of a pointer to
the internally allocated array of length n_variables*n_factors
containing the rotated factor loading matrix. t contains the address of a
pointer to the internally allocated array of length
n_factors*n_factors containing the rotation transformation matrix.
factor_correlations contains the address of a pointer to the
internally allocated array of length n_factors*n_factors containing
the factor correlations. The parameter w determines the type of direct
oblimin rotation to be performed. In general w must be negative.
w = 0.0 results in direct quartimin rotations. As w approaches negative
infinity, the orthogonality among factors will increase.

614 � factor_analysis IMSL C/Stat/Library

IMSLS_DIRECT_OBLIMIN_ROTATION_USER, float w, int norm, float b[],
float t[], float factor_correlations[] (Input/Output)
Storage for b, t and factor_correlations are provided by the user.
See IMSLS_DIRECT_OBLIMIN_ROTATION.

IMSLS_OBLIQUE_PROMAX_ROTATION, float w, float power[], int norm,
float **target, float **b, float **t,
float **factor_correlations, (Input/Output)
Computes an oblique promax rotation of the factor loading matrix using
a power vector. Nonnegative constant w defines the rotation. power, a
vector of length n_factors containing the power vector. If norm =1,
row (Kaiser) normalization is performed. Otherwise, row normalization
is not performed. b contains the address of a pointer to the internally
allocated array of length n_variables*n_factors containing the
rotated factor loading matrix. t contains the address of a pointer to the
internally allocated array of length n_factors*n_factors containing
the rotation transformation matrix. factor_correlations contains
the address of a pointer to the internally allocated array of length
n_factors*n_factors containing the factor correlations. target
contains the address of a pointer to the internally allocated array of
length n_variables*n_factors containing the target matrix for
rotation, derived from the orthomax rotation. w is used in the orthomax
rotation, see the optional argument IMSLS_ORTHOMAX_ROTATION for
common values of w.

 All power[j] should be greater than 1.0, typically 4.0. Generally, the
larger the values of power [j], the more oblique the solution will be.

IMSLS_OBLIQUE_PROMAX_ROTATION_USER, float w, float power[], int norm,
float target[], float b[], float t[],
float factor_correlations[], (Input/Output)
 Storage for b, t, factor_correlations, and target are provided
by the user. See IMSLS_OBLIQUE_PROMAX_ROTATION.

IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION, float w, float pivot[],
int norm, float **target , float **b, float **t,
float **factor_correlations, (Input/Output)
Computes an oblique pivotal promax rotation of the factor loading
matrix using pivot constants. Nonnegative constant w defines the
rotation. pivot, a vector of length n_factors containing the pivot
constants. pivot[j] should be in the interval (0.0, 1.0). If norm =1,
row (Kaiser) normalization is performed. Otherwise, row normalization
is not performed. b contains the address of a pointer to the internally
allocated array of length n_variables*n_factors containing the
rotated factor loading matrix. t contains the address of a pointer to the
internally allocated array of length n_factors*n_factors containing
the rotation transformation matrix. factor_correlations contains
the address of a pointer to the internally allocated array of length
n_factors*n_factors containing the factor correlations. target

Chapter 9: Multivariate Analysis factor_analysis � 615

contains the address of a pointer to the internally allocated array of
length n_variables*n_factors containing the target matrix for
rotation, derived from the orthomax rotation. w is used in the orthomax
rotation, see the optional argument IMSLS_ORTHOMAX_ROTATION for
common values of w.

IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION_USER, float w, float pivot[],
int norm, float target[], float b[], float t[],
float factor_correlations[], (Input/Output)
 Storage for b, t, factor_correlations, and target are provided
by the user. See IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION.

IMSLS_OBLIQUE_PROCRUSTES_ROTATION, float **target, float **b,
float **t, float **factor_correlations (Input/Output)
Computes an oblique procrustes rotation of the factor loading matrix
using a target matrix. target is a hypothesized rotated factor loading
matrix based upon prior knowledge with loadings chosen to the enhance
interpretability. A simple structure solution will have most of the weights
target[i][j] either zero or large in magnitude. b contains the
address of a pointer to the internally allocated array of length
n_variables*n_factors containing the rotated factor loading matrix.
t contains the address of a pointer to the internally allocated array of
length n_factors*n_factors containing the rotation transformation
matrix. factor_correlations contains the address of a pointer to
the internally allocated array of length n_factors*n_factors
containing the factor correlations.

IMSLS_OBLIQUE_PROCRUSTES_ROTATION_USER, float target[],
float b[], float t[], float factor_correlations[] (Input/Output)
Storage for b, t, and factor_correlations are provided by the
user. See IMSLS_PROCRUSTES_ROTATION.

IMSLS_FACTOR_STRUCTURE,float **s, float **fvar, (Output)
Computes the factor structure and the variance explained by each factor.
s contains the address of a pointer to the internally allocated array of
length n_variables*n_factors containing the factor structure
matrix. fvar contains the address of a pointer to the internally allocated
array of length n_factors containing the variance accounted for by
each of the n_factors rotated factors. A factor rotation matrix is used
to compute the factor structure and the variance. One and only one
rotation option argument can be specified.

IMSLS_FACTOR_STRUCTURE_USER, float s[], float fvar[], (Output)
Storage for s, and fvar are provided by the user.
See IMSLS_FACTOR_STRUCTURE.

IMSLS_COV_COL_DIM, int cov_col_dim (Input)
Column dimension of the matrix covariances.
Default: cov_col_dim = n_variables

616 � factor_analysis IMSL C/Stat/Library

IMSLS_RETURN_USER, float factor_loadings[] (Output)
User-allocated array of length n_variables*n_factors containing
the unrotated factor loadings.

Description
Function imsls_f_factor_analysis computes factor loadings in exploratory
factor analysis models. Models available in imsls_f_factor_analysis are
the principal component model for factor analysis and the common factor model
with additions to the common factor model in alpha-factor analysis and image
analysis. Methods of estimation include principal components, principal factor,
image analysis, unweighted least squares, generalized least squares, and
maximum likelihood.

In the factor analysis model used for factor extraction, the basic model is given as
� = ��T +
, where � is the p � p population covariance matrix, � is the
p � k matrix of factor loadings relating the factors f to the observed variables x,
and
 is the p � p matrix of covariances of the unique errors e. Here,
p = n_variables and k = n_factors. The relationship between the factors, the
unique errors, and the observed variables is given as x = �f + e, where in
addition, the expected values of e, f, and x are assumed to be 0. (The sample
means can be subtracted from x if the expected value of x is not 0.) It also is
assumed that each factor has unit variance, the factors are independent of each
other, and that the factors and the unique errors are mutually independent. In the
common factor model, the elements of unique errors e also are assumed to be
independent of one another so that the matrix
 is diagonal. This is not the case
in the principal component model in which the errors may be correlated.

Further differences between the various methods concern the criterion that is
optimized and the amount of computer effort required to obtain estimates.
Generally speaking, the least-squares and maximum likelihood methods, which
use iterative algorithms, require the most computer time with the principal factor,
principal component and the image methods requiring much less time since the
algorithms in these methods are not iterative. The algorithm in alpha-factor
analysis is also iterative, but the estimates in this method generally require
somewhat less computer effort than the least-squares and maximum likelihood
estimates. In all methods, one eigensystem analysis is required on each iteration.

Principal Component and Principal Factor Methods

Both the principal component and principal factor methods compute the factor-
loading estimates as

1/ 2ˆˆ �

��

where � and the diagonal matrix � are the eigenvectors and eigenvalues of a
matrix. In the principal component model, the eigensystem analysis is performed
on the sample covariance (correlation) matrix S, while in the principal factor
model, the matrix (S +
) is used. If the unique error variances
 are not known

Chapter 9: Multivariate Analysis factor_analysis � 617

in the principal factor mode, then imsls_f_factor_analysis obtains
estimates for them.

The basic idea in the principal component method is to find factors that maximize
the variance in the original data that is explained by the factors. Because this
method allows the unique errors to be correlated, some factor analysts insist that
the principal component method is not a factor analytic method. Usually,
however, the estimates obtained by the principal component model and factor
analysis model will be quite similar.

It should be noted that both the principal component and principal factor methods
give different results when the correlation matrix is used in place of the
covariance matrix. Indeed, any rescaling of the sample covariance matrix can lead
to different estimates with either of these methods. A further difficulty with the
principal factor method is the problem of estimating the unique error variances.
Theoretically, these must be known in advance and be passed to
imsls_f_factor_analysis using optional argument
IMSLS_UNIQUE_VARIANCES_INPUT. In practice, the estimates of these
parameters are produced by imsls_f_factor_analysis when
IMSLS_UNIQUE_VARIANCES_INPUT is not specified. In either case, the resulting
adjusted covariance (correlation) matrix

ˆS ��

may not yield the n_factors positive eigenvalues required for n_factors
factors to be obtained. If this occurs, the user must either lower the number of
factors to be estimated or give new unique error variance values.

Least-squares and Maximum Likelihood Methods

Unlike the previous two methods, the algorithm used to compute estimates in this
section is iterative (see Jöreskog 1977). As with the principal factor model, the
user may either initialize the unique error variances or allow
imsls_f_factor_analysis to compute initial estimates. Unlike the principal
factor method, imsls_f_factor_analysis optimizes the criterion function
with respect to both
 and �. (In the principal factor method,
 is assumed to be
known. Given
, estimates for � may be obtained.)

The major difference between the methods discussed in this section is in the
criterion function that is optimized. Let S denote the sample covariance
(correlation) matrix, and let � denote the covariance matrix that is to be estimated
by the factor model. In the unweighted least-squares method, also called the
iterated principal factor method or the minres method (see Harman 1976, p. 177),
the function minimized is the sum-of-squared differences between S and �. This
is written as �ul = 0.5 (trace (S � �)2).

Generalized least-squares and maximum likelihood estimates are asymptotically
equivalent methods. Maximum likelihood estimates maximize the (normal theory)
likelihood {�ml = trace (�-1S) � log (��-1S|)}, while generalized least squares
optimizes the function �gs = trace (�S-1 � I)2.

618 � factor_analysis IMSL C/Stat/Library

In all three methods, a two-stage optimization procedure is used. This proceeds
by first solving the likelihood equations for � in terms of
 and substituting the
solution into the likelihood. This gives a criterion � (
, � (
)), which is
optimized with respect to
. In the second stage, the estimates are obtained
from the estimates for
.

�̂

The generalized least-squares and maximum likelihood methods allow for the
computation of a statistic (IMSLS_CHI_SQUARED_TEST) for testing that
n_factors common factors are adequate to fit the model. This is a chi-squared
test that all remaining parameters associated with additional factors are 0. If the
probability of a larger chi-squared is so small that the null hypothesis is rejected,
then additional factors are needed (although these factors may not be of any
practical importance). Failure to reject does not legitimize the model. The statistic
IMSLS_CHI_SQUARED_TEST is a likelihood ratio statistic in maximum likelihood
estimation. As such, it asymptotically follows a chi-squared distribution with
degrees of freedom given by df.

The Tucker and Lewis reliability coefficient, �, is returned by
IMSLS_TUCKER_RELIABILITY_COEFFICIENT when the maximum likelihood
or generalized least-squares methods are used. This coefficient is an estimate of
the ratio of explained variation to the total variation in the data. It is computed as
follows:

0

0 1
kmM mM

mM
�

�

�

�

2 5 2
6 6

p km d �

� � �

� �

� �0

ln | |
1 / 2
S

M
p p
�

�

�

� �� �2 / 2
kM

p k p k

�
�

� � �

where �S� is the determinant of covariances, p = n_variables,
k = n_variables, � is the optimized criterion, and d = df_covariances.

Image Analysis Method

The term image analysis is used here to denote the noniterative image method of
Kaiser (1963). It is not the image analysis discussed by Harman (1976, p. 226).
The image method (as well as the alpha-factor analysis method) begins with the
notion that only a finite number from an infinite number of possible variables
have been measured. The image factor pattern is calculated under the assumption
that the ratio of the number of factors to the number of observed variables is near
0, so that a very good estimate for the unique error variances (for standardized
variables) is given as 1 minus the squared multiple correlation of the variable
under consideration with all variables in the covariance matrix.

Chapter 9: Multivariate Analysis factor_analysis � 619

First, the matrix D2 = (diag (S-1))-1 is computed where the operator “diag”
results in a matrix consisting of the diagonal elements of its argument and S is the
sample covariance (correlation) matrix. Then, the eigenvalues � and eigenvectors
� of the matrix D-1SD-1 are computed. Finally, the unrotated image-factor pattern
is computed as D� [(� � I)2�-1]1/2.

Alpha-factor Analysis Method

The alpha-factor analysis method of Kaiser and Caffrey (1965) finds factor-
loading estimates to maximize the correlation between the factors and the
complete universe of variables of interest. The basic idea in this method is that
only a finite number of variables out of a much larger set of possible variables is
observed. The population factors are linearly related to this larger set, while the
observed factors are linearly related to the observed variables. Let f denote the
factors obtainable from a finite set of observed random variables, and let � denote
the factors obtainable from the universe of observable variables. Then, the alpha
method attempts to find factor-loading estimates so as to maximize the correlation
between f and �. In order to obtain these estimates, the iterative algorithm of
Kaiser and Caffrey (1965) is used.

Rotation Methods

The IMSLS_ORTHOMAX_ROTATION optional argument performs an orthogonal
rotation according to an orthomax criterion. In this analytic method of rotation,
the criterion function

2
4 2
ir ir

i r r i
Q

p
�

� �
� �

� � � �
� �

�� � �

is minimized by finding an orthogonal rotation matrix T such that (�ij) = � = AT
where A is the matrix of unrotated factor loadings. Here, � � 0 is a user-specified
constant (W) yielding a family of rotations, and p is the number of variables.

Kaiser (row) normalization can be performed on the factor loadings prior to
rotation by specifying the parameter norm =1. In Kaiser normalization, the rows
of A are first “normalized” by dividing each row by the square root of the sum of
its squared elements (Harman 1976). After the rotation is complete, each row of b
is “denormalized” by multiplication by its initial normalizing constant.

The method for optimizing Q proceeds by accumulating simple rotations where a
simple rotation is defined to be one in which Q is optimized for two columns in �
and for which the requirement that T be orthogonal is satisfied. A single iteration
is defined to be such that each of the n_factors(n_factors � 1)/2 possible
simple rotations is performed where n_factors is the number of factors. When
the relative change in Q from one iteration to the next is less than EPS (the user-
specified convergence criterion), the algorithm stops. eps = 0.0001 is usually
sufficient. Alternatively, the algorithm stops when the user-specified maximum
number of iterations, max_iterations, is reached. max_iterations = 30 is
usually sufficient.

620 � factor_analysis IMSL C/Stat/Library

The parameter in the rotation, �, is used to provide a family of rotations. When
� = 0.0, a direct quartimax rotation results. Other values of � yield other rotations.

The IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION optional argument performs
orthogonal Procrustes rotation according to a method proposed by Schöneman
(1966). Let k = n_factors denote the number of factors, p = n_variables
denote the number of variables, A denote the p × k matrix of unrotated factor
loadings, T denote the k × k orthogonal rotation matrix (orthogonality requires
that TT T be a k × k identity matrix), and let X denote the target matrix. The basic
idea in orthogonal Procrustes rotation is to find an orthogonal rotation matrix T
such that B = AT and T provides a least-squares fit between the target matrix X
and the rotated loading matrix B. Schöneman’s algorithm proceeds by finding the
singular value decomposition of the matrix AT X = U�VT. The rotation matrix is
computed as T = UVT.

The IMSLS_DIRECT_OBLIMIN_ROTATION optional argument performs direct
oblimin rotation. In this analytic method of rotation, the criterion function

2 2 2 2
ir is ir is

r s i i i

Q
p
�

� � � �
�

� �
� �� �

� �
� � � �

is minimized by finding a rotation matrix T such that (�ir) = � = AT and (TT T)��
is a correlation matrix. Here, � � 0 is a user-specified constant (w) yielding a
family of rotations, and p is the number of variables. The rotation is said to be
direct because it minimizes Q with respect to the factor loadings directly, ignoring
the reference structure.

Kaiser normalization can be performed on the factor loadings prior to rotation via
the parameter norm. In Kaiser normalization (see Harman 1976), the rows of the
factor loading matrix are first “normalized” by dividing each row by the square
root of the sum of its squared elements. After the rotation is complete, each row
of b is “denormalized” by multiplication by its initial normalizing constant.

The method for optimizing Q is essentially the method first proposed by Jennrich
and Sampson (1966). It proceeds by accumulating simple rotations where a
simple rotation is defined to be one in which Q is optimized for a given factor in
the plane of a second factor, and for which the requirement that (TTT)�� be a
correlation matrix is satisfied. An iteration is defined to be such that each of the
n_factors[n_factors � 1] possible simple rotations is performed, where
n_factors is the number of factors. When the relative change in Q from one
iteration to the next is less than eps (the user-specified convergence criterion),
the algorithm stops. eps = .0001 is usually sufficient. Alternatively, the algorithm
stops when the user-specified maximum number of iterations, max_iterations,
is reached. max_iterations = 30 is usually sufficient.

The parameter in the rotation, �, is used to provide a family of rotations. Harman
(1976) recommends that � be strictly less than or equal to zero. When � = 0.0, a
direct quartimin rotation results. Other values of � yield other rotations. Harman
(1976) suggests that the direct quartimin rotations yield the most highly correlated
factors while more orthogonal factors result as � approaches ��.

Chapter 9: Multivariate Analysis factor_analysis � 621

IMSLS_OBLIQUE_PROMAX_ROTATION,
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION,
IMSLS_OBLIQUE_PROCRUSTES_ROTATION, optional arguments performs
oblique rotations using the Promax, pivotal Promax, or oblique Procrustes
methods. In all of these methods, a target matrix X is first either computed or
specified by the user. The differences in the methods relate to how the target
matrix is first obtained.

Given a p × k target matrix, X, and a p × k orthogonal matrix of unrotated factor
loadings, A, compute the rotation matrix T as follows: First regress each column
of A on X yielding a k × k matrix �. Then, let � = diag(�T �) where diag denotes
the diagonal matrix obtained from the diagonal of the square matrix. Standardize
� to obtain T = ����� �. The rotated loadings are computed as B = AT while the
factor correlations can be computed as the inverse of the T TT matrix.

In the Promax method, the unrotated factor loadings are first rotated according to
an orthomax criterion via optional argument IMSLS_ORTHOMAX_ROTATION . The
target matrix X is taken as the elements of the B raised to a power greater than
one but retaining the same sign as the original loadings. The column i of the
rotated matrix B is raised to the power power[i]. A power of four is commonly
used. Generally, the larger the power, the more oblique the solution.

In the pivotal Promax method, the unrotated matrix is first rotated to an orthomax
orthogonal solution as in the Promax case. Then, rather than raising the i-th
column in B to the power pivot[i], the elements xij of X are obtained from the
elements bij of B by raising the ij element of B to the power pivot[i]/bij. This
has the effects of greatly increasing in X those elements in B that are greater in
magnitude than the pivot elements pivot[i], and of greatly decreasing those
elements that are less than pivot[i].

In the oblique Procrustes method, the elements of X are specified by the user as
input to the routine via the target argument. No orthogonal rotation is
performed in the oblique Procrustes method.

Factor Structure and Variance

The IMSLS_FACTOR_STRUCTURE optional argument computes the factor
structure matrix (the matrix of correlations between the observed variables and
the hypothesized factors) and the variance explained by each of the factors (for
orthogonal rotations). For oblique rotations, IMSLS_FACTOR_STRUCTURE
computes a measure of the importance of the factors, the sum of the squared
elements in each column.

Let � denote the diagonal matrix containing the elements of the variance of the
original data along its diagonal. The estimated factor structure matrix S is
computed as

1
2 1()TS A T� �� �

while the elements of fvar are computed as the diagonal elements of

622 � factor_analysis IMSL C/Stat/Library

1
2TS A� T

If the factors were obtained from a correlation matrix (or the factor variances for
standardized variables are desired), then the variances should all be 1.0.

Comments
1. Function imsls_f_factor_analysis makes no attempt to solve for

n_factors. In general, if n_factors is not known in advance, several
different values of n_factors should be used and the most reasonable
value kept in the final solution.

2. Iterative methods are generally thought to be superior from a theoretical
point of view, but in practice, often lead to solutions that differ little
from the noniterative methods. For this reason, it is usually suggested
that a noniterative method be used in the initial stages of the factor
analysis and that the iterative methods be used when issues such as the
number of factors have been resolved.

3. Initial estimates for the unique variances can be input. If the iterative
methods fail for these values, new initial estimates should be tried. These
can be obtained by use of another factoring method. (Use the final
estimates from the new method as the initial estimates in the old
method.)

Examples

Example 1
In this example, factor analysis is performed for a nine-variable matrix using the
default method of unweighted least squares.

#include <stdio.h>
#include <imsls.h>
#include <stdlib.h>

main()
{
#define N_VARIABLES 9
#define N_FACTORS 3
 float *a;

 float covariances[N_VARIABLES][N_VARIABLES] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
 0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

 /* Perform analysis */
 a = imsls_f_factor_analysis (9, covariances, 3, 0);

Chapter 9: Multivariate Analysis factor_analysis � 623

 /* Print results */
 imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS,
 a, 0);

 free(a);
}

Output
 Unrotated Loadings
 1 2 3
1 0.7018 -0.2316 0.0796
2 0.7200 -0.1372 -0.2082
3 0.5351 -0.2144 -0.2271
4 0.7907 0.4050 0.0070
5 0.6532 0.4221 -0.1046
6 0.7539 0.4842 0.1607
7 0.7127 -0.2819 -0.0701
8 0.4835 -0.2627 0.4620
9 0.8192 -0.3137 -0.0199

Example 2
The following data were originally analyzed by Emmett (1949). There are 211
observations on 9 variables. Following Lawley and Maxwell (1971), three factors
are obtained by the method of maximum likelihood.

#include <stdio.h>
#include <imsls.h>
#include <stdlib.h>

main()
{
#define N_VARIABLES 9
#define N_FACTORS 3
 float *a;
 float *evals;
 float chi_squared, p_value, reliability_coef, function_min;
 int chi_squared_df, n_iterations;
 float uniq[N_VARIABLES];

 float covariances[N_VARIABLES][N_VARIABLES] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
 0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

 /* Perform analysis */
 a = imsls_f_factor_analysis (9, covariances, 3,
 IMSLS_MAXIMUM_LIKELIHOOD, 210,
 IMSLS_SWITCH_EXACT_HESSIAN, 0.01,
 IMSLS_CONVERGENCE_EPS, 0.000001,
 IMSLS_MAX_ITERATIONS, 30,

624 � factor_analysis IMSL C/Stat/Library

 IMSLS_MAX_STEPS_LINE_SEARCH, 10,
 IMSLS_EIGENVALUES, &evals,
 IMSLS_UNIQUE_VARIANCES_OUTPUT, uniq,
 IMSLS_CHI_SQUARED_TEST,
 &chi_squared_df,
 &chi_squared,
 &p_value,
 IMSLS_TUCKER_RELIABILITY_COEFFICIENT, &reliability_coef,
 IMSLS_N_ITERATIONS, &n_iterations,
 IMSLS_FUNCTION_MIN, &function_min,
 0);

 /* Print results */
 imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS,
 a, 0);
 imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, evals, 0);
 imsls_f_write_matrix("Unique Error Variances", 1, N_VARIABLES,
 uniq, 0);
 printf("\n\nchi_squared_df = %d\n", chi_squared_df);
 printf("chi_squared = %f\n", chi_squared);
 printf("p_value = %f\n\n", p_value);
 printf("reliability_coef = %f\n", reliability_coef);
 printf("function_min = %f\n", function_min);
 printf("n_iterations = %d\n", n_iterations);

 free(evals);
 free(a);
}

Output
 Unrotated Loadings
 1 2 3
1 0.6642 -0.3209 0.0735
2 0.6888 -0.2471 -0.1933
3 0.4926 -0.3022 -0.2224
4 0.8372 0.2924 -0.0354
5 0.7050 0.3148 -0.1528
6 0.8187 0.3767 0.1045
7 0.6615 -0.3960 -0.0777
8 0.4579 -0.2955 0.4913
9 0.7657 -0.4274 -0.0117

 Eigenvalues
 1 2 3 4 5 6
 0.063 0.229 0.541 0.865 0.894 0.974

 7 8 9
 1.080 1.117 1.140

 Unique Error Variances
 1 2 3 4 5 6
 0.4505 0.4271 0.6166 0.2123 0.3805 0.1769

 7 8 9
 0.3995 0.4615 0.2309

chi_squared_df = 12

Chapter 9: Multivariate Analysis factor_analysis � 625

chi_squared = 7.149356
p_value = 0.847588

reliability_coef = 1.000000
function_min = 0.035017
n_iterations = 5

Example 3
This example is a continuation of example 1 and illustrates the use of the
IMSLS_FACTOR_STRUCTURE optional argument when the structure and an index
of factor importance for obliquely rotated loadings are desired. A direct oblimin
rotation is used to compute the factors, derived from nine variables and using � =
�1. Note in this example that the elements of fvar are not variances since the
rotation is oblique.

#include <stdio.h>
#include <imsls.h>
#include <stdlib.h>
void main()
{
#define N_VARIABLES 9
#define N_FACTORS 3
 float *a;
 float w= -1.0;
 int norm=1;
 float *b, *t, *fcor;
 float *s, *fvar;
 float covariances[9][9] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
 0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

 /* Perform analysis */
 a = imsls_f_factor_analysis (9, (float *)covariances, 3,
 IMSLS_MAXIMUM_LIKELIHOOD, 210,
 IMSLS_SWITCH_EXACT_HESSIAN, 0.01,
 IMSLS_CONVERGENCE_EPS, 0.00001,
 IMSLS_MAX_ITERATIONS, 30,
 IMSLS_MAX_STEPS_LINE_SEARCH, 10,
 IMSLS_DIRECT_OBLIMIN_ROTATION, w, norm, &b, &t, &fcor,
 IMSLS_FACTOR_STRUCTURE, &s, &fvar,
 0);

 /* Print results */

 imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS,
 a, 0);
 imsls_f_write_matrix("Rotated Loadings", N_VARIABLES, N_FACTORS,
 b, 0);

626 � factor_analysis IMSL C/Stat/Library

 imsls_f_write_matrix("Transformation Matrix", N_FACTORS, N_FACTORS,
 t, 0);
 imsls_f_write_matrix("Factor Correlation Matrix", N_FACTORS, N_FACTORS,
 fcor, 0);
 imsls_f_write_matrix("Factor Structure", N_VARIABLES,
 N_FACTORS,s,0);
 imsls_f_write_matrix("Factor Variance", 1, N_FACTORS, fvar, 0);
}

Output
 Unrotated Loadings
 1 2 3
1 0.6642 -0.3209 0.0735
2 0.6888 -0.2471 -0.1933
3 0.4926 -0.3022 -0.2224
4 0.8372 0.2924 -0.0354
5 0.7050 0.3148 -0.1528
6 0.8187 0.3767 0.1045
7 0.6615 -0.3960 -0.0777
8 0.4579 -0.2955 0.4913
9 0.7657 -0.4274 -0.0117

 Rotated Loadings
 1 2 3
1 0.1128 -0.5144 0.2917
2 0.1847 -0.6602 -0.0018
3 0.0128 -0.6354 -0.0585
4 0.7797 -0.1751 0.0598
5 0.7147 -0.1813 -0.0959
6 0.8520 0.0039 0.1820
7 0.0354 -0.6844 0.1510
8 0.0276 -0.0941 0.6824
9 0.0729 -0.7100 0.2493

 Transformation Matrix
 1 2 3
1 0.611 -0.462 0.203
2 0.923 0.813 -0.249
3 0.042 0.728 1.050

 Factor Correlation Matrix
 1 2 3
1 1.000 -0.427 0.217
2 -0.427 1.000 -0.411
3 0.217 -0.411 1.000

 Factor Structure
 1 2 3
1 0.3958 -0.6824 0.5275
2 0.4662 -0.7383 0.3094
3 0.2714 -0.6169 0.2052
4 0.8675 -0.5326 0.3011
5 0.7713 -0.4471 0.1339
6 0.8899 -0.4347 0.3656
7 0.3605 -0.7616 0.4398
8 0.2161 -0.3861 0.7271
9 0.4302 -0.8435 0.5568

Chapter 9: Multivariate Analysis factor_analysis � 627

 Factor Variance
 1 2 3
 2.170 2.560 0.914

Warning Errors
IMSLS_VARIANCES_INPUT_IGNORED When using the

IMSLS_PRINCIPAL_COMPONENT
option, the unique variances are
assumed to be zero. Input for
IMSLS_UNIQUE_VARIANCES_INPUT is
ignored.

IMSLS_TOO_MANY_ITERATIONS Too many iterations. Convergence is
assumed.

IMSLS_NO_DEG_FREEDOM There are no degrees of freedom for the
significance testing.

IMSLS_TOO_MANY_HALVINGS Too many step halvings. Convergence is
assumed.

IMSLS_NO_ROTATION n_factors = 1. No rotation is
possible.

IMSLS_SVD_ERROR An error occurred in the singular value
decomposition of tran(A)*X. The
rotation matrix, T, may not be correct.

Fatal Errors
IMSLS_HESSIAN_NOT_POS_DEF The approximate Hessian is not semi-

definite on iteration #. The computations
cannot proceed. Try using different initial
estimates.

IMSLS_FACTOR_EVAL_NOT_POS “eigenvalues[#]” = #. An eigenvalue
corresponding to a factor is negative or
zero. Either use different initial estimates
for “unique_variances” or reduce the
number of factors.

IMSLS_COV_NOT_POS_DEF “covariances” is not positive semi-definite.
The computations cannot proceed.

IMSLS_COV_IS_SINGULAR The matrix “covariances” is singular. The
computations cannot continue because
variable # is linearly related to the
remaining variables.

628 � discriminant_analysis IMSL C/Stat/Library

IMSLS_COV_EVAL_ERROR An error occurred in calculating the
eigenvalues of the adjusted (inverse)
covariance matrix. Check “covariances.”

IMSLS_ALPHA_FACTOR_EVAL_NEG In alpha factor analysis on iteration #,
eigenvalue # is #. As all eigenvalues
corresponding to the factors must be
positive, either the number of factors must
be reduced or new initial estimates for
“unique_variances” must be given.

IMSLS_RANK_LESS_THAN The rank of TRAN(A)*target = #. This
must be greater than or equal to
n_factors = #.

discriminant_analysis
Performs a linear or a quadratic discriminant function analysis among several
known groups.

Synopsis

#include <imsls.h>
void imsls_f_discriminant_analysis (int n_rows, int n_variables,

float *x, int n_groups, ..., 0)

The type double function is imsls_d_discriminant_analysis.

Required Arguments

int n_rows (Input)
Number of rows of x to be processed.

int n_variables (Input)
Number of variables to be used in the discrimination.

float *x (Input)
Array of size n_rows by n_variables + 1 containing the data. The
first n_variables columns correspond to the variables, and the last
column (column n_variables) contains the group numbers. The
groups must be numbered 1, 2, ..., n_groups.

int n_groups (Input)
Number of groups in the data.

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_f_discriminant_analysis (int n_rows, int n_variables,
float *x, int n_groups,

Chapter 9: Multivariate Analysis discriminant_analysis � 629

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,
IMSLS_METHOD, int method,
IMSLS_IDO, int ido,
IMSLS_ROWS_ADD,
IMSLS_ROWS_DELETE,
IMSLS_PRIOR_EQUAL,
IMSLS_PRIOR_PROPORTIONAL,
IMSLS_PRIOR_INPUT, float prior_input[],
IMSLS_PRIOR_OUTPUT, float **prior_output
IMSLS_PRIOR_OUTPUT_USER, float prior_output[]
IMSLS_GROUP_COUNTS, int **gcounts,
IMSLS_GROUP_COUNTS_USER, int gcounts[]
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_COV, float **covariances,
IMSLS_COV_USER, float covariances[],
IMSLS_COEF, float **coefficients
IMSLS_COEF_USER, float coefficients[],
IMSLS_CLASS_MEMBERSHIP, int **class_membership,
IMSLS_CLASS_MEMBERSHIP_USER, int class_membership[],
IMSLS_CLASS_TABLE, float **class_table,
IMSLS_CLASS_TABLE_USER, float class_table[],
IMSLS_PROB, float **prob,
IMSLS_PROB_USER, float prob[],
IMSLS_MAHALANOBIS, float **d2,
IMSLS_MAHALANOBIS_USER, float d2[],
IMSLS_STATS, float **stats,
IMSLS_STATS_USER, float stats[],
IMSLS_N_ROWS_MISSING, int *nrmiss,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of array x.
Default: x_col_dim = n_variables + 1

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt (Input)
Each of the four arguments contains indices indicating column numbers
of x in which particular types of data are stored. Columns are numbered
0 � x_col_dim � 1.

Parameter igrp contains the index for the column of x in which the
group numbers are stored.

Parameter ind contains the indices of the variables to be used in the
analysis.

630 � discriminant_analysis IMSL C/Stat/Library

Parameters ifrq and iwt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Set ifrq = �1 if there
will be no column for frequencies. Set iwt = �1 if there will be no
column for weights. Weights are rounded to the nearest integer.
Negative weights are not allowed.

Defaults: igrp = n_variables, ind[] = 0, 1, ..., n_variables � 1,
ifrq = �1, and iwt = �1

IMSLS_METHOD, int method (Input)
Method of discrimination. The method chosen determines whether linear
or quadratic discrimination is used, whether the group covariance
matrices are computed (the pooled covariance matrix is always
computed), and whether the leaving-out-one or the reclassification
method is used to classify each observation.

method discrimination
method

covariances
computed

classification
method

1 linear pooled, group reclassification
2 quadratic pooled, group reclassification
3 linear pooled reclassification
4 linear pooled, group leaving-out-one
5 quadratic pooled, group leaving-out-one
6 linear pooled leaving-out-one

In the leaving-out-one method of classification, the posterior
probabilities are adjusted so as to eliminate the effect of the observation
from the sample statistics prior to its classification. In the classification
method, the effect of the observation is not eliminated from the
classification function.

When optional argument IMSLS_IDO is specified, the following rules
for mixing methods apply; Methods 1, 2, 4, and 5 can be intermixed, as
can methods 3 and 6. Methods 1, 2, 4, and 5 cannot be intermixed with
methods 3 and 6.

Default: method = 1

IMSLS_IDO, int ido (Input)
Processing option. See Comments 3 and 4 for more information.

ido Action
0 This is the only invocation; all the data are input at once.

(Default)
1 This is the first invocation with this data; additional calls will

be made. Initialization and updating for the n_rows
observations of x will be performed.

Chapter 9: Multivariate Analysis discriminant_analysis � 631

ido Action
2 This is an intermediate invocation; updating for the n_rows

observations of x will be performed.
3 All statistics are updated for the n_rows observations. The

discriminant functions and other statistics are computed.
4 The discriminant functions are used to classify each of the

n_rows observations of x.
5 The covariance matrices are computed, and workspace is

released. No further call to discriminant_analysis with
ido greater than 1 should be made without first calling
discriminant_analysis with ido = 1.

6 Workspace is released. No further calls to
discriminant_analysis with ido greater than 1 should be
made without first calling discriminant_analysis with
ido = 1. Invocation with this option is not required if a call has
already been made with ido = 5.

Default: ido = 0
IMSLS_ROWS_ADD, or
IMSLS_ROWS_DELETE (Input)

By default (or if IMSLS_ROWS_ADD is specified), then the observations
in x are added to the discriminant statistics. If IMSLS_ROWS_DELETE is
specified, then the observations are deleted.

If ido = 0, these optional arguments are ignored (data is always added if
there is only one invocation).

IMSLS_PRIOR_EQUAL, or
IMSLS_PRIOR_PROPORTIONAL, or
IMSLS_PRIOR_INPUT, float prior_input[] (Input)

By default, (or if IMSLS_PRIOR_EQUAL is specified), equal prior
probabilities are calculated as 1.0/n_groups.

If IMSLS_PRIOR_PROPORTIONAL is specified, prior probabilities are
calculated to be proportional to the sample size in each group.

If IMSLS_PRIOR_INPUT is specified, then array prior_input is an
array of length n_groups containing the prior probabilities for each
group, such that the sum of all prior probabilities is equal to 1.0. Prior
probabilities are not used if ido is equal to 1, 2, 5, or 6.

IMSLS_PRIOR_OUTPUT, float **prior_output (Output)
Address of a pointer to an array of length n_groups containing the most
recently calculated or input prior probabilities. If
IMSLS_PRIOR_PROPORTIONAL is specified, every element of
prior_output is equal to �1 until a call is made with ido equal to 0 or
3, at which point the priors are calculated. Note that subsequent calls to

632 � discriminant_analysis IMSL C/Stat/Library

discriminant_analysis with IMSLS_PRIOR_PROPORTIONAL
specified, and ido not equal to 0 or 3 will result in the elements of
prior_output being reset to �1.

IMSLS_PRIOR_OUTPUT_USER, float prior_output[] (Output)
Storage for array prior_output is provided by the user. See
IMSLS_PRIOR_OUTPUT.

IMSLS_GROUP_COUNTS, int **gcounts (Output)
Address of a pointer to an integer array of length n_groups containing
the number of observations in each group. Array gcounts is updated
when ido is equal to 0, 1, or 2.

IMSLS_GROUP_COUNTS_USER, int gcounts[] (Output)
Storage for integer array gcounts is provided by the user. See
IMSLS_GROUP_COUNTS.

IMSLS_MEANS, float **means (Output)
Address of a pointer to an array of size n_groups by n_variables.
The i-th row of means contains the group i variable means. Array means
is updated when ido is equal to 0, 1, 2, or 5. The means are unscaled
until a call is made with ido = 5. where the unscaled means are
calculated as �wifi xi and the scaled means as

i i i

i i

w f x
w f

�
�

where xi is the value of the i-th observation, wi is the weight of the i-th
observation, and fi is the frequency of the i-th observation.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_COV, float **covariances (Output)
Address of a pointer to an array of size g by n variables by
n_variables containing the within-group covariance matrices
(methods 1, 2, 4, and 5 only) as the first g-1 matrices, and the pooled
covariance matrix as the g-th matrix (that is, the first
n_variables � n_variables elements comprise the group 1
covariance matrix, the next n_variables � n_variables elements
comprise the group 2 covariance, ..., and the last
n_variables � n_variables elements comprise the pooled
covariance matrix). If method is 3 or 6 then g is equal to 1. Otherwise, g
is equal to n_groups + 1. Argument cov is updated when ido is equal
to 0, 1, 2, 3, or 5.

IMSLS_COV_USER, float covariances[] (Output)
Storage for array covariances is provided by the user. See
IMSLS_COVARIANCES.

Chapter 9: Multivariate Analysis discriminant_analysis � 633

IMSLS_COEF, float **coefficients (Output)
Address of a pointer to an array of size n_groups by
(n_variables + 1) containing the linear discriminant coefficients. The
first column of coefficients contains the constant term, and the
remaining columns contain the variable coefficients. Row i � 1 of
coefficients corresponds to group i, for
i = 1, 2, ..., n_variables + 1. Array coefficients are always
computed as the linear discriminant function coefficients even when
quadratic discrimination is specified.

Array coefficients is updated when ido is equal to 0 or 3.

IMSLS_COEF_USER, float coefficients[] (Output)
Storage for array coefficients is provided by the user. See
IMSLS_COEFFICIENTS.

IMSLS_CLASS_MEMBERSHIP, int **class_membership (Output)
Address of a pointer to an integer array of length n_rows containing the
group to which the observation was classified. Array
class_membership is updated when ido is equal to 0 or 4.

If an observation has an invalid group number, frequency, or weight
when the leaving-out-one method has been specified, then the
observation is not classified and the corresponding elements of
class_membership (and prob, see IMSLS_PROB) are set to zero.

IMSLS_CLASS_MEMBERSHIP_USER, int class_membership[] (Ouput)
Storage for array class_membership is provided by the user. See
IMSLS_CLASS_MEMBERSHIP.

IMSLS_CLASS_TABLE, float **class_table (Output)
Address of a pointer to an array of size n_groups by n_groups
containing the classification table. Array class_table is updated when
ido is equal to 0, 1, or 4. Each observation that is classified and has a
group number 1.0, 2.0, ..., n_groups is entered into the table. The rows
of the table correspond to the known group membership. The columns
refer to the group to which the observation was classified. Classification
results accumulate with each call to
imsls_f_discriminant_analysis with ido equal to 4. For
example, if two calls with ido equal to 4 are made, the elements in
class_table sum to the total number of valid observations in the two
calls.

IMSLS_CLASS_TABLE_USER, float class_table[] (Output)
Storage for array class_table is provided by the user. See
IMSLS_CLASS_TABLE.

IMSLS_PROB, float **prob (Output)
Address of a pointer to an array of size n_rows by n_groups
containing the posterior probabilities for each observation. Argument
prob is updated when ido is equal to 0 or 4.

634 � discriminant_analysis IMSL C/Stat/Library

IMSLS_PROB_USER, float prob[] (Output)
Storage for array prob is provided by the user. See IMSLS_PROB.

IMSLS_MAHALANOBIS, float **d2 (Output)
Address of a pointer to an array of size n_groups by n_groups
containing the Mahalanobis distances

2
ijD

between the group means. Argument d2 is updated when ido is equal to
0 or 3.

For linear discrimination, the Mahalanobis distance is computed using
the pooled covariance matrix. Otherwise, the Mahalanobis distance

2
ijD

between group means i and j is computed using the within covariance
matrix for group i in place of the pooled covariance matrix.

IMSLS_MAHALANOBIS_USER, float d2[] (Output)
Storage for array d2 is provided by the user. See IMSLS_MAHALANOBIS.

IMSLS_STATS, float **stats (Output)
Address of a pointer to an array of length 4 + 2 � (n_groups + 1)
containing various statistics of interest. Array stats is updated when
ido is equal to 0, 1, 3, or 5. The first element of stats is the sum of the
degrees of freedom for the within-covariance matrices. The second,
third, and fourth elements of stats correspond to the chi-squared
statistic, its degrees of freedom, and the probability of a greater
chi-squared, respectively, of a test of the homogeneity of the within-
covariance matrices (not computed if method is equal to 3 or 6). The
fifth through 5 + n_groups elements of stats contain the log of the
determinants of each group’s covariance matrix (not computed if
method is equal to 3 or 6) and of the pooled covariance matrix (element
4 + n_groups). Finally, the last n_groups + 1 elements of stats
contain the sum of the weights within each group, and in the last
position, the sum of the weights in all groups.

IMSLS_STATS_USER, float stats[] (Output)
Storage for array stats is provided by the user. See
IMSLS_STATS_USER.

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Number of rows of data encountered in calls to
discriminant_analysis containing missing values (NaN) for the
classification, group, weight, and/or frequency variables. If a row of data
contains a missing value (NaN) for any of these variables, that row is
excluded from the computations.

Array nrmiss is updated when ido is equal to 0, 1, 2, or 3.

Chapter 9: Multivariate Analysis discriminant_analysis � 635

Comments
1. Common choices for the Bayesian prior probabilities are given by:

prior_input[i] = 1.0�n_groups (equal priors)
prior_input[i] = gcounts�n_rows (proportional priors)
prior_input[i] = Past history or subjective judgment.
In all cases, the priors should sum to 1.0.

2. Two passes of the data are made. In the first pass, the statistics required
to compute the discriminant functions are obtained (ido equal to 1, 2,
and 3). In the second pass, the discriminant functions are used to classify
the observations. When ido is equal to 0, all of the data are memory
resident, and both passes are made in one call to
imsls_f_discriminant_analysis. When ido > 0 (optional
argument IMSLS_IDO is specified), a third call to
imsls_f_discriminant_analysis involving no data is required
with ido equal to 5 or 6.

3. Here are a few rules and guidelines for the correct value of ido in a
series of calls:

1 Calls with ido = 0 or ido = 1 may be made at any time, subject
to rule 2. These calls indicate that a new analysis is to begin,
and therefore allocate memory and destroy all statistics from
previous calls.

2 Each series of calls to imsls_f_discriminant_analysis
which begins with ido = 1 must end with ido equal to 5 or 6 to
ensure the proper release of workspace, subject to rule 3.

3 ido may not be 4 or 5 before a call with ido = 3 has been
made.

4 ido may not be 2, 3, 4, 5, or 6
a) Immediately after a call with ido = 0.
b) Before a call with ido = 1 has been made.
c) Immediately after a call with ido equal to 5 or 6 has been
made.

The following is a valid sequence of ido’s:

ido Explanation
0 Data Set A: Perform a complete analysis. All data to be used in the

analysis must be present in x. Since cleanup of workspace is automatic
for ido = 0, no further calls are necessary.

1 Data Set B: Begin analysis. The n_rows observations in x are used for
initialization.

2 Data Set B: Continue analysis. New observations placed in x are added
to (or deleted from, see IMSLS_ROWS_DELETE) the analysis.

636 � discriminant_analysis IMSL C/Stat/Library

ido Explanation
2 Data Set B: Continue analysis. n_rows new observations placed in x

are added to (or deleted from, see IMSLS_ROWS_DELETE) the analysis.
3 Data Set B: Continue analysis. n_rows new observations are added (or

deleted) and discriminant functions and other statistics are computed.
4 Data Set B: Classification of each of the n_rows observations in the

current x matrix.
5 Data Set B: End analysis. Covariance matrices are computed and

workspace is released. This analysis could also have been ended by
choosing ido = 6

1 Data Set C: Begin analysis. Note that for this call to be valid the
previous call must have been made with ido equal to 5 or 6.

3 Data Set C: Continue analysis.
4 Data Set C: Continue analysis.
3 Data Set C: Continue analysis.
6 Data Set C: End analysis.

4. Because of the internal workspace allocation and saved variables,
function imsls_f_discriminant_analysis must complete the
analysis of a data set before beginning processing of the next data set.

Return Value
The return value is void.

Description
Function imsls_f_discriminant_analysis performs discriminant function
analysis using either linear or quadratic discrimination. The output includes a
measure of distance between the groups, a table summarizing the classification
results, a matrix containing the posterior probabilities of group membership for
each observation, and the within-sample means and covariance matrices. The
linear discriminant function coefficients are also computed.

By default (or if optional argument IMSLS_IDO is specified with ido = 0) all
observations are input during one call, a method of operation that has the
advantage of simplicity. Alternatively, one or more rows of observations can be
input during separate calls. This method does not require that all observations be
memory resident, a significant advantage with large data sets. Note, however, that
the algorithm requires two passes of the data. During the first pass the
discriminant functions are computed while in the second pass, the observations
are classified. Thus, with the second method of operation, the data will usually
need to be input twice.

Chapter 9: Multivariate Analysis discriminant_analysis � 637

Because both methods result in the same operations being performed, the
algorithm is discussed as if only a few observations are input during each call.
The operations performed during each call depend upon the ido parameter.

The ido = 1 step is the initialization step. “Private” internally allocated saved
variables corresponding to means, class_table, and covariances are
initialized to zero, and other program parameters are set (copies of these private
variables are written to the corresponding output variables upon return from the
function call, assuming ido values such that the results are to be returned).
Parameters n_rows, x, and method can be changed from one call to the next
within the two sets {1, 2, 4, 5} and {3, 6} but not between these sets when
ido > 1. That is, do not specify method = 1 in one call and method = 3 in
another call without first making a call with ido = 1.

After initialization has been performed in the ido = 1 step, the within-group
means are updated for all valid observations in x. Observations with invalid
group numbers are ignored, as are observation with missing values. The LU
factorization of the covariance matrices are updated by adding (or deleting)
observations via Givens rotations.

The ido = 2 step is used solely for adding or deleting observations from the
model as in the above paragraph.

The ido = 3 step begins by adding all observations in x to the means and the
factorizations of the covariance matrices. It continues by computing some
statistics of interest: the linear discriminant functions, the prior probabilities (by
default, or if IMSLS_PROPORTIONAL_PRIORS is specified), the log of the
determinant of each of the covariance matrices, a test statistic for testing that all
of the within-group covariance matrices are equal, and a matrix of Mahalanobis
distances between the groups. The matrix of Mahalanobis distances is computed
via the pooled covariance matrix when linear discrimination is specified; the row
covariance matrix is used when the discrimination is quadratic.

Covariance matrices are defined as follows: Let Ni denote the sum of the
frequencies of the observations in group i and Mi denote the number of
observations in group i. Then, if Si denotes the within-group i covariance matrix,

� �� �
1

1
1

iM
T

i j j j j
ji

S w f x x x
N

�

� �

�

� x�

Where wj is the weight of the j-th observation in group i, fj is the frequency, xj is
the j-th observation column vector (in group i), and x denotes the mean vector of
the observations in group i. The mean vectors are computed as

1 1

1() where
i iM M

j j j i j j
j ji

x w f x W
W

� �

� �� �w f

Given the means and the covariance matrices, the linear discriminant function for
group i is computed as:

� � 1 1ln 0.5 T T
i i i p i p iz p x S x x S� �

� � � x

638 � discriminant_analysis IMSL C/Stat/Library

where ln (pi) is the natural log of the prior probability for the i-th group, x is the
observation to be classified, and Sp denoted the pooled covariance matrix.

Let S denote either the pooled covariance matrix of one of the within-group
covariance matrices Si. (S will be the pooled covariance matrix in linear
discrimination, and Si otherwise.) The Mahalanobis distance between group i and
group j is computed as:

� � � �2 1T

ij i j i jD x x S x x�� � �

Finally, the asymptotic chi-squared test for the equality of covariance matrices is
computed as follows (Morrison 1976, p. 252):

� � � �� �1

1
ln ln

k

i p i
i

C n S S�
�

�

� ��

where ni is the number of degrees of freedom in the i-th sample covariance
matrix, k is the number of groups, and

� �� �

2
1

1

1 2 3 1 1 1
6 1 1

k

i i j
j

p pC
p k n

�

�

� �� � �
� �� �
� �� �
� 	
�

� n

where p is the number of variables.

When ido = 4, the estimated posterior probability of each observation x
belonging to group is computed using the prior probabilities and the sample mean
vectors and estimated covariance matrices under a multivariate normal
assumption. Under quadratic discrimination, the within-group covariance
matrices are used to compute the estimated posterior probabilities. The estimated
posterior probability of an observation x belonging to group i is

� �
� �� �

� �� �

2

2

1

exp 0.5
ˆ

exp 0.5

i
i k

j
j

D x
q x

D x
�

�
�

��

where

� �
� � � � � �

� � � � � �

1
2

1

METHOD 1 or 2

METHOD 3

ln 2ln

2 ln

T
i i i i i

i T
i p i i

x x S x x S p
D x

x x S x x p

�

�

�

�

� � � � ��
� �

� � ���

For the leaving-out-one method of classification (method equal to 4, 5 or 6), the
sample mean vector and sample covariance matrices in the formula for

2
iD

are adjusted so as to remove the observation x from their computation. For linear
discrimination (method equal to 1, 2, 4, or 6), the linear discriminant function
coefficients are actually used to compute the same posterior probabilities.

Chapter 9: Multivariate Analysis discriminant_analysis � 639

Using the posterior probabilities, each observation in x is classified into a group;
the result is tabulated in the matrix class_table and saved in the vector
class_membership. Matrix class_table is not altered at this stage if
x[i][x_group] (by default, x_igrp = 0; see optional argument
IMSLS_INDICES) contains a group number that is out of range. If the reclas-
sification method is specified, then all observations with no missing values in the
n_variables classification variables are classified. When the leaving-out-one
method is used, observations with invalid group numbers, weights, frequencies, or
classification variables are not classified. Regardless of the frequency, a 1 is
added (or subtracted) from class_table for each row of x that is classified and
contains a valid group number.

When method > 3, adjustment is made to the posterior probabilities to remove
the effect of the observation in the classification rule. In this adjustment, each
observation is presumed to have a weight of x[i][iwt] if
iwt > �1 (and a weight of 1.0 if iwt = �1), and a frequency of 1.0. See
Lachenbruch (1975, p. 36) for the required adjustment.

Finally, when ido = 5, the covariance matrices are computed from their LU
factorizations. Internally allocated and saved variables are cleaned up at this step
(ido equal to 5 or 6).

Example 1
The following example uses liner discrimination with equal prior probabilities on
Fisher’s (1936) iris data. This example illustrates the execution of
imsls_f_discriminant_analysis when one call is made (i.e. using the
default of ido = 0).

#include <stdio.h>
#include <stdlib.h>
#include <imsls.h>

main() {
 int n_groups = 3;
 int nrow, nvar, ncol, nrmiss;
 float *x, *xtemp;
 float *prior_out, *means, *cov, *coef;
 float *table, *d2, *stats, *prob;
 int *counts, *cm;
 static int perm[5] = {1, 2, 3, 4, 0};

 /* Retrieve the Fisher Iris Data Set */
 xtemp = imsls_f_data_sets(3, IMSLS_N_OBSERVATIONS, &nrow,
 IMSLS_N_VARIABLES, &ncol, 0);
 nvar = ncol - 1;

 /* Move the group column to end of the the matrix */
 x = imsls_f_permute_matrix(nrow, ncol, xtemp, perm,
 IMSLS_PERMUTE_COLUMNS, 0);
 free(xtemp);

 imsls_f_discriminant_analysis (nrow, nvar, x, n_groups,
 IMSLS_METHOD, 3,

640 � discriminant_analysis IMSL C/Stat/Library

 IMSLS_GROUP_COUNTS, &counts,
 IMSLS_COEF, &coef,
 IMSLS_MEANS, &means,
 IMSLS_STATS, &stats,
 IMSLS_CLASS_MEMBERSHIP, &cm,
 IMSLS_CLASS_TABLE, &table,
 IMSLS_PROB, &prob,
 IMSLS_MAHALANOBIS, &d2,
 IMSLS_COV, &cov,
 IMSLS_PRIOR_OUTPUT, &prior_out,
 IMSLS_N_ROWS_MISSING, &nrmiss,
 IMSLS_PRIOR_EQUAL,
 IMSLS_METHOD, 3, 0);

 imsls_i_write_matrix("Counts", 1, n_groups, counts, 0);
 imsls_f_write_matrix("Coef", n_groups, nvar+1, coef, 0);
 imsls_f_write_matrix("Means", n_groups, nvar, means, 0);
 imsls_f_write_matrix("Stats", 12, 1, stats, 0);
 imsls_i_write_matrix("Membership", 1, nrow, cm, 0);
 imsls_f_write_matrix("Table", n_groups, n_groups, table, 0);
 imsls_f_write_matrix("Prob", nrow, n_groups, prob, 0);
 imsls_f_write_matrix("D2", n_groups, n_groups, d2, 0);
 imsls_f_write_matrix("Covariance", nvar, nvar, cov, 0);
 imsls_f_write_matrix("Prior OUT", 1, n_groups, prior_out, 0);
 printf("\nnrmiss = %3d\n", nrmiss);

 free(means);
 free(stats);
 free(counts);
 free(coef);
 free(cm);
 free(table);
 free(prob);
 free(d2);
 free(prior_out);
 free(cov);
}

Output
 Counts
 1 2 3
 50 50 50

 Coef
 1 2 3 4 5
1 -86.3 23.5 23.6 -16.4 -17.4
2 -72.9 15.7 7.1 5.2 6.4
3 -104.4 12.4 3.7 12.8 21.1

 Means
 1 2 3 4
1 5.006 3.428 1.462 0.246
2 5.936 2.770 4.260 1.326
3 6.588 2.974 5.552 2.026

 Stats
 1 147
 2
 3

Chapter 9: Multivariate Analysis discriminant_analysis � 641

 4
 5
 6
 7
 8 -10
 9 50
10 50
11 50
12 150

 Membership
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 1

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3

148 149 150
 3 3 3

 Table
 1 2 3
1 50 0 0
2 0 48 2
3 0 1 49

 Prob
 1 2 3
 1 1.000 0.000 0.000
 2 1.000 0.000 0.000
 3 1.000 0.000 0.000
 4 1.000 0.000 0.000
 5 1.000 0.000 0.000
 6 1.000 0.000 0.000
 7 1.000 0.000 0.000
 8 1.000 0.000 0.000
 9 1.000 0.000 0.000
 10 1.000 0.000 0.000
 11 1.000 0.000 0.000
 12 1.000 0.000 0.000
 13 1.000 0.000 0.000

642 � discriminant_analysis IMSL C/Stat/Library

 14 1.000 0.000 0.000
 15 1.000 0.000 0.000
 16 1.000 0.000 0.000
 17 1.000 0.000 0.000
 18 1.000 0.000 0.000
 19 1.000 0.000 0.000
 20 1.000 0.000 0.000
 21 1.000 0.000 0.000
 22 1.000 0.000 0.000
 23 1.000 0.000 0.000
 24 1.000 0.000 0.000
 25 1.000 0.000 0.000
 26 1.000 0.000 0.000
 27 1.000 0.000 0.000
 28 1.000 0.000 0.000
 29 1.000 0.000 0.000
 30 1.000 0.000 0.000
 31 1.000 0.000 0.000
 32 1.000 0.000 0.000
 33 1.000 0.000 0.000
 34 1.000 0.000 0.000
 35 1.000 0.000 0.000
 36 1.000 0.000 0.000
 37 1.000 0.000 0.000
 38 1.000 0.000 0.000
 39 1.000 0.000 0.000
 40 1.000 0.000 0.000
 41 1.000 0.000 0.000
 42 1.000 0.000 0.000
 43 1.000 0.000 0.000
 44 1.000 0.000 0.000
 45 1.000 0.000 0.000
 46 1.000 0.000 0.000
 47 1.000 0.000 0.000
 48 1.000 0.000 0.000
 49 1.000 0.000 0.000
 50 1.000 0.000 0.000
 51 0.000 1.000 0.000
 52 0.000 0.999 0.001
 53 0.000 0.996 0.004
 54 0.000 1.000 0.000
 55 0.000 0.996 0.004
 56 0.000 0.999 0.001
 57 0.000 0.986 0.014
 58 0.000 1.000 0.000
 59 0.000 1.000 0.000
 60 0.000 1.000 0.000
 61 0.000 1.000 0.000
 62 0.000 0.999 0.001
 63 0.000 1.000 0.000
 64 0.000 0.994 0.006
 65 0.000 1.000 0.000
 66 0.000 1.000 0.000
 67 0.000 0.981 0.019
 68 0.000 1.000 0.000
 69 0.000 0.960 0.040
 70 0.000 1.000 0.000
 71 0.000 0.253 0.747
 72 0.000 1.000 0.000

Chapter 9: Multivariate Analysis discriminant_analysis � 643

 73 0.000 0.816 0.184
 74 0.000 1.000 0.000
 75 0.000 1.000 0.000
 76 0.000 1.000 0.000
 77 0.000 0.998 0.002
 78 0.000 0.689 0.311
 79 0.000 0.993 0.007
 80 0.000 1.000 0.000
 81 0.000 1.000 0.000
 82 0.000 1.000 0.000
 83 0.000 1.000 0.000
 84 0.000 0.143 0.857
 85 0.000 0.964 0.036
 86 0.000 0.994 0.006
 87 0.000 0.998 0.002
 88 0.000 0.999 0.001
 89 0.000 1.000 0.000
 90 0.000 1.000 0.000
 91 0.000 0.999 0.001
 92 0.000 0.998 0.002
 93 0.000 1.000 0.000
 94 0.000 1.000 0.000
 95 0.000 1.000 0.000
 96 0.000 1.000 0.000
 97 0.000 1.000 0.000
 98 0.000 1.000 0.000
 99 0.000 1.000 0.000
100 0.000 1.000 0.000
101 0.000 0.000 1.000
102 0.000 0.001 0.999
103 0.000 0.000 1.000
104 0.000 0.001 0.999
105 0.000 0.000 1.000
106 0.000 0.000 1.000
107 0.000 0.049 0.951
108 0.000 0.000 1.000
109 0.000 0.000 1.000
110 0.000 0.000 1.000
111 0.000 0.013 0.987
112 0.000 0.002 0.998
113 0.000 0.000 1.000
114 0.000 0.000 1.000
115 0.000 0.000 1.000
116 0.000 0.000 1.000
117 0.000 0.006 0.994
118 0.000 0.000 1.000
119 0.000 0.000 1.000
120 0.000 0.221 0.779
121 0.000 0.000 1.000
122 0.000 0.001 0.999
123 0.000 0.000 1.000
124 0.000 0.097 0.903
125 0.000 0.000 1.000
126 0.000 0.003 0.997
127 0.000 0.188 0.812
128 0.000 0.134 0.866
129 0.000 0.000 1.000
130 0.000 0.104 0.896
131 0.000 0.000 1.000

644 � discriminant_analysis IMSL C/Stat/Library

132 0.000 0.001 0.999
133 0.000 0.000 1.000
134 0.000 0.729 0.271
135 0.000 0.066 0.934
136 0.000 0.000 1.000
137 0.000 0.000 1.000
138 0.000 0.006 0.994
139 0.000 0.193 0.807
140 0.000 0.001 0.999
141 0.000 0.000 1.000
142 0.000 0.000 1.000
143 0.000 0.001 0.999
144 0.000 0.000 1.000
145 0.000 0.000 1.000
146 0.000 0.000 1.000
147 0.000 0.006 0.994
148 0.000 0.003 0.997
149 0.000 0.000 1.000
150 0.000 0.018 0.982

 D2
 1 2 3
1 0.0 89.9 179.4
2 89.9 0.0 17.2
3 179.4 17.2 0.0

 Covariance
 1 2 3 4
1 0.2650 0.0927 0.1675 0.0384
2 0.0927 0.1154 0.0552 0.0327
3 0.1675 0.0552 0.1852 0.0427
4 0.0384 0.0327 0.0427 0.0419

 Prior OUT
 1 2 3
 0.3333 0.3333 0.3333

nrmiss = 0

Example 2
Continuing with Fisher’s iris data, the example below computes the quadratic
discriminant functions using values of IDO greater than 0. In the first loop, all
observations are added to the functions, one at a time. In the second loop, each of
the observations is classified, one by one, using the leaving-out-one method.

#include <stdio.h>
#include <stdlib.h>
#include <imsls.h>

main() {
 int n_groups = 3;
 int nrow, nvar, ncol, i, nrmiss;
 float *x, *xtemp;
 float *prior_out, *means, *cov, *coef;
 float *table, *d2, *stats, *prob;
 int *counts, *cm;
 static int perm[5] = {1, 2, 3, 4, 0};

Chapter 9: Multivariate Analysis discriminant_analysis � 645

 /* Retrieve the Fisher Iris Data Set */
 xtemp = imsls_f_data_sets(3, IMSLS_N_OBSERVATIONS, &nrow,
 IMSLS_N_VARIABLES, &ncol, 0);
 nvar = ncol - 1;

 /* Move the group column to end of the the matrix */
 x = imsls_f_permute_matrix(nrow, ncol, xtemp, perm,
 IMSLS_PERMUTE_COLUMNS, 0);
 free(xtemp);

 prior_out = (float *) malloc(n_groups*sizeof(float));
 counts = (int *) malloc(n_groups*sizeof(int));
 means = (float *) malloc(n_groups*nvar*sizeof(float));
 cov = (float *) malloc(nvar*nvar*(ngroups+1)*sizeof(float));
 coef = (float *) malloc(n_groups*(nvar+1)*sizeof(float));
 table = (float *) malloc(n_groups*n_groups*sizeof(float));
 d2 = (float *) malloc(n_groups*n_groups*sizeof(float));
 stats = (float *) malloc((4+2*(n_groups+1))*sizeof(float));
 cm = (int *) malloc(nrow*sizeof(int));
 prob = (float *) malloc(nrow*n_groups*sizeof(float));

 /*Initialize Analysis*/
 imsls_f_discriminant_analysis (0, nvar, x, n_groups,
 IMSLS_IDO, 1,
 IMSLS_METHOD, 2, 0);

 /*Add In Each Observation*/
 for (i=0;i<nrow;i=i+1) {
 imsls_f_discriminant_analysis (1, nvar, (x+i*ncol), n_groups,
 IMSLS_IDO, 2, 0);
 }

 /*Remove observation 0 from the analysis */
 imsls_f_discriminant_analysis (1, nvar, (x+0), n_groups,
 IMSLS_ROWS_DELETE,
 IMSLS_IDO, 2, 0);

 /*Add observation 0 back into the analysis */
 imsls_f_discriminant_analysis (1, nvar, (x+0), n_groups,
 IMSLS_IDO, 2, 0);

 /*Compute statistics*/
 imsls_f_discriminant_analysis (0, nvar, x, n_groups,
 IMSLS_PRIOR_PROPORTIONAL,
 IMSLS_PRIOR_OUTPUT_USER, prior_out,
 IMSLS_IDO, 3, 0);

 imsls_f_write_matrix("Prior OUT", 1, n_groups, prior_out, 0);

 /*Classify One observation at a time, using proportional priors*/
 for (i=0;i<nrow;i=i+1) {
 imsls_f_discriminant_analysis (1, nvar, (x+i*ncol), n_groups,
 IMSLS_IDO, 4,
 IMSLS_CLASS_MEMBERSHIP_USER, (cm+i),
 IMSLS_PROB_USER, (prob+i*n_groups), 0);
 }

 /*Compute covariance matrices and release internal workspace*/

646 � discriminant_analysis IMSL C/Stat/Library

 imsls_f_discriminant_analysis (0, nvar, x, n_groups,
 IMSLS_IDO, 5,
 IMSLS_COV_USER, cov,
 IMSLS_GROUP_COUNTS_USER, counts,
 IMSLS_COEF_USER, coef,
 IMSLS_MEANS_USER, means,
 IMSLS_STATS_USER, stats,
 IMSLS_CLASS_TABLE_USER, table,
 IMSLS_MAHALANOBIS_USER, d2,
 IMSLS_N_ROWS_MISSING, &nrmiss, 0);

 imsls_i_write_matrix("Counts", 1, n_groups, counts, 0);
 imsls_f_write_matrix("Coef", n_groups, nvar+1, coef, 0);
 imsls_f_write_matrix("Means", n_groups, nvar, means, 0);
 imsls_f_write_matrix("Stats", 12, 1, stats, 0);
 imsls_i_write_matrix("Membership", 1, nrow, cm, 0);
 imsls_f_write_matrix("Table", n_groups, n_groups, table, 0);
 imsls_f_write_matrix("Prob", nrow, n_groups, prob, 0);
 imsls_f_write_matrix("D2", n_groups, n_groups, d2, 0);
 imsls_f_write_matrix("Covariance", nvar, nvar, cov, 0);
 printf("\nnrmiss = %3d\n", nrmiss);

 free(means);
 free(stats);
 free(counts);
 free(coef);
 free(cm);
 free(table);
 free(prob);
 free(d2);
 free(prior_out);
 free(cov);

}

Output
 Prior OUT
 1 2 3
 0.3333 0.3333 0.3333

 Counts
 1 2 3
 50 50 50

 Coef
 1 2 3 4 5
1 -86.3 23.5 23.6 -16.4 -17.4
2 -72.9 15.7 7.1 5.2 6.4
3 -104.4 12.4 3.7 12.8 21.1

 Means
 1 2 3 4
1 5.006 3.428 1.462 0.246
2 5.936 2.770 4.260 1.326
3 6.588 2.974 5.552 2.026

 Stats
 1 147.0

Chapter 9: Multivariate Analysis discriminant_analysis � 647

 2 143.8
 3 20.0
 4 0.0
 5 -13.1
 6 -10.9
 7 -8.9
 8 -10.0
 9 50.0
10 50.0
11 50.0
12 150.0

 Membership
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 1

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3

148 149 150
 3 3 3

 Table
 1 2 3
1 50 0 0
2 0 48 2
3 0 1 49

 Prob
 1 2 3
 1 1.000 0.000 0.000
 2 1.000 0.000 0.000
 3 1.000 0.000 0.000
 4 1.000 0.000 0.000
 5 1.000 0.000 0.000
 6 1.000 0.000 0.000
 7 1.000 0.000 0.000
 8 1.000 0.000 0.000
 9 1.000 0.000 0.000
 10 1.000 0.000 0.000
 11 1.000 0.000 0.000

648 � discriminant_analysis IMSL C/Stat/Library

 12 1.000 0.000 0.000
 13 1.000 0.000 0.000
 14 1.000 0.000 0.000
 15 1.000 0.000 0.000
 16 1.000 0.000 0.000
 17 1.000 0.000 0.000
 18 1.000 0.000 0.000
 19 1.000 0.000 0.000
 20 1.000 0.000 0.000
 21 1.000 0.000 0.000
 22 1.000 0.000 0.000
 23 1.000 0.000 0.000
 24 1.000 0.000 0.000
 25 1.000 0.000 0.000
 26 1.000 0.000 0.000
 27 1.000 0.000 0.000
 28 1.000 0.000 0.000
 29 1.000 0.000 0.000
 30 1.000 0.000 0.000
 31 1.000 0.000 0.000
 32 1.000 0.000 0.000
 33 1.000 0.000 0.000
 34 1.000 0.000 0.000
 35 1.000 0.000 0.000
 36 1.000 0.000 0.000
 37 1.000 0.000 0.000
 38 1.000 0.000 0.000
 39 1.000 0.000 0.000
 40 1.000 0.000 0.000
 41 1.000 0.000 0.000
 42 1.000 0.000 0.000
 43 1.000 0.000 0.000
 44 1.000 0.000 0.000
 45 1.000 0.000 0.000
 46 1.000 0.000 0.000
 47 1.000 0.000 0.000
 48 1.000 0.000 0.000
 49 1.000 0.000 0.000
 50 1.000 0.000 0.000
 51 0.000 1.000 0.000
 52 0.000 1.000 0.000
 53 0.000 0.998 0.002
 54 0.000 0.997 0.003
 55 0.000 0.997 0.003
 56 0.000 0.989 0.011
 57 0.000 0.995 0.005
 58 0.000 1.000 0.000
 59 0.000 1.000 0.000
 60 0.000 0.994 0.006
 61 0.000 1.000 0.000
 62 0.000 0.999 0.001
 63 0.000 1.000 0.000
 64 0.000 0.988 0.012
 65 0.000 1.000 0.000
 66 0.000 1.000 0.000
 67 0.000 0.973 0.027
 68 0.000 1.000 0.000
 69 0.000 0.813 0.187
 70 0.000 1.000 0.000

Chapter 9: Multivariate Analysis discriminant_analysis � 649

 71 0.000 0.336 0.664
 72 0.000 1.000 0.000
 73 0.000 0.699 0.301
 74 0.000 0.972 0.028
 75 0.000 1.000 0.000
 76 0.000 1.000 0.000
 77 0.000 0.998 0.002
 78 0.000 0.861 0.139
 79 0.000 0.992 0.008
 80 0.000 1.000 0.000
 81 0.000 1.000 0.000
 82 0.000 1.000 0.000
 83 0.000 1.000 0.000
 84 0.000 0.154 0.846
 85 0.000 0.943 0.057
 86 0.000 0.996 0.004
 87 0.000 0.999 0.001
 88 0.000 0.999 0.001
 89 0.000 1.000 0.000
 90 0.000 0.999 0.001
 91 0.000 0.981 0.019
 92 0.000 0.997 0.003
 93 0.000 1.000 0.000
 94 0.000 1.000 0.000
 95 0.000 0.999 0.001
 96 0.000 1.000 0.000
 97 0.000 1.000 0.000
 98 0.000 1.000 0.000
 99 0.000 1.000 0.000
100 0.000 1.000 0.000
101 0.000 0.000 1.000
102 0.000 0.000 1.000
103 0.000 0.000 1.000
104 0.000 0.006 0.994
105 0.000 0.000 1.000
106 0.000 0.000 1.000
107 0.000 0.004 0.996
108 0.000 0.000 1.000
109 0.000 0.000 1.000
110 0.000 0.000 1.000
111 0.000 0.006 0.994
112 0.000 0.001 0.999
113 0.000 0.000 1.000
114 0.000 0.000 1.000
115 0.000 0.000 1.000
116 0.000 0.000 1.000
117 0.000 0.033 0.967
118 0.000 0.000 1.000
119 0.000 0.000 1.000
120 0.000 0.041 0.959
121 0.000 0.000 1.000
122 0.000 0.000 1.000
123 0.000 0.000 1.000
124 0.000 0.028 0.972
125 0.000 0.001 0.999
126 0.000 0.007 0.993
127 0.000 0.057 0.943
128 0.000 0.151 0.849
129 0.000 0.000 1.000

650 � discriminant_analysis IMSL C/Stat/Library

130 0.000 0.020 0.980
131 0.000 0.000 1.000
132 0.000 0.009 0.991
133 0.000 0.000 1.000
134 0.000 0.605 0.395
135 0.000 0.000 1.000
136 0.000 0.000 1.000
137 0.000 0.000 1.000
138 0.000 0.050 0.950
139 0.000 0.141 0.859
140 0.000 0.000 1.000
141 0.000 0.000 1.000
142 0.000 0.000 1.000
143 0.000 0.000 1.000
144 0.000 0.000 1.000
145 0.000 0.000 1.000
146 0.000 0.000 1.000
147 0.000 0.000 1.000
148 0.000 0.001 0.999
149 0.000 0.000 1.000
150 0.000 0.061 0.939

 D2
 1 2 3
1 0.0 323.1 706.1
2 103.2 0.0 17.9
3 168.8 13.8 0.0

 Covariance
 1 2 3 4
1 0.1242 0.0992 0.0164 0.0103
2 0.0992 0.1437 0.0117 0.0093
3 0.0164 0.0117 0.0302 0.0061
4 0.0103 0.0093 0.0061 0.0111

nrmiss = 0

Warning Errors
IMSLS_BAD_OBS_1 In call #, row # of the data matrix, “x”, has group

number = #. The group number must be an
integer between 1.0 and “n_groups” = #,
inclusively. This observation will be ignored.

IMSLS_BAD_OBS_2 The leaving out one method is specified but this
observation does not have a valid group number
(Its group number is #.). This observation (row
#) is ignored.

IMSLS_BAD_OBS_3 The leaving out one method is specified but this
observation does not have a valid weight or it
does not have a valid frequency. This
observation (row #) is ignored.

Chapter 9: Multivariate Analysis discriminant_analysis � 651

IMSLS_COV_SINGULAR_3 The group # covariance matrix is singular.
“stats[1]” cannot be computed. “stats[1]” and
“stats[3]” are set to the missing value code
(NaN).

Fatal Errors
IMSLS_BAD_IDO_1 “ido” = #. Initial allocations must be performed

by making a call to discriminant_analysis with
“ido” = 1.

IMSLS_BAD_IDO_2 “ido” = #. A new analysis may not begin until the
previous analysis is terminated with “ido” equal
to 5 or 6.

IMSLS_COV_SINGULAR_1 The variance-covariance matrix for population
number # is singular. The computations cannot
continue.

IMSLS_COV_SINGULAR_2 The pooled variance-covariance matrix is
singular. The computations cannot continue.

IMSLS_COV_SINGULAR_4 A variance-covariance matrix is singular. The
index of the first zero element is equal to #.

652 � discriminant_analysis IMSL C/Stat/Library

Chapter 10: Survival and Reliability Analysis Routines � 653

Chapter 10: Survival and Reliability
Analysis

Routines
10.1 Survival Analysis

Computes Kaplan-Meier estimates of survival
probabilties..kaplan_meier_estimates 654
Analyzes survival and reliability data using Cox’s
proportional hazards model prop_hazards_gen_lin 660
Analyzes survival data using the generalized
linear model ...survival_glm 673
Estimates using various parametric modes....... survival_estimates 697

10.2 Reliability Analysis
Estimates a reliability hazard function using a
nonparametric approach.............................nonparam_hazard_rate 703

10.3 Actuarial Tables
Produces population and cohort life tableslife_tables 712

Usage Notes
The functions described in this chapter have primary application in the areas of
reliability and life testing, but they may find application in any situation in which
analysis of binomial events over time is of interest. Kalbfleisch and Prentice
(1980), Elandt-Johnson and Johnson (1980), Lee (1980), Gross and Clark (1975),
Lawless (1982), and Chiang (1968) and Tanner and Wong (1984) are references
for discussing the models and methods desribed in this chapter.
Function imsls_f_kaplan_meier_estimates (page 654) produces Kaplan-
Meier (product-limit) estimates of the survival distribution in a single population,
and these can be printed using the IMSLS_PRINT optional argument.
Function imsls_f_prop_hazards_gen_lin (page 660) computes the
parameter estimates in a proportional hazards model.

654 � kaplan_meier_estimates IMSL C/Stat/Library

Function imsls_f_survival_glm (page 673) fits any of several generalized
linear models for survival data, and imsls_f_survival_estimates (page
697) computes estimates of survival probabilities based upon the same models.
Function imsls_f_nonparam_hazard_rate (page 703) performs
nonparametric hazard rate estimation using kernel functions and quasi-
likelihoods.
Function imsls_f_life_tables (page 712) computes and (optionally) prints
an actuarial table based either upon a cohort followed over time or a cross-section
of a population.

kaplan_meier_estimates
Computes Kaplan-Meier estimates of survival probabilities in stratified samples.

Synopsis
#include <imsls.h>
float *imsls_f_kaplan_meier_estimates (int n_observations, int

ncol, float x[], ..., 0)
The type double function is imsls_d_kaplan_meier_estimates.

Required Arguments
int n_observations (Input)

Number of observations.

int ncol (Input)
Number of columns in x.

float x[] (Input)
Two-dimensional data array of size n_observations*ncol.

Return Value
Pointer to an array of length n_observations*2. The first column contains the
estimated survival probabilities, and the second column contains Greenwood’s
estimate of the standard deviation of these probabilities. If the i-th observation
contains censor codes out of range or if a variable is missing, then the
corresponding elements of the return value are set to missing (NaN, not a
number). Similarly, if an element in the return value is not defined, then it is set to
missing.

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_kaplan_meier_estimates (int n_observations, int

ncol, float x[],
IMSLS_RETURN_USER, float table[],

Chapter 10: Survival and Reliability Analysis kaplan_meier_estimates � 655

IMSLS_PRINT,
IMSLS_X_RESPONSE_COL, int irt,
IMSLS_CENSOR_CODES_COL, int icen,
IMSLS_FREQ_RESPONSE_COL_COL, int ifrq,
IMSLS_STRATUM_NUMBER_COL, int igrp,
IMSLS_SORTED,
IMSLS_N_MISSING, int *nrmiss,
0)

Optional Arguments
IMSLS_RETURN_USER, float table[] (Output)

User supplied storage of an array of length n_observations*2 containing
the estimated survival probabilities and their associated standard
deviations. See Return Value section.

IMSLS_PRINT, (Input)
Print Kaplan-Meier estimates of survival probabilities in stratified
samples.

IMSLS_X_RESPONSE_COL, int irt (Input)
Column index for the response times in the data array, x. The
interpretation of these times as either right-censored or exact failure
times depends on IMSLS_CENSOR_CODES_COL.
Default: irt = 0.

IMSLS_CENSOR_CODES_COL, int icen (Input)
Column index for the optional censoring codes in the data array, x. If
x[i, icen]= 0, the failure time x[i, irt] is treated as an exact time of
failure. Otherwise it is treated as a right-censored time.
Default: It is assumed that there is no censor code column in x. All
observations are assumed to be exact failure times.

IMSLS_FREQ_RESPONSE_COL_COL, int ifrq (Input)
Column index for the number of responses associated with each row in
the data array, x.
Default: It is assumed that there is no frequency response column in x.
Each observation in the data array is assumed to be for a single failure.

IMSLS_STRATUM_NUMBER_COL, int igrp (Input)
Column index for the stratum number for each observation in the data
array, x. Column igrp of x contains a unique value for each stratum in
the data. Kaplan-Meier estimates are computed within each stratum.
Default: It is assumed that there is no stratum number column in x. The
data is assumed to come from one stratum.

IMSLS_SORTED, (Input)
If this option is used, column irt of x is assumed to be sorted in
ascending order within each stratum. Otherwise, a detached sort is
conducted prior to analysis. If sorting is performed, all censored

656 � kaplan_meier_estimates IMSL C/Stat/Library

individuals are assumed to follow tied failures.
Default: Column irt of x is not sorted.

IMSLS_N_MISSING, int *nrmiss (Output)
Number of rows of data in x containing missing values.

Description
Function imsls_f_kaplan_meier_estimates computes Kaplan-Meier (or
product-limit) estimates of survival probabilities for a sample of failure times that
can be right censored or exact times. A survival probability S(t) is defined as
1 � F(t), where F(t) is the cumulative distribution function of the failure times (t).
Greenwood’s estimate of the standard errors of the survival probability estimates
are also computed. (See Kalbfleisch and Prentice, 1980, pages 13 and 14.)

Let (ti, �i), for i = 1,…, n denote the failure censoring times and the censoring
codes for the n observations in a single sample. Here, ti = xi-1, irt is a failure time if
�i is 0, where �i = xi-1, icen. Also, ti is a right censoring time if �i is 1. Rows in x
containing values other than 0 or 1 for �i are ignored. Let the number of
observations in the sample that have not failed by time s��� be denoted by n���,
where s��� is an ordered (from smallest to largest) listing of the distinct failure
times (censoring times are omitted). Then the Kaplan-Meier estimate of the
survival probabilities is a step function, which in the interval from s��� to s�i���
(including the lower endpoint) is given by

() ()

1 ()

ˆ()
i

j j

j j

n d
S t

n
�

� ��
� � �� �

� �
�

where d�j� denotes the number of failures occurring at time s�j�, and n��� is the
number of observation that have not failed prior tos�j�.

Note that one row of X may correspond to more than one failed (or censored)
observation when the frequency option is in effect (ifrq is specified). The
Kaplan-Meier estimate of the survival probability prior to time s��� is 1.0, while
the Kaplan-Meier estimate of the survival probability after the last failure time is
not defined.

Greenwood’s estimate of the variance of

ˆ()S t

in the interval from s�i� to s�i��� is given as

()2

1 () () ()

ˆ ˆest.var(()) ()
()

i
j

j j j j

d
S t S t

n n d
�

�

�

�

Function imsls_f_kaplan_meier_estimates computes the single sample
estimates of the survival probabilities for all samples of data included in x during
a single call. This is accomplished through the igrp column of x, which if
present, must contain a distinct code for each sample of observations. If igrp is

Chapter 10: Survival and Reliability Analysis kaplan_meier_estimates � 657

not specified, there is no grouping column, and all observations are assumed to
come from the same sample.

When failures and right-censored observations are tied and the data are to be
sorted by imsls_f_kaplan_meier_estimates (IMSLS_SORTED optional
argument is not used), imsls_f_kaplan_meier_estimates assumes that the
time of censoring for the tied-censored observations is immediately after the tied
failure (within the same sample). When the IMSLS_SORTED optional argument is
used, the data are assumed to be sorted from smallest to largest according to
column irt of x within each stratum. Furthermore, a small increment of time is
assumed (theoretically) to elapse between the failed and censored observations
that are tied (in the same sample). Thus, when the IMSLS_SORTED optional
argument is used, the user must sort all of the data in x from smallest to largest
according to column irt (and column igrp, if present). By appropriate sorting
of the observations, the user can handle censored and failed observations that are
tied in any manner desired.

The IMSLS_PRINT option prints life tables. One table for each stratum is
printed. In addition to the survival probabilities at each failure point, the
following is also printed: the number of individuals remaining at risk,
Greenwood’s estimate of the standard errors for the survival probabilities, and the
Kaplan-Meier log-likelihood. The Kaplan-Meier log-likelihood is computed as:

() () () () () () () ()ln ()ln() lnj j j j j j j
j

d d n d n d n n� � � � ��� j

where the sum is with respect to the distinct failure times s�j�, d�j� .

Example
The following example is taken from Kalbfleisch and Prentice (1980, page 1).
The first column in x contains the death/censoring times for rats suffering from
vaginal cancer. The second column contains information as to which of two forms
of treatment were provided, while the third column contains the censoring code.
Finally, the fourth column contains the frequency of each observation. The
product-limit estimates of the survival probabilities are computed for both groups
with one call to imsls_f_kaplan_meier_estimates.

Function imsls_f_kaplan_meier_estimates could have been called with
the IMSLS_SORTED optional argument if the censored observations had been
sorted with respect to the failure time variable. IMSLS_PRINT option is used to
print the life tables.

#include "imsls.h"

void main ()
{
 int icen = 2, ifrq = 3, igrp = 1, ncol = 4, n_observations = 33;
 float x[] = {
 143, 5, 0, 1,
 164, 5, 0, 1,

658 � kaplan_meier_estimates IMSL C/Stat/Library

 188, 5, 0, 2,
 190, 5, 0, 1,
 192, 5, 0, 1,
 206, 5, 0, 1,
 209, 5, 0, 1,
 213, 5, 0, 1,
 216, 5, 0, 1,
 220, 5, 0, 1,
 227, 5, 0, 1,
 230, 5, 0, 1,
 234, 5, 0, 1,
 246, 5, 0, 1,
 265, 5, 0, 1,
 304, 5, 0, 1,
 216, 5, 1, 1,
 244, 5, 1, 1,
 142, 7, 0, 1,
 156, 7, 0, 1,
 163, 7, 0, 1,
 198, 7, 0, 1,
 205, 7, 0, 1,
 232, 7, 0, 2,
 233, 7, 0, 4,
 239, 7, 0, 1,
 240, 7, 0, 1,
 261, 7, 0, 1,
 280, 7, 0, 2,
 296, 7, 0, 2,
 323, 7, 0, 1,
 204, 7, 1, 1,
 344, 7, 1, 1
 };

 imsls_f_kaplan_meier_estimates (n_observations, ncol, x,
 IMSLS_PRINT,
 IMSLS_FREQ_RESPONSE_COL_COL, ifrq,
 IMSLS_CENSOR_CODES_COL, icen,
 IMSLS_STRATUM_NUMBER_COL, igrp,
 0);
}

Output

 Kaplan Meier Survival Probabilities
 For Group Value = 5

 Number Number Survival Estimated
 at risk Failing Time Probability Std. Error
 19 1 143 0.94737 0.051228

 18 1 164 0.89474 0.070406

 17 2 188 0.78947 0.093529

 15 1 190 0.73684 0.10102

 14 1 192 0.68421 0.10664

Chapter 10: Survival and Reliability Analysis kaplan_meier_estimates � 659

 13 1 206 0.63158 0.11066

 12 1 209 0.57895 0.11327

 11 1 213 0.52632 0.11455

 10 1 216 0.47368 0.11455

 8 1 220 0.41447 0.11452

 7 1 227 0.35526 0.11243

 6 1 230 0.29605 0.10816

 5 1 234 0.23684 0.10145

 3 1 246 0.15789 0.093431

 2 1 265 0.078947 0.072792

 1 1 304 0

 Total number in group = 19
 Total number failing = 17
 Product Limit Likelihood = -49.1692

 Kaplan Meier Survival Probabilities
 For Group Value = 7

 Number Number Survival Estimated
 at risk Failing Time Probability Std. Error
 21 1 142 0.95238 0.046471

 20 1 156 0.90476 0.064056

 19 1 163 0.85714 0.07636

 18 1 198 0.80952 0.085689

 16 1 205 0.75893 0.094092

 15 2 232 0.65774 0.10529

 13 4 233 0.45536 0.11137

 9 1 239 0.40476 0.10989

 8 1 240 0.35417 0.10717

 7 1 261 0.30357 0.10311

 6 2 280 0.20238 0.090214

 4 2 296 0.10119 0.067783

 2 1 323 0.050595 0.049281

 Total number in group = 21

660 � prop_hazards_gen_lin IMSL C/Stat/Library

 Total number failing = 19
 Product Limit Likelihood = -50.4277

prop_hazards_gen_lin
Analyzes survival and reliability data using Cox’s proportional hazards model.

Synopsis
#include <imsls.h>
float *imsls_f_prop_hazards_gen_lin (int n_observations,

int n_columns, float x[], int nef, int n_var_effects[],
int indices_effects[], int max_class, int *ncoef, ..., 0)

The type double function is imsls_d_prop_hazards_gen_lin.

Required Arguments
int n_observations (Input)

Number of observations.

int n_columns (Input)
Number of columns in x.

float x[] (Input)
Array of length n_observations * n_columns containing the data.
When optional argument itie = 1, the observations in x must be
grouped by stratum and sorted from largest to smallest failure time
within each stratum, with the strata separated.

int nef (Input)
Number of effects in the model. In addition to effects involving
classification variables, simple covariates and the product of simple
covariates are also considered effects.

int n_var_effects[] (Input)
Array of length nef containing the number of variables associated with
each effect in the model.

int indices_effects[] (Input)
Index array of length n_var_effects[0] + � +
n_var_effects[nef-1] containing the column indices of x
associated with each effect. The first n_var_effects[0] elements of
indices_effects contain the column indices of x for the variables in
the first effect. The next n_var_effects[1] elements in
indices_effects contain the column indices for the second effect,
etc.

int max_class (Input)
An upper bound on the total number of different values found among the

Chapter 10: Survival and Reliability Analysis prop_hazards_gen_lin � 661

classification variables in x. For example, if the model consisted of two
class variables, one with the values {1, 2, 3, 4} and a second with the
values {0, 1}, then then the total number of different classification
values is 4+2=6, and max_class >= 6.

int *ncoef (Output)
Number of estimated coefficients in the model.

Return Value
Pointer to an array of length ncoef*4, coef, containing the parameter estimates

and associated statistics.
Column Statistic

1 Coefficient estimateβ ˆ

2 Estimated standard deviation of the estimated coefficient.
3 Asymptotic normal score for testing that the coefficient is

zero against the two-sided alternative.
4 p-value associated with the normal score in column 3.

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_prop_hazards_gen_lin (int n_observations,

int n_columns, float x[], int nef, int n_var_effects[],
int indices_effects[], int max_class, int *ncoef,
IMSLS_RETURN_USER, float cov[],
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_CONVERGENCE_EPS, float eps,
IMSLS_RATIO, float ratio,
IMSLS_X_RESPONSE_COL, int irt,
IMSLS_CENSOR_CODES_COL, int icen,
IMSLS_STRATIFICATION_COL, int istrat,
IMSLS_CONSTANT_COL, int ifix,
IMSLS_FREQ_RESPONSE_COL, int ifrq,
IMSLS_TIES_OPTION, int itie,
IMSLS_MAXIMUM_LIKELIHOOD, float algl,
IMSLS_N_MISSING, int *nrmiss,
IMSLS_STATISTICS, float **case,
IMSLS_STATISTICS_USER, float case[],
IMSLS_X_MEAN, float **xmean,
IMSLS_X_MEAN_USER, float xmean[],
IMSLS_VARIANCE_COVARIANCE_MATRIX, float **cov,
IMSLS_VARIANCE_COVARIANCE_MATRIX_USER, float cov[],
IMSLS_INITIAL_EST_INPUT, float in_coef[],
IMSLS_UPDATE, float **gr,

662 � prop_hazards_gen_lin IMSL C/Stat/Library

k

IMSLS_UPDATE_USER, float gr[],
IMSLS_DUMP, int n_class_var, int index_class_var[],
IMSLS_STRATUM_NUMBER, int **igrp,
IMSLS_STRATUM_NUMBER_USER, int igrp[],
IMSLS_CLASS_VARIABLES, int **n_class_values,
 float **class_values,
IMSLS_CLASS_VARIABLES_USER, int n_class_values[],
 float class_values[],
0)

Optional Arguments
IMSLS_RETURN_USER, float coef[] (Output)

If specified, coef is an array of length ncoef*4 containing the parameter
estimates and associated statistics. See Return Value.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option. Default: iprint = 0.

Iprint Action
0 No printing is performed.
1 Printing is performed, but observational statistics are

not printed.
2 All output statistics are printed.

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations. max_iterations = 30 will usually be
sufficient. Use max_iterations = 0 to compute the Hessian and
gradient, stored in cov and gr, at the initial estimates. When
max_iterations = 0, IMSLS_INITIAL_EST_INPUT must be used.
Default: max_iterations = 30.

IMSLS_CONVERGENCE_EPS, float eps (Input)
Convergence criterion. Convergence is assumed when the relative change
in algl from one iteration to the next is less than eps. If eps is zero,
eps = 0.0001 is assumed.
Default: eps = 0.0001.

IMSLS_RATIO, float ratio (Input)
Ratio at which a stratum is split into two strata.
Default: ratio = 1000.0.
Let

 ˆ=exp()k kr z w� �

 be the observation proportionality constant, where zk is the design row
vector for the k-th observation and wk is the optional fixed parameter
specified by xk, ifix. Let r� be the minimum value rk in a stratum,
where, for failed observations, the minimum is over all times less than or
equal to the time of occurrence of the k-th observation. Let r� be the

Chapter 10: Survival and Reliability Analysis prop_hazards_gen_lin � 663

maximum value of rk for the remaining observations in the group. Then,
if r� > ratio r�, the observations in the group are divided into two
groups at k. ratio = 1000 is usually a good value. Set ratio = �1.0 if
no division into strata is to be made.

IMSLS_X_RESPONSE_COL, int irt (Input)
Column index in x containing the response variable. For point
observations, xi, irt contains the time of the i-th event. For right-
censored observations, xi, irt contains the right-censoring time. Note that
because imsls_f_prop_hazards_gen_lin only uses the order of the
events, negative “times” are allowed.
Default: irt = 0.

IMSLS_CENSOR_CODES_COL, int icen (Input)
Column index in x containing the censoring code for each observation.
Default: A censoring code of 0 is assumed for all observations.

x
i,icen

 Censoring
0 Exact censoring time xi, irt.
1 Right censored. The exact censoring time is greater than xi, irt.

IMSLS_STRATIFICATION_COL, int istrat (Input)
Column number in x containing the stratification variable. Column
istrat in x contains a unique number for each stratum. The risk set for
an observation is determined by its stratum.
Default: All observations are considered to be in one stratum.

IMSLS_CONSTANT_COL, int ifix (Input)
Column index in x containing a constant, wi, to be added to the linear
response. The linear response is taken to be ˆ

i iw z ��
where wi is the observation constant, zi is the observation design row
vector, and �̂ is the vector of estimated parameters. The “fixed”
constant allows one to test hypotheses about parameters via the log-
likelihoods.
Default: wi is assumed to be 0 for all observations.

IMSLS_FREQ_RESPONSE_COL, int ifrq (Input)
Column index in x containing the number of responses for each
observation.
Default: A response frequency of 1 for each observation is assumed.

IMSLS_TIES_OPTION, int itie (Input)
Method for handling ties. Default: itie = 0.

664 � prop_hazards_gen_lin IMSL C/Stat/Library

Itie Method
0 Breslow’s approximate method.
1 Failures are assumed to occur in the same order as the

observations input in x. The observations in x must be sorted
from largest to smallest failure time within each stratum, and
grouped by stratum. All observations are treated as if their
failure/censoring times were distinct when computing the log-
likelihood.

IMSLS_MAXIMUM_LIKELIHOOD, float *algl (Output)
The maximized log-likelihood.

IMSLS_N_MISSING, int *nrmiss (Output)
Number of rows of data in X that contain missing values in one or more
columns irt, ifrq, ifix, icen, istrat, index_class_var, or
indices_effects of x.

IMSLS_STATISTICS, float **case (Output)
Address of a pointer to an array of length n_observations * 5
containing the case statistics for each observation.

Column Statistic
1 Estimated survival probability at the observation time.
2 Estimated observation influence or leverage.
3 A residual estimate.
4 Estimated cumulative baseline hazard rate.
5 Observation proportionality constant.

IMSLS_STATISTICS_USER, float case[] (Output)
Storage for case is provided by the user. See IMSLS_STATISTICS.

IMSLS_X_MEAN, float **xmean (Output)
Address of a pointer to an array of length ncoef containing the means of
the design variables.

IMSLS_X_MEAN_USER, float xmean[] (Output)
Storage for xmean is provided by the user. See IMSLS_X_MEAN.

IMSLS_VARIANCE_COVARIANCE_MATRIX, float **cov (Output)
Address of a pointer to an array of length ncoef*ncoef containing the
estimated asymptotic variance-covariance matrix of the parameters. For
max_iterations = 0, the return value is the inverse of the Hessian of
the negative of the log-likelihood, computed at the estimates input in
in_coef.

Chapter 10: Survival and Reliability Analysis prop_hazards_gen_lin � 665

IMSLS_VARIANCE_COVARIANCE_MATRIX_USER, float cov[] (Output)
Storage for cov is provided by the user. See
IMSLS_VARIANCE_COVARIANCE_MATRIX.

IMSLS_INITIAL_EST_INPUT, float *in_coef (Input)
An array of length ncoef containing the initial estimates on input to
prop_hazards_gen_lin.
Default: all initial estimates are taken to be 0.

IMSLS_UPDATE, float **gr (Output)
Address of a pointer to an array of length ncoef containing the last
parameter updates (excluding step halvings). For
max_iterations = 0, gr contains the inverse of the Hessian times the
gradient vector computed at the estimates input in in_coef.

IMSLS_UPDATE_USER, float gr[] (Output)
Storage for gr is provided by the user. See IMSLS_UPDATE.

IMSLS_DUMP, int n_class_var, int index_class_var[] (Input)
Variable n_class_var is the number of classification variables.
Dummy variables are generated for classification variables using the
dummy_method = IMSLS_LEAVE_OUT_LAST of the IMSLS_DUMMY
option of imsls_f_regressors_for_glm function (see Chapter 2,
Regression). Argument index_class_var is an index array of length
n_class_var containing the column numbers of x that are the
classification variables. (if n_class_var is is equal to zero,
index_class_var is not used).
Default: n_class_var = 0.

IMSLS_STRATUM_NUMBER, int **igrp (Output)
Address of a pointer to an array of length n_observations giving the
stratum number used for each observation. If ratio is not �1.0,
additional “strata” (other than those specified by column
istrat of x) may be generated. igrp also contains a record of the
generated strata. See the description section for more detail.

IMSLS_STRATUM_NUMBER_USER, int igrp[] (Output)
Storage for igrp is provided by the user. See
IMSLS_STRATUM_NUMBER.

IMSLS_CLASS_VARIABLES, int **n_class_values, float **class_values
(Output)
n_class_values is an address of a pointer to an array of length
n_class_var containing the number of values taken by each
classification variable. n_class_values[i] is the number of distinct
values for the i-th classification variable. class_values is an address
of a pointer to an array of length n_class_values[0] +
n_class_values[1] + … + n_class_values[n_class_var-1]
containing the distinct values of the classification variables. The first
n_class_values[0] elements of class_values contain the values

666 � prop_hazards_gen_lin IMSL C/Stat/Library

for the first classification variable, the next n_class_values[1]
elements contain the values for the second classification variable, etc.

IMSLS_CLASS_VARIABLES_USER, int n_class_values[], float
class_values[] (Output)
Storage for n_class_values and class_values is provided by the
user. The length of class_values will not be known in advance, use
max_class as the maximum length of class_values. See
IMSLS_CLASS_VARIABLES.

Description
Function imsls_f_prop_hazards_gen_lin computes parameter estimates
and other statistics in Proportional Hazards Generalized Linear Models. These
models were first proposed by Cox (1972). Two methods for handling ties are
allowed in imsls_f_prop_hazards_gen_lin. Time-dependent covariates are
not allowed. The user is referred to Cox and Oakes (1984), Kalbfleisch and
Prentice (1980), Elandt-Johnson and Johnson (1980), Lee (1980), or Lawless
(1982), among other texts, for a thorough discussion of the Cox proportional
hazards model.

Let �(t, zi) represent the hazard rate at time t for observation number i with
covariables contained as elements of row vector zi. The basic assumption in the
proportional hazards model (the proportionality assumption) is that the hazard
rate can be written as a product of a time varying function ��(t), which depends
only on time, and a function �(zi), which depends only on the covariable values.
The function �(zi) used in imsls_f_prop_hazards_gen_lin is given as
�(zi) = exp(wi + �zi) where wi is a fixed constant assigned to the observation, and
� is a vector of coefficients to be estimated. With this function one obtains a
hazard rate �(t, zi) = ��(t) exp(wi + �zi). The form of ��(t) is not important in
proportional hazards models.

The constants wi may be known theoretically. For example, the hazard rate may
be proportional to a known length or area, and the wi can then be determined
from this known length or area. Alternatively, the wi may be used to fix a subset
of the coefficients � (say, ��) at specified values. When wi is used in this way,
constants wi = ��z�i are used, while the remaining coefficients in � are free to
vary in the optimization algorithm. If user-specified constants are not desired, the
user should set ifix to 0 so that wi = 0 will be used.

With this definition of �(t, zi), the usual partial (or marginal, see Kalbfleisch and
Prentice (1980)) likelihood becomes

1 ()

exp()
exp()

d

i

n
i i

i j R t j j

w z
L

w z
�

�
� �

�
�

� �
�

where R(ti) denotes the set of indices of observations that have not yet failed at
time ti (the risk set), ti denotes the time of failure for the i-th observation, nd is the
total number of observations that fail. Right-censored observations (i.e.,

Chapter 10: Survival and Reliability Analysis prop_hazards_gen_lin � 667

observations that are known to have survived to time ti, but for which no time of
failure is known) are incorporated into the likelihood through the risk set R(ti).
Such observations never appear in the numerator of the likelihood. When itie =
0, all observations that are censored at time ti are not included in R(ti), while all
observations that fail at time ti are included in R(ti).

If it can be assumed that the dependence of the hazard rate upon the covariate
values remains the same from stratum to stratum, while the time-dependent term,
��(t), may be different in different strata, then
imsls_f_prop_hazards_gen_lin allows the incorporation of strata into the
likelihood as follows. Let k index the m = istrat strata. Then, the likelihood is
given by

1 1 ()

exp()
exp()

k

ki

nm
ki ki

s
k i j R t kj kj

w z
L

w z
�

�
� � �

� ��
� � �

� �� �� 	
� �

In imsls_f_prop_hazards_gen_lin, the log of the likelihood is maximized
with respect to the coefficients �. A quasi-Newton algorithm approximating the
Hessian via the matrix of sums of squares and cross products of the first partial
derivatives is used in the initial iterations (the “Q-N” method in the output).
When the change in the log-likelihood from one iteration to the next is less than
100*eps, Newton-Raphson iteration is used (the “N-R” method). If, during any
iteration, the initial step does not lead to an increase in the log-likelihood, then
step halving is employed to find a step that will increase the log-likelihood.

Once the maximum likelihood estimates have been computed,
imsls_f_prop_hazards_gen_lin computes estimates of a probability
associated with each failure. Within stratum k, an estimate of the probability that
the i-th observation fails at time ti given the risk set R(tki) is given by

()

exp()
exp()

ki

ki ki
ki

j R t kj kj

w z
p

w z
�

�
�

�
�
� �

A diagnostic “influence” or “leverage” statistic is computed for each noncensored
observation as:

1
ki ki s kil g H g�

� �� �

where Hs is the matrix of second partial derivatives of the log-likelihood, and

kig �

is computed as:

()

exp()
exp()

ki

ki ki ki
ki ki

j R t kj kj

z w z
g z

w z
�

�
�

�
� � �

� �

Influence statistics are not computed for censored observations.

668 � prop_hazards_gen_lin IMSL C/Stat/Library

A “residual” is computed for each of the input observations according to methods
given in Cox and Oakes (1984, page 108). Residuals are computed as

() ()

ˆexp() ˆexp()ki kj

kj
ki ki ki

j R t l R t kl kl

d
r w z

w z
�

��
�

� �
� �

�

where dkj is the number of tied failures in group k at time tkj. Assuming that the
proportional hazards assumption holds, the residuals should approximate a
random sample (with censoring) from the unit exponential distribution. By
subtracting the expected values, centered residuals can be obtained. (The j-th
expected order statistic from the unit exponential with censoring is given as

1
1j l j h le

� � �
� �

where h is the sample size, and censored observations are not included in the
summation.)

An estimate of the cumulative baseline hazard within group k is given as

0
()

ˆ () ˆexp()kj ki kj

kj
k ik

t t l R t kl kl

d
H t

w z ��
�

�
� �

�

The observation proportionality constant is computed as

ˆexp()ki kiw z ��

Programming Notes
1. The covariate vectors zki are computed from each row of the input matrix

x via function imsls_f_regressors_for_glm (see Chapter 2,
Regression). Thus, class variables are easily incorporated into the zki.
The reader is referred to the document for
imsls_f_regressors_for_glm in the regression chapter for a more
detailed discussion.
Note that imsls_f_prop_hazards_gen_lin calls
imsls_f_regressors_for_glm with dummy_method =
IMSLS_LEAVE_OUT_LAST of the IMSLS_DUMMY option.

2. The average of each of the explanatory variables is subtracted from the
variable prior to computing the product zki�. Subtraction of the mean
values has no effect on the computed log-likelihood or the estimates
since the constant term occurs in both the numerator and denominator of
the likelihood. Subtracting the mean values does help to avoid invalid
exponentiation in the algorithm and may also speed convergence.

3. Function imsls_f_prop_hazards_gen_lin allows for two methods
of handling ties. In the first method (itie = 1), the user is allowed to
break ties in any manner desired. When this method is used, it is
assumed that the user has sorted the rows in X from largest to smallest
with respect to the failure/censoring times xi, irt within each stratum (and

Chapter 10: Survival and Reliability Analysis prop_hazards_gen_lin � 669

across strata), with tied observations (failures or censored) broken in the
manner desired. The same effect can be obtained with itie = 0 by
adding (or subtracting) a small amount from each of the tied
observations failure/ censoring times ti = xi, irt so as to break the ties in
the desired manner.

The second method for handling ties (itie = 0) uses an approximation for the
tied likelihood proposed by Breslow (1974). The likelihood in Breslow’s method
is as specified above, with the risk set at time ti including all observations that fail
at time ti, while all observations that are censored at time ti are not included.
(Tied censored observations are assumed to be censored immediately prior to the
time ti).

4. If IMSLS_INITIAL_EST_INPUT option is used, then it is assumed that the
user has provided initial estimates for the model coefficients � in in_coef.
When initial estimates are provided by the user, care should be taken to
ensure that the estimates correspond to the generated covariate vector zki. If
IMSLS_INITIAL_EST_INPUT option is not used, then initial estimates of
zero are used for all of the coefficients. This corresponds to no effect from
any of the covariate values.

5. If a linear combination of covariates is monotonically increasing or
decreasing with increasing failure times, then one or more of the estimated
coefficients is infinite and extended maximum likelihood estimates must be
computed. Such estimates may be written as ˆ ˆ ˆf� � �� � � where � = � at the
supremum of the likelihood so that ˆ

f� is the finite part of the solution. In
imsls_f_prop_hazards_gen_lin, it is assumed that extended maximum
likelihood estimates must be computed if, within any group k, for any time t,

ˆ ˆmin exp() max exp()
ki ki

ki ki ki kit t t t
w z w z� � �

� �

� � �

where � = ratio is specified by the user. Thus, for example, if � = 10000,
then imsls_f_prop_hazards_gen_lin does not compute extended
maximum likelihood estimates until the estimated proportionality constant

ˆexp()ki kiw z ��
is 10000 times larger for all observations prior to t than for all observations
after t. When this occurs, imsls_f_prop_hazards_gen_lin computes
estimates for ˆ

f� by splitting the failures in stratum k into two strata at t (see
Bryson and Johnson 1981). Censored observations in stratum k are placed
into a stratum based upon the associated value for

ˆexp()ki kiw z ��
The results of the splitting are returned in igrp.
The estimates ˆ

f� based upon the stratified likelihood represent the finite part
of the extended maximum likelihood solution. Function
imsls_f_prop_hazards_gen_lin does not compute � explicitly, but an
estimate for� may be obtained in some circumstances by setting ratio = �1

ˆ
ˆ

670 � prop_hazards_gen_lin IMSL C/Stat/Library

and optimizing the log-likelihood without forming additional strata. The
solution �̂ obtained will be such that ˆ ˆ ˆf� � �� �

2 3 3x� �� � �

� for some finite value of
� > 0. At this solution, the Newton-Raphson algorithm will not have
“converged” because the Newton-Raphson step sizes returned in gr will be
large, at least for some variables. Convergence will be declared, however,
because the relative change in the log-likelihood during the final iterations
will be small.

Example
The following data are taken from Lawless (1982, page 287) and involve the
survival of lung cancer patients based upon their initial tumor types and treatment
type. In the first example, the likelihood is maximized with no strata present in
the data. This corresponds to Example 7.2.3 in Lawless (1982, page 367). The
input data is printed in the output. The model is given as:

1 1 2ln()= i jx x� � � ��

where �i and �j correspond to dummy variables generated from column indices 5
and 6 of x, respectively, x� corresponds to column index 2, x� corresponds to
column index 3, and x� corresponds to column index 4 of x.

#include "imsls.h"

#define NOBS 40
#define NCOL 7
#define NCLVAR 2
#define NEF 5

void main ()
{
 int icen = 1, iprint = 2, maxcl = 6, ncoef;
 int indef[NEF] = { 2, 3, 4, 5, 6 };
 int nvef[NEF] = { 1, 1, 1, 1, 1 };
 int indcl[NCLVAR] = { 5, 6 };
 float *coef, ratio = 10000.0;
 float x[NOBS * NCOL] = {
 411, 0, 7, 64, 5, 1, 0,
 126, 0, 6, 63, 9, 1, 0,
 118, 0, 7, 65, 11, 1, 0,
 92, 0, 4, 69, 10, 1, 0,
 8, 0, 4, 63, 58, 1, 0,
 25, 1, 7, 48, 9, 1, 0,
 11, 0, 7, 48, 11, 1, 0,
 54, 0, 8, 63, 4, 2, 0,
 153, 0, 6, 63, 14, 2, 0,
 16, 0, 3, 53, 4, 2, 0,
 56, 0, 8, 43, 12, 2, 0,
 21, 0, 4, 55, 2, 2, 0,
 287, 0, 6, 66, 25, 2, 0,
 10, 0, 4, 67, 23, 2, 0,
 8, 0, 2, 61, 19, 3, 0,
 12, 0, 5, 63, 4, 3, 0,
 177, 0, 5, 66, 16, 4, 0,

Chapter 10: Survival and Reliability Analysis prop_hazards_gen_lin � 671

 12, 0, 4, 68, 12, 4, 0,
 200, 0, 8, 41, 12, 4, 0,
 250, 0, 7, 53, 8, 4, 0,
 100, 0, 6, 37, 13, 4, 0,
 999, 0, 9, 54, 12, 1, 1,
 231, 1, 5, 52, 8, 1, 1,
 991, 0, 7, 50, 7, 1, 1,
 1, 0, 2, 65, 21, 1, 1,
 201, 0, 8, 52, 28, 1, 1,
 44, 0, 6, 70, 13, 1, 1,
 15, 0, 5, 40, 13, 1, 1,
 103, 1, 7, 36, 22, 2, 1,
 2, 0, 4, 44, 36, 2, 1,
 20, 0, 3, 54, 9, 2, 1,
 51, 0, 3, 59, 87, 2, 1,
 18, 0, 4, 69, 5, 3, 1,
 90, 0, 6, 50, 22, 3, 1,
 84, 0, 8, 62, 4, 3, 1,
 164, 0, 7, 68, 15, 4, 1,
 19, 0, 3, 39, 4, 4, 1,
 43, 0, 6, 49, 11, 4, 1,
 340, 0, 8, 64, 10, 4, 1,
 231, 0, 7, 67, 18, 4, 1
 };

 coef = imsls_f_prop_hazards_gen_lin (NOBS, NCOL, x, NEF,
 nvef, indef, maxcl, &ncoef,
 IMSLS_PRINT_LEVEL, iprint,
 IMSLS_CENSOR_CODES_COL, icen,
 IMSLS_RATIO, ratio,
 IMSLS_DUMMY, NCLVAR, &indcl[0], 0);
}

Output

 Initial Estimates
 1 2 3 4 5 6 7
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Method Iteration Step size Maximum scaled Log
 coef. update likelihood
 Q-N 0 -102.4
 Q-N 1 1.0000 0.5034 -91.04
 Q-N 2 1.0000 0.5782 -88.07
 N-R 3 1.0000 0.1131 -87.92
 N-R 4 1.0000 0.06958 -87.89
 N-R 5 1.0000 0.0008145 -87.89

Log-likelihood -87.88778

 Coefficient Statistics
 Coefficient Standard Asymptotic Asymptotic
 error z-statistic p-value
1 -0.585 0.137 -4.272 0.000
2 -0.013 0.021 -0.634 0.526
3 0.001 0.012 0.064 0.949
4 -0.367 0.485 -0.757 0.449
5 -0.008 0.507 -0.015 0.988

672 � prop_hazards_gen_lin IMSL C/Stat/Library

6 1.113 0.633 1.758 0.079
7 0.380 0.406 0.936 0.349

 Asymptotic Coefficient Covariance
 1 2 3 4 5
1 0.01873 0.000253 0.0003345 0.005745 0.00975
2 0.0004235 -4.12e-005 -0.001663 -0.0007954
3 0.0001397 0.0008111 -0.001831
4 0.235 0.09799
5 0.2568

 6 7
1 0.004264 0.002082
2 -0.003079 -0.002898
3 0.0005995 0.001684
4 0.1184 0.03735
5 0.1253 -0.01944
6 0.4008 0.06289
7 0.1647

 Case Analysis
 Survival Influence Residual Cumulative Prop.
 Probability hazard constant
 1 0.00 0.04 2.05 6.10 0.34
 2 0.30 0.11 0.74 1.21 0.61
 3 0.34 0.12 0.36 1.07 0.33
 4 0.43 0.16 1.53 0.84 1.83
 5 0.96 0.56 0.09 0.05 2.05
 6 0.74 0.13 0.31 0.42
 7 0.92 0.37 0.03 0.08 0.42
 8 0.59 0.26 0.14 0.53 0.27
 9 0.26 0.12 1.20 1.36 0.88
10 0.85 0.15 0.97 0.17 5.76
11 0.55 0.31 0.21 0.60 0.36
12 0.74 0.21 0.96 0.31 3.12
13 0.03 0.06 3.02 3.53 0.86
14 0.94 0.09 0.17 0.06 2.71
15 0.96 0.16 1.31 0.05 28.89
16 0.89 0.23 0.59 0.12 4.82
17 0.18 0.09 2.62 1.71 1.54
18 0.89 0.19 0.33 0.12 2.68
19 0.14 0.23 0.72 1.96 0.37
20 0.05 0.09 1.66 2.95 0.56
21 0.39 0.22 1.17 0.94 1.25
22 0.00 0.00 1.73 21.11 0.08
23 0.08 2.19 2.52 0.87
24 0.00 0.00 2.46 8.89 0.28
25 0.99 0.31 0.05 0.01 4.28
26 0.11 0.17 0.34 2.23 0.15
27 0.66 0.25 0.16 0.41 0.38
28 0.87 0.22 0.15 0.14 1.02
29 0.39 0.45 0.94 0.48
30 0.98 0.25 0.06 0.02 2.53
31 0.77 0.26 1.03 0.26 3.90
32 0.63 0.35 1.80 0.46 3.88
33 0.82 0.26 1.06 0.19 5.47
34 0.47 0.26 1.65 0.75 2.21
35 0.51 0.32 0.39 0.67 0.58

Chapter 10: Survival and Reliability Analysis survival_glm � 673

36 0.22 0.18 0.49 1.53 0.32
37 0.80 0.26 1.08 0.23 4.77
38 0.70 0.16 0.26 0.36 0.73
39 0.01 0.23 0.87 4.66 0.19
40 0.08 0.20 0.81 2.52 0.32

 Last Coefficient Update
 1 2 3 4 5 6
-1.296e-008 2.269e-009 -5.894e-009 -4.782e-007 -1.787e-007 1.509e-007

 7
 4.327e-008

 Covariate Means
 1 2 3 4 5 6
 5.65 56.58 15.65 0.35 0.28 0.13

 7
 0.53

Distinct Values For Each Class Variable
Variable 1: 1 2 3 4

Variable 2: 0 1

 Stratum Numbers For Each Observation
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1

Number of Missing Values 0

survival_glm
Analyzes censored survival data using a generalized linear model.

Synopsis
#include <imsls.h>
int imsls_f_survival_glm (int n_observations, int n_class,

int n_continuous, int model, float x[], ..., 0)
The type double function is imsls_d_survival_glm.

Required Arguments

int n_observations (Input)
Number of observations.

674 � survival_glm IMSL C/Stat/Library

int n_class (Input)
Number of classification variables.

int n_continuous (Input)
Number of continuous variables.

int model (Input)
Argument model specifies the model used to analyze the data.

model PDF of the Response Variable
0 Exponential
1 Linear hazard
2 Log-normal
3 Normal
4 Log-logistic
5 Logistic
6 Log least extreme value
7 Least extreme value
8 Log extreme value
9 Extreme value

10 Weibull

See the “Description” section for more information about these models.

float x[] (Input)
Array of size n_observations by (n_class + n_continuous) + m
containing data for the independent variables, dependent variable, and
optional parameters.

The columns must be ordered such that the first n_class columns
contain data for the class variables, the next n_continuous columns
contain data for the continuous variables, and the next column contains
the response variable. The final (and optional) m � 1 columns contain
the optional parameters.

Return Value
An integer value indicating the number of estimated coefficients in the model.

Synopsis with Optional Arguments
#include <imsls.h>
int imsls_f_survival_glm (int n_observations, int n_class,

int n_continuous, int model, float x[],
IMSLS_X_COL_CENSORING, int icen, int ilt, int irt,
IMSLS_X_COL_DIM, int x_col_dim,

Chapter 10: Survival and Reliability Analysis survival_glm � 675

IMSLS_X_COL_FREQUENCIES, int ifrq,
IMSLS_X_COL_FIXED_PARAMETER, int ifix,
IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[],
 int iy
IMSLS_EPS, float eps,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_INTERCEPT,
IMSLS_NO_INTERCEPT,
IMSLS_INFINITY_CHECK, int lp_max
IMSLS_NO_INFINITY_CHECK
IMSLS_EFFECTS, int n_effects, int n_var_effects[],
 int indices_effects,
IMSLS_INITIAL_EST_INTERNAL,
IMSLS_INITIAL_EST_INPUT, int n_coef_input,
 float estimates[],
IMSLS_MAX_CLASS, int max_class,
IMSLS_CLASS_INFO, int **n_class_values,
 float **class_values,
IMSLS_CLASS_INFO_USER, int n_class_values[],
 float class_values[],
IMSLS_COEF_STAT, float **coef_statistics,
IMSLS_COEF_STAT_USER, float coef_statistics[],
IMSLS_CRITERION, float *criterion,
IMSLS_COV, float **cov,
IMSLS_COV_USER, float cov[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_CASE_ANALYSIS, float **case_analysis,
IMSLS_CASE_ANALYSIS_USER, float case_analysis[],
IMSLS_LAST_STEP, float **last_step,
IMSLS_LAST_STEP_USER, float last_step[],
IMSLS_OBS_STATUS, int **obs_status,
IMSLS_OBS_STATUS_USER, int obs_status[],
IMSLS_ITERATIONS, int *n, float **iterations,
IMSLS_ITERATIONS_USER, int *n, float iterations[],
IMSLS_SURVIVAL_INFO, Imsls_f_survival **survival_info
IMSLS_N_ROWS_MISSING, int *n_rows_missing,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of input array x.
Default: x_col_dim = n_class + n_continuous + 1

IMSLS_X_COL_CENSORING, int icen, int ilt, int irt (Input)
Parameter icen is the column in x containing the censoring code for
each observation.

676 � survival_glm IMSL C/Stat/Library

x [i] [icen] Censoring type
0 Exact failure at x [i] [irt]
1 Right Censored. The response is greater than

x [i] [irt].
2 Left Censored. The response is less than or

equal to x [i] [irt].
3 Interval Censored. The response is greater

than x [i] [irt], but less than or equal to
x [i] [ilt].

Parameter ilt is the column number of x containing the upper endpoint
of the failure interval for interval- and left-censored observations. If
there are no left-censored or interval-censored observations, ilt should
be set to �1.

Parameter irt is the column number of x containing the lower endpoint
of the failure interval for interval- and right-censored observations. If
there are no left-censored or interval-censored observations, irt should
be set to �1.

Exact failure times are specified in column iy of x. By default, iy is
column n_class + n_continuous of x. The default can be changed if
keyword IMSLS_X_COL_VARIABLES is specified.

Note that it is allowable to set iy = irt, since a row with an iy value
will never have an irt value, and vice versa. This use is illustrated in
Example 2.

IMSLS_FREQUENCIES, int ifrq (Input)
Column number of x containing the frequency of response for each
observation.

IMSLS_FIXED_PARAMETER, int ifix (Input)
Column number in x containing a fixed parameter for each observation
that is added to the linear response prior to computing the model
parameter. The “fixed” parameter allows one to test hypothesis about the
parameters via the log-likelihoods.

IMSLS_X_COL_VARIABLES int iclass[], int icontinuous[], int iy
(Input)
This keyword allows specification of the variables to be used in the
analysis, and overrides the default ordering of variables described for
input argument x. Columns are numbered from 0 to x_col_dim � 1. To
avoid errors, always specify the keyword IMSLS_X_COL_DIM when
using this keyword.

Chapter 10: Survival and Reliability Analysis survival_glm � 677

Argument iclass is an index vector of length n_class containing the
column numbers of x that correspond to classification variables.

Argument icontinuous is an index vector of length n_continuous
containing the column numbers of x that correspond to continuous
variables.

Argument iy corresponds to the column of x which contains the
dependent variable.

IMSLS_EPS, float eps (Input)
Argument eps is the convergence criterion. Convergence is assumed
when the maximum relative change in any coefficient estimate is less
than eps from one iteration to the next or when the relative change in
the log-likelihood, criterion, from one iteration to the next is less than
eps/100.0.
Default: eps = 0.001

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations. Use max_iterations = 0 to compute
the Hessian, stored in cov, and the Newton step, stored in last_step,
at the initial estimates (The initial estimates must be input. Use keyword
IMSLS_INITIAL_EST_INPUT).
Default: max_iterations = 30

IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,

By default, or if IMSLS_INTERCEPT is specified, the intercept is
automatically included in the model. If IMSLS_NO_INTERCEPT is
specified, there is no intercept in the model (unless otherwise provided
for by the user).

IMSLS_INFINITY_CHECK, int lp_max (Input)
Remove a right- or left-censored observation from the log-likelihood
whenever the probability of the observation exceeds 0.995. At
convergence, use linear programming to check that all removed
observations actually have infinite linear response

ˆ
iz �

obs_status [i] is set to 2 if the linear response is infinite (See optional
argument IMSLS_OBS_STATUS). If not all removed observations have
infinite linear response, re-compute the estimates based upon the
observations with finite

ˆ
iz �

Parameter lp_max is the maximum number of observations that can be
handled in the linear programming. Setting
lp_max = n_observations is always sufficient.
Default: No infinity checking; lp_max = 0

678 � survival_glm IMSL C/Stat/Library

IMSLS_NO_INFINITY_CHECK
Iterates without checking for infinite estimates. This option is the
default.

IMSLS_EFFECTS, int n_effects, int n_var_effects[],
int indices_effects[] (Input)
Use this keyword to specify the effects in the model.

Variable n_effects is the number of effects (sources of variation) in
the model. Variable n_var_effects is an array of length n_effects
containing the number of variables associated with each effect in the
model.

Argument indices_effects is an index array of length
n_var_effects [0] + n_var_effects [1] + � +
n_var_effects [n_effects � 1]. The first n_var_effects [0]
elements give the column numbers of x for each variable in the first
effect. The next n_var_effects[1] elements give the column numbers
for each variable in the second effect. The last
n_var_effects [n_effects � 1] elements give the column numbers
for each variable in the last effect.

IMSLS_INITIAL_EST_INTERNAL, or
IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[]

(Input)
 By default, or if IMSLS_INIT_INTERNAL is specified, then unweighted

linear regression is used to obtain initial estimates. If
IMSLS_INITIAL_EST_INPUT is specified, then the n_coef_input
elements of estimates contain initial estimates of the parameters
(which requires that the user know the number of coefficients in the
model prior to the call to survival_glm). See optional argument
IMSLS_COEF_STAT for a description of the “nuisance” parameter,
which is the first element of array estimates.

IMSLS_MAX_CLASS, int max_class (Input)
An upper bound on the sum of the number of distinct values taken on by
each classification variable. Internal workspace usage can be
significantly reduced with an appropriate choice of max_class.
Default: max_class = n_observations � n_class

IMSLS_CLASS_INFO, int **n_class_values, float **class_values
(Output)
Argument n_class_values is the address of a pointer to the internally
allocated array of length n_class containing the number of values
taken by each classification variable; the i-th classification variable has
n_class_values [i] distinct values. Argument class_values is the
address of a pointer to the internally allocated array of length

-1

0
[]

i

i
�

�
n_class

n_class_values

Chapter 10: Survival and Reliability Analysis survival_glm � 679

containing the distinct values of the classification variables in ascending
order. The first n_class_values [0] elements of class_values
contain the values for the first classification variables, the next
n_class_values [1] elements contain the values for the second
classification variable, etc.

IMSLS_CLASS_INFO_USER, int n_class_values[],
float class_values[] (Output)
Storage for arrays n_class_values and class_values is provided
by the user. See IMSLS_CLASS_INFO.

IMSLS_COEF_STAT, float **coef_statistics (Output)
Address of a pointer to an internally allocated array of size
n_coefficients � 4 containing the parameter estimates and
associated statistics:

Column Statistic
0 Coefficient estimate.
1 Estimated standard deviation of the estimated

coefficient.
2 Asymptotic normal score for testing that the

coefficient is zero.
3 The p-value associated with the normal score in

Column 2.

When present in the model, the first coefficient in coef_statistics is
the estimate of the “nuisance” parameter, and the remaining coefficients
are estimates of the parameters associated with the “linear” model,
beginning with the intercept, if present. Nuisance parameters are as
follows:

model
0 No nuisance parameter
1 Coefficient of the quadratic term in time, 	

2-9 Scale parameter,

10 Shape parameter, 	

IMSLS_COEF_STAT_USER, float coef_statistics[] (Output)
Storage for array coef_statistics is provided by the user. See
IMSLS_COEF_STAT.

IMSLS_CRITERION, float *criterion (Output)
Optimized criterion. The criterion to be maximized is a constant plus the
log-likelihood.

IMSLS_COV, float **cov (Output)
Address of a pointer to the internally allocated array of size

680 � survival_glm IMSL C/Stat/Library

n_coefficients by n_coefficients containing the estimated
asymptotic covariance matrix of the coefficients. For
max_iterations = 0, this is the Hessian computed at the initial
parameter estimates.

IMSLS_COV_USER, float cov[] (Ouput)
Storage for array cov is provided by the user. See IMSLS_COV.

IMSLS_MEANS, float **means (Output)
Address of a pointer to the internally allocated array containing the
means of the design variables. The array is of length
n_coefficients � m if IMSLS_NO_INTERCEPT is specified, and of
length n_coefficients � m � 1 otherwise. Here, m is equal to 0 if
model = 0, and equal to 1 otherwise.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_CASE_ANALYSIS, float **case_statistics (Output)
Address of a pointer to the internally allocated array of size
n_observations by 5 containing the case analysis below:

Column Statistic
0 Estimated predicted value.
1 Estimated influence or leverage.
2 Estimated residual.
3 Estimated cumulative hazard.
4 Non-censored observations: Estimated density at the

observation failure time and covariate values.
Censored observations: The corresponding estimated
probability.

If max_iterations = 0, case_statistics is an array of length
n_observations containing the estimated probability (for censored
observations) or the estimated density (for non-censored observations)

IMSLS_CASE_ANALYSIS_USER, float case_statistics[] (Output)
Storage for array case_statistics is provided by the user. See
IMSLS_CASE_ANALYSIS.

IMSLS_LAST_STEP, float **last_step (Output)
Address of a pointer to the internally allocated array of length
n_coefficients containing the last parameter updates (excluding step
halvings). Parameter last_step is computed as the inverse of the
matrix of second partial derivatives times the vector of first partial
derivatives of the log-likelihood. When max_iterations = 0, the
derivatives are computed at the initial estimates.

Chapter 10: Survival and Reliability Analysis survival_glm � 681

IMSLS_LAST_STEP_USER, float last_step[] (Output)
Storage for array last_step is provided by the user. See
IMSLS_LAST_STEP.

IMSLS_OBS_STATUS, int **obs_status (Output)
Address of a pointer to the internally allocated array of length
n_observations indicating which observations are included in the
extended likelihood.

obs_status [i] Status of Observation

0 Observation i is in the likelihood
1 Observation i cannot be in the likelihood because

it contains at least one missing value in x.
2 Observation i is not in the likelihood. Its estimated

parameter is infinite.

IMSLS_OBS_STATUS_USER, int obs_status[] (Output)
Storage for array obs_status is provided by the user. See
IMSLS_OBS_STATUS.

IMSLS_ITERATIONS, int *n, float **iterations (Output)
Address of a pointer to the internally allocated array of size, n by 5
containing information about each iteration of the analysis, where n is
equal to the number of iterations.

column statistic
0 Method of iteration

Q-N Step = 0
N-R Step = 1

1 Iteration number
2 Step size
3 Maximum scaled coefficient update
4 Log-likelihood

IMSLS_ITERATIONS_USER, int *n, float iterations[] (Output)
Storage for array iterations is provided by the user. See
IMSLS_ITERATIONS.

IMSLS_SURVIVAL_INFO, Imsls_f_survival **survival_info (Output)
Address of the pointer to an internally allocated structure of type
Imsls_f_survival containing information about the survival analysis. This
structure is required input for function
imsls_f_survival_estimates.

IMSLS_N_ROWS_MISSING, int *n_rows_missing (Output)
Number of rows of data that contain missing values in one or more of the

682 � survival_glm IMSL C/Stat/Library

following vectors or columns of x: iy, icen, ilt, irt, ifrq, ifix,
iclass, icontinuous, or indices_effects.

Comments
1. Dummy variables are generated for the classification variables as

follows: An ascending list of all distinct values of each classification
variable is obtained and stored in class_values. Dummy variables are
then generated for each but the last of these distinct values. Each dummy
variable is zero unless the classification variable equals the list value
corresponding to the dummy variable, in which case the dummy variable
is one. See keyword IMSLS_LEAVE_OUT_LAST for optional argument
IMSLS_DUMMY in imsls_f_regressors_for_glm (Chapter 2.
“Regression”).

2. The “product” of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy
variables associated with the classification variable.

3. The “product” of two classification variables yields dummy variables in
the usual manner. Each dummy variable associated with the first
classification variable multiplies each dummy variable associated with
the second classification variable. The resulting dummy variables are
such that the index of the second classification variable varies fastest.

Description
Function imsls_f_survival_glm computes the maximum likelihood estimates
of parameters and associated statistics in generalized linear models commonly
found in survival (reliability) analysis. Although the terminology used will be
from the survival area, the methods discussed have applications in many areas of
data analysis, including reliability analysis and event history analysis. These
methods can be used anywhere a random variable from one of the discussed
distributions is parameterized via one of the models available in
imsls_f_survival_glm. Thus, while it is not advisable to do so, standard
multiple linear regression can be performed by routine
imsls_f_survival_glm. Estimates for any of 10 standard models can be
computed. Exact, left-censored, right-censored, or interval-censored observations
are allowed (note that left censoring is the same as interval censoring with the left
endpoint equal to the left endpoint of the support of the distribution).

Let � = xT� be the linear parameterization, where x is a design vector obtained by
imsls_f_survival_glm via function imsls_f_regressors_for_glm from
a row of x, and � is a vector of parameters associated with the linear model. Let
T denote the random response variable and S(t) denote the probability that T > t.
All models considered also allow a fixed parameter wi for observation i (input in
column ifix of x). Use of this parameter is discussed below. There also may be
nuisance parameters 	 > 0, or
 > 0 to be estimated (along with �) in the various

Chapter 10: Survival and Reliability Analysis survival_glm � 683

models. Let � denote the cumulative normal distribution. The survival models
available in imsls_f_survival_glm are:

model Name S (t)
0 Exponential exp [�t exp (wi + �)]

1 Linear hazard
� �

2

exp exp
2 i
tt w�

�
� �� �
� � �� 	
 �
�
� �

2 Log-normal � �ln
1 it w�

�

� �� �
��� �

� �

3 Normal
1 it w�

�

� �� �
��� �

� �

4 Log-logistic � � 1ln
{1 exp }it w�

�

�

� �� �
� � �

� �

5 Logistic
1{1 exp }it w�

�

�

� �� �
� � �

� �

6 Log least extreme
value

� �ln
exp{ exp }it w�

�

� �� �
� � �

� �

7 Least extreme value
exp{ exp }it w�

�

� �� �
� � �

� �

8 Log extreme value � �ln
1 exp{ exp }it w�

�

� �� �
� � � �

� �

9 Extreme value
1 exp{ exp }it w�

�

� �� �
� � � �

� �

10 Weibull

� �
exp{ }

exp i

t
w

�

�

� �
� � �

�� �� �

Note that the log-least-extreme-value model is a reparameterization of the
Weibull model. Moreover, models 0, 1, 2, 4, 6, 8, and 10 require that T > 0, while
all of the remaining models allow any value for T, �� < T < �.

Each row vector in the data matrix can represent a single observation; or, through
the use of vector frequencies, each row can represent several observations. Also
note that classification variables and their products are easily incorporated into
the models via the usual regression-type specifications.

The constant parameter Wi is input in x and may be used for a number of
purposes. For example, if the parameter in an exponential model is known to

684 � survival_glm IMSL C/Stat/Library

depend upon the size of the area tested, volume of a radioactive mass, or
population density, etc., then a multiplicative factor of the exponential parameter
� = exp (x�) may be known apriori. This factor can be input in
Wi (Wi is the log of the factor).

An alternate use of Wi is as follows: It may be that � = exp (x1�1 + x2�2), where
�2 is known. Letting Wi = x2�2, estimates for �1 can be obtained via
imsls_f_survival_glm with the known fixed values for �2. Standard methods
can then be used to test hypothesis about �1 via computed log-likelihoods.

Computational Details
The computations proceed as follows:
1. The input parameters are checked for consistency and validity.

� Estimates of the means of the “independent” or design variables are
computed. Means are computed as

i i

i

f x
x

f
�

�
�

2. If initial estimates are not provided by the user (see optional argument
IMSLS_INITIAL_EST_INPUT), the initial estimates are calculated as
follows:

� Models 2-10
A. Kaplan-Meier estimates of the survival probability,

� �Ŝ t

at the upper limit of each failure interval are obtained. (Because upper
limits are used, interval- and left-censored data are assumed to be exact
failures at the upper endpoint of the failure interval.) The Kaplan-Meier
estimate is computed under the assumption that all failure distributions
are identical (i.e., all �’s but the intercept, if present, are assumed to be
zero).

B. If there is an intercept in the model, a simple linear regression is
performed predicting

� �� �1 ˆ
iS S t w t� �� 	�
 �

where t� is computed at the upper endpoint of each failure interval,
t� = t in models 3, 5, 7, and 9, and t� = ln (t) in models 2, 4, 6, 8, and 10,
and wi is the fixed constant, if present.

If there is no intercept in the model, then � is fixed at zero, and the
model

� �� �1 ˆ ˆ T
iS S t t w x� ��

�� � �

Chapter 10: Survival and Reliability Analysis survival_glm � 685

is fit instead. In this model, the coefficients � are used in place of the
location estimate � above. Here

�̂

is estimated from the simple linear regression with � = 0.
C. If the intercept is in the model, then in log-location-scale models

(models 1-8),

ˆ�̂ ��

and the initial estimate of the intercept is assumed to be � . ˆ

In the Weibull model

ˆ ˆ1/� ��

and the intercept is assumed to be � . ˆ

Initial estimates of all parameters �, other than the intercept, are
assumed to be zero.

If there is no intercept in the model, the scale parameter is estimated as
above, and the estimates

�̂

from Step 2 are used as initial estimates for the �’s.

� Models 0 and 1

For the exponential models (model = 0 or 1), the “average total time on”
test statistic is used to obtain an estimate for the intercept. Specifically, let
Tt denote the total number of failures divided by the total time on test. The
initial estimates for the intercept is then ln(Tt). Initial estimates for the
remaining parameters � are assumed to be zero, and if model = 1, the initial
estimate for the linear hazard parameter � is assumed to be a small positive
number. When the intercept is not in the model, the initial estimate for the
parameter � is assumed to be a small positive number, and initial estimates
of the parameters � are computed via multiple linear regression as in Part A.

3. A quasi-Newton algorithm is used in the initial iterations based on a Hessian
estimate

ˆ
j l j li i

i

H l
� � � �

	
�

where l�i
�
j is the partial derivative of the i-th term in the log-likelihood with

respect to the parameter �j, and aj denotes one of the parameter to be
estimated.

When the relative change in the log-likelihood from one iteration to the next is
0.1 or less, exact second partial derivatives are used for the Hessian so the
Newton-Rapheson iteration is used.

686 � survival_glm IMSL C/Stat/Library

If the initial step size results in an increase in the log-likelihood, the full step is
used. If the log-likelihood decreases for the initial step size, the step size is
halved, and a check for an increase in the log-likelihood performed. Step-halving
is performed (as a simple line search) until an increase in the log-likelihood is
detected, or until the step size becomes very small (the initial step size is 1.0).
4. Convergence is assumed when the maximum relative change in any

coefficient update from one iteration to the next is less than eps or when the
relative change in the log-likelihood from one iteration to the next is less than
eps/100. Convergence is also assumed after maxit iterations or when step
halving leads to a very small step size with no increase in the log-likelihood.

5. If requested (see optional argument IMSLS_INFINITY_CHECK), then the
methods of Clarkson and Jennrich (1988) are used to check for the existence
of infinite estimates in

T
i ix� ��

As an example of a situation in which infinite estimates can occur, suppose that
observation j is right-censored with tj > 15 in a normal distribution model in
which the mean is

T
j j jx� � �� �

where xj is the observation design vector. If the design vector xj for parameter �m
is such that xjm = 1 and xim = 0 for all i 	 j, then the optimal estimate of �m occurs
at

ˆ
m� � �

leading to an infinite estimate of both �m and
j. In imsls_f_survival_glm,
such estimates can be “computed”.

In all models fit by imsls_f_survival_glm, infinite estimates can only occur
when the optimal estimated probability associated with the left- or right-censored
observation is 1. If infinity checking is on, left- or right-censored observations
that have estimated probability greater than 0.995 at some point during the
iterations are excluded from the log-likelihood, and the iterations proceed with a
log-likelihood based on the remaining observations. This allows convergence of
the algorithm when the maximum relative change in the estimated coefficients is
small and also allows for a more precise determination of observations with
infinite

T
i ix� ��

At convergence, linear programming is used to ensure that the eliminated
observations have infinite
i. If some (or all) of the removed observations should
not have been removed (because their estimated
i’s must be finite), then the
iterations are restarted with a log-likelihood based upon the finite
i observations.
See Clarkson and Jennrich (1988) for more details.

Chapter 10: Survival and Reliability Analysis survival_glm � 687

When infinity checking is turned off (see optional argument
IMSLS_NO_INFINITY_CHECK), no observations are eliminated during the
iterations. In this case, the infinite estimates occur, some (or all) of the coefficient
estimates

�̂

will become large, and it is likely that the Hessian will become (numerically)
singular prior to convergence.
6. The case statistics are computed as follows: Let Ii (�i)denote the log-

likelihood
of the i-th observation evaluated at �i, let I�i denote the vector of derivatives
of
Ii with respect to all parameters, I�h,i denote the derivative of Ii with respect to

 = xT�, H denote the Hessian, and E denote expectation. Then the columns
of case_statistics are:

A. Predicted values are computed as E (T/x) according to standard
formulas. If model is 4 or 8, and if s � 1, then the expected values cannot
be computed because they are infinite.

B. Following Cook and Weisberg (1982), the influence (or leverage) of the
i-th observation is assumed to be

� � 1T

i iI H I�

� �

This quantity is a one-step approximation of the change in the estimates
when the i-th observation is deleted (ignoring the nuisance parameters).

C. The “residual” is computed as I�h,i.

D. The cumulative hazard is computed at the observation covariate values
and, for interval observations, the upper endpoint of the failure interval.
The cumulative hazard also can be used as a “residual” estimate. If the
model is correct, the cumulative hazards should follow a standard
exponential distribution. See Cox and Oakes (1984).

Programming Notes
Indicator (dummy) variables are created for the classification variables using
function imsls_f_regressors_for_glm (Chapter 2, “Regression”) using
keyword IMSLS_LEAVE_OUT_LAST as the argument to the IMSLS_DUMMY
optional argument.

688 � survival_glm IMSL C/Stat/Library

Examples

Example 1
This example is taken from Lawless (1982, p. 287) and involves the mortality of
patients suffering from lung cancer. An exponential distribution is fit for the
model

 = � + �i +
k + �6x3 + �7x4 + �8x5

where �i is associated with a classification variable with four levels, and
k is
associated with a classification variable with two levels. Note that because the
computations are performed in single precision, there will be some small
variation in the estimated coefficients across different machine environments.

#include <imsls.h>

main() {
 static float x[40][7] = {
 1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,
 1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0,
 1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0,
 1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0,
 1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0,
 1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0,
 1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0,
 2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0,
 2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0,
 2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0,
 2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0,
 2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0,
 2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0,
 2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0,
 3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
 3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0,
 4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0,
 4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0,
 4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0,
 4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
 4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
 1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
 1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
 1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0,
 1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0,
 1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
 1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0,
 1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0,
 2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0,
 2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0,
 2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
 2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0,
 3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0,
 3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0,
 3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0,
 4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0,
 4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
 4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0,

Chapter 10: Survival and Reliability Analysis survival_glm � 689

 4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
 4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0};
 int n_observations = 40;
 int n_class = 2;
 int n_continuous = 3;
 int model = 0;
 int n_coef;
 int icen = 6, ilt = -1, irt = 5;
 int lp_max = 40;
 float *coef_stat;
 char *fmt = "%12.4f";
 static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};

 n_coef = imsls_f_survival_glm(n_observations, n_class,
 n_continuous, model, &x[0][0],
 IMSLS_X_COL_CENSORING, icen, ilt, irt,
 IMSLS_INFINITY_CHECK, lp_max,
 IMSLS_COEF_STAT, &coef_stat,
 0);

 imsls_f_write_matrix("Coefficient Statistics", n_coef, 4,
 coef_stat,
 IMSLS_WRITE_FORMAT, fmt,
 IMSLS_NO_ROW_LABELS,
 IMSLS_COL_LABELS, clabels,
 0);
}

Output

 Coefficient Statistics
 coefficient s.e. z p
 -1.1027 1.3091 -0.8423 0.3998
 -0.3626 0.4446 -0.8156 0.4149
 0.1271 0.4863 0.2613 0.7939
 0.8690 0.5861 1.4825 0.1385
 0.2697 0.3882 0.6948 0.4873
 -0.5400 0.1081 -4.9946 0.0000
 -0.0090 0.0197 -0.4594 0.6460
 -0.0034 0.0117 -0.2912 0.7710

Example 2
This example is the same as Example 1, but more optional arguments are
demonstrated.

#include <imsls.h>

main() {
 static float x[40][7] = {
 1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,
 1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0,
 1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0,
 1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0,
 1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0,
 1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0,
 1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0,

690 � survival_glm IMSL C/Stat/Library

 2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0,
 2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0,
 2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0,
 2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0,
 2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0,
 2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0,
 2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0,
 3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
 3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0,
 4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0,
 4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0,
 4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0,
 4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
 4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
 1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
 1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
 1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0,
 1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0,
 1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
 1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0,
 1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0,
 2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0,
 2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0,
 2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
 2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0,
 3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0,
 3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0,
 3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0,
 4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0,
 4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
 4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0,
 4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
 4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0};
 int n_observations = 40;
 int n_class = 2;
 int n_continuous = 3;
 int model = 0;
 int n_coef;
 int icen = 6, ilt = -1, irt = 5;
 int lp_max = 40;
 int n, *ncv, nrmiss, *obs;
 float *iterations, *cv, criterion;
 float *coef_stat, *casex;
 char *fmt = "%12.4f";
 char *fmt2 = "%4d%4d%6.4f%8.4f%8.1f";
 static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};
 static char *clabels2[] = {"", "Method", "Iteration", "Step Size",
 "Coef Update", "Log-Likelihood"};

 n_coef = imsls_f_survival_glm(n_observations, n_class,
 n_continuous, model, &x[0][0],
 IMSLS_X_COL_CENSORING, icen, ilt, irt,
 IMSLS_INFINITY_CHECK, lp_max,
 IMSLS_COEF_STAT, &coef_stat,
 IMSLS_ITERATIONS, &n, &iterations,
 IMSLS_CASE_ANALYSIS, &casex,
 IMSLS_CLASS_INFO, &ncv, &cv,
 IMSLS_OBS_STATUS, &obs,

Chapter 10: Survival and Reliability Analysis survival_glm � 691

 IMSLS_CRITERION, &criterion,
 IMSLS_N_ROWS_MISSING, &nrmiss,
 0);

 imsls_f_write_matrix("Coefficient Statistics", n_coef, 4,
 coef_stat,
 IMSLS_WRITE_FORMAT, fmt,
 IMSLS_NO_ROW_LABELS,
 IMSLS_COL_LABELS, clabels,
 0);

 imsls_f_write_matrix("Iteration Information", n, 5, iterations,
 IMSLS_WRITE_FORMAT, fmt2,
 IMSLS_NO_ROW_LABELS,
 IMSLS_COL_LABELS, clabels2, 0);

 printf("\nLog-Likelihood = %12.5f\n", criterion);

 imsls_f_write_matrix("Case Analysis", 1, n_observations, casex,
 IMSLS_WRITE_FORMAT, fmt,
 0);

 imsls_f_write_matrix(
 "Distinct Values for Classification Variable 1",
 1, ncv[0], &cv[0], IMSLS_NO_COL_LABELS, 0);

 imsls_f_write_matrix(
 "Distinct Values for Classification Variable 2",
 1, ncv[1], &cv[ncv[0]], IMSLS_NO_COL_LABELS, 0);

 imsls_i_write_matrix("Observation Status", 1, n_observations,
 obs, 0);

 printf("\nNumber of Missing Values = %2d\n", nrmiss);
}

Output

 Coefficient Statistics
 coefficient s.e. z p
 -1.1027 1.3091 -0.8423 0.3998
 -0.3626 0.4446 -0.8156 0.4149
 0.1271 0.4863 0.2613 0.7939
 0.8690 0.5861 1.4825 0.1385
 0.2697 0.3882 0.6948 0.4873
 -0.5400 0.1081 -4.9946 0.0000
 -0.0090 0.0197 -0.4594 0.6460
 -0.0034 0.0117 -0.2912 0.7710

 Iteration Information
Method Iteration Step Size Coef Update Log-Likelihood
 0 0 -224.0
 0 1 1.0000 0.9839 -213.4
 1 2 1.0000 3.6033 -207.3
 1 3 1.0000 10.1236 -204.3
 1 4 1.0000 0.1430 -204.1
 1 5 1.0000 0.0117 -204.1

692 � survival_glm IMSL C/Stat/Library

Log-Likelihood = -204.13916

 Case Analysis
 1 2 3 4 5
 262.6884 0.0450 -0.5646 1.5646 0.0008

 6 7 8 9 10
 153.7777 0.0042 0.1806 0.8194 0.0029

 11 12 13 14 15
 270.5347 0.0482 0.5638 0.4362 0.0024

 16 17 18 19 20
 55.3168 0.0844 -0.6631 1.6631 0.0034

 21 22 23 24 25
 61.6845 0.3765 0.8703 0.1297 0.0142

 26 27 28 29 30
 230.4414 0.0025 -0.1085 0.1085 0.8972

 31 32 33 34 35
 232.0135 0.1960 0.9526 0.0474 0.0041

 36 37 38 39 40
 272.8432 0.1677 0.8021 0.1979 0.0030

 Distinct Values for Classification Variable 1
 1 2 3 4

Distinct Values for Classification Variable 2
 0 1

 Observation Status
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 0

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 0

Number of Missing Values = 0

Example 3
In this example, the same data and model as example 1 are used, but
max_iterations is set to zero iterations with model coefficients restricted such
that � = �1.25, �6 = �0.6, and the remaining six coefficients are equal to zero. A
chi-squared statistic, with 8 degrees of freedom for testing the coefficients is
specified as above (versus the alternative that it is not as specified), can be
computed, based on the output, as

2 1ˆTg g�
�

� �

where

Chapter 10: Survival and Reliability Analysis survival_glm � 693

�̂

is output in cov. The resulting test statistic, �2 = 6.107, based upon no iterations
is comparable to likelihood ratio test that can be computed from the log-
likelihood output in this example (�206.6835) and the log-likelihood output in
Example 2 (�204.1392).

� �2 2 206.6835 204.1392 5.0886LR� � � �

Neither statistic is significant at the � = 0.05 level.

#include <imsls.h>

main() {
 static float x[40][7] = {
 1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,
 1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0,
 1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0,
 1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0,
 1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0,
 1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0,
 1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0,
 2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0,
 2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0,
 2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0,
 2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0,
 2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0,
 2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0,
 2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0,
 3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
 3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0,
 4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0,
 4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0,
 4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0,
 4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
 4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
 1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
 1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
 1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0,
 1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0,
 1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
 1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0,
 1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0,
 2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0,
 2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0,
 2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
 2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0,
 3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0,
 3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0,
 3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0,
 4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0,
 4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
 4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0,
 4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
 4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0};
 int n_observations = 40;
 int n_class = 2;

694 � survival_glm IMSL C/Stat/Library

 int n_continuous = 3;
 int model = 0;
 int icen = 6, ilt = -1, irt = 5;
 int lp_max = 40;
 int n_coef_input = 8;
 static float estimates[8] = {-1.25, 0.0, 0.0, 0.0,
 0.0, -0.6, 0.0, 0.0};

 int n_coef;
 float *coef_stat, *means, *cov;
 float criterion, *last_step;

 char *fmt = "%12.4f";
 static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};

 n_coef = imsls_f_survival_glm(n_observations, n_class,
 n_continuous, model, &x[0][0],
 IMSLS_X_COL_CENSORING, icen, ilt, irt,
 IMSLS_INFINITY_CHECK, lp_max,
 IMSLS_INITIAL_EST_INPUT, n_coef_input, estimates,
 IMSLS_MAX_ITERATIONS, 0,
 IMSLS_COEF_STAT, &coef_stat,
 IMSLS_MEANS, &means,
 IMSLS_COV, &cov,
 IMSLS_CRITERION, &criterion,
 IMSLS_LAST_STEP, &last_step,
 0);

 imsls_f_write_matrix("Coefficient Statistics", n_coef, 4,
 coef_stat,
 IMSLS_WRITE_FORMAT, fmt,
 IMSLS_NO_ROW_LABELS,
 IMSLS_COL_LABELS, clabels,
 0);

 imsls_f_write_matrix("Covariate Means", 1, n_coef-1, means, 0);

 imsls_f_write_matrix("Hessian", n_coef, n_coef, cov,
 IMSLS_WRITE_FORMAT, fmt,
 IMSLS_PRINT_UPPER,
 0);

 printf("\nLog-Likelihood = %12.5f\n", criterion);

 imsls_f_write_matrix("Newton-Raphson Step", 1, n_coef, last_step,
 IMSLS_WRITE_FORMAT, fmt, 0);

}

Output

 Coefficient Statistics
 coefficient s.e. z p
 -1.2500 1.3773 -0.9076 0.3643
 0.0000 0.4288 0.0000 1.0000
 0.0000 0.5299 0.0000 1.0000
 0.0000 0.7748 0.0000 1.0000
 0.0000 0.4051 0.0000 1.0000

Chapter 10: Survival and Reliability Analysis survival_glm � 695

 -0.6000 0.1118 -5.3652 0.0000
 0.0000 0.0215 0.0000 1.0000
 0.0000 0.0109 0.0000 1.0000

 Covariate Means
 1 2 3 4 5 6
 0.35 0.28 0.12 0.53 5.65 56.58

 7
 15.65

 Hessian
 1 2 3 4 5
1 1.8969 -0.0906 -0.1641 -0.1681 0.0778
2 0.1839 0.0996 0.1191 0.0358
3 0.2808 0.1264 -0.0226
4 0.6003 0.0460
5 0.1641

 6 7 8
1 -0.0818 -0.0235 -0.0012
2 -0.0005 -0.0008 0.0006
3 0.0104 0.0005 -0.0021
4 0.0193 -0.0016 0.0007
5 0.0060 -0.0040 0.0017
6 0.0125 0.0000 0.0003
7 0.0005 -0.0001
8 0.0001

Log-Likelihood = -206.68349

 Newton-Raphson Step
 1 2 3 4 5
 0.1706 -0.3365 0.1333 1.2967 0.2985

 6 7 8
 0.0625 -0.0112 -0.0026

Warning Errors
IMSLS_CONVERGENCE_ASSUMED_1 Too many step halvings.

Convergence is assumed.

IMSLS_CONVERGENCE_ASSUMED_2 Too many step iterations.
Convergence is assumed.

IMSLS_NO_PREDICTED_1 “estimates[0]” > 1.0. The expected
value for the log logistic
distribution (“model” = 4) does
not exist. Predicted values will not
be calculated.

IMSLS_NO_PREDICTED_2 “estimates[0]” > 1.0. The expected
value for the log extreme value
distribution(“model” = 8) does not

696 � survival_glm IMSL C/Stat/Library

exist. Predicted values will not be
calculated.

IMSLS_NEG_EIGENVALUE The Hessian has at least one
negative eigenvalue. An upper
bound on the absolute value of the
minimum eigenvalue is #
corresponding to variable index #.

IMSLS_INVALID_FAILURE_TIME_4 “x[#][“ilt”= #]” = # and
“x[#][“irt”= #]” = #. The cen-
soring interval has length 0.0. The
censoring code for this observation
is being set to 0.0.

Fatal Error
IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of

the classification variables exceeds
“max_class” = #.

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is
specified, and “n_coef_input” = #.
The model specified requires #
coefficients.

IMSLS_TOO_FEW_VALID_OBS “n_observations” = # and
“n_rows_missing” = #.
“n_observations”�
”n_rows_missing” must be greater
than or equal to 2 in order to
estimate the coefficients.

IMSLS_SVGLM_1 For the exponential model
(“model” = 0) with “n_effects” = #
and no intercept, “n_coef” has
been determined to equal 0. With
no coefficients in the model,
processing cannot continue.

IMSLS_INCREASE_LP_MAX Too many observations are to be
deleted from the model. Either use
a different model or increase the
workspace.

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The
number of distinct values for each
classification variable must be
greater than one.

Chapter 10: Survival and Reliability Analysis survival_estimates � 697

survival_estimates
Estimates survival probabilities and hazard rates for the various parametric
models.

Synopsis
#include <imsls.h>
int *imsls_f_survival_estimates (Imsls_f_survival *survival_info,

int n_observations, float xpt[], float time, int npt,
float delta, ..., 0)

The type double function is imsls_d_survival_estimates.

Required Arguments

Imsls_f_survival *survival_info (Input)
Pointer to structure of type Imsls_f_survival containing the estimated
survival coefficients and other related information. See
imsls_f_survival_glm.

int n_observations (Input)
Number of observations for which estimates are to be calculated.

float xpt[] (Input)
Array xpt is an array of size n_observations by x_col_dim
containing the groups of covariates for which estimates are desired,
where x_col_dim is described in the documentation for
imsls_f_survival_glm. The covariates must be specified exactly as
in the call to imsls_f_survival_glm which produced
survival_info.

float time (Input)
Beginning of the time grid for which estimates are desired. Survival
probabilities and hazard rates are computed for each covariate vector
over the grid of time points time + i*delta for i = 0, 1, �, npt � 1.

int npt (Input)
Number of points on the time grid for which survival probabilities are
desired.

float delta (Input)
Increment between time points on the time grid.

Return Value
An array of size npt by (2 � n_observations + 1) containing the estimated
survival probabilities for the covariate groups specified in xpt. Column 0
contains the survival time. Columns 1 and 2 contain the estimated survival
probabilities and hazard rates, respectively, for the covariates in the first row of

698 � survival_estimates IMSL C/Stat/Library

xpt. In general, the survival and hazard for row i of xpt is contained in columns
2i � 1 and 2i, respectively, for i = 1, 2, �, npt.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_survival_estimates (Imsls_f_survival survival_info,

int n_observations, float xpt[], float time, int npt,
float delta,
IMSLS_XBETA, float **xbeta,
IMSLS_XBETA_USER, float xbeta[],
IMSLS_RETURN_USER, float sprob[],
0)

Optional Arguments
IMSLS_XBETA, float **xbeta (Output)

Address of a pointer to an array of length n_observations containing
the estimated linear response

ˆw x��

for each row of xpt.

IMSLS_XBETA_USER, float xbeta[] (Output)
Storage for array xbeta is provided by the user. See IMSLS_XBETA.

IMSLS_RETURN_USER, float sprob[] (Output)
User supplied array of size npt by (2 � n_observations + 1)
containing the estimated survival probabilities for the covariate groups
specified in xpt. Column 0 contains the survival time. Columns 1 and 2
contain the estimated survival probabilities and hazard rates,
respectively, for the covariates in the first row of xpt. In general, the
survival and hazard for row i of xpt is contained in columns 2i � 1 and
2i, respectively, for i = 1, 2, �, npt.

Description
Function imsls_f_survival_estimates computes estimates of survival
probabilities and hazard rates for the parametric survival/reliability models fit by
function imsls_f_survival_glm.

Let
 = xT� be the linear parameterization, where x is the design vector
corresponding to a row of xpt (imsls_f_survival_estimates generates the
design vector using function imsls_f_regressors_for_glm), and � is a
vector of parameters associated with the linear model. Let T denote the random
response variable and S(t) denote the probability that T > t. All models considered
also allow a fixed parameter w (input in column ifix of xpt). Use of the
parameter is discussed in function imsls_f_survival_glm. There also may be
nuisance parameters � > 0 or � > 0. Let � denote the cumulative normal

Chapter 10: Survival and Reliability Analysis survival_estimates � 699

distribution. The survival models available in imsls_f_survival_estimates
are:

model Name S (t)
0 Exponential exp [�t exp (wi +
)]

1 Linear hazard
� �

2

exp exp
2 i
tt w�

�
� �� �
� � �� �	

� �
 �

2 Log-normal � �ln
1 it w�

�

� �� �
��� �

� �

3 Normal
1 it w�

�

� �� �
��� �

� �

4 Log-logistic � � 1ln
{1 exp }it w�

�

�

� �� �
� � �

� �

5 Logistic
1{1 exp }it w�

�

�

� �� �
� � �

� �

6 Log least extreme value � �ln
exp{ exp }it w�

�

� �� �
� � �

� �

7 Least extreme value
exp{ exp }it w�

�

� �� �
� � �

� �

8 Log extreme value � �ln
1 exp{ exp }it w�

�

� �� �
� � � �

� �

9 Extreme value
1 exp{ exp }it w�

�

� �� �
� � � �

� �

10 Weibull

� �
exp{ }

exp i

t
w

�

�

� �
� � �

�� �� �

Let �(t) denote the hazard rate at time t. Then ��t) and S(t) are related at

� � � �exp()
t

S t s ds�
��

� �

Models 0, 1, 2, 4, 6, 8, and 10 require that T > 0 (in which case assume
�(s) = 0 for s < 0), while the remaining models allow arbitrary values for
T, �� < T < �. The computations proceed in function
imsls_f_survival_estimates as follows:

1. The input arguments are checked for consistency and validity.

700 � survival_estimates IMSL C/Stat/Library

2. For each row of xpt, the explanatory variables are generated from the
classification and variables and the covariates using function
imsls_f_regressors_for_glm with
dummy_method = IMSLS_LEAVE_OUT_LAST. Given the explanatory
variables x, � is computed as � = xT�, where � is input in
survival_info.

3. For each point requested in the time grid, the survival probabilities and
hazard rates are computed.

Example
This example is a continuation of the first example given for function
imsls_f_survival_glm. Prior to calling survival_estimates,
imsls_f_survival_glm is invoked to compute the parameter estimates
(contained in the structure survival_info). The example is taken from Lawless
(1982, p. 287) and involves the mortality of patients suffering from lung cancer.

#include <imsls.h>
#include <stdlib.h>
main() {
 static float x[40][7] = {
 1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,
 1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0,
 1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0,
 1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0,
 1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0,
 1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0,
 1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0,
 2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0,
 2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0,
 2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0,
 2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0,
 2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0,
 2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0,
 2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0,
 3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
 3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0,
 4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0,
 4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0,
 4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0,
 4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
 4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
 1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
 1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
 1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0,
 1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0,
 1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
 1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0,
 1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0,
 2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0,
 2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0,
 2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
 2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0,
 3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0,

Chapter 10: Survival and Reliability Analysis survival_estimates � 701

 3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0,
 3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0,
 4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0,
 4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
 4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0,
 4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
 4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0};

 int n_observations = 40;
 int n_estimates = 2;
 int n_class = 2;
 int n_continuous = 3;
 int model = 0;
 int icen = 6, ilt = -1, irt = 5;
 int lp_max = 40;
 float time = 10.0;
 int npt = 10;
 float delta = 20.0;

 int n_coef;
 float *sprob;
 Imsls_f_survival *survival_info;
 char *fmt = "%12.2f%10.4f%10.6f%10.4f%10.6f";
 char *clabels[] = {"", "Time", "S1", "H1", "S2", "H2"};

 n_coef = imsls_f_survival_glm(n_observations, n_class,
 n_continuous,
 model, &x[0][0],
 IMSLS_X_COL_CENSORING, icen, ilt, irt,
 IMSLS_INFINITY_CHECK, lp_max,
 IMSLS_SURVIVAL_INFO, &survival_info,
 0);

 sprob = imsls_f_survival_estimates(survival_info, n_estimates,
 &x[0][0], time, npt, delta, 0);

 imsls_f_write_matrix("Survival and Hazard Estimates",
 npt, 2*n_estimates+1, sprob,
 IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS,
 IMSLS_COL_LABELS, clabels, 0);

 free (survival_info);
 free (sprob);
}

Output

 Survival and Hazard Estimates

 Time S1 H1 S2 H2
 10.00 0.9626 0.003807 0.9370 0.006503
 30.00 0.8921 0.003807 0.8228 0.006503
 50.00 0.8267 0.003807 0.7224 0.006503
 70.00 0.7661 0.003807 0.6343 0.006503
 90.00 0.7099 0.003807 0.5570 0.006503
 110.00 0.6579 0.003807 0.4890 0.006503
 130.00 0.6096 0.003807 0.4294 0.006503
 150.00 0.5649 0.003807 0.3770 0.006503

702 � survival_estimates IMSL C/Stat/Library

 170.00 0.5235 0.003807 0.3310 0.006503
 190.00 0.4852 0.003807 0.2907 0.006503

Note that the hazard rate is constant over time for the exponential model.

Warning Errors
IMSLS_CONVERGENCE_ASSUMED_1 Too many step halvings.

Convergence is assumed.

IMSLS_CONVERGENCE_ASSUMED_2 Too many step iterations.
Convergence is assumed.

IMSLS_NO_PREDICTED_1 “estimates[0]” > 1.0. The expected
value for the log logistic
distribution (“model” = 4) does
not exist. Predicted values will not
be calculated.

IMSLS_NO_PREDICTED_2 “estimates[0]” > 1.0. The expected
value for the log extreme value
distribution (“model” = 8) does
not exist. Predicted values will not
be calculated.

IMSLS_NEG_EIGENVALUE The Hessian has at least one
negative eigenvalue. An upper
bound on the absolute value of the
minimum eigenvalue is #
corresponding to variable index #.

IMSLS_INVALID_FAILURE_TIME_4 “x[#][“ilt”= #]” = # and
“x[#][“irt”= #]” = #. The cen-
soring interval has length 0.0. The
censoring code for this observation
is being set to 0.0.

Fatal Error
IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of

the classification variables exceeds
“max_class” = #.

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is
specified, and “n_coef_input” = #.
The model specified requires #
coefficients.

IMSLS_TOO_FEW_VALID_OBS “n_observations” = %(i1) and
“n_rows_missing” = #.
“n_observations”�
”n_rows_missing” must be greater

Chapter 10: Survival and Reliability Analysis nonparam_hazard_rate � 703

than or equal to 2 in order to
estimate the coefficients.

IMSLS_SVGLM_1 For the exponential model
(“model” = 0) with “n_effects” = #
and no intercept, “n_coef” has
been determined to equal 0. With
no coefficients in the model,
processing cannot continue.

IMSLS_INCREASE_LP_MAX Too many observations are to be
deleted from the model. Either use
a different model or increase the
workspace.

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The
number of distinct values for each
classification variable must be
greater than one.

nonparam_hazard_rate
Performs nonparametric hazard rate estimation using kernel functions and quasi-
likelihoods.

Synopsis
#include <imsls.h>
float *imsls_f_nonparam_hazard_rate (int n_observations,

float t[], int n_hazard, float hazard_min,
float hazard_increment, ..., 0)

The type double function is imsls_d_nonparam_hazard_rate.

Required Arguments
int n_observations (Input)

Number of observations.

float t[] (Input)
An array of n_observations containing the failure times. If optional
argument IMSLS_CENSOR_CODES is used, the values of t may be
treated as exact failure times, as right-censored times, or a combination
of exact and right censored times. By default, all times in t are assumed
to be exact failure times.

int n_hazard (Input)
Number of grid points at which to compute the hazard. The function
computes the hazard rates over the range given by:
hazard_min + j * hazard_increment, for j = 0, �, n_hazard � 1.

704 � nonparam_hazard_rate IMSL C/Stat/Library

float hazard_min (Input)
First grid value.

float hazard_increment (Input)
Increment between grid values.

Return Value
Pointer to an array of length n_hazard containing the estimated hazard rates.

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_nonparam_hazard_rate (int n_observations,

float t[], int n_hazard, float hazard_min,
float hazard_increment
IMSLS_RETURN_USER, float haz[],
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_CENSOR_CODES, int censor_codes[],
IMSLS_WEIGHT, int iwto,
IMSLS_SORT_OPTION, int isort,
IMSLS_K_GRID, int n_k, float k_min, float k_increment,
IMSLS_BETA_GRID, int n_beta_grid, float beta_start,
float beta_increment,
IMSLS_N_MISSING, int *nmiss,
IMSLS_ALPHA, float *alpha,
IMSLS_BETA, float *beta,
IMSLS_CRITERION, float *vml,
IMSLS_K, int *k,
IMSLS_SORTED_EVENT_TIMES, float **event_times,
IMSLS_SORTED_EVENT_TIMES_USER, float event_times[],
IMSLS_SORTED_CENSOR_CODES, int **isorted_censor,
IMSLS_SORTED_CENSOR_CODES_USER, int isorted_censor[],
0)

Optional Arguments
IMSLS_RETURN_USER, float haz[] (Output)

If specified, haz is a user supplied array of length n_hazard containing
the estimated hazard rates.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option. Default: iprint = 0.

Chapter 10: Survival and Reliability Analysis nonparam_hazard_rate � 705

�

iprint Action

0 No printing is performed.
1 The grid estimates and the optimized estimates are printed for

each value of k.

IMSLS_CENSOR_CODES, int censor_codes[] (Input)
censor_codes is an array of length n_observations containing the
censoring codes for each time in t. If censor_codes[i]=0 the failure
time t[i] is treated as an exact time of failure. Otherwise it is treated as
a right-censored time; that is, the exact time of failure is greater than
t[i].
Default: All failure times are treated as exact times of failure with no
censoring.

IMSLS_WEIGHT_OPTION, int iwto (Input)
Weight option . If iwto = 1, then

is used for the i-th smallest
observation. Otherwise, is used.
Default: iwto = 0.

�� �ln 1 1/ i� � �weight n_observations
1/weight = n_obs� �i�ervations

IMSLS_SORT_OPTION, int isort (Input)
Sorting option . If isort = 1, then the event times are not automatically
sorted by the function. Otherwise, sorting is performed with exact failure
times following tied right-censored times.
Default: isort = 0.

IMSLS_K_GRID, int n_k, float k_min, float k_increment (Input)
Finds the optimal value of k over the range given by: kmin + (j � 1) *
k_increment, for j = 1, �, n_k. Where n_k is the number of values of
k to be considered. k_min is the minimum value for parameter k.
k_increment is the increment between successive values of parameter
k. Parameter k is the number of nearest neighbors to be used in
computing the k-th nearest neighbor distance.
Default: k_min is the smallest possible value of k, k_increment =2,
and n_k will be at most 10 points.

 IMSLS_BETA_GRID, int n_beta_grid, float beta_start, float
beta_increment (Input)
For n_beta_grid > 0, a user-defined grid is used. This grid is defined
as beta_start + (j � 1)*beta_increment, for j = 1, �,
n_beta_grid. beta_start is the first value to be used in the user-
defined grid and beta_increment is the increment between successive
grid values of beta.
Default: The values in the initial beta search are given as follows: Let
�
� = � 8, � 4, � 2, � 1, � 0.5,0.5,1, and 2, and

ββ e
�

�	

706 � nonparam_hazard_rate IMSL C/Stat/Library

 For each value of �, vml is computed at the optimizing �. The
maximizing � is used to initiate the iterations. If the initial �� is
determined from the search to be less than �6, then it is presumed that �
is infinite, and an analytic estimate of � based upon infinite � is used.
Infinite � corresponds to a flat hazard rate.

IMSLS_N_MISSING, int *nmiss (Output)
Number of missing (NaN, not a number) failure times in t.

IMSLS_ALPHA, float *alpha (Output)
Optimal estimate for the parameter �.

IMSLS_BETA, float *beta (Output)
Optimal estimate for the parameter �.

IMSLS_CRITERION, float *vml (Output)
Optimum value of the criterion function.

IMSLS_K, int *k (Output)
Optimal estimate for the parameter k.

IMSLS_SORTED_EVENT_TIMES, float **event_times (Output)
Address of a pointer to an array of length n_observations containing
the times of occurrence of the events, sorted from smallest to largest.

IMSLS_SORTED_EVENT_TIMES_USER, float event_times[] (Output)
Storage for event_times is provided by the user. See
IMSLS_SORTED_EVENT_TIMES.

IMSLS_SORTED_CENSOR_CODES, int **isorted_censor (Output)
Address of a pointer to an array of length n_observations containing
the sorted censor codes. Censor codes are sorted corresponding to the
events event_times[i], with censored observations preceding tied
failures.

IMSLS_SORTED_CENSOR_CODES_USER, int isorted_censor[] (Output)
Storage for isorted_censor is provided by the user. See
IMSLS_SORTED_CENSOR_CODE.

Description
Function imsls_f_nonparam_hazard_rate is an implementation of the
methods discussed by Tanner and Wong (1984) for estimating the hazard rate in
survival or reliability data with right censoring. It uses the biweight kernel,

2 215
16 (1) for 1

()
0 elsew

x x
K x

� � �
� �
� here

and a modified likelihood to obtain data-based estimates of the smoothing
parameters �, �, and k needed in the estimation of the hazard rate. For kernel
K(x), define the “smoothed” kernel
Ks(x � x(j) as follows:

Chapter 10: Survival and Reliability Analysis nonparam_hazard_rate � 707

� �
()

1()
α βS j

jk jk

x x j
K x x K

d d
� ��

� � � �� �
� �

where djk is the distance to the k-th nearest failure from x(j), and x(j) is the j-th
ordered observation (from smallest to largest). For given � and �, the hazard at
point x is then

()
1

() {(1) ()}
N

i i s i
i

h x w K x x�

�

� � ��

where N = n_observations, 	i is the i-th observation’s censor code (1 =
censored, 0 = failed), and wi is the i-th ordered observation’s weight, which may
be chosen as either 1/(N � i + 1), or
ln(1 + 1/(N � i + 1)). Let

0
() ()

x
H x h s� � ds

)

The likelihood is given by
(1)

1 ({ () exp(())}iN
i i iL h x H x��

�
� �� ,

where
 denotes product. Since the likelihood leads to degenerate estimates,
Tanner and Wong (1984) suggest the use of a modified likelihood. The
modification consists of deleting observation xi in the calculation of h(xi) and
H(xi) when the likelihood term for xi is computed using the usual optimization
techniques. � and � for given k can then be estimated.

Estimates for � and � are computed as follows: for given �, a closed form
solution is available for �. The problem is thus reduced to the estimation of �.
A grid search for � is first performed. Experience indicates that if the initial
estimate of � from this grid search is greater than, say, e�, then the modified
likelihood is degenerate because the hazard rate does not change with time. In this
situation, � should be taken to be infinite, and an estimate of � corresponding to
infinite � should be directly computed. When the estimate of � from the grid
search is less than e�, a secant algorithm is used to optimize the modified
likelihood. The secant algorithm iteration stops when the change in � from one
iteration to the next is less than 10��. Alternatively, the iterations may cease when
the value of � becomes greater than e�, at which point an infinite � with a
degenerate likelihood is assumed.

To find the optimum value of the likelihood with respect to k, a user-specified
grid of k-values is used. For each grid value, the modified likelihood is optimized
with respect to � and �. That grid point, which leads to the smallest likelihood, is
taken to be the optimal k.

Programming Notes
1. If sorting of the data is performed by imsls_f_nonparam_hazard_rate,

then the sorted array will be such that all censored observations at a given

708 � nonparam_hazard_rate IMSL C/Stat/Library

time precede all failures at that time. To specify an arbitrary pattern of
censored/failed observations at a given time point, the isort = 1 option
must be used. In this case, it is assumed that the times have already been
sorted from smallest to largest.

2. The smallest value of k must be greater than the largest number of tied
failures since djk must be positive for all j. (Censored observations are not
counted.) Similarly, the largest value of k must be less than the total number
of failures. If the grid specified for k includes values outside the allowable
range, then a warning error is issued; but k is still optimized over the
allowable grid values.

3. The secant algorithm iterates on the transformed parameter �� = exp(� �).
This assures a positive �, and it also seems to lead to a more desirable grid
search. All results returned to the user are in the original parameterization,
however.

4. Since local minimums have been observed in the modified likelihood, it is
recommended that more than one grid of initial values for � and � be used.

5. Function imsls_f_nonparam_hazard_rate assumes that the hazard grid
points are new data points.

Example
The following example is taken from Tanner and Wong (1984). The data are
from Stablein, Carter, and Novak (1981) and involve the survival times of
individuals with nonresectable gastric carcinoma. Only individuals treated with
both radiation and chemotherapy are used. For each value of k from 18 to 22 with
increment of 2, the default grid search for � is performed. Using the optimal value
of � in the grid, the optimal parameter estimates of � and � are computed for
each value of k. The final solution is the parameter estimates for the value of
k which optimizes the modified likelihood (vml). Because the iprint = 1 is in
effect, imsls_f_nonparam_hazard_rate prints all of the results in the output.

#include "imsls.h"

void main ()
{
 int n_observations = 45, iprint = 1, kmin = 18;
 int increment_k = 2, n_k = 3, isort = 1, nmiss, *isorted_censor;
 float *event_times, *haz;
 int n_hazard=100;
 float hazard_min = 0.0, hazard_inc = 10;

 float t[] = { 17.0, 42.0, 44.0, 48.0, 60.0, 72.0, 74.0, 95.0,
 103.0, 108.0, 122.0, 144.0, 167.0, 170.0, 183.0,
 185.0, 193.0, 195.0, 197.0, 208.0, 234.0, 235.0,
 254.0, 307.0, 315.0, 401.0, 445.0, 464.0, 484.0,
 528.0, 542.0, 567.0, 577.0, 580.0, 795.0, 855.0,
 882.0, 892.0,1031.0,1033.0,1306.0,1335.0,1366.0,
 1452.0, 1472.0};
 float censor_codes[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

Chapter 10: Survival and Reliability Analysis nonparam_hazard_rate � 709

 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};

 haz = imsls_f_nonparam_hazard_rate I (n_observations, t,
 n_hazard, hazard_min, hazard_inc,
 IMSLS_K_GRID, n_k, kmin,

increment_k,
 IMSLS_PRINT_LEVEL, iprint,
 IMSLS_N_MISSING, &nmiss,
 IMSLS_SORT_OPTION, isort,
 IMSLS_CENSOR_CODES, censor_codes,
 IMSLS_SORTED_EVENT_TIMES,

 &event_times,
 IMSLS_SORTED_CENSOR_CODES,
 &isorted_censor,
 0);

 printf ("\nnmiss = %d\n", nmiss);
 imsls_f_write_matrix ("Sorted Event Times", 1, n_observations,
 event_times, IMSLS_WRITE_FORMAT, "%7.1f", 0);
 imsls_i_write_matrix ("Sorted Censors", 1, n_observations,
 isorted_censor, 0);
 imsls_f_write_matrix ("Hazard Rates", 1, n_hazard, haz, 0);

}

Output

 *** Grid search for k = 18 ***
 alpha beta vml

 4.57832 2980.96 -266.805
 4.54312 54.5982 -266.62
 4.33646 20.0855 -265.541
 4.01933 12.1825 -264.001
 3.54274 7.38906 -262.54
 2.99058 4.48169 -262.512
 2.35154 2.71828 -262.634
 1.58417 1.64872 -262.158
 0.966332 1 -262.868

 *** Optimal parameter estimates ***

 alpha beta vml
 1.69515 1.76926 -262.119

 *** Grid search for k = 20 ***

 alpha beta vml
 4.05393 2980.96 -266.526
 4.03284 54.5982 -266.401
 3.90505 20.0855 -265.648
 3.68782 12.1825 -264.402
 3.30434 7.38906 -262.666
 2.82272 4.48169 -262.08
 2.25276 2.71828 -262.445
 1.55578 1.64872 -261.772
 0.955586 1 -262.618

710 � nonparam_hazard_rate IMSL C/Stat/Library

 *** Optimal parameter estimates ***
 alpha beta vml

 1.54053 1.63155 -261.771

 *** Grid search for k = 22 ***
 alpha beta vml
 3.65641 2980.96 -267.595
 3.64159 54.5982 -267.499
 3.55056 20.0855 -266.904
 3.38875 12.1825 -265.859
 3.07147 7.38906 -264.066
 2.64504 4.48169 -263.039
 2.1374 2.71828 -263.335
 1.51261 1.64872 -262.64
 0.936368 1 -262.683

 *** Optimal parameter estimates ***
 alpha beta vml
 1.34217 1.45001 -262.561

 *** The final solution (k = 20) ***
 alpha beta vml
 1.54053 1.63155 -261.771

nmiss = 0

 Sorted Event Times
 1 2 3 4 5 6 7 8
 17.0 42.0 44.0 48.0 60.0 72.0 74.0 95.0

 9 10 11 12 13 14 15 16
 103.0 108.0 122.0 144.0 167.0 170.0 183.0 185.0

 17 18 19 20 21 22 23 24
 193.0 195.0 197.0 208.0 234.0 235.0 254.0 307.0

 25 26 27 28 29 30 31 32
 315.0 401.0 445.0 464.0 484.0 528.0 542.0 567.0

 33 34 35 36 37 38 39 40
 577.0 580.0 795.0 855.0 882.0 892.0 1031.0 1033.0

 41 42 43 44 45
 1306.0 1335.0 1366.0 1452.0 1472.0

 Sorted Censors
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

39 40 41 42 43 44 45
1 1 1 1 1 1 1

 Hazard Rates
 1 2 3 4 5 6
 0.000962 0.001111 0.001276 0.001451 0.001634 0.001819

Chapter 10: Survival and Reliability Analysis nonparam_hazard_rate � 711

 7 8 9 10 11 12
 0.002004 0.002185 0.002359 0.002523 0.002675 0.002813

 13 14 15 16 17 18
 0.002935 0.003040 0.003126 0.003193 0.003240 0.003266

 19 20 21 22 23 24
 0.003273 0.003260 0.003229 0.003179 0.003114 0.003034

 25 26 27 28 29 30
 0.002941 0.002838 0.002727 0.002612 0.002495 0.002381

 31 32 33 34 35 36
 0.002273 0.002175 0.002084 0.001998 0.001917 0.001841

 37 38 39 40 41 42
 0.001771 0.001709 0.001655 0.001608 0.001569 0.001537

 43 44 45 46 47 48
 0.001510 0.001484 0.001459 0.001435 0.001411 0.001388

 49 50 51 52 53 54
 0.001365 0.001343 0.001323 0.001304 0.001285 0.001266

 55 56 57 58 59 60
 0.001247 0.001228 0.001208 0.001188 0.001167 0.001146

 61 62 63 64 65 66
 0.001125 0.001103 0.001081 0.001060 0.001040 0.001020

 67 68 69 70 71 72
 0.000999 0.000979 0.000958 0.000936 0.000913 0.000891

 73 74 75 76 77 78
 0.000868 0.000845 0.000821 0.000798 0.000775 0.000752

 79 80 81 82 83 84
 0.000730 0.000708 0.000685 0.000662 0.000640 0.000617

 85 86 87 88 89 90
 0.000595 0.000573 0.000552 0.000530 0.000510 0.000490

 91 92 93 94 95 96
 0.000471 0.000452 0.000434 0.000416 0.000399 0.000383

 97 98 99 100
 0.000366 0.000351 0.000336 0.000321

Fatal Errors
IMSLS_ALL_OBSERVATIONS_MISSING

 All observations are missing (NaN, not a
number) values.

712 � life_tables IMSL C/Stat/Library

life_tables
Produces population and cohort life tables.

Synopsis
#include <imsls.h>
float *imsls_f_life_tables (int n_classes, float age[], float a[],

int n_cohort[], ..., 0)
The type double function is imsls_d_life_tables.

Required Arguments
int n_classes (Input)

Number of age classes.

float age[] (Input)
Array of length n_classes + 1 containing the lowest age in each age
interval, and in age[n_classes], the endpoint of the last age interval.
Negative age[0] indicates that the age intervals are all of length
|age[0]| and that the initial age interval is from 0.0 to |age[0]|. In
this case, all other elements of age need not be specified.
age[n_classes] need not be specified when getting a cohort table.

float a[] (Input)
Array of length n_classes containing the fraction of those dying within
each interval who die before the interval midpoint. A common choice
for all a[i] is 0.5. This choice may also be specified by setting a[0] to
any negative value. In this case, the remaining values of a need not be
specified.

int n_cohort[] (Input)
Array of length n_classes containing the cohort sizes during each
interval. If the IMSL_POPULATION_LIFE_TABLE option is used, then
n_cohort[i] contains the size of the population at the midpoint of
interval i. Otherwise, n_cohort[i] contains the size of the cohort at
the beginning of interval i. When requesting a population table, the
population sizes in n_cohort may need to be adjusted to correspond to
the number of deaths in n_deaths. See the Description section for more
information.

Return Value
Pointer to an array of length n_classes by 12 containing the life table. The
function returns a cohort table by default. If the
IMSL_POPULATION_LIFE_TABLE option is used, a population table is returned.
Entries in the ith row are for the age interval defined by age[i]. Column
definitions are described in the following table.

Chapter 10: Survival and Reliability Analysis life_tables � 713

Column Description
0 Lowest age in the age interval.
1 Fraction of those dying within the interval who die before the

interval midpoint.
2 Number surviving to the beginning of the interval.
3 Number of deaths in the interval.
4 Death rate in the interval. For cohort table, this column is set

to NaN (not a number).
5 Proportion dying in the interval.
6 Standard error of the proportion dying in the interval.
7 Proportion of survivors at the beginning of the interval.
8 Standard error of the proportion of survivors at the beginning

of the interval.
9 Expected lifetime at the beginning of the interval.
10 Standard error of the expected life at the beginning of the

interval.
11 Total number of time units lived by all of the population in

the interval.

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_life_tables (int n_classes, float age[],

float a[], int n_cohort[],
IMSLS_RETURN_USER, float table[],
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_POPULATION_SIZE, int initial_pop,
IMSLS_POPULATION_LIFE_TABLE, int *n_deaths,
0)

Optional Arguments
IMSLS_RETURN_USER, float table[] (Output)

If specified, table is an user-specified array of length n_classes*12
containing the life table.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option.
Default: iprint = 0.
Iprint Action

0 No printing is performed.
1 The life table is printed.

714 � life_tables IMSL C/Stat/Library

iP

i

IMSLS_POPULATION_SIZE, int initial_pop (Input)
The population size at the beginning of the first age interval in
requesting population table. A default value of 10,000 is used to allow
easy entry of n_cohorts and n_deaths when numbers are available as
percentages.
Default: initial_pop = 10000.

IMSLS_POPULATION_LIFE_TABLE, int *n_deaths (Input)
Compute a population table. n_deaths is an array of length n_classes
containing the number of deaths in each age interval.

Description
Function imsls_f_life_tables computes population (current) or cohort life
tables based upon the observed population sizes at the middle (for population
table) or the beginning (for cohort table) of some userspecified age intervals. The
number of deaths in each of these intervals must also be observed.

The probability of dying prior to the middle of the interval, given that death
occurs somewhere in the interval, may also be specified. Often, however, this
probability is taken to be 0.5. For a discussion of the probability models
underlying the life table here, see the references.

Let ti, for i = 0, 1, �, tn denote the time grid defining the n age intervals, and note
that the length of the age intervals may vary. Following Gross and Clark (1975,
page 24), let di denote the number of individuals dying in age interval i, where
age interval i ends at time ti. For population table, the death rate at the middle of
the interval is given by ri = di/(Mihi), where Mi is the number of individuals alive
at the middle of the interval, and hi = ti � ti-�, t� = 0. The number of individuals
alive at the beginning of the interval may be estimated by Pi = Mi + (1 � ai)di
where ai is the probability that an individual dying in the interval dies prior to the
interval midpoint. For cohort table, Pi is input directly while the death rate in the
interval, ri, is not needed.

The probability that an individual dies during the age interval from ti-� to ti is
given by qi = di/Pi. It is assumed that all individuals alive at the beginning of the
last interval die during the last interval. Thus, qn = 1.0. The asymptotic variance
of qi can be estimated by

2 (1) /i i iq q� � �

For population table, the number of individuals alive in the middle of the time
interval (input in n_cohort[i]) must be adjusted to correspond to the number of
deaths observed in the interval. Function imsls_f_life_tables assumes that
the number of deaths observed in interval hi occur over a time period equal to hi.
If di is measured over a period ui, where ui � di, then n_cohort[i] must be
adjusted to correspond to di by multiplication by ui/hi, i.e., the value Mi input into
imsls_f_life_tables as n_cohort[i] is computed as

/i i iM M u h�

�

Chapter 10: Survival and Reliability Analysis life_tables � 715

Let Si denote the number of survivors at time ti from a hypothetical (for
population table) or observed (for cohort table) population. Then,
S� = initial_pop for population table, and S� = n_cohort[0] for cohort table,
and Si is given by Si = Si�� � 	i-1 where 	i = Siqi is the number of individuals who
die in the i-th interval. The proportion of survivors in the interval is given by
Vi = Si/S� while the asymptotic variance of Vi can be estimated as follows.

21
2

2
1

var()
(1)

i
j

i i
j j

V V
q

��

�

�

�

�

The expected lifetime at the beginning of the interval is calculated as the total
lifetime remaining for all survivors alive at the beginning of the interval divided
by the number of survivors at the beginning of the interval. If ei denotes this
average expected lifetime, then the variance of ei can be estimated as (see Chiang
1968)

1 2 2 2
1 1

2

[(1
var()

n
j i j j j j j

i
j

P e h a
e

P
�

�

� � �
� � �

�
)]

)]

where var(en) = 0.0.

Finally, the total number of time units lived by all survivors in the time interval
can be estimated as:

[(1i i i i iU h S a�� � �

Example
The following example is taken from Chiang (1968). The cohort life table has
thirteen equally spaced intervals, so age[0] is set to �5.0. Similarly, the
probabilities of death prior to the middle of the interval are all taken to be 0.5, so
a[0] is set to �1.0. Since IMSLS_PRINT_LEVEL option is used,
imsls_f_life_tables prints the life table.

#include "imsls.h"

#define N_CLASSES 13

void main ()
{
 int iprint = 1;
 int n_cohort[] =
 { 270, 268, 264, 261, 254, 251, 248, 232, 166, 130, 76, 34, 13 };
 float age[N_CLASSES + 1], a[N_CLASSES];
 float *result;

 age[0] = -5.0;
 a[0] = -1.0;
 result = imsls_f_life_tables (N_CLASSES, age, a, n_cohort,
 IMSLS_PRINT_LEVEL, iprint, 0);
}

716 � life_tables IMSL C/Stat/Library

Output

 Life Table
Age Class Age PDHALF Alive Deaths Death Rate
 1 0 0.5 270 2
 2 5 0.5 268 4
 3 10 0.5 264 3
 4 15 0.5 261 7
 5 20 0.5 254 3
 6 25 0.5 251 3
 7 30 0.5 248 16
 8 35 0.5 232 66
 9 40 0.5 166 36
 10 45 0.5 130 54
 11 50 0.5 76 42
 12 55 0.5 34 21
 13 60 0.5 13 13

Age Class P(D) Std(P(D)) P(S) Std(P(S)) Lifetime
 1 0.007407 0.005218 1 0 43.19
 2 0.01493 0.007407 0.9926 0.005218 38.49
 3 0.01136 0.006523 0.9778 0.008971 34.03
 4 0.02682 0.01 0.9667 0.01092 29.4
 5 0.01181 0.006779 0.9407 0.01437 25.14
 6 0.01195 0.006859 0.9296 0.01557 20.41
 7 0.06452 0.0156 0.9185 0.01665 15.63
 8 0.2845 0.02962 0.8593 0.02116 11.53
 9 0.2169 0.03199 0.6148 0.02962 10.12
 10 0.4154 0.04322 0.4815 0.03041 7.231
 11 0.5526 0.05704 0.2815 0.02737 5.592
 12 0.6176 0.08334 0.1259 0.02019 4.412
 13 1 0 0.04815 0.01303 2.5

Age Class Std(Life) Time Units
 1 0.6993 1345
 2 0.6707 1330
 3 0.623 1313
 4 0.594 1288
 5 0.5403 1263
 6 0.5237 1248
 7 0.5149 1200
 8 0.4982 995
 9 0.4602 740
 10 0.4328 515
 11 0.4361 275
 12 0.4167 117.5
 13 0 32.5

Chapter 11: Probability Distribution Functions and Inverses Routines � 717

Chapter 11: Probability Distribution
Functions and Inverses

Routines
11.1 Discrete Random Variables: Distribution Functions and

Probability Functions
Distribution Functions
Binomial distribution functionbinomial_cdf 720
Binomial probability function ..binomial_pdf 722
Hypergeometric distribution function................ hypergeometric_cdf 723
Hypergeometric probability function................. hypergeometric_pdf 725
Poisson distribution function ...poisson_cdf 726
Poisson probability function ..poisson_pdf 728

11.2 Continuous Random Variables
Distribution Functions and Their Inverses
Beta distribution function.. beta_cdf 730
Inverse beta distribution functionbeta_inverse_cdf 731
Bivariate normal distribution function bivariate_normal_cdf 732
Chi-squared distribution function chi_squared_cdf 734
Inverse chi-squared
distribution functionchi_squared_inverse_cdf 736
Noncentral chi-squared
distribution function ...non_central_chi_sq 738
Inverse of the noncentral chi-squared
distribution function non_central_chi_sq_inv 740
F distribution function..F_cdf 742
Inverse F distribution function F_inverse_cdf 744
Gamma distribution function ...gamma_cdf 745
Inverse gamma distribution function gamma_inverse_cdf 747
Normal (Gaussian) distribution function......................... normal_cdf 748
Inverse normal distribution function normal_inverse_cdf 750
Student’s t distribution function .. t_cdf 751

718 � Usage Notes IMSL C/Stat/Library

Inverse Student’s t distribution function...................... t_inverse_cdf 753
Noncentral Students’s t distribution functionnon_central_t_cdf 754
Inverse of the noncentral Student’s t
distribution function....................................... non_central_t_inv_cdf 757

Usage Notes
Definitions and discussions of the terms basic to this chapter can be found in
Johnson and Kotz (1969, 1970a, 1970b). These are also good references for the
specific distributions.

In order to keep the calling sequences simple, whenever possible, the
subprograms described in this chapter are written for standard forms of statistical
distributions. Hence, the number of parameters for any given distribution may be
fewer than the number often associated with the distribution. For example, while
a gamma distribution is often characterized by two parameters (or even a third,
“location”), there is only one parameter that is necessary, the “shape”.
The “scale” parameter can be used to scale the variable to the standard gamma
distribution. Also, the functions relating to the normal distribution,
imsls_f_normal_cdf (page 748) and imsls_f_normal_inverse_cdf
(page 750), are for a normal distribution with mean equal to zero and variance
equal to one. For other means and variances, it is very easy for the user to
standardize the variables by subtracting the mean and dividing by the square root
of the variance.

The distribution function for the (real, single-valued) random variable X is the
function F defined for all real x by

F(x) = Prob(X � x)

where Prob(�) denotes the probability of an event. The distribution function is
often called the cumulative distribution function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for
values less than the left endpoint and 1 for values greater than the right endpoint.
The subprograms described in this chapter return the correct values for the
distribution functions when values outside of the range of the random variable are
input, but warning error conditions are set in these cases.

Discrete Random Variables

For discrete distributions, the function giving the probability that the random
variable takes on specific values is called the probability function, defined by

p(x) = Prob(X = x)

The “PR” routines described in this chapter evaluate probability functions.

The CDF for a discrete random variable is

Chapter 11: Probability Distribution Functions and Inverses Usage Notes � 719

� � � �
A

F x p�� k

where A is the set such that k � x. The “DF” routines in this chapter evaluate
cumulative distribution functions. Since the distribution function is a step
function, its inverse does not exist uniquely.

Continuous Distributions

For continuous distributions, a probability function, as defined above, would not
be useful because the probability of any given point is 0. For such distributions,
the useful analog is the probability density function (PDF). The integral of the
PDF is the probability over the interval, if the continuous random variable X has
PDF f, then

Prob() ()b
aa X b f x dx� � � �

The relationship between the CDF and the PDF is

() ()xF x f t
��

� � dt .

The “_cdf” functions described in this chapter evaluate cumulative distribution
functions.

For (absolutely) continuous distributions, the value of F(x) uniquely determines
x within the support of the distribution. The “_inverse_cdf” functions
described in this chapter compute the inverses of the distribution functions, that
is, given F(x) (called “P” for “probability”), a routine such as
imsls_f_beta_inverse_cdf (page 731) computes x. The inverses are defined
only over the open interval (0,1).

Additional Comments
Whenever a probability close to 1.0 results from a call to a distribution function
or is to be input to an inverse function, it is often impossible to achieve good
accuracy because of the nature of the representation of numeric values. In this
case, it may be better to work with the complementary distribution function (one
minus the distribution function). If the distribution is symmetric about some point
(as the normal distribution, for example) or is reflective about some point (as the
beta distribution, for example), the complementary distribution function has a
simple relationship with the distribution function. For example, to evaluate the
standard normal distribution at 4.0, using imsls_f_normal_inverse_cdf
(page 750) directly, the result to six places is 0.999968. Only two of those digits
are really useful, however. A more useful result may be 1.000000 minus this
value, which can be obtained to six significant figures as 3.16713E-05 by
evaluating imsls_f_normal_inverse_cdf at �4.0. For the normal
distribution, the two values are related by �(x) = 1 � �(�x), where �(�) is the
normal distribution function. Another example is the beta distribution with
parameters 2 and 10. This distribution is skewed to the right, so evaluating
imsls_f_beta_cdf (page 730) at 0.7, 0.999953 is obtained. A more precise

720 � binomial_cdf IMSL C/Stat/Library

result is obtained by evaluating imsls_f_beta_cdf with parameters 10 and 2 at
0.3. This yields 4.72392E-5. (In both of these examples, it is wise not to trust the
last digit.)

Many of the algorithms used by routines in this chapter are discussed by
Abramowitz and Stegun (1964). The algorithms make use of various expansions
and recursive relationships and often use different methods in different regions.

Cumulative distribution functions are defined for all real arguments, however, if
the input to one of the distribution functions in this chapter is outside the range of
the random variable, an error of Type 1 is issued, and the output is set to zero or
one, as appropriate. A Type 1 error is of lowest severity, a “note”, and, by
default, no printing or stopping of the program occurs. The other common errors
that occur in the routines of this chapter are Type 2, “alert”, for a function value
being set to zero due to underflow, Type 3, “warning”, for considerable loss of
accuracy in the result returned, and Type 5, “terminal”, for incorrect and/or
inconsistent input, complete loss of accuracy in the result returned, or inability to
represent the result (because of overflow). When a Type 5 error occurs, the result
is set to NaN (not a number, also used as a missing value code).

binomial_cdf
Evaluates the binomial distribution function.

Synopsis
#include <imsls.h>
float imsls_f_binomial_cdf (int k, int n, float p)

The type double function is imsls_d_binomial_cdf.

Required Arguments

int k (Input)
Argument for which the binomial distribution function is to be
evaluated.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial.

Return Value
The probability that k or fewer successes occur in n independent Bernoulli trials,
each of which has a probability p of success.

Chapter 11: Probability Distribution Functions and Inverses binomial_cdf � 721

Description
The imsls_f_binomial_cdf function evaluates the distribution function of a
binomial random variable with parameters n and p. It does this by summing
probabilities of the random variable taking on the specific values in its range.
These probabilities are computed by the recursive relationship:

� �
� �

� �
� �

1
1

1
n j p

Pr X j Pr X j
j p
� �

� � � �

�

To avoid the possibility of underflow, the probabilities are computed forward
from 0 if k is not greater than n � p; otherwise, they are computed backward from
n. The smallest positive machine number, �, is used as the starting value for
summing the probabilities, which are rescaled by (1 � p)n� if forward
computation is performed and by pn� if backward computation is used.

For the special case of p = 0, imsls_f_binomial_cdf is set to 1; for the case
p = 1, imsls_f_binomial_cdf is set to 1 if k = n and is set to 0 otherwise.

Example
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this
example, the function finds the probability that X is less than or equal to 3.

#include <imsls.h>

void main()
{
 int k = 3;
 int n = 5;
 float p = 0.95;
 float pr;

 pr = imsls_f_binomial_cdf(k,n,p);
 printf("Pr(x <= 3) = %6.4f\n", pr);
}

Output

Pr(x <= 3) = 0.0226

Informational Errors
IMSLS_LESS_THAN_ZERO Since “k” � # is less than zero, the

distribution function is set to zero.

IMSLS_GREATER_THAN_N The input argument, k, is greater than the
number of Bernoulli trials, n.

722 � binomial_pdf IMSL C/Stat/Library

binomial_pdf
Evaluates the binomial probability function.

Synopsis
#include <imsls.h>
float imsls_f_binomial_pdf (int k, int n, float p,..., 0)

The type double function is imsls_d_binomial_pdf.

Required Arguments

int k (Input)
Argument for which the binomial probability function is to be evaluated.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial.

Return Value
The probability that a binomial random variable takes on a value equal to k.

Description
The function imsls_f_binomial_pdf evaluates the probability that a binomial
random variable with parameters n and p takes on the value k. It does this by
computing probabilities of the random variable taking on the values in its range
less than (or the values greater than) k. These probabilities are computed by the
recursive relationship

(1)Pr() Pr(1)
(1)

n j pX j X j
j p
� �

� � � �

�

To avoid the possibility of underflow, the probabilities are computed forward
from 0, if k is not greater than n times p, and are computed backward from n,
otherwise. The smallest positive machine number, �, is used as the starting value
for computing the probabilities, which are rescaled by (1 � p)n� if forward
computation is performed and by pn� if backward computation is done.

For the special case of p = 0, imsls_f_binomial_pdf is set to 0 if k is greater
than 0 and to 1 otherwise; and for the case p = 1, imsls_f_binomial_pdf is set
to 0 if k is less than n and to 1 otherwise.

Example 1
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this
example, we find the probability that X is equal to 3.

Chapter 11: Probability Distribution Functions and Inverses hypergeometric_cdf � 723

#include <stdio.h>
#include <imsls.h>

void main()
{
 int k, n;
 float p, prob;

 k = 3;
 n = 5;
 p = 0.95;
 prob = imsls_f_binomial_pdf(k, n, p);

 printf("The probability that X is equal to 3 is %f\n", prob);
 }

Output
The probability that X is equal to 3 is 0.021434

hypergeometric_cdf
Evaluates the hypergeometric distribution function.

Synopsis
#include <imsls.h>
float imsls_f_hypergeometric_cdf (int k, int n, int m, int l)

The type double function is imsls_d_hypergeometric_cdf.

Required Arguments

int k (Input)
Argument for which the hypergeometric distribution function is to be
evaluated.

int n (Input)
Sample size. Argument n must be greater than or equal to k.

int m (Input)
Number of defectives in the lot.

int l (Input)
Lot size. Argument l must be greater than or equal to n and m.

Return Value
The probability that k or fewer defectives occur in a sample of size n drawn from
a lot of size l that contains m defectives.

724 � hypergeometric_cdf IMSL C/Stat/Library

Description
Function imsls_f_hypergeometric_cdf evaluates the distribution function of
a hypergeometric random variable with parameters n, l, and m. The
hypergeometric random variable x can be thought of as the number of items of a
given type in a random sample of size n that is drawn without replacement from a
population of size l containing m items of this type. The probability function is

� �
� �� �

� �
� �for , 1, , min ,

m l m
j n j

l
n

Pr x = j j i i n m
�

�

� � � �

where i = max (0, n � l + m).

If k is greater than or equal to i and less than or equal to min (n, m),
imsls_f_hypergeometric_cdf sums the terms in this expression for j going
from i up to k; otherwise, 0 or 1 is returned, as appropriate. To avoid rounding in
the accumulation, imsls_f_hypergeometric_cdf performs the summation
differently, depending on whether or not k is greater than the mode of the
distribution, which is the greatest integer less than or equal to
(m + 1) (n + 1)/(l + 2).

Example
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and
m = 70. In this example, evaluate the distribution function at 7.

#include <imsls.h>

void main()
{
 int k = 7;
 int l = 1000;
 int m = 70;
 int n = 100;
 float p;

 p = imsls_f_hypergeometric_cdf(k,n,m,l);
 printf("\nPr (x <= 7) = %6.4f", p);
}

Output

Pr (x <= 7) = 0.599

Informational Errors
IMSLS_LESS_THAN_ZERO Since “k” � # is less than zero, the

distribution function is set to zero.

IMSLS_K_GREATER_THAN_N The input argument, k, is greater than the
sample size.

Chapter 11: Probability Distribution Functions and Inverses hypergeometric_pdf � 725

Fatal Errors
IMSLS_LOT_SIZE_TOO_SMALL Lot size must be greater than or equal to

n and m.

hypergeometric_pdf
Evaluates the hypergeometric probability function.

Synopsis
#include <imsls.h>
float imsls_f_hypergeometric_pdf (int k, int n, int m, int l)

The type double function is imsls_d_hypergeometric_pdf.

Required Arguments
int k (Input)

Argument for which the hypergeometric probability function is to be
evaluated.

int n (Input)
Sample size. n must be greater than zero and greater than or equal to k.

int m (Input)
Number of defectives in the lot.

int l (Input)
Lot size. l must be greater than or equal to n and m.

Return Value
The probability that a hypergeometric random variable takes a value equal to k.
This value is the probability that exactly k defectives occur in a sample of size n
drawn from a lot of size l that contains m defectives.

Description
The function imsls_f_hypergeometic_pdf evaluates the probability function
of a hypergeometric random variable with parameters n, l, and m. The
hypergeometric random variable X can be thought of as the number of items of a
given type in a random sample of size n that is drawn without replacement from a
population of size l containing m items of this type. The probability function is

� �� �
� �

Pr() for , 1, 2, min(,)
m l m
k n kX k k i i i n m

l
n

�

�
� � � � � �

726 � poisson_cdf IMSL C/Stat/Library

where i = max(0, n � l + m). imsls_f_hypergeometic_pdf evaluates the
expression using log gamma functions.

Example
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and
m = 70. In this example, we evaluate the probability function at 7.

include "imsls.h"

void main()

{

 int k=7, n=100, l=1000, m=70;

 float pr;

 pr = imsls_f_hypergeometic_pdf(k, n, m, l);

 printf(" The probability that X is equal to 7 is %6.4f\n", pr);

}

Output
 The probability that X is equal to 7 is 0.1628

poisson_cdf
Evaluates the Poisson distribution function.

Synopsis
#include <imsls.h>
float imsls_f_poisson_cdf (int k, float theta)

The type double function is imsls_d_poisson_cdf.

Required Arguments
int k (Input)

Argument for which the Poisson distribution function is to be evaluated.

float theta (Input)
Mean of the Poisson distribution. Argument theta must be positive.

Return Value
The probability that a Poisson random variable takes a value less than or equal
to k.

Chapter 11: Probability Distribution Functions and Inverses poisson_cdf � 727

1

Description
Function imsls_f_poisson_cdf evaluates the distribution function of a
Poisson random variable with parameter theta. The mean of the Poisson random
variable, theta, must be positive. The probability function (with � = theta) is
as follows:

� � / !, for 0, 1, 2,xf x e x x�
�

�

� � �

The individual terms are calculated from the tails of the distribution to the mode
of the distribution and summed. Function imsls_f_poisson_cdf uses the
recursive relationship

� � � � � �� �1 / 1 for 0,1, 2, ,f x f x x x k�� � � � ��

with f (0) = e-q.

Figure 11-1 Plot of Fp (k, �)

Example
Suppose X is a Poisson random variable with � = 10. In this example, we evaluate
the probability that X is less than or equal to 7.

#include <imsls.h>

void main()
{
 int k = 7;
 float theta = 10.0;
 float p;

728 � poisson_pdf IMSL C/Stat/Library

 p = imsls_f_poisson_cdf(k, theta);
 printf("Pr(x <= 7) = %6.4f\n", p);
}

Output

Pr(x <= 7) = 0.2202

Informational Errors
IMSLS_LESS_THAN_ZERO Since “k” � # is less than zero, the

distribution function is set to zero.

poisson_pdf
Evaluates the Poisson probability function.

Synopsis
#include <imsls.h>
float imsls_f_poisson_pdf (int k, float theta)
The type double function is imsls_d_poisson_pdf.

Required Arguments
int k (Input)

Argument for which the Poisson distribution function is to be evaluated.

float theta (Input)
Mean of the Poisson distribution. theta must be positive.

Return Value
Function value, the probability that a Poisson random variable takes a value equal
to k.

Description
Function imsls_f_poisson_pdf evaluates the probability function of a Poisson
random variable with parameter theta. theta, which is the mean of the Poisson
random variable, must be positive. The probability function (with � = theta) is

f(x) = e�� �k/k!, for k = 0, 1, 2,	

imsls_f_poisson_pdf evaluates this function directly, taking logarithms and
using the log gamma function.

Chapter 11: Probability Distribution Functions and Inverses poisson_pdf � 729

Figure 11-2 Poisson Probability Function

Example
Suppose X is a Poisson random variable with � = 10. In this example, we evaluate
the probability function at 7.

#include "imsls.h"

void main () {
 int k = 7;
 float theta = 10.0;

 printf ("The probability that X is equal to 7 is %g.\n",
 imsls_f_poisson_pdf (k, theta));
}

Output

The probability that X is equal to 7 is 0.0900792.

730 � beta_cdf IMSL C/Stat/Library

beta_cdf
Evaluates the beta probability distribution function.

Synopsis
#include <imsls.h>
float imsls_f_beta_cdf (float x, float pin, float qin)

The type double function is imsls_d_beta_cdf.

Required Arguments

float x (Input)
Argument for which the beta probability distribution function is to be
evaluated.

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
The probability that a beta random variable takes on a value less than or equal
to x.

Description
Function imsls_f_beta_cdf evaluates the distribution function of a beta
random variable with parameters pin and qin. This function is sometimes called
the incomplete beta ratio and, with p = pin and q = qin, is denoted by Ix (p, q). It
is given by

� �
� � � �

� �
� �

11

0
, 1

x qp
x

p q
I p q t t dt

p q
�

�

� �
� �

� �
�

where
 (�) is the gamma function. The value of the distribution function by
Ix (p, q) is the probability that the random variable takes a value less than or equal
to x.

The integral in the expression above is called the incomplete beta function and is
denoted by �x(p, q). The constant in the expression is the reciprocal of the beta
function (the incomplete function evaluated at 1) and is denoted by �(p, q).

Function imsls_f_beta_cdf uses the method of Bosten and Battiste (1974).

Chapter 11: Probability Distribution Functions and Inverses beta_inverse_cdf � 731

Example
Suppose X is a beta random variable with parameters 12 and 12 (X has a
symmetric distribution). This example finds the probability that X is less than 0.6
and the probability that X is between 0.5 and 0.6. (Since X is a symmetric beta
random variable, the probability that it is less than 0.5 is 0.5.)

#include <imsls.h>

main()
{
 float p, pin, qin, x;

 pin = 12.0;
 qin = 12.0;
 x = 0.6;
 p = imsls_f_beta_cdf(x, pin, qin);
 printf("The probability that X is less than 0.6 is %6.4f\n",
 p);
 x = 0.5;
 p -= imsls_f_beta_cdf(x, pin, qin);
 printf("The probability that X is between 0.5 and");
 printf(" 0.6 is %6.4f\n", p);
}

Output

The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364

beta_inverse_cdf
Evaluates the inverse of the beta distribution function.

Synopsis
#include <imsls.h>
float imsls_f_beta_inverse_cdf (float p, float pin, float qin)

The type double function is imsls_d_beta_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the beta distribution function is to be
evaluated. Argument p must be in the open interval (0.0, 1.0).

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

732 � bivariate_normal_cdf IMSL C/Stat/Library

Return Value
Function imsls_f_beta_inverse_cdf returns the inverse distribution function
of a beta random variable with parameters pin and qin.

Description
With P = p, p = pin, and q = qin, the beta_inverse_cdf returns x such that

� �

� � � �
� �

11

0
1

x qpp q
P t

p q
�

�

� �
� �
� �

� t dt

where
 (�) is the gamma function. The probability that the random variable takes
a value less than or equal to x is P.

Example
Suppose X is a beta random variable with parameters 12 and 12 (X has a
symmetric distribution). In this example, we find the value x such that the
probability that X is less than or equal to x is 0.9.

#include <imsls.h>

main()
{
 float p, pin, qin, x;

 pin = 12.0;
 qin = 12.0;
 p = 0.9;
 x = imsls_f_beta_inverse_cdf(p, pin, qin);
 printf(" X is less than %6.4f with probability 0.9.\n",
 x);
}

Output

X is less than 0.6299 with probability 0.9.

bivariate_normal_cdf
Evaluates the bivariate normal distribution function.

Synopsis
#include <imsls.h>
float imsls_f_bivariate_normal_cdf (float x, float y, float rho)

The type double function is imsls_d_bivariate_normal_cdf.

Chapter 11: Probability Distribution Functions and Inverses bivariate_normal_cdf � 733

Required Arguments

float x (Input)
The x-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

float y (Input)
The y-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

float rho (Input)
Correlation coefficient.

Return Value
The probability that a bivariate normal random variable with correlation rho
takes a value less than or equal to x and less than or equal to y.

Description
Function imsls_f_bivariate_normal_cdf evaluates the distribution function
F of a bivariate normal distribution with means of zero, variances of one, and
correlation of rho; that is, with � = rho, and |�| < 1,

2 2

22

1 2(,) exp
2(1)2 1

yx u uv vF x y du dv�

�� � �� ��

� �� �
� �� �

�� � 	
� �

To determine the probability that U � u� and V � v�, where (U, V)T is a bivariate
normal random variable with mean
 = (
U,
V)T and variance-covariance matrix

2

2
U UV

UV V

� �

� �

� �
� � � �

� �

transform (U, V)T to a vector with zero means and unit variances. The input
to imsls_f_bivariate_normal_cdf would be
X = (u� �
U)/�U, Y = (v� �
V)/�V, and � = �UV/(�U�V).

Function imsls_f_bivariate_normal_cdf uses the method of Owen (1962,
1965). Computation of Owen’s T-function is based on code by M. Patefield and
D. Tandy (2000). For |�| = 1, the distribution function is computed based on the
univariate statistic, Z = min(x, y), and on the normal distribution function
imsls_f_normal_cdf (page 748).

Example
Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and
variance-covariance matrix as follows:

1.0 0.9
0.9 1.0
� �
� �
� �

734 � chi_squared_cdf IMSL C/Stat/Library

In this example, we find the probability that X is less than �2.0 and Y is less than
0.0.

#include <imsls.h>

main()
{
 float p, rho, x, y;

 x = -2.0;
 y = 0.0;
 rho = 0.9;
 p = imsls_f_bivariate_normal_cdf(x, y, rho);
 printf(" The probability that X is less than -2.0\n"
 " and Y is less than 0.0 is %6.4f\n", p);

}

Output

The probability that X is less than -2.0
and Y is less than 0.0 is 0.0228

chi_squared_cdf
Evaluates the chi-squared distribution function.

Synopsis
#include <imsls.h>
float imsls_f_chi_squared_cdf (float chi_squared, float df)

The type double function is imsls_d_chi_squared_cdf.

Required Arguments

float chi_squared (Input)
Argument for which the chi-squared distribution function is to be
evaluated.

float df (Input)
Number of degrees of freedom of the chi-squared distribution. Argument
df must be greater than or equal to 0.5.

Return Value
The probability that a chi-squared random variable takes a value less than or
equal to chi_squared.

Chapter 11: Probability Distribution Functions and Inverses chi_squared_cdf � 735

Description
Function imsls_f_chi_squared_cdf evaluates the distribution function, F, of
a chi-squared random variable x = chi_squared with � = df. Then,

� �
� �

/ 2 / 2 1
/ 2 0

1
2 / 2

x t v
vF x e

v
� �

�
�

� t dt

where
 (�) is the gamma function. The value of the distribution function at the
point x is the probability that the random variable takes a value less than or equal
to x.

For � > 65, imsls_f_chi_squared_cdf uses the Wilson-Hilferty
approximation (Abramowitz and Stegun 1964, Equation 26.4.17) to the normal
distribution, and function imsls_f_normal_cdf is used to evaluate the normal
distribution function.

For � � 65, imsls_f_chi_squared_cdf uses series expansions to evaluate the
distribution function. If x < max (� / 2, 26), imsls_f_chi_squared_cdf uses
the series 6.5.29 in Abramowitz and Stegun (1964); otherwise, it uses the
asymptotic expansion 6.5.32 in Abramowitz and Stegun.

Example
Suppose X is a chi-squared random variable with two degrees of freedom. In this
example, we find the probability that X is less than 0.15 and the probability that
X is greater than 3.0.

#include <imsls.h>

void main()
{
 float chi_squared = 0.15;
 float df = 2.0;
 float p;

 p = imsls_f_chi_squared_cdf(chi_squared, df);
 printf("%s %s %6.4f\n", "The probability that chi-squared\n",
 "with 2 df is less than 0.15 is", p);

 chi_squared = 3.0;
 p = 1.0 - imsls_f_chi_squared_cdf(chi_squared, df);
 printf("%s %s %6.4f\n", "The probability that chi-squared\n",
 "with 2 df is greater than 3.0 is", p);
}

Output

The probability that chi-squared
 with 2 df is less than 0.15 is 0.0723
The probability that chi-squared
 with 2 df is greater than 3.0 is 0.2231

736 � chi_squared_inverse_cdf IMSL C/Stat/Library

Informational Errors
IMSLS_ARG_LESS_THAN_ZERO Since “chi_squared” � # is less than zero,

the distribution function is zero at
“chi_squared.”

Alert Errors
IMSLS_NORMAL_UNDERFLOW Using the normal distribution for large

degrees of freedom, underflow would have
occurred.

chi_squared_inverse_cdf
Evaluates the inverse of the chi-squared distribution function.

Synopsis
#include <imsls.h>
float imsls_f_chi_squared_inverse_cdf (float p, float df)

The type double function is imsls_d_chi_squared_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the chi-squared distribution function
is to be evaluated. Argument p must be in the open interval (0.0, 1.0).

float df (Input)
Number of degrees of freedom of the chi-squared distribution. Argument
df must be greater than or equal to 0.5.

Return Value
The inverse at the chi-squared distribution function evaluated at p. The
probability that a chi-squared random variable takes a value less than or equal to
imsls_f_chi_squared_inverse_cdf is p.

Description
Function imsls_f_chi_squared_inverse_cdf evaluates the inverse
distribution function of a chi-squared random variable with � = df and with
probability p. That is, it determines
x = imsls_f_chi_squared_inverse_cdf (p, df), such that

� �
/ 2 / 2 1

/ 2 0

1
2 / 2

x t v
vp e t d

v
� �

�
�

� t

Chapter 11: Probability Distribution Functions and Inverses chi_squared_inverse_cdf � 737

where
 (�) is the gamma function. The probability that the random variable takes
a value less than or equal to x is p.

For � < 40, imsls_f_chi_squared_inverse_cdf uses bisection (if � � 2 or
p > 0.98) or regula falsi to find the point at which the chi-squared distribution
function is equal to p. The distribution function is evaluated using IMSL function
imsls_f_chi_squared_cdf.

For 40 � � < 100, a modified Wilson-Hilferty approximation
(Abramowitz and Stegun 1964, Equation 26.4.18) to the normal distribution is
used. IMSL function imsls_f_normal_cdf is used to evaluate the inverse of
the normal distribution function. For � � 100, the ordinary Wilson-Hilferty
approximation (Abramowitz and Stegun 1964, Equation 26.4.17) is used.

Example
In this example, we find the 99-th percentage point of a chi-squared random
variable with 2 degrees of freedom and of one with 64 degrees of freedom.

#include <imsls.h>

void main ()
{
 float df, x;
 float p = 0.99;

 df = 2.0;
 x = imsls_f_chi_squared_inverse_cdf(p, df);
 printf("For p = .99 with 2 df, x = %7.3f.\n", x);

 df = 64.0;
 x = imsls_f_chi_squared_inverse_cdf(p,df);
 printf("For p = .99 with 64 df, x = %7.3f.\n", x);
}

Output

For p = .99 with 2 df, x = 9.210.
For p = .99 with 64 df, x = 93.217.

Warning Errors
IMSLS_UNABLE_TO_BRACKET_VALUE The bounds that enclose “p” could

not be found. An approximation for
imsls_f_chi_squared_inverse
_cdf is returned.

IMSLS_CHI_2_INV_CDF_CONVERGENCE The value of the inverse chi-squared
could not be found within a specified
number of iterations. An
approximation for
imsls_f_chi_squared_inverse
_cdf is returned.

738 � non_central_chi_sq IMSL C/Stat/Library

non_central_chi_sq
Evaluates the noncentral chi-squared distribution function.

Synopsis
#include <imsls.h>
float imsls_f_non_central_chi_sq (float chi_squared, float df , float

delta)
The type double function is imsls_d_non_central_chi_sq.

Required Arguments
float chi_squared (Input)

Argument for which the noncentral chi-squared distribution function is
to be evaluated.

float df (Input)
Number of degrees of freedom of the noncentral chi-squared
distribution. Argument df must be greater than or equal to 0.5

float delta (Input)
The noncentrality parameter. delta must be nonnegative, and
delta + df must be less than or equal to 200,000.

Return Value
The probability that a noncentral chi-squared random variable takes a value less
than or equal to chi_squared.

Description
Function imsls_f_non_central_chi_sq evaluates the distribution function
of a noncentral chi-squared random variable with df degrees of freedom and
noncentrality parameter alam, that is, with v = df, � = alam, and
x = chi_squared,

2

2

/ 2 (2) / 2 1 / 2

0 (2) / 20
2

(/ 2)_ _ _ ()
! i

i v i tx

v ii v

e t enon central chi sq x dt
i

�
�

� � ��

��
�

�
� �

�� �
� �

� �
�

where
(�) is the gamma function. This is a series of central chi-squared
distribution functions with Poisson weights. The value of the distribution function
at the point x is the probability that the random variable takes a value less than or
equal to x.

The noncentral chi-squared random variable can be defined by the distribution
function above, or alternatively and equivalently, as the sum of squares of
independent normal random variables. If Yi have independent normal
distributions with means
i and variances equal to one and

Chapter 11: Probability Distribution Functions and Inverses non_central_chi_sq � 739

2
1

n
i iX Y
�

� �

then X has a noncentral chi-squared distribution with n degrees of freedom and
noncentrality parameter equal to

2
1

n
i i��

�

With a noncentrality parameter of zero, the noncentral chi-squared distribution is
the same as the chi-squared distribution.

Function imsls_f_non_central_chi_sq determines the point at which the
Poisson weight is greatest, and then sums forward and backward from that point,
terminating when the additional terms are sufficiently small or when a maximum
of 1000 terms have been accumulated. The recurrence relation 26.4.8 of
Abramowitz and Stegun (1964) is used to speed the evaluation of the central chi-
squared distribution functions.

Figure 11-3 Noncentral Chi-squared Distribution Function

Example
In this example, imsls_f_non_central_chi_sq is used to compute the
probability that a random variable that follows the noncentral chi-squared
distribution with noncentrality parameter of 1 and with 2 degrees of freedom is
less than or equal to 8.642.

#include <imsls.h>

740 � non_central_chi_sq_inv IMSL C/Stat/Library

#include <stdio.h>

void main()

{

 float chsq = 8.642;

 float df = 2.0;

 float alam = 1.0;

 float p;

 p = imsls_f_non_central_chi_sq(chsq, df, alam);

 printf("The probability that a noncentral chi-squared random\n"

 "variable with %2.0f df and noncentrality parameter %3.1f is less\n"

}

 "than %5.3f is %5.3f.\n", df, alam, chsq, p);

Output

The probability that a noncentral chi-squared random
variable with 2 df and noncentrality parameter 1.0 is less
than 8.642 is 0.950

non_central_chi_sq_inv
Evaluates the inverse of the noncentral chi-squared function.

Synopsis
#include <imsls.h>
float imsls_f_non_central_chi_sq_inv (float p, float df, float delta)
The type double function is imsls_d_non_central_chi_sq_inv.

Required Arguments
float p (Input)

Probability for which the inverse of the noncentral chi-squared
distribution function is to be evaluated. p must be in the open interval
(0.0, 1.0).

float df (Input)
Number of degrees of freedom of the noncentral chi-squared
distribution. Argument df must be greater than or equal to 0.5

float delta (Input)
The noncentrality parameter. delta must be nonnegative, and
delta + df must be less than or equal to 200,000.

Chapter 11: Probability Distribution Functions and Inverses non_central_chi_sq_inv � 741

Return Value
The probability that a noncentral chi-squared random variable takes a value less
than or equal to imsls_f_non_central_chi_sq_inv is p.

Description
Function imsls_f_non_central_chi_sq_inv evaluates the inverse
distribution function of a noncentral chi-squared random variable with
df degrees of freedom and noncentrality parameter delta; that is, with
P = p, v = df, and � = delta, it determines
c
�
 (= imsls_f_non_central_chi_sq_inv (p, df, delta)), such that

0
/ 2 (2) / 2 1 / 2

(2) / 2 20
0 2

(/ 2)
! 2 (

i v i xc

v i v i
i

e x eP d
i

�
�

� � ��

� �

�

�
�

� �)
x

�

where
(�) is the gamma function. The probability that the random variable takes
a value less than or equal to c

� is P.

Function imsls_f_non_central_chi_sq_inv uses bisection and modified
regula falsi to invert the distribution function, which is evaluated using
routine imsls_f_non_central_chi_sq (page 738). See
imsls_f_non_central_chi_sq for an alternative definition of the noncentral
chi-squared random variable in terms of normal random variables.

Example
In this example, we find the 95-th percentage point for a noncentral chi-squared
random variable with 2 degrees of freedom and noncentrality parameter 1.

#include <imsls.h>

#include <stdio.h>

void main()

{

 float p = .95;

 int df = 2;

 float delta = 1.0;

 float chi_squared;

 chi_squared = imsls_f_non_central_chi_sq_inv(p, df, delta);

 printf("The 0.05 noncentral chi-squared critical value is %6.4f.\n",

 chi_squared);

}

742 � F_cdf IMSL C/Stat/Library

Output

The 0.05 noncentral chi-squared critical value is 8.6422.

F_cdf
Evaluates the F distribution function.

Synopsis
#include <imsls.h>
float imsls_f_F_cdf (float f, float df_numerator,

float df_denominator)

The type double function is imsls_d_F_cdf.

Required Arguments

float f (Input)
Point at which the F distribution function is to be evaluated.

float df_numerator (Input)
The numerator degrees of freedom. Argument df_numerator must be
positive.

float df_denominator (Input)
The denominator degrees of freedom. Argument df_denominator
must be positive.

Return Value
The probability that an F random variable takes a value less than or equal to the
input point, f.

Description
Function imsls_f_F_cdf evaluates the distribution function of a Snedecor’s F
random variable with df_numerator and df_denominator. The function is
evaluated by making a transformation to a beta random variable, then evaluating
the incomplete beta function. If X is an F variate with �1 and �2 degrees of
freedom and Y = (�1X)/(�2 + �1X), then Y is a beta variate with parameters
p = �1/2 and q = �2/2. Function imsls_f_F_cdf also uses a relationship between
F random variables that can be expressed as

FF(f, v1, v2) = 1 � FF(1/f, v2, v1)

where FF is the distribution function for an F random variable.

Chapter 11: Probability Distribution Functions and Inverses F_cdf � 743

Figure 11-4 Plot of FF(f, 1.0, 1.0)

Example
This example finds the probability that an F random variable with one numerator
and one denominator degree of freedom is greater than 648.

#include <imsls.h>

main()
{
 float p;
 float F = 648.0;
 float df_numerator = 1.0;
 float df_denominator = 1.0;

 p = 1.0 - imsls_f_F_cdf(F,df_numerator, df_denominator);
 printf("%s %s %6.4f.\n", "The probability that an F(1,1) variate",
 "is greater than 648 is", p);
}

Output

The probability that an F(1,1) variate is greater than 648 is 0.0250.

744 � F_inverse_cdf IMSL C/Stat/Library

F_inverse_cdf
Evaluates the inverse of the F distribution function.

Synopsis
#include <imsls.h>
float imsls_f_F_inverse_cdf (float p, float df_numerator,

float df_denominator)

The type double function is imsls_d_F_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the F distribution function is to be
evaluated. Argument p must be in the open interval (0.0, 1.0).

float df_numerator (Input)
Numerator degrees of freedom. Argument df_numerator must be
positive.

float df_denominator (Input)
Denominator degrees of freedom. Argument df_denominator must be
positive.

Return Value
The value of the inverse of the F distribution function evaluated at p. The
probability that an F random variable takes a value less than or equal to
imsls_f_F_inverse_cdf is p.

Description
Function imsls_f_F_inverse_cdf evaluates the inverse distribution function
of a Snedecor’s F random variable with �1 = df_numerator numerator degrees
of freedom and �2 = df_denominator denominator degrees of freedom. The
function is evaluated by making a transformation to a beta random variable, then
evaluating the inverse of an incomplete beta function. If X is an F variate with �1
and �2 degrees of freedom and Y = (�1X)/(�2 + �1X), then Y is a beta variate with
parameters p = �1/2 and q = �2/2. If p � 0.5, imsls_f_F_ inverse_cdf uses
this relationship directly; otherwise, it also uses a relationship between F random
variables that can be expressed as follows:

FF(f, v1, v2) = 1 � FF(1/f, v2, v1)

Example
This example finds the 99-th percentage point for an F random variable with 7
and 1 degrees of freedom.

Chapter 11: Probability Distribution Functions and Inverses gamma_cdf � 745

#include <imsls.h>

main()
{
 float df_denominator = 1.0;
 float df_numerator = 7.0;
 float f;
 float p = 0.99;

 f = imsls_f_F_inverse_cdf(p, df_numerator, df_denominator);

 printf("The F(7,1) 0.01 critical value is %6.3f\n", f);
}

Output

The F(7,1) 0.01 critical value is 5928.370

Fatal Errors
IMSLS_F_INVERSE_OVERFLOW Function imsls_f_F_inverse_cdf

overflows. This is because df_numerator
or df_denominator and p are too large.
The return value is set to machine infinity.

gamma_cdf
Evaluates the gamma distribution function.

Synopsis
#include <imsls.h>
float imsls_f_gamma_cdf (float x, float a)

The type double function is imsls_d_gamma_cdf.

Required Arguments

float x (Input)
Argument for which the gamma distribution function is to be evaluated.

float a (Input)
Shape parameter of the gamma distribution. This parameter must be
positive.

Return Value
The probability that a gamma random variable takes a value less than or equal to
x.

746 � gamma_cdf IMSL C/Stat/Library

Description
Function imsls_f_gamma_cdf evaluates the distribution function, F, of a
gamma random variable with shape parameter a,

� �
� �

1

0

1 x
t aF x e t

a
� �

�
�

� dt

where
(�) is the gamma function. (The gamma function is the integral from 0 to
� of the same integrand as above.) The value of the distribution function at the
point x is the probability that the random variable takes a value less than or equal
to x.

The gamma distribution is often defined as a two-parameter distribution with a
scale parameter b (which must be positive) or as a three-parameter distribution in
which the third parameter c is a location parameter. In the most general case, the
probability density function over (c, �) is as follows:

� �
� �

� � � �
1/1 at c b

af t e x c
b a

�
� �

� �
�

If T is a random variable with parameters a, b, and c, the probability that T � t0
can be obtained from imsls_f_gamma_cdf by setting x = (t0 � c)/b.

If x is less than a or less than or equal to 1.0, imsls_f_gamma_cdf uses a
series expansion; otherwise, a continued fraction expansion is used.
(See Abramowitz and Stegun 1964.)

Example
Let X be a gamma random variable with a shape parameter of four. (In this case,
it has an Erlang distribution since the shape parameter is an integer.) This
example finds the probability that X is less than 0.5 and the probability that
X is between 0.5 and 1.0.

#include <imsls.h>

main()
{
 float p, x;
 float a = 4.0;

 x = 0.5;
 p = imsls_f_gamma_cdf(x,a);
 printf("The probability that X is less than 0.5 is %6.4f\n", p);

 x = 1.0;
 p = imsls_f_gamma_cdf(x,a) - p;
 printf("The probability that X is between 0.5 and 1.0 is %6.4f\n",
 p);
}

Chapter 11: Probability Distribution Functions and Inverses gamma_inverse_cdf � 747

Output

The probability that X is less than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172

Informational Errors
IMSLS_ARG_LESS_THAN_ZERO Since “x” � # is less than zero, the

distribution function is zero at “x.”

Fatal Errors
IMSLS_X_AND_A_TOO_LARGE Since “x” � # and “a” � # are so large, the

algorithm would overflow.

gamma_inverse_cdf
Evaluates the inverse of the gamma distribution function.

Synopsis
#include <imsls.h>
float imsls_f_gamma_inverse_cdf (float p, float a)

The type double function is imsls_d_gamma_inverse_cdf.

Required Arguments
float p (Input)

Probability for which the inverse of the gamma distribution function is to
be evaluated. p must be in the open interval (0.0, 1.0).

float a (Input)
The shape parameter of the gamma distribution. This parameter must be
positive.

Return Value
The probability that a gamma random variable takes a value less than or equal to
the returned value is p.

Description
Function imsls_f_gamma_inverse_cdf evaluates the inverse distribution
function of a gamma random variable with shape parameter a, that is, it
determines x (=imsls_f_gamma_inverse_cdf (p, a)), such that

1

0

1
()

x t aP e t
a

� �

�
�

� dt

748 � normal_cdf IMSL C/Stat/Library

where
(�) is the gamma function. The probability that the random variable takes
a value less than or equal to x is P. See the documentation for function
imsls_f_gamma_cdf (page 745) for further discussion of the gamma
distribution.

Function imsls_f_gamma_inverse_cdf uses bisection and modified regula
falsi to invert the distribution function, which is evaluated using function
imsls_f_gamma_cdf.

Example
In this example, we find the 95-th percentage point for a gamma random variable
with shape parameter of 4.

include "imsls.h"

void main()

{

 float p = .95, a = 4.0, x;

 x = imsls_f_gamma_inverse_cdf(p,a);

 printf("The 0.05 gamma(4) critical value is %6.4f\n", x);

}

Output
The 0.05 gamma(4) critical value is 7.7537

normal_cdf
Evaluates the standard normal (Gaussian) distribution function.

Synopsis
#include <imsls.h>
float imsls_f_normal_cdf (float x)

The type double function is imsls_d_normal_cdf.

Required Arguments

float x (Input)
Point at which the normal distribution function is to be evaluated.

Return Value
The probability that a normal random variable takes a value less than or equal
to x.

Chapter 11: Probability Distribution Functions and Inverses normal_cdf � 749

Description
Function imsls_f_normal_cdf evaluates the distribution function, �, of a
standard normal (Gaussian) random variable as follows:

� �
2 / 21

2

x
tx e

�

�

��

� � � dt

The value of the distribution function at the point x is the probability that the
random variable takes a value less than or equal to x.

The standard normal distribution (for which imsls_f_normal_cdf is the
distribution function) has mean of 0 and variance of 1. The probability that a
normal random variable with mean
 and variance �2 is less than y is given by
imsls_f_normal_cdf evaluated at (y �
)/�.

Figure 11-5 Plot of �(x)

Example
Suppose X is a normal random variable with mean 100 and variance 225. This
example finds the probability that X is less than 90 and the probability that X is
between 105 and 110.

#include <imsls.h>

main()
{
 float p, x1, x2;

 x1 = (90.0-100.0)/15.0;
 p = imsls_f_normal_cdf(x1);

750 � normal_inverse_cdf IMSL C/Stat/Library

 printf("The probability that X is less than 90 is %6.4f\n", p);

 x1 = (105.0-100.0)/15.0;
 x2 = (110.0-100.0)/15.0;
 p = imsls_f_normal_cdf(x2) - imsls_f_normal_cdf(x1);
 printf("The probability that X is between 105 and 110 is %6.4f\n",
 p);
}

Output

The probability that X is less than 90 is 0.2525
The probability that X is between 105 and 110 is 0.1169

normal_inverse_cdf
Evaluates the inverse of the standard normal (Gaussian) distribution function.

Synopsis
#include <imsls.h>
float imsls_f_normal_inverse_cdf (float p)

The type double function is imsls_d_normal_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the normal distribution function is to
be evaluated. Argument p must be in the open interval (0.0, 1.0).

Return Value
The inverse of the normal distribution function evaluated at p. The probability
that a standard normal random variable takes a value less than or equal to
imsls_f_normal_inverse_cdf is p.

Description
Function imsls_f_normal_inverse_cdf evaluates the inverse of the
distribution function, �, of a standard normal (Gaussian) random variable,
imsls_f_normal_inverse_cdf(p) = �-1(x), where

� �
2 / 21

2

x
tx e

�

�

��

� � � dt

The value of the distribution function at the point x is the probability that the
random variable takes a value less than or equal to x. The standard normal
distribution has a mean of 0 and a variance of 1.

Chapter 11: Probability Distribution Functions and Inverses t_cdf � 751

Function imsls_f_normal_inverse_cdf (p) is evaluated by use of minimax
rational-function approximations for the inverse of the error function. General
descriptions of these approximations are given in Hart et al. (1968) and Strecok
(1968). The rational functions used in imsls_f_normal_inverse_cdf are
described by Kinnucan and Kuki (1968).

Example
This example computes the point such that the probability is 0.9 that a standard
normal random variable is less than or equal to this point.

#include <imsls.h>

main()
{
 float x;
 float p = 0.9;

 x = imsls_f_normal_inverse_cdf(p);
 printf("The 90th percentile of a standard normal is %6.4f.\n", x);
}

Output

The 90th percentile of a standard normal is 1.2816.

t_cdf
Evaluates the Student’s t distribution function.

Synopsis
#include <imsls.h>
float imsls_f_t_cdf (float t, float df)

The type double function is imsls_d_t_cdf.

Required Arguments

float t (Input)
Argument for which the Student’s t distribution function is to be
evaluated.

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value
The probability that a Student’s t random variable takes a value less than or equal
to the input t.

752 � t_cdf IMSL C/Stat/Library

Description
Function imsls_f_t_cdf evaluates the distribution function of a Student’s t
random variable with � = df degrees of freedom. If the square of
t is greater than or equal to �, the relationship of a t to an F random variable (and
subsequently, to a beta random variable) is exploited, and percentage points from
a beta distribution are used. Otherwise, the method described by Hill (1970) is
used. If � is not an integer, is greater than 19, or is greater than 200, a Cornish-
Fisher expansion is used to evaluate the distribution function. If � is less than 20
and |t| is less than 2.0, a trigonometric series is used (see Abramowitz and Stegun
1964, Equations 26.7.3 and 26.7.4 with some rearrangement). For the remaining
cases, a series given by Hill (1970) that converges well for large values of t is
used.

Figure 11-6 Plot of Ft (t, 6.0)

Example
This example finds the probability that a t random variable with 6 degrees of
freedom is greater in absolute value than 2.447. The fact that t is symmetric about
0 is used.

#include <imsls.h>

main ()
{
 float p;
 float t = 2.447;
 float df = 6.0;

 p = 2.0*imsls_f_t_cdf(-t,df);

Chapter 11: Probability Distribution Functions and Inverses t_inverse_cdf � 753

 printf("Pr(|t(6)| > 2.447) = %6.4f\n", p);
}

Output

Pr(|t(6)| > 2.447) = 0.0500

t_inverse_cdf
Evaluates the inverse of the Student’s t distribution function.

Synopsis
#include <imsls.h>
float imsls_f_t_inverse_cdf (float p, float df)

The type double function is imsls_d_t_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the Student’s t distribution function
is to be evaluated. Argument p must be in the open interval (0.0, 1.0).

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value
The inverse of the Student’s t distribution function evaluated at p. The probability
that a Student’s t random variable takes a value less than or equal to
imsls_f_t_inverse_cdf is p.

Description
Function imsls_f_t_inverse_cdf evaluates the inverse distribution function
of a Student’s t random variable with � = df degrees of freedom. If � equals 1 or
2, the inverse can be obtained in closed form. If � is between 1 and 2, the
relationship of a t to a beta random variable is exploited and the inverse of the
beta distribution is used to evaluate the inverse; otherwise, the algorithm of Hill
(1970) is used. For small values of � greater than 2, Hill’s algorithm inverts an
integrated expansion in 1/(1 + t2/�) of the t density. For larger values, an
asymptotic inverse Cornish-Fisher type expansion about normal deviates is used.

Example
This example finds the 0.05 critical value for a two-sided t test with 6 degrees of
freedom.

#include <imsls.h>

754 � non_central_t_cdf IMSL C/Stat/Library

void main()
{
 float df = 6.0;
 float p = 0.975;
 float t;

 t = imsls_f_t_inverse_cdf(p,df);

 printf("The two-sided t(6) 0.05 critical value is %6.3f\n", t);
}

Output

The two-sided t(6) 0.05 critical value is 2.447

Informational Errors
IMSLS_OVERFLOW Function imsls_f_t_inverse_cdf is set to

machine infinity since overflow would occur
upon modifying the inverse value for the F
distribution with the result obtained from the
inverse beta distribution.

non_central_t_cdf
Evaluates the noncentral Student’s t distribution function.

Synopsis
#include <imsls.h>
float imsls_f_non_central_t_cdf (float t, int df , float delta)
The type double function is imsls_d_non_central_t_cdf.

Required Arguments
float t (Input)
 Argument for which the noncentral Student’s t distribution function is to

be evaluated.
int df (Input)
 Number of degrees of freedom of the noncentral Student’s t distribution.

Argument df must be greater than or equal to 0.0
float delta (Input)

The noncentrality parameter.

Return Value
The probability that a noncentral Student’s t random variable takes a value less
than or equal to t.

Chapter 11: Probability Distribution Functions and Inverses non_central_t_cdf � 755

Description
Function imsls_f_non_central_t_cdf evaluates the distribution function
F of a noncentral t random variable with df degrees of freedom and noncentrality
parameter delta; that is, with v = df, � = delta , and t

�
 = t,

2

20

2

/ 2 / 2
/ 22

0 !2 (1) / 2
0

() ((1) / 2)()()
(/ 2)()

i
vt ix

iv v
i

v e
x

F t v i
v v x

�

�

�

� �

� ���

�

� � � �

� �
�� dx

where
(�) is the gamma function. The value of the distribution function at the
point t

�
 is the probability that the random variable takes a value less than or equal

to t
�
.

The noncentral t random variable can be defined by the distribution function
above, or alternatively and equivalently, as the ratio of a normal random variable
and an independent chi-squared random variable. If w has a normal distribution
with mean � and variance equal to one, u has an independent chi-squared
distribution with v degrees of freedom, and

/ /x w u v�

then x has a noncentral t distribution with degrees of freedom and noncentrality
parameter �.

The distribution function of the noncentral t can also be expressed as a double
integral involving a normal density function (see, for example, Owen 1962, page
108). The function TNDF uses the method of Owen (1962, 1965), which uses
repeated integration by parts on that alternate expression for the distribution
function.

756 � non_central_t_cdf IMSL C/Stat/Library

Figure 11-7 Noncentral Student’s t Distribution Function

Example
Suppose t is a noncentral t random variable with 6 degrees of freedom and
noncentrality parameter 6. In this example, we find the probability that t is less
than 12.0. (This can be checked using the table on page 111 of Owen 1962, with
� = 0.866, which yields � = 1.664.)

#include <imsls.h>

#include <stdio.h>

void main()

{

 float t = 12.0;

 int df = 6;

 float delta = 6.0;

 float p;

 p = imsls_f_non_central_t_cdf(t, df, delta);

 printf("The probability that t is less than 12 is %6.4f.\n", p);

}

Chapter 11: Probability Distribution Functions and Inverses non_central_t_inv_cdf � 757

Output
The probability that T is less than 12.0 is 0.9501

non_central_t_inv_cdf
Evaluates the inverse of the noncentral Student’s t distribution function.

Synopsis
#include <imsls.h>
float imsls_f_non_central_t_inv_cdf (float p, int df , float delta)
The type double function is imsls_d_non_central_t_inv_cdf.

Required Arguments
float p (Input)

A Probability for which the inverse of the noncentral Student's t
distribution function is to be evaluated. p must be in the open interval
(0.0, 1.0).

int df (Input)
Number of degrees of freedom of the noncentral Student’s t distribution.
Argument df must be greater than or equal to 0.0

float delta (Input)
The noncentrality parameter.

Return Value
The probability that a noncentral Student's t random variable takes a value less
than or equal to t is p.

Description
Function imsls_f_non_central_t_inv_cdf evaluates the inverse
distribution function of a noncentral t random variable with df degrees of
freedom and noncentrality parameter delta; that is, with P = p, v = df, and
� = delta, it determines t

�
 (= imsls_f_non_central_t_inv_cdf

(p, df, delta)), such that
2

20

2

/ 2 / 2
/ 22

!2 (1) / 2
0

((1) / 2)()()
(/ 2)()

i
vt ix

iv v
i

v eP v i
v v x

�

�

�

� �

� ���

�

� � � �

� �
�� x

dx

where
(�) is the gamma function. The probability that the random variable takes
a value less than or equal to t

�
 is P. See imsls_f_non_central_t_cdf

(page 754) for an alternative definition in terms of normal and chi-squared
random variables. The function imsls_f_non_central_t_inv_cdf uses
bisection and modified regula falsi to invert the distribution function, which is
evaluated using routine imsls_f_non_central_t_cdf.

758 � non_central_t_inv_cdf IMSL C/Stat/Library

Example
In this example, we find the 95-th percentage point for a noncentral t random
variable with 6 degrees of freedom and noncentrality parameter 6.

#include <imsls.h>

#include <stdio.h>

void main()

{

 float p = .95;

 int df = 6;

 float delta = 6.0;

 float t;

 t = imsls_f_non_central_t_inv_cdf(p, df, delta);

 printf("The 0.05 noncentral t critical value is %6.4f.\n", t);
}

Output

The 0.05 noncentral t critical value is 11.995.

Chapter 12: Random Number Generation Routines � 759

Chapter 12: Random Number
Generation

Routines
12.1 Univariate Discrete Distributions

Generates pseudorandom binomial numbers...... random_binomial 765
Generates pseudorandom geometric
numbers ...random_geometric 766
Generates pseudorandom
hypergeometric numbers random_hypergeometric 768
Generates pseudorandom
logarithmic numbers .. random_logarithmic 770
Generates pseudorandom negative
binomial numbers... random_neg_binomial 772
Generates pseudorandom Poisson numbers random_poisson 774
Generates pseudorandom discrete
uniform numbers..................................... random_uniform_discrete 775
Generates pseudorandom numbers from
a general discrete distribution random_general_discrete 777
Sets up a table to generate pseudorandom numbers from
a general discrete distributiondiscrete_table_setup 781

12.2 Univariate Continuous Distributions
Generates pseudorandom beta numbersrandom_beta 786
Generates pseudorandom Cauchy numbers......... random_cauchy 788
Generates pseudorandom chi_squared
numbers ... random_chi_squared 789
Generates pseudorandom exponential
numbers .. random_exponential 791
Generates pseudorandom mixed
exponential numbers................................random_exponential_mix 792
Generates pseudorandom gamma numbers.........random_gamma 794
Generates peudorandom lognormal numbers ...random_lognormal 796
Generates pseudorandom normal numbers...........random_normal 798

760 � Routines IMSL C/Stat/Library

Generates pseudorandom numbers from a
stable distribution..random_stable 800
Generates pseudorandom Student’s t................ random_student_t 802
Generates pseudorandom triangular numbers .. random_triangular 803
Generates pseudorandom uniform numbers random_uniform 804
Generates pseudorandom Von Mises
numbers ... random_von_mises 806
Generates pseudorandom Weibull numbers.......... random_weibull 808
Generates pseudorandom numbers from a general
continuous distribution........................random_general_continuous 810
Sets up table to generate pseudorandom numbers from a general
continuous distribution............................... continuous_table_setup 812

12.3 Multivariate Continuous Distributions
Generates multivariate
normal vectors....................................random_normal_multivariate 815
Generates a pseudorandom orthogonal matrix
or a correlation matrix........................... random_orthogonal_matrix 816
Generates pseudorandom numbers from a multivariate distribution
determined from a given sample.............random_mvar_from_data 819
Generates pseudorandom numbers from a
multinomial distribution.................................... random_multinomial 821
Generates pseudorandom points on a unit circle or
K-dimensional sphere... random_sphere 823
Generates a pseudorandom
two-way table..random_table_twoway 825

12.4 Order Statistics
Generates pseudorandom order statistics from a standard
normal distribution ..random_order_normal 827
Generates pseudorandom order statistics from a
uniform (0, 1) distributionrandom_order_uniform 829

12.5 Stochastic Processes
Generates pseudorandom ARMA
process numbers... random_arma 831
Generates pseudorandom numbers from a
nonhomogeneous Poisson process random_npp 835

12.6 Samples and Permutations
Generates a pseudorandom permutation....... random_permutation 839
Generates a simple pseudorandom sample
of indices .. random_sample_indices 840
Generates a simple pseudorandom sample from
a finite population .. random_sample 842

Chapter 12: Random Number Generation Usage Notes � 761

12.7 Utility Functions
Selects the uniform (0, 1) generator random_option 845
Retrieves the uniform (0, 1) multiplicative congruential
pseudorandom number generator random_option_get 846
Retrieves the current value of the seed random_seed_get 847
Retrieves a seed for the congruential
generators random_substream_seed_get 848
Initializes a random seed random_seed_set 850
Sets the current table used in the
shuffled generator ... random_table_set 851
Retrieves the current table used in the
shuffled generator ... random_table_get 852
Sets the current able used in the
GFSR generator...................................... random_GFSR_table_set 853
Retrieves the current table used in the
GFSR generator...................................... random_GFSR_table_get 853

12.7 Low-discrepancy sequence
Generates a shuffled Faure sequence faure_next_point 856

Usage Notes
Overview of Random Number Generation

Sections 12.1 through 12.7 describe functions for the generation of random
numbers that are useful for applications in Monte Carlo or simulation studies.
Before using any of the random number generators, the generator must be
initialized by selecting a seed or starting value. The user can do this by calling the
function imsls_random_seed_set. If the user does not select a seed, one is
generated using the system clock. A seed needs to be selected only once in a
program, unless two or more separate streams of random numbers are maintained.
Other utility functions in this chapter can be used to select the form of the basic
generator to restart simulations and to maintain separate simulation streams.

In the following discussions, the phrases “random numbers,” “random deviates,”
“deviates,” and “variates” are used interchangeably. The phrase “pseudorandom”
is sometimes used to emphasize that the numbers generated are really not
“random” since they result from a deterministic process. The usefulness of
pseudorandom numbers is derived from the similarity, in a statistical sense, of
samples of the pseudorandom numbers to samples of observations from the
specified distributions. In short, while the pseudorandom numbers are completely
deterministic and repeatable, they simulate the realizations of independent and
identically distributed random variables.

Basic Uniform Generators

The random number generators in this chapter use either a multiplicative
congruential method or a generalized feedback shift register. The selection of the

762 � Usage Notes IMSL C/Stat/Library

type of generator is made by calling the routine imsls_random_option
(page 845). If no selection is made explicitly, a multiplicative generator (with
multiplier 16807) is used. Whatever distribution is being simulated, uniform
(0, 1) numbers are first generated and then transformed if necessary. These
routines are portable in the sense that, given the same seed and for a given type of
generator, they produce the same sequence in all computer/compiler
environments. There are many other issues that must be considered in developing
programs for the methods described below (see Gentle 1981 and 1990).

The Multiplicative Congruential Generators

The form of the multiplicative congruential generators is

xi � cxi-1mod (231 � 1)

Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primitive
root modulo 231 � 1 (which is a prime), then the generator will have a maximal
period of 231 � 2. There are several other considerations, however. See Knuth
(1981) for a good general discussion. The possible values for c in the generators
are 16807, 397204094, and 950706376. The selection is made by the function
imsls_random_option. The choice of 16807 will result in the fastest execution
time, but other evidence suggests that the performance of 950706376 is best
among these three choices (Fishman and Moore 1982). If no selection is made
explicitly, the functions use the multiplier 16807, which has been in use for some
time (Lewis et al. 1969).

The generation of uniform (0,1) numbers is done by the function
imsls_f_random_uniform. This function is portable in the sense that, given
the same seed, it produces the same sequence in all computer/compiler
environments.

Shuffled Generators

The user also can select a shuffled version of these generators using
imsls_random_option. The shuffled generators use a scheme due to
Learmonth and Lewis (1973). In this scheme, a table is filled with the first 128
uniform (0,1) numbers resulting from the simple multiplicative congruential
generator. Then, for each xi from the simple generator, the low-order bits of xi are
used to select a random integer, j, from 1 to 128. The j-th entry in the table is then
delivered as the random number; and xi, after being scaled into the unit interval, is
inserted into the j-th position in the table. This scheme is similar to that of
Bays and Durham (1976), and their analysis is applicable to this scheme as well.

The Generalized Feedback Shift Register Generator

The GFSR generator uses the recursion Xt = Xt-1563 � Xt-96. This generator,
which is different from earlier GFSR generators, was proposed by Fushimi
(1990), who discusses the theory behind the generator and reports on several

Chapter 12: Random Number Generation Usage Notes � 763

empirical tests of it. Background discussions on this type of generator can be
found in Kennedy and Gentle (1980), pages 150�162.

Setting the Seed

The seed of the generator can be set in imsls_random_seed_set and can be
retrieved by imsls_random_seed_get. Prior to invoking any generator in this
section, the user can call imsls_random_seed_set to initialize the seed, which
is an integer variable with a value between 1 and 2147483647. If it is not
initialized by imsls_random_seed_set, a random seed is obtained from the
system clock. Once it is initialized, the seed need not be set again.

If the user wants to restart a simulation, imsls_random_seed_get can be used
to obtain the final seed value of one run to be used as the starting value in a
subsequent run. Also, if two simultaneous random number streams are desired in
one run, imsls_random_seed_set and imsls_random_seed_get can be
used before and after the invocations of the generators in each stream.

If a shuffled generator or the GFSR generator is used, in addition to resetting the
seed, the user must also reset some values in a table. For the shuffled generators,
this is done using the routines imsls_f_random_table_get (page 851) and
imsls_f_random_table_set (page 851); and for the GFSR generator; the
table is retrieved and set by the routines imsls_random_GFSR_table_get
(page 852) and imsls_random_GFSR_table_set (page 853). The tables for
the shuffled generators are separate for single and double precision; so, if
precisions are mixed in a program, it is necessary to manage each precision
separately for the shuffled generators.

Timing Considerations

The generation of the uniform (0,1) numbers is done by the routine
imsls_f_random_uniform (page 804). The particular generator selected in
imsls_random_option (page 845), that is, the value of the multiplier and
whether shuffling is done or whether the GFSR generator is used, affects the
speed of imsls_f_random_uniform. The smaller multiplier (16807, selected
by iopt = 1) is faster than the other multipliers. The multiplicative congruential
generators that do not shuffle are faster than the ones that do. The GFSR
generator is roughly as fast as the fastest multiplicative congruential generator,
but the initialization for it (required only on the first invocation) takes longer than
the generation of thousands of uniform random numbers. Precise statements of
relative speeds depend on the computing system.

Distributions Other than the Uniform

The nonuniform generators use a variety of transformation procedures. All of the
transformations used are exact (mathematically). The most straightforward
transformation is the inverse CDF technique, but it is often less efficient than
others involving acceptance/rejection and mixtures. See Kennedy and Gentle
(1980) for discussion of these and other techniques.

764 � Usage Notes IMSL C/Stat/Library

Many of the nonuniform generators in this chapter use different algorithms
depending on the values of the parameters of the distributions. This is particularly
true of the generators for discrete distributions. Schmeiser (1983) gives an
overview of techniques for generating deviates from discrete distributions.

Although, as noted above, the uniform generators yield the same sequences on
different computers, because of rounding, the nonuniform generators that use
acceptance/rejection may occasionally produce different sequences on different
computer/compiler environments.

Although the generators for nonuniform distributions use fast algorithms, if a very
large number of deviates from a fixed distribution are to be generated, it might be
worthwhile to consider a table-sampling method, as implemented in the routines
imsls_f_random_general_discrete (page 777),
imsls_f_discrete_table_setup (page 781),
imsls_f_random_general_continuous (page 810), and
imsls_f_continuous_table_setup (page 812). After an initialization stage,
which may take some time, the actual generation may proceed very fast.

Tests

Extensive empirical tests of some of the uniform random number generators
available in imsls_f_random_uniform (page 804) are reported by Fishman
and Moore (1982 and 1986). Results of tests on the generator using the multiplier
16807 with and without shuffling are reported by Learmonth and Lewis (1973b).
If the user wishes to perform additional tests, the routines in Chapter 7, “Tests of
Goodness of Fit and Randomness,” may be of use. Often in Monte Carlo
applications, it is appropriate to construct an ad hoc test that is sensitive to
departures that are important in the given application. For example, in using
Monte Carlo methods to evaluate a one-dimensional integral, autocorrelations of
order one may not be harmful, but they may be disastrous in evaluating a two-
dimensional integral. Although generally the routines in this chapter for
generating random deviates from nonuniform distributions use exact methods,
and, hence, their quality depends almost solely on the quality of the underlying
uniform generator, it is often advisable to employ an ad hoc test of goodness of fit
for the transformations that are to be applied to the deviates from the nonuniform
generator.

Other Notes on Usage

The generators for continuous distributions are available in both single and
double-precision versions. This is merely for the convenience of the user; the
double-precision versions should not be considered more “accurate,” except
possibly for the multivariate distributions.

Chapter 12: Random Number Generation random_binomial � 765

random_binomial
Generates pseudorandom numbers from a binomial distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_binomial (int n_random, int n, float p, ..., 0)

The type double function is imsls_d_random_binomial.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial. Parameter p must be greater than 0.0
and less than 1.0.

Return Value
An integer array of length n_random containing the random binomial deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_binomial (int n_random, int n, float p,

IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random
binomial deviates.

Description
Function imsls_f_random_binomial generates pseudorandom numbers from
a binomial distribution with parameters n and p. Parameters n and p must be
positive, and p must less than 1. The probability function (with n = n and p = p) is

� � � � � �1 n xn x
xf x p p �

� �

for x = 0, 1, 2, �, n.

766 � random_geometric IMSL C/Stat/Library

The algorithm used depends on the values of n and p. If np < 10 or p is less than
machine epsilon (see imsls_f_machine, Chapter 14, “Utilities”), the inverse
CDF technique is used; otherwise, the BTPE algorithm of Kachitvichyanukul and
Schmeiser (see Kachitvichyanukul 1982) is used. This is an acceptance/rejection
method using a composition of four regions. (TPE=Triangle, Parallelogram,
Exponential, left and right.)

Example
In this example, imsls_f_random_binomial generates five pseudorandom
binomial deviates from a binomial distribution with parameters 20 and 0.5.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 5;
 int n = 20;
 float p = 0.5;
 int *ir;

 imsls_random_seed_set(123457);
 ir = imsls_f_random_binomial(n_random, n, p, 0);
 imsls_i_write_matrix("Binomial (20, 0.5) random deviates:",
 1, n_random, ir, IMSLS_NO_COL_LABELS, 0);
}

Output
Binomial (20, 0.5) random deviates:
 14 9 12 10 12

random_geometric
Generates pseudorandom numbers from a geometric distribution.

Synopsis

#include <imsls.h>
int *imsls_f_random_geometric (int n_random, float p, ..., 0)
The type double function is imsls_d_random_geometric.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float p (Input)
Probability of succes on each trial. Parameter p must be positive and less
than 1.0.

Chapter 12: Random Number Generation random_geometric � 767

Return Value
An integer array of length n_random containing the random geometric deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_geometric (int n_random, float p,

IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random
geometric deviates.

Description
Function imsls_f_random_geometric generates pseudorandom numbers from
a geometric distribution with parameter P, where P is the probability of getting a
success on any trial. A geometric deviate can be interpreted as the number of
trials until the first success (including the trial in which the first success is
obtained). The probability function is

f(x) = P(1 � P)x-1

for x = 1, 2, � and 0 < P < 1.

The geometric distribution as defined above has mean 1/P.

The i-th geometric deviate is generated as the smallest integer not less than

(log (Ui))/(log (1 � P)), where the Ui are independent uniform(0, 1) random
numbers (see Knuth 1981).

The geometric distribution is often defined on 0, 1, 2, ..., with mean (1 � P)/P.
Such deviates can be obtained by subtracting 1 from each element of ir (the
returned vector of random deviates).

Example
In this example, imsls_f_random_geometric generates five pseudorandom
geometric deviates from a geometric distribution with parameter an equal to 0.3.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 5;
 float p = 0.3;
 int *ir;

768 � random_hypergeometric IMSL C/Stat/Library

 imsls_random_seed_set(123457);
 ir = imsls_f_random_geometric(n_random, p, 0);
 imsls_i_write_matrix("Geometric(0.3) random deviates:",
 1, n_random, ir, IMSLS_NO_COL_LABELS, 0);
}

Output

Geometric(0.3) random deviates:
 1 4 1 2 1

random_hypergeometric
Generates pseudorandom numbers from a hypergeometric distribution.

Synopsis

#include <imsls.h>
int *imsls_f_random_hypergeometric (int n_random, int n, int m,

int l, ..., 0)

The type double function is imsls_d_random_hypergeometric.

Required Arguments
int n_random (Input)

Number of random numbers to generate.

int n (Input)
Number of items in the sample. Parameter n must be positive.

int m (Input)
Number of special items in the population, or lot. Parameter m must be
positive.

int l (Input)
Number of items in the lot. Parameter l must be greater than both n and
m.

Return Value
An integer array of length n_random containing the random hypergeometric
deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_hypergeometric (int n_random, int n, int m,

int l,

Chapter 12: Random Number Generation random_hypergeometric � 769

IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random
hypergeometric deviates.

Description
Function imsls_f_random_hypergeometric generates pseudorandom
numbers from a hypergeometric distribution with parameters N, M, and L. The
hypergeometric random variable X can be thought of as the number of items of a
given type in a random sample of size N that is drawn without replacement from a
population of size L containing M items of this type. The probability function is

� �
� �� �

� �

M L M
x N x

L
N

f x
�

�

�

for x = max (0, N � L + M), 1, 2, �, min (N, M)

If the hypergeometric probability function with parameters N, M, and L evaluated
at N � L + M (or at 0 if this is negative) is greater than the machine epsilon
(see imsls_f_machine, Chapter 14, “Utilities”), and less than 1.0 minus the
machine epsilon, then imsls_f_random_hypergeometric uses the inverse
CDF technique. The routine recursively computes the hypergeometric
probabilities, starting at x = max (0, N � L + M) and using the ratio

� �

� �

1f X x
f X x

� �

�

(see Fishman 1978, p. 475).

If the hypergeometric probability function is too small or too close to 1.0, the
imsls_f_random_hypergeometric generates integer deviates uniformly in
the interval [1, L � i] for i = 0, 1, ..., and at the i-th step, if the generated deviate is
less than or equal to the number of special items remaining in the lot, the
occurence of one special item is tallied and the number of remaining special items
is decreased by one. This process continues until the sample size of the number of
special items in the lot is reached, whichever comes first. This method can be
much slower than the inverse CDF technique. The timing depends on N. If N is
more than half of L (which in practical examples is rarely the case), the user may
wish to modify the problem, replacing N by L � N, and to consider the generated
deviates to be the number of special items not included in the sample.

770 � random_logarithmic IMSL C/Stat/Library

Example
In this example, imsls_f_random_hypergeometric generates five
pseudorandom hypergeometric deviates from a hypergeometric distribution to
simulate taking random samples of size 4 from a lot containing 20 items, of which
12 are defective. The resulting hypergeometric deviates represent the numbers of
defectives in each of the five samples of size 4.

#include <imsls.h>
#include <stdio.h>

void main()
{
 int n_random = 5;
 int n = 4;
 int m = 12;
 int l = 20;
 int *ir;

 imsls_random_seed_set(123457);
 ir = imsls_f_random_hypergeometric(n_random, n, m, l, 0);
 imsls_i_write_matrix("Hypergeometric random deviates: ",
 1, n_random, ir, IMSLS_NO_COL_LABELS, 0);
}

Output

Hypergeometric random deviates:
 4 2 3 3 3

Fatal Errors
IMSLS_LOT_SIZE_TOO_SMALL The lot size must be greater than the sample

size and the number of defectives in the lot.
Lot size = #. Sample size = #. Number of
defectives in the lot = #.

random_logarithmic
Generates pseudorandom numbers from a logarithmic distribution.

Synopsis

#include <imsls.h>

int *imsls_f_random_logarithmic (int n_random, float a, ..., 0)

The type double function is imsls_d_random_logarithmic.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Chapter 12: Random Number Generation random_logarithmic � 771

float a (Input)
Parameter of the logarithmic distribution. Parameter a must be positive
and less than 1.0.

Return Value
An integer array of length n_random containing the random logarithmic deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_logarithmic (int n_random, float a,

IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random
logarithmic deviates.

Description
Function imsls_f_random_logarithmic generates pseudorandom numbers
from a logarithmic distribution with parameter a. The probability function is

� �
� �ln 1

xaf x
x a

� �

�

for x = 1, 2, 3, ..., and 0 < a < 1

The methods used are described by Kemp (1981) and depend on the value of a. If
a is less than 0.95, Kemp’s algorithm LS, which is a “chop-down” variant of an
inverse CDF technique, is used. Otherwise, Kemp’s algorithm LK, which gives
special treatment to the highly probable values of 1 and 2 is used.

Example
In this example, imsls_f_random_logarithmic generates five pseudorandom
logarithmic deviates from a logarithmic distribution with parameter a equal to 0.3.

#include <imsls.h>
#include <stdio.h>

void main()
{
 int n_random = 5;
 float a = 0.3;
 int *ir;

 imsls_random_seed_set(123457);
 ir = imsls_f_random_logarithmic(n_random, a, 0);

772 � random_neg_binomial IMSL C/Stat/Library

 imsls_i_write_matrix("logarithmic random deviates:",
 1, n_random, ir, IMSLS_NO_COL_LABELS, 0);
}

Output

logarithmic random deviates:
 2 1 1 1 2

random_neg_binomial
Generates pseudorandom numbers from a negative binomial distribution.

Synopsis

#include <imsls.h>
int *imsls_f_random_neg_binomial (int n_random, float rk, float p,

..., 0)
The type double function is imsls_d_random_neg_binomial.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float rk (Input)
Negative binomial parameter. Parameter rk must be positive. If rk is an
integer, the generated deviates can be thought of as the number of
failures in a sequence of Bernoulli trials before rk successes occur.

float p (Input)
Probability of failure on each trial. Parameter p must be greater than
machine epsilon (see imsls_f_machine, Chapter 14, “Utilities”) and
less than 1.0.

Return Value
An integer array of length n_random containing the random negative binomial
deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_neg_binomial (int n_random, float rk, float p,

IMSLS_RETURN_USER, int ir[],
0)

Chapter 12: Random Number Generation random_neg_binomial � 773

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random
negative binomial deviates.

Description
Function imsls_f_random_neg_binomial generates pseudorandom numbers
from a negative binomial distribution with parameters rk and p. Parameters rk
and p must be positive and p must be less than 1. The probability function (with
r = rk and p = p) is

� � � �� �1 1 rr x x
xf x p� �

� � p

for x = 0, 1, 2, ...

If r is an integer, the distribution is often called the Pascal distribution and can be
thought of as modeling the length of a sequence of Bernoulli trials until r
successes are obtained, where p is the probability of getting a failure on any trial.
In this form, the random variable takes values r, r + 1, r + 2, � and can be
obtained from the negative binomial random variable defined above by adding
r to the negative binomial variable. This latter form is also equivalent to the sum
of r geometric random variables defined as taking values 1, 2, 3, ...

If rp/(1 � p) is less than 100 and (1 � p)r is greater than the machine epsilon,
imsls_f_random_neg_binomial uses the inverse CDF technique; otherwise,
for each negative binomial deviate, imsls_f_random_neg_binomial
generates a gamma (r, p/(1 � p)) deviate Y and then generates a Poisson deviate
with parameter Y.

Example
In this example, imsls_f_random_neg_binomial generates five
pseudorandom negative binomial deviates from a negative binomial (Pascal)
distribution with parameters r equal to 4 and p equal to 0.3.

#include <imsls.h>
#include <stdio.h>

void main()
{
 int n_random = 5;
 float rk = 4.0;
 float p = 0.3;
 int *ir;

 imsls_random_seed_set(123457);
 ir = imsls_f_random_neg_binomial(n_random, rk, p, 0);
 imsls_i_write_matrix(
 "Negative Binomial (4.0, 0.3) random deviates: ",
 1, n_random, ir, IMSLS_NO_COL_LABELS, 0);
}

774 � random_poisson IMSL C/Stat/Library

Output

Negative Binomial (4.0, 0.3) random deviates:
 5 1 3 2 3

random_poisson
Generates pseudorandom numbers from a Poisson distribution.

Synopsis
#include <imsls.h>
int *imsls_random_poisson (int n_random, float theta, ..., 0)

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float theta (Input)
Mean of the Poisson distribution. Argument theta must be positive.

Return Value
An array of length n_random containing the random Poisson deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_poisson (int n_random, float theta,

IMSLS_RETURN_USER, int r[],
0)

Optional Arguments
IMSLS_RETURN_USER, int r[] (Output)

User-supplied array of length n_random containing the random Poisson
deviates.

Description
Function imsls_random_poisson generates pseudorandom numbers from a
Poisson distribution with positive mean theta. The probability function (with
� = theta) is

� � � � / ! for 0, 1, 2, ...xf x e x x��
� � �

If theta is less than 15, imsls_random_poisson uses an inverse CDF method;
otherwise, the PTPE method of Schmeiser and Kachitvichyanukul (1981) (see
also Schmeiser 1983) is used. The PTPE method uses a composition of four

Chapter 12: Random Number Generation random_uniform_discrete � 775

regions, a triangle, a parallelogram, and two negative exponentials. In each region
except the triangle, acceptance/rejection is used. The execution time of the
method is essentially insensitive to the mean of the Poisson.

Function imsls_random_seed_set can be used to initialize the seed of the
random number generator; function imsls_random_option can be used to
select the form of the generator.

Example
In this example, imsls_random_poisson is used to generate five
pseudorandom deviates from a Poisson distribution with mean equal to 0.5.

#include <imsls.h>

#define N_RANDOM 5

void main()
{
 int *r;
 int seed = 123457;
 float theta = 0.5;

 imsls_random_seed_set (seed);
 r = imsls_random_poisson (N_RANDOM, theta, 0);
 imsls_i_write_matrix ("Poisson(0.5) random deviates", 1, N_RANDOM, r,
0);
}

Output

Poisson(0.5) random deviates
 1 2 3 4 5
 2 0 1 0 1

random_uniform_discrete
Generates pseudorandom numbers from a discrete uniform distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_uniform_discrete (int n_random, int k, ..., 0)
The type double function is imsls_d_random_uniform_discrete.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

776 � random_uniform_discrete IMSL C/Stat/Library

int k (Input)
Parameter of the discrete uniform distribution. The integers 1, 2, ..., k
occur with equal probability. Parameter k must be positive.

Return Value
An integer array of length n_random containing the random discrete uniform
deviates.

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_f_random_uniform_discrete (int n_random, int k,
IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied integer array of length n_random containing the random
discrete uniform deviates.

Description
Function imsls_f_random_uniform_discrete generates pseudorandom
numbers from a uniform discrete distribution over the integers 1, 2, ...k. A
random integer is generated by multiplying k by a uniform (0, 1) random number,
adding 1.0, and truncating the result to an integer. This, of course, is equivalent to
sampling with replacement from a finite population of size k

Example
In this example, imsls_f_random_uniform_discrete generates five
pseudorandom discrete uniform deviates from a discrete uniform distribution over
the integers 1 to 6.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 5;
 int k = 6;
 int *ir;

 imsls_random_seed_set(123457);
 ir = imsls_f_random_uniform_discrete(n_random, k, 0);
 imsls_i_write_matrix("Discrete uniform (1, 6) random deviates:" ,
 1, n_random, ir, IMSLS_NO_COL_LABELS, 0);

}

Chapter 12: Random Number Generation random_general_discrete � 777

Output

Discrete uniform (1, 6) random deviates:
 6 2 5 4 6

random_general_discrete
Generates pseudorandom numbers from a general discrete distribution using an
alias method or optionally a table lookup method.

Synopsis
#include <imsls.h>
int *imsls_f_random_general_discrete (int n_random, int imin, int

nmass, float probs[],..., 0)

The type double function is imsls_d_random_general_discrete.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

int imin (Input)
Smallest value the random deviate can assume.
This is the value corresponding to the probability in probs[0].

int nmass (Input)
Number of mass points in the discrete distribution.

float probs[] (Input)
Array of length nmass containing probabilities associated with the
individual mass points. The elements of probs must be nonnegative
and must sum to 1.0.

 If the optional argument IMSLS_TABLE is used, then probs is a vector
of length at least nmass + 1 containing in the first nmass positions the
cumulative probabilities and, possibly, indexes to speed access to the
probabilities.
IMSL routine imsls_f_discrete_table_setup (page 781) can be
used to initialize probs properly. If no elements of probs are used as
indexes, probs [nmass] is 0.0 on input. The value in probs[0] is the
probability of imin. The value in probs [nmass-1] must be exactly 1.0
(since this is the CDF at the upper range of the distribution.)

Return Value
An integer array of length n_random containing the random discrete deviates.
To release this space, use free.

778 � random_general_discrete IMSL C/Stat/Library

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_general_discrete (int n_random, int imin, int

nmass, float probs[],
IMSLS_GET_INDEX_VECTORS, int **iwk, float **wk,
IMSLS_GET_INDEX_VECTORS_USER, int iwk[], float wk[],
IMSLS_SET_INDEX_VECTORS, int iwk[], float wk[],
IMSLS_RETURN_USER, int ir[],
IMSLS_TABLE,
 0)

Optional Arguments
IMSLS_GET_INDEX_VECTORS, int **iwk, float **wk (Output)

Retrieve indexing vectors that can be used to increase efficiency when
multiple calls will be made to imsls_f_random_general_discrete
with the same values in probs.

IMSLS_GET_INDEX_VECTORS_USER, int iwk[], float wk[] (Output)
User-supplied arrays of length nmass used for retrieve indexing vectors
that can be used to increase efficiency when multiple calls will be made
to imsls_f_random_general_discrete with the same values in
probs.

IMSLS_SET_INDEX_VECTORS, int *iwk, float *wk (Input)
Arrays of length nmass that can be used to increase efficiency when
multiple calls will be made to imsls_f_random_general_discrete
the same values in probs. These arrays are obtained by using one of the
options IMSLS_GET_INDEX_VECTORS or
IMSLS_GET_INDEX_VECTORS_USER in the first call to
imsls_f_random_general_discrete.

IMSLS_TABLE (Input)
Generate pseudorandom numbers from a general discrete distribution
using a table lookup method. If this option is used, then probs is a
vector of length at least nmass + 1 containing in the first nmass
positions the cumulative probabilities and, possibly, indexes to speed
access to the probabilities.

IMSLS_RETURN_USER, int ir[] (Output)
User-supplied array of length n_random containing the random discrete
deviates.

Description
Routine imsls_f_random_general_discrete generates pseudorandom
numbers from a discrete distribution with probability function given in the vector
probs; that is

Chapter 12: Random Number Generation random_general_discrete � 779

Pr(X = i) = pj

for i = i�, i� + 1, …, i� + nm � 1 where j = i � i� + 1, pj = probs[j-1],
i� = imin, and nm = nmass.

The algorithm is the alias method, due to Walker (1974), with modifications
suggested by Kronmal and Peterson (1979). The method involves a setup phase,
in which the vectors iwk and wk are filled. After the vectors are filled, the
generation phase is very fast. To increase efficiency, the first call to
imsls_f_random_general_discrete can retrieve the arrays iwk and wk
using the optional arguments IMSLS_GET_INDEX_VECTORS or
IMSLS_GET_INDEX_VECTORS_USER , then subsequent calls can be made using
the optional argument IMSLS_SET_INDEX_VECTORS.

If the optional argument IMSLS_TABLE is used,
imsls_f_random_general_discrete generates pseudorandom deviates
from a discrete distribution, using the table probs, which contains the cumulative
probabilities of the distribution and, possibly, indexes to speed the search of the
table. The routine imsls_f_discrete_table_setup (page 781) can be used
to set up the table probs. imsls_f_random_general_discrete uses the
inverse CDF method to generate the variates.

Example 1
In this example, imsls_f_random_general_discrete is used to generate
five pseudorandom variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

When imsls_f_random_general_discrete is called the first time,
IMSLS_GET_INDEX_VECTORS is used to initialize the index vectors iwk and wk.
In the next call, IMSLS_GET_INDEX_VECTORS is used, so the setup phase is
bypassed.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int nr = 5, nmass = 5, iopt = 0, imin = 1, *iwk, *ir;

 float probs[] = {.05, .45, .31, .04, .15};
 float *wk;

 imsls_random_seed_set(123457);

 ir = imsls_f_random_general_discrete(nr, imin, nmass, probs,

780 � random_general_discrete IMSL C/Stat/Library

 IMSLS_GET_INDEX_VECTORS, &iwk, &wk,
 0);

 imsls_i_write_matrix("Random deviates", 1, 5, ir,
 IMSLS_NO_COL_LABELS,
 0);
 free(ir);

 ir = imsls_f_random_general_discrete(nr, imin, nmass, probs,
 IMSLS_SET_INDEX_VECTORS, iwk, wk,
 0);

 imsls_i_write_matrix("Random deviates", 1, 5, ir,
 IMSLS_NO_COL_LABELS,
 0);

}

Output
 Random deviates
 3 2 2 3 5

 Random deviates
 1 3 4 5 3

Example 2
In this example, imsls_f_discrete_table_setup (page 781) is used to set
up a table and then imsls_f_random_general_discrete is used to generate
five pseudorandom variates from the binomial distribution with parameters 20
and 0.5.

#include <stdio.h>
#include <imsls.h>

float prf(int ix);
void main()
{
 int nndx = 12, imin = 0, nmass = 21, nr = 5;
 float del = 0.00001, *cumpr;
 int *ir = NULL;

 cumpr = imsls_f_discrete_table_setup (prf, del, nndx, &imin, &nmass, 0);

 imsls_random_seed_set(123457);

 ir = imsls_f_random_general_discrete(nr, imin, nmass, cumpr,
 IMSLS_TABLE, 0);

 imsls_i_write_matrix("Binomial (20, 0.5) random deviates", 1, 5, ir,
 IMSLS_NO_COL_LABELS,
 0);

}

float prf(int ix)

Chapter 12: Random Number Generation discrete_table_setup � 781

{
 int n = 20;
 float p = .5;
 return imsls_f_binomial_probability (ix, n, p);
}

Output

Binomial (20, 0.5) random deviates
 14 9 12 10 12

discrete_table_setup
 Sets up table to generate pseudorandom numbers from a general discrete
distribution.

Synopsis
#include <imsls.h>
float *imsls_f_discrete_table_setup (float prf(), float del,

int nndx, int *imin, int *nmass, ..., 0)

The type double function is imsls_d_discrete_table_setup.

Required Arguments

float prf(int ix) (Input)
User-supplied function to compute the probability associated with each
mass point of the distribution The argument to the function is the point
at which the probability function is to be evaluated. ix can range from
imin to the value at which the cumulative probability is greater than or
equal to 1.0 � del.

float del (Input)
Maximum absolute error allowed in computing the cumulative
probability.
Probabilities smaller than del are ignored; hence, del should be a small
positive number. If del is too small, however, the return value, cumpr
[nmass-1] must be exactly 1.0 since that value is compared to
1.0 � del.

int nndx (Input)
The number of elements of cumpr available to be used as indexes.
nndx must be greater than or equal to 1. In general, the larger nndx is,
to within sixty or seventy percent of nmass, the more efficient the
generation of random numbers using
imsls_f_random_general_discrete will be.

int *imin (Input/Output)
Pointer to a scalar containing the smallest value the random deviate can

782 � discrete_table_setup IMSL C/Stat/Library

assume. (Input/Output)
imin is not used if optional argument IMSLS_INDEX_ONLY is used. By
default, prf is evaluated at imin. If this value is less than del, imin is
incremented by 1 and again prf is evaluated at imin. This process is
continued until prf(imin) � del. imin is output as this value and the
return value cumpr [0] is output as prf(imin).

int *nmass (Input/Output)
Pointer to a scalar containing the number of mass points in the
distribution. Input, if IMSLS_INDEX_ONLY is used; otherwise, output.
By default, nmass is the smallest integer such that
prf(imin + nmass � 1) > 1.0 � del. nmass does include the points
iminin + j for which prf(iminin + j) < del, for j = 0, 1, �,
iminout � iminin, where iminin denotes the input value of imin and
iminout denotes its output value.

Return Value
Array, cumpr, of length nmass + nndx containing in the first nmass positions,
the cumulative probabilities and in some of the remaining positions, indexes to
speed access to the probabilities. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_discrete_table_setup (float prf(), float del, int nndx,

int *imin, int *nmass,
IMSLS_INDEX_ONLY,
IMSLS_RETURN_USER, float cumpr[], int lcumpr,
IMSLS_FCN_W_DATA, float prf(), void *data,
 0)

Optional Arguments
IMSLS_INDEX_ONLY (Intput)

Fill only the index portion of the result, cumpr, using the values in the
first nmass positions. prf is not used and may be a dummy function;
also, imin is not used. The optional argument IMSLS_RETURN_USER is
required if IMSLS_INDEX_ONLY is used.

IMSLS_RETURN_USER, float cumpr[], int lcumpr (Input/Output)
cumpr is a user-allocated array of length nmass + nndx containing in
the first nmass positions, the cumulative probabilities and in some of the
remaining positions, indexes to speed access to the probabilities.
lcumpr is the actual length of cumpr as specified in the calling
function. Since, by default, the logical length of cumpr is determined in
imsls_f_discrete_table_setup, lcumpr is used for error
checking. If the option IMSLS_INDEX_ONLY is used, then only the
index portion of cumpr are filled.

Chapter 12: Random Number Generation discrete_table_setup � 783

IMSLS_FCN_W_DATA, float prf(int ix), void *data, (Input)
User-supplied function to compute the probability associated with each
mass point of the distribution, which also accepts a pointer to data that is
supplied by the user. data is a pointer to the data to be passed to the
user-supplied function. See the Introduction, Passing Data to User-
Supplied Functions at the beginning of this manual for more details.

Description
Routine imsls_f_discrete_table_setup sets up a table that routine
imsls_f_random_general_discrete (page 777) uses to generate
pseudorandom deviates from a discrete distribution. The distribution can be
specified either by its probability function prf or by a vector of values of the
cumulative probability function. Note that prf is not the cumulative probability
distribution function. If the cumulative probabilities are already available in
cumpr, the only reason to call imsls_f_discrete_table_setup is to form an
index vector in the upper portion of cumpr so as to speed up the generation of
random deviates by the routine imsls_f_random_general_discrete.

Example 1
In this example, imsls_f_discrete_table_setup is used to set up a table to
generate pseudorandom variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

In this simple example, we input the cumulative probabilities directly in cumpr
and request 3 indexes to be computed (nndx = 4). Since the number of mass
points is so small, the indexes would not have much effect on the speed of the
generation of the random variates.

#include <stdio.h>
#include <imsls.h>

float prf(int ix);
void main()
{
 int i, lcumpr = 9, ir[5];
 int nndx = 4, imin = 1, nmass = 5, nr = 5;

 float cumpr[9], del = 0.00001, *p_cumpr = NULL;
 i = 0;
 cumpr[i++] = .05;
 cumpr[i++] = .5;
 cumpr[i++] = .81;

784 � discrete_table_setup IMSL C/Stat/Library

 cumpr[i++] = .85;
 cumpr[i++] = 1.0;

 imsls_f_discrete_table_setup (prf, del,
 nndx, &imin, &nmass,
 IMSLS_INDEX_ONLY,
 IMSLS_RETURN_USER, cumpr, lcumpr,
 0);
 imsls_f_write_matrix("Cumulative probabilities and indexes",
 1, lcumpr, cumpr, 0);

}

float prf(int ix)
{
 return 0.;

}

Output

 Cumulative probabilities and indexes
 1 2 3 4 5 6
 0.05 0.50 0.81 0.85 1.00 3.00

 7 8 9
 1.00 2.00 5.00

Example 2
This example, imsls_f_random_general_discrete is used to set up a table
to generate binomial variates with parameters 20 and 0.5. The routine
imsls_f_binomial_probabililty (Chapter 11, Probability Distribution
Functions and Inverses) is used to compute the probabilities.

#include <stdio.h>
#include <imsls.h>

float prf(int ix);
void main()
{
 int lcumpr = 33;
 int nndx = 12, imin = 0, nmass = 21, nr = 5;
 float del = 0.00001, *cumpr;
 int *ir = NULL;

 cumpr = imsls_f_discrete_table_setup (prf, del, nndx, &imin, &nmass, 0);

 printf("The smallest point with positive probability using \n");
 printf("the given del is %d and all points after \n", imin);
 printf("point number %d (counting from the input value\n", nmass);
 printf("of IMIN) have zero probability.\n");
 imsls_f_write_matrix("Cumulative probabilities and indexes",
 nmass+nndx, 1, cumpr,

Chapter 12: Random Number Generation discrete_table_setup � 785

 IMSLS_WRITE_FORMAT, "%11.7f", 0);

}

float prf(int ix)
{
 int n = 20;
 float p = .5;
 return imsls_f_binomial_probability(ix, n, p);
}

Output

The smallest point with positive probability using
the given del is 1 and all points after
point number 19 (counting from the input value
of IMIN) have zero probability.

Cumulative probabilities and indexes
 1 0.0000191
 2 0.0002003
 3 0.0012875
 4 0.0059080
 5 0.0206938
 6 0.0576583
 7 0.1315873
 8 0.2517219
 9 0.4119013
 10 0.5880987
 11 0.7482781
 12 0.8684127
 13 0.9423417
 14 0.9793062
 15 0.9940920
 16 0.9987125
 17 0.9997997
 18 0.9999809
 19 1.0000000
 20 11.0000000
 21 1.0000000
 22 7.0000000
 23 8.0000000
 24 9.0000000
 25 9.0000000
 26 10.0000000
 27 11.0000000
 28 11.0000000
 29 12.0000000
 30 13.0000000
 31 19.0000000

786 � random_beta IMSL C/Stat/Library

random_beta
Generates pseudorandom numbers from a beta distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_beta (int n_random, float pin, float qin, ..., 0)

The type double function is imsls_d_random_beta.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
If no optional arguments are used, imsls_f_random_beta returns an array of
length n_random containing the random standard beta deviates. To release this
space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_beta (int n_random, float pin, float qin,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

Array of length n_random containing the random standard beta
deviates.

Description
Function imsls_f_random_beta generates pseudorandom numbers from a beta
distribution with parameters pin and qin, both of which must be positive. With
p = pin and q = qin, the probability density function is

� �
� �

� � � �
� �

11 1 for 0qpp q
f x x x x

p q
�

�

� �
� �
� �

1� �

where � (�) is the gamma function.

Chapter 12: Random Number Generation random_beta � 787

The algorithm used depends on the values of p and q. Except for the trivial cases
of p = 1 or q = 1, in which the inverse CDF method is used, all of the methods use
acceptance/rejection. If p and q are both less than 1, the method of Jöhnk (1964)
is used. If either p or q is less than 1 and the other is greater than 1, the method of
Atkinson (1979) is used. If both p and q are greater than 1, algorithm BB (Cheng
1978), which requires very little setup time, is used if n_random is less than 4;
and algorithm B4PE of Schmeiser and Babu (1980) is used if n_random is
greater than or equal to 4. Note that for p and q both greater than 1, calling
imsls_f_random_beta in a loop getting less than four variates on each call will
not yield the same set of deviates as calling imsls_f_random_beta once and
getting all the deviates at once because two different algorithms are used.

The values returned in r are less than 1.0 and greater than 	, where 	 is the
smallest positive number such that 1.0 � 	 is less than 1.0.

Function imsls_random_seed_set can be used to initialize the seed of the
random number generator; function imsls_random_option can be used to
select the form of the generator.

Example
In this example, imsls_f_random_beta generates five pseudorandom beta
(3, 2) variates.

#include <imsls.h>

main()
{

 int n_random = 5;
 int seed = 123457;
 float pin = 3.0;
 float qin = 2.0;
 float *r;

 imsls_random_seed_set (seed);
 r = imsls_f_random_beta (n_random, pin, qin, 0);
 imsls_f_write_matrix("Beta (3,2) random deviates", 1, n_random,
 r, 0);
}

Output

 Beta (3,2) random deviates
 1 2 3 4 5
 0.2814 0.9483 0.3984 0.3103 0.8296

788 � random_cauchy IMSL C/Stat/Library

random_cauchy
Generates pseudorandom numbers from a Cauchy distribution.

Synopsis

#include <imsls.h>

float *imsls_f_random_cauchy (int n_random, ..., 0)

The type double function is imsls_d_random_cauchy.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
An array of length n_random containing the random Cauchy deviates.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_cauchy (int n_random,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random Cauchy
deviates.

Description
Function imsls_f_random_cauchy generates pseudorandom numbers from a
Cauchy distribution. The probability density function is

� �
� �

22[]
Sf x

S x T�

�

� �

where T is the median and T � S is the first quartile. This function first generates
standard Cauchy random numbers (T = 0 and S = 1) using the technique described
below, and then scales the values using T and S.

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform
(0, 1) deviate, u, as tan [
 (u � 0.5)]. Rather than evaluating a tangent directly,
however, random_cauchy generates two uniform (�1, 1) deviates, x1 and x2.
These values can be thought of as sine and cosine values. If

Chapter 12: Random Number Generation random_chi_squared � 789

2 2
1 2x x�

is less than or equal to 1, then x1/x2 is delivered as the unscaled Cauchy deviate;
otherwise, x1 and x2 are rejected and two new uniform (�1, 1) deviates are
generated. This method is also equivalent to taking the ration of two independent
normal deviates.

Example
In this example, imsls_f_random_cauchy generates five pseudorandom
Cauchy numbers. The generator used is a simple multiplicative congruential with
a multiplier of 16807.

#include <imsls.h>
#include <stdio.h>

void main()
{
 int n_random = 5;
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_cauchy(n_random, 0);
 printf("Cauchy random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 r[0], r[1], r[2], r[3], r[4]);

}

Output
Cauchy random deviates: 3.5765 0.9353 15.5797 2.0815 -0.1333

random_chi_squared
Generates pseudorandom numbers from a chi-squared distribution.

Synopsis

#include <imsls.h>
float *imsls_f_random_chi_squared (int n_random, float df, ..., 0)
The type double function is imsls_d_random_chi_squared.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float df (Input)
Degrees of freedom. Parameter df must be positive.

790 � random_chi_squared IMSL C/Stat/Library

Return Value
An array of length n_random containing the random chi-squared deviates.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_chi_squared (int n_random, float df,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random chi-
squared deviates.

Description
Function imsls_f_random_chi_squared generates pseudorandom numbers
from a chi-squared distribution with df degrees of freedom. If df is an even
integer less than 17, the chi-squared deviate r is generated as

1

2 ln
n

i
i

r u
�

� �
� � � �

� �
�

where n = df/2 and the ui are independent random deviates from a uniform (0, 1)
distribution. If df is an odd integer less than 17, the chi-squared deviate is
generated in the same way, except the square of a normal deviate is added to the
expression above. If df is is greater than 16 or is not an integer, and if it is not too
large to cause overflow in the gamma random number generator, the chi-squared
deviate is generated as a special case of a gamma deviate, using function
imsls_f_random_gamma (page 794). If overflow would occur in
imsls_f_random_gamma, the chi-squared deviate is generated in the manner
described above, using the logarithm of the product of uniforms, but scaling the
quantities to prevent underflow and overflow.

Example
In this example, imsls_f_random_chi_squared generates five pseudorandom
chi-squared deviates with five degrees of freedom.

#include <imsls.h>
#include <stdio.h>

void main()
{
 int n_random = 5;
 float df = 5.0;
 float *r;

 imsls_random_seed_set(123457);

Chapter 12: Random Number Generation random_exponential � 791

 r = imsls_f_random_chi_squared(n_random, df, 0);
 imsls_f_write_matrix("Chi-Squared random deviates: ",
 1, n_random, r, IMSLS_NO_COL_LABELS, 0);

}

Output

 Chi-Squared random deviates:
 12.09 0.48 1.80 14.87 1.75

random_exponential
Generates pseudorandom numbers from a standard exponential distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_exponential (int n_random, ..., 0)

The type double function is imsls_d_random_exponential.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
An array of length n_random containing the random standard exponential
deviates.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_exponential (int n_random,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random standard
exponential deviates.

Description
Function imsls_f_random_exponential generates pseudorandom numbers
from a standard exponential distribution. The probability density function is
f (x) = e-x, for x > 0. Function imsls_f_random_exponential uses an
antithetic inverse CDF technique; that is, a uniform random deviate U is

792 � random_exponential_mix IMSL C/Stat/Library

generated, and the inverse of the exponential cumulative distribution function is
evaluated at 1.0 � U to yield the exponential deviate.

Deviates from the exponential distribution with mean � can be generated by using
imsls_f_random_exponential and then multiplying each entry in r by �.

Example
In this example, imsls_f_random_exponential generates five pseudorandom
deviates from a standard exponential distribution.

#include <imsls.h>

#define N_RANDOM 5

main()

{
 int seed = 123457;
 int n_random = N_RANDOM;
 float *r;

 imsls_random_seed_set(seed);
 r = imsls_f_random_exponential(n_random, 0);
 printf("%s: %8.4f%8.4f%8.4f%8.4f\n",
 "Exponential random deviates",
 r[0], r[1], r[2], r[3], r[4]);
}

Output

Exponential random deviates: 0.0344 1.3443 0.2662 0.5633

random_exponential_mix
Generates pseudorandom numbers from a mixture of two exponential
distributions.

Synopsis

#include <imsls.h>
float *imsls_f_random_exponential_mix (int n_random, float theta1,

float theta2, float p, ..., 0)
The type double function is imsls_d_random_exponential_mix.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float theta1 (Input)
Mean of the exponential distribution which has the larger mean.

Chapter 12: Random Number Generation random_exponential_mix � 793

float theta2 (Input)
Mean of the exponential distribution which has the smaller mean.
Parameter theta2 must be positive and less than or equal to theta1.

float p (Input)
Mixing parameter. Parameter p must be non-negative and less than or
equal to theta1/(theta1 � theta2).

Return Value
An array of length n_random containing the random deviates of a mixture of two
exponential distributions.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_exponential_mix (int n_random, float theta1,

float theta2, float p,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random
deviates.

Description
Function imsls_f_random_exponential_mix generates pseudorandom
numbers from a mixture of two exponential distributions. The probability density
function is

� � 1 2/ /

1 2

1x xp pf x e e� �

� �

� �
�

� �

for x > 0, where p = p, �1 = theta1, and �2 = theta2.

In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parameter
p is interpretable as a probability; and imsls_f_random_exponential_mixed
with probability p generates an exponential deviate with mean �1, and with
probability 1 � p generates an exponential with mean �2. When p is greater than
1, but less than �1/(�1 � �2), then either an exponential deviate with mean �1 or
the sum of two exponentials with means �1 and �2 is generated. The probabilities
are q = p � (p � 1) (�1/�2) and 1 � q, respectively, for the single exponential and
the sum of the two exponentials.

794 � random_gamma IMSL C/Stat/Library

Example
In this example, imsls_f_random_exponential_mix is used to generate five
pseudorandom deviates from a mixture of exponentials with means 2 and 1,
respecctively, and with mixing parameter 0.5.

#include <imsls.h>
#include <stdio.h>

void main()
{
 int n_random = 5;
 float theta1 = 2.0;
 float theta2 = 1.0;
 float p = 0.5;
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_exponential_mix(n_random, theta1, theta2, p, 0);
 imsls_f_write_matrix("Mixed exponential random deviates: ",
 1, n_random, r, IMSLS_NO_COL_LABELS, 0);

}

Output

 Mixed exponential random deviates:
 0.070 1.302 0.630 1.976 0.372

random_gamma
Generates pseudorandom numbers from a standard gamma distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_gamma (int n_random, float a, ..., 0)

The type double function is imsls_d_random_gamma.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float a (Input)
Shape parameter of the gamma distribution. This parameter must be
positive.

Return Value
An array of length n_random containing the random standard gamma deviates.

Chapter 12: Random Number Generation random_gamma � 795

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_gamma (int n_random, float a,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_USER_RETURN, float r[] (Output)

User-supplied array of length n_random containing the random standard
gamma deviates.

Description
Function imsls_f_random_gamma generates pseudorandom numbers from a
gamma distribution with shape parameter a and unit scale parameter. The
probability density function is

� �
� �

11 for 0a xf x x e x
a

� �

� �
�

Various computational algorithms are used depending on the value of the shape
parameter a. For the special case of a = 0.5, squared and halved normal deviates
are used; for the special case of a = 1.0, exponential deviates are generated.
Otherwise, if a is less than 1.0, an acceptance-rejection method due to Ahrens,
described in Ahrens and Dieter (1974), is used. If a is greater than 1.0, a ten-
region rejection procedure developed by Schmeiser and Lal (1980) is used.

Deviates from the two-parameter gamma distribution with shape parameter a and
scale parameter b can be generated by using imsls_f_random_gamma and then
multiplying each entry in r by b. The following statements (in single precision)
would yield random deviates from a gamma (a, b) distribution.
float *r;
r = imsls_f_random_gamma(n_random, a, 0);
for (i=0; i<n_random; i++) *(r+i) *= b;

The Erlang distribution is a standard gamma distribution with the shape parameter
having a value equal to a positive integer; hence, imsls_f_random_gamma
generates pseudorandom deviates from an Erlang distribution with no
modifications required.

Function imsls_random_seed_set can be used to initialize the seed of the
random number generator; function imsls_random_option can be used to
select the form of the generator.

Example
In this example, imsls_f_random_gamma generates five pseudorandom
deviates from a gamma (Erlang) distribution with shape parameter equal to 3.0.

796 � random_lognormal IMSL C/Stat/Library

#include <imsls.h>

void main()
{
 int seed = 123457;
 int n_random = 5;
 float a = 3.0;
 float *r;

 imsls_random_seed_set(seed);
 r = imsls_f_random_gamma(n_random, a, 0);
 imsls_f_write_matrix("Gamma(3) random deviates", 1, n_random, r, 0);
}

Output

 Gamma(3) random deviates
 1 2 3 4 5
 6.843 3.445 1.853 3.999 0.779

random_lognormal
Generates pseudorandom numbers from a lognormal distribution.

Synopsis

#include <imsls.h>
float *imsls_f_random_lognormal (int n_random, float mean,

float std, ..., 0)
The type double function is imsls_d_random_lognormal.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float mean (Input)
Mean of the underlying normal distribution.

float std (Input)
Standard deviation of the underlying normal distribution.

Return Value
An array of length n_random containing the random deviates of a lognormal
distribution. The log of each element of the vector has a normal distribution with
mean mean and standard deviation std.

Synopsis with Optional Arguments
#include <imsls.h>

Chapter 12: Random Number Generation random_lognormal � 797

float *imsls_f_random_lognormal (int n_random, float mean,
float std,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random
lognormal deviates.

Description
Function imsls_f_random_lognormal generates pseudorandom numbers from
a lognormal distribution with parameters mean and std. The scale parameter in
the underlying normal distribution, std, must be positive. The method is to
generate normal deviates with mean mean and standard deviation std and then to
exponentiate the normal deviates.

With � = mean and � = std, the probability density function for the lognormal
distribution is

� � � �
2

2

1 1exp ln
22

f x x
x

�
�� �

� �
� � �� �

� �

for x > 0. The mean and variance of the lognormal distribution are exp (� + �2/2)
and exp (
� + 2�2) � exp (
� + �2), respectively.

Example
In this example, imsls_f_random_lognormal is used to generate five
pseudorandom lognormal deviates with a mean of 0 and standard deviation of 1.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 5;
 float mean = 0.0;
 float std = 1.0;
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_lognormal(n_random, mean, std, 0);
 imsls_f_write_matrix("lognormal random deviates:",
 1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

Output

 lognormal random deviates:
 7.780 2.954 1.086 3.588 0.293

798 � random_normal IMSL C/Stat/Library

random_normal
Generates pseudorandom numbers from a normal, N (�, �2), distribution.

Synopsis

#include <imsls.h>
float *imsls_f_random_normal (int n_random, ..., 0)

The type double function is imsls_d_random_normal.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
An array of length n_random containing the random normal deviates.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_normal (int n_random,
IMSLS_MEAN, float mean,
IMSLS_VARIANCE, float variance,
IMSLS_ACCEPT_REJECT_METHOD,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_MEAN, float mean (Input)

Parameter mean contains the mean, �, of the N(�, �2) from which
random normal deviates are to be generated.
Default: mean = 0.0

IMSLS_VARIANCE, float variance (Input)
Parameter variance contains the variance of the N (�, �2) from which
random normal deviates are to be generated.
Default: variance = 1.0

IMSLS_ACCEPT_REJECT_METHOD
By default, random numbers are generated using an inverse CDF
technique. When optional argument IMSLS_ACCEPT_REJECT_METHOD
is specified, an acceptance/ rejection method is used instead. See the
“Description” section for details about each method.

Chapter 12: Random Number Generation random_normal � 799

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the generated
random standard normal deviates.

Description
By default, function imsls_f_random_normal generates pseudorandom
numbers from a normal (Gaussian) distribution using an inverse CDF technique.
In this method, a uniform (0, 1) random deviate is generated. The inverse of the
normal distribution function is then evaluated at that point, using the function
imsls_f_normal_inverse_cdf (Chapter 11, Probablility Distribution
Functions and Inverses).

If optional argument IMSLS_ACCEPT_REJECT_METHOD is specified, function
imsls_f_random_normal generates pseudorandom numbers using an
acceptance/rejection technique due to Kinderman and Ramage (1976). In this
method, the normal density is represented as a mixture of densities over which a
variety of acceptance/rejection method due to Marsaglia (1964), Marsaglia and
Bray (1964), and Marsaglia et al. (1964) are applied. This method is faster than
the inverse CDF technique.

Remarks
Function imsls_random_seed_set can be used to initialize the seed of the
random number generator; function imsls_random_option can be used to
select the form of the generator.

Example
In this example, imsls_f_random_normal generates five pseudorandom
deviates from a standard normal distribution.

#include <imsls.h>
#define N_RANDOM 5

void main()
{
 int seed = 123457;
 int n_random = N_RANDOM;
 float *r;

 imsls_random_seed_set (seed);
 r = imsls_f_random_normal(n_random, 0);
 printf("%s:\n%8.4f%8.4f%8.4f%8.4f%8.4f\n",
 "Standard normal random deviates",
 r[0], r[1], r[2], r[3], r[4]);
}

Output

Standard normal random deviates:
1.8279 -0.6412 0.7266 0.1747 1.0145
1.8280

800 � random_stable IMSL C/Stat/Library

random_stable
Generates pseudorandom numbers from a stable distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_stable (int n_random, float alpha,

float bprime, ..., 0)

The type double function is imsls_d_random_stable.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float alpha (Input)
Characteristic exponent of the stable distribution. This parameter must
be positive and less than or equal to 2.

float bprime (Input)
Skewness parameter of the stable distribution. When bprime = 0, the
distribution is symmetric. Unless alpha = 1, bprime is not the usual
skewness parameter of the stable distribution. bprime must be greater
than or equal to � 1 and less than or equal to 1.

Return Value
An integer array of length n_random containing the random deviates. To release
this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_binomial (int n_random, float alpha,

float bprime,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random
deviates.

Chapter 12: Random Number Generation random_stable � 801

Description
Function imsls_f_random_stable generates pseudorandom numbers from a
stable distribution with parameters alpha and bprime. alpha is the usual
characteristic exponent parameter � and bprime is related to the usual skewness
parameter � of the stable distribution. With the restrictions 0 < � � 2
and � 1 � � � 1, the characteristic function of the distribution is

�(t) = exp[�| t |� exp(�
i�(1 � |1 � �|)sign(t)/2)] for � � 1

and

�(t) = exp[�| t |(1 + 2i� ln| t |)sign(t)/
)] for � = 1

When � = 0, the distribution is symmetric. In this case, if � = 2, the distribution is
normal with mean 0 and variance 2; and if � = 1, the distribution is Cauchy.

The parameterization using bprime and the algorithm used here are due to
Chambers, Mallows, and Stuck (1976). The relationship between bprime = ��
and the standard � is

�� = �tan(
(1 � �)/2) tan(�
�(1 � |1 � �|)/2) for � � 1

and

�� = � for � = 1

The algorithm involves formation of the ratio of a uniform and an exponential
random variate.

Example
In this example, imsls_f_random_stable is used to generate five
pseudorandom symmetric stable variates with characteristic exponent 1.5. The
tails of this distribution are heavier than those of a normal distribution, but not so
heavy as those of a Cauchy distribution. The variance of this distribution does not
exist, however. (This is the case for any stable distribution with characteristic
exponent less than 2.)

#include <stdio.h>
#include <imsls.h>

void main()
{
 int nr = 5;
 float alpha = 1.5, bprime = 0.0, *r;

 imsls_random_seed_set(123457);

 r = imsls_f_random_stable(nr, alpha, bprime, 0);
 imsls_f_write_matrix("Stable random deviates", 5, 1, r,
 IMSLS_NO_ROW_LABELS, 0);

}

802 � random_student_t IMSL C/Stat/Library

 Output
Stable random deviates
 4.409
 1.056
 2.546
 5.672
 2.166

random_student_t
Generates pseudorandom numbers from a Student’s t distribution.

Synopsis

#include <imsls.h>

float *imsls_f_random_student_t (int n_random, float df, ..., 0)

The type double function is imsls_d_random_student_t.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float df (Input)
Degrees of freedom. Parameter df must be positive.

Return Value
An array of length n_random containing the random deviates of a Student’s t
distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_student_t (int n_random, float df,

IMSLS_RETURN_USER, float r[],
IMSLS_MEAN, float mean,
IMSLS_VARIANCE, float variance,
0)

Optional Arguments
IMSLS_MEAN, float mean (Input)

Mean of the Student’s t distribution.
Default: mean = 0.0

IMSLS_VARIANCE, float variance (Input)
Variance of the Student’s t distribution.
Default: variance = 1.0

Chapter 12: Random Number Generation random_triangular � 803

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random
Student’s t deviates.

Description
Function imsls_f_random_student_t generates pseudorandom numbers from
a Student’s t distribution with df degrees of freedom, using a method suggested
by Kinderman et al. (1977). The method (“TMX” in the reference) involves a
representation of the t density as the sum of a triangular density over (�2, 2) and
the difference of this and the t density. The mixing probabilities depend on the
degrees of freedom of the t distribution. If the triangular density is chosen, the
variate is generated as the sum of two uniforms; otherwise, an
acceptance/rejection method is used to generate the difference density.

random_triangular
Generates pseudorandom numbers from a triangular distribution on the interval
(0, 1).

Synopsis

#include <imsls.h>

float *imsls_f_random_triangular (int n_random, ..., 0)

The type double function is imsls_d_random_triangular.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
An array of length n_random containing the random deviates of a triangular
distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_triangular (int n_random,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random
triangular deviates.

804 � random_uniform IMSL C/Stat/Library

Description
Function imsls_f_random_triangular generates pseudorandom numbers
from a triangular distribution over the unit interval. The probability density
function is f (x) = 4x, for 0 � x � 0.5, and f (x) = 4 (1 � x), for 0.5 � x � 1. An
inverse CDF technique is used.

Example
In this example, imsls_f_random_triangular is used to generate five
pseudorandom deviates from a triangular distribution.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 5;
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_triangular(n_random, 0);
 imsls_f_write_matrix("Triangular random deviates:",
 1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

Output

 Triangular random deviates:
 0.8700 0.3610 0.6581 0.5360 0.7215

random_uniform
Generates pseudorandom numbers from a uniform (0, 1) distribution.

Synopsis
#include <imsls.h>

float *imsls_f_random_uniform (int n_random, �, 0)

The type double function is imsls_d_random_uniform.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
An array of length n_random containing the random uniform (0, 1) deviates.

Chapter 12: Random Number Generation random_uniform � 805

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_uniform (int n_random,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random uniform
(0, 1) deviates.

Description
Function imsls_f_random_uniform generates pseudorandom numbers from a
uniform (0, 1) distribution using a multiplicative congruential method. The form
of the generator is as follows:

xi � cxi-1mod (231 � 1)

Each xi is then scaled into the unit interval (0, 1). The possible values for c in the
generators are 16807, 397204094, and 950706376. The selection is made by the
function imsls_random_option. The choice of 16807 will result in the fastest
execution time. If no selection is made explicitly, the functions use the multiplier
16807.

Function imsls_random_seed_set can be used to initialize the seed of the
random number generator; function imsls_random_option can be used to
select the form of the generator.

The user can select a shuffled version of these generators. In this scheme, a table
is filled with the first 128 uniform (0, 1) numbers resulting from the simple
multiplicative congruential generator. Then, for each xi from the simple generator,
the low-order bits of xi are used to select a random integer, j, from 1 to 128. The
j-th entry in the table is then delivered as the random number, and xi, after being
scaled into the unit interval, is inserted into the j-th position in the table.

The values returned by imsls_f_random_uniform are positive and less than
1.0. However, some values returned may be smaller than the smallest relative
spacing; hence, it may be the case that some value, for example r [i], is such that
1.0 � r [i] = 1.0.

Deviates from the distribution with uniform density over the interval (a, b) can be
obtained by scaling the output from imsls_f_random_uniform. The following
statements (in single precision) would yield random deviates from a uniform
(a, b) distribution.
float *r;
r = imsls_f_random_uniform (n_random, 0);
for (i=0; i<n_random; i++) r[i] = r[i]*(b-a) + a;

806 � random_von_mises IMSL C/Stat/Library

Example
In this example, imsls_f_random_uniform generates five pseudorandom
uniform numbers. Since function imsls_random_option is not called, the
generator used is a simple multiplicative congruential one with a multiplier of
16807.

#include <imsls.h>
#include <stdio.h>

#define N_RANDOM 5

void main()
{
 float *r;

 imsls_random_seed_set(123457);

 r = imsls_f_random_uniform(N_RANDOM, 0);

 printf("Uniform random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 r[0], r[1], r[2], r[3], r[4]);
}

Output

Uniform random deviates: 0.9662 0.2607 0.7663 0.5693 0.8448

random_von_mises
Generates pseudorandom numbers from a von mises distribution.

Synopsis

#include <imsls.h>
float *imsls_f_random_von_mises (int n_random, float c, �, 0)

The type double function is imsls_d_random_von_mises.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float c (Input)
Parameter of the von Mises distribution. This parameter must be greater
than one-half of machine epsilon (On many machines, the lower bound
for c is 10-3).

Chapter 12: Random Number Generation random_von_mises � 807

Return Value
An array of length n_random containing the random deviates of a von Mises
distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_von_mises (int n_random, float c,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random containing the random von
mises deviates.

Description
Function imsls_f_random_von_mises generates pseudorandom numbers from
a von Mises distribution with parameter c, which must be positive. With c = c,
the probability density function is

� �
� �

� �
0

1 exp cos
2

f x c
I c�

� x� �� �

for �
 < x <
, where I0 (c) is the modified Bessel function of the first kind of
order 0. The probability density is equal to 0 outside the interval (�
,
).

The algorithm is an acceptance/rejection method using a wrapped Cauchy
distribution as the majorizing distribution. It is due to Nest and Fisher (1979).

Example
In this example, imsls_f_random_von_mises is used to generate five
pseudorandom von Mises variates with c = 1.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 5;
 float c = 1.0;
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_von_mises(n_random, c, 0);
 imsls_f_write_matrix("Von Mises random deviates:",
 1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

808 � random_weibull IMSL C/Stat/Library

Output

 Von Mises random deviates:
 0.247 -2.433 -1.022 -2.172 -0.503

random_weibull
Generates pseudorandom numbers from a Weibull distribution.

Synopsis

#include <imsls.h>
float *imsls_f_random_weibull (int n_random, float a, �, 0)
The type double function is imsls_d_random_weibull.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float a (Input)
Shape parameter of the Weibull distribution. This parameter must be
positive.

Return Value
An array of length n_random containing the random deviates of a Weibull
distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_weibull (int n_random, float a,

IMSLS_B, float b,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_B, float b (Input)

Scale parameter of the two parameter Weibull distribution.
Default: b = 1.0

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random Weibull
deviates.

Chapter 12: Random Number Generation random_weibull � 809

Description
Function imsls_f_random_weibull generates pseudorandom numbers from a
Weibull distribution with shape parameter a and scale parameter b. The
probability density function is

� � � �1 expa af x abx bx�

� �

for x � �, a > 0, and b > 0. Function imsls_f_random_weibull uses an
antithetic inverse CDF technique to generate a Weibull variate; that is, a uniform
random deviate U is generated and the inverse of the Weibull cumulative
distribution function is evaluated at 1.0 � U to yield the Weibull deviate.

Note that the Rayleigh distribution with probability density function

� �
� �� �2 2/ 2

2

1 x
r x xe

�

�

�

�

for x � 0 is the same as a Weibull distribution with shape parameter a equal to 2
and scale parameter b equal to

2�

Example
In this example, imsls_f_random_weibull is used to generate five
pseudorandom deviates from a two-parameter Weibull distribution with shape
parameter equal to 2.0 and scale parameter equal to 6.0—a Rayleigh distribution
with the following parameter:

3 2� �

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 5;
 float a = 3.0;
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_weibull(n_random, a, 0);
 imsls_f_write_matrix("Weibull random deviates:",
 1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

Output

 Weibull random deviates:
 0.325 1.104 0.643 0.826 0.552

810 � random_general_continuous IMSL C/Stat/Library

Warning Errors
IMSLS_SMALL_A The shape parameter is so small that a relatively

large proportion of the values of deviates from
the Weibull cannot be represented.

random_general_continuous
Generates pseudorandom numbers from a general continuous distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_general_continuous (int n_random, int ndata,

float table[],..., 0)

The type double function is imsls_d_random_general_continuous.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

int ndata (Input)
Number of points at which the CDF is evaluated for interpolation.
ndata must be greater than or equal to 4.

float *table (Input/Ouput)
ndata by 5 table to be used for interpolation of the cumulative
distribution function.
The first column of table contains abscissas of the cumulative
distribution function in ascending order, the second column contains the
values of the CDF (which must be strictly increasing beginning with 0.0
and ending at 1.0) and the remaining columns contain values used in
interpolation. This table is set up using routine
imsls_f_continous_table_setup (page 812).

Return Value
An array of length n_random containing the random discrete deviates. To release
this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_general_continuous (int n_random, int ndata,

float table[],
IMSLS_TABLE_COL_DIM, int table_col_dim,

Chapter 12: Random Number Generation random_general_continuous � 811

IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_TABLE_COL_DIM, int table_col_dim (Intput)

Column dimension of the matrix table.
Default: table_col_dim = 5

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random
continuous deviates.

Description
Routine imsls_f_random_general_continuous generates pseudorandom
numbers from a continuous distribution using the inverse CDF technique, by
interpolation of points of the distribution function given in table, which is set up
by routine imsls_f_continuous_table_setup (page 812). A strictly
monotone increasing distribution function is assumed. The interpolation is by an
algorithm attributable to Akima (1970), using piecewise cubics. The use of this
technique for generation of random numbers is due to Guerra, Tapia, and
Thompson (1976), who give a description of the algorithm and accuracy
comparisons between this method and linear interpolation. The relative errors
using the Akima interpolation are generally considered very good.

Example 1
In this example, imsls_f_continuous_table_setup (page 812) is used to
set up a table for generation of beta pseudorandom deviates. The CDF for this
distribution is computed by the routine imsls_f_beta_cdf (Chapter 11,
Probability Distribution Functions and Inverses). The table contains 100 points at
which the CDF is evaluated and that are used for interpolation.

#include <stdio.h>
#include <imsls.h>

float cdf(float);
void main()
{
 int i, iopt=0, ndata= 100;
 float table[100][5], x = 0.0, *r;

 for (i=0;i<ndata;i++) {
 table[i][0] = x;
 x += .01;
 }

 imsls_f_continuous_table_setup(cdf, iopt, ndata, (float*)table);

 imsls_random_seed_set(123457);
 r = imsls_f_random_general_continuous (5, ndata, table, 0);
 imsls_f_write_matrix("Beta (3, 2) random deviates", 5, 1, r, 0);

812 � continuous_table_setup IMSL C/Stat/Library

}

float cdf(float x)
{
 return imsls_f_beta_cdf(x, 3., 2.);
}

Output
*** WARNING Error from imsls_f_continuous_table_setup. The values of the
*** CDF in the second column of table did not begin at 0.0 and end
*** at 1.0, but they have been adjusted. Prior to adjustment,
*** table[0][1] = 0.000000e+00 and table[ndata-1][1]= 9.994079e-01.

Beta (3, 2) random deviates
 1 0.9208
 2 0.4641
 3 0.7668
 4 0.6536
 5 0.8171

continuous_table_setup
Sets up table to generate pseudorandom numbers from a general continuous
distribution.

Synopsis
#include <imsls.h>
void imsls_f_continuous_table_setup (float cdf(), int iopt, int

ndata, float *table, ..., 0)

The type double function is imsls_d_continuous_table_setup.

Required Arguments

float cdf(float x) (Input)
User-supplied function to compute the cumulative distribution function.
The argument to the function is the point at which the distribution
function is to be evaluated

int iopt (Input)
Indicator of the extent to which table is initialized prior to calling
imsls_f_continuous_table_setup.

iopt Action
0 imsls_f_continuous_table_setup fills the last four

columns of table. The user inputs the points at which the CDF
is to be evaluated in the first column of table. These must be
in ascending order.

Chapter 12: Random Number Generation continuous_table_setup � 813

1 imsls_f_continuous_table_setup fills the last three
columns of table. The user supplied function cdf is not used
and may be a dummy function; instead, the cumulative
distribution function is specified in the first two columns of
table. The abscissas (in the first column) must be in ascending
order and the function must be strictly monotonically
increasing.

int ndata (Input)
Number of points at which the CDF is evaluated for interpolation.
ndata must be greater than or equal to 4.

float *table (Input/Ouput)
ndata by 5 table to be used for interpolation of the cumulative
distribution function.
The first column of table contains abscissas of the cumulative
distribution function in ascending order, the second column contains the
values of the CDF (which must be strictly increasing), and the remaining
columns contain values used in interpolation. The first row of table
corresponds to the left limit of the support of the distribution and the
last row corresponds to the right limit of the support; that is,
table[0][1] = 0.0 and table[ndata-1][1] = 1.0.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_continuous_table_setup (float cdf(), int iopt,

int ndata, float table[],
IMSLS_TABLE_COL_DIM,
IMSLS_FCN_W_DATA, float cdf(), void *data,
 0)

Optional Arguments
IMSLS_TABLE_COL_DIM, int table_col_dim (Intput)

Column dimension of the array table.
Default: table_col_dim = 5

IMSLS_FCN_W_DATA, float cdf(float x), void *data, (Input)
User-supplied function to compute the cumulative distribution function,
which also accepts a pointer to data that is supplied by the user. data is
a pointer to the data to be passed to the user-supplied function. See the
Introduction, Passing Data to User-Supplied Functions at the beginning
of this manual for more details.

Description
Routine imsls_f_continuous_table_setup sets up a table that routine
imsls_f_random_general_continuous (page 810) can use to generate

814 � continuous_table_setup IMSL C/Stat/Library

pseudorandom deviates from a continuous distribution. The distribution is
specified by its cumulative distribution function, which can be supplied either in
tabular form in table or by a function cdf. See the documentation for the
routine imsls_f_random_general_continuous for a description of the
method.

Example 1
In this example, imsls_f_continuous_table_setup is used to set up a
table to generate pseudorandom variates from a beta distribution. This example
is continued in the documentation for routine
imsls_f_random_general_continuous (page 810) to generate the random
variates.

#include <stdio.h>
#include <imsls.h>

float cdf(float);
void main()
{
 int i, iopt=0, ndata= 100;
 float table[100][5], x = 0.0;

 for (i=0;i<ndata;i++) {
 table[i][0] = x;
 x += .01;
 }

 imsls_f_continuous_table_setup(cdf, iopt, ndata, table);
 printf("The first few values from the table:\n");
 for (i=0;i<10;i++) printf("%4.2f\t%8.4f\n", table[i][0], table[i][1]);

}

float cdf(float x)
{
 return imsls_f_beta_cdf(x, 3., 2.);
}

Output

*** WARNING Error from imsls_f_continuous_table_setup. The values of the
*** CDF in the second column of table did not begin at 0.0 and end
*** at 1.0, but they have been adjusted. Prior to adjustment,
*** table[0][1] = 0.000000e+00 and table[ndata-1][1]= 9.994079e-01.

The first few values from the table:
0.00 0.0000
0.01 0.0000
0.02 0.0000
0.03 0.0001
0.04 0.0002
0.05 0.0005
0.06 0.0008

Chapter 12: Random Number Generation random_normal_multivariate � 815

0.07 0.0013
0.08 0.0019
0.09 0.0027

random_normal_multivariate
Generates pseudorandom numbers from a multivariate normal distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_normal_multivariate (int n_vectors,

int length, float *covariances, �, 0)

The type double function is imsls_d_random_normal_multivariate.

Required Arguments

int n_vectors (Input)
Number of random multivariate normal vectors to generate.

int length (Input)
Length of the multivariate normal vectors.

float *covariances (Input)
Array of size length � length containing the variance-covariance
matrix.

Return Value
An array of length n_vectors � length containing the random multivariate
normal vectors stored consecutively.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_normal_multivariate (int n_vectors,

int length, float *covariances,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_vectors � length containing the
random multivariate normal vectors stored consecutively.

Description
Function imsls_f_random_normal_multivariate generates pseudorandom
numbers from a multivariate normal distribution with mean vector consisting of

816 � random_orthogonal_matrix IMSL C/Stat/Library

all zeros and variance-covariance matrix imsls_f_covariances. First, the
Cholesky factor of the variance-covariance matrix is computed. Then,
independent random normal deviates with mean 0 and variance 1 are generated,
and the matrix containing these deviates is postmultiplied by the Cholesky factor.
Because the Cholesky factorization is performed in each invocation, it is best to
generate as many random vectors as needed at once.

Deviates from a multivariate normal distribution with means other than 0 can be
generated by using imsls_f_random_normal_multivariate and then by
adding the vectors of means to each row of the result.

Example
In this example, imsls_f_random_normal_multivariate generates five
pseudorandom normal vectors of length 2 with variance-covariance matrix equal
to the following:

0.500 0.375
0.375 0.500
� �
� �
� �

#include <imsls.h>

void main()
{
 int n_vectors = 5;
 int length = 2;
 float covariances[] = {.5, .375, .375, .5};
 float *random;

 imsls_random_seed_set (123457);
 random = imsls_f_random_normal_multivariate (n_vectors, length,
 covariances, 0);

 imsls_f_write_matrix ("multivariate normal random deviates",
 n_vectors, length, random, 0);
}

Output

multivariate normal random deviates
 1 2
 1 1.451 1.246
 2 0.766 -0.043
 3 0.058 -0.669
 4 0.903 0.463
 5 -0.867 -0.933

random_orthogonal_matrix
Generates a pseudorandom orthogonal matrix or a correlation matrix.

Chapter 12: Random Number Generation random_orthogonal_matrix � 817

Synopsis
#include <imsls.h>
float *imsls_f_random_orthogonal_matrix (int n, ..., 0)

The type double function is imsls_d_random_orthogonal_matrix.

Required Arguments

int n (Input)
The order of the matrix to be generated.

Return Value
n by n random orthogonal matrix. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_orthogonal_matrix (int n,

IMSLS_EIGENVALUES, float *eignevalues[],
IMSLS_A_MATRIX, float *a,
IMSLS_A_COL_DIM, int a_col_dim,
IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_EIGENVALUES, float *eigenvalues (Input)

A vector of length n containing the eigenvalues of the correlation matrix
to be generated. The elements of eigenvalues must be positive, they
must sum to n, and they cannot all be equal.

IMSLS_A_MATRIX, float *a (Input)
n by n random orthogonal matrix. A random correlation matrix is
generated using the orthogonal matrix input in a. The option
IMSLS_EIGENVALUES must also be supplied if IMSLS_A_MATRIX is
used.

IMSLS_A_COL_DIM, int a_col_dim (Input)
Column dimension of the matrix a.
Default: a_col_dim = n

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n � n containing the random correlation
matrix.

Description
Routine imsls_f_random_orthogonal_matrix generates a pseudorandom
orthogonal matrix from the invariant Haar measure. For each column, a random

818 � random_orthogonal_matrix IMSL C/Stat/Library

vector from a uniform distribution on a hypersphere is selected and then is
projected onto the orthogonal complement of the columns already formed. The
method is described by Heiberger (1978). (See also Tanner and Thisted 1982.)

If the optional argument IMSLS_EIGENVALUES is used, a correlation matrix is
formed by applying a sequence of planar rotations to the matrix AT DA, where
D = diag(eigenvalues[0], �, eigenvalues [n-1]), so as to yield ones along
the diagonal. The planar rotations are applied in such an order that in the two by
two matrix that determines the rotation, one diagonal element is less than 1.0 and
one is greater than 1.0. This method is discussed by Bendel and Mickey (1978)
and by Lin and Bendel (1985).

The distribution of the correlation matrices produced by this method is not
known. Bendel and Mickey (1978) and Johnson and Welch (1980) discuss the
distribution.

For larger matrices, rounding can become severe; and the double precision results
may differ significantly from single precision results.

Example
In this example, imsls_f_random_orthogonal_matrix is used to generate a
4 by 4 pseudorandom correlation matrix with eigenvalues in the ratio 1:2:3:4.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int i, n = 4;
 float *a, *cor;
 float ev[] = {1., 2., 3., 4.};

 for (i=0;i<4;i++) ev[i] = 4.*ev[i]/10.;

 imsls_random_seed_set(123457);

 a = imsls_f_random_orthogonal_matrix(n, 0);
 imsls_f_write_matrix("Random orthogonal matrix",
 4, 4, (float*)a, 0);

 cor = imsls_f_random_orthogonal_matrix(n,
 IMSLS_EIGENVALUES, ev,
 IMSLS_A_MATRIX, a,
 0);
 imsls_f_write_matrix("Random correlation matrix",
 4, 4, (float*)cor, 0);

}

 Output

 Random orthogonal matrix
 1 2 3 4
1 -0.8804 -0.2417 0.4065 -0.0351
2 0.3088 -0.3002 0.5520 0.7141

Chapter 12: Random Number Generation random_mvar_from_data � 819

3 -0.3500 0.5256 -0.3874 0.6717
4 -0.0841 -0.7584 -0.6165 0.1941

 Random correlation matrix
 1 2 3 4
1 1.000 -0.236 -0.326 -0.110
2 -0.236 1.000 0.191 -0.017
3 -0.326 0.191 1.000 -0.435
4 -0.110 -0.017 -0.435 1.000

random_mvar_from_data
Generates pseudorandom numbers from a multivariate distribution determined
from a given sample.

Synopsis
#include <imsls.h>
float *imsls_f_random_mvar_from_data (int n_random, int ndim, int

nsamp, float x[], int nn, ..., 0)

The type double function is imsls_d_random_mvar_from_data.

Required Arguments

int n_random (Input)
Number of random multivariate vectors to generate.

int ndim (Input)
The length of the multivariate vectors, that is, the number of dimensions.

int nsamp (Input)
Number of given data points from the distribution to be simulated.

float x[] (Input)
Array of size nsamp � ndim matrix containing the given sample.

int nn (Input)
Number of nearest neighbors of the randomly selected point in x that are
used to form the output point in the result.

Return Value
n_random � ndim matrix containing the random multivariate vectors in its rows.
To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_random_mvar_from_data (int n_random, int ndim,

int nsamp, float x[], int nn,

820 � random_mvar_from_data IMSL C/Stat/Library

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of the matrix x.
Default: x_col_dim = ndim

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random � ndim containing the random
correlation matrix.

Description
Given a sample of size n (= nsamp) of observations of a k-variate random
variable, imsls_f_random_mvar_from_data generates a pseudorandom
sample with approximately the same moments as the given sample. The sample
obtained is essentially the same as if sampling from a Gaussian kernel estimate of
the sample density. (See Thompson 1989.) Routine
imsls_f_random_mvar_from_data uses methods described by Taylor and
Thompson (1986).

Assume that the (vector-valued) observations xi are in the rows of x. An
observation, xj, is chosen randomly; its nearest m (= nn) neighbors,

1 2
, ,...,

mj j jx x x

are determined; and the mean

jx

of those nearest neighbors is calculated. Next, a random sample

u�, u�, �, um is generated from a uniform distribution with lower bound

� �
2

3 11 m
m m

�

�

and upper bound

� �
2

3 11
m

m m
�

�

The random variate delivered is

� �
1

m

l jl j
l

u x x x
�

� �� j

The process is then repeated until n_random such simulated variates are
generated and stored in the rows of the result.

Chapter 12: Random Number Generation random_multinomial � 821

Example
In this example, imsls_f_random_mvar_from_data is used to generate 5
pseudorandom vectors of length 4 using the initial and final systolic pressure and
the initial and final diastolic pressure from Data Set A in Afifi and Azen (1979)
as the fixed sample from the population to be modeled. (Values of these four
variables are in the seventh, tenth, twenty-first, and twenty-fourth columns of data
set number nine in routine imsls_f_data_sets, Chapter 14, Utilities.)

#include <stdio.h>
#include <imsls.h>

void main()
{
 int i, nrrow, nrcol, nr = 5, k=4, nsamp = 113, nn = 5;
 float x[113][4], rdata[113][34], *r;

 imsls_random_seed_set(123457);

 imsls_f_data_sets(9,
 IMSLS_N_OBSERVATIONS, &nrrow,
 IMSLS_N_VARIABLES, &nrcol,
 IMSLS_RETURN_USER, rdata,
 0);
 for (i=0;i<nrrow;i++) x[i][0] = rdata[i][6];
 for (i=0;i<nrrow;i++) x[i][1] = rdata[i][9];
 for (i=0;i<nrrow;i++) x[i][2] = rdata[i][20];
 for (i=0;i<nrrow;i++) x[i][3] = rdata[i][23];

 r = imsls_f_random_mvar_from_data(nr, k, nsamp, x, nn, 0);
 imsls_f_write_matrix("Random variates", 5, 4, r, 0);
 }

 Output

 Random variates
 1 2 3 4
1 162.8 90.5 153.7 104.9
2 153.4 78.3 176.7 85.2
3 93.7 48.2 153.5 71.4
4 101.8 54.2 113.1 56.3
5 91.7 58.8 48.4 28.1

random_multinomial
Generates pseudorandom numbers from a multinomial distribution.

Synopsis
#include <imsls.h>

822 � random_multinomial IMSL C/Stat/Library

int *imsls_random_multinomial (int n_random, int n, int k,
float p[], ..., 0)

Required Arguments

int n_random (Input)
Number of random multinomial vectors to generate.

int n (Input)
Multinomial parameter indicating the number of independent trials.

int k (Input)
The number of mutually exclusive outcomes on any trial. k is the length
of the multinomial vectors. k must be greater than or equal to 2.

float p[] (Input)
Vector of length k containing the probabilities of the possible outcomes.
The elements of p must be positive and must sum to 1.0.

Return Value
n_random by k matrix containing the random multinomial vectors in its rows.
To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_multinomial (int n_random, int n, int k,

float p[],
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length n_random � k containing the random
deviates.

Description
Routine imsls_random_multinomial generates pseudorandom numbers from
a K-variate multinomial distribution with parameters n and p. k and n must be
positive. Each element of p must be positive and the elements must sum to 1. The
probability function (with n = n, k = k, and pi = p[i+1]) is

� � 1 2
1 2 1 2

1 2

!, ,..., ...
! !... !

kxx x
k k

k

nf x x x p p p
x x x

�

for xi � 0 and

Chapter 12: Random Number Generation random_sphere � 823

1

0

k

i
i

x n
�

�

��

The deviate in each row of r is produced by generation of the binomial deviate
x
�
�with parameters n and pi and then by successive generations of the conditional

binomial deviates xj given x
�
, x

�
, …, xj-� with parameters n � x� � x� � … � xj-� and

pj /(1 � p
�
 � p

�
 � … � pj-�).

Example
In this example, imsls_random_multinomial is used to generate five
pseudorandom 3-dimensional multinomial variates with parameters n = 20 and
p = [0.1, 0.3, 0.6].

#include <stdio.h>
#include <imsls.h>

void main()
{
 int nr = 5, n = 20, k = 3, *ir;
 float p[3] = {.1, .3, .6};

 imsls_random_seed_set(123457);

 ir = imsls_random_multinomial(nr, n, k, p, 0);

 imsls_i_write_matrix("Multinomial random_deviates", 5, 3, ir,
 IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS, 0);
}

 Output
Multinomial random_deviates
 5 4 11
 3 6 11
 3 3 14
 5 5 10
 4 5 11

random_sphere
Generates pseudorandom points on a unit circle or K-dimensional sphere

Synopsis
#include <imsls.h>
float *imsls_f_random_sphere (int n_random, int k,..., 0)

The type double function is imsls_d_random_sphere.

824 � random_sphere IMSL C/Stat/Library

Required Arguments

int n_random (Input)
Number of random numbers to generate.

int k (Input)
Dimension of the circle (k = 2) or of the sphere.

Return Value
n_random by k matrix containing the random Cartesian coordinates on the unit
circle or sphere. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_sphere (int n_random, int k,

IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of size n_random by k containing the random
Cartesian coordinates on the unit circle or sphere.

Description
Routine imsls_f_random_sphere generates pseudorandom coordinates of
points that lie on a unit circle or a unit sphere in K-dimensional space. For points
on a circle (k = 2), pairs of uniform (� 1, 1) points are generated and accepted
only if they fall within the unit circle (the sum of their squares is less than 1), in
which case they are scaled so as to lie on the circle.

For spheres in three or four dimensions, the algorithms of Marsaglia (1972) are
used. For three dimensions, two independent uniform (� 1, 1) deviates U� and U�
are generated and accepted only if the sum of their squares S� is less than 1. Then,
the coordinates

1 1 1 2 2 1 32 1 , 2 1 , and 1 2 1Z U S Z U S Z� � � � � � S

are formed. For four dimensions, U�, U�, and S� are produced as described above.
Similarly, U�, U�, and S� are formed. The coordinates are then

� �1 1 2 2 3 3 1, , 1 / 2Z U Z U Z U S S� � � �

and

� �4 4 11 / 2Z U S� � S

Chapter 12: Random Number Generation random_table_twoway � 825

For spheres in higher dimensions, K independent normal deviates are generated
and scaled so as to lie on the unit sphere in the manner suggested by Muller
(1959).

Example
In this example, imsls_f_random_sphere is used to generate two uniform
random deviates from the surface of the unit sphere in three space.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 2;
 int k = 3;
 float *z;
 char *rlabel[] = {"First point",
 "Second point"};

 imsls_random_seed_set(123457);

 z = imsls_f_random_sphere(n_random, k, 0);

 imsls_f_write_matrix("Coordinates", n_random, k, z,
 IMSLS_ROW_LABELS, rlabel,
 IMSLS_NO_COL_LABELS,
 0);
 }

Output

 Coordinates
First point 0.8893 0.2316 0.3944
Second point 0.1901 0.0396 -0.9810

random_table_twoway
Generates a pseudorandom two-way table.

Synopsis
#include <imsls.h>
int *imsls_random_table_twoway (int nrow, int ncol, int nrtot[],

int nctot[],..., 0)

Required Arguments

int nrow (Input)
Number of rows in the table.

826 � random_table_twoway IMSL C/Stat/Library

int ncol (Input)
Number of columns in the table.

int nrtot[] (Input)
Array of length nrow containing the row totals.

int nctot[] (Input)
Array of length ncol containing the column totals. (Input)
The elements of nrtot and nctot must be nonnegative and must sum
to the same quantity.

Return Value
nrow by ncol random matrix with the given row and column totals. To release
this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_table_twoway (int nrow, int ncol, int nrtot[],

int nctot[],
IMSLS_RETURN_USER, int ir[],
 0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied array of size nrow by ncol containing the random matrix
with the given row and column totals.

Description
Routine imsls_random_table_twoway generates pseudorandom entries for a
two-way contingency table with fixed row and column totals. The method
depends on the size of the table and the total number of entries in the table. If the
total number of entries is less than twice the product of the number of rows and
columns, the method described by Boyette (1979) and by Agresti, Wackerly, and
Boyette (1979) is used. In this method, a work vector is filled with row indices so
that the number of times each index appears equals the given row total. This
vector is then randomly permuted and used to increment the entries in each row
so that the given row total is attained.

For tables with larger numbers of entries, the method of Patefield (1981) is used.
This method can be considerably faster in these cases. The method depends on
the conditional probability distribution of individual elements, given the entries in
the previous rows. The probabilities for the individual elements are computed
starting from their conditional means.

Chapter 12: Random Number Generation random_order_normal � 827

Example
In this example, imsls_random_table_twoway is used to generate a two by
three table with row totals 3 and 5, and column totals 2, 4, and 2.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int *itable, nrow = 2, ncol = 3;
 int nrtot[2] = {3, 5};
 int nctot[3] = {2, 4, 2};
 char *title = "A random contingency table with fixed marginal totals";

 imsls_random_seed_set(123457);

 itable = imsls_random_table_twoway(nrow, ncol, nrtot, nctot, 0);

 imsls_i_write_matrix(title, nrow, ncol, itable,
 IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 0);
 }

Output
A random contingency table with fixed marginal totals
 0 2 1
 2 2 1

random_order_normal
Generates pseudorandom order statistics from a standard normal distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_order_normal (int ifirst, int ilast, int n,...,

0)

The type double function is imsls_d_random_order_normal.

Required Arguments

int ifirst (Input)
First order statistic to generate.

int ilast (Input)
Last order statistic to generate.
ilast must be greater than or equal to ifirst. The full set of order

828 � random_order_normal IMSL C/Stat/Library

statistics from ifirst to ilast is generated. If only one order statistic
is desired, set ilast = ifirst.

int n (Input)
Size of the sample from which the order statistics arise.

Return Value
An array of length ilast + 1 � ifirst containing the random order statistics in
ascending order.
The first element is the ifirst order statistic in a random sample of size n from
the standard normal distribution. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_order_normal (int ifirst, int ilast, int n,

IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length ilast + 1 � ifirst containing the
random order statistics in ascending order.

Description
Routine imsls_f_random_order_normal generates the ifirst through the
ilast order statistics from a pseudorandom sample of size N from a normal
(0, 1) distribution. Routine imsls_f_random_order_normal uses the routine
imsls_f_random_order_uniform (page 829) to generate order statistics from
the uniform (0, 1) distribution and then obtains the normal order statistics using
the inverse CDF transformation.

Each call to imsls_f_random_order_normal yields an independent event so
order statistics from different calls may not have the same order relations with
each other.

Example
In this example, imsls_f_random_order_normal is used to generate the
fifteenth through the nineteenth order statistics from a sample of size twenty.

#include <stdio.h>
#include <imsls.h>

void main()
{
 float *r = NULL;

 imsls_random_seed_set(123457);

Chapter 12: Random Number Generation random_order_uniform � 829

 r = imsls_f_random_order_normal(15, 19, 20, 0);

 printf("The 15th through the 19th order statistics from a \n");
 printf("random sample of size 20 from a normal distribution\n");
 imsls_f_write_matrix("", 5, 1, r, 0);
}

Output
The 15th through the 19th order statistics from a
random sample of size 20 from a normal distribution

1 0.4056
2 0.4681
3 0.4697
4 0.9067
5 0.9362

random_order_uniform
Generates pseudorandom order statistics from a uniform (0, 1) distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_order_uniform (int ifirst, int ilast,

int n,..., 0)

The type double function is imsls_d_random_order_uniform.

Required Arguments

int ifirst (Input)
First order statistic to generate.

int ilast (Input)
Last order statistic to generate.
ilast must be greater than or equal to ifirst. The full set of order
statistics from ifirst to ilast is generated. If only one order statistic
is desired, set ilast = ifirst.

int n (Input)
Size of the sample from which the order statistics arise.

Return Value
An array of length ilast + 1 � ifirst containing the random order statistics in
ascending order.
The first element is the ifirst order statistic in a random sample of size n from
the uniform (0, 1) distribution. To release this space, use free.

830 � random_order_uniform IMSL C/Stat/Library

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_order_uniform (int ifirst, int ilast, int n,

IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length ilast + 1 � ifirst containing the
random order statistics in ascending order.

Description
Routine imsls_f_random_order_uniform generates the ifirst through the
ilast order statistics from a pseudorandom sample of size n from a uniform
(0, 1) distribution. Depending on the values of ifirst and ilast, different
methods of generation are used to achieve greater efficiency. If ifirst = 1 and
ilast = n, that is, if the full set of order statistics are desired, the spacings
between successive order statistics are generated as ratios of exponential variates.
If the full set is not desired, a beta variate is generated for one of the order
statistics, and the others are generated as extreme order statistics from conditional
uniform distributions. Extreme order statistics from a uniform distribution can be
obtained by raising a uniform deviate to an appropriate power.

Each call to imsls_f_random_order_uniform yields an independent event.
This means, for example, that if on one call the fourth order statistic is requested
and on a second call the third order statistic is requested, the “fourth” may be
smaller than the “third”. If both the third and fourth order statistics from a given
sample are desired, they should be obtained from a single call to
imsls_f_random_order_uniform (by specifying ifirst less than or equal
to 3 and ilast greater than or equal to 4).

Example
In this example, imsls_f_random_order_uniform is used to generate the
fifteenth through the nineteenth order statistics from a sample of size twenty.

#include <stdio.h>
#include <imsls.h>

void main()
{
 float *r = NULL;

 imsls_random_seed_set(123457);

 r = imsls_f_random_order_uniform(15, 19, 20, 0);

 printf("The 15th through the 19th order statistics from a \n");

Chapter 12: Random Number Generation random_arma � 831

 printf("random sample of size 20 from a uniform distribution\n");
 imsls_f_write_matrix("", 5, 1, r, 0);
}

Output
The 15th through the 19th order statistics from a
random sample of size 20 from a uniform distribution

1 0.6575
2 0.6802
3 0.6807
4 0.8177
5 0.8254

random_arma
Generates a time series from a specific ARMA model.

Synopsis
#include <imsls.h>
float *imsls_f_random_arma (int n_observations, int p, float ar[],

int q, float ma[], ..., 0)
The type double function is imsls_d_random_arma.

Required Arguments

int n_observations (Input)
Number of observations to be generated. Parameter n_observations
must be greater than or equal to one.

int p (Input)
Number of autoregressive parameters. Paramater p must be greater than
or equal to zero.

float ar[] (Input)
Array of length p containing the autoregressive parameters.

int q (Input)
Number of moving average parameters. Parameter q must be greater
than or equal to zero.

float ma[] (Input)
Array of length q containing the moving average parameters.

Return Value
An array of length n_observations containing the generated time series.

Synopsis with Optional Arguments
#include <imsls.h>

832 � random_arma IMSL C/Stat/Library

float *imsls_f_random_arma (int n_observations, int p, float ar[],
int q, float ma[],
IMSLS_ARMA_CONSTANT, float constant,
IMSLS_VAR_NOISE, float *a_variance,
IMSLS_INPUT_NOISE, float *a_input,
IMSLS_OUTPUT_NOISE, float **a_return,
IMSLS_OUTPUT_NOISE_USER, float a_return[],
IMSLS_NONZERO_ARLAGS, int *ar_lags,
IMSLS_NONZERO_MALAGS, int *ma_lags,
IMSLS_INITIAL_W, float *w_initial,
IMSLS_ACCEPT_REJECT_METHOD,
IMSLS_RETURN_USER, float w[],
0)

Optional Arguments
IMSLS_ARMA_CONSTANT, float constant (Input)

Overall constant. See “Description”.
Default: constant = 0

IMSLS_VAR_NOISE, float a_variance (Input)
If IMSLS_VAR_NOISE is specified (and IMSLS_INPUT_NOISE is not
specified) the noise at will be generated from a normal distribution with
mean 0 and variance a_variance.
Default: a_variance = 1.0

IMSLS_INPUT_NOISE, float *a_input (Input)
If IMSLS_INPUT_NOISE is specified, the user will provide an array of
length n_observations + max (ma_lags[i]) containing the random
noises. If this option is specified, then IMSLS_VAR_NOISE should not be
specified (a warning message will be issued and the option
IMSLS_VAR_NOISE will be ignored).

IMSLS_OUTPUT_NOISE, float **a_return (Output)
An address of a pointer to an internally allocated array of length
n_observations + max (ma_lags[i]) containing the random noises.

IMSLS_OUTPUT_NOISE_USER, float a_return[] (Output)
Storage for array a_return is provided by user. See
IMSLS_OUTPUT_NOISE.

IMSLS_NONZERO_ARLAGS, int ar_lags[] (Input)
An array of length p containing the order of the nonzero autoregressive
parameters.
Default: ar_lags = [1, 2, ..., p]

IMSLS_NONZERO_MALAGS, int ma_lags (Input)
An array of length q containing the order of the nonzero moving average
parameters.
Default: ma_lags = [1, 2, ..., q]

Chapter 12: Random Number Generation random_arma � 833

IMSLS_INITIAL_W, float w_initial[] (Input)
Array of length max (ar_lags[i]) containing the initial values of the
time series.
Default: all the elements in w_initial =
constant/(1 � ar [0] � ar [1] � � � ar [p � 1])

IMSLS_ACCEPT_REJECT_METHOD (Input)
If IMSLS_ACCEPT_REJECT_METHOD is specified, the random noises
will be generated from a normal distribution using an
acceptance/rejection method. If IMSLS_ACCEPT_REJECT_METHOD is
not specified, the random noises will be generated using an inverse
normal CDF method. This argument will be ignored if
IMSLS_INPUT_NOISE is specified.

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the generated time
series.

Description
Function imsls_f_random_arma simulates an ARMA(p, q) process, {Wt}, for
t = 1, 2, ..., n (with n = n_observations, p = p, and q = q). The model is

� � � �0t tB W B A t� � �� � �Z

� �

� �

2
1 2

2
1 2

1 ...

1 ...

P
p

q
q

B B B B

B B B B

� � �� � � � � �

� � �� � � � ��

Let � be the mean of the time series {Wt}. The overall constant �0 (constant) is

� �0
1

0

1 0p
i i

p

p

�
�

� �
�

���
� �

� ��� �

Time series whose innovations have a nonnormal distribution may be simulated
by providing the appropriate innovations in a_input and start values in
w_initial.

The time series is generated according to the followng model:

X[i] = constant + ar[0] � X[i � ar_lags[0]] + … +

ar[p � 1] � X[i � ar_lags[p � 1]] +

A[i] � ma[0] � A[i � ma_lags[0]] � … �

ma[q � 1] � A[i � ma_lags[q � 1]]

where the constant is related to the mean of the series,

W

as follows:

834 � random_arma IMSL C/Stat/Library

� �constant (1 ar 0 ... ar[q 1])W� � � � � �

and where

X[t] = W[t], t = 0, 1, …, n_observations � 1

and

W[t] = w_initial[t + p], t = �p, �p + 1, …, �2, �1

and A is either a_input (if IMSLS_INPUT_NOISE is specified) or a_return
(otherwise).

Examples

Example 1
In this example, imsls_f_random_arma is used to generate a time series of
length five, using an ARMA model with three autoregressive parameters and two
moving average parameters. The start values are 0.1000, 0.0500, and 0.0375.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 5;
 int np = 3;
 float phi[3] = {0.5, 0.25, 0.125};
 int nq = 2;
 float theta[2] = {-0.5, -0.25};
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_arma(n_random, np, phi, nq, theta, 0);
 imsls_f_write_matrix("ARMA random deviates:",
 1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

Output

 ARMA random deviates:
 0.863 0.809 1.904 0.110 2.266

Example 2
In this example, a time series of length 5 is generated using an ARMA model with
4 autoregressive parameters and 2 moving average parameters. The start values
are 0.1, 0.05 and 0.0375.

#include <stdio.h>
#include <imsls.h>

void main()
{

Chapter 12: Random Number Generation random_npp � 835

 int n_random = 5;
 int np = 3;
 float phi[3] = {0.5, 0.25, 0.125};
 int nq = 2;
 float theta[2] = {-0.5, -0.25};
 float wi[3] = {0.1, 0.05, 0.0375};
 float theta0 = 1.0;
 float avar = 0.1;
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_arma(n_random, np, phi, nq, theta,
 IMSLS_ACCEPT_REJECT_METHOD,
 IMSLS_INITIAL_W, wi,
 IMSLS_ARMA_CONSTANT, theta0,
 IMSLS_VAR_NOISE, avar,
 0);
 imsls_f_write_matrix("ARMA random deviates:",
 1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

Output

 ARMA random deviates:
 1.403 2.220 2.286 2.888 2.832

Warning Errors
IMSLS_RNARM_NEG_VAR VAR(a) = “a_variance” = #, VAR(a) must be

greater than 0. The absolute value of # is used for
VAR(a).

IMSLS_RNARM_IO_NOISE Both IMSLS_INPUT_NOISE and
IMSLS_OUTPUT_NOISE are specified.
IMSLS_INPUT_NOISE is used.

random_npp
Generates pseudorandom numbers from a nonhomogeneous Poisson process.

Synopsis
#include <imsls.h>
float *imsls_f_random_npp (float tbegin, float tend, float ftheta(),

float theta_min, float theta_max, int neub, int *ne, ..., 0)

The type double function is imsls_d_random_npp.

Required Arguments

float tbegin (Input)
Lower endpoint of the time interval of the process.
tbegin must be nonnegative. Usually, tbegin = 0.

836 � random_npp IMSL C/Stat/Library

float tend (Input)
Upper endpoint of the time interval of the process.
tend must be greater than tbegin.

float ftheta(float t) (Input)
User-supplied function to provide the value of the rate of the process as
a function of time. This function must be defined over the interval from
tbegin to tend and must be nonnegative in that interval.

float theta_min (Input)
Minimum value of the rate function ftheta() in the interval (tbegin,
tend).
If the actual minimum is unknown, set theta_min = 0.0.

float theta_max (Input)
Maximum value of the rate function ftheta() in the interval (tbegin,
tend).
If the actual maximum is unknown, set theta_max to a known upper
bound of the maximum. The efficiency of imsls_f_random_npp is
less the greater theta_max exceeds the true maximum.

int neub (Input)
Upper bound on the number of events to be generated.
In order to be reasonably sure that the full process through time tend is
generated, calculate neub as neub = X + 10.0 * SQRT(X), where
X = theta_max * (tend � tbegin).

int *ne (Output)
Number of events actually generated.
If ne is less that neub, the time tend is reached before neub events are
realized.

Return Value
An array of length neub containing the the times to events in the first ne
elements. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_npp (float tbegin, float tend, float ftheta(),

float theta_min, float theta_max, int neub, int *ne,
IMSLS_RETURN_USER, float r[],
IMSLS_FCN_W_DATA, float ftheta(), void *data,
0)

Chapter 12: Random Number Generation random_npp � 837

dt

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length neub containing the the times to events in
the first ne elements.

IMSLS_FCN_W_DATA, float ftheta(float t), void *data, (Input)
User-supplied function to provide the value of the rate of the process as
a function of time, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-
supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

Description
Routine imsls_f_random_npp simulates a one-dimensional nonhomogeneous
Poisson process with rate function ftheta in a fixed interval (tbegin, tend].

Let �(t) be the rate function and t� = tbegin and t� = tend. Routine
imsls_f_random_npp uses a method of thinning a nonhomogeneous Poisson
process {N�(t), t � t�} with rate function ��(t) � �(t) in (t�, t�], where the number
of events, N�, in the interval (t�, t�] has a Poisson distribution with parameter

� �
1

0
0

t

t
t dt� �� �

The function

� � � �
0

t
t t�

�

� � �

is called the integrated rate function.) In imsls_f_random_npp, ��(t) is taken
to be a constant ��(= theta_max) so that at time ti, the time of the next event
ti + 1 is obtained by generating and cumulating exponential random numbers

* *
1, 2,, ,...,i iE E

with parameter ��, until for the first time

� �* *
, 1, , /...j i i i j iu t E E� �� �

*
�

where the uj,i are independent uniform random numbers between 0 and 1. This
process is continued until the specified number of events, neub, is realized or
until the time, tend, is exceeded. This method is due to Lewis and Shedler
(1979), who also review other methods. The most straightforward (and most
efficient) method is by inverting the integrated rate function, but often this is not
possible.

If theta_max is actually greater than the maximum of �(t) in (t�, t�], the routine
will work, but less efficiently. Also, if �(t) varies greatly within the interval, the
efficiency is reduced. In that case, it may be desirable to divide the time interval

838 � random_npp IMSL C/Stat/Library

into subintervals within which the rate function is less variable. This is possible
because the process is without memory.

If no time horizon arises naturally, tend must be set large enough to allow for the
required number of events to be realized. Care must be taken, however, that
ftheta is defined over the entire interval.

After simulating a given number of events, the next event came be generated by
setting tbegin to the time of the last event (the sum of the elements in R) and
calling imsls_f_random_npp again. Cox and Lewis (1966) discuss modeling
applications of nonhomogeneous Poisson processes.

Example
In this example, imsls_f_random_npp is used to generate the first five events
in the time 0 to 20 (if that many events are realized) in a nonhomogeneous
process with rate function

�(t) = 0.6342 e0.001427t

for 0 < t � 20.

Since this is a monotonically increasing function of t, the minimum is at t = 0 and
is 0.6342, and the maximum is at t = 20 and is 0.6342 e0.02854�= 0.652561.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int i, neub = 5, ne;
 float *r, tmax= .652561, tmin = .6342, tbeg=0., tend=20.;

 imsls_random_seed_set(123457);

 r = imsls_f_random_npp(tbeg, tend, ftheta, tmin, tmax, neub, &ne, 0);

 printf("Inter-event times for the first %d events in the process:\n", ne);
 for (i=0; i<ne; i++) printf("\t%f\n", r[i]);

}

Output
Inter-event times for the first 5 events in the process:
 0.052660
 0.407979
 0.258399
 0.019767
 0.167641

Chapter 12: Random Number Generation random_permutation � 839

random_permutation
Generates a pseudorandom permutation.

Synopsis
#include <imsls.h>
int *imsls_random_permutation (int k, ..., 0)

Required Arguments

int k (Input)
Number of integers to be permuted.

Return Value
An array of length k containing the random permutation of the integers from
1 to k. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_permutation (int k,

 IMSLS_RETURN_USER, int ir[],
 0)

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied array of length k containing the random permutation of
the integers from 1 to k.

Description
Routine imsls_random_permutation generates a pseudorandom permutation
of the integers from 1 to k. It begins by filling a vector of length k with the
consecutive integers 1 to k. Then, with M initially equal to k, a random index
J between 1 and M (inclusive) is generated. The element of the vector with the
index M and the element with index J swap places in the vector. M is then
decremented by 1 and the process repeated until M = 1.

Example
In this example, imsls_random_permutation is called to produce a
pseudorandom permutation of the integers from 1 to 10.

#include <stdio.h>
#include <imsls.h>

void main()
{

840 � random_sample_indices IMSL C/Stat/Library

 int *ir, k = 10;

 imsls_random_seed_set(123457);

 ir = imsls_random_permutation(k, 0);

 printf("Random permutation of the integers from 1 to 10\n");
 imsls_i_write_matrix("", 1, k, ir,
 IMSLS_NO_COL_LABELS, 0);
 }

Output
Random permutation of the integers from 1 to 10

 5 9 2 8 1 6 4 7 3 10

random_sample_indices
Generates a simple pseudorandom sample of indices.

Synopsis
#include <imsls.h>
int *imsls_random_sample_indices (int nsamp, int npop, ..., 0)

Required Arguments

int nsamp (Input)
Sample size desired.

int npop (Input)
Number of items in the population.

Return Value
An array of length nsamp containing the indices of the sample. To release this
space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_sample_indices (int nsamp, int npop,

 IMSLS_RETURN_USER, int ir[],
 0)

Chapter 12: Random Number Generation random_sample_indices � 841

Optional Arguments
IMSLS_RETURN_USER, int ir[] (Output)

User-supplied array of length nsamp containing the indices of the
sample.

Description
Routine imsls_random_sample_indices generates the indices of a
pseudorandom sample,without replacement, of size nsamp numbers from a
population of size npop. If nsamp is greater than npop/2, the integers from 1 to
npop are selected sequentially with a probability conditional on the number
selected and the number remaining to be considered. If, when the i-th population
index is considered, j items have been included in the sample, then the index i is
included with probability (nsamp � j)/(npop + 1 � i).

If nsamp is not greater than npop/2, a O(nsamp) algorithm due to Ahrens and
Dieter (1985) is used. Of the methods discussed by Ahrens and Dieter, the one
called SG* is used in imsls_random_sample_indices. It involves a
preliminary selection of q indices using a geometric distribution for the distances
between each index and the next one. If the preliminary sample size q is less than
nsamp, a new preliminary sample is chosen, and this is continued until a
preliminary sample greater in size than nsamp is chosen. This preliminary sample
is then thinned using the same kind of sampling as described above for the case in
which the sample size is greater than half of the population size. Routine
imsls_random_sample_indices does not store the preliminary sample
indices, but rather restores the state of the generator used in selecting the sample
initially, and then passes through once again, making the final selection as the
preliminary sample indices are being generated.

Example
In this example, imsls_random_sample_indices is used to generate the
indices of a pseudorandom sample of size 5 from a population of size 100.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int *ir, nsamp = 5, npop = 100;

 imsls_random_seed_set(123457);

 ir = imsls_random_sample_indices(nsamp, npop, 0);

 imsls_i_write_matrix("Random Sample", 1, nsamp, ir,
 IMSLS_NO_COL_LABELS, 0);
 }

842 � random_sample IMSL C/Stat/Library

Output

 Random Sample

 2 22 53 61 79

random_sample
Generates a simple pseudorandom sample from a finite population.

Synopsis
#include <imsls.h>
float *imsls_f_random_sample (int nrow, int nvar, float population[],

int nsamp,..., 0)

The type double function is imsls_d_random_sample.

Required Arguments

int nrow (Input)
Number of rows of data in population.

int nvar (Input)
Number of variables in the population and in the sample.

float population[] (Input)
nrow by nvar matrix containing the population to be sampled. If either
of the optional arguments IMSLS_FIRST_CALL or
IMSLS_ADDITIONAL_CALL are specified, then population contains a
different part of the population on each invocation, otherwise
population contains the entire population.

int nsamp (Input)
The sample size desired.

Return Value
nsamp by nvar matrix containing the sample. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_sample (int nrow, int nvar, float population[],

int nsamp,
IMSLS_FIRST_CALL, int **index, int *npop
IMSLS_FIRST_CALL_USER, int index[], int *npop
IMSLS_ADDITIONAL_CALL, int *index, int *npop, float *samp,
IMSLS_POPULATION_COL_DIM, int population_col_dim,

Chapter 12: Random Number Generation random_sample � 843

IMSLS_RETURN_USER, int samp[],
 0)

Optional Arguments
IMSLS_FIRST_CALL, int **index, int *npop (Output)

This is the first invocation with this data; additional calls to
imsls_f_random_sample may be made to add to the population.
Additional calls should be made using the optional argument
IMSLS_ADDITIONAL_CALL . Argument index is the address of a
pointer to an internally allocated array of length nsamp containing the
indices of the sample in the population. Argument npop returns the
number of items in the population. If the population is input a few items
at a time, the first call to imsls_f_random_sample should use
IMSLS_FIRST_CALL, and subsequent calls should use
IMSLS_ADDITIONAL_CALL. See example 2.

IMSLS_FIRST_CALL_USER, int index[], int *npop (Output)
Storage for index is provided by the user. See IMSLS_FIRST_CALL.

IMSLS_ADDITIONAL_CALL, int *index, int *npop, float *samp
(Input/Output)
This is an additional invocation of imsls_f_random_sample, and
updating for the subpopulation in population is performed. Argument
index is a pointer to an array of length nsamp containing the indices of
the sample in the population, as returned using optional argument
IMSLS_FIRST_CALL. Argument npop, also obtained using optional
argument IMSLS_FIRST_CALL, returns the number of items in the
population. It is not necessary to know the number of items in the
population in advance. npop is used to cumulate the population size and
should not be changed between calls to imsls_f_random_sample.
Argument samp is a pointer to the array of size nsamp by nvar
containing the sample. samp is the result of calling
imsls_f_random_sample with optional argument
IMSLS_FIRST_CALL. See example 2

IMSLS_POPULATION_COL_DIM, int population_col_dim (Input)
Column dimension of the matrix population.
Default: x_col_dim = nvar

IMSLS_RETURN_USER, int samp[] (Output)
User-supplied array of size nrow by nvar containing the sample. This
option should not be used if IMSLS_ADDITIONAL_CALL is used.

844 � random_sample IMSL C/Stat/Library

Description
Routine imsls_f_random_sample generates a pseudorandom sample from a
given population, without replacement, using an algorithm due to McLeod and
Bellhouse (1983).

The first nsamp items in the population are included in the sample. Then, for each
successive item from the population, a random item in the sample is replaced by
that item from the population with probability equal to the sample size divided by
the number of population items that have been encountered at that time.

Example 1
In this example, imsls_f_random_sample is used to generate a sample of size
5 from a population stored in the matrix population.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int nrow = 176, nvar = 2, nsamp = 5;
 float *population;
 float *sample;

 population = imsls_f_data_sets(2, 0);

 imsls_random_seed_set(123457);

 sample = imsls_f_random_sample(nrow, nvar, population, nsamp, 0);

 imsls_f_write_matrix("The sample", nsamp, nvar, sample,
 IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 0);
}

Output
 The sample
 1764 36
 1828 62
 1923 6
 1773 35
 1769 106

Example 2
Routine imsls_f_random_sample is now used to generate a sample of size 5
from the same population as in the example above except the data are input to
RNSRS one observation at a time. This is the way imsls_f_random_sample
may be used to sample from a file on disk or tape. Notice that the number of
records need not be known in advance.

#include <stdio.h>
#include <imsls.h>

Chapter 12: Random Number Generation random_option � 845

void main()
{
 int i, nrow = 176, nvar = 2, nsamp = 5;
 int *index, npop;
 float *population;
 float *sample;

 population = imsls_f_data_sets(2, 0);

 imsls_random_seed_set(123457);

 sample = imsls_f_random_sample(1, 2, population, nsamp,
 IMSLS_FIRST_CALL, &index, &npop,
 0);
 for (i = 1; i < 176; i++) {
 imsls_f_random_sample(1, 2, &population[2*i], nsamp,
 IMSLS_ADDITIONAL_CALL, index, &npop, sample,
 0);
 }
 printf("The population size is %d\n", npop);
 imsls_i_write_matrix("Indices of random sample", 5, 1, index, 0);

 imsls_f_write_matrix("The sample", nsamp, nvar, sample,
 IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 0);
 }

Output
The population size is 176

Indices of random sample
 1 16
 2 80
 3 175
 4 25
 5 21

 The sample
 1764 36
 1828 62
 1923 6
 1773 35
 1769 106

random_option
Selects the uniform (0, 1) multiplicative congruential pseudorandom number
generator or a generalized feedback shift register (GFSR) method.

Synopsis
#include <imsls.h>

846 � random_option_get IMSL C/Stat/Library

void imsls_random_option (int generator_option)

Required Arguments

int generator_option (Input)
Indicator of the generator. Argument generator_option is used to
choose the multiplier and whether or not shuffling is done, or the GFSR
method.

generator_option Generator
1 The multiplier 16807 is used.
2 The multiplier 16807 is used with shuffling.
3 The multiplier 397204094 is used.
4 The multiplier 397204094 is used with shuffling.
5 The multiplier 950706376 is used.
6 The multiplier 950706376 is used with shuffling.
7 GFSR, with the recursion Xt = Xt-���� � Xt-�� is

used

Description
The uniform pseudorandom number generators use a multiplicative congruential
method, with or without shuffling. The value of the multiplier and whether or not
to use shuffling are determined by imsls_random_option. The description of
function imsls_f_random_uniform may provide some guidance in the choice
of the form of the generator. If no selection is made explicitly, the generators use
the multiplier 16807 without shuffling. This form of the generator has been in use
for some time (see Lewis et al. 1969).

Example
See function imsls_random_GFSR_table_get (page 853).

random_option_get
Retrieves the uniform (0, 1) multiplicative congruential pseudorandom number
generator.

Synopsis
#include <imsls.h>
int imsls_random_option_get ()

Return Value
Indicator of the generator.

Chapter 12: Random Number Generation random_seed_get � 847

result Generator

1 The multiplier 16807 is used.
2 The multiplier 16807 is used with shuffling.
3 The multiplier 397204094 is used.
4 The multiplier 397204094 is used with shuffling.
5 The multiplier 950706376 is used.
6 The multiplier 950706376 is used with shuffling.
7 GFSR, with the recursion Xt = Xt-���� � Xt-�� is

used

Description
The routine imsls_random_option_get retrieves the uniform (0, 1)
multiplicative congruential pseudorandom number generator or the GRSR method.
The uniform pseudorandom number generators use a multiplicative congruential
method, with or without shuffling. The value of the multiplier and whether or not
to use shuffling are determined by imsls_random_option.

random_seed_get
Retrieves the current value of the seed used in the random number generators.

Synopsis
#include <imsls.h>
int imsls_random_seed_get ()

Return Value
The value of the seed.

Description
Function imsls_random_seed_get retrieves the current value of the “seed”
used in the random number generators. A reason for doing this would be to restart
a simulation, using function imsls_random_seed_set to reset the seed.

Example
This example illustrates the statements required to restart a simulation using
imsls_random_seed_get and imsls_random_seed_set. The example
shows that restarting the sequence of random numbers at the value of the seed last
generated is the same as generating the random numbers all at once.

848 � random_substream_seed_get IMSL C/Stat/Library

#include <imsls.h>

#define N_RANDOM 5

main()
{
 int seed = 123457;
 float *r1, *r2, *r;

 imsls_random_seed_set(seed);
 r1 = imsls_f_random_uniform(N_RANDOM, 0);
 imsls_f_write_matrix ("First Group of Random Numbers", 1,
 N_RANDOM, r1, 0);
 seed = imsls_random_seed_get();

 imsls_random_seed_set(seed);
 r2 = imsls_f_random_uniform(N_RANDOM, 0);
 imsls_f_write_matrix ("Second Group of Random Numbers", 1,
 N_RANDOM, r2, 0);

 imsls_random_seed_set(123457);
 r = imsls_f_random_uniform(2*N_RANDOM, 0);
 imsls_f_write_matrix ("Both Groups of Random Numbers", 1,
 2*N_RANDOM, r, 0);
}

Output

 First Group of Random Numbers
 1 2 3 4 5
 0.9662 0.2607 0.7663 0.5693 0.8448

 Second Group of Random Numbers
 1 2 3 4 5
 0.0443 0.9872 0.6014 0.8964 0.3809

 Both Groups of Random Numbers
 1 2 3 4 5 6
 0.9662 0.2607 0.7663 0.5693 0.8448 0.0443

 7 8 9 10
 0.9872 0.6014 0.8964 0.3809

random_substream_seed_get
Retrieves a seed for the congruential generators that do not do shuffling that will
generate random numbers beginning 100,000 numbers farther along.

Synopsis
#include <imsls.h>
int imsls_random_substream_seed_get (int iseed1)

Chapter 12: Random Number Generation random_substream_seed_get � 849

Required Arguments

int iseed1 (Input)
The seed that yields the first stream.

Return Value
The seed that yields a stream beginning 100,000 numbers beyond the stream that
begins with iseed1.

Description
Given a seed, iseed1, imsls_random_substream_seed_get determines
another seed, such that if one of the IMSL multiplicative congruential generators,
using no shuffling, went through 100,000 generations starting with iseed1, the
next number in that sequence would be the first number in the sequence that
begins with the returned seed.

Note that imsls_random_substream_seed_get works only when a
multiplicative congruential generator without shuffling is used. This means that
either the routine imsls_random_option has not been called at all or that it has
been last called with generator_option taking a value of 1, 3, or 5.

For many of the IMSL generators for nonuniform distributions that do not use the
inverse CDF method, the distance between the sequences generated starting with
iseed1 and starting with the returned seed may be less than 100,000. This is
because the nonuniform generators that use other techniques may require more
than one uniform deviate for each output deviate.

The reason that one may want two seeds that generate sequences a known
distance apart is for blocking Monte Carlo experiments or for running parallel
streams

Example
In this example, imsls_random_substream_seed_get is used to determine
seeds for 4 separate streams, each 200,000 numbers apart, for a multiplicative
congruential generator without shuffling. (Since imsls_random_option is not
invoked to select a generator, the multiplier is 16807.) Since the streams are
200,000 numbers apart, each seed requires two invocations of
imsls_random_substream_seed_get. All of the streams are non-
overlapping, since the period of the underlying generator is 2,147,483,646. The
resulting seed are then verified by checking the seed after generating random
sequences of length 200,000.

#include <imsls.h>

main()
{
 int i, is1, is2, is3, is4;
 float *r;

850 � random_seed_set IMSL C/Stat/Library

 is1 = 123457;
 is2 = imsls_random_substream_seed_get(is1);
 is2 = imsls_random_substream_seed_get(is2);
 is3 = imsls_random_substream_seed_get(is2);
 is3 = imsls_random_substream_seed_get(is3);
 is4 = imsls_random_substream_seed_get(is3);
 is4 = imsls_random_substream_seed_get(is4);
 printf("Seeds for four separate streams:\n");
 printf("%d\t%d\t%d\t%d\n\n", is1, is2, is3, is4);

 imsls_random_seed_set(is1);
 for (i=0;i<3;i++) {
 r = imsls_f_random_uniform(200000, 0);
 printf("seed after %d random numbers: %d\n", (i+1)*200000,
 imsls_random_seed_get());
 if (r) free(r);
 }
}

Output
Seeds for four separate streams:
123457 2016130173 85016329 979156171

seed after 200000 random numbers: 2016130173
seed after 400000 random numbers: 85016329
seed after 600000 random numbers: 979156171

random_seed_set
Initializes a random seed for use in the random number generators.

Synopsis
#include <imsls.h>
void imsls_random_seed_set (int seed)

Required Arguments

int seed (Input)
The seed of the random number generator. The argument seed must be
in the range (0, 2147483646). If seed is 0, a value is computed using
the system clock; hence, the results of programs using the random
number generators will be different at various times.

Description
Function imsls_random_seed_set is used to initialize the seed used in the
random number generators. The form of the generators is as follows:

xi � cxi-1mod (231 � 1)

Chapter 12: Random Number Generation random_table_set � 851

The value of x0 is the seed. If the seed is not initialized prior to invocation of any
of the functions for random number generation by calling
imsls_random_seed_set, the seed is initialized by the system clock. The seed
can be reinitialized to a clock-dependent value by calling
imsls_random_seed_set with seed set to 0.

The effect of imsls_random_seed_set is to set some global values used by the
random number generators. A common use of imsls_random_seed_set is in
conjunction with function imsls_random_seed_get to restart a simulation.

Example
See function imsls_random_seed_get (page 850).

random_table_set
Sets the current table used in the shuffled generator.

Synopsis
#include <imsls.h>
void imsls_f_random_table_set (float table[])

The type double function is imsls_d_random_table_set.

Required Arguments

float table[] (Input)
Array of length 128 used in the shuffled generators.

Description
The values in table are initialized by the IMSL random number generators. The
values are all positive in except if the user wishes to reinitialize the array, in
which case the first element of the array is input as a nonpositive value. (Usually,
one should avoid reinitializing these arrays, but it might be necessary sometimes
in restarting a simulation.) If the first element of table is set to a nonpositive
value on the call to imsls_random_table_set, on the next invocation of a
routine to generate random numbers using a shuffled method , the appropriate
array will be reinitialized.

Example
See function imsls_random_GFSR_table_get (page 853).

852 � random_table_get IMSL C/Stat/Library

random_table_get
Retrieves the current table used in the shuffled generator.

Synopsis
#include <imsls.h>
void imsls_f_random_table_get (float **table, ..., 0)

The type double function is imsls_d_random_table_get.

Required Arguments

float **table (Output)
Address of a pointer to an array of length 128 containing the table used
in the shuffled generators. Typically, float *table is declared and
&table is used as an argument.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_random_table_get (float **table,

IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments
IMSLS_RETURN_USER, float r[] (Output)

User-supplied array of length 1565 containing the table used in the
GFSR generators.

Description
The values in table are initialized by the IMSL random number generators. The
values are all positive except if the user wishes to reinitialize the array, in which
case the first element of the array is input as a nonpositive value. (Usually, one
should avoid reinitializing these arrays, but it might be necessary sometimes in
restarting a simulation.) If the first element of table is set to a nonpositive value
on the call to imsls_random_table_set, on the next invocation of a routine to
generate random numbers using a shuffled method , the appropriate array will be
reinitialized.

Example
See function imsls_random_GFSR_table_get (page 853).

Chapter 12: Random Number Generation random_GFSR_table_set � 853

random_GFSR_table_set
Sets the current table used in the GFSR generator.

Synopsis
#include <imsls.h>
void imsls_random_GFSR_table_set (int table[])

Required Arguments

int table [] (Input)
Array of length 1565 used in the GFSR generators.

Description
The values in table are initialized by the IMSL random number generators. The
values are all positive except if the user wishes to reinitialize the array, in which
case the first element of the array is input as a nonpositive value. (Usually, one
should avoid reinitializing these arrays, but it might be necessary sometimes in
restarting a simulation.) If the first element of table is set to a nonpositive value
on the call to imsls_random_GFSR_table_set, on the next invocation of a
routine to generate random numbers using a GFSR method , the appropriate array
will be reinitialized.

Example
See function imsls_random_GFSR_table_get (page 853).

random_GFSR_table_get
Retrieves the current table used in the GFSR generator.

Synopsis
#include <imsls.h>
void imsls_random_GFSR_table_get (int **table, ..., 0)

Required Arguments

int **table (Output)
Address of a pointer to an array of length 1565 containing the table used
in the GFSR generators. Typically, int *table is declared and
&table is used as an argument.

Synopsis with Optional Arguments
#include <imsls.h>

854 � random_GFSR_table_get IMSL C/Stat/Library

void imsls_random_GFSR_table_get (int **table,
IMSLS_RETURN_USER, int r[],
 0)

Optional Arguments
IMSLS_RETURN_USER, int r[] (Output)

User-supplied array of length 1565 containing the table used in the
GFSR generators.

Description
The values in table are initialized by the IMSL random number generators. The
values are all positive except if the user wishes to reinitialize the array, in which
case the first element of the array is input as a nonpositive value. (Usually, one
should avoid reinitializing these arrays, but it might be necessary sometimes in
restarting a simulation.) If the first element of table is set to a nonpositive value
on the call to imsls_random_GFSR_table_set, on the next invocation of a
routine to generate random numbers using a GFSR method, the appropriate array
will be reinitialized.

Example
In this example, three separate simulation streams are used, each with a different
form of the generator. Each stream is stopped and restarted. (Although this
example is obviously an artificial one, there may be reasons for maintaining
separate streams and stopping and restarting them because of the nature of the
usage of the random numbers coming from the separate streams.)

#include <stdio.h>
#include <imsls.h>

void main()
{
 float *r, *table;
 int nr, iseed1, iseed2, iseed7;
 int *itable;

 nr = 5;
 iseed1 = 123457;
 iseed2 = 123457;
 iseed7 = 123457;

 /* Begin first stream, iopt = 1 (by default) */
 imsls_random_seed_set (iseed1);
 r = imsls_f_random_uniform (nr, 0);
 iseed1 = imsls_random_seed_get ();
 imsls_f_write_matrix ("First stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS, 0);
 printf(" Output seed\t%d\n\n", iseed1);
 free(r);

Chapter 12: Random Number Generation random_GFSR_table_get � 855

 /* Begin second stream, iopt = 2 */
 imsls_random_option (2);
 imsls_random_seed_set (iseed2);
 r = imsls_f_random_uniform (nr, 0);
 iseed2 = imsls_random_seed_get ();
 imsls_f_random_table_get (&table, 0);
 imsls_f_write_matrix ("Second stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS, 0);
 printf(" Output seed\t%d\n\n", iseed2);
 free(r);

 /* Begin third stream, iopt = 7 */
 imsls_random_option (7);
 imsls_random_seed_set (iseed7);
 r = imsls_f_random_uniform (nr, 0);
 iseed7 = imsls_random_seed_get ();
 imsls_random_GFSR_table_get (&itable, 0);
 imsls_f_write_matrix ("Third stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS, 0);
 printf(" Output seed\t%d\n\n", iseed7);
 free(r);

 /* Reinitialize seed and resume first stream */
 imsls_random_option (1);
 imsls_random_seed_set (iseed1);
 r = imsls_f_random_uniform (nr, 0);
 iseed1 = imsls_random_seed_get ();
 imsls_f_write_matrix ("First stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS, 0);
 printf(" Output seed\t%d\n\n", iseed1);
 free(r);

 /*
 * Reinitialize seed and table for shuffling and
 * resume second stream
 */
 imsls_random_option (2);
 imsls_random_seed_set (iseed2);
 imsls_f_random_table_set (table);
 r = imsls_f_random_uniform (nr, 0);
 iseed2 = imsls_random_seed_get ();
 imsls_f_write_matrix ("Second stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS, 0);
 printf(" Output seed\t%d\n\n", iseed2);
 free(r);

 /*
 * Reinitialize seed and table for GFSR and
 * resume third stream.
 */
 imsls_random_option (7);
 imsls_random_seed_set (iseed7);
 imsls_random_GFSR_table_set (itable);
 r = imsls_f_random_uniform (nr, 0);

856 � faure_next_point IMSL C/Stat/Library

 iseed7 = imsls_random_seed_get ();
 imsls_f_write_matrix ("Third stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS, 0);
 printf(" Output seed\t%d\n\n", iseed7);
 free(r);

}

 Output

 First stream output
 0.9662 0.2607 0.7663 0.5693 0.8448
 Output seed 1814256879

 Second stream output
 0.7095 0.1861 0.4794 0.6038 0.3790
 Output seed 1965912801

 Third stream output
 0.3914 0.0263 0.7622 0.0281 0.8997
 Output seed 1932158269

 First stream output
 0.0443 0.9872 0.6014 0.8964 0.3809
 Output seed 817878095

 Second stream output
 0.2557 0.4788 0.2258 0.3455 0.5811
 Output seed 2108806573

 Third stream output
 0.7519 0.5084 0.9070 0.0910 0.6917
 Output seed 1485334679

faure_next_point
Computes a shuffled Faure sequence.

Synopsis
#include <imsls.h>
Imsls_faure* imsls_faure_sequence_init (int ndim, �, 0)
float* imsls_f_faure_next_point (Imsls_faure *state, �, 0)
void imsls_faure_sequence_free (Imsls_faure *state)

Chapter 12: Random Number Generation faure_next_point � 857

The type double function is imsls_d_faure_next_point. The functions
imsls_faure_sequence_init and imsls_faure_sequence_free
are precision independent.

Required Arguments for imsls_faure_sequence_init
int ndim (Input)

The dimension of the hyper-rectangle.

Return Value for imsls_faure_sequence_init
Returns a structure that contains information about the sequence. The structure
should be freed using imsls_faure_sequence_free after it is no longer
needed.

Required Arguments for imsls_faure_next_point
Imsls_faure *state (Input/Output)

Structure created by a call to imsls_faure_sequence_init.

Return Value for imsls_faure_next_point
Returns the next point in the shuffled Faure sequence. To release this space, use
free.

Required Arguments for imsls_faure_sequence_free
Imsls_faure *state (Input/Output)

Structure created by a call to imsls_faure_sequence_init.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_faure_sequence_init (int ndim,

IMSLS_BASE, int base,
IMSLS_SKIP, int skip,
0)

float* imsls_f_faure_next_point (Imsls_faure *state,
IMSLS_RETURN_USER, float *user,
IMSLS_RETURN_SKIP, int *skip,
0)

Optional Arguments
IMSLS_BASE, int base (Input)

The base of the Faure sequence.
Default: The smallest prime greater than or equal to ndim.

IMSLS_SKIP, int *skip (Input)
The number of points to be skipped at the beginning of the Faure

858 � faure_next_point IMSL C/Stat/Library

sequence.
Default: / 2 1m �� �� �base , where m log /logB� � �� �base and B is the largest
representable integer.

IMSLS_RETURN_USER, float *user (Output)
User-supplied array of length ndim containing the current point in the
sequence.

IMSLS_RETURN_SKIP, int *skip (Output)
The current point in the sequence. The sequence can be restarted by
initializing a new sequence using this value for IMSLS_SKIP, and using
the same dimension for ndim.

Description
Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set � �1,..., 0,1 , 1d
nx x d� � , is

� � � �
� �

;
sup ,

E

A E ndD En n
�� �

where the supremum is over all subsets of [0, 1]d of the form

� �1
0, 0 0 1, 1... , ,

d jE t t t� � � ���� � �� � j d ,

� is the Lebesque measure, and � �;A E n is the number of the xj contained in E.

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there
exists a constant c(d), depending only on d, such that

� �
� �

� �log dndD c dn n
�

for all n>1.

Generalized Faure sequences can be defined for any prime base b�d. The lowest
bound for the discrepancy is obtained for the smallest prime b�d, so the optional
argument IMSLS_BASE defaults to the smallest prime greater than or equal to the
dimension.

The generalized Faure sequence x1, x2, …, is computed as follows:

Write the positive integer n in its b-ary expansion,

0

() i
i

i

n a n
�

�

�� b

where ai(n) are integers, � �0 ia n b� � .

Chapter 12: Random Number Generation faure_next_point � 859

d�

The j-th coordinate of xn is

() () 1

0 0

() , 1j j k
n kd d

k d

x c a n b j
� �

� �

� �

� ���

The generator matrix for the series, ()jck d , is defined to be

()j d k
k d k dc j c�

�

and is an element of the Pascal matrix, k dc

� �
!

! !
0

k d

d k d
c d cc

k d

�
��

�� �
� ��

It is faster to compute a shuffled Faure sequence than to compute the Faure
sequence itself. It can be shown that this shuffling preserves the low-discrepancy
property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive
integer n into the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized
Faure sequence.

Example
In this example, five points in the Faure sequence are computed. The points are in
the three-dimensional unit cube.
Note that imsls_faure_sequence_init is used to create a structure that holds
the state of the sequence. Each call to imsls_f_faure_next_point returns the
next point in the sequence and updates the Imsls_faure structure. The final call to
imsls_faure_sequence_free frees data items, stored in the structure, that
were allocated by imsls_faure_sequence_init.

#include "stdio.h"
#include "imsl.h"

void main()
{
 Imsl_faure *state;
 float *x;
 int ndim = 3;
 int k;

 state = imsl_faure_sequence_init(ndim, 0);

 for (k = 0; k < 5; k++) {
 x = imsl_f_faure_next_point(state, 0);

860 � faure_next_point IMSL C/Stat/Library

 printf("%10.3f %10.3f %10.3f\n", x[0], x[1], x[2]);
 free(x);
 }

 imsl_faure_sequence_free(state);
}

Output

 0.334 0.493 0.064
 0.667 0.826 0.397
 0.778 0.270 0.175
 0.111 0.604 0.509
 0.445 0.937 0.842

Chapter 13: Printing Functions Routines � 861

 Chapter 13: Printing Functions

Routines
Print a matrix or vector..write_matrix 861
Set the page width and length.. page 867
Set the printing options ...write_options 868

write_matrix
Prints a rectangular matrix (or vector) stored in contiguous memory locations.

Synopsis
#include <imsls.h>
void imsls_f_write_matrix (char *title, int nra, int nca, float a[],

…, 0)

For int a[], use imsls_i_write_matrix.
For double a[], use imsls_d_write_matrix.

Required Arguments

char *title (Input)
Matrix title. Use \n within a title to create a new line. Long titles are
automatically wrapped.

int nra (Input)
Number of rows in the matrix.

int nca (Input)
Number of columns in the matrix.

float a[] (Input)
Array of size nra � nca containing the matrix to be printed.

862 � write_matrix IMSL C/Stat/Library

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_write_matrix (char *title, int nra, int nca, float a[],

IMSLS_TRANSPOSE,
IMSLS_A_COL_DIM, int a_col_dim,
IMSLS_PRINT_ALL, or
IMSLS_PRINT_LOWER, or
IMSLS_PRINT_UPPER, or
IMSLS_PRINT_LOWER_NO_DIAG, or
IMSLS_PRINT_UPPER_NO_DIAG,
IMSLS_WRITE_FORMAT, char *fmt,
IMSLS_NO_ROW_LABELS, or
IMSLS_ROW_NUMBER, or
IMSLS_ROW_NUMBER_ZERO, or
IMSLS_ROW_LABELS, char *rlabel[],
IMSLS_NO_COL_LABELS, or
IMSLS_COL_NUMBER, or
IMSLS_COL_NUMBER_ZERO, or
IMSLS_COL_LABELS, char *clabel[],
0)

Optional Arguments
IMSLS_TRANSPOSE

Print aT.

IMSLS_A_COL_DIM, int a_col_dim (Input)
Column dimension of a.
Default: a_col_dim = nca

IMSLS_PRINT_ALL, or
IMSLS_PRINT_LOWER, or
IMSLS_PRINT_UPPER, or
IMSLS_PRINT_LOWER_NO_DIAG, or
IMSLS_PRINT_UPPER_NO_DIAG

Exactly one of these optional arguments can be specified to
indicate that either a triangular part of the matrix or the entire
matrix is to be printed. If omitted, the entire matrix is printed.

Keyword Action
IMSLS_PRINT_ALL Entire matrix is printed (the

default).
IMSLS_PRINT_LOWER Lower triangle of the matrix is

printed, including the diagonal.
IMSLS_PRINT_UPPER Upper triangle of the matrix is

printed, including the diagonal.

Chapter 13: Printing Functions write_matrix � 863

Keyword Action
IMSLS_PRINT_LOWER_NO_DIAG Lower triangle of the matrix is

printed, without the diagonal.
IMSLS_PRINT_UPPER_NO_DIAG Upper triangle of the matrix is

printed, without the diagonal.

IMSLS_WRITE_FORMAT, char *fmt (Input)
Character string containing a list of C conversion specifications (formats)
to be used when printing the matrix. Any list of C conversion
specifications suitable for the data type can be given. For example,
fmt = "%10.3f" specifies the conversion character f for the entire
matrix. For the conversion character f, the matrix must be of type float or
double. Alternatively,fmt = "%10.3e%10.3e%10.3f%10.3f%10.3f"
specifies the conversion character e for columns 1 and 2 and the
conversion character f for columns 3, 4, and 5. If the end of fmt is
encountered and if some columns of the matrix remain, format control
continues with the first conversion specification in fmt.

Aside from restarting the format from the beginning, other exceptions to
the usual C formatting rules are as follows:

1. Characters not associated with a conversion specification are not
allowed. For example, in the format fmt = "1%d2%d", the characters
1 and 2 are not allowed and result in an error.

2. A conversion character d can be used for floating-point values (matrices
of type float or double). The integer part of the floating-point value is
printed.

3. For printing numbers whose magnitudes are unknown, the conversion
character g is useful; however, the decimal points will generally not be
aligned when printing a column of numbers. The w (or W) conversion
character is a special conversion character used by this function to select
a conversion specification so that the decimal points will be aligned. The
conversion specification ending with w is specified as "%n.dw". Here, n
is the field width and d is the number of significant digits generally
printed. Valid values for n are 3, 4, …, 40. Valid values for d are 1, 2,
…, n � 2. If fmt specifies one conversion specification ending with w,
all elements of a are examined to determine one conversion specification
for printing. If fmt specifies more than one conversion specification,
separate conversion specifications are generated for each conversion
specification ending with w. Set fmt = "10.4w" for a single conversion
specification selected automatically with field width 10 and with four
significant digits.

IMSLS_NO_ROW_LABELS, or
IMSLS_ROW_NUMBER, or
IMSLS_ROW_NUMBER_ZERO, or

864 � write_matrix IMSL C/Stat/Library

IMSLS_ROW_LABELS, char *rlabel[] (Input)
If IMSLS_ROW_LABELS is specified, rlabel is a vector of length nra
containing pointers to the character strings comprising the row labels.
Here, nra is the number of rows in the printed matrix. Use \n within a
label to create a new line. Long labels are automatically wrapped. If no
row labels are desired, use the IMSLS_NO_ROW_LABELS optional
argument. If the numbers 1, 2, …, nra are desired, use the
IMSLS_ROW_NUMBER optional argument. If the numbers 0, 1, 2, …,
nra � 1 are desired, use the IMSLS_ROW_NUMBER_ZERO optional
argument. If none of these optional arguments is used, the numbers 1, 2,
3, …, nra are used for the row labels by default whenever nra > 1.
If nra = 1, the default is no row labels.

IMSLS_NO_COL_LABELS, or
IMSLS_COL_NUMBER, or
IMSLS_COL_NUMBER_ZERO, or
IMSLS_COL_LABELS, char *clabel[] (Input)

If IMSLS_COL_LABELS is specified, clabel is a vector of length
nca + 1 containing pointers to the character strings comprising the
column headings. The heading for the row labels is clabel [0];
clabel [i], i = 1, …, nca, is the heading for the i-th column. Use \n
within a label to create a new line. Long labels are automatically
wrapped. If no column labels are desired, use the
IMSLS_NO_COL_LABELS optional argument. If the numbers 1, 2, …,
nca, are desired, use the IMSLS_COL_NUMBER optional argument. If the
numbers 0, 1, …, nca � 1 are desired, use the
IMSLS_COL_NUMBER_ZERO optional argument. If none of these optional
arguments is used, the numbers 1, 2, 3, …, nca are used for the column
labels by default whenever nca > 1. If nca = 1, the default is no column
labels.

Description
Function imsls_write_matrix prints a real rectangular matrix (stored in a)
with optional row and column labels (specified by rlabel and clabel,
respectively, regardless of whether a or aT is printed). An optional format, fmt,
can be used to specify a conversion specification for each column of the matrix.

In addition, the write matrix functions can restrict printing to the elements of the
upper or lower triangles of a matrix by using the IMSLS_PRINT_UPPER,
IMSLS_PRINT_LOWER, IMSLS_PRINT_UPPER_NO_DIAG, and
IMSLS_PRINT_LOWER_NO_DIAG options. Generally, these options are used with
symmetric matrices, but this is not required. Vectors can be printed by specifying
a row or column dimension of 1.

Output is written to the file specified by the function imsls_output_file
(Chapter 14, “Utilities”). The default output file is standard output (corresponding
to the file pointer stdout). A page width of 78 characters is used. Page width
and page length can be reset by invoking function imsls_page (page 867).

Chapter 13: Printing Functions write_matrix � 865

Horizontal centering, the method for printing large matrices, paging, the method
for printing NaN (Not a Number), and whether or not a title is printed on each
page can be selected by invoking function imsls_write_options (page 868).

Examples

Example 1
This example is representative of the most common situation in which no optional
arguments are given.

#include <imsls.h>

#define NRA 3
#define NCA 4

main()
{
 int i, j;
 float a[NRA][NCA];

 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1+(j+1)*0.1);
 }

 }
 /* Write matrix */
 imsls_f_write_matrix ("matrix\na", NRA, NCA, (float*) a, 0);
}

Output

 matrix
 a
 1 2 3 4
1 1.1 1.2 1.3 1.4
2 2.1 2.2 2.3 2.4
3 3.1 3.2 3.3 3.4

Example 2

In this example, some of the optional arguments available in the
imsls_write_matrix functions are demonstrated.

#include <imsls.h>

#define NRA 3
#define NCA 4

main()
{
 int i, j;
 float a[NRA][NCA];
 char *fmt = "%10.6W";
 char *rlabel[] = {"row 1", "row 2", "row 3"};

866 � write_matrix IMSL C/Stat/Library

 char *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};

 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1+(j+1)*0.1);
 }
 }
 /* Write matrix */
 imsls_f_write_matrix ("matrix\na", NRA, NCA, (float *)a,
 IMSLS_WRITE_FORMAT, fmt,
 IMSLS_ROW_LABELS, rlabel,
 IMSLS_COL_LABELS, clabel,
 IMSLS_PRINT_UPPER_NO_DIAG,
 0);
}

Output

 matrix
 a
 col 2 col 3 col 4
row 1 1.2 1.3 1.4
row 2 2.3 2.4
row 3 3.4

Example 3

In this example, a row vector of length four is printed.

#include <imsls.h>

#define NRA 1
#define NCA 4

main()
{
 int i;
 float a[NCA];
 char *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};

 for (i = 0; i < NCA; i++) {
 a[i] = i + 1;
 }
 /* Write matrix */
 imsls_f_write_matrix ("matrix\na", NRA, NCA, a,
 IMSLS_COL_LABELS, clabel,
 0);
}

Output

 matrix
 a
 col 1 col 2 col 3 col 4
 1 2 3 4

Chapter 13: Printing Functions page � 867

page
Sets or retrieves the page width or length.

Synopsis
#include <imsls.h>
void imsls_page (Imsls_page_options option, int *page_attribute)

Required Arguments

Imsls_page_options option (Input)
Option giving which page attribute is to be set or retrieved. The possible
values are shown in the table below.

Keyword Description
IMSLS_SET_PAGE_WIDTH Sets the page width.
IMSLS_GET_PAGE_WIDTH Retrieves the page width.
IMSLS_SET_PAGE_LENGTH Sets the page length.
IMSLS_GET_PAGE_LENGTH Retrieves the page length.

int *page_attribute (Input, if the attribute is set; Output, otherwise.)
The value of the page attribute to be set or retrieved. The page width is
the number of characters per line of output (default 78), and the page
length is the number of lines of output per page (default 60). Ten or
more characters per line and 10 or more lines per page are required.

Example
The following example illustrates the use of imsls_page to set the page width to
40 characters. Function imsls_f_write_matrix is then used to print a
3 � 4 matrix A, where aij = i + j/10.

#include <imsls.h>

#define NRA 3
#define NCA 4
main()
{
 int i, j, page_attribute;
 float a[NRA][NCA];

 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1) + (j+1)/10.0;
 }
 }
 page_attribute = 40;
 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_attribute);

868 � write_options IMSL C/Stat/Library

 imsls_f_write_matrix("a", NRA, NCA, (float *)a, 0);
}

Output
 a
 1 2 3
1 1.1 1.2 1.3
2 2.1 2.2 2.3
3 3.1 3.2 3.3

 4
1 1.4
2 2.4
3 3.4

write_options
Sets or retrieves an option for printing a matrix.

Synopsis
#include <imsls.h>
void imsls_write_options (Imsls_write_options option,

int *option_value)

Required Arguments

Imsls_write_options option (Input)
Option giving the type of the printing attribute to set or retrieve.

Keyword for Setting Keyword for Retrieving Attribute Description
IMSLS_SET_DEFAULTS uses the default settings

for all parameters
IMSLS_SET_CENTERING IMSLS_GET_CENTERING horizontal centering
IMSLS_SET_ROW_WRAP IMSLS_GET_ROW_WRAP row wrapping
IMSLS_SET_PAGING IMSLS_GET_PAGING paging
IMSLS_SET_NAN_CHAR IMSLS_GET_NAN_CHAR method for printing NaN
IMSLS_SET_TITLE_PAGE IMSLS_GET_TITLE_PAGE whether or not titles

appear on each page
IMSLS_SET_FORMAT IMSLS_GET_FORMAT default format for real

and complex numbers

int *option_value (Input, if option is to be set; Output, otherwise)
Value of the option attribute selected by option. The values to be used
when setting attributes are described in a table in the description section.

Chapter 13: Printing Functions write_options � 869

Description
Function imsls_write_options allows the user to set or retrieve an option for
printing a matrix. Options controlled by imsls_write_options are horizontal
centering, method for printing large matrices, paging, method for printing NaN,
method for printing titles, and the default format for real and complex numbers.
(NaN can be retrieved by functions imsls_f_machine and imsls_d_machine
(Chapter 14, “Utilities”).

The following values can be used for the attributes:

Keyword Value Meaning

CENTERING 0
1

Matrix is left justified.
Matrix is centered.

ROW_WRAP 0

m

Complete row is printed before the next
row is printed. Wrapping is used if
necessary.
Here, m is a positive integer. Let n1 be
the maximum number of columns that fit
across the page, as determined by the
widths in the conversion specifications
starting with column 1. First, columns 1
through n1 are printed for rows 1 through
m. Let n2 be the maximum number of
columns that fit across the page, starting
with column n1+1. Second, columns n1+1
through n1+n2 are printed for rows 1
through m. This continues until the last
columns are printed for rows 1 through
m. Printing continues in this fashion for
the next m rows, etc.

870 � write_options IMSL C/Stat/Library

Keyword Value Meaning

PAGING �2
�1

0

k

No paging occurs.
Paging is on. Every invocation of an
function imsls_write_matrix begins
on a new page, and paging occurs within
each invocation as is needed.
Paging is on. The first invocation of an
imsls_f_write_f_matrix function
begins on a new page, and subsequent
paging occurs as is needed. Paging
occurs in the second and all subsequent
calls to an imsls_f_write_matrix
function only as needed.
Turn paging on and set the number of
lines printed on the current page to k
lines. If k is greater than or equal to the
page length, then the first invocation of
an imsls_write_matrix function
begins on a new page. In any case,
subsequent paging occurs as is needed.

NAN_CHAR 0
1

. is printed for NaN.
A blank field is printed for NaN.

TITLE_PAGE 0
1

Title appears only on first page.
Title appears on the first page and all
continuation pages.

FORMAT 0
1
2

Format is "%10.4x".
Format is "%12.6w".
Format is "%22.5e".

The w conversion character used by the FORMAT option is a special conversion
character that can be used to automatically select a pretty C conversion
specification ending in either e, f, or d. The conversion specification ending with
w is specified as "%n.dw". Here, n is the field width, and d is the number of
significant digits generally printed.

Function imsls_write_options can be invoked repeatedly before using a
function imsls_f_write_matrix to print a matrix. The matrix printing
functions retrieve the values set by imsls_write_options to determine the
printing options. It is not necessary to call imsls_write_options if a default

Chapter 13: Printing Functions write_options � 871

value of a printing option is desired. The defaults are as follows:

Keyword Default Value Meaning

CENTERING 0 left justified
ROW_WRAP 1000 lines before wrapping
PAGING �2 no paging
NAN_CHAR 0
TITLE_PAGE 0 title appears only on the

first page
FORMAT 0 %10.4w

Example
The following example illustrates the effect of imsls_write_options when
printing a 3 � 4 real matrix A with function imsls_f_write_matrix, where
aij = i + j/10. The first call to imsls_f_write_options sets horizontal
centering so that the matrix is printed centered horizontally on the page. In the
next invocation of imsls_f_write_matrix, the left-justification option has
been set by function imsls_write_options so the matrix is left justified when
printed.

#include <imsls.h>

#define NRA 4
#define NCA 3

main()
{
 int i, j, option_value;
 float a[NRA][NCA];

 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1) + (j+1)/10.0;
 }
 }
 /* Activate centering option */
 option_value = 1;
 imsls_write_options (IMSLS_SET_CENTERING, &option_value);
 /* Write a matrix */
 imsls_f_write_matrix ("a", NRA, NCA, (float*) a, 0);
 /* Activate left justification */
 option_value = 0;
 imsls_write_options (IMSLS_SET_CENTERING, &option_value);
 imsls_f_write_matrix ("a", NRA, NCA, (float*) a, 0);
}

872 � write_options IMSL C/Stat/Library

Output

 a
 1 2 3
 1 1.1 1.2 1.3
 2 2.1 2.2 2.3
 3 3.1 3.2 3.3
 4 4.1 4.2 4.3

 a
 1 2 3
1 1.1 1.2 1.3
2 2.1 2.2 2.3
3 3.1 3.2 3.3
4 4.1 4.2 4.3

Chapter 14: Utilities Routines � 873

Chapter 14: Utilities

Routines
14.1 Set Output Files

Set output files .. output_file 874
Get library version and license number version 878

14.2 Error Handling
Error message options..error_options 879
Get error code...error_code 885

14.3 Constants
Integer machine constants...................................machine (integer) 886
Float machine constants .. machine (float) 888
Common data sets... data_sets 890

14.4 Mathematical Support
Matrix-vector, matrix-matrix,
vector-vector products ...mat_mul_rect 893
Rearrange elements of vectorpermute_vector 897
Interchange rows and columns of matricespermute_matrix 898
Evaluate the binomial coeficient binomial_coefficient 900
Evaluate the complete beta function... beta 901
Evaluate the real incomplete beta functionbeta_incomplete 903
Evaluate the log of the real beta function........................... log_beta 904
Evaluate the real gamma functiongamma 905
Evaluate the incomplete gamma function........ gamma_incomplete 907
Evaluate the logarithm of the absolute value
of the gamma function .. log_gamma 909
Return the number of CPU seconds used ctime 911

874 � output_file IMSL C/Stat/Library

output_file
Sets the output file or the error message output file.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_output_file (

IMSLS_SET_OUTPUT_FILE, FILE *ofile,
IMSLS_GET_OUTPUT_FILE, FILE **pofile,
IMSLS_SET_ERROR_FILE, FILE *efile,
IMSLS_GET_ERROR_FILE, FILE **pefile,
0)

Optional Arguments
IMSLS_SET_OUTPUT_FILE, FILE *ofile (Input)

Sets the output file to ofile.
Default: ofile = stdout

IMSLS_GET_OUTPUT_FILE, FILE **pofile (Output)
Sets the FILE pointed to by pofile to the current output file.

IMSLS_SET_ERROR_FILE, FILE *efile (Input)
Sets the error message output file to efile.
Default: efile = stderr

IMSLS_GET_ERROR_FILE, FILE **pefile (Output)
Sets the FILE pointed to by pefile to the error message output file.

Description
This function allows the file used for printing by IMSL functions to be changed.

If multiple threads are used then default settings are valid for each thread. When
using threads it is possible to set different output files for each thread by calling
imsls_output_file from within each thread. See Example 2 for more details.

Examples

Example 1
This example opens the file myfile and sets the output file to this new file.
Function imsls_f_write_matrix then writes to this file.

#include <stdio.h>
#include <imsls.h>

main()
{
 FILE *ofile;
 float x[] = {3.0, 2.0, 1.0};

Chapter 14: Utilities output_file � 875

 imsls_f_write_matrix ("x (default file)", 1, 3, x, 0);

 ofile = fopen("myfile", "w");
 imsls_output_file(IMSLS_SET_OUTPUT_FILE, ofile,
 0);
 imsls_f_write_matrix ("x (myfile)", 1, 3, x, 0);
}

Output

 x (default file)
 1 2 3
 3 2 1

File myfile
x (myfile)
1 2 3
3 2 1

Example 2
The following example illustrates how to direct output from IMSL routines that
run in separate threads to different files. First, two threads are created, each
calling a different IMSL function, then the results are printed by calling
imsls_f_write_matrix from within each thread. Note that
imsls_output_file is called from within each thread to change the default
output file.

#include <pthread.h>

#include <stdio.h>

#include "imsls.h"

void *ex1(void* arg);

void *ex2(void* arg);

void main()

{

 pthread_t thread1;

 pthread_t thread2;

 /* Disable IMSL signal trapping. */

 imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0);

 /* Create two threads. */

876 � output_file IMSL C/Stat/Library

 if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0)

 perror("pthread_create"), exit(1);

 if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0)

 perror("pthread_create"), exit(1);

 /* Wait for threads to finish. */

 if (pthread_join(thread1, NULL) != 0)

 perror("pthread_join"),exit(1);

 if (pthread_join(thread2, NULL) != 0)

 perror("pthread_join"),exit(1);

}

void *ex1(void* arg)

{

 float *rand_nums = NULL;

 FILE *file_ptr;

 /* Open a file to write the result in. */

 file_ptr = fopen("ex1.out", "w");

 /* Set the output file for this thread. */

 imsls_output_file(IMSLS_SET_OUTPUT_FILE, file_ptr, 0);

 /* Compute 5 random numbers. */

 imsls_random_seed_set(12345);

 rand_nums = imsls_f_random_uniform(5, 0);

 /* Output random numbers. */

 imsls_f_write_matrix("Random Numbers", 5, 1, rand_nums, 0);

 if (rand_nums) free(rand_nums);

 fclose(file_ptr);

}

void *ex2(void* arg)

{

 int n_intervals=10;

 int n_observations=30;

Chapter 14: Utilities output_file � 877

 float *table;

 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,

 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,

 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,

 1.89, 0.90, 2.05};

 FILE *file_ptr;

 /* Open a file to write the result in. */

 file_ptr = fopen("ex2.out", "w");

 /* Set the output file for this thread. */

 imsls_output_file(IMSLS_SET_OUTPUT_FILE, file_ptr, 0);

 table = imsls_f_table_oneway (n_observations, x, n_intervals, 0);

 imsls_f_write_matrix("counts", 1, n_intervals, table, 0);

 if (table) free(table);

 fclose(file_ptr);

}

ex1.out
Random Numbers

 1 0.4919

 2 0.3909

 3 0.2645

 4 0.1814

 5 0.7546

ex2.out
 counts

 1 2 3 4 5 6

 4 8 5 5 3 1

 7 8 9 10

 3 0 0 1

878 � version IMSL C/Stat/Library

version
Returns information describing the version of the library, serial number, operating
system, and compiler.

Synopsis

#include <imsls.h>
char *imsls_version (Imsls_keyword code)

Required Arguments

Imsls_keyword code (Input)
Index indicating which value is to be returned. It must be
IMSLS_LIBRARY_VERSION, IMSLS_OS_VERSION,
IMSLS_COMPILER_VERSION, or IMSLS_LICENSE_NUMBER.

Return Value
The requested value is returned. If code is out of range, then NULL is returned.
Use free to release the returned string.

Description
Function imsls_version returns information describing the version of the
library, the version of the operating system under which it was compiled, the
compiler used, and the IMSL serial number.

Example
This example prints all the values returned by imsls_version on a particular
machine. The output is omitted because the results are system dependent.

#include <imsls.h>

main()
{
 char *library_version, *os_version;
 char *compiler_version, *license_number;

 library_version = imsls_version(IMSLS_LIBRARY_VERSION);
 os_version = imsls_version(IMSLS_OS_VERSION);
 compiler_version = imsls_version(IMSLS_COMPILER_VERSION);
 license_number = imsls_version(IMSLS_LICENSE_NUMBER);

 printf("Library version = %s\n", library_version);
 printf("OS version = %s\n", os_version);
 printf("Compiler version = %s\n", compiler_version);
 printf("Serial number = %s\n", license_number);
}

Chapter 14: Utilities error_options � 879

error_options
Sets various error handling options.

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_error_options (
IMSLS_SET_PRINT, Imsls_error type, int setting,
IMSLS_SET_STOP, Imsls_error type, int setting,
IMSLS_SET_TRACEBACK, Imsls_error type, int setting,
IMSLS_FULL_TRACEBACK, int setting,
IMSLS_GET_PRINT, Imsls_error type, int *psetting,
IMSLS_GET_STOP, Imsls_error type, int *psetting,
IMSLS_GET_TRACEBACK, Imsls_error type, int *psetting,
IMSLS_SET_ERROR_FILE, FILE *file,
IMSLS_GET_ERROR_FILE, FILE **pfile,
IMSLS_ERROR_MSG_PATH, char *path,
IMSLS_ERROR_MSG_NAME, char *name,
IMSLS_ERROR_PRINT_PROC, Imsls_error_print_proc print_proc,
IMSLS_SET_SIGNAL_TRAPPING, int setting,
 0)

Optional Arguments
IMSLS_SET_PRINT, Imsls_error type, int setting (Input)

Printing of type type error messages is turned off if setting is 0;
otherwise, printing is turned on.
Default: Printing turned on for IMSLS_WARNING, IMSLS_FATAL,
IMSLS_TERMINAL, IMSLS_FATAL_IMMEDIATE, and
IMSLS_WARNING_IMMEDIATE messages

IMSLS_SET_STOP, Imsls_error type, int setting (Input)
Stopping on type type error messages is turned off if setting is 0;
otherwise, stopping is turned on.
Default: Stopping turned on for IMSLS_FATAL and IMSLS_TERMINAL
and IMSLS_FATAL_IMMEDIATE messages

IMSLS_SET_TRACEBACK, Imsls_error type, int setting (Input)
Printing of a traceback on type type error messages is turned off if
setting is 0; otherwise, printing of the traceback turned on.
Default: Traceback turned off for all message types

IMSLS_FULL_TRACEBACK, int setting (Input)
Only documented functions are listed in the traceback if setting is 0;
otherwise, internal function names also are listed.
Default: Full traceback turned off

880 � error_options IMSL C/Stat/Library

IMSLS_GET_PRINT, Imsls_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for
printing of type type error messages.

IMSLS_GET_STOP, Imsls_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for
stopping on type type error messages.

IMSLS_GET_TRACEBACK, Imsls_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for
printing of a traceback for type type error messages.

IMSLS_SET_ERROR_FILE, FILE *file (Input)
Sets the error output file.
Default: file = stderr

IMSLS_GET_ERROR_FILE, FILE **pfile (Output)
Sets the FILE * pointed to by pfile to the error output file.

IMSLS_ERROR_MSG_PATH, char *path (Input)
Sets the error message file path. On UNIX systems, this is a colon-
separated list of directories to be searched for the file containing the
error messages.
Default: system dependent

IMSLS_ERROR_MSG_NAME, char *name (Input)
Sets the name of the file containing the error messages.
Default: file = "imsls_e.bin"

IMSLS_ERROR_PRINT_PROC, Imsls_error_print_proc print_proc (Input)
Sets the error printing function. The procedure print_proc has the
form void print_proc (Imsls_error type, long code,
char *function_name, char *message).

In this case, type is the error message type number (IMSLS_FATAL,
etc.), code is the error message code number
(IMSLS_MAJOR_VIOLATION, etc.), function_name is the name of the
function setting the error, and message is the error message to be printed.
If print_proc is NULL, then the default error printing function is used.

IMSLS_SET_SIGNAL_TRAPPING, int setting (Input)
C/Stat/Library will use its own signal handler if setting is 1; otherwise
the C/Stat/Library signal handler is not used. If C/Stat/Library is called
from a multi-threaded application, signal handling by C/Stat/Library
must be turned off. See Example 3 for details.

 Default: setting = 1

Return Value
The return value is void.

Chapter 14: Utilities error_options � 881

Description
This function allows the error handling system to be customized.

If multiple threads are used then default settings are valid for each thread but can
be altered for each individual thread. When using threads it is necessary to set
options (excluding IMSLS_SET_SIGNAL_TRAPPING) for each thread by calling
imsls_error_options from within each thread.

The IMSL signal-trapping mechanism must be disabled when multiple threads are
used. The IMSL signal-trapping mechanism can be disabled by making the
following call before any threads are created:

imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0);

 See Example 3 and Example 4 for multithreaded examples.

Examples

Example 1
In this example, the IMSLS_TERMINAL print setting is retrieved. Next, stopping
on IMSLS_TERMINAL errors is turned off, output to standard output is redirected,
and an error is deliberately caused by calling imsls_error_options with an
illegal value.

#include <imsls.h>
#include <stdio.h>

main()
{
 int setting;
 /* Turn off stopping on IMSLS_TERMINAL */
 /* error messages and write error */
 /* messages to standard output */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
 IMSLS_SET_ERROR_FILE, stdout,
 0);
 /* Call imsls_error_options() with */
 /* an illegal value */
 imsls_error_options(-1);
 /* Get setting for IMSLS_TERMINAL */
 imsls_error_options(IMSLS_GET_PRINT, IMSLS_TERMINAL, &setting,
 0);
 printf("IMSLS_TERMINAL error print setting = %d\n", setting);
}

Output
*** TERMINAL Error from imsls_error_options. There is an error with
*** argument number 1. This may be caused by an incorrect number of
*** values following a previous optional argument name.

IMSLS_TERMINAL error print setting = 1

882 � error_options IMSL C/Stat/Library

Example 2
In this example, IMSL’s error printing function has been substituted for the
standard function. Only the first four lines are printed below.

#include <imsls.h>
#include <stdio.h>

void print_proc(Imsls_error, long, char*, char*);

main()
{
 /* Turn off tracebacks on IMSLS_TERMINAL */
 /* error messages and use a custom */
 /* print function */
 imsls_error_options(IMSLS_ERROR_PRINT_PROC, print_proc,
 0);
 /* Call imsls_error_options() with an */
 /* illegal value */
 imsls_error_options(-1);
}

void print_proc(Imsls_error type, long code, char *function_name,
 char *message)
{
 printf("Error message type %d\n", type);
 printf("Error code %d\n", code);
 printf("From function %s\n", function_name);
 printf("%s\n", message);
}

Output

Error message type 5
Error code 103
From function imsls_error_options
There is an error with argument number 1. This may be caused by an
incorrect number of values following a previous optional argument name.

Example 3
In this example, two threads are created and error options is called within each
thread to set the error handling options slightly different for each thread. Since
we expect to generate terminal errors in each thread, we must turn off stopping on
terminal errors for each thread. Also notice that imsls_error_options is
called from main to disable the IMSL signal-trapping mechanism.
See Example 4 for a similar example, using WIN32 threads. Note since multiple
threads are executing, the order of the errors output may differ on some systems.

#include <pthread.h>
#include <stdio.h>
#include "imsls.h"

void *ex1(void* arg);
void *ex2(void* arg);
void main()

Chapter 14: Utilities error_options � 883

{
 pthread_t thread1;
 pthread_t thread2;

 /* Disable IMSL signal trapping. */
 imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0);

 /* Create two threads. */
 if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0)
 perror("pthread_create"), exit(1);
 if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0)
 perror("pthread_create"), exit(1);

 /* Wait for threads to finish. */
 if (pthread_join(thread1, NULL) != 0)
 perror("pthread_join"),exit(1);
 if (pthread_join(thread2, NULL) != 0)
 perror("pthread_join"),exit(1);

}

void *ex1(void* arg)
{
 float res;
 /*
 * Call imsls_error_options to set the error handling
 * options for this thread.
 */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 0);
 res = imsls_f_beta(-1.0, .5);
}
void *ex2(void* arg)
{
 float res;
 /*
 * Call imsls_error_options to set the error handling
 * options for this thread. Notice that tracebacks are
 * turned on for IMSLS_TERMINAL errors.
 */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
 IMSLS_SET_TRACEBACK, IMSLS_TERMINAL, 1, 0);
 res = imsls_f_gamma(-1.0);
}

Output

*** TERMINAL Error from imsls_f_beta. Both "x" = -1.000000e+00 and "y" =
*** 5.000000e-01 must be greater than zero.

*** TERMINAL Error from imsls_f_gamma. The argument for the function can
*** not be a negative integer. Argument "x" = -1.000000e+00.

Here is a traceback of the calls in reverse order.
 Error Type Error Code Routine
 ---------- ---------- -------
 IMSLS_TERMINAL IMSLS_NEGATIVE_INTEGER imsls_f_gamma

884 � error_options IMSL C/Stat/Library

Example 4
In this example the WIN32 API is used to demonstrate the same functionality as
shown in Example 3 above. Note since multiple threads are executing, the order
of the errors output may differ on some systems.

#include <windows.h>
#include <stdio.h>
#include "imsls.h"

DWORD WINAPI ex1(void *arg);
DWORD WINAPI ex2(void *arg);

int main(int argc, char* argv[])
{
 HANDLE thread[2];

 imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0);

 thread[0] = CreateThread(NULL, 0, ex1, NULL, 0, NULL);
 thread[1] = CreateThread(NULL, 0, ex2, NULL, 0, NULL);

 WaitForMultipleObjects(2, thread, TRUE, INFINITE);

}
DWORD WINAPI ex1(void *arg)
{
 float res;
 /*
 * Call imsls_error_options to set the error handling
 * options for this thread.
 */
imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
 0);
 res = imsls_f_beta(-1.0, .5);
 return(0);
}
DWORD WINAPI ex2(void *arg)
{
 float res;
 /*
 * Call imsls_error_options to set the error handling
 * options for this thread. Notice that tracebacks are
 * turned on for IMSLS_TERMINAL errors.
 */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
 IMSLS_SET_TRACEBACK, IMSLS_TERMINAL, 1,
 0);
 res = imsls_f_gamma(-1.0);
 return(0);
}

Chapter 14: Utilities error_code � 885

Output

*** TERMINAL Error from imsls_f_beta. Both "x" = -1.000000e+000 and "y" =
*** 5.000000e-001 must be greater than zero.

*** TERMINAL Error from imsls_f_gamma. The argument for the function can
*** not be a negative integer. Argument "x" = -1.000000e+000.

Here is a traceback of the calls in reverse order.
 Error Type Error Code Routine
 ---------- ---------- -------
 IMSLS_TERMINAL IMSLS_NEGATIVE_INTEGER imsls_f_gamma USER

error_code
Gets the code corresponding to the error message from the last function called.

Synopsis

#include <imsls.h>
long imsls_error_code ()

Return Value
This function returns the error message code from the last function called. The
include file imsls.h defines a name for each error code.

Example
In this example, stopping on IMSLS_TERMINAL error messages is turned off and
an error is then generated by calling function imsls_error_options with an
illegal value for IMSLS_SET_PRINT. The error message code number is then
retrieved and printed. In imsls.h, IMSLS_INTEGER_OUT_OF_RANGE is defined to
be 132.

#include <imsls.h>
#include <stdio.h>

main()
{
 long code;
 /* Turn off stopping IMSLS_TERMINAL */
 /* messages and print error messages */
 /* on standard output */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
 IMSLS_SET_ERROR_FILE, stdout,
 0);
 /* Call imsls_error_options() with */
 /* an illegal value */
 imsls_error_options(IMSLS_SET_PRINT, 100, 0,
 0);
 /* Get the error message code */
 code = imsls_error_code();

886 � machine (integer) IMSL C/Stat/Library

 printf("error code = %d\n", code);
}

Output
*** TERMINAL error from imsls_error_options. "type" must be between 1 and
*** 5, but "type" = 100.

error code = 132

machine (integer)
Returns integer information describing the computer’s arithmetic.

Synopsis

#include <imsls.h>
int imsls_i_machine (int n)

Required Arguments

int n (Input)
Index indicating which value is to be returned. It must be between 0 and
12.

Return Value
The requested value is returned. If n is out of range, NaN is returned.

Description
Function imsls_i_machine returns information describing the computer’s
arithmetic. This can be used to make programs machine independent.

imsls_i_machine(0) = Number of bits per byte

Assume that integers are represented in M-digit, base-A form as

0

M
k

k
k

x A�

�

�

where � is the sign and 0 � xk < A for k = 0, �, M. Then,

n Definition
0 C, bits per character
1 A, the base
2 Ms, the number of base-A digits in a short int

3 1, the largest sMA short int�

Chapter 14: Utilities machine (integer) � 887

n Definition
4 Ml, the number of base-A digits in a long int

5 1, the largest lMA l� ong int

Assume that floating-point numbers are represented in N-digit, base B form as

1

N
E k

k
k

B x B�
�

�

�

where � is the sign and 0 � xk < B for k = 1, �, N and E$ � E � E". Then

n Definition
6 B, the base
7 Nf, the number of base-B digits in float

8 min , the smallest exponent
f

E float

9 max , the largest exponent
f

E float

10 Nd, the number of base-B digits in double

11 min , the largest
d

E long int

12 max , the number of base- digits in
d

E B double

Example
In this example, all the values returned by imsls_i_machine on a machine with
IEEE (Institute for Electrical and Electronics Engineer) arithmetic are printed.

#include <imsls.h>

main()
{
 int n, ans;

 for (n = 0; n <= 12; n++) {
 ans = imsls_i_machine(n);
 printf("imsls_i_machine(%d) = %d\n", n, ans);
 }
}

Output

imsls_i_machine(0) = 8
imsls_i_machine(1) = 2
imsls_i_machine(2) = 15
imsls_i_machine(3) = 32767
imsls_i_machine(4) = 31
imsls_i_machine(5) = 2147483647
imsls_i_machine(6) = 2
imsls_i_machine(7) = 24

888 � machine (float) IMSL C/Stat/Library

imsls_i_machine(8) = -125
imsls_i_machine(9) = 128
imsls_i_machine(10) = 53
imsls_i_machine(11) = -1021
imsls_i_machine(12) = 1024

machine (float)
Returns information describing the computer’s floating-point arithmetic.

Synopsis

#include <imsls.h>
float imsls_f_machine (int n)

The type double function is imsls_d_machine.

Required Arguments

int n (Input)
Index indicating which value is to be returned. The index must be
between 1 and 8.

Return Value
The requested value is returned. If n is out of range, NaN is returned.

Description
Function imsls_f_machine returns information describing the computer’s
floating-point arithmetic. This can be used to make programs machine
independent. In addition, some of the functions are also important in setting
missing values.

Assume that float numbers are represented in Nf-digit, base B form as

1

fN
E k

k
k

B x B�
�

�

�

where � is the sign; 0 � xk < B for k = 1, 2, �, Nf; and

min maxf f
E E E� �

Note that B = imsls_i_machine(6); Nf = imsls_i_machine(7);

min (8)
f

E � imsls_i_machine

and

max (9)
f

E � imsls_i_machine

Chapter 14: Utilities machine (float) � 889

The ANSI/IEEE 754-1985 standard for binary arithmetic uses NaN as the result
of various otherwise illegal operations, such as computing 0/0. On computers that
do not support NaN, a value larger than imsls_d_machine(2) is returned for
imsls_f_machine(6). On computers that do not have a special representation
for infinity, imsls_f_machine(2) returns the same value as
imsls_f_machine(7).

Function imsls_f_machine is defined by the following table:

n Definition
1 min 1, the smallest positive numberfEB �

2 max (1), the largest numberf fE NB B�

�

3 , the smallest relative spacingfNB�

4 1 , the largest relative spacingfNB �

5 log10(B)

6 NaN
7 positive machine infinity
8 negative machine infinity

Function imsls_d_machine retrieves machine constants that define the
computer’s double arithmetic. Note that for double B = imsls_i_machine(6),
Nd = imsls_i_machine(10),

min (11)
d

E � imsls_i_machine

and

max (12)
d

E � imsls_i_machine

Missing values in functions are always indicated by NaN. This is
imsls_f_machine(6) in single precision and imsls_d_machine(6) in double
precision. There is no missing-value indicator for integers. Users will almost
always have to convert from their missing value indicators to NaN.

Example
In this example, all eight values returned by imsls_f_machine and by
imsls_d_machine on a machine with IEEE arithmetic are printed.

#include <imsls.h>

main()
{
 int n;
 float fans;
 double dans;

890 � data_sets IMSL C/Stat/Library

 for (n = 1; n <= 8; n++) {
 fans = imsls_f_machine(n);
 printf("imsls_f_machine(%d) = %g\n", n, fans);
 }

 for (n = 1; n <= 8; n++) {
 dans = imsls_d_machine(n);
 printf("imsls_d_machine(%d) = %g\n", n, dans);
 }
}

Output

imsls_f_machine(1) = 1.17549e-38
imsls_f_machine(2) = 3.40282e+38
imsls_f_machine(3) = 5.96046e-08
imsls_f_machine(4) = 1.19209e-07
imsls_f_machine(5) = 0.30103
imsls_f_machine(6) = NaN
imsls_f_machine(7) = Inf
imsls_f_machine(8) = -Inf
imsls_d_machine(1) = 2.22507e-308
imsls_d_machine(2) = 1.79769e+308
imsls_d_machine(3) = 1.11022e-16
imsls_d_machine(4) = 2.22045e-16
imsls_d_machine(5) = 0.30103
imsls_d_machine(6) = NaN
imsls_d_machine(7) = Inf
imsls_d_machine(8) = -Inf

data_sets
Retrieves a commonly analyzed data set.

Synopsis

#include <imsls.h>
float *imsls_f_data_sets (int data_set_choice, ..., 0)

The type double function is imsls_d_data_sets.

Required Arguments

int data_set_choice (Input)
Data set indicator. Set data_set_choice = 0 to print a description of
all nine data sets. In this case, any optional arguments are ignored.

data_set_choice N_observations n_variables Description of
Data Set

1 16 7 Longley
2 176 2 Wolfer sunspot
3 150 5 Fisher iris

Chapter 14: Utilities data_sets � 891

data_set_choice N_observations n_variables Description of
Data Set

4 144 1 Box and Jenkins
Series G

5 13 5 Draper and Smith
Appendix B

6 197 1 Box and Jenkins
Series A

7 296 2 Box and Jenkins
Series J

8 100 4 Robinson
Multichannel
Time Series

9 113 34 Afifi and Azen
Data Set A

Return Value
If data_set_choice � 0, the requested data set is returned. If
data_set_choice = 0 or an error occurs, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_data_sets (int data_set_choice,

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_N_OBSERVATIONS, int *n_observations,
IMSLS_N_VARIABLES, int *n_variables,
IMSLS_PRINT_NONE,
IMSLS_PRINT_BRIEF,
IMSLS_PRINT_ALL,
IMSLS_RETURN_USER, float x[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of user allocated space.

IMSLS_N_OBSERVATIONS, int *n_observations (Output)
Number of observations or rows in the output matrix.

IMSLS_N_VARIABLES, int *n_variables (Output)
Number of variables or columns in the output matrix.

IMSLS_PRINT_NONE
No printing is performed. This option is the default.

892 � data_sets IMSL C/Stat/Library

IMSLS_PRINT_BRIEF
Rows 1 through 10 of the data set are printed.

IMSLS_PRINT_ALL
All rows of the data set are printed.

IMSLS_RETURN_USER, float x[] (Output)
User-supplied array containing the data set.

Description
Function imsls_f_data_sets retrieves a standard data set frequently cited in
statistics text books or in this manual. The following tables gives the references
for each data set:

data_set_choice Reference
1 Longley (1967)
2 Anderson (1971, p.660)
3 Fisher (1936); Mardia et al. (1979, Table 1.2.2)
4 Box and Jenkins (1976, p. 531)
5 Draper and Smith (1981, pp. 629-630)
6 Box and Jenkins (1976, p. 525)
7 Box and Jenkins (1976, pp. 532-533)
8 Robinson (1976, p. 204)
9 Afifi and Azen (1979, pp. 16-22)

Example
In this example, imsls_f_data_sets is used to copy the Draper and Smith
(1981, Appendix B) data set into x.

#include <imsls.h>

main()
{
 float *x;

 x = imsls_f_data_sets (5, 0);

 imsls_f_write_matrix("Draper and Smith, Appendix B", 13, 5, x, 0);
}

Output

 Draper and Smith, Appendix B
 1 2 3 4 5
 1 7.0 26.0 6.0 60.0 78.5
 2 1.0 29.0 15.0 52.0 74.3
 3 11.0 56.0 8.0 20.0 104.3
 4 11.0 31.0 8.0 47.0 87.6

Chapter 14: Utilities mat_mul_rect � 893

 5 7.0 52.0 6.0 33.0 95.9
 6 11.0 55.0 9.0 22.0 109.2
 7 3.0 71.0 17.0 6.0 102.7
 8 1.0 31.0 22.0 44.0 72.5
 9 2.0 54.0 18.0 22.0 93.1
10 21.0 47.0 4.0 26.0 115.9
11 1.0 40.0 23.0 34.0 83.8
12 11.0 66.0 9.0 12.0 113.3
13 10.0 68.0 8.0 12.0 109.4

mat_mul_rect
Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix
product, a bilinear form, or any triple product.

Synopsis

#include <imsls.h>

float *imsls_f_mat_mul_rect (char *string, ..., 0)

The type double function is imsls_d_mat_mul_rect.

Required Arguments

char *string (Input)
String indicating operation to be performed. See the “Description”
section below for more details.”

Return Value
The result of the operation. This is always a pointer to a float, even if the result is
a single number. If no answer was computed, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_mat_mul_rect (char *string,

IMSLS_A_MATRIX, int nrowa, int ncola, float a[],
IMSLS_A_COL_DIM, int a_col_dim,
IMSLS_B_MATRIX, int nrowb, int ncolb, float b[],
IMSLS_B_COL_DIM, int b_col_dim,
IMSLS_X_VECTOR, int nx, float *x,
IMSLS_Y_VECTOR, int ny, float *y,
IMSLS_RETURN_USER, float ans[],
IMSLS_RETURN_COL_DIM, int return_col_dim,
0)

894 � mat_mul_rect IMSL C/Stat/Library

Optional Arguments
IMSLS_A_MATRIX, int nrowa, int ncola, float a[] (Input)

The nrowa � ncola matrix A.

IMSLS_A_COL_DIM, int a_col_dim (Input)
Column dimension of A.
Default: a_col_dim = ncola

IMSLS_B_MATRIX, int nrowb, int ncolb, float b[] (Input)
The nrowb � ncolb matrix A.

IMSLS_B_COL_DIM, int b_col_dim (Input)
Column dimension of B.
Default: b_col_dim = ncolb

IMSLS_X_VECTOR, int nx, float *x (Input)
Vector x of size nx.

IMSLS_Y_VECTOR, int ny, float *y (Input)
Vector y of size ny.

IMSLS_RETURN_USER, float ans[] (Output)
User-allocated array containing the result.

IMSLS_RETURN_COL_DIM, int return_col_dim (Input)
Column dimension of the answer.
Default: return_col_dim = the number of columns in the answer

Description
This function computes a matrix-vector product, a matrix-matrix product, a
bilinear form of a matrix, or a triple product according to the specification given
by string. For example, if “A*x” is given, Ax is computed. In string, the
matrices A and B and the vectors x and y can be used. Any of these four names
can be used with trans, indicating transpose. The vectors x and y are treated as
n � 1 matrices.

If string contains only one item, such as “x” or “trans(A)”, then a copy of the
array, or its transpose, is returned. If string contains one multiplication, such as
“A*x” or “B*A”, then the indicated product is returned. Some other legal values
for string are “trans(y)*A”, “A*trans(B)”, “x*trans(y)”, or
“trans(x)*y”.

The matrices and/or vectors referred to in string must be given as optional
arguments. If string is “B*x”, then IMSLS_B_MATRIX and IMSLS_X_VECTOR
must be given.

Chapter 14: Utilities mat_mul_rect � 895

y

Example
Let A, B, x, and y equal the following matrices:

3 2 7 3
1 2 9

7 4 2 4
5 4 7

9 1 1 2
A B x

� � � � �
� �

�
� � � � �� � �� �

��� � � � �
� �

�
� � � � � �� � � � � �

The arrays AT, Ax, xTAT, AB, BTAT, xTy, xyT and xTAy are computed and
printed.

#include <imsls.h>

main()
{
 float A[] = {1, 2, 9,
 5, 4, 7};
 float B[] = {3, 2,
 7, 4,
 9, 1};
 float x[] = {7, 2, 1};
 float y[] = {3, 4, 2};
 float *ans;

 ans = imsls_f_mat_mul_rect("trans(A)",
 IMSLS_A_MATRIX, 2, 3, A,
 0);
 imsls_f_write_matrix("trans(A)", 3, 2, ans, 0);

 ans = imsls_f_mat_mul_rect("A*x",
 IMSLS_A_MATRIX, 2, 3, A,
 IMSLS_X_VECTOR, 3, x,
 0);
 imsls_f_write_matrix("A*x", 1, 2, ans, 0);

 ans = imsls_f_mat_mul_rect("trans(x)*trans(A)",
 IMSLS_A_MATRIX, 2, 3, A,
 IMSLS_X_VECTOR, 3, x,
 0);
 imsls_f_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0);

 ans = imsls_f_mat_mul_rect("A*B",
 IMSLS_A_MATRIX, 2, 3, A,
 IMSLS_B_MATRIX, 3, 2, B,
 0);
 imsls_f_write_matrix("A*B", 2, 2, ans, 0);

 ans = imsls_f_mat_mul_rect("trans(B)*trans(A)",
 IMSLS_A_MATRIX, 2, 3, A,
 IMSLS_B_MATRIX, 3, 2, B,
 0);
 imsls_f_write_matrix("trans(B)*trans(A)", 2, 2, ans, 0);

 ans = imsls_f_mat_mul_rect("trans(x)*y",
 IMSLS_X_VECTOR, 3, x,
 IMSLS_Y_VECTOR, 3, y,
 0);
 imsls_f_write_matrix("trans(x)*y", 1, 1, ans, 0);

896 � mat_mul_rect IMSL C/Stat/Library

 ans = imsls_f_mat_mul_rect("x*trans(y)",
 IMSLS_X_VECTOR, 3, x,
 IMSLS_Y_VECTOR, 3, y,
 0);
 imsls_f_write_matrix("x*trans(y)", 3, 3, ans, 0);

 ans = imsls_f_mat_mul_rect("trans(x)*A*y",
 IMSLS_A_MATRIX, 2, 3, A,
 /* use only the first 2 components of x */
 IMSLS_X_VECTOR, 2, x,
 IMSLS_Y_VECTOR, 3, y,
 0);
 imsls_f_write_matrix("trans(x)*A*y", 1, 1, ans, 0);
}

Output

 trans(A)
 1 2
1 1 5
2 2 4
3 9 7

 A*x
 1 2
 20 50

 trans(x)*trans(A)
 1 2
 20 50

 A*B
 1 2
1 98 19
2 106 33

 trans(B)*trans(A)
 1 2
1 98 106
2 19 33

trans(x)*y
 31

 x*trans(y)
 1 2 3
1 21 28 14
2 6 8 4
3 3 4 2

trans(x)*A*y
 293

Chapter 14: Utilities permute_vector � 897

permute_vector
Rearranges the elements of a vector as specified by a permutation.

Synopsis

#include <imsls.h>

float *imsls_f_permute_vector (int n_elements, float x[],
int permutation[], Imsls_permute permute, ..., 0)

The type double function is imsls_d_permute_vector.

Required Arguments

int n_elements (Input)
Number of elements in the input vector x.

float x[] (Input)
Array of length n_elements to be permuted.

int permutation[] (Input)
Array of length n_elements containing the permutation.

Imsls_permute permute (Input)
Keyword of type Imsls_permute. Argument permute must be either
IMSLS_FORWARD_PERMUTATION or IMSLS_BACKWARD_PERMUTATION.
If IMSLS_FORWARD_PERMUTATION is specified, then a forward
permutation is performed, i.e., x(permutation[i]) is moved to
location i in the return vector. If IMSLS_BACKWARD_PERMUTATION is
specified, then a backward permutation is performed, i.e., x[i] is
moved to location permutation[i] in the return vector.

Return Value
An array of length n_elements containing the input vector x permuted.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_permute_vector (int n_elements, float x[],

int permutation[], Imsls_permute permute,
IMSLS_RETURN_USER, float permuted_result[],
0)

Optional Arguments
IMSLS_RETURN_USER, float permuted_result[](Output)

User-allocated array containing the result of the permutation.

898 � permute_matrix IMSL C/Stat/Library

Description
Function imsls_f_permute_vector rearranges the elements of a vector
according to a permutation vector. The function can perform both forward and
backward permutation.

Example
This example rearranges the vector x using permutation. A forward
permutation is performed.

#include <imsls.h>

void main()
{
 float x[] = {5.0, 6.0, 1.0, 4.0};
 int permutation[] = {2, 0, 3, 1};
 float *output;
 int n_elements = 4;

 output = imsls_f_permute_vector (n_elements, x, permutation,
 IMSLS_FORWARD_PERMUTATION, 0);

 imsls_f_write_matrix ("permuted result", 1, n_elements, output,
 IMSLS_COL_NUMBER_ZERO, 0);
}

Output

 permuted result
 0 1 2 3
 1 5 4 6

permute_matrix
Permutes the rows or columns of a matrix.

Synopsis

#include <imsls.h>

float *imsls_f_permute_matrix (int n_rows, int n_columns, float a[],
int permutation[], Imsls_permute permute, ..., 0)

The type double function is imsls_d_permute_matrix.

Required Arguments

int n_rows (Input)
Number of rows in the input matrix a.

int n_columns (Input)
Number of columns in the input matrix a.

Chapter 14: Utilities permute_matrix � 899

float a[] (Input)
Matrix of size n_rows � n_columns to be permuted.

int permutation[] (Input)
Array of length n_elements containing the permutation.

Imsls_permute permute (Input)
Keyword of type Imsls_permute. Argument permute must be either
IMSLS_PERMUTE_ROWS, if the rows of a are to be interchanged, or
IMSLS_PERMUTE_COLUMNS, if the columns of a are to be interchanged.

Return Value
Array of size n_rows � n_columns containing the permuted input matrix a.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_permute_matrix (int n_rows, int n_columns,

float a[],
int permutation[], Imsls_permute permute,
IMSLS_RETURN_USER, float permuted_result[],
0)

Optional Arguments
IMSLS_RETURN_USER, float permuted_result[] (Output)

User-allocated array of size n_rows � n_columns containing the result
of the permutation.

Description
Function imsls_f_permute_matrix interchanges the rows or columns of a
matrix using a permutation vector. The function permutes a column (row) at a
time using function imsls_f_permute_vector. This process is continued until
all the columns (rows) are permuted. On completion, let B = result and
pi = permutation [i], then Bij = Apij for all i, j.

Example
This example permutes the columns of a matrix a.

#include <imsls.h>

void main()
{
 float a[] = {3.0, 5.0, 1.0, 2.0, 4.0,
 3.0, 5.0, 1.0, 2.0, 4.0,
 3.0, 5.0, 1.0, 2.0, 4.0};
 int permutation[] = {2, 3, 0, 4, 1};
 float *output;
 int n_rows = 3;
 int n_columns = 5;

900 � binomial_coefficient IMSL C/Stat/Library

 output = imsls_f_permute_matrix (n_rows, n_columns, a, permutation,
 IMSLS_PERMUTE_COLUMNS,
 0);

 imsls_f_write_matrix ("permuted matrix", n_rows, n_columns, output,
 IMSLS_ROW_NUMBER_ZERO,
 IMSLS_COL_NUMBER_ZERO,
 0);
}

Output

 permuted matrix
 0 1 2 3 4
0 1 2 3 4 5
1 1 2 3 4 5
2 1 2 3 4 5

binomial_coefficient
Evaluates the binomial coefficient.

Synopsis

#include <imsls.h>

int imsls_f_binomial_coefficient (int n, int m)

The type double procedure is imsls_d_binomial_coefficient.

Required Arguments

int n (Input)
First parameter of the binomial coefficient. Argument n must be
nonnegative.

int m (Input)
Second parameter of the binomial coefficient. Argument m must be
nonnegative.

Return Value
The binomial coefficient

n
m

� �
� �
� �

is returned.

Description
The binomial function is defined to be

Chapter 14: Utilities beta � 901

� �
!

! !
n n
m m n m

� �
�� �

�� �

with n � m � 0. Also, n must not be so large that the function overflows.

Example

In this example, � �9
5 is computed and printed.

#include <stdio.h>
#include <imsls.h>

main()
{
 int n = 9;
 int m = 5;
 int ans;

 ans = imsls_f_binomial_coefficient(n, m);
 printf("binomial coefficient = %d\n", ans);
}

Output

binomial coefficient = 126

beta
Evaluates the complete beta function.

Synopsis

#include <imsls.h>

float imsls_f_beta (float a, float b)

The type double procedure is imsls_d_beta.

Required Arguments

float a (Input)
First beta parameter. It must be positive.

float b (Input)
Second beta parameter. It must be positive.

Return Value
The value of the beta function �(a, b). If no result can be computed, then NaN is
returned.

902 � beta IMSL C/Stat/Library

Description
The beta function, �(a, b), is defined to be

� �
� � � �

� �
� �

1 11

0
, 1 baa b

a b t t dt
a b

�
�

�

� �
� � �

� �
�

Example
Evaluate the beta function �(0.5, 0.2).

#include <imsls.h>

main()
{
 float x = 0.5;
 float y = 0.2;
 float ans;

 ans = imsls_f_beta(x, y);
 printf("beta(%f,%f) = %f\n", x, y, ans);
}

Output

beta(0.500000,0.200000) = 6.268653

Figure 14�1 Plot of � (x, b)

The beta function requires that a > 0 and b > 0. It underflows for large arguments.

Chapter 14: Utilities beta_incomplete � 903

Alert Errors
IMSLS_BETA_UNDERFLOW The arguments must not be so large that the

result underflows.

Fatal Errors
IMSLS_ZERO_ARG_OVERFLOW One of the arguments is so close to zero

that the result overflows.

beta_incomplete
Evaluates the real incomplete beta function Ix = �x (a, b)/�(a, b).

Synopsis

#include <imsls.h>

float imsls_f_beta_incomplete (float x, float a, float b)

The type double procedure is imsls_d_beta_incomplete.

Required Arguments

float x (Input)
Point at which the incomplete beta function is to be evaluated.

float a (Input)
Point at which the incomplete beta function is to be evaluated.

float b (Input)
Point at which the incomplete beta function is to be evaluated.

Return Value
The value of the incomplete beta function.

Description
The incomplete beta function is defined to be

� �
� �

� � � �
� �

11

0

, 1, 1
, ,

x bx a
x

a b
I a b t t dt

a b a b
�

� �

�
�

� � ��

The incomplete beta function requires that 0 � x � 1, a > 0, and b > 0. It
underflows for sufficiently small x and large a. This underflow is not reported as
an error. Instead, the value zero is returned.

Example
Evaluate the log of the incomplete beta function I0.61 =�0.61 (2.2,3.7)/�(2.2,3.7).

904 � log_beta IMSL C/Stat/Library

#include <imsls.h>

main()
{
 float x = 0.61;
 float a = 2.2;
 float b = 3.7;
 float ans;

 ans = imsls_f_beta_incomplete(x, a, b);
 printf("beta incomplete = %f\n", ans);
}
beta incomplete = 0.8822;

log_beta
Evaluates the logarithm of the real beta function ln �(x, y).

Synopsis

#include <imsls.h>

float imsls_f_log_beta (float x, float y)

The type double procedure is imsls_d_log_beta.

Required Arguments

float x (Input)
Point at which the logarithm of the beta function is to be evaluated. It
must be positive.

float y (Input)
Point at which the logarithm of the beta function is to be evaluated. It
must be positive.

Return Value
The value of the logarithm of the beta function �(x, y).

Description
The beta function, �(x, y), is defined to be

� �
� � � �

� �
� �

1 11

0
, 1 yxx y

x y t t dt
x y

�
�

�

� �
� � �

� �
�

and imsls_f_log_beta returns ln �(x, y).

The logarithm of the beta function requires that x > 0 and y > 0. It can overflow
for very large arguments.

Chapter 14: Utilities gamma � 905

Warning Errors
IMSLS_X_IS_TOO_CLOSE_TO_NEG_1 The result is accurate to less than

one precision because the
expression �x/(x + y) is too close
to �1.

Example
Evaluate the log of the beta function ln �(0.5, 0.2).

#include <imsls.h>

main()
{
 float x = 0.5;
 float y = 0.2;
 float ans;

 ans = imsls_f_log_beta(x, y);
 printf("log beta(%f,%f) = %f\n", x, y, ans);
}

Output

log beta(0.500000,0.200000) = 1.835562

gamma
Evaluates the real gamma function.

Synopsis

#include <imsls.h>

float imsls_f_gamma (float x)

The type double procedure is imsls_d_gamma.

Required Arguments

float x (Input)
Point at which the gamma function is to be evaluated.

Return Value
The value of the gamma function ��x).

Description
The gamma function, ��x), is defined to be

� � 1

0

x tx t e
�

� �

� � � dt

906 � gamma IMSL C/Stat/Library

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. It
underflows for x << 0 and overflows for large x. It also overflows for values near
negative integers.

Figure 14-2 Plot of �(x) and 1/�(x)

Alert Errors
IMSLS_SMALL_ARG_UNDERFLOW The argument x must be large

enough that ��x) does not
underflow. The underflow limit
occurs first for arguments close to
large negative half integers. Even
though other arguments away from
these half integers may yield
machine-representable values of
��x), such arguments are
considered illegal.

Warning Errors
IMSLS_NEAR_NEG_INT_WARN The result is accurate to less than

one-half precision because x is too
close to a negative integer.

Chapter 14: Utilities gamma_incomplete � 907

Example
In this example, ��1.5) is computed and printed.

#include <stdio.h>
#include <imsls.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsls_f_gamma(x);
 printf("Gamma(%f) = %f\n", x, ans);
}

Output
Gamma(1.500000) = 0.886227

Fatal Errors
IMSLS_ZERO_ARG_OVERFLOW The argument for the gamma function is too

close to zero.

IMSLS_NEAR_NEG_INT_FATAL The argument for the function is too close
to a negative integer.

IMSLS_LARGE_ARG_OVERFLOW The function overflows because x is too
large.

IMSLS_CANNOT_FIND_XMIN The algorithm used to find x$ failed. This
error should never occur.

IMSLS_CANNOT_FIND_XMAX The algorithm used to find x" failed. This
error should never occur.

gamma_incomplete
Evaluates the incomplete gamma function 	�a, x).

Synopsis

#include <imsls.h>

float imsls_f_gamma_incomplete (float a, float x)

The type double procedure is imsls_d_gamma_incomplete.

Required Arguments

float a (Input)
Parameter of the incomplete gamma function is to be evaluated. It must
be positive.

908 � gamma_incomplete IMSL C/Stat/Library

float x (Input)
Point at which the incomplete gamma function is to be evaluated. It must
be nonnegative.

Return Value
The value of the incomplete gamma function 	(a, x).

Description
The incomplete gamma function, 	�a, x), is defined to be

� � 1

0
,

x a ta x t e dt�
� �

� �

for x > 0. The incomplete gamma function is defined only for a > 0. Although
	(a, x) is well defined for x > �
, this algorithm does not calculate 	(a, x) for
negative x. For large a and sufficiently large x, 	(a, x) may overflow. 	(a, x) is
bounded by �(a), and users may find this bound a useful guide in determining
legal values for a.

Figure 14-3 Contour Plot of 	(a, x)

Chapter 14: Utilities log_gamma � 909

Example
Evaluates the incomplete gamma function at a = 1 and x = 3.

#include <stdio.h>
#include <imsls.h>

main()
{
 float x = 3.0;
 float a = 1.0;
 float ans;

 ans = imsls_f_gamma_incomplete(a, x);
 printf("incomplete gamma(%f,%f) = %f\n", a, x, ans);
}

Output
incomplete gamma(1.000000,3.000000) = 0.950213

Fatal Errors
IMSLS_NO_CONV_200_TS_TERMS The function did not converge in

200 terms of Taylor series.

IMSLS_NO_CONV_200_CF_TERMS The function did not converge in
200 terms of the continued
fraction.

log_gamma
Evaluates the logarithm of the absolute value of the gamma function log ���x)�.

Synopsis

#include <imsls.h>

float imsls_f_log_gamma (float x)

The type double procedure is imsls_d_log_gamma.

Required Arguments

float x (Input)
Point at which the logarithm of the absolute value of the gamma function
is to be evaluated.

Return Value
The value of the logarithm of gamma function log ���x)�.

910 � log_gamma IMSL C/Stat/Library

Description
The logarithm of the absolute value of the gamma function log ���x)� is computed.

Figure 14-4 Plot of log���x)�

Example
In this example, log ���3.5)� is computed and printed.

#include <stdio.h>
#include <imsls.h>

main()
{
 float x = 3.5;
 float ans;
 ans = imsls_f_log_gamma(x);
 printf("log gamma(%f) = %f\n", x, ans);
}

Output
log gamma(3.500000) = 1.200974

Chapter 14: Utilities ctime � 911

Warning Errors
IMSLS_NEAR_NEG_INT_WARN The result is accurate to less than

one-half precision because x is too
close to a negative integer.

Fatal Errors
IMSLS_NEGATIVE_INTEGER The argument for the function

cannot be a negative integer.

IMSLS_NEAR_NEG_INT_FATAL The argument for the function is
too close to a negative integer.

IMSLS_LARGE_ABS_ARG_OVERFLOW �x� must not be so large that the
result overflows.

ctime
Returns the number of CPU seconds used.

Synopsis

#include <imsls.h>

double imsls_ctime ()

Return Value
The number of CPU seconds used by the program.

Example
The CPU time needed to compute

1,000,000

0k
k

�

�

is obtained and printed. The time needed is machine dependent. The CPU time
needed will varies slightly from run to run on the same machine.

#include <imsls.h>

main()
{
 int k;
 double sum, time;
 /* Sum 1 million values */
 for (sum=0, k=1; k<=1000000; k++)
 sum += k;
 /* Get amount of CPU time used */
 time = imsls_ctime();
 printf("sum = %f\n", sum);

912 � ctime IMSL C/Stat/Library

 printf("time = %f\n", time);
}

Output
sum = 500000500000.000000
time = 0.820000

Reference Material User Errors � 913

Reference Material

User Errors
IMSL functions attempt to detect user errors and handle them in a way that
provides as much information to the user as possible. To do this, various levels of
severity of errors are recognized, and the extent of the error in the context of the
purpose of the function also is considered; a trivial error in one situation can be
serious in another. IMSL attempts to report as many errors as can reasonably be
detected. Multiple errors present a difficult problem in error detection because
input is interpreted in an uncertain context after the first error is detected.

What Determines Error Severity
In some cases, the user’s input may be mathematically correct, but because of
limitations of the computer arithmetic and of the algorithm used, it is not possible
to compute an answer accurately. In this case, the assessed degree of accuracy
determines the severity of the error. In cases where the function computes several
output quantities, some are not computable but most are, an error condition exists.
The severity of the error depends on an assessment of the overall impact of the
error.

Kinds of Errors and Default Actions
Five levels of severity of errors are defined in IMSL C/Stat/Library. Each level
has an associated PRINT attribute and a STOP attribute. These attributes have
default settings (YES or NO), but they may also be set by the user. The purpose
of having multiple error types is to provide independent control of actions to be
taken for errors of different levels of severity. Upon return from an IMSL
function, exactly one error state exists. (A code 0 “error” is no error.) Even if
more than one informational error occurs, only one message is printed (if the
PRINT attribute is YES). Multiple errors for which no corrective action within
the calling program is reasonable or necessary result in the printing of multiple
messages (if the PRINT attribute for their severity level is YES). Errors of any of
the severity levels except IMSLS_TERMINAL may be informational errors. The
include file, imsls.h, defines each of IMSLS_NOTE, IMSLS_ALERT,
IMSLS_WARNING, IMSLS_FATAL, IMSLS_TERMINAL,

914 � User Errors IMSL C/Stat/Library

IMSLS_WARNING_IMMEDIATE, and IMSLS_FATAL_IMMEDIATE as enumerated
data type Imsls_error.

IMSLS_NOTE. A note is issued to indicate the possibility of a trivial error or
simply to provide information about the computations.
Default attributes: PRINT=NO, STOP=NO

IMSLS_ALERT. An alert indicates that a function value has been set to 0 due to
underflow.
Default attributes: PRINT=NO, STOP=NO

IMSLS_WARNING. A warning indicates the existence of a condition that may
require corrective action by the user or calling function. A warning error may be
issued because the results are accurate to only a few decimal places; because
some of the output may be erroneous, but most of the output is correct; or because
some assumptions underlying the analysis technique are violated. Usually no
corrective action is necessary, and the condition can be ignored.
Default attributes: PRINT=YES, STOP=NO

IMSLS_FATAL. A fatal error indicates the existence of a condition that may be
serious. In most cases, the user or calling function must take corrective action to
recover.
Default attributes: PRINT=YES, STOP=YES

IMSLS_TERMINAL. A terminal error is serious. It usually is the result of an
incorrect specification, such as specifying a negative number as the number of
equations. These errors can also be caused by various programming errors
impossible to diagnose correctly in C. The resulting error message may be
perplexing to the user. In such cases, the user is advised to compare carefully the
actual arguments passed to the function with the dummy argument descriptions
given in the documentation. Special attention should be given to checking
argument order and data types.

A terminal error is not an informational error, because corrective action within
the program is generally not reasonable. In normal use, execution is terminated
immediately when a terminal error occurs. Messages relating to more than one
terminal error are printed if they occur.
Default attributes: PRINT=YES, STOP=YES

IMSLS_WARNING_IMMEDIATE. An immediate warning error is identical to a
warning error, except it is printed immediately.
Default attributes: PRINT=YES, STOP=NO

IMSLS_FATAL_IMMEDIATE. An immediate fatal error is identical to a fatal error,
except it is printed immediately.
Default attributes: PRINT=YES, STOP=YES

The user can set PRINT and STOP attributes by calling function
imsls_error_options as described in Chapter 14, “Utilities.”

Reference Material User Errors � 915

Errors in Lower-level Functions
It is possible that a user’s program may call an IMSL function that in turn calls a
nested sequence of lower-level IMSL functions. If an error occurs at a lower level
in such a nest of functions and if the lower-level function cannot pass the
information up to the original user-called function, then a traceback of the
functions is produced. The only common situation in which this can occur is
when an IMSL function calls a user-supplied routine that in turn calls another
IMSL function.

Functions for Error Handling
The user may interact in two ways with the IMSL error-handling system: (1) to
change the default actions and (2) to determine the code of an informational error
so as to take corrective action. The IMSL functions to use are
imsls_error_options and imsls_error_code. Function
imsls_error_options sets the actions to be taken when errors occur. Function
imsls_error_code retrieves the integer code for an informational error. These
functions are documented in Chapter 14, "Utilities."

Threads and Error Handling
If multiple threads are used then default settings are valid for each thread
but can be altered for each individual thread. When using threads it is
necessary to set options using imsls_error_options (excluding
IMSLS_SET_SIGNAL_TRAPPING) for each thread by calling
imsls_error_options from within each thread.

The IMSL signal-trapping mechanism must be disabled when multiple threads
are used. The IMSL signal-trapping mechanism can be disabled by making the
following call before any threads are created:

imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0);

 See Chapter 14, “Utilities”, examples 3 and 4 of imsls_error_options for
multithreaded examples.

Use of Informational Error to Determine Program Action
In the program segment below, a factor analysis is to be performed on the matrix
covariances. If it is determined that the matrix is singular (and often this is not
immediately obvious), the program is to take a different branch.
 x = imsls_f_factor_analysis (nobs, covariances,
 n_factors, 0);
 if (imsls_error_code() == IMSLS_COV_IS_SINGULAR) {
 /* Handle a singular matrix */
 }

916 � User Errors IMSL C/Stat/Library

Additional Examples
See functions imsls_error_options and imsls_error_code in Chapter 14,
“Utilities” for additional examples.

IMSL C/Stat/Library Product Support � 917

Product Support

Contacting Visual Numerics Support
Users within support warranty may contact Visual Numerics regarding the use of
the IMSL C Numerical Libraries. Visual Numerics can consult on the following
topics:

� Clarity of documentation

� Possible Visual Numerics-related programming problems

� Choice of IMSL Libraries functions or procedures for a particular problem

� Evolution of the IMSL Libraries

Not included in these consultation topics are mathematical/statistical consulting
and debugging of your program.

Consultation
Contact Visual Numerics Product Support emailing:

� support@houston.vni.com

Electronic addresses are not handled uniformly across the major networks, and
some local conventions for specifying electronic addresses might cause further
variations to occur; contact your E-mail postmaster for further details.

The following describes the procedure for consultation with Visual Numerics:

1. Include license number

2. Include the product name and version number: IMSL C/Stat/Library
Version 5.5

3. Include compiler and operating system version numbers

918 � Product Support IMSL C/Stat/Library

4. Include the name of the routine for which assistance is needed and a
description of the problem

IMSL C/Stat/library Appendix A: References � A-1

Appendix A: References

Abramowitz and Stegun

Abramowitz, Milton and Irene A. Stegun (editors) (1964), Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical Tables,
National Bureau of Standards, Washington.

Afifi and Azen

Afifi, A.A. and S.P. Azen (1979), Statistical Analysis: A Computer Oriented
Approach, 2d ed., Academic Press, New York.

Agresti, Wackerly, and Boyette

Agresti, Alan, Dennis Wackerly, and James M. Boyette (1979), Exact conditional
tests for cross-classifications: Approximation of attained significance levels,
Psychometrika, 44, 75-83.

Ahrens and Dieter

Ahrens, J.H. and U. Dieter (1974), Computer methods for sampling from gamma,
beta, Poisson, and binomial distributions, Computing, 12, 223�246.

Ahrens, J.H., and U. Dieter (1985), Sequential random sampling, ACM
Transactions on Mathematical Software, 11, 157�169.

Anderberg
Anderberg, Michael R. (1973), Cluster Analysis for Applications, Academic
Press, New York.

Anderson

Anderson, T.W. (1971), The Statistical Analysis of Time Series, John Wiley &
Sons, New York.

Anderson and Bancroft

Anderson, R.L. and T.A. Bancroft (1952), Statistical Theory in Research,
McGraw-Hill Book Company, New York.

A-2 � Appendix A: References IMSL C/Stat/Library

Atkinson

Atkinson, A.C. (1979), A family of switching algorithms for the computer
generation of beta random variates, Biometrika, 66, 141�145.

Atkinson, A.C. (1985), Plots, Transformations, and Regression, Claredon Press,
Oxford.

Barrodale and Roberts

Barrodale, I., and F.D.K. Roberts (1973), An improved algorithm for discrete L�
approximation, SIAM Journal on Numerical Analysis, 10, 839�848.

Barrodale, I., and F.D.K. Roberts (1974), Solution of an overdetermined system
of equations in the l� norm, Communications of the ACM, 17, 319�320.

Barrodale, I., and C. Phillips (1975), Algorithm 495. Solution of an
overdetermined system of linear equations in the Chebyshev norm, ACM
Transactions on Mathematical Software, 1, 264�270.

Bartlett, M. S.

Bartlett, M.S. (1935), Contingency table interactions, Journal of the Royal
Statistics Society Supplement, 2, 248�252.

Bartlett, M. S. (1937) Some examples of statistical methods of research in
agriculture and applied biology, Supplement to the Journal of the Royal
Statistical Society, 4, 137-183.

Bartlett, M. (1937), The statistical conception of mental factors, British Journal
of Psychology, 28, 97–104.

Bartlett, M.S. (1946), On the theoretical specification and sampling properties of
autocorrelated time series, Supplement to the Journal of the Royal Statistical
Society, 8, 27–41.

Bartlett, M.S. (1978), Stochastic Processes, 3rd. ed., Cambridge University Press,
Cambridge.

Bays and Durham

Bays, Carter and S.D. Durham (1976), Improving a poor random number
generator, ACM Transactions on Mathematical Software, 2, 59�64.

Bendel and Mickey

Bendel, Robert B., and M. Ray Mickey (1978), Population correlation matrices
for sampling experiments, Communications in Statistics, B7, 163�182.

IMSL C/Stat/library Appendix A: References � A-3

Best and Fisher

Best, D.J., and N.I. Fisher (1979), Efficient simulation of the von Mises
distribution, Applied Statistics, 28, 152�157.

Bishop et al

Bishop, Yvonne M.M., Stephen E. Feinberg, and Paul W. Holland (1975),
Discrete Multivariate Analysis: Theory and Practice, MIT Press, Cambridge,
Mass.

Bjorck and Golub

Bjorck, Ake, and Gene H. Golub (1973), Numerical Methods for Computing
Angles Between Subspaces, Mathematics of Computation, 27, 579�594.

Blom

Blom, Gunnar (1958), Statistical Estimates and Transformed Beta-Variables,
John Wiley & Sons, New York.

Bosten and Battiste

Bosten, Nancy E. and E.L. Battiste (1974), Incomplete beta ratio,
Communications of the ACM, 17, 156s�157.

Box and Jenkins

Box, George E.P. and Gwilym M. Jenkins (1976), Time Series Analysis:
Forecasting and Control, revised ed., Holden-Day, Oakland.

Box and Pierce

Box, G.E.P., and David A. Pierce (1970), Distribution of residual
autocorrelations in autoregressive-integrated moving average time series models,
Journal of the American Statistical Association, 65, 1509–1526.

Box and Tidwell

Box, G.E.P. and P.W. Tidwell (1962), Transformation of the independent
variables, Technometrics, 4, 531�550.

Boyette

Boyette, James M. (1979), Random RC tables with given row and column totals,
Applied Statistics, 28, 329�332.

Bradley

Bradley, J.V. (1968), Distribution-Free Statistical Tests, Prentice-Hall, New
Jersey.

A-4 � Appendix A: References IMSL C/Stat/Library

Breslow
Breslow, N.E. (1974), Covariance analysis of censored survival data, Biometrics,
30, 89�99.

Brown

Brown, Morton E. (1983), MCDP4F, two-way and multiway frequency tables-
measures of association and the log-linear model (complete and incomplete
tables), in BMDP Statistical Software, 1983 Printing with Additions, (edited by
W.J. Dixon), University of California Press, Berkeley.

Brown and Benedetti

Brown, Morton B. and Jacqualine K. Benedetti (1977), Sampling behavior and
tests for correlation in two-way contingency tables, Journal of the American
Statistical Association, 42, 309�315.

Cheng

Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape
parameters, Communications of the ACM, 21, 317�322.

Chiang

Chiang, Chin Long (1968), Introduction to Stochastic Processes in Statistics,
John Wiley & Sons, New York.

Conover

Conover, W.J. (1980), Practical Nonparametric Statistics, 2d ed., John Wiley &
Sons, New York.

Conover and Iman

Conover, W.J. and Ronald L. Iman (1983), Introduction to Modern Business
Statistics, John Wiley & Sons, New York.

Conover, W. J., Johnson, M. E., and Johnson, M. M

Conover, W. J., Johnson, M. E., and Johnson, M. M. (1981) A comparative study
of tests for homogeneity of variances, with applications to the outer continental
shelf bidding data, Technometrics, 23, 351-361.

Cook and Weisberg

Cook, R. Dennis and Sanford Weisberg (1982), Residuals and Influence in
Regression, Chapman and Hall, New York.

IMSL C/Stat/library Appendix A: References � A-5

Cooper

Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution
integrals, Applied Statistics, 17, 190�192.

Cox
Cox, David R. (1970), The Analysis of Binary Data, Methuen, London.

Cox, D.R. (1972), Regression models and life tables (with discussion), Journal of
the Royal Statistical Society, Series B, Methodology, 34, 187–220.

Cox and Lewis
Cox, D.R., and P.A.W. Lewis (1966), The Statistical Analysis of Series of Events,
Methuen, London.

Cox and Oakes
Cox, D.R., and D. Oakes (1984), Analysis of Survival Data, Chapman and Hall,
London.

Cox and Stuart

Cox, D.R., and A. Stuart (1955), Some quick sign tests for trend in location and
dispersion, Biometrika, 42, 80�95.

D'Agostino and Stevens

D'Agostino, Ralph B. and Michael A. Stevens (1986), Goodness-of-Fit
Techniques, Marcel Dekker, New York.

Dallal and Wilkinson

Dallal, Gerald E. and Leland Wilkinson (1986), An analytic approximation to the
distribution of Lilliefor's test statistic for normality, The American Statistician,
40, 294�296.

Dennis and Schnabel

Dennis, J.E., Jr. and Robert B. Schnabel (1983), Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood
Cliffs, New Jersey.

Devore

Devore, Jay L (1982), Probability and Statistics for Engineering and Sciences,
Brooks/Cole Publishing Company, Monterey, Calif.

A-6 � Appendix A: References IMSL C/Stat/Library

Draper and Smith

Draper, N.R. and H. Smith (1981), Applied Regression Analysis, 2d ed., John
Wiley & Sons, New York.

Durbin

Durbin, J. (1960), The fitting of time series models, Revue Institute
Internationale de Statistics, 28, 233–243.

Efroymson

Efroymson, M.A. (1960), Multiple regression analysis, Mathematical Methods
for Digital Computers, Volume 1, (edited by A. Ralston and H. Wilf), John Wiley
& Sons, New York, 191�203.

Ekblom

Ekblom, Hakan (1973), Calculation of linear best Lp-approximations, BIT, 13,
292�300.

Ekblom, Hakan (1987), The L�-estimate as limiting case of an Lp or Huber-
estimate, in Statistical Data Analysis Based on the L�-Norm and Related Methods
(edited by Yadolah Dodge), North-Holland, Amsterdam, 109�116.

Elandt-Johnson and Johnson

Elandt-Johnson, Regina C., and Norman L. Johnson (1980), Survival Models and
Data Analysis, John Wiley & Sons, New York, 172�173.

Emmett

Emmett, W.G. (1949), Factor analysis by Lawless method of maximum
likelihood, British Journal of Psychology, Statistical Section, 2, 90�97.

Engle

Engle, C. (1982), Autoregressive conditional heteroskedasticity with estimates of
the variance of U.K. inflation, Econometrica , 50, 987�1008.

Fisher

Fisher, R.A. (1936), The use of multiple measurements in taxonomic problems,
The Annals of Eugenics, 7, 179�188.

Fishman

Fishman, George S. (1978), Principles of Discrete Event Simulation, John Wiley
& Sons, New York.

IMSL C/Stat/library Appendix A: References � A-7

Fishman and Moore

Fishman, George S. and Louis R. Moore (1982), A statistical evaluation of
multiplicative congruential random number generators with modulus , Journal of
the American Statistical Association, 77, 129�136.

Forsythe

Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting
data with a digital computer, SIAM Journal on Applied Mathematics, 5, 74�88.

Fuller
Fuller, Wayne A. (1976), Introduction to Statistical Time Series, John Wiley &
Sons, New York.

Furnival and Wilson

Furnival, G.M. and R.W. Wilson, Jr. (1974), Regressions by leaps and bounds,
Technometrics, 16, 499�511.

Fushimi
Fushimi, Masanori (1990), Random number generation with the recursion
Xt = Xt-3p �Xt-3q, Journal of Computational and Applied Mathematics, 31,
105�118.

Gentleman

Gentleman, W. Morven (1974), Basic procedures for large, sparse or weighted
linear least squares problems, Applied Statistics, 23, 448�454.

Gibbons

Gibbons, J.D. (1971), Nonparametric Statistical Inference, McGraw-Hill, New
York.

Girschick

Girschick, M.A. (1939), On the sampling theory of roots of determinantal
equations, Annals of Mathematical Statistics, 10, 203�224.

Golub and Van Loan

Golub, Gene H. and Charles F. Van Loan (1983), Matrix Computations, Johns
Hopkins University Press, Baltimore, Md.

Gonin and Money

Gonin, Rene, and Arthur H. Money (1989), Nonlinear Lp-Norm Estimation,
Marcel Dekker, New York.

A-8 � Appendix A: References IMSL C/Stat/Library

Goodnight

Goodnight, James H. (1979), A tutorial on the SWEEP operator, The American
Statistician, 33, 149�158.

Graybill

Graybill, Franklin A. (1976), Theory and Application of the Linear Model,
Duxbury Press, North Scituate, Mass.

Griffin and Redish

Griffin, R. and K.A. Redish (1970), Remark on Algorithm 347: An efficient
algorithm for sorting with minimal storage, Communications of the ACM,
13, 54.

Gross and Clark

Gross, Alan J., and Virginia A. Clark (1975), Survival Distributions: Reliability
Applications in the Biomedical Sciences, John Wiley & Sons, New York.

Gruenberger and Mark

Gruenberger, F., and A.M. Mark (1951), The d� test of random digits,
Mathematical Tables and Other Aids in Computation, 5, 109�110.

Guerra et al.

Guerra, Victor O., Richard A. Tapia, and James R. Thompson (1976), A random
number generator for continuous random variables based on an interpolation
procedure of Akima, in Proceedings of the Ninth Interface Symposium on
Computer Science and Statistics, (edited by David C. Hoaglin and Roy E.
Welsch), Prindle, Weber & Schmidt, Boston, 228�230.

Haldane

Haldane, J.B.S. (1939), The mean and variance of when used as a test of
homogeneity, when expectations are small, Biometrika, 31, 346.

Harman

Harman, Harry H. (1976), Modern Factor Analysis, 3d ed. revised, University of
Chicago Press, Chicago.

Hart et al

Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K.
Mesztenyi, John R. Rice, Henry G. Thacher, Jr., and Christoph Witzgall (1968),
Computer Approximations, John Wiley & Sons, New York.

IMSL C/Stat/library Appendix A: References � A-9

Hartigan

Hartigan, John A. (1975), Clustering Algorithms, John Wiley & Sons, New York.

Hartigan and Wong

Hartigan, J.A. and M.A. Wong (1979), Algorithm AS 136: A K-means clustering
algorithm, Applied Statistics, 28, 100�108.

Hayter

Hayter, Anthony J. (1984), A proof of the conjecture that the Tukey-Kramer
multiple comparisons procedure is conservative, Annals of Statistics, 12, 61�75.

Heiberger

Heiberger, Richard M. (1978), Generation of random orthogonal matrices,
Applied Statistics, 27, 199�206.

Hemmerle.

Hemmerle, William J. (1967), Statistical Computations on a Digital Computer,
Blaisdell Publishing Company, Waltham, Mass.

Herraman

Herraman, C. (1968), Sums of squares and products matrix, Applied Statistics,
17, 289�292.

Hill

Hill, G.W. (1970), Student's t-distribution, Communications of the ACM, 13,
617�619.

Hill, G.W. (1970), Student's t-quantiles, Communications of the ACM, 13,
619�620.

Hinkelmann, K and Kemthorne

Hinkelmann, K and Kemthorne, O (1994) Design and Analysis of Experiments –
Vol 1, John Wiley.

Hinkley

Hinkley, David (1977), On quick choice of power transformation, Applied
Statistics, 26, 67�69.

Hoaglin and Welsch

Hoaglin, David C. and Roy E. Welsch (1978), The hat matrix in regression and
ANOVA, The American Statistician, 32, 17�22.

A-10 � Appendix A: References IMSL C/Stat/Library

Hocking

Hocking, R.R. (1972), Criteria for selection of a subset regression: Which one
should be used?, Technometrics, 14, 967�970.

Hocking, R.R. (1973), A discussion of the two-way mixed model, The American
Statistician, 27, 148�152.

Hocking, R.R. (1985), The Analysis of Linear Models, Brooks/Cole Publishing
Company, Monterey, California.

Huber

Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York.

Hughes and Saw

Hughes, David T., and John G. Saw (1972), Approximating the percentage points
of Hotelling’s generalized statistic, Biometrika, 59, 224�226. T0

2

Iman and Davenport

Iman, R.L., and J.M. Davenport (1980), Approximations of the critical region of
the Friedman statistic, Communications in Statistics, A9(6),
571�595.

Jennrich and Robinson

Jennrich, R.I. and S.M. Robinson (1969), A Newton-Raphson algorithm for
maximum likelihood factor analysis, Psychometrika, 34, 111�123.

Jennrich and Sampson
Jennrich, R.I. and P.F. Sampson (1966), Rotation for simple loadings,
Psychometrika, 31, 313–323.

John

John, Peter W.M. (1971), Statistical Design and Analysis of Experiments,
Macmillan Company, New York.

Jöhnk

Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten
Zufallszahlen, Metrika, 8, 5�15.

Johnson and Kotz

Johnson, Norman L., and Samuel Kotz (1969), Discrete Distributions, Houghton
Mifflin Company, Boston.

IMSL C/Stat/library Appendix A: References � A-11

Johnson, Norman L., and Samuel Kotz (1970a), Continuous Univariate
Distributions-1, John Wiley & Sons, New York.

Johnson, Norman L., and Samuel Kotz (1970b), Continuous Univariate
Distributions-2, John Wiley & Sons, New York.

Johnson and Welch

Johnson, D.G., and W.J. Welch (1980), The generation of pseudo-random
correlation matrices, Journal of Statistical Computation and Simulation, 11,
55�69.

Jonckheere

Jonckheere, A.R. (1954), A distribution-free k-sample test against ordered
alternatives, Biometrika, 41, 133�143.

Jöreskog

Jöreskog, K.G. (1977), Factor analysis by least squares and maximum-likelihood
methods, Statistical Methods for Digital Computers, (edited by Kurt Enslein,
Anthony Ralston, and Herbert S. Wilf), John Wiley & Sons, New York,
125�153.

Kachitvichyanukul

Kachitvichyanukul, Voratas (1982), Computer generation of Poisson, binomial,
and hypergeometric random variates, Ph.D. dissertation, Purdue University,
West Lafayette, Indiana.

Kaiser

Kaiser, H.F. (1963), Image analysis, Problems in Measuring Change, (edited by
C. Harris), University of Wisconsin Press, Madison, Wis.

Kaiser and Caffrey

Kaiser, H.F. and J. Caffrey (1965), Alpha factor analysis, Psychometrika, 30,
1�14.

Kalbfleisch and Prentice

Kalbfleisch, John D., and Ross L. Prentice (1980), The Statistical Analysis of
Failure Time Data, John Wiley & Sons, New York.

Kemp

Kemp, A.W., (1981), Efficient generation of logarithmically distributed pseudo-
random variables, Applied Statistics, 30, 249�253.

A-12 � Appendix A: References IMSL C/Stat/Library

Kendall and Stuart

Kendall, Maurice G. and Alan Stuart (1973), The Advanced Theory of Statistics,
Volume 2: Inference and Relationship, 3d ed., Charles Griffin & Company,
London.

Kendall, Maurice G. and Alan Stuart (1979), The Advanced Theory of Statistics,
Volume 2: Inference and Relationship, 4th ed., Oxford University Press, New
York.

Kendall et al.

Kendall, Maurice G., Alan Stuart, and J. Keith Ord (1983), The Advanced Theory
of Statistics, Volume 3: Design and Analysis, and Time Series, 4th. ed., Oxford
University Press, New York.

Kennedy and Gentle

Kennedy, William J., Jr. and James E. Gentle (1980), Statistical Computing,
Marcel Dekker, New York.

Kuehl, R. O.

Kuehl, R. O. (2000) Design of Experiments: Statistical Principles of Research
Design and Analysis, 2nd edition, Duxbury Press.

Kim and Jennrich

Kim, P.J., and R.I. Jennrich (1973), Tables of the exact sampling distribution of
the two sample Kolmogorov-Smirnov criterion Dmn (m < n), in Selected Tables in
Mathematical Statistics, Volume 1, (edited by H. L. Harter and D.B. Owen),
American Mathematical Society, Providence, Rhode Island.

Kinderman and Ramage

Kinderman, A.J., and J.G. Ramage (1976), Computer generation of normal
random variables, Journal of the American Statistical Association, 71, 893�896.

Kinderman et al.

Kinderman, A.J., J.F. Monahan, and J.G. Ramage (1977), Computer methods for
sampling from Student’s t distribution, Mathematics of Computation 31,
1009�1018.

Kinnucan and Kuki

Kinnucan, P. and H. Kuki (1968), A Single Precision INVERSE Error Function
Subroutine, Computation Center, University of Chicago.

IMSL C/Stat/library Appendix A: References � A-13

Kirk

Kirk, Roger E. (1982), Experimental Design: Procedures for the Behavioral
Sciences, 2d ed., Brooks/Cole Publishing Company, Monterey, Calif.

Knuth

Knuth, Donald E. (1981), The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, 2d ed., Addison-Wesley, Reading, Mass.

Kshirsagar

Kshirsagar, Anant M. (1972), Multivariate Analysis, Marcel Dekker, New York.

Lachenbruch

Lachenbruch, Peter A. (1975), Discriminant Analysis, Hafner Press, London.

Lai

Lai, D. (1998a), Local asymptotic normality for location-scale type processes.
Far East Journal of Theorectical Statistics, (in press).

Lai, D. (1998b), Asymptotic distributions of the correlation integral based
statistics. Journal of Nonparametric Statistics, (in press).

Lai, D. (1998c), Asymptotic distributions of the estimated BDS statistic and
residual analysis of AR Models on the Canadian lynx data. Journal
of Biological Systems, (in press).

Laird and Oliver

Laird, N.M., and D. Fisher (1981), Covariance analysis of censored survival data
using log-linear analysis techniques, JASA 76, 1231�1240.

Lawless

Lawless, J.F. (1982), Statistical Models and Methods for Lifetime Data, John
Wiley & Sons, New York.

Lawley and Maxwell

Lawley, D.N. and A.E. Maxwell (1971), Factor Analysis as a Statistical Method,
2d ed., Butterworth, London.

Learmonth and Lewis

Learmonth, G.P. and P.A.W. Lewis (1973), Naval Postgraduate School Random
Number Generator Package LLRANDOM, NPS55LW73061A, Naval
Postgraduate School, Monterey, Calif.

A-14 � Appendix A: References IMSL C/Stat/Library

Lee

Lee, Elisa T. (1980), Statistical Methods for Survival Data Analysis, Lifetime
Learning Publications, Belmont, Calif.

Lehmann

Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on Ranks,
Holden-Day, San Francisco.

Levenberg

Levenberg, K. (1944), A method for the solution of certain problems in least
squares, Quarterly of Applied Mathematics, 2, 164�168.

Levene, H.

Levene, H. (1960) In Contributions to Probability and Statistics: Essays in
Honor of Harold Hotelling, I. Olkin et al. editors, Stanford University Press,
278-292.

Lewis et al.

Lewis, P.A.W., A.S. Goodman, and J.M. Miller (1969), A pseudorandom number
generator for the System/360, IBM Systems Journal, 8, 136�146.

Liffiefors

Lilliefors, H.W. (1967), On the Kolmogorov-Smirnov test for normality with
mean and variance unknown, Journal of the American Statistical Association, 62,
534�544.

Ljung and Box

Ljung, G.M., and G.E.P. Box (1978), On a measure of lack of fit in time series
models, Biometrika, 65, 297–303.

Longley

Longley, James W. (1967), An appraisal of least-squares programs for the
electronic computer from the point of view of the user, Journal of the American
Statistical Association, 62, 819�841.

Marsaglia

Marsaglia, George (1964), Generating a variable from the tail of a normal
distribution, Technometrics, 6, 101�102.

Marsaglia, G. (1968), Random numbers fall mainly in the planes, Proceedings of
the National Academy of Sciences, 61, 25�28.

IMSL C/Stat/library Appendix A: References � A-15

Marsaglia, G. (1972), The structure of linear congruential sequences, in
Applications of Number Theory to Numerical Analysis, (edited by S. K.
Zaremba), Academic Press, New York, 249�286.

Marsaglia, George (1972), Choosing a point from the surface of a sphere,
The Annals of Mathematical Statistics, 43, 645�646.

McKean and Schrader

McKean, Joseph W., and Ronald M. Schrader (1987), Least absolute errors
analysis of variance, in Statistical Data Analysis Based on the L�-Norm and
Related Methods (edited by Yadolah Dodge), North-Holland, Amsterdam,
297�305.

McKeon

McKeon, James J. (1974), F approximations to the distribution of Hotelling’s
, Biometrika, 61, 381�383. T0

2

McCullagh and Nelder

McCullagh, P., and J.A. Nelder, (1983), Generalized Linear Models, Chapman
and Hall, London.

Maindonald

Maindonald, J.H. (1984), Statistical Computation, John Wiley & Sons, New
York.

Marazzi

Marazzi, Alfio (1985), Robust affine invariant covariances in ROBETH,
ROBETH-85 document No. 6, Division de Statistique et Informatique, Institut
Universitaire de Medecine Sociale et Preventive, Laussanne.

Mardia et al.

Mardia, K.V. (1970), Measures of multivariate skewness and kurtosis with
applications, Biometrics, 57, 519�530.

Mardia, K.V., J.T. Kent, J.M. Bibby (1979), Multivariate Analysis, Academic
Press, New York.

Mardia and Foster

Mardia, K.V. and K. Foster (1983), Omnibus tests of multinormality based on
skewness and kurtosis, Communications in Statistics A, Theory and Methods, 12,
207�221.

A-16 � Appendix A: References IMSL C/Stat/Library

Marquardt

Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear
parameters, SIAM Journal on Applied Mathematics, 11, 431�441.

Marsaglia

Marsaglia, George (1964), Generating a variable from the tail of a normal
distribution, Technometrics, 6, 101�102.

Marsaglia and Bray

Marsaglia, G. and T.A. Bray (1964), A convenient method for generating normal
variables, SIAM Review, 6, 260�264.

Marsaglia et al.

Marsaglia, G., M.D. MacLaren, and T.A. Bray (1964), A fast procedure for
generating normal random variables, Communications of the ACM, 7, 4�10.

Merle and Spath

Merle, G., and H. Spath (1974), Computational experiences with discrete Lp
approximation, Computing, 12, 315�321.

Miller

Miller, Rupert G., Jr. (1980), Simultaneous Statistical Inference, 2d ed.,
Springer-Verlag, New York.

Milliken and Johnson

Milliken, George A. and Dallas E. Johnson (1984), Analysis of Messy Data,
Volume 1: Designed Experiments, Van Nostrand Reinhold, New York.

Moran

Moran, P.A.P. (1947), Some theorems on time series I, Biometrika, 34,
281�291.

Moré et al.

Moré, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User Guide for [4]
MINPACK-1, Argonne National Laboratory Report ANL-80_74, Argonne, Ill.

Morrison

Morrison, Donald F. (1976), Multivariate Statistical Methods, 2nd. ed. McGraw-
Hill Book Company, New York.

IMSL C/Stat/library Appendix A: References � A-17

Muller

Muller, M.E. (1959), A note on a method for generating points uniformly on
N-dimensional spheres, Communications of the ACM, 2, 19�20.

Nelson

Nelson, D. B. (1991), Conditional heteroskedasticity in asset returns: A new
approach. Econometrica, , 59, 347�370.

Nelson

Nelson, Peter (1989), Multiple Comparisons of Means Using Simultaneous
Confidence Intervals, Journal of Quality Technology, 21, 232�241.

Neter

Neter, John (1983), Applied Linear Regression Models, Richard D. Irwin,
Homewood, Ill.

Neter and Wasserman

Neter, John and William Wasserman (1974), Applied Linear Statistical Models,
Richard D. Irwin, Homewood, Ill.

Noether

Noether, G.E. (1956), Two sequential tests against trend, Journal of the American
Statistical Association, 51, 440�450.

Owen

Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing
Company, Reading, Mass.

Owen, D.B. (1965), A special case of the bivariate non-central t distribution,
Biometrika, 52, 437�446.

Palm

Palm, F. C. (1996), GARCH models of volatility. In Handbook of Statistics,
Vol. 14, 209-240. Eds: Maddala and Rao. Elsevier,New York.

Patefield

Patefield, W.M. (1981), An efficient method of generating R � C tables with
given row and column totals, Applied Statistics, 30, 91�97.

A-18 � Appendix A: References IMSL C/Stat/Library

Patefield and Tandy
Patefield, W.M. (1981), and Tandy D. (2000) Fast and Accurate Calculation of
Owen’s T-Function, J. Statistical Software, 5, Issue 5.

Peixoto

Peixoto, Julio L. (1986), Testable hypotheses in singular fixed linear models,
Communications in Statistics: Theory and Methods, 15,
1957�1973.

Petro

Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting
with minimal storage, Communications of the ACM, 13, 624.

Pillai

Pillai, K.C.S. (1985), Pillai’s trace, in Encyclopedia of Statistical Sciences,
Volume 6, (edited by Samuel Kotz and Norman L. Johnson), John Wiley & Sons,
New York, 725�729.

Pregibon

Pregibon, Daryl (1981), Logistic regression diagnostics, The Annals of Statistics,
9, 705�724.

Prentice

Prentice, Ross L. (1976), A generalization of the probit and logit methods for
dose response curves, Biometrics, 32, 761�768.

Priestley
Priestley, M.B. (1981), Spectral Analysis and Time Series, Volumes 1 and 2,
Academic Press, New York.

Rao

Rao, C. Radhakrishna (1973), Linear Statistical Inference and Its Applications,
2d ed., John Wiley & Sons, New York.

Robinson

Robinson, Enders A. (1967), Multichannel Time Series Analysis with Digital
Computer Programs, Holden-Day, San Francisco.

Royston

Royston, J.P. (1982a), An extension of Shapiro and Wilk's W test for normality to
large samples, Applied Statistics, 31, 115�124.

IMSL C/Stat/library Appendix A: References � A-19

Royston, J.P. (1982b), The W test for normality, Applied Statistics, 31, 176�180.

Royston, J.P. (1982c), Expected normal order statistics (exact and approximate),
Applied Statistics, 31, 161�165.

Sallas

Sallas, William M. (1990), An algorithm for an Lp norm fit of a multiple linear
regression model, American Statistical Association 1990 Proceedings of the
Statistical Computing Section, 131�136.

Sallas and Lionti

Sallas, William M. and Abby M. Lionti (1988), Some useful computing formulas
for the nonfull rank linear model with linear equality restrictions, IMSL
Technical Report 8805, IMSL, Houston.

Savage

Savage, I. Richard (1956), Contributions to the theory of rank order statistics-the
two-sample case, Annals of Mathematical Statistics, 27, 590�615.

Scheffe

Scheffe, Henry (1959), The Analysis of Variance, John Wiley & Sons, New York.

Schmeiser

Schmeiser, Bruce (1983), Recent advances in generating observations from
discrete random variates, Computer Science and Statistics: Proceedings of the
Fifteenth Symposium on the Interface, (edited by James E. Gentle), North-
Holland Publishing Company, Amsterdam, 154�160.

Schmeiser and Babu

Schmeiser, Bruce W. and A.J.G. Babu (1980), Beta variate generation via
exponential majorizing functions, Operations Research, 28, 917�926.

Schmeiser and Kachitvichyanukul

Schmeiser, Bruce and Voratas Kachitvichyanukul (1981), Poisson Random
Variate Generation, Research Memorandum 81�4, School of Industrial
Engineering, Purdue University, West Lafayette, Ind.

Schmeiser and Lal

Schmeiser, Bruce W. and Ram Lal (1980), Squeeze methods for generating
gamma variates, Journal of the American Statistical Association, 75, 679�682.

A-20 � Appendix A: References IMSL C/Stat/Library

Searle

Searle, S.R. (1971), Linear Models, John Wiley & Sons, New York.

Seber

Seber, G.A.F. (1984), Multivariate Observations, John Wiley & Sons, New York.

Snedecor and Cochran

Snedecor and Cochran (1967) Statistical Methods, 6th edition, Iowa State
University Press.

Snedecor, George W. & Cochran, William G.

Snedecor, George W. and Cochran, William G. (1967) Statistical Methods, 6th
edition, Iowa State University Press, 296-298.

Shampine

Shampine, L.F. (1975), Discrete least-squares polynomial fits, Communications
of the ACM, 18, 179�180.

Siegal

Siegal, Sidney (1956), Nonparametric Statistics for the Behavioral Sciences,
McGraw-Hill, New York.

Singleton

Singleton, R.C. (1969), Algorithm 347: An efficient algorithm for sorting with
minimal storage, Communications of the ACM, 12, 185�187.

Smirnov

Smirnov, N.V. (1939), Estimate of deviation between empirical distribution
functions in two independent samples (in Russian), Bulletin of Moscow
University, 2, 3�16.

Smith and Dubey

Smith, H., and S. D. Dubey (1964), "Some reliability problems in the chemical
industry", Industrial Quality Control, 21 (2), 1964, 64-70.

Snedecor and Cochran

Snedecor, George W. and William G. Cochran (1967), Statistical Methods, 6th
ed., Iowa State University Press, Ames, Iowa.

IMSL C/Stat/library Appendix A: References � A-21

Sposito

Sposito, Vincent A. (1989), Some properties of Lp-estimators, in Robust
Regression: Analysis and Applications (edited by Kenneth D. Lawrence and
Jeffrey L. Arthur), Marcel Dekker, New York, 23�58.

Spurrier and Isham

Spurrier, John D. and Steven P. Isham (1985), Exact simultaneous confidence
intervals for pairwise comparisons of three normal means, Journal of the
American Statistical Association, 80, 438�442.

Stablein, Carter, and Novak
Stablein, D.M, W.H. Carter, and J.W. Novak (1981), Analysis of survival data
with nonproportional hazard functions, Controlled Clinical Trials, 2, 149–159.

Stahel

Stahel, W. (1981), Robuste Schatzugen: Infinitesimale Opimalitat und
Schatzugen von Kovarianzmatrizen, Dissertation no. 6881, ETH, Zurich.

Steel and Torrie

Steel and Torrie (1960) Principles and Procedures of Statistics, McGraw-Hill.

Stephens

Stephens, M.A. (1974), EDF statistics for goodness of fit and some comparisons,
Journal of the American Statistical Association, 69, 730�737.

Stirling

Stirling, W.D. (1981), Least squares subject to linear constraints, Applied
Statistics, 30, 204�212. (See correction, p. 357.)

Stoline

Stoline, Michael R. (1981), The status of multiple comparisons: simultaneous
estimation of all pairwise comparisons in one-way ANOVA designs,
The American Statistician, 35, 134�141.

Strecok

Strecok, Anthony J. (1968), On the calculation of the inverse of the error
function, Mathematics of Computation, 22, 144�158.

A-22 � Appendix A: References IMSL C/Stat/Library

Tanner and Wong
Tanner, Martin A., and Wing H. Wong (1983), The estimation of the hazard
function from randomly censored data by the kernel method, Annals of Statistics,
11, 989–993.

Tanner, Martin A., and Wing H. Wong (1984), Data-based nonparametric
estimation of the hazard function with applications to model diagnostics and
exploratory analysis, Journal of the American Statistical Association, 79, 123–
456.

Taylor and Thompson

Taylor, Malcolm S., and James R. Thompson (1986), Data based random number
generation for a multivariate distribution via stochastic simulation,
Computational Statistics & Data Analysis, 4, 93�101.

Tezuka

Tezuka, S. (1995), Uniform Random Numbers: Theory and Practice. Academic
Publishers, Boston.

Thompson

Thompson, James R, (1989), Empirical Model Building, John Wiley & Sons,
New York.

Tucker and Lewis

Tucker, Ledyard and Charles Lewis (1973), A reliability coefficient for maximum
likelihood factor analysis, Psychometrika, 38, 1�10.

Tukey

Tukey, John W. (1962), The future of data analysis, Annals of Mathematical
Statistics, 33, 1�67.

Velleman and Hoaglin

Velleman, Paul F. and David C. Hoaglin (1981), Applications, Basics, and
Computing of Exploratory Data Analysis, Duxbury Press, Boston.

Verdooren

Verdooren, L. R. (1963), Extended tables of critical values for Wilcoxon's test
statistic, Biometrika, 50, 177�186.

Wallace

Wallace, D.L. (1959), Simplified Beta-approximations to the Kruskal-Wallis H-
test, Journal of the American Statistical Association, 54, 225�230.

IMSL C/Stat/library Appendix A: References � A-23

Weisberg

Weisberg, S. (1985), Applied Linear Regression, 2d ed., John Wiley & Sons,
New York.

Woodfield

Woodfield, Terry J. (1990), Some notes on the Ljung-Box portmanteau statistic,
American Statistical Association 1990 Proceedings of the Statistical Computing
Section, 155–160.

Yates, F.

Yates, F. (1936) A new method of arranging variety trials involving a large
number of varieties. Journal of Agricultural Science, 26, 424-455.

A-24 � Appendix A: References IMSL C/Stat/Library

Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library � B- 1

Appendix B: Alphabetical Summary
of Routines

Function Purpose Statement Page
anova_balanced Analyzes a balanced complete experimental design for

a fixed, random, or mixed model.
256

anova_factorial Analyzes a balanced factorial design with fixed effects. 239

anova_nested Analyzes a completely nested random model with
possibly unequal numbers in the subgroups.

247

anova_oneway Analyzes a one-way classification model. 230

arma Computes least-square estimates of parameters for an
ARMA model.

517

arma_forecast Computes forecasts and their associated probability
limits for an ARMA model.

527

autocorrelation Computes the sample autocorrelation function of a
stationary time series.

541

beta Evaluates the complete beta function. 901

beta_cdf Evaluates the beta probability distribution function. 730

beta_incomplete Evaluates the real incomplete beta function. 903

beta_inverse_cdf Evaluates the inverse of the beta distribution function. 731

binomial_cdf Evaluates the binomial distribution function. 720

binomial_coefficient Evaluates the binomial coefficient. 900

binomial_pdf Evaluates the binomial probability function. 722

bivariate_normal_cdf Evaluates the bivariate normal distribution function. 732

box_cox_transform Performs a Box-Cox transformation. 537

categorical_glm Analyzes categorical data using logistic, Probit,
Poisson, and other generalized linear models.

425

chi_squared_cdf Evaluates the chi-squared distribution function. 734

B-2 � Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library

Function Purpose Statement Page
chi_squared_inverse_cdf Evaluates the inverse of the chi-squared distribution

function.
736

chi_squared_test Performs a chi-squared goodness-of-fit test. 482

cluster_hierarchical Performs a hierarchical cluster analysis given a
distance matrix.

590

cluster_k_means Performs a K-means (centroid) cluster analysis. 598

cluster_number Computes cluster membership for a hierarchical cluster
tree.

594

cochran_q_test Performs a Cochran Q test for related observations. 472

contingency_table Performs a chi-squared analysis of a two-way
contingency table.

404

continuous_table_setup Sets up table to generate pseudorandom numbers from
a general continuous distribution.

812

covariances Computes the sample variance-covariance or
correlation matrix.

185

cox_stuart_trends_test Performs the Cox and Stuart’ sign test for trends in
location and dispersion.

452

crd_factorial Analyzes data from balanced and unbalanced
completely randomized experiments.

267

crosscorrelation Computes the sample cross-correlation function of two
stationary time series

546

ctime Returns the number of CPU seconds used. 911

data_sets Retrieves a commonly analyzed data set. 890

difference Differences a seasonal or nonseasonal time series. 532

discrete_table_setup Sets up a table to generate pseudorandom numbers
from a general discrete distribution.

781

discriminant_analysis Performs discriminant function analysis. 628

dissimilarities Computes a matrix of dissimilarities (or similarities)
between the columns (or rows) of a matrix.

586

error_code Returns the code corresponding to the error message
from the last function called.

885

error_options Sets various error handling options. 879

exact_enumeration Computes exact probabilities in a two-way contingency
table, using the total enumeration method.

417

exact_network Computes exact probabilities in a two-way contingency
table using the network algorithm.

419

Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library � B- 3

Function Purpose Statement Page
F_cdf Evaluates the F distribution function. 742

F_inverse_cdf Evaluates the inverse of the F distribution function. 744

factor_analysis Extracts initial factor-loading estimates in factor
analysis.

609

faure_next_point Computes a shuffled Faure sequence 856

friedmans_test Performs Friedman’s test for a randomized complete
block design.

467

gamma Evaluates the real gamma functions. 905

gamma_cdf Evaluates the gamma distribution function. 745

gamma_incomplete Evaluates the incomplete gamma function. 907

gamma_inverse_cdf Evaluates the inverse of the gamma distribution
function.

747

garch Computes estimates of the parameters of
a GARCH(p, q) model

566

homogeneity Conducts Bartlett’s and Levene’s tests of the
homogeneity of variance assumption in analysis of
variance.

378

hypergeometric_cdf Evaluates the hypergeometric distribution function. 723

hypergeometric_pdf Evaluates the hypergeometric probability function. 725

hypothesis_partial Constructs a completely testable hypothesis. 96

hypothesis_scph Sums of cross products for a multivariate hypothesis. 101

hypothesis_test Tests for the multivariate linear hypothesis. 106

k_trends_test Performs k-sample trends test against ordered
alternatives.

475

kalman Performs Kalman filtering and evaluates the likelihood
function for the state-space model.

571

kaplan_meier_estimates Computes Kaplan-Meier estimates of survival
probabilities in stratified samples.

654

kolmogorov_one Performs a Kolmogorov-Smirnov’s one-sample test for
continuos distributions.

494

kolmogorov_two Performs a Kolmogorov-Smirnov’s two-sample test 497

kruskal_wallis_test Performs a Kruskal-Wallis’s test for identical
population medians.

465

lack_of_fit Performs lack-of-fit test for an univariate time series or
transfer function given the appropriate correlation
function.

563

B-4 � Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library

Function Purpose Statement Page
latin_square Analyzes data from latin-square experiments. 288

lattice Analyzes balanced and partially-balanced lattice
experiments.

297

life_tables Produces population and cohort life tables. 712

Lnorm_regression Fits a multiple linear regression model using criteria
other than least squares.

168

log_beta Evaluates the log of the real beta function. 904

log_gamma Evaluates the logarithm of the absolute value of the
gamma function.

909

machine (float) Returns information describing the computer's floating-
point arithmetic.

888

machine (integer) Returns integer information describing the computer's
arithmetic.

886

mat_mul_rect Computes the transpose of a matrix, a matrix-vector
product, a matrix-matrix product, a bilinear form, or
any triple product.

893

multi_crosscorrelation Computes the multichannel cross-correlation function
of two mutually stationary multichannel time series.

552

multiple_comparisons Performs Student-Newman-Keuls multiple
comparisons test.

385

multivar_normality_test Computes Mardia’s multivariate measures of skewness
and kurtosis and tests for multivariate normality.

501

noether_cyclical_trend Performs the Noether’s test for cyclical trend. 449

non_central_chi_sq Evaluates the noncentral chi-squared distribution
function.

738

non_central_chi_sq_inv Evaluates the inverse of the noncentral chi-squared
function.

740

non_central_t_cdf Evaluates the noncentral Student’s t distribution
function.

754

non_central_t_inv_cdf Evaluates the inverse of the noncentral Student’s t
distribution function.

757

nonlinear_optimization Fits a nonlinear regression model using Powell's
algorithm.

159

nonlinear_regression Fits a nonlinear regression model. 149

nonparam_hazard_rate Performs nonparametric hazard rate estimation using
kernel functions and quasi-likelihoods.

703

Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library � B- 5

Function Purpose Statement Page
normal_cdf Evaluates the standard normal (Gaussian) distribution

function.
748

normal_inverse_cdf Evaluates the inverse of the standard normal
(Gaussian) distribution function.

750

normal_one_sample Computes statistics for mean and variance inferences
using a sample from a normal population.

7

normal_two_sample Computes statistics for mean and variance inferences
using samples from two normal population.

11

normality_test Performs a test for normality. 490

output_file Sets the output file or the error message output file. 874

page Sets or retrieves the page width or length. 867

partial_autocorrelation Computes the sample partial autocorrelation function
of a stationary time series.

560

partial_covariances Computes partial covariances or partial correlations
from the covariance or correlation matrix.

193

permute_matrix Permutes the rows or columns of a matrix. 898

permute_vector Rearranges the elements of a vector as specified by a
permutation.

 897

poisson_cdf Evaluates the Poisson distribution function. 726

poisson_pdf Evaluates the Poisson probability function. 728

poly_prediction Computes predicted values, confidence intervals, and
diagnostics after fitting a polynomial regression model.

140

poly_regression Performs a polynomial least-squares regression. 132

pooled_covariances Computes a pooled variance-covariance from the
observations.

198

principal_components Computes principal components. 603

prop_hazard_gen_lin Analyzes time event data via the proportional hazards
model.

660

random_arma Generates pseudorandom ARMA process numbers. 831

random_beta Generates pseudorandom numbers from a beta
distribution.

786

random_binomial Generates pseudorandom binomial numbers. 765

random_cauchy Generates pseudorandom numbers from a Cauchy
distribution.

 788

random_chi_squared Generates pseudorandom numbers from a chi-squared
distribution.

789

B-6 � Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library

Function Purpose Statement Page
random_exponential Generates pseudorandom numbers from a standard

exponential distribution.
791

random_exponential_mix Generates pseudorandom mixed numbers from a
standard exponential distribution.

792

random_gamma Generates pseudorandom numbers from a standard
gamma distribution.

794

random_general_continuous Generates pseudorandom numbers from a general
continuous distribution.

810

random_general_discrete Generates pseudorandom numbers from a general
discrete distribution using an alias method or optionally
a table lookup method.

777

random_geometric Generates pseudorandom numbers from a geometric
distribution.

766

random_GFSR_table_get Retrieves the current table used in the GFSR generator. 853

random_GFSR_table_set Sets the current table used in the GFSR generator. 853

random_hypergeometric Generates pseudorandom numbers from a
hypergeometric distribution.

768

random_logarithmic Generates pseudorandom numbers from a logarithmic
distribution.

770

random_lognormal Generates pseudorandom numbers from a lognormal
distribution.

796

random_multinomial Generates pseudorandom numbers from a multinomial
distribution.

821

random_mvar_from_data Generates pseudorandom numbers from a multivariate
distribution determined from a given sample.

819

random_neg_binomial Generates pseudorandom numbers from a negative
binomial distribution.

772

random_normal Generates pseudorandom numbers from a standard
normal distribution using an inverse CDF method.

798

random_normal_multivariate Generates pseudorandom numbers from a multivariate
normal distribution.

 815

random_npp Generates pseudorandom numbers from a
nonhomogeneous Poisson process.

835

random_option Selects the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

845

random_option_get Retrieves the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

846

Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library � B- 7

Function Purpose Statement Page
random_order_normal Generates pseudorandom order statistics from a

standard normal distribution.
827

random_order_uniform Generates pseudorandom order statistics from a
uniform (0, 1) distribution

829

random_orthogonal_matrix Generates a pseudorandom orthogonal matrix
or a correlation matrix.

816

random_permutation Generates a pseudorandom permutation. 839

random_poisson Generates pseudorandom numbers from a Poisson
distribution.

774

random_sample Generates a simple pseudorandom sample from a finite
population.

842

random_sample_indices Generates a simple pseudorandom sample of indices. 840

random_seed_get Retrieves the current value of the seed used in the
IMSL random number generators.

847

random_seed_set Initializes a random seed for use in the IMSL random
number generators.

850

random_sphere Generates pseudorandom points on a unit circle or K-
dimensional sphere.

823

random_stable Sets up a table to generate pseudorandom numbers
from a general discrete distribution.

800

random_student_t Generates pseudorandom Student's t. 802

random_substream_seed_get Retrieves a seed for the congruential generators that
do not do shuffling that will generate random numbers
beginning 100,000 numbers farther along.

848

random_table_get Retrieves the current table used in the shuffled
generator.

852

random_table_set Sets the current table used in the shuffled generator. 851

random_table_twoway Generates a pseudorandom two-way table. 825

random_triangular Generates pseudorandom numbers from a triangular
distribution.

803

random_uniform Generates pseudorandom numbers from a uniform (0,
1) distribution.

804

random_uniform_discrete Generates pseudorandom numbers from a discrete
uniform distribution.

775

random_von_mises Generates pseudorandom numbers from a von Mises
distribution.

806

B-8 � Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library

Function Purpose Statement Page
random_weibull Generates pseudorandom numbers from a Weibull

distribution.
808

randomness_test Performs a test for randomness. 505

ranks Computes the ranks, normal scores, or exponential
scores for a vector of observations.

36

rcbd_factorial Analyzes data from balanced and unbalanced
randomized complete-block experiments.

279

regression Fits a multiple linear regression model using least
squares.

64

regression_prediction Computes predicted values, confidence intervals, and
diagnostics after fitting a regression model.

85

regression_selection Selects the best multiple linear regression models. 112

regression_stepwise Builds multiple linear regression models using forward
selection, backward selection or stepwise selection.

123

regression_summary Produces summary statistics for a regression model
given the information from the fit.

77

regressors_for_glm Generates regressors for a general linear model. 56

robust_covariances Computes a robust estimate of a covariance matrix and
mean vector.

204

sign_test Performs a sign test. 442

simple_statistics Computes basic univariate statistics. 2

sort_data Sorts observations by specified keys, with option to
tally cases into a multi-way frequency table.

27

split_plot Analyzes a wide variety of split-plot experiments with
fixed, mixed or random factors.

316

split_split_plot Analyzes data from split-split-plot experiments. 329

strip_plot Analyzes data from strip-plot experiments. 345

strip_split_plot Analyzes data from strip-split-plot experiments. 355

survival_estimates Estimates using various parametric models. 697

survival_glm Analyzes survival data using a generalized linear
model.

673

t_cdf Evaluates the Student's t distribution function. 751

t_inverse_cdf Evaluates the inverse of the Student's t distribution
function.

753

table_oneway Tallies observations into one-way frequency table. 18

table_twoway Tallies observations into a two-way frequency table. 22

Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library � B- 9

Function Purpose Statement Page
tie_statistics Computes tie statistics for a sample of observations. 458

version Returns integer information describing the version of
the library, license number, operating system, and
compiler.

878

wilcoxon_rank_sum Performs a Wilcoxon rank sum test. 460

wilcoxon_sign_rank Performs a Wilcoxon sign rank test. 445

write_matrix Prints a rectangular matrix (or vector) stored in
contiguous memory locations.

861

write_options Sets or retrieves an option for printing a matrix. 868

yates Estimates missing observations in designed
experiments using Yate’s method.

390

IMSL/C/Stat/Library Appendix B: Alphabetical Summary of Routines � B-11

IMSL C/Stat/Library Index � i

Index

A

alpha factor analysis 619
ANOVA

balanced 256
factorial 239
multiple comparisons 385
nested 247
oneway 230

ANSI C vii
ARIMA models

forecasts 527
least-square estimates 517

association, measures of 410
Autoregressive Moving Average

Model 516

B

backward selection 123
balanced 256
balanced experimental design 256
beta distribution function 730

inverse 731
beta distribution, simulation 786
beta functions 901, 903, 904
binomial coefficient 900
binomial distribution 720
binomial distributions 760, 765, 772,

781, 812, 1, 6, 7
binomial probability 722
bivariate normal distribution

function 732
Bonferroni method 234
Box-Cox transformation 537

C

Cartesian coordinates 824
cauchy distributions 788
chi-squared analysis 404

chi-squared distribution function
734, 736

chi-squared distributions 789
chi-squared goodness-of-fit test 482
chi-squared statistics 403, 408
chi-squared test 481
classification model

one-way 230
cluster analysis 583, 598
cluster membership 594, 2
cluster_hierarchical 590
cluster_number 594
Cochran Q test 472
coefficient

excess (kurtosis) 2
skewness 2
variation 6

compiler 878
computer constants 886, 888
confidence intervals 140

mean 3
constants 886, 888
contingency coefficient 408
contingency tables 417, 419

two-way 404
correlation matrix 185, 816, 6, 7
correlations 193
counts 2, 27
covariances 204
Cox and Stuart sign test 452
CPU 911
Cramer’s V 408
Crd factorial 267

factorial experiments 273
pooled location interaction 273
unbalanced 267, 2
unbalanced completely

randomized experiments 267
crosscorrelation 546
cross-correlation function 515, 546,

552, 654, 660, 703, 712, 2, 4

D

data sets 890
deviation, standard 2
diagnostic checking 516
diagnostics 140
discrete uniform distributions 775
discriminant function analysis 628
dissimilarities 586
distribution functions

beta 730

ii � Index IMSL C/Stat/Library

inverse 731
bivariate normal 732
chi-squared 734

inverse 736
chi-squared, noncentral 738, 740

inverse 740
F_cdf

inverse 742
F_inverse_cdf 744
gamma 745
Gaussian 748
hypergeometric 723
inverse 750
normal 748
Poisson 726
Student’s t 751

inverse 753
Student’s t, noncentral 754

inverse 757
Dunn-Sidák method 234

E

eigensystem analysis 584
empirical tests 764
error handling xiii, 879, 885, 913
error messages 874
estimate of scale

simple robust 6
excess 5
exponential distribution, simulation

791
exponential scores 36

F

F statistic 16
factor analysis 584, 609
factorial 239
factorial design

analysis 239
Faure 858
Faure sequence 856, 857

faure_next_point 857
finite difference gradient 159
finite population 842
Fisher’s LSD 235
forecasting 516
forecasts

ARMA models 527
GARCH 566

forward selection 123
frequency tables 18, 22

multi-way 27
Friedman’s test 467

G

gamma distribution function 745
gamma distribution, simulation 794
gamma functions 905, 907, 909
gamma_inverse_cdf 747
GARCH

(Generalized Autoregressive
Conditional Heteroskedastic)
566

Gaussian distribution functions 748
inverse 750

general continuous distribution 810
general discrete distribution 777,

778, 781, 812, 1, 2, 7
general distributions 481
general linear models 56
Generalized Feedback Shift Register

762
generalized feedback shift register

method 761
generalized linear models 403
geometric distributions 766
GFSR 846
GFSR generator 762, 853
goodness-of-fit tests 481
Gray code 859

H

Haar measure 817
hierarchical cluster analysis 590, 2
hierarchical cluster tree 594
Homogeneity 378
hypergeometric distribution function

723
hypergeometric distributions 768
hypergeometric_pdf 725
hyper-rectangle 857
hypothesis 96, 101, 106

I
image analysis 618
integrated rate function 837

K

Kalman filtering 571
Kaplan_meier estimates 655

IMSL C/Stat/Library Index � iii

Kaplan_meier_estimates 654
Kaplan-Meier estimates 3

computes 654
Kappa analysis 403
K-dimensional sphere 823
kernel functions 654, 703, 4
K-means analysis 598
Kolmogorov one-sample test 494
Kolmogorov two-sample test 497
Kruskal-Wallis test 465
k-sample trends test 475
kurtosis 2, 5

L

lack-of-fit test 563
lack-of-fit tests 52
Latin square 288
Lattice 297

3x3 balanced-lattice 302
balanced lattice experiments 302
intra-Block Error 303
partially-balanced lattice

experiments 297, 302
Least Absolute Value 55, 168, 172,

180
Least Maximum Value 55, 168, 184
Least Squares

Alternatives
Least Absolute Value 55
Least Maximum Value 55
Lp Norm 55

least-squares fit 64, 168, 247, 256,
445, 449, 452, 458, 467, 494,
497, 560

Lebesque measure 858
library version 878
linear dependence 48
linear discriminant function analysis

628
linear regression

multiple 44
simple 44

logarithmic distributions 770
low-discrepancy 859
Lp Norm 55, 173

M

MAD (Median Absolute Deviation)
6

Mardia’s multivariate measures 503
Mardia’s multivariate tests 501

matrices 586, 893, 2
matrix of dissimilarities 586, 2
matrix storage modes ix
maximum 2, 5
maximum likelihood estimates 577
mean 2, 5, 7, 9

for two normal populations 11
normal population 7

measures of association 403, 409
measures of prediction 410
measures of uncertainty 410
median 6

absolute deviation 6
memory allocation x
minimum 2, 5
missing values 55
models 149

general linear 56
multiple linear regression 112
nonlinear regression 50
polynomial 45
polynomial regression 140

Monte Carlo applications 764
multinomial distribution 821
Multiple comparisons 385
Multiple comparisons test

Bonferroni, Tukey’s, or Duncan’s
MRT 385

Student-Newman-Keuls 385
multiple linear regression models 64,

112, 123, 168, 247, 256, 445,
449, 452, 458, 467, 494, 497,
560

multiple_crosscorrelation 552
multiplicative congruential generator

762
multiplicative generator 762
multiplying matrices 893
multivariate distribution 760, 819, 6
multivariate general linear

hypothesis 101, 106
multivariate normal distribution,

simulation 815

N

nested 247
nested random model 215, 247, 251
Noether test 449
non-ANSI C vii
noncentral chi-squared distribution

function 738
inverse 740

iv � Index IMSL C/Stat/Library

noncentral Student’s t distribution
function 754, 757

nonhomogeneous Poisson process
835

nonlinear model 159
nonlinear regression 149
nonlinear regression models 50, 149
nonparam_hazard_rate 703
nonparametric hazard rate estimation

703, 4
nonuniform generators 764
normal distribution function 750
normal distribution, simulation 798
normal populations

mean 7
variance 7

normal scores 36
normality test 490

O

observations
number of 2

oneway 230
one-way classification model 230
one-way frequency table 18
operating system 878
order statistics 827, 829
orthogonal matrix 816
output files 874
overflow xiii

P

parameter estimation 516
partial correlations 193
partial covariances 193
partially tested hypothesis 96
permutations 897, 898
phi 408
Poisson distribution function 726
Poisson distribution, simulation 774
poisson_pdf 728
polynomial models 45
polynomial regression 132
polynomial regression models 140
pooled variance-covariance 198
population 712, 4
predicted values 140
prediction coefficient 410
principal components 603
printing

matrices 861

options 868
retrieving page size 867
setting paper size 867
vectors 861

probability limits
ARMA models 527

prop_hazards_gen_lin 660
pseudorandom number generators

481
pseudorandom numbers 760, 778,

781, 796, 802, 806, 808, 812,
2, 6

pseudorandom order statistics 760, 7
pseudorandom orthogonal matrix

760, 7
pseudorandom permutation 839
pseudorandom points 760, 7
pseudorandom sample 760, 840, 7
p-values 408

Q

quadratic discriminant function
analysis 628

R

random numbers
beta distribution 786
exponential distribution 791
gamma distribution 794
Poisson distribution 774
seed

current value 847, 7
initializing 850

selecting generator 845, 846
random numbers generators 798
randomness test 505
range 2, 6
ranks 36
Rcbd factorial 279
regression models 44, 77, 85
regressors 56
robust covariances 204

S

sample autocorrelation function 541
sample correlation function 516
sample partial autocorrelation

function 560
Scheffé method 234
scores

IMSL C/Stat/Library Index � v

exponential 36
normal 36

seed 848
Seed 763
serial number 878
shuffled generator 851, 852
sign test 442
simulation of random variables 761
skewness 2, 5
Split plot 316

blocking factor 323
completely randomized 316
completely randomized design 323
experiments 316, 8
fixed effects 323
IMSLS_RCBD default setting 324
random effects 325
randomized complete block design

316, 323
randomizing whole-plots 324
split plot factor 324
split plot factors 323
whole plot 323
whole plot factor 324
whole plot factors 323

Split Plots
whole-plots 316

Split-split plot 329
split-plot factors 330
split-split-plot experiments 329
sub-plot factors 330
whole plot factors 330

stable distribution 800
standard deviation 2, 9
standard errors 408
state vector 571
statespace model 571
stepwise selection 123
Strip plot 345
Strip-split plot 355
Student’s t distribution function 751

inverse 753
summary statistics 50
survival probabilities 654, 655, 3

T

t statistic 15
tests for randomness 481
Thread Safe viii

multithreaded application viii
single-threaded application ix
threads and error handling 915

tie statistics 458
time domain methodology 516
time event data 653, 660, 5
time series 516, 831

difference 532
transformation 516
transformations 54
transposing matrices 893
triangular distributions 803
Tukey method 233
Tukey-Kramer method 233
two-way contingency table 826
two-way frequency tables 22
two-way table 825

U

uncertainty, measures of 410
underflow xiii
uniform distribution, simulation 804
unit circle 760, 7
unit sphere 824
univariate statistics 2, 425, 673, 697,

792
update equations 572
user-supplied gradient 159

V

variable selection 45
variance 2, 5, 7

for two normal populations 11
normal population 7

variance-covariance matrix 185
variation, coefficient of 6

W

weighted least squares 50
Wilcoxon rank sum test 460
Wilcoxon signed rank test 445
Wilcoxon two-sample test 466

	C/Stat Library Volume 2 - Version 5.5
	Table of Contents
	Chapter 8: Time Series and Forecasting
	Routines
	Usage Notes
	
	General Methodology
	Time Domain Methodology
	ARIMA Model (Autoregressive Integrated Moving Average)

	arma
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors

	arma_forecast
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	difference
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Fatal Errors

	box_cox_transform
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Fatal Errors

	autocorrelation
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	crosscorrelation
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	multi_crosscorrelation
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	partial_autocorrelation
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	lack_of_fit
	
	Synopsis
	Required Arguments
	Optional Arguments
	Description
	Example

	garch
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	kalman
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example 1
	Example 2

	Chapter 9: Multivariate Analysis
	Routines
	Usage Notes
	Cluster Analysis
	Principal Components
	Factor Analysis
	Steps in a Factor Analysis

	dissimilarities
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arugments
	Optional Arguments
	Description
	Example
	Output

	cluster_hierarchical
	
	Synopsis
	Required Arguments
	Synopsis with Optional Arugments
	Optional Arguments
	Description
	Example
	Output

	cluster_number
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arugments
	Optional Arguments
	Description
	Example 1
	Output
	Example 2
	Output

	cluster_k_means
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Warning Errors

	principal_components
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors

	factor_analysis
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Comments
	Examples
	Example 1
	Example 2
	Example 3
	Warning Errors
	Fatal Errors

	discriminant_analysis
	
	Synopsis with Optional Arguments
	Optional Arguments
	Comments
	Return Value
	Description
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	Chapter 10: Survival and Reliability Analysis
	Routines
	Usage Notes
	kaplan_meier_estimates
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	prop_hazards_gen_lin
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Programming Notes
	Example

	survival_glm
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Comments
	Description
	Computational Details
	Programming Notes
	Examples
	Example 1
	Example 2
	Example 3
	Warning Errors
	Fatal Error

	survival_estimates
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Warning Errors
	Fatal Error

	nonparam_hazard_rate
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Programming Notes
	Example
	Fatal Errors

	life_tables
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	Chapter 11: Probability Distribution Functions and Inverses
	Routines
	Usage Notes
	Continuous Distributions

	binomial_cdf
	
	Return Value
	Description
	Example
	Informational Errors

	binomial_pdf
	
	Return Value
	Description
	Example 1

	hypergeometric_cdf
	
	Return Value
	Description
	Example
	Informational Errors
	Fatal Errors

	hypergeometric_pdf
	
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Output

	poisson_cdf
	
	Return Value
	Description
	Example
	Informational Errors

	poisson_pdf
	
	Synopsis
	Required Arguments
	Return Value
	Description
	Example

	beta_cdf
	
	Return Value
	Description
	Example

	beta_inverse_cdf
	
	Return Value
	Description
	Example

	bivariate_normal_cdf
	
	Return Value
	Description
	Example

	chi_squared_cdf
	
	Return Value
	Description
	Example
	Informational Errors
	Alert Errors

	chi_squared_inverse_cdf
	
	Return Value
	Description
	Example
	Warning Errors

	non_central_chi_sq
	
	Return Value
	Description
	Example

	non_central_chi_sq_inv
	
	Return Value
	Description
	Example

	F_cdf
	
	Return Value
	Description
	Example

	F_inverse_cdf
	
	Return Value
	Description
	Example
	Fatal Errors

	gamma_cdf
	
	Return Value
	Description
	Example
	Informational Errors
	Fatal Errors

	gamma_inverse_cdf
	
	Synopsis
	Required Arguments
	Return Value
	Description
	Example
	Output

	normal_cdf
	
	Return Value
	Description
	Example

	normal_inverse_cdf
	
	Return Value
	Description
	Example

	t_cdf
	
	Return Value
	Description
	Example

	t_inverse_cdf
	
	Return Value
	Description
	Example
	Informational Errors

	non_central_t_cdf
	
	Return Value
	Description
	Example
	Output

	non_central_t_inv_cdf
	
	Return Value
	Description
	Example

	Chapter 12: Random Number Generation
	Routines
	Usage Notes
	Overview of Random Number Generation
	Basic Uniform Generators
	The Multiplicative Congruential Generators
	Shuffled Generators
	The Generalized Feedback Shift Register Generator
	Setting the Seed
	Timing Considerations
	Distributions Other than the Uniform
	Tests

	random_binomial
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_geometric
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_hypergeometric
	
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Fatal Errors

	random_logarithmic
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_neg_binomial
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_poisson
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_uniform_discrete
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_general_discrete
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example 1
	Example 2

	discrete_table_setup
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example 1
	Example 2

	random_beta
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_cauchy
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_chi_squared
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_exponential
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_exponential_mix
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_gamma
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_lognormal
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_normal
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Example

	random_stable
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_student_t
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description

	random_triangular
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_uniform
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_von_mises
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_weibull
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Warning Errors

	random_general_continuous
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example 1

	continuous_table_setup
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example 1

	random_normal_multivariate
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_orthogonal_matrix
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_mvar_from_data
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_multinomial
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_sphere
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_table_twoway
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_order_normal
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_order_uniform
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_arma
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors

	random_npp
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_permutation
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_sample_indices
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_sample
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example 1
	Example 2

	random_option
	
	Description
	Example

	random_option_get
	
	Return Value
	Description

	random_seed_get
	
	Return Value
	Description
	Example

	random_substream_seed_get
	
	Return Value
	Description
	Example

	random_seed_set
	
	Description
	Example

	random_table_set
	
	Description
	Example

	random_table_get
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_GFSR_table_set
	
	Description
	Example

	random_GFSR_table_get
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	faure_next_point
	
	Synopsis
	Required Arguments for imsls_faure_sequence_init
	Return Value for imsls_faure_sequence_init
	Required Arguments for imsls_faure_next_point
	Return Value for imsls_faure_next_point
	Required Arguments for imsls_faure_sequence_free
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	Chapter 13: Printing Functions
	Routines
	write_matrix
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Example 3

	page
	
	Example

	write_options
	
	Description
	Example

	Chapter 14: Utilities
	Routines
	output_file
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	File myfile
	Example 2

	version
	
	Return Value
	Description
	Example

	error_options
	
	Synopsis with Optional Arguments
	Optional Arguments
	Return Value
	Description
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	error_code
	
	Return Value
	Example

	machine (integer)
	
	Return Value
	Description
	Example

	machine (float)
	
	Return Value
	Description
	Example

	data_sets
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	mat_mul_rect
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	permute_vector
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	permute_matrix
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	binomial_coefficient
	
	Return Value
	Description
	Example

	beta
	
	Return Value
	Description
	Example
	Alert Errors
	Fatal Errors

	beta_incomplete
	
	Return Value
	Description
	Example

	log_beta
	
	Return Value
	Description
	Warning Errors
	Example

	gamma
	
	Return Value
	Description
	Alert Errors
	Warning Errors
	Example
	Fatal Errors

	gamma_incomplete
	
	Return Value
	Description
	Example
	Output
	Fatal Errors

	log_gamma
	
	Return Value
	Description
	Example
	Warning Errors
	Fatal Errors

	ctime
	
	Return Value
	Example

	Reference Material
	User Errors
	What Determines Error Severity
	Kinds of Errors and Default Actions
	Errors in Lower-level Functions
	Functions for Error Handling
	Threads and Error Handling
	Use of Informational Error to Determine Program Action
	Additional Examples

	Product Support
	Contacting Visual Numerics Support
	Consultation

	Appendix A: References
	
	
	Anderberg
	Breslow
	Cox
	Cox and Lewis
	Cox and Oakes
	Fuller
	Fushimi
	Jennrich and Sampson
	Patefield and Tandy
	Priestley
	Stablein, Carter, and Novak
	Tanner and Wong

	Appendix B: Alphabetical Summary of Routines
	Index

