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Introduction 

IMSL C/Stat/Library 
The IMSL C/Stat/Library is a library of C functions useful in scientific 
programming. Each function is designed and documented to be used in research 
activities as well as by technical specialists. A number of the example programs 
also show graphs of resulting output.  

Getting Started 
To use any of the C/Stat/Library functions, you must first write a program in C to 
call the function. Each function conforms to established conventions in 
programming and documentation. First priority in development is given to 
efficient algorithms, clear documentation, and accurate results. The uniform 
design of the functions makes it easy to use more than one function in a given 
application. Also, you will find that the design consistency enables you to apply 
your experience with one C/Stat/Library function to all other C functions that you 
use. 

ANSI C vs. Non-ANSI C 
All of the examples in this documentation conform to ANSI C. If you are not 
using ANSI C, you will need to modify your examples in functions that are 
declared or in those arrays that are initialized as type float. 

Non-ANSI C does not allow for automatic aggregate initialization, and thus, all 
auto arrays that are initialized as type float in ANSI C must be initialized as type 
static float in non-ANSI C. The following program contains arrays that are 
initialized as type float and also a user-defined function: 

1 #include <imsls.h>  
2  
3 float           fcn(int, float[], int, float[]);  
4  
5 main()  
6 {  
7     int         n_observations = 3,  
8                 n_parameters = 1,  
9                 n_independent = 1; 
10    float       *theta_hat; 



 

 
 

viii � Thread Safe Usage IMSL C/Stat/Library 

 

 

 

11    float       x[3] = {1.0, 2.0, 3.0};  
12    float       y[3] = {2.0, 4.0, 3.0}; 
13                     /* Evaluate the integral */  
14    theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters, 
15                n_observations, n_independent, x, y, 0); 
16                     /* Print the result and the exact answer */  
17    imsls_f_write_matrix("estimated coefficient", 1, 1, theta_hat, 0); 
18 } 
19 float fcn(int n_independent, float x[], int n_parameters,  
20           float theta[])  
21 {  
22    return exp(theta[0]*x[0]);  
23 } 

If using non-ANSI C, you will need to modify lines 3, 11, 12, 19, and 20 as 
follows: 

3  float          fcn(); /* Function is not prototyped */ 
     . 
     . 
     . 
11    static float       x[3] = {1.0, 2.0, 3.0};  
12    static float       y[3] = {2.0, 4.0, 3.0}; 
     . 
     . 
     . 
19  float fcn(n_independent, x, n_parameters, 
20            theta)     /*Declaration of variable names*/ 
20a int n_independent; 
20b float x[]; 
20c int n_parameters; 
20d float theta[];       /*Type definitions of variables*/ 

The imsls.h File 
The include file <imsls.h> is used in all the examples in this manual. This file 
contains prototypes for all IMSL-defined functions; the structures, 
Imsls_f_regression, Imsls_d_regression, Imsls_f_poly_regression, 
Imsls_d_poly_regression, Imsls_f_arma, and Imsls_d_arma; and the enumerated 
data types, Imsls_arma_method, Imsls_permute, Imsls_dummy_method,  
Imsls_write_options, Imsls_page_options, and Imsls_error.  

Thread Safe Usage 
On systems that support either POSIX threads or WIN32 threads, IMSL 
C/Stat/Library can be safely called from a multithreaded application.  When  
IMSL C/Stat/Library is used in a multithreaded application, the calling program 
must adhere to a few important guidelines. In particular, IMSL C/Stat/Library's 
implementation of signal handling, error handling, and I/O must be understood. 

Signal Handling 
When calling C/Stat/Library from a multithreaded application it is necessary to 
turn C/Stat/Library 's signal-handling capability off.  This is accomplished by 
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making a single call to imsls_error_options before any calls are made to 
C/Stat/Library. For an example of turning off  C/Stat/Library's internal-signal 
handling , see Chapter 14, “Utilities”, Example 3 of imsls_error_options.  

C/Stat/Library 's error handling in a multithreaded application behaves similarly 
to how it behaves in a single-threaded application.  The major difference is that 
an error stack exists for each thread calling C/Stat/Library  functions.  The result 
of separate error stacks for each thread is greater control of the error handler 
options for each thread.  Each thread can set its own options for the 
C/Stat/Library error handler using imsls_error_options.  For an example of 
setting error handler options for separate threads, see Chapter 14, “Utilities”,  
Example 3 of imsls_error_options.  

Routines that Produce Output 
A number of routines in C/Stat/Library can be used to produce output.  The 
function imsls_output_file can be used to control which file the output is 
directed.  In an application with a single thread of execution, a single call to 
imsls_output_file can be used to set the file to which the output will be 
directed.  In a multithreaded application each thread must call 
imsls_output_file to change the default setting of where output will be 
directed. See  Chapter 14, “Utilities”, Example 2 of imsls_output_ file for 
more details. 

Input Arguments 
In a multithreaded application attention must be given to the data sent to 
C/Stat/Library. Some arguments that may appear to be input-only are temporarily 
modified during the call and restored before returning to the caller. Care must be 
used to avoid usage of the same data space in separate threads calling functions in 
C/Stat/Library. 

Matrix Storage Modes 
In this section, the word matrix is used to refer to a mathematical object and the 
word array is used to refer to its representation as a C data structure. In the 
following list of array types, the C/Stat/Library functions require input consisting 
of matrix dimension values and all values for the matrix entries. These values are 
stored in row-major order in the arrays. 

Each function processes the input array and typically returns a pointer to a 
“result.” For example, in solving linear regression, the pointer points to the 
estimated coefficients. Normally, the input array values are not changed by the 
functions. 

In the C/Stat/Library, an array is a pointer to a contiguous block of data. An array 
is not a pointer to a pointer to the rows of the matrix. Typical declarations are as 
follows: 
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         float *a = {1, 2, 3, 4};  
         float b[2][2] = {1, 2, 3, 4};  
         float c[] = {1, 2, 3, 4}; 

Note: If you are using non-ANSI C and the variables are of type auto, the above 
declarations would need to be declared as type static float. 

General Mode 
A general matrix is a square n � n matrix. The data type of a general array can be 
int, float, or double. 

Rectangular Mode 
A rectangular matrix is an m � n matrix. The data type of a rectangular array can 
be int, float, or double. 

Symmetric Mode 

A symmetric matrix is a square n � n matrix A, such that AT = A. (The matrix  
AT is the transpose of A.) The data type of a symmetric array can be int, float, or 
double. 

Memory Allocation for Output Arrays 
Many functions return a pointer to an array containing the computed answers. If 
the function invocation uses the optional arguments 

IMSLS_RETURN_USER, float a[] 

then the computed answers are stored in the user-provided array a, and the 
pointer returned by the function is set to point to the user-provided array a. If an 
invocation does not use IMSLS_RETURN_USER, then a pointer to the function is 
internally initialized (through a memory allocation request to malloc) and stores 
the answers there. (To release this space, free can be used. Both malloc and 
free are standard C library functions declared in the header.) In this way, the 
allocation of space for the computed answers can be made either by the user or 
internally by the function. 

Similarly, other optional arguments specify whether additional computed output 
arrays are allocated by the user or are to be allocated internally by the function. 
For example, in many functions, the optional arguments 

IMSLS_ANOVA_TABLE, float **anova_table   (Output) 
IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 

specify two mutually exclusive optional arguments. If the first option is chosen,  
float **anova_table refers to the address of a pointer to an internally allocated 
array containing the analysis of variance statistics. On return, the pointer is 
initialized (through a memory allocation request to malloc), and the array is 
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stored there. Typically, float *anova_table is declared, &anova_table is used 
as an argument to this function, and free(anova_table) is used to release the 
space. In the second option, the analysis of variance statistics are stored in the 
user-provided array anova_table. 

Finding the Right Function 
The C/Stat/Library documentation is organized into chapters; each chapter 
contains functions with similar computational or analytical capabilities. To locate 
the right function for a given problem, use either the table of contents located in 
each chapter introduction or the alphabetical summary at the end of this manual. 

Often, the quickest way to use the C/Stat/Library is to find an example similar to 
your problem, then mimic the example. Each function documented has at least 
one example demonstrating its application. 

Organization of the Documentation 
This manual contains a concise description of each function with at least one 
example demonstrating the use of each function, including sample input and 
results. All information pertaining to a particular function is in one place within a 
chapter.  

Each chapter begins with an introduction followed by a table of contents listing 
the functions included in the chapter. Documentation of the functions consists of 
the following information: 

� Section Name: Usually, the common root for the type float and type double 
versions of the function. 

� Purpose: A statement of the purpose of the function. 

� Synopsis: The form for referencing the subprogram with required arguments 
listed. 

� Required Arguments: A description of the required arguments in the order of 
their occurrence. 

Input: Argument must be initialized; it is not changed by the function. 

Input/Output: Argument must be initialized; the function returns output 
through this argument. The argument cannot be a constant or an expression. 

Output: No initialization is necessary. The argument cannot be a constant 
or an expression; the function returns output through this argument. 

� Return Value: The value returned by the function. 

� Synopsis with Optional Arguments: The form for referencing the function 
with both required and optional arguments listed. 
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� Optional Arguments: A description of the optional arguments in the order of 
their occurrence. 

� Description: A description of the algorithm and references to detailed 
information. In many cases, other IMSL functions with similar or 
complementary functions are noted. 

� Examples: At least one application of this function showing input and 
optional arguments. 

� Errors: Listing of any errors that may occur with a particular function. A 
discussion on error types is given in the “User Errors” section of the Reference 
Material. The errors are listed by their type as follows: 

Informational Errors: List of informational errors that may occur with the 
function. 

Alert Errors: List of alert errors that may occur with the function. 

Warning Errors: List of warning errors that may occur with the function. 

Fatal Errors: List of fatal errors that may occur with the function. 

References: References are listed alphabetically by author. 

Naming Conventions 
Most functions are available in both a type float and a type double version, with 
names of the two versions sharing a common root. Some functions are also 
available in type int. The following list is of each type and the corresponding 
prefix of the function name in which multiple type versions exist: 

Type Prefix 
float  imsls_f_ 

double  imsls_d_ 

int  imsls_i_ 

The section names for the functions contain only the common root to make 
finding the functions easier. For example, the functions 
imsls_f_simple_statistics and imsls_d_simple_statistics can be 
found in Chapter 1, Basic Statistics,  in the “simple_statistics” section. 

Where appropriate, the same variable name is used consistently throughout the 
C/Stat/Library. For example, anova_table denotes the array containing the 
analysis of variance statistics and y denotes a vector of responses for a dependent 
variable. 

When writing programs accessing the C/Stat/Library, choose C names that do not 
conflict with IMSL external names. The careful user can avoid any conflicts with 
IMSL names if, in choosing names, the following rule is observed: 
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� Do not choose a name beginning with “imsls_” in any combination of 
uppercase or lowercase characters. 

Error Handling, Underflow, and Overflow 
The functions in the C/Stat/Library attempt to detect and report errors and invalid 
input. This error-handling capability provides automatic protection for the user 
without requiring the user to make any specific provisions for the treatment of 
error conditions. Errors are classified according to severity and are assigned a 
code number. By default, errors of moderate or higher severity result in messages 
being automatically printed by the function. Moreover, errors of highest severity 
cause program execution to stop. The severity level, as well as the general nature 
of the error, is designated by an “error type” with symbolic names IMSLS_FATAL, 
IMSLS_WARNING, etc. See the section “User Errors” in the Reference Material for 
further details. 

In general, the C/Stat/Library codes are written so that computations are not 
affected by underflow, provided the system (hardware or software) replaces an 
underflow with the value 0. Normally, system error messages indicating 
underflow can be ignored. 

IMSL codes also are written to avoid overflow. A program that produces system 
error messages indicating overflow should be examined for programming errors 
such as incorrect input data, mismatch of argument types, or improper 
dimensions. 

In many cases, the documentation for a function points out common pitfalls that 
can lead to failure of the algorithm. 

Printing Results 
Most functions in the C/Stat/Library do not print any of the results; the output is 
returned in C variables. The C/Stat/Library does contain some special functions 
just for printing arrays. For example, IMSL function imsls_f_write_matrix 
is convenient for printing matrices of type float. See Chapter 13, “Printing 
Functions,” for detailed descriptions of these functions. 

Missing Values 
Some of the functions in the C/Stat/Library allow the data to contain missing 
values. These functions recognize as a missing value the special value referred to 
as “Not a Number” or NaN. The actual value is different on different computers, 
but it can be obtained by reference to the function imsls_f_machine, described 
in Chapter 14, “Utilities”. 

The way that missing values are treated depends on the individual function and is 
described in the documentation for the function. 
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Passing Data to User-Supplied Functions  
In some cases it may be advantageous to pass problem-specific data to a user-
supplied function through the IMSL C/Stat/Library interface.  This ability can be 
useful if a user-supplied function requires data that is local to the user's calling 
function, and the user wants to avoid using global data to allow the user-supplied 
function to access the data.  Functions in IMSL C/Stat/Library that accept user-
supplied functions have an optional argument(s) that will accept an alternative user-
supplied function, along with a pointer to the data,  that allows user-specified data 
to be passed to the function.  The example below demonstrates this feature using the 
IMSL C/Stat/Library function imsls_f_kolmogorov_one and optional argument 
IMSLS_FCN_W_DATA. 

 
#include <imsls.h> 
#include <stdio.h> 
float cdf_w_data(float, void *data_ptr); 
float cdf(float); 
void main() 
{ 
  float *statistics=NULL, *diffs = NULL, *x=NULL; 
  int nobs = 100, nmiss; 
  float usr_data[] = {0.5, .2886751}; 
 
  imsls_random_seed_set(123457); 
  x = imsls_f_random_uniform(nobs, 0); 
 
  statistics = imsls_f_kolmogorov_one(cdf, nobs, x, 
          IMSLS_N_MISSING, &nmiss, 
          IMSLS_DIFFERENCES, &diffs, 
          IMSLS_FCN_W_DATA, cdf_w_data, usr_data, 
          0); 
  printf("D = %8.4f\n", diffs[0]); 
  printf("D+ = %8.4f\n", diffs[1]); 
  printf("D- = %8.4f\n", diffs[2]); 
  printf("Z = %8.4f\n", statistics[0]); 
  printf("Prob greater D one sided = %8.4f\n", statistics[1]); 
  printf("Prob greater D two sided = %8.4f\n", statistics[2]); 
  printf("N missing = %d\n", nmiss); 
} 
/*  
 * User function that accepts additional data in a (void*) pointer. 
 * This (void*) pointer can be cast to any type and dereferenced to  
 * get at any sort of data-type or structure that is needed.  
 * For example, to get at the data in this example 
 *  *((float*)data_ptr)   contains the value  0.5 
 *  *((float*)data_ptr+1) contains the value  0.2886751. 
 */ 
float cdf_w_data(float x, void *data_ptr) 
{ 
  float mean, std, z; 
  mean = *((float*)data_ptr); 
  std =  *((float*)data_ptr+1); 
 
  z = (x-mean)/std; 
  return(imsls_f_normal_cdf(z)); 
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} 
/*  Dummy function to satisfy C prototypes. */ 
float cdf(float x) 
{ 
  return; 
}  
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Chapter 1: Basic Statistics

Routines 
1.1 Simple Summary Statistics 

Univariate summary statistics ................................simple_statistics 2 
Mean and variance inference  
for a single normal population......................... normal_one_sample 7 
Inferences for two normal populations.............normal_two_sample 11 

1.2 Tabulate, Sort, and Rank 
Tally observations into a one-way frequency table .... table_oneway 18 
Tally observations into a two-way frequency table..... table_twoway 22 
Sort data with options to tally cases 
into a multi-way frequency table........................................ sort_data 27 
Ranks, normal scores, or exponential scores......................... ranks 36 

Usage Notes 
The functions for computations of basic statistics generally have relatively simple 
arguments. In most cases, the first required argument is the number of 
observations. The data are input in either a one- or two-dimensional array. As 
usual, when a two-dimensional array is used, the rows contain observations and 
the columns represent variables. Most of the functions in this chapter allow for 
missing values. Missing value codes can be set by using function 
imsls_f_machine, described in Chapter 14, Utilities. 

Several functions in this chapter perform statistical tests. These functions 
generally return a “p-value” for the test, often as the return value for the C 
function. The p-value is between 0 and 1 and is the probability of observing data 
that would yield a test statistic as extreme or more extreme under the assumption 
of the null hypothesis. Hence, a small p-value is evidence for the rejection of the 
null hypothesis. 
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simple_statistics 
Computes basic univariate statistics. 

Synopsis 
#include <imsls.h> 
float *imsls_f_simple_statistics (int n_observations, 

int n_variables, float x[], ..., 0) 

The type double function is imsls_d_simple_statistics. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

int n_variables   (Input) 
Number of variables. 

float x[]   (Input) 
Array of size n_observations � n_variables containing the data 
matrix. 

Return Value 
A pointer to an array containing some simple statistics for each of the columns in 
x. If IMSLS_MEDIAN and IMSLS_MEDIAN_AND_SCALE are not used as optional 
arguments, the size of the matrix is 14 � n_variables. The columns of this 
matrix correspond to the columns of x, and the rows contain the following 
statistics: 

Row Statistic 
0 mean 

1 variance 

2 standard deviation 

3 coefficient of skewness 

4 coefficient of excess (kurtosis) 

5 minimum value 

6 maximum value 

7 range 

8 coefficient of variation (when defined) 
If the coefficient of variation is not defined, 0 is returned. 

9 number of observations (the counts) 
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10 lower confidence limit for the mean (assuming normality) 
The default is a 95-percent confidence interval. 

11 upper confidence limit for the mean (assuming normality) 

12 lower confidence limit for the variance (assuming normality) 
The default is a 95-percent confidence interval. 

13 upper confidence limit for the variance (assuming normality)) 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_simple_statistics (int n_observations, 

int n_variables, float x[], 
IMSLS_CONFIDENCE_MEANS, float confidence_means, 
IMSLS_CONFIDENCE_VARIANCES, float confidence_variances, 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_STAT_COL_DIM, int stat_col_dim, 
IMSLS_MEDIAN, or 
IMSLS_MEDIAN_AND_SCALE, 
IMSLS_MISSING_LISTWISE, or 
IMSLS_MISSING_ELEMENTWISE, 
IMSLS_FREQUENCIES, float frequencies[], 
IMSLS_WEIGHTS, float weights[], 
IMSLS_RETURN_USER, float simple_statistics[], 
0) 

Optional Arguments 
IMSLS_CONFIDENCE_MEANS, float confidence_means   (Input) 

Confidence level for a two-sided interval estimate of the means 
(assuming normality) in percent. Argument confidence_means must 
be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For a one-
sided confidence interval with confidence level c, set 
confidence_means = 100.0 � 2(100 � c). If 
IMSLS_CONFIDENCE_MEANS is not specified, a 95-percent confidence 
interval is computed. 

IMSLS_CONFIDENCE_VARIANCES, float confidence_variances   (Input) 
The confidence level for a two-sided interval estimate of the variances 
(assuming normality) in percent. The confidence intervals are symmetric 
in probability (rather than in length). For a one-sided confidence interval 
with confidence level c, set confidence_means  = 100.0 � 2(100 � c). 
If IMSLS_CONFIDENCE_VARIANCES is not specified, a 95-percent 
confidence interval is computed. 
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IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Column dimension of array x. 
Default: x_col_dim = n_variables 

IMSLS_STAT_COL_DIM, int stat_col_dim   (Input) 
Column dimension of the returned value array, or if 
IMSLS_RETURN_USER is specified, the column dimension of array 
simple_statistics. 
Default: stat_col_dim = n_variables 

IMSLS_MEDIAN, or 
IMSLS_MEDIAN_AND_SCALE 

Exactly one of these optional arguments can be specified in order to 
indicate the additional simple robust statistics to be computed. If 
IMSLS_MEDIAN is specified, the medians are computed and stored in 
one additional row (row number 14) in the returned matrix of simple 
statistics. If IMSLS_MEDIAN_AND_SCALE is specified, the medians, the 
medians of the absolute deviations from the medians, and a simple 
robust estimate of scale are computed, then stored in three additional 
rows (rows 14, 15, and 16) in the returned matrix of simple statistics. 

IMSLS_MISSING_LISTWISE, or 
IMSLS_MISSING_ELEMENTWISE 

If IMSLS_MISSING_ELEMENTWISE is specified, all non missing data for 
any variable is used in computing the statistics for that variable. If 
IMSLS_MISSING_LISTWISE is specified and if an observation (row of x) 
contains a missing value, the observation is excluded from computations 
for all variables. The default is IMSLS_MISSING_LISTWISE. In either 
case, if weights and/or frequencies are specified and the value of the 
weight and/or frequency is missing, the observation is excluded from 
computations for all variables. 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array of length n_observations containing the frequency for each 
observation. 
Default: Each observation has a frequency of 1 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_observations containing the weight for each 
observation. 
Default: Each observation has a weight of 1 

IMSLS_RETURN_USER, float simple_statistics[]   (Output) 
User-supplied array containing the matrix of statistics. If neither 
IMSLS_MEDIAN nor IMSLS_MEDIAN_AND_SCALE is specified, the 
matrix is 14 � n_variables. If IMSLS_MEDIAN is specified, the matrix 
is 15 � n_variables. If IMSLS_MEDIAN_AND_SCALE is specified, the 
matrix is 17 � n_variables. 



 

 
 

Description 
For the data in each column of x, imsls_f_simple_statistics computes the 
sample mean, variance, minimum, maximum, and other basic statistics. This 
function also computes confidence intervals for the mean and variance (under the 
hypothesis that the sample is from a normal population). 

Frequencies are interpreted as multiple occurrences of the other values in the 
observations. In other words, a row of x with a frequency variable having a value 
of 2 has the same effect as two rows with frequencies of 1. The total of the 
frequencies is used in computing all the statistics based on moments (mean, 
variance, skewness, and kurtosis). Weights are not viewed as replication factors. 
The sum of the weights is used only in computing the mean (the weighted mean is 
used in computing the central moments). Both weights and frequencies can be 0, 
but neither can be negative. In general, a 0 frequency means that the row is to be 
eliminated from the analysis; no further processing or error checking is done on 
the row. A weight of 0 results in the row being counted, and updates are made of 
the statistics. 

The definitions of some of the statistics are given below in terms of a single 
variable x of which the i-th datum is xi. 
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Minimum 
x ximin min� b g  

Maximum 
x ximax max� b g  
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Range 
x xmax min�  

Coefficient of Variation 
s
x

xw

w
wfor � 0  

Median 

median
middle  after sorting if  is odd
average of middle two 's if  is even

x
x n

x ni
i

i
l q � RST  

Median Absolute Deviation 
MAD = median {|xi � median {xj}|} 

Simple Robust Estimate of Scale 
MAD/�-1(3/4) 

where �-1(3/4) � 0.6745 is the inverse of the standard normal distribution 
function evaluated at 3/4. This standardizes MAD in order to make the scale 
estimate consistent at the normal distribution for estimating the standard deviation 
(Huber 1981, pp. 107�108). 

Example 
Data from Draper and Smith (1981) are used in this example, which includes  
5 variables and 13 observations. 

#include <imsls.h> 
 
#define N_VARIABLES             5 
#define N_OBSERVATIONS         13 
 
main() 
{ 
    float       *simple_statistics; 
    float       x[] = { 
         7., 26.,  6., 60.,  78.5, 
         1., 29., 15., 52.,  74.3, 
        11., 56.,  8., 20., 104.3, 
        11., 31.,  8., 47.,  87.6, 
         7., 52.,  6., 33.,  95.9, 
        11., 55.,  9., 22., 109.2, 
         3., 71., 17.,  6., 102.7, 
         1., 31., 22., 44.,  72.5, 
         2., 54., 18., 22.,  93.1, 
        21., 47.,  4., 26., 115.9, 
         1., 40., 23., 34.,  83.8, 
        11., 66.,  9., 12., 113.3, 
        10., 68.,  8., 12., 109.4}; 
    char        *row_labels[] = { 
        "means", "variances", "std. dev", "skewness", "kurtosis",  
        "minima", "maxima", "ranges", "C.V.", "counts", "lower mean",  
        "upper mean", "lower var", "upper var"}; 
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    simple_statistics = imsls_f_simple_statistics(N_OBSERVATIONS, 
        N_VARIABLES, x, 0); 
 
    imsls_f_write_matrix("* * * Statistics * * *\n", 14, N_VARIABLES, 
        simple_statistics, 
        IMSLS_ROW_LABELS,  row_labels, 
        IMSLS_WRITE_FORMAT, "%7.3f", 0); 
} 

Output 
                * * * Statistics * * * 
 
                  1        2        3        4        5 
means         7.462   48.154   11.769   30.000   95.423 
variances    34.603  242.141   41.026  280.167  226.314 
std. dev      5.882   15.561    6.405   16.738   15.044 
skewness      0.688   -0.047    0.611    0.330   -0.195 
kurtosis      0.075   -1.323   -1.079   -1.014   -1.342 
minima        1.000   26.000    4.000    6.000   72.500 
maxima       21.000   71.000   23.000   60.000  115.900 
ranges       20.000   45.000   19.000   54.000   43.400 
C.V.          0.788    0.323    0.544    0.558    0.158 
counts       13.000   13.000   13.000   13.000   13.000 
lower mean    3.907   38.750    7.899   19.885   86.332 
upper mean   11.016   57.557   15.640   40.115  104.514 
lower var    17.793  124.512   21.096  144.065  116.373 
upper var    94.289  659.817  111.792  763.434  616.688 

normal_one_sample 
Computes statistics for mean and variance inferences using a sample from a 
normal population. 

Synopsis 
#include <imsls.h> 
float imsls_f_normal_one_sample (int n_observations, float x[], ..., 

0) 

The type double function is imsls_d_normal_one_sample. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

float x[]   (Input) 
Array of length n_observations. 

Return Value 
The mean of the sample. 
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Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_normal_one_sample (int n_observations, float x[], 

IMSLS_CONFIDENCE_MEAN, float confidence_mean, 
IMSLS_CI_MEAN, float *lower_limit, float *upper_limit, 
IMSLS_STD_DEV, float *std_dev, 
IMSLS_T_TEST, int *df, float *t, float *p_value, 
IMSLS_T_TEST_NULL, float mean_hypothesis_value, 
IMSLS_CONFIDENCE_VARIANCE, float confidence_variance, 
IMSLS_CI_VARIANCE, float *lower_limit, 
 float *upper_limit, 
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, 
 float *p_value, 
IMSLS_CHI_SQUARED_TEST_NULL, 
 float variance_hypothesis_value, 
0) 

Optional Arguments 
IMSLS_CONFIDENCE_MEAN, float confidence_mean   (Input) 

Confidence level (in percent) for two-sided interval estimate of the 
mean. Argument confidence_mean must be between 0.0 and 100.0 
and is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with 
confidence level c (at least 50 percent), set 
confidence_mean = 100.0 � 2.0 � (100.0 � c). If 
IMSLS_CONFIDENCE_MEAN is not specified, a 95-percent confidence 
interval is computed. 

IMSLS_CI_MEAN, float *lower_limit, float *upper_limit   (Output) 
Argument lower_limit contains the lower confidence limit for the 
mean, and argument upper_limit contains the upper confidence limit 
for the mean. 

IMSLS_STD_DEV, float *std_dev   (Output) 
Standard deviation of the sample. 

IMSLS_T_TEST, int *df, float *t, float *p_value   (Output) 
Argument df is the degrees of freedom associated with the t test for the 
mean, t is the test statistic, and p_value is the probability of a larger  
t in absolute value. The t test is a test, against a two-sided alternative, of 
the hypothesis � = �0, where �0 is the null hypothesis value as described 
in IMSLS_T_TEST_NULL. 

IMSLS_T_TEST_NULL, float mean_hypothesis_value   (Input) 
Null hypothesis value for t test for the mean. 
Default: mean_hypothesis_value = 0.0 



 

 
 

IMSLS_CONFIDENCE_VARIANCE, float confidence_variance   (Input) 
Confidence level (in percent) for two-sided interval estimate of the 
variances. Argument confidence_variance must be between 0.0 and 
100.0 and is often 90.0, 95.0, 99.0. For a one-sided confidence interval 
with confidence level c (at least 50 percent), set 
confidence_variance = 100.0 � 2.0 � (100.0 � c). If this option is 
not used, a 95-percent confidence interval is computed. 

IMSLS_CI_VARIANCE, float *lower_limit, float *upper_limit   (Output) 
Contains the lower and upper confidence limits for the variance. 

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, 
float *p_value   (Output) 
Argument df is the degrees of freedom associated with the chi-squared 
test for variances, chi_squared is the test statistic, and p_value is the 
probability of a larger chi-squared. The chi-squared test is a test of the 
hypothesis � �  is the null hypothesis value as described 
in IMSLS_CHI_SQUARED_TEST_NULL. 

�
2

0
2

0
2

�  where 

IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value   
(Input) 
Null hypothesis value for the chi-squared test. 
Default: variance_hypothesis_value = 1.0 

Description 
Statistics for mean and variance inferences using a sample from a normal 
population are computed, including confidence intervals and tests for both mean 
and variance. The definitions of mean and variance are given below. The 
summation in each case is over the set of valid observations, based on the 
presence of missing values in the data. 

Mean, return value 

x
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Standard deviation, std_dev 
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The t statistic for the two-sided test concerning the population mean is given by 

t
x
s n

�
� �0

/
 

where s and x  are given above. This quantity has a T distribution with n � 1 
degrees of freedom. 
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The chi-squared statistic for the two-sided test concerning the population variance 
is given by 
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where s is given above. This quantity has a �2 distribution with n � 1 degrees of 
freedom. 

Examples 

Example 1 
This example uses data from Devore (1982, p. 335), which is based on data 
published in the Journal of Materials. There are 15 observations; the mean is the 
only output.  

#include <imsls.h> 
 
main() 
{ 
#define N_OBSERVATIONS 15 
 
    float  mean; 
    float x[N_OBSERVATIONS] = { 
        26.7, 25.8, 24.0, 24.9, 26.4,  
        25.9, 24.4, 21.7, 24.1, 25.9,  
        27.3, 26.9, 27.3, 24.8, 23.6}; 
 
                     /* Perform analysis */ 
    mean = imsls_f_normal_one_sample(N_OBSERVATIONS, x, 0); 
             
                     /* Print results */ 
    printf("Sample Mean = %5.2f", mean); 
} 

Output 
Sample Mean = 25.3 

Example 2 
This example uses the same data as the initial example. The hypothesis 
H0: � = 20.0 is tested. The extremely large t value and the correspondingly  
small p-value provide strong evidence to reject the null hypothesis. 

#include <imsls.h> 
 
main() 
{ 
#define N_OBSERVATIONS 15 
 
    int     df; 
    float  mean, s, lower_limit, upper_limit, t, p_value; 
    static float x[N_OBSERVATIONS] = { 
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        26.7, 25.8, 24.0, 24.9, 26.4,  
        25.9, 24.4, 21.7, 24.1, 25.9,  
        27.3, 26.9, 27.3, 24.8, 23.6}; 
 
                     /* Perform analysis +*/ 
    mean = imsls_f_normal_one_sample(N_OBSERVATIONS, x,  
        IMSLS_STD_DEV, &s, 
        IMSLS_CI_MEAN, &lower_limit, &upper_limit, 
        IMSLS_T_TEST_NULL, 20.0, 
        IMSLS_T_TEST, &df, &t, &p_value, 
        0); 
             
                     /* Print results */ 
    printf("Sample Mean               = %5.2f\n", mean); 
    printf("Sample Standard Deviation = %5.2f\n", s); 
    printf("95%% CI for the mean is (%5.2f,%5.2f)\n", lower_limit,  
        upper_limit); 
    printf("df = %3d\n", df); 
    printf("t = %5.2f\n", t); 
    printf("p-value = %8.5f\n", p_value); 
} 

Output 
Sample Mean               = 25.31 
Sample Standard Deviation =  1.58 
95% CI for the mean is (24.44,26.19) 
df =  14 
t = 13.03 
p-value =  0.00000 

normal_two_sample 
Computes statistics for mean and variance inferences using samples from two 
normal populations. 

Synopsis 
#include <imsls.h> 
float imsls_f_normal_two_sample (int n1_observations, float x1[], 

int n2_observations, float x2[], ..., 0) 

The type double function is imsls_d_normal_two_sample. 

Required Arguments 

int n1_observations   (Input) 
Number of observations in the first sample, x1. 

float x1[]   (Input) 
Array of length n1_observations containing the first sample. 

int n2_observations   (Input) 
Number of observations in the second sample, x2. 
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float x2[]   (Input) 
Array of length n2_observations containing the second sample. 

Return Value 
Difference in means, x1_mean � x2_mean. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_normal_two_sample (int n1_observations, float x1[], 

int n2_observations, float x2[], 
IMSLS_MEANS, float *x1_mean, float *x2_mean, 
IMSLS_CONFIDENCE_MEAN, float confidence_mean, 
IMSLS_CI_DIFF_FOR_EQUAL_VARS, float *lower_limit, 
 float *upper_limit, 
IMSLS_CI_DIFF_FOR_UNEQUAL_VARS, float *lower_limit, 
 float *upper_limit 
IMSLS_T_TEST_FOR_EQUAL_VARS, int *df, float *t, 
 float *p_value, 
IMSLS_T_TEST_FOR_UNEQUAL_VARS, float *df, float *t, 
 float *p_value, 
IMSLS_T_TEST_NULL, float mean_hypothesis_value, 
IMSLS_POOLED_VARIANCE, float *pooled_variance, 
IMSLS_CONFIDENCE_VARIANCE, float confidence_variance, 
IMSLS_CI_COMMON_VARIANCE, float *lower_limit, 
 float *upper_limit, 
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, 
 float *p_value, 
IMSLS_CHI_SQUARED_TEST_NULL, 
 float variance_hypothesis_value, 
IMSLS_STD_DEVS, float *x1_std_dev, float *x2_std_dev, 
IMSLS_CI_RATIO_VARIANCES, float *lower_limit, 
 float *upper_limit, 
IMSLS_F_TEST, int *df_numerator, int *df_denominator, 
 float *F, float *p_value, 
0) 

Optional Arguments 
IMSLS_MEANS, float *x1_mean, float *x2_mean   (Output) 

Means of the first and second samples. 

IMSLS_CONFIDENCE_MEAN, float confidence_mean   (Input) 
Confidence level for two-sided interval estimate of the mean of x1 
minus the mean of x2, in percent. Argument confidence_mean must 
be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For a one-
sided confidence interval with confidence level c (at least 50 percent), 
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set confidence_mean = 100.0 � 2.0 � (100.0 � c). 
Default: confidence_mean = 95.0 

IMSLS_CI_DIFF_FOR_EQUAL_VARS, float *lower_limit, 
float *upper_limit   (Output) 
Argument lower_limit contains the lower confidence limit, and 
upper_limit contains the upper limit for the mean of the first 
population minus the mean of the second, assuming equal variances.  

IMSLS_CI_DIFF_FOR_UNEQUAL_VARS, float *lower_limit, 
float *upper_limit   (Output) 
Argument lower_limit contains the approximate lower confidence 
limit, and upper_limit contains the approximate upper limit for the 
mean of the first population minus the mean of the second, assuming 
unequal variances. 

IMSLS_T_TEST_FOR_EQUAL_VARS, int *df, float *t, float *p_value   
(Output) 
A t test for �1 � �2 = c, where c is the null hypothesis value. (See the 
description of IMSLS_T_TEST_NULL.) Argument df contains the 
degrees of freedom, argument t contains the t value, and argument 
p_value contains the probability of a larger t in absolute value, 
assuming equal means. This test assumes equal variances. 

IMSLS_T_TEST_FOR_UNEQUAL_VARS, float *df, float *t, float *p_value   
(Output) 
A t test for �1 � �2 = c, where c is the null hypothesis value. (See the 
description of IMSLS_T_TEST_NULL.) Argument df contains the 
degrees of freedom for Satterthwaite’s approximation, argument t 
contains the t value, and argument p_value contains the approximate 
probability of a larger t in absolute value, assuming equal means. This 
test does not assume unequal variances. 

IMSLS_T_TEST_NULL, float mean_hypothesis_value   (Input) 
Null hypothesis value for the t test.  
Default: mean_hypothesis_value = 0.0 

IMSLS_POOLED_VARIANCE, float *pooled_variance   (Output) 
Pooled variance for the two samples. 

IMSLS_CONFIDENCE_VARIANCE, float confidence_variance   (Input) 
Confidence level for inference on variances. Under the assumption of 
equal variances, the pooled variance is used to obtain a two-sided 
confidence_variance percent confidence interval for the common 
variance if IMSLS_CI_COMMON_VARIANCE is specified. Without 
making the assumption of equal variances, the ratio of the variances is of 
interest. A two-sided confidence_variance percent confidence 



 

 
 

interval for the ratio of the variance of the first sample to that of the 
second sample is computed and is returned if 
IMSLS_CI_RATIO_VARIANCES is specified. The confidence intervals 
are symmetric in probability.  
Default: confidence_variance = 95.0 

IMSLS_CI_COMMON_VARIANCE, float *lower_limit, float *upper_limit   
(Output) 
Argument lower_limit contains the lower confidence limit, and 
upper_limit contains the upper limit for the common, or pooled, 
variance.  
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IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, 
float *p_value   (Output) 
The chi-squared test for  is the common, or pooled, 
variance, and �  is the null hypothesis value. (See description of 
IMSLS_CHI_SQUARED_TEST_NULL.) Argument df contains the degrees 
of freedom, argument chi_squared contains the chi-squared value, and 
argument p_value contains the probability of a larger chi-squared in 
absolute value, assuming equal means. 

� � �
2

0
2

�  where 
0
2

IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value   
(Input) 
Null hypothesis value for the chi-squared test. 
Default: variance_hypothesis_value = 1.0 

IMSLS_STD_DEVS, float *x1_std_dev, float *x2_std_dev   (Output) 
Standard deviations of the first and second samples. 

IMSLS_CI_RATIO_VARIANCES, float *lower_limit, float *upper_limit   
(Output) 
Argument lower_limit contains the approximate lower confidence 
limit, and upper_limit contains the approximate upper limit for the 
ratio of the variance of the first population to the second. 

IMSLS_F_TEST, int *df_numerator, int *df_denominator, float *F, 
float *p_value   (Output) 
The F test for equality of variances. Argument df_numerator and 
df_denominator contain the numerator degrees of freedom, argument 
F contains the F test value, and argument p_value contains the 
probability of a larger F in absolute value, assuming equal variances. 

Description 
Function imsls_f_normal_two_sample computes statistics for making 
inferences about the means and variances of two normal populations, using 



 

 
 

independent samples in x1 and x2. For inferences concerning parameters of a 
single normal population, see function imsls_normal_one_sample on page 7. 

Let �1 and  be the mean and variance of the first population, and let �2 and 
 be the corresponding quantities of the second population. The function 

contains test confidence intervals for difference in means, equality of variances, 
and the pooled variance. 

�1
2

�2
2

The means and variances for the two samples are as follows: 
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Inferences about the Means 

The test that the difference in means equals a certain value, for example, �0, 
depends on whether or not the variances of the two populations can be considered 
equal. If the variances are equal and mean_hypothesis_value equals 0, the 
test is the two-sample t test, which is equivalent to an analysis-of-variance test. 
The pooled variance for the difference-in-means test is as follows: 

s
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The t statistic is as follows: 
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Also, the confidence interval for the difference in means can be obtained by 
specifying IMSLS_CI_DIFF_FOR_EQUAL_VARS. 

If the population variances are not equal, the ordinary t statistic does not have a  
t distribution and several approximate tests for the equality of means have been 
proposed. (See, for example, Anderson and Bancroft 1952, and 
Kendall and Stuart 1979.) One of the earliest tests devised for this situation is the 
Fisher-Behrens test, based on Fisher’s concept of fiducial probability. A 
procedure used if IMSLS_T_TEST_FOR_UNEQUAL_VARS and/or 
IMSLS_CI_DIFF_FOR_UNEQUAL_VARS are specified is the Satterthwaite’s 
procedure, as suggested by H.F. Smith and modified by F.E. Satterthwaite 
(Anderson and Bancroft 1952, p. 83). 

The test statistic is 

� � � �t x x sd1 2 0�b g /  
where 
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Under the null hypothesis of �1 � �2 = c, this quantity has an approximate t 
distribution with degrees of freedom df (in IMSLS_T_TEST_FOR_UNEQUAL_VARS), 
given by the following equation: 
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Inferences about Variances 

The F statistic for testing the equality of variances is given by , 

where s  is the larger of s  and . If the variances are equal, this quantity 
has an F distribution with n1 � 1 and n2 � 1 degrees of freedom. 

F s s� max min/2 2

max
2

1
2 s2

2

It is generally not recommended that the results of the F test be used to decide 
whether to use the regular t test or the modified t� on a single set of data. The 
modified t� (Satterthwaite’s procedure) is the more conservative approach to use 
if there is doubt about the equality of the variances. 

Examples 

Example 1 
This example, taken from Conover and Iman (1983, p. 294), involves scores on 
arithmetic tests of two grade-school classes. The question is whether a group 
taught by an experimental method has a higher mean score. Only the difference in 
means is output. The data are shown below. 

Scores for Standard Group Scores for Experimental Group 
72 111 
75 118 
77 128 
80 138 

104 140 
110 150 
125 163 

 164 
 169 
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#include <imsls.h> 
 
main() 
{ 
#define N1_OBSERVATIONS 7 
#define N2_OBSERVATIONS 9 
 
    float  diff_means; 
    float x1[N1_OBSERVATIONS] = { 
        72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0}; 
    float x2[N2_OBSERVATIONS] = { 
        111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0,  
        164.0, 169.0}; 
 
                     /* Perform analysis */ 
    diff_means = imsls_f_normal_two_sample(N1_OBSERVATIONS, x1,  
        N2_OBSERVATIONS, x2, 0); 
             
                     /* Print results */ 
    printf("\nx1_mean - x2_mean = %5.2f\n", diff_means); 
} 

Output 
x1_mean - x2_mean = -50.48 

Example 2 
The same data is used for this example as for the initial example. Here, the results 
of the t test are output. The variances of the two populations are assumed to be 
equal. It is seen from the output that there is strong reason to believe that the two 
means are different (t value of �4.804). Since the lower 97.5-percent confidence 
limit does not include 0, the null hypothesis is that �1 � �2 would be rejected at 
the 0.05 significance level. (The closeness of the values of the sample variances 
provides some qualitative substantiation of the assumption of equal variances.) 

#include <imsls.h> 
 
main() 
{ 
#define N1_OBSERVATIONS 7 
#define N2_OBSERVATIONS 9 
 
    int    df; 
    float  diff_means, lower_limit, upper_limit, t, p_value, sp2; 
    float x1[N1_OBSERVATIONS] = { 
        72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0}; 
    float x2[N2_OBSERVATIONS] = { 
        111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0,  
        164.0, 169.0}; 
 
                     /* Perform analysis */ 
    diff_means = imsls_f_normal_two_sample(N1_OBSERVATIONS, x1,  
        N2_OBSERVATIONS, x2,  
        IMSLS_POOLED_VARIANCE, &sp2, 
        IMSLS_CI_DIFF_FOR_EQUAL_VARS, &lower_limit, &upper_limit, 
        IMSLS_T_TEST_FOR_EQUAL_VARS, &df, &t, &p_value, 
        0); 
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                     /* Print results */ 
    printf("\nx1_mean - x2_mean = %5.2f\n", diff_means); 
    printf("Pooled variance = %5.2f\n", sp2); 
    printf("95%% CI for x1_mean - x2_mean is (%5.2f,%5.2f)\n",  
        lower_limit, upper_limit); 
    printf("df = %3d\n", df); 
    printf("t = %5.2f\n", t); 
    printf("p-value = %8.5f\n", p_value); 
} 

Output 
x1_mean - x2_mean = -50.48 
Pooled variance = 434.63 
95% CI for x1_mean - x2_mean is (-73.01,-27.94) 
df =  14 
t = -4.80 
p-value =  0.00028 

table_oneway 
Tallies observations into a one-way frequency table. 

Synopsis 
#include <imsls.h> 
float *imsls_f_table_oneway (int n_observations, float x[],  

int n_intervals, ..., 0) 

The type double function is imsls_d_table_oneway. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

float x[]   (Input) 
Array of length n_observations containing the observations. 

int n_intervals   (Input) 
Number of intervals (bins). 

Return Value 
Pointer to an array of length n_intervals containing the counts. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_table_oneway (int n_observations, float x[], 

int n_intervals, 



 

 
 

IMSLS_DATA_BOUNDS, float *minimum, float *maximum, or 
IMSLS_KNOWN_BOUNDS, float lower_bound, float upper_bound, 
or 
IMSLS_CUTPOINTS, float cutpoints[], or 
IMSLS_CLASS_MARKS, float class_marks[],  
IMSLS_RETURN_USER, float table[],  
0) 

Optional Arguments 
IMSLS_DATA_BOUNDS, float *minimum, float *maximum   (Output) 

If none is specified or if IMSLS_DATA_BOUNDS is specified, 
n_intervals intervals of equal length are used with the initial interval 
starting with the minimum value in x and the last interval ending with the 
maximum value in x. The initial interval is closed on the left and right. The 
remaining intervals are open on the left and closed on the right. When 
IMSLS_DATA_BOUNDS is explicitly specified, the minimum and maximum 
values in x are output in minimum and maximum. With this option, each 
interval is of length (maximum � minimum)/n_intervals. 

 or 

IMSLS_KNOWN_BOUNDS, float lower_bound, float upper_bound   (Input) 
If IMSLS_KNOWN_BOUNDS is specified, two semi-infinite intervals are 
used as the initial and last intervals. The initial interval is closed on the 
right and includes lower_bound as its right endpoint. The last interval 
is open on the left and includes all values greater than upper_bound. 
The remaining n_intervals � 2 intervals are each of length 

upper_bound lower_bound

n_intervals

-
 � 2

 

and are open on the left and closed on the right. Argument 
n_intervals must be greater than or equal to 3 for this option.  

or 

IMSLS_CUTPOINTS, float cutpoints[]   (Input) 
If IMSLS_CUTPOINTS is specified, cutpoints (boundaries) must be 
provided in the array cutpoints of length n_intervals � 1. This 
option allows unequal interval lengths. The initial interval is closed on 
the right and includes the initial cutpoint as its right endpoint. The last 
interval is open on the left and includes all values greater than the last 
cutpoint. The remaining n_intervals � 2 intervals are open on the left 
and closed on the right. Argument n_interval must be greater than or 
equal to 3 for this option. 

 or 
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IMSLS_CLASS_MARKS, float class_marks[]   (Input) 
If IMSLS_CLASS_MARKS is specified, equally spaced class marks in 
ascending order must be provided in the array class_marks of length 
n_intervals. The class marks are the midpoints of each of the 
n_intervals. Each interval is assumed to have length 
class_marks [1] � class_marks [0]. Argument n_intervals must 
be greater than or equal to 2 for this option.  

None or exactly one of the four optional arguments described above can 
be specified in order to define the intervals or bins for the one-way table. 

IMSLS_RETURN_USER, float table[]   (Output) 
Counts are stored in the array table of length n_intervals, which is 
provided by the user. 

Examples 

Example 1 
The data for this example is from Hinkley (1977) and Velleman and Hoaglin 
(1981). The measurements (in inches) are for precipitation in Minneapolis/St. 
Paul during the month of March for 30 consecutive years. 

#include <imsls.h> 
main() 
{ 
    int     n_intervals=10; 
    int     n_observations=30; 
    float   *table; 
    float   x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 
                   2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 
                   0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 
                   1.89, 0.90, 2.05}; 
    table = imsls_f_table_oneway (n_observations, x, n_intervals, 0); 
    imsls_f_write_matrix("counts", 1, n_intervals, table, 0); 
  } 

Output 
                               counts 
         1          2          3          4          5          6 
         4          8          5          5          3          1 
  
         7          8          9          10 
         3          0          0          1 

Example 2 
In this example, IMSLS_KNOWN_BOUNDS is used, and lower_bound = 0.5 and 
upper_bound = 4.5 are set so that the eight interior intervals each have width  
(4.5 � 0.5)/(10 � 2) = 0.5. The 10 intervals are (��, 0.5], (0.5, 1.0], 	, (4.0, 4.5], 
and (4.5, �]. 
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#include <imsls.h> 
main() 
{ 
    int     n_observations=30; 
    int     n_intervals=10; 
    float   *table; 
    float   lower_bound=0.5, upper_bound=4.5; 
    float   x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 
                   2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 
                   0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 
                   1.89, 0.90, 2.05}; 
    table = imsls_f_table_oneway (n_observations, x, n_intervals, 
                                IMSLS_KNOWN_BOUNDS, lower_bound,  
                                upper_bound, 
                                0); 
    imsls_f_write_matrix("counts", 1, n_intervals, table, 0); 
  } 

Output 
                                counts 
         1           2           3           4           5           6 
         2           7           6           6           4           2 
  
         7           8           9          10 
         2           0           0           1 

Example 3 
In this example, 10 class marks, 0.25, 0.75, 1.25, ..., 4.75, are input. This defines 
the class intervals (0.0, 0.5], (0.5, 1.0], ..., (4.0, 4.5], (4.5, 5.0]. Note that unlike 
the previous example, the initial and last intervals are the same length as the 
remaining intervals. 

#include <imsls.h> 
main() 
{ 
    int        n_intervals=10; 
    int        n_observations=30; 
    double     *table; 
    double     x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,  
                      1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 
                      0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 
                      1.87, 1.18, 1.35, 4.75, 2.48, 0.96,1.89,  
                      0.90, 2.05}; 
    double     class_marks[] = {0.25, 0.75, 1.25, 1.75, 2.25,  
                                2.75, 3.25,3.75, 4.25, 4.75}; 
    table = imsls_d_table_oneway (n_observations, x, n_intervals, 
                                IMSLS_CLASS_MARKS, class_marks, 
                                0); 
    imsls_d_write_matrix("counts", 1, n_intervals, table, 0); 
  } 
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Output 
                                counts 
         1           2           3           4           5           6 
         2           7           6           6           4           2 
  
         7           8           9          10 
         2           0           0           1 

Example 4 
In this example, cutpoints, 0.5, 1.0, 1.5, 2.0, ..., 4.5, are input to define the same 
10 intervals as in Example 2. Here again, the initial and last intervals are semi-
infinite intervals. 

#include <imsls.h> 
main() 
{ 
    int        n_intervals=10; 
    int        n_observations=30; 
    double     *table; 
    double     x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 
                      1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,  
                      0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 
                      1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 
                      0.90, 2.05}; 
    double     cutpoints[] = {0.5, 1.0, 1.5, 2.0, 2.5,  
                              3.0, 3.5, 4.0, 4.5}; 
    table = imsls_d_table_oneway (n_observations, x, n_intervals,  
                                IMSLS_CUTPOINTS, cutpoints,  
                                0); 
    imsls_d_write_matrix("counts", 1, n_intervals, table, 0); 
  } 

Output 
                                counts 
         1          2          3          4          5           6 
         2          7          6          6          4           2 
         7          8          9          10 
         2          0          0          1 

table_twoway 
Tallies observations into two-way frequency table. 

Synopsis 

#include <imsls.h> 

float *imsls_f_table_twoway (int n_observations, float x[], 
float y[], int nx, int ny, ..., 0) 

The type double function is imsls_d_table_twoway. 
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Required Arguments 

int n_observations   (Input) 
Number of observations. 

float x[]   (Input) 
Array of length n_observations containing the data for the first 
variable. 

float y[]   (Input) 
Array of length n_observations containing the data for the second 
variable. 

int nx   (Input) 
Number of intervals (bins) for variable x. 

int nx   (Input) 
Number of intervals (bins) for variable y. 

Return Value 
Pointer to an array of size nx by ny containing the counts. 

Synopsis with Optional Arguments 
#include <imsls.h> 

float *imsls_f_table_twoway (int n_observations, float x[], 
float y[], int nx, int ny, 
IMSLS_DATA_BOUNDS, float *xmin, float *xmax, float *ymin, 
 float *ymax, or 
IMSLS_KNOWN_BOUNDS, float xlo, float xhi, float ylo, 
 float yhi, or 
IMSLS_CUTPOINTS, float cx[], float cy[], or 
IMSLS_CLASS_MARKS, float cx[], float cy[],  
IMSLS_RETURN_USER, float table[],  
0) 

Optional Arguments 
IMSLS_DATA_BOUNDS, float *xlo, float *xhi, float *ylo, float *yhi   

(Output) 
If none is specified or if IMSLS_DATA_BOUNDS is specified, 
n_intervals intervals of equal length are used. Let xmin and xmax be 
the minimum and maximum values in x, respectively, with similar 
meanings for ymin and ymax. Then, table[0] is the tally of 
observations with the x value less than or equal to  
xmin + (xmax � xmin)/nx, and the y value less than or equal to  



 

 
 

24 � table_twoway IMSL C/Stat/Library 

 

 

 

ymin + (ymax � ymin)/ny. When IMSLS_DATA_BOUNDS is explicitly 
specified, the minimum and maximum values in x and y are output in 
xmin, xmax, ymin, and ymax. 

or 

IMSLS_KNOWN_BOUNDS, float xlo, float xhi, float ylo, float yhi   (Input) 
Intervals of equal lengths are used just as in the case of 
IMSLS_DATA_BOUNDS, except the upper and lower bounds are taken as 
the user supplied variables xlo, xhi, ylo, and yhi, instead of the actual 
minima and maxima in the data. Therefore, the first and last intervals for 
both variables are semi-infinite in length. Arguments nx and ny must be 
greater than or equal to 3. 

or 

IMSLS_CUTPOINTS, float cx[], float cy[]   (Input) 
If IMSLS_CUTPOINTS is specified, cutpoints (boundaries) must be 
provided in the arrays cx and cy, of length (nx-1) and (ny-1) 
respectively. The tally in table[0] is the number of observations for 
which the x value is less than or equal to cx[0], and the y value is less 
than or equal to cy[0]. This option allows unequal interval lengths. 
Arguments nx and ny must be greater than or equal to 2. 

or 

IMSLS_CLASS_MARKS, float cx[], float cy[]   (Input) 
If IMSLS_CLASS_MARKS is specified, equally spaced class marks in 
ascending order must be provided in the arrays cx and cy. The class 
marks are the midpoints of each interval. Each interval is taken to have 
length cx[1] � cx[0] in the x direction and cy[1] � cy[0] in the y 
direction. The total number of elements in table may be less than 
n_observations. Arguments nx and ny must be greater than or equal 
to 2. 

None or exactly one of the four optional arguments described above can be 
specified in order to define the intervals or bins for the one-way table. 

IMSLS_RETURN_USER, float table[]   (Output) 
Counts are stored in the array table of size nx by ny, which is provided 
by the user. 

Examples 

Example 1 
The data for x in this example are the same as those used in the examples for 
table_oneway. The data for y were created by adding small integers to the data 
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in x. This example uses the default tally method, IMSLS_DATA_BOUNDS, which 
may be appropriate when the range of the data is unknown.  

#include <imsls.h> 
main() 
{ 
    int     nx = 5; 
    int     ny = 6; 
    int     n_observations=30; 
    float   *table; 
    float   x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 
                   2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 
                   0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 
                   1.89, 0.90, 2.05}; 
    float   y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, 
                   3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 
                   1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 
                   2.89, 2.90, 5.05}; 
    table = imsls_f_table_twoway (n_observations, x, y, nx, ny, 0); 
    imsls_f_write_matrix("counts", nx, ny, table,  
        IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0); 
  } 

Output 
                                  counts 
            0           1           2           3           4           5 
0           4           2           4           2           0           0 
1           0           4           3           2           1           0 
2           0           0           1           2           0           1 
3           0           0           0           0           1           2 
4           0           0           0           0           0           1 

Example 2 
In this example, xlo, xhi, ylo, and yhi are chosen so that the intervals will be 0 
to 1, 1 to 2, and so on for x, and 1 to 2, 2 to 3, and so on for y. 

#include <imsls.h> 
main() 
{ 
    int     nx = 5; 
    int     ny = 6; 
    int     n_observations=30; 
    float   *table; 
    float   xlo = 1.0; 
    float   xhi = 4.0; 
    float   ylo = 2.0; 
    float   yhi = 6.0; 
    float   x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 
                   2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 
                   0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 
                   1.89, 0.90, 2.05}; 
    float   y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, 
                   3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 
                   1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 
                   2.89, 2.90, 5.05}; 
    table = imsls_f_table_twoway (n_observations, x, y, nx, ny,  
        IMSLS_KNOWN_BOUNDS, xlo, xhi, ylo, yhi, 0); 
    imsls_f_write_matrix("counts", nx, ny, table, 
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        IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0); 
  } 

Output 
                                 counts 
            0           1           2           3           4           5 
0           3           2           4           0           0           0 
1           0           5           5           2           0           0 
2           0           0           1           3           2           0 
3           0           0           0           0           0           2 
4           0           0           0           0           1           0 

Example 3 
In this example, the class boundaries are input in cx and cy. The same intervals 
are chosen as in Example 2, where the first element of cx and cy specify the first 
cutpoint between classes. 

#include <imsls.h> 
main() 
{ 
    int     nx = 5; 
    int     ny = 6; 
    int     n_observations=30; 
    float   *table; 
    float   cmx[] = {0.5, 1.5, 2.5, 3.5, 4.5}; 
    float   cmy[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5}; 
    float   x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 
                   2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 
                   0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 
                   1.89, 0.90, 2.05}; 
    float   y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, 
                   3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 
                   1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 
                   2.89, 2.90, 5.05}; 
    table = imsls_f_table_twoway (n_observations, x, y, nx, ny,  
        IMSLS_CLASS_MARKS, cmx, cmy, 0); 
    imsls_f_write_matrix("counts", nx, ny, table, 
        IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0); 
  } 

Output 
  
                                 counts 
            0           1           2           3           4           5 
0           3           2           4           0           0           0 
1           0           5           5           2           0           0 
2           0           0           1           3           2           0 
3           0           0           0           0           0           2 
4           0           0           0           0           1           0 

Example 4 
This example, uses the IMSLS_CUTPOINTS tally option with cutpoints such that 
the intervals are specified as in the previous examples. 
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#include <imsls.h> 
main() 
{ 
    int     nx = 5; 
    int     ny = 6; 
    int     n_observations=30; 
    float   *table; 
    float   cpx[] = {1, 2, 3, 4}; 
    float   cpy[] = {2, 3, 4, 5, 6}; 
    float   x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 
                   2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 
                   0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 
                   1.89, 0.90, 2.05}; 
    float   y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, 
                   3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 
                   1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 
                   2.89, 2.90, 5.05}; 
    table = imsls_f_table_twoway (n_observations, x, y, nx, ny,  
        IMSLS_CUTPOINTS, cpx, cpy, 0); 
    imsls_f_write_matrix("counts", nx, ny, table, 
        IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0); 
  } 

Output 
  
                                 counts 
            0           1           2           3           4           5 
0           3           2           4           0           0           0 
1           0           5           5           2           0           0 
2           0           0           1           3           2           0 
3           0           0           0           0           0           2 
4           0           0           0           0           1           0 

sort_data 
Sorts observations by specified keys, with option to tally cases into a multi-way 
frequency table. 

Synopsis 
#include <imsls.h> 
void imsls_f_sort_data (int n_observations, int n_variables, float 

x[], int n_keys, ..., 0) 

The type double function is imsls_d_sort_data. 

Required Arguments 

int n_observations   (Input) 
Number of observations (rows) in x. 

int n_variables   (Input) 
Number of variables (columns) in x. 
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float x[]   (Input/Output) 
An n_observations � n_variables matrix containing the 
observations to be sorted. The sorted matrix is returned in x (exception: 
see optional argument IMSLS_PASSIVE). 

int n_keys   (Input) 
Number of columns of x on which to sort. The first n_keys columns of 
x are used as the sorting keys (exception: see optional argument 
IMSLS_INDICES_KEYS). 

Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_f_sort_data (int n_observations, int n_variables,  

float x[], int n_keys, 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_INDICES_KEYS, int indices_keys[], 
IMSLS_FREQUENCIES, float frequencies[], 
IMSLS_ASCENDING, or 
IMSLS_DESCENDING, 
IMSLS_ACTIVE, or 
IMSLS_PASSIVE, 
IMSLS_PERMUTATION, int **permutation, 
IMSLS_PERMUTATION_USER, int permutation[], 
IMSLS_TABLE, int **n_values, float **values, float **table, 
IMSLS_TABLE_USER, int n_values[], float values[], 
 float table[], 
 
IMSLS_LIST_CELLS, int *n_cells, float **list_cells,  
 float **table_unbalanced,  
IMSLS_LIST_CELLS_USER, int *n_cells, float list_cells[],  
 float table_unbalanced[],  
IMSLS_N, int *n_cells, int **n, 
IMSLS_N_USER, int *n_cells, int n[], 
0) 

Optional Arguments 
IMSLS_X_COL_DIM, int x_col_dim   (Input) 

Column dimension of x. 
Default: x_col_dim = n_variables 

IMSLS_INDICES_KEYS, int indices_keys[]   (Input) 
Array of length n_keys giving the column numbers of x which are to be 
used in the sort. 
Default: indices_keys [ ] = 0, 1, 	, n_keys � 1 
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IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array of length n_observations containing the frequency for each 
observation in x. 
Default: frequencies [ ] = 1 

IMSLS_ASCENDING, or 

IMSLS_DESCENDING  
By default, or if IMSLS_ASCENDING is specified, the sort is in ascending 
order. If IMSLS_DESCENDING is specified, the sort is in descending 
order. 

IMSLS_ACTIVE, or 

IMSLS_PASSIVE 
By default, or if IMSLS_ACTIVE is specified, the sorted matrix is 
returned in x. If IMSLS_PASSIVE is specified, x is unchanged by 
imsls_f_sort_data (i.e., x becomes input only). 

IMSLS_PERMUTATION, int **permutation   (Output) 
Address of a pointer to an internally allocated array of length 
n_observations specifying the rearrangement (permutation) of the 
observations (rows). 

IMSLS_PERMUTATION_USER, int permutation[]   (Output) 
Storage for array permutation is provided by the user. See 
IMSLS_PERMUTATION. 

IMSLS_TABLE, int **n_values, float **values, float **table   (Output) 
Argument n_values is the address of a pointer to an internally 
allocated array of length n_keys containing in its i-th element  
(i = 0, 1, 	, n_keys � 1), the number of levels or categories of the  
i-th classification variable (column). 

Argument values is the address of a pointer to an internally allocated 
array of length  
n_values [0] + n_values [1] + 	 + n_values [n_keys � 1] 
containing the values of the classification variables. The first 
n_values [0] elements of values contain the values for the first 
classification variable. The next n_values [1] contain the values for the 
second variable. The last n_values [n_keys � 1] positions contain the 
values for the last classification variable. 

Argument table is the address of a pointer to an internally allocated array 
of length n_values [0] � n_values [1] � 	 � n_values [n_keys � 1] 
containing the frequencies in the cells of the table to be fit. 
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Empty cells are included in table, and each element of table is 
nonnegative. The cells of table are sequenced so that the first variable 
cycles through its n_values [0] categories one time, the second 
variable cycles through its n_values [1] categories n_values [0] 
times, the third variable cycles through its n_values [2] categories 
n_values [0] � n_values [1] times, etc., up to the n_keys-th 
variable, which cycles through its n_values [n_keys � 1] categories 
n_values [0] � n_values [1] � 	 � n_values [n_keys � 2] times. 

IMSLS_TABLE_USER, int n_values[], float values[], float table[]   
(Output) 
Storage for arrays n_values, values, and table is provided by the 
user. If the length of table is not known in advance, the upper bound 
for this length can be taken to be the product of the number of distinct 
values taken by all of the classification variables (since table includes 
the empty cells). 

IMSLS_LIST_CELLS, int *n_cells, float **list_cells, 
float **table_unbalanced   (Output) 
Number of nonempty cells is returned by n_cells. Argument 
list_cells is an internally allocated array of size  
n_cells � n_keys containing, for each row, a list of the levels of 
n_keys corresponding classification variables that describe a cell.  

Argument table_unbalanced is the address of a pointer to an array of 
length n_cells containing the frequency for each cell. 

IMSLS_LIST_CELLS_USER, int *n_cells, float list_cells[], 
float table_unbalanced[]   (Output) 
Storage for arrays list_cells and table_unbalanced is provided 
by the user. See IMSLS_LIST_CELLS. 

IMSLS_N, int *n_cells, int **n   (Output) 
The integer n_cells returns the number of groups of different 
observations. A group contains observations (rows) in x that are equal 
with respect to the method of comparison. 

Argument n is the address of the pointer to an internally allocated array 
of length n_cells containing the number of observations (rows) in each 
group. 

The first n [0] rows of the sorted x are group number 1. The next 
n [1]rows of the sorted x are group number 2, etc. The last  
n [n_cells � 1] rows of the sorted x are group number n_cells. 

IMSLS_N_USER, int *n_cells, int n[]   (Output) 
Storage for array n_cells is provided by the user. If the value of 
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n_cells is not known, n_observations can be used as an upper 
bound for the length of n. See IMSLS_N. 

Description 
Function imsls_f_sort_data can perform both a key sort and/or tabulation of 
frequencies into a multi-way frequency table. 

Sorting 

Function imsls_f_sort_data sorts the rows of real matrix x using a particular 
row in x as the keys. The sort is algebraic with the first key as the most 
significant, the second key as the next most significant, etc. When x is sorted in 
ascending order, the resulting sorted array is such that the following is true: 


 For i = 0, 1, 	, n_observations � 2, 
x [i] [indices_keys [0]] � x [i + 1] [indices_keys [0]] 


 For k = 1, 	, n_keys � 1, if 
x [i] [indices_keys [j]] = x [i + 1] [indices_keys [j]] for  
j = 0, 1, 	, k � 1, then 
x [i] [indices_keys [k]] = x [i + 1] [indices_keys [k]] 

The observations also can be sorted in descending order. 

The rows of x containing the missing value code NaN in at least one of the 
specified columns are considered as an additional group. These rows are moved 
to the end of the sorted x. 

The sorting algorithm is based on a quicksort method given by Singleton (1969) 
with modifications by Griffen and Redish (1970) and Petro (1970).  

Frequency Tabulation 

Function imsls_f_sort_data determines the distinct values in multivariate 
data and computes frequencies for the data. This function accepts the data in the 
matrix x, but performs computations only for the variables (columns) in the first 
n_keys columns of x (Exception: see optional argument 
IMSLS_INDICES_KEYS). In general, the variables for which frequencies should 
be computed are discrete; they should take on a relatively small number of 
different values. Variables that are continuous can be grouped first. The 
imsls_f_table_oneway function can be used to group variables and determine 
the frequencies of groups. 

When IMSLS_TABLE is specified, imsls_f_sort_data fills the vector values 
with the unique values of the variables and tallies the number of unique values of 
each variable in the vector table. Each combination of one value from each 
variable forms a cell in a multi-way table. The frequencies of these cells are 
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entered in table so that the first variable cycles through its values exactly once, 
and the last variable cycles through its values most rapidly. Some cells cannot 
correspond to any observations in the data; in other words, “missing cells” are 
included in table and have a value of 0. 

When IMSLS_LIST_CELLS is specified, the frequency of each cell is entered in 
table_unbalanced so that the first variable cycles through its values exactly 
once and the last variable cycles through its values most rapidly. All cells have a 
frequency of at least 1, i.e., there is no “missing cell.” The array list_cells can 
be considered “parallel” to table_unbalanced because row i of list_cells 
is the set of n_keys values that describes the cell for which row i of 
table_unbalanced contains the corresponding frequency. 

Examples 

Example 1 
The rows of a 10 � 3 matrix x are sorted in ascending order using Columns 0 and 
1 as the keys. There are two missing values (NaNs) in the keys. The observations 
containing these values are moved to the end of the sorted array. 

#include <imsls.h> 
#define N_OBSERVATIONS 10 
#define N_VARIABLES    3 
main() 
{ 
    int     n_keys=2; 
    float   x[N_OBSERVATIONS][N_VARIABLES] = {1.0, 1.0, 1.0,  
                                              2.0, 1.0, 2.0,  
                                              1.0, 1.0, 3.0,  
                                              1.0, 1.0, 4.0,  
                                              2.0, 2.0, 5.0,  
                                              1.0, 2.0, 6.0,  
                                              1.0, 2.0, 7.0,  
                                              1.0, 1.0, 8.0,  
                                              2.0, 2.0, 9.0, 
                                              1.0, 1.0, 9.0}; 
    x[4][1]=imsls_f_machine(6); 
    x[6][0]=imsls_f_machine(6); 
    imsls_f_sort_data (N_OBSERVATIONS, N_VARIABLES, x, n_keys, 0); 
    imsls_f_write_matrix("sorted x", N_OBSERVATIONS, N_VARIABLES,  
                       (float *)x, 0); 
  } 

Output 
               sorted x 
             1           2           3 
 1           1           1           1 
 2           1           1           9 
 3           1           1           3 
 4           1           1           4 
 5           1           1           8 
 6           1           2           6 
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 7           2           1           2 
 8           2           2           9 
 9   .........           2           7 
10           2   .........           5 

Example 2 
This example uses the same data as the previous example. The permutation of the 
rows is output in the array permutation. 

#include <imsls.h> 
#define N_OBSERVATIONS 10 
#define N_VARIABLES 3 
MAIN() 
{ 
    int     n_keys=2; 
    int     n_cells; 
    int     *n; 
    int     *permutation; 
    float   x[N_OBSERVATIONS][N_VARIABLES]={1.0, 1.0, 1.0, 
                                            2.0, 1.0, 2.0, 
                                            1.0, 1.0, 3.0, 
                                            1.0, 1.0, 4.0, 
                                            2.0, 2.0, 5.0, 
                                            1.0, 2.0, 6.0, 
                                            1.0, 2.0, 7.0, 
                                            1.0, 1.0, 8.0, 
                                            2.0. 2.0, 9.0, 
                                            1.0, 1.0, 9.0}; 
    x[4][1]=imsls_f_machine(6); 
    x[6][0]=imsls_f_machine(6); 
    imsls_f_sort_data (N_OBSERVATIONS, N_VARIABLES, 
                     (float *)x, n_keys, 
                     IMSLS_PASSIVE, 
                     IMSLS_PERMUTATION, &permutation, 
                     IMSLS_N, &n_cells, &n, 0}; 
    imsls_f_write_matrix("unchanged x ", N_OBSERVATIONS, N_VARIABLES, 
                       (float *)x, 0); 
    imsls_i_write_matrix("permutation", 1, N_OBSERVATIONS, permutation, 
                       0); 
    imsls_i_write_matrix("n", 1, n_cells, n, 0); 
  } 

Output 
              unchanged x 
             1           2           3 
 1           1           1           1 
 2           2           1           2 
 3           1           1           3 
 4           1           1           4 
 5           2  ..........           5 
 6           1           2           6 
 7  ..........           2           7 
 8           1           1           8 
 9           2           2           9 
10           1           1           9 
  
              permutation 
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 1   2   3   4   5   6   7   8   9  10 
 0   9   2   3   7   5   1   8   6   4 
  
       n 
 1   2   3   4 
 5   1   1   1 

Example 3 
The table of frequencies for a data matrix of size 30 � 2 is output in the array 
table. 

#include <imsls.h> 
main() 
{ 
    int     n_observations=30; 
    int     n_variables=2; 
    int     n_keys=2; 
    int     *n_values; 
    int     n_rows, n_columns; 
    float   *values; 
    float   *table; 
    float   x[] = {0.5, 1.5, 
                   1.5, 3.5, 
                   0.5, 3.5, 
                   1.5, 2.5, 
                   1.5, 3.5, 
                   1.5, 4.5, 
                   0.5, 1.5, 
                   1.5, 3.5, 
                   3.5, 6.5, 
                   2.5, 3.5, 
                   2.5, 4.5, 
                   3.5, 6.5, 
                   1.5, 2.5, 
                   2.5, 4.5, 
                   0.5, 3.5, 
                   1.5, 2.5, 
                   1.5, 3.5, 
                   0.5, 3.5, 
                   0.5, 1.5, 
                   0.5, 2.5, 
                   2.5, 5.5, 
                   1.5, 2.5, 
                   1.5, 3.5, 
                   1.5, 4.5, 
                   4.5, 5.5, 
                   2.5, 4.5, 
                   0.5, 3.5, 
                   1.5, 2.5, 
                   0.5, 2.5, 
                   2.5, 5.5}; 
                       
   imsls_f_sort_data (n_observations, n_variables, x, n_keys,  
                     IMSLS_PASSIVE, 
                     IMSLS_TABLE, &n_values, &values, &table, 
                     0); 
   imsls_f_write_matrix("unchanged x", n_observations, n_variables, 
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                       x, 0); 
   n_rows = n_values[0]; 
   n_columns = n_values[1]; 
   imsls_f_write_matrix("row values", 1, n_rows, values, 0);     
   imsls_f_write_matrix("column values", 1, n_columns, &values[n_rows], 
                      0); 
   imsls_f_write_matrix("table", n_rows, n_columns, table, 0); 
  } 

Output 
        unchanged x 
             1           2 
 1         0.5         1.5 
 2         1.5         3.5 
 3         0.5         3.5 
 4         1.5         2.5 
 5         1.5         3.5 
 6         1.5         4.5 
 7         0.5         1.5 
 8         1.5         3.5 
 9         3.5         6.5 
10         2.5         3.5 
11         2.5         4.5 
12         3.5         6.5 
13         1.5         2.5 
14         2.5         4.5 
15         0.5         3.5 
16         1.5         2.5 
17         1.5         3.5 
18         0.5         3.5 
19         0.5         1.5 
20         0.5         2.5 
21         2.5         5.5 
22         1.5         2.5 
23         1.5         3.5 
24         1.5         4.5 
25         4.5         5.5 
26         2.5         4.5 
27         0.5         3.5 
28         1.5         2.5 
29         0.5         2.5 
30         2.5         5.5 
  
                        row values 
         1           2           3           4           5 
       0.5         1.5         2.5         3.5         4.5 
  
                             column values 
         1           2           3           4           5           6 
       1.5         2.5         3.5         4.5         5.5         6.5 
  
                                  table 
            1           2           3           4           5           6 
1           3           2           4           0           0           0 
2           0           5           5           2           0           0 
3           0           0           1           3           2           0 
4           0           0           0           0           0           2 
5           0           0           0           0           1           0 
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ranks 
Computes the ranks, normal scores, or exponential scores for a vector of 
observations. 

Synopsis 
#include <imsls.h>  
float *imsls_f_ranks (int n_observations, float x[], ..., 0) 

The type double function is imsls_d_ranks. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

float x[]   (Input) 
Array of length n_observations containing the observations to be 
ranked. 

Return Value 
A pointer to a vector of length n_observations containing the rank (or 
optionally, a transformation of the rank) of each observation. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float* imsls_f_ranks (int n_observations, float x[],  

IMSLS_AVERAGE_TIE, or 
IMSLS_HIGHEST, or 
IMSLS_LOWEST, or 
IMSLS_RANDOM_SPLIT,  
IMSLS_FUZZ, float fuzz_value,  
IMSLS_RANKS, or 
IMSLS_BLOM_SCORES, or 
IMSLS_TUKEY_SCORES, or 
IMSLS_VAN_DER_WAERDEN_SCORES, or 
IMSLS_EXPECTED_NORMAL_SCORES, or 
IMSLS_SAVAGE_SCORES,  
IMSLS_RETURN_USER, float ranks[],  
0) 

Optional Arguments 
IMSLS_AVERAGE_TIE, or 

IMSLS_HIGHEST, or 
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IMSLS_LOWEST, or 

IMSLS_RANDOM_SPLIT 
Exactly one of these optional arguments can be used to change the 
method used to assign a score to tied observations. 

Argument Method 
IMSLS_AVERAGE_TIE average of the scores of the tied 

observations (default) 
IMSLS_HIGHEST highest score in the group of ties 
IMSLS_LOWEST lowest score in the group of ties 
IMSLS_RANDOM_SPLIT tied observations are randomly split 

using a random number generator 

IMSLS_FUZZ, float fuzz_value   (Input) 
Value used to determine when two items are tied. If abs(x [i] � x [j]) is 
less than or equal to fuzz_value, then x[i] and x[j] are said to be 
tied. 
Default: fuzz_value = 0.0 

IMSLS_RANKS, or 

IMSLS_BLOM_SCORES, or 

IMSLS_TUKEY_SCORES, or 

IMSLS_VAN_DER_WAERDEN_SCORES, or 

IMSLS_EXPECTED_NORMAL_SCORES, or 

IMSLS_SAVAGE_SCORES 
Exactly one of these optional arguments can be used to specify the type 
of values returned. 

Argument Result 
IMSLS_RANKS ranks (default) 
IMSLS_BLOM_SCORES Blom version of normal scores 
IMSLS_TUKEY_SCORES Tukey version of normal scores 
IMSLS_VAN_DER_WAERDEN_SCORES Van der Waerden version of normal 

scores 
IMSLS_EXPECTED_NORMAL_SCORES expected value of normal order 

statistics (for tied observations, the 
average of the expected normal 
scores) 

IMSLS_SAVAGE_SCORES Savage scores (the expected value of 
exponential order statistics) 



 

 
 

IMSLS_RETURN_USER, float ranks[]   (Output) 
If specified, the ranks are returned in the user-supplied array ranks. 

Description 

Ties 

In data without ties, the output values are the ordinary ranks (or a transformation 
of the ranks) of the data in x. If x[i] has the smallest value among the values in 
x and there is no other element in x with this value, then ranks [i] = 1. If both 
x[i] and x[j] have the same smallest value, the output value depends on the 
option used to break ties. 

Argument Result 
IMSLS_AVERAGE_TIE ranks[i] = ranks[j] = 1.5 

IMSLS_HIGHEST ranks[i] = ranks[j] = 2.0 

IMSLS_LOWEST ranks[i] = ranks[j] = 1.0 

IMSLS_RANDOM_SPLIT ranks[i] = 1.0 and ranks[j] = 2.0 

or, randomly, 
ranks[i] = 2.0 and ranks[j] = 1.0 

When the ties are resolved randomly, function imsls_f_random_uniform 
(Chapter 12) is used to generate random numbers. Different results may occur 
from different executions of the program unless the “seed” of the random number 
generator is set explicitly by use of the function imsls_f_random_seed_set 
(Chapter 12). 

Scores 

As an option, normal and other functions of the ranks can be returned. Normal 
scores can be defined as the expected values, or approximations to the expected 
values, of order statistics from a normal distribution. The simplest approximations 
are obtained by evaluating the inverse cumulative normal distribution function, 
function imsls_f_normal_inverse_cdf (Chapter 11), at the ranks scaled into 
the open interval (0, 1). In the Blom version (see Blom 1958), the scaling 
transformation for the rank ri (1 � ri � n, where n is the sample size, 
n_observations) is (ri � 3/8)/(n + 1/4). The Blom normal score corresponding 
to the observation with rank ri is  
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where ��·� is the normal cumulative distribution function. 

Adjustments for ties are made after the normal score transformation. That is, if 
x [i] equals x [j] (within fuzz_value) and their value is the k-th smallest in the 
data set, the Blom normal scores are determined for ranks of k and k + 1. Then, 

38 � ranks IMSL C/Stat/Library 

 

 

 



 

 
 

these normal scores are averaged or selected in the manner specified. (Whether 
the transformations are made first or ties are resolved first makes no difference 
except when IMSLS_AVERAGE_TIE is specified.) 

In the Tukey version (see Tukey 1962), the scaling transformation for the rank  
ri is (ri � 1/3)/(n + 1/3). The Tukey normal score corresponding to the 
observation with rank ri is as follows: 
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Ties are handled in the same way as for the Blom normal scores. 

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling 
transformation for the rank ri is ri/(n + 1). The Van der Waerden normal score 
corresponding to the observation with rank ri is as follows: 
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Ties are handled in the same way as for the Blom normal scores. 

When option IMSLS_EXPECTED_NORMAL_SCORES is used, the output values are 
the expected values of the normal order statistics from a sample of size 
n_observations. If the value in x[i] is the k-th smallest, the value output in 
ranks [i] is E(zk), where E(·) is the expectation operator and zk is the k-th order 
statistic in a sample of size n_observations from a standard normal 
distribution. Ties are handled in the same way as for the Blom normal scores. 

Savage scores are the expected values of the exponential order statistics from a 
sample of size n_observations. These values are called Savage scores because 
of their use in a test discussed by Savage 1956 (see also Lehmann 1975). If the 
value in x[i] is the k-th smallest, the value output in ranks [i] is E(yk), where 
yk is the k-th order statistic in a sample of size n_observations from a standard 
exponential distribution. The expected value of the k-th order statistic from an 
exponential sample of size n (n_observations) is as follows: 
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Ties are handled in the same way as for the Blom normal scores. 

Examples 

Example 1 
The data for this example, from Hinkley (1977), contains 30 observations. Note 
that the fourth and sixth observations are tied and that the third and twentieth 
observations are tied. 
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#include <imsls.h> 
 
#define N_OBSERVATIONS          30 
 
main() 
{ 
    float       *ranks; 
    float       x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 
                       3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 
                       1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 
                       4.75, 2.48, 0.96, 1.89, 0.90, 2.05}; 
 
    ranks = imsls_f_ranks(N_OBSERVATIONS, x, 0); 
    imsls_f_write_matrix("Ranks", 1, N_OBSERVATIONS, ranks, 0); 
} 

Output 
                                 Ranks 
         1           2           3           4           5           6 
       5.0        18.0         6.5        11.5        21.0        11.5 
  
         7           8           9          10          11          12 
       2.0        15.0        29.0        24.0        27.0        28.0 
  
        13          14          15          16          17          18 
      16.0        23.0         3.0        17.0        13.0         1.0 
  
        19          20          21          22          23          24 
       4.0         6.5        26.0        19.0        10.0        14.0 
  
        25          26          27          28          29          30 
      30.0        25.0         9.0        20.0         8.0        22.0 

 
Example 2 
This example uses all the score options with the same data set, which contains 
some ties. Ties are handled in several different ways in this example. 

#include <imsls.h> 
 
#define N_OBSERVATIONS          30 
 
void main() 
{ 
    float       fuzz_value=0.0, score[4][N_OBSERVATIONS], *ranks; 
    float       x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 
                       3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 
                       1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 
                       4.75, 2.48, 0.96, 1.89, 0.90, 2.05}; 
    char        *row_labels[] = {"Blom", "Tukey", "Van der Waerden", 
                                 "Expected Value"}; 
 
                                /* Blom scores using largest ranks */ 
                                /* for ties */ 
    imsls_f_ranks(N_OBSERVATIONS, x,  
                 IMSLS_HIGHEST, 
                 IMSLS_BLOM_SCORES, 
                 IMSLS_RETURN_USER,   &score[0][0], 
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                 0); 
                                /* Tukey normal scores using smallest */ 
                                /* ranks for ties */ 
    imsls_f_ranks(N_OBSERVATIONS, x, 
                 IMSLS_LOWEST, 
                 IMSLS_TUKEY_SCORES, 
                 IMSLS_RETURN_USER,  &score[1][0], 
                 0); 
                                /* Van der Waerden scores using */ 
                                /* randomly resolved ties */ 
    imsls_random_seed_set(123457); 
    imsls_f_ranks(N_OBSERVATIONS, x,  
                 IMSLS_RANDOM_SPLIT, 
                 IMSLS_VAN_DER_WAERDEN_SCORES, 
                 IMSLS_RETURN_USER, &score[2][0], 
                 0); 
                                /* Expected value of normal order */ 
                                /* statistics using averaging to */ 
                                /* break ties */ 
    imsls_f_ranks(N_OBSERVATIONS, x,  
                 IMSLS_EXPECTED_NORMAL_SCORES, 
                 IMSLS_RETURN_USER, &score[3][0], 
                 0); 
    imsls_f_write_matrix("Normal Order Statistics", 4, N_OBSERVATIONS,  
                  (float *)score, 
                 IMSLS_ROW_LABELS,   row_labels, 
                 IMSLS_WRITE_FORMAT, "%9.3f", 
                 0); 
                                /* Savage scores using averaging */ 
                                /* to break ties */ 
    ranks = imsls_f_ranks(N_OBSERVATIONS, x,  
                 IMSLS_SAVAGE_SCORES, 
                 0); 
    imsls_f_write_matrix("Expected values of exponential order "  
                 "statistics", 1,  
                 N_OBSERVATIONS, ranks,  
                 0); 
} 

Output 
                        Normal Order Statistics 
                         1          2          3          4          5 
Blom                -1.024      0.209     -0.776     -0.294      0.473 
Tukey               -1.020      0.208     -0.890     -0.381      0.471 
Van der Waerden     -0.989      0.204     -0.753     -0.287      0.460 
Expected Value      -1.026      0.209     -0.836     -0.338      0.473 
  
                         6          7          8          9         10 
Blom                -0.294     -1.610     -0.041      1.610      0.776 
Tukey               -0.381     -1.599     -0.041      1.599      0.773 
Van der Waerden     -0.372     -1.518     -0.040      1.518      0.753 
Expected Value      -0.338     -1.616     -0.041      1.616      0.777 
  
                        11         12         13         14         15 
Blom                 1.176      1.361      0.041      0.668     -1.361 
Tukey                1.171      1.354      0.041      0.666     -1.354 
Van der Waerden      1.131      1.300      0.040      0.649     -1.300 
Expected Value       1.179      1.365      0.041      0.669     -1.365 
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                        16         17         18         19         20 
Blom                 0.125     -0.209     -2.040     -1.176     -0.776 
Tukey                0.124     -0.208     -2.015     -1.171     -0.890 
Van der Waerden      0.122     -0.204     -1.849     -1.131     -0.865 
Expected Value       0.125     -0.209     -2.043     -1.179     -0.836 
  
                        21         22         23         24         25 
Blom                 1.024      0.294     -0.473     -0.125      2.040 
Tukey                1.020      0.293     -0.471     -0.124      2.015 
Van der Waerden      0.989      0.287     -0.460     -0.122      1.849 
Expected Value       1.026      0.294     -0.473     -0.125      2.043 
  
                        26         27         28         29         30 
Blom                 0.893     -0.568      0.382     -0.668      0.568 
Tukey                0.890     -0.566      0.381     -0.666      0.566 
Van der Waerden      0.865     -0.552      0.372     -0.649      0.552 
Expected Value       0.894     -0.568      0.382     -0.669      0.568 
  
            Expected values of exponential order statistics 
         1           2           3           4           5           6 
     0.179       0.892       0.240       0.474       1.166       0.474 
  
         7           8           9          10          11          12 
     0.068       0.677       2.995       1.545       2.162       2.495 
  
        13          14          15          16          17          18 
     0.743       1.402       0.104       0.815       0.555       0.033 
  
        19          20          21          22          23          24 
     0.141       0.240       1.912       0.975       0.397       0.614 
  
        25          26          27          28          29          30 
     3.995       1.712       0.350       1.066       0.304       1.277 
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Routines 
2.1 Multivariate Linear Regression—Model Fitting 

Generate regressors for a general  
linear model ......................................................regressors_for_glm 56 
Fit a multivariate linear regression model ....................... regression 64 

2.2 Multivariate Linear Regression—Statistical  
Inference and Diagnostics 
Produce summary statistics for  
a regression model ........................................ regression_summary 77 
Compute predicted values,  
confidence intervals, and diagnostics ............regression_prediction 85 
Construction of a completely  
testable hypothesis ............................................. hypothesis_partial 96 
Sums of cross products for a  
multivariate hypothesis.......................................... hypothesis_scph 101 
Tests for the multivariate linear hypothesis............. hypothesis_test 106 

2.3 Variable Selection 
All best regressions......................................... regression_selection 112 
Stepwise regression........................................ regression_stepwise 123 

2.4 Polynomial and Nonlinear Regression 
Fit a polynomial regression model ..........................poly_regression 132 
Compute predicted values, confidence intervals,  
and diagnostics ........................................................poly_prediction 140 
Fit a nonlinear regression model.................... nonlinear_regression 149 
Fit a nonlinear regression model using  
Powell's algorithm ........................................ nonlinear_optimization 159 

2.5 Alternatives to Least Squares Regression 
LAV, Lpnorm, and LMV criteria regression.........Lnorm_regression 168 
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Usage Notes 
The regression models in this chapter include the simple and multiple linear 
regression models, the multivariate general linear model, the polynomial model, 
and the nonlinear regression model. Functions for fitting regression models, 
computing summary statistics from a fitted regression, computing diagnostics, 
and computing confidence intervals for individual cases are provided. This 
chapter also provides methods for building a model from a set of candidate 
variables. 

Simple and Multiple Linear Regression 
The simple linear regression model is 

yi = �0 + �1xi + �i i = 1, 2, ..., n 

where the observed values of the yi’s constitute the responses or values of the 
dependent variable, the xi’s are the settings of the independent (explanatory) 
variable, �0 and �1 are the intercept and slope parameters (respectively) and the 
�i’s are independently distributed normal errors, each with mean 0 and variance 
�2. 

The multiple linear regression model is 

yi = �0 + �1xi1 + �2xi2 � ... � �kxik � �i  i = 1, 2, ..., n 

where the observed values of the yi’s constitute the responses or values of the 
dependent variable; the xi1’s, xi2’s, ..., xik’s are the settings of the k independent 
(explanatory) variables; �0, �1, ..., �k are the regression coefficients; and the �i’s 
are independently distributed normal errors, each with mean 0 and variance �2. 

Function imsls_f_regression (page 64) fits both the simple and multiple 
linear regression models using a fast Given’s transformation and includes an 
option for excluding the intercept �0. The responses are input in array y, and the 
independent variables are input in array x, where the individual cases correspond 
to the rows and the variables correspond to the columns. 

After the model has been fitted using imsls_f_regression, function 
imsls_f_regression_summary computes summary statistics and 
imsls_f_regression_prediction computes predicted values, confidence 
intervals, and case statistics for the fitted model. The information about the fit is 
communicated from imsls_f_regression to imsls_f_regression_summary 
(page 77) and imsls_f_regression_prediction (page 85) by passing an  
argument of structure type Imsls_f_regression. 

 

 



 

 
 

Chapter 2: Regression Usage Notes � 45 

 

 

 

n

No Intercept Model 

Several functions provide the option for excluding the intercept from a model. In 
most practical applications, the intercept should be included in the model. For 
functions that use the sums of squares and crossproducts matrix as input, the no-
intercept case can be handled by using the raw sums of squares and crossproducts 
matrix as input in place of the corrected sums of squares and crossproducts. The 
raw sums of squares and crossproducts matrix can be computed as  
(x1, x2, ..., xk, y)T (x1, x2, ..., xk, y). 

Variable Selection 

Variable selection can be performed by imsls_f_regression_selection 
(page 112), which computes all best-subset regressions, or by 
imsls_f_regression_stepwise (page 123), which computes stepwise 
regression. The method used by imsls_f_regression_selection is 
generally preferred over that used by imsls_f_regression_stepwise 
because imsls_f_regression_selection implicitly examines all possible 
models in the search for a model that optimizes some criterion while stepwise 
does not examine all possible models. However, the computer time and memory 
requirements for imsls_f_regression_selection can be much greater than 
that for imsls_f_regression_stepwise when the number of candidate 
variables is large. 

Polynomial Model 

The polynomial model is 
2

0 1 2 ... 1, 2, ...,k
i i i k i iy x x x i� � � � �� � � � � � �  

where the observed values of the yi’s constitute the responses or values of the 
dependent variable; the xi’s are the settings of the independent (explanatory) 
variable; �0, �1, ..., �k are the regression coefficients; and the �i’s are 
independently distributed normal errors each with mean 0 and variance �2. 

Function imsls_f_poly_regression (page 132) fits a polynomial regression 
model with the option of determining the degree of the model and also produces 
summary information. Function imsls_f_poly_prediction (page 140) 
computes predicted values, confidence intervals, and case statistics for the model 
fit by imsls_f_poly_regression.  

The information about the fit is communicated from imsls_f_poly_regression 
to imsls_f_poly_prediction by passing an argument of structure type 
Imsls_f_poly_regression. 

Specification of X for the General Linear Model 

Variables used in the general linear model are either continuous or classification 
variables. Typically, multiple regression models use continuous variables, 
whereas analysis of variance models use classification variables. Although the 
notation used to specify analysis of variance models and multiple regression 
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models may look quite different, the models are essentially the same. The term 
“general linear model” emphasizes that a common notational scheme is used for 
specifying a model that may contain both continuous and classification variables. 

A general linear model is specified by its effects (sources of variation). An effect 
is referred to in this text as a single variable or a product of variables. (The term 
“effect” is often used in a narrower sense, referring only to a single regression 
coefficient.) In particular, an “effect” is composed of one of the following: 

1. a single continuous variable 

2. a single classification variable 

3. several different classification variables 

4. several continuous variables, some of which may be the same 

5. continuous variables, some of which may be the same, and classification 
variables, which must be distinct 

Effects of the first type are common in multiple regression models. Effects of the 
second type appear as main effects in analysis of variance models. Effects of the 
third type appear as interactions in analysis of variance models. Effects of the 
fourth type appear in polynomial models and response surface models as powers 
and crossproducts of some basic variables. Effects of the fifth type appear in one-
way analysis of covariance models as regression coefficients that indicate lack of 
parallelism of a regression function across the groups. 

The analysis of a general linear model occurs in two stages. The first stage calls 
function imsls_f_regressors_for_glm to specify all regressors except the 
intercept. The second stage calls imsls_f_regression, at which point the 
model will be specified as either having (default) or not having an intercept. 

For this discussion, define a variable INTCEP as follows: 

Option INTCEP Action 

IMSLS_NO_INTERCEPT 

IMSLS_INTERCEPT (default) 

0 

1 

An intercept is not in the model. 

An intercept is in the model. 

The remaining variables (n_continuous, n_class, x_class_columns, 
n_effects, n_var_effects, and indices_effects) are defined for function 
imsls_f_regressors_for_glm. All these variables have defaults except for 
n_continuous and n_class, both of which must be specified.  
(See the documentation for imsls_f_regressors_for_glm on page 56 for a 
discussion of the defaults.) The meaning of each of these arguments is as follows: 

n_continuous   (Input) 
Number of continuous variables.  

n_class   (Input) 
Number of classification variables. 
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x_class_columns   (Input) 
Index vector of length n_class containing the column numbers of  
x that are the classification variables. 

n_effects   (Input) 
Number of effects (sources of variation) in the model, excluding error. 

n_var_effects   (Input) 
Vector of length n_effects containing the number of variables 
associated with each effect in the model. 

indices_effects   (Input) 
Index vector of length n_var_effects(0) + n_var_effects(1) + 
... + n_var_effects (n_effects – 1). The first n_var_effects(0) 
elements give the column numbers of x for each variable in the first 
effect; the next n_var_effects(1) elements give the column numbers 
for each variable in the second effect; and finally, the last 
n_var_effects (n_effects – 1) elements give the column numbers 
for each variable in the last effect. 

Suppose the data matrix has as its first four columns two continuous variables in 
Columns 0 and 1 and two classification variables in Columns 2 and 3. The data 
might appear as follows: 

Column 0 Column 1 Column 2 Column 3 

11.23 1.23 1.0 5.0 

12.12 2.34 1.0 4.0 

12.34 1.23 1.0 4.0 

4.34 2.21 1.0 5.0 

5.67 4.31 2.0 4.0 

4.12 5.34 2.0 1.0 

4.89 9.31 2.0 1.0 

9.12 3.71 2.0 1.0 

Each distinct value of a classification variable determines a level. The 
classification variable in Column 2 has two levels. The classification variable in 
Column 3 has three levels. (Integer values are recommended, but not required, for 
values of the classification variables. The values of the classification variables 
corresponding to the same level must be identical.) Some examples of regression 
functions and their specifications are as follows: 
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 INTCEP n_class x_class_columns 

�0 + �1x1 1 0  

2
0 1 1 2x x� � �� � 1  1 0  

� + �i 1 1 2 

� + �i + �j + �ij 1 2 2, 3 

�ij 0 2 2, 3 

�0 + �1x1 + �2x2 + �3x1x2 1 0  

� + �i + �x1i + �ix1i 1 1 2 

    
 n_effects n_var_effects Indices_effects 

�0 + �1x1 1 1 0 

2
0 1 1 2x x� � �� � 1  2 1, 2 0, 0, 0 

� + �i 1 1 2 

� + �i + �j + �ij 3 1, 1, 2 2, 3, 2, 3 

�ij 1 2 2, 3 

�0 + �1x1 + �2x2 + �
3x1x2 

3 1, 1, 2 0, 1, 0, 1 

� + �i + �x1i + �ix1i 3 1, 1, 2 2, 0, 0, 2 

Functions for Fitting the Model 

Function imsls_f_regression (page 64) fits a multivariate general linear 
model, where regressors for the general linear model have been generated using 
function imsls_f_regressors_for_glm.  

Linear Dependence and the R Matrix 

Linear dependence of the regressors frequently arises in regression models—
sometimes by design and sometimes by accident. The functions in this chapter are 
designed to handle linear dependence of the regressors; i.e., the  
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n � p matrix X (the matrix of regressors) in the general linear model can have 
rank less than p. Often, the models are referred to as non-full rank models. 

As discussed in Searle (1971, Chapter 5), be careful to correctly use the results of 
the fitted non-full rank regression model for estimation and hypothesis testing. In 
the non-full rank case, not all linear combinations of the regression coefficients 
can be estimated. Those linear combinations that can be estimated are called 
“estimable functions.” If the functions are used to attempt to estimate linear 
combinations that cannot be estimated, error messages are issued. A good general 
discussion of estimable functions is given by Searle (1971, pp. 180–188). 

The check used by functions in this chapter for linear dependence is sequential. 
The j-th regressor is declared linearly dependent on the preceding  j 	 1 
regressors if 

� �
2

1,2, , 1...1 j jR
�

�  

is less than or equal to tolerance. Here, 

� �1,2,..., 1j jR
�

 

is the multiple correlation coefficient of the j-th regressor with the first  j 	 1 
regressors. When a function declares the j-th regressor to be linearly dependent 
on the first j 	 1, the j-th regression coefficient is set to 0. Essentially, this 
removes the j-th regressor from the model. 

The reason a sequential check is used is that practitioners frequently include the 
preferred variables to remain in the model first. Also, the sequential check is 
based on many of the computations already performed as this does not degrade 
the overall efficiency of the functions. There is no perfect test for linear 
dependence when finite precision arithmetic is used. The optional argument 
IMSLS_TOLERANCE allows the user some control over the check for linear 
dependence. If a model is full rank, input tolerance = 0.0. However, 
tolerance should be input as approximately 100 times the machine epsilon. The 
machine epsilon is imsls_f_machine(4) in single precision and 
imsls_d_machine(4) in double precision. (See functions imsls_f_machine 
and imsls_d_machine in Chapter 14.) 

Functions performing least squares are based on QR decomposition of X or on a 
Cholesky factorization RTR of XTX. Maindonald (1984, Chapters 1	5) discusses 
these methods extensively. The R matrix used by the regression function is a  
p � p upper-triangular matrix, i.e., all elements below the diagonal are 0. The 
signs of the diagonal elements of R are used as indicators of linearly dependent 
regressors and as indicators of parameter restrictions imposed by fitting a 
restricted model. The rows of R can be partitioned into three classes by the sign 
of the corresponding diagonal element: 

1. A positive diagonal element means the row corresponds to data. 
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2. A negative diagonal element means the row corresponds to a linearly 
independent restriction imposed on the regression parameters by AB = Z 
in a restricted model. 

3. A zero diagonal element means a linear dependence of the regressors 
was declared. The regression coefficients in the corresponding row of B̂  
are set to 0. This represents an arbitrary restriction that is imposed to 
obtain a solution for the regression coefficients. The elements of the 
corresponding row of R also are set to 0. 

Nonlinear Regression Model 
The nonlinear regression model is 

yi = f(xi;
) + �i i = 1, 2, �, n 

where the observed values of the yi’s constitute the responses or values of the 
dependent variable, the xi’s are the known vectors of values of the independent 
(explanatory) variables, f is a known function of an unknown regression 
parameter vector 
, and the �i’s are independently distributed normal errors each 
with mean 0 and variance �2. 

Function imsls_f_nonlinear_regression (page 149) performs the least-
squares fit to the data for this model. 

Weighted Least Squares 

Functions throughout the chapter generally allow weights to be assigned to the 
observations. The vector weights is used throughout to specify the weighting for 
each row of X. 

Computations that relate to statistical inference—e.g., t tests, F tests, and 
confidence intervals—are based on the multiple regression model except that the 
variance of �i is assumed to equal �2 times the reciprocal of the corresponding 
weight. 

If a single row of the data matrix corresponds to ni observations, the vector 
frequencies can be used to specify the frequency for each row of X. Degrees of 
freedom for error are affected by frequencies but are unaffected by weights. 

Summary Statistics 

Function imsls_f_regression_summary can be used to compute and print 
statistics related to a regression for each of the q dependent variables fitted by 
imsls_f_regression (page 64). The summary statistics include the model 
analysis of variance table, sequential sums of squares and F-statistics, coefficient 
estimates, estimated standard errors, t-statistics, variance inflation factors, and 
estimated variance-covariance matrix of the estimated regression coefficients. 
Function imsls_f_poly_regression (page 132) includes most of the same 
functionality for polynomial regressions.  
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The summary statistics are computed under the model y = X� + �, where y is the 
n � 1 vector of responses, X is the n � p matrix of regressors with rank (X) = r, � 
is the p � 1 vector of regression coefficients, and � is the n � 1 vector of errors 
whose elements are independently normally distributed with mean 0 and variance 
�2�wi. 

Given the results of a weighted least-squares fit of this model (with the wi’s as the 
weights), most of the computed summary statistics are output in the following 
variables: 

anova_table 
One-dimensional array usually of length 15. In 
imsls_f_regression_stepwise, anova_table is of length 13 
because the last two elements of the array cannot be computed from the 
input. The array contains statistics related to the analysis of variance. 
The sources of variation examined are the regression, error, and total. 
The first 10 elements of anova_table and the notation frequently used 
for these is described in the following table (here, AOV replaces 
anova_table): 

Model Analysis of Variance Table 
Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

 
Mean Square

 
F 

 
p-value 

Regression DFR = AOV[0] SSR = AOV[3] MSR = AOV[6] AOV[8] AOV[9] 

Error DFE = AOV[1] SSE = AOV[4] s2 = AOV[7]   

Total DFT = AOV[2] SST = AOV[5]    

If the model has an intercept (default), the total sum of squares is the 
sum of squares of the deviations of yi from its (weighted) mean y —the 
so-called corrected total sum of squares, denoted by the following: 

� �
2

1
SST

n

i i
i

w y y
�

� ��  

If the model does not have an intercept (IMSLS_NO_INTERCEPT), the 
total sum of squares is the sum of squares of yi—the so-called 
uncorrected total sum of squares, denoted by the following: 

2

1
SST

n

i i
i

w y
�

��  

The error sum of squares is given as follows: 

� �
2

1

ˆSSE
n

i i i
i

w y y
�

� ��  

The error degrees of freedom is defined by DFE = n – r. 
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The estimate of �2 is given by s2 = SSE�DFE, which is the error mean 
square. 

The computed F statistic for the null hypothesis, 
H0:�1 = �2 = ... = �k = 0, versus the alternative that at least one 
coefficient is nonzero is given by F = MSR�s2. The p-value associated 
with the test is the probability of an F larger than that computed under 
the assumption of the model and the null hypothesis. A small p-value 
(less than 0.05) is customarily used to indicate there is sufficient 
evidence from the data to reject the null hypothesis. 

The remaining five elements in anova_table frequently are displayed 
together with the actual analysis of variance table. The quantities  
R-squared (R2 = anova_table[10]) and adjusted R-squared  

� �� �2 11aR � anova_table  

are expressed as a percentage and are defined as follows: 

R2 = 100(SSR�SST) = 100(1 – SSE�SST) 
2

2 100max 0,1
SST/DFTa

sR
� �

� �� �
� �

 

The square root of s2(s = anova_table[12]) is frequently referred to as 
the estimated standard deviation of the model error. 

The overall mean of the responses y  is output in anova_table[13]. 

The coefficient of variation (CV = anova_table[14]) is expressed as a 
percentage and defined by CV = 100s/ y . 

coef_t_tests 
Two-dimensional matrix containing the regression coefficient vector �̂  
as one column and associated statistics (estimated standard error, t 
statistic and p-value) in the remaining columns.  

coef_covariances 
Estimated variance-covariance matrix of the estimated regression 
coefficients. 

Tests for Lack-of-Fit 
Tests for lack-of-fit are computed for the polynomial regression by the function 
imsls_f_poly_regression (page 132). The output array ssq_lof contains 
the lack-of-fit F tests for each degree polynomial 1, 2, ..., k, that is fit to the data. 
These tests are used to indicate the degree of the polynomial required to fit the 
data well. 
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Diagnostics for Individual Cases 
Diagnostics for individual cases (observations) are computed by two functions in 
the regression chapter: imsls_f_regression_prediction for linear and 
nonlinear regressions and imsls_f_poly_prediction for polynomial 
regressions. 

Statistics computed include predicted values, confidence intervals, and 
diagnostics for detecting outliers and cases that greatly influence the fitted 
regression. 

The diagnostics are computed under the model y = X� + �, where y is the n � 1 
vector of responses, X is the n � p matrix of regressors with rank (X) = r, � is the 
p � 1 vector of regression coefficients, and � is the n � 1 vector of errors whose 
elements are independently normally distributed with mean 0 and variance �2�wi. 

Given the results of a weighted least-squares fit of this model (with the wi’s as the 
weights), the following five diagnostics are computed: 

1. leverage 

2. standardized residual 

3. jackknife residual 

4. Cook’s distance 

5. DFFITS 

The definition of these terms is given in the discussion that follows: 

Let xi be a column vector containing the elements of the i-th row of X. A case can 
be unusual either because of xi or because of the response yi. The leverage  
hi is a measure of uniqueness of the xi. The leverage is defined by 

� �[ ]T T
i i ih x X WX x w

�

� i  

where W = diag(w1, w2, �, wn) and (XTWX)- denotes a generalized inverse of 
XTWX. The average value of the hi’s is r�n. Regression functions declare  
xi unusual if hi > 2r�n. Hoaglin and Welsch (1978) call a data point highly 
influential (i.e., a leverage point) when this occurs. 

Let ei denote the residual 

ˆi iy y�  

for the i-th case. The estimated variance of ei is (1 – hi)s2�wi, where s2 is the 
residual mean square from the fitted regression. The i-th standardized residual 
(also called the internally studentized residual) is by definition 

� �2 1
i

i i
i

w
r e

s h
�

�

 

and ri follows an approximate standard normal distribution in large samples. 
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The i-th jackknife residual or deleted residual involves the difference between  
yi and its predicted value, based on the data set in which the i-th case is deleted. 
This difference equals ei�(1 	 hi). The jackknife residual is obtained by 
standardizing this difference. The residual mean square for the regression in 
which the i-th case is deleted is as follows: 

� � �2 2
2 / 1

1
i i i

i

n r s w e h
s

n r
� � �

�
� �

 

The jackknife residual is defined as 

� �2 1
i

i i
i i

w
t e

s h
�

�

 

and ti follows a t distribution with n – r 	 1 degrees of freedom.  

Cook’s distance for the i-th case is a measure of how much an individual case 
affects the estimated regression coefficients. It is given as follows: 

� �

2

22 1
i i i

i
i

w h e
D

rs h
�

�

 

Weisberg (1985) states that if Di exceeds the 50-th percentile of the F(r, n 	 r ) 
distribution, it should be considered large. (This value is about 1. This statistic 
does not have an F distribution.) 

DFFITS, like Cook’s distance, is also a measure of influence. For the i-th case, 
DFFITS is computed by the formula below. 
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Hoaglin and Welsch (1978) suggest that DFFITS greater than 

2 /r n  

is large. 

Transformations 

Transformations of the independent variables are sometimes useful in order to 
satisfy the regression model. The inclusion of squares and crossproducts of the 
variables 

� �2 2
1 2 1 2 1 2, , , ,x x x x x x  

is often needed. Logarithms of the independent variables are used also. (See 
Draper and Smith 1981, pp. 218	222; Box and Tidwell 1962; Atkinson 1985, 
pp. 177	180; Cook and Weisberg 1982, pp. 78	86.) 
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When the responses are described by a nonlinear function of the parameters, a 
transformation of the model equation often can be selected so that the 
transformed model is linear in the regression parameters. For example, by taking 
natural logarithms on both sides of the equation, the exponential model  

0 1 1xy e� �
�

�

�  

can be transformed to a model that satisfies the linear regression model provided 
the �i’s have a log-normal distribution (Draper and Smith, pp. 222	225). 

When the responses are nonnormal and their distribution is known, a 
transformation of the responses can often be selected so that the transformed 
responses closely satisfy the regression model, assumptions. The square-root 
transformation for counts with a Poisson distribution and the arc-sine 
transformation for binomial proportions are common examples 
(Snedecor and Cochran 1967, pp. 325	330; Draper and Smith, pp. 237	239). 

Alternatives to Least Squares 
The method of least squares has desirable characteristics when the errors are 
normally distributed, e.g., a least-squares solution produces maximum likelihood 
estimates of the regression parameters. However, when errors are not normally 
distributed, least squares may yield poor estimators. Function 
imsls_f_lnorm_regression offers three alternatives to least squares 
methodology, Least Absolute Value , Lp Norm , and Least Maximum Value. 

The least absolute value (LAV, L1) criterion yields the maximum likelihood 
estimate when the errors follow a Laplace distribution. Option 
IMSLS_METHOD_LAV (page 170)  is often used when the errors have a heavy 
tailed distribution or when a fit is needed that is resistant to outliers.  

A more general approach, minimizing the Lp norm (p  1), is given by option 
IMSLS_METHOD_LLP (page 170). Although the routine requires about 30 times 
the CPU time for the case p = 1 than would the use of IMSLS_METHOD_LAV, the 
generality of IMSLS_METHOD_LLP allows the user to try several choices for  
p � 1 by simply changing the input value of p in the calling program. The CPU 
time decreases as p gets larger. Generally, choices of p between 1 and 2 are of 
interest. However, the Lp norm solution for values of p larger than 2 can also be 
computed. 

The minimax (LMV, L�, Chebyshev) criterion is used by IMSLS_METHOD_LMV 
(page 170). Its estimates are very sensitive to outliers, however, the minimax 
estimators are quite efficient if the errors are uniformly distributed. 

Missing Values 

NaN (Not a Number) is the missing value code used by the regression functions. 
Use function imsls_f_machine(6), Chapter 14  (or function 
imsls_d_machine(6) with double-precision regression functions) to retrieve 
NaN. Any element of the data matrix that is missing must be set to 
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imsls_f_machine(6) (or imsls_d_machine(6) for double precision). In 
fitting regression models, any observation containing NaN for the independent, 
dependent, weight, or frequency variables is omitted from the computation of the 
regression parameters. 

regressors_for_glm 
Generates regressors for a general linear model. 

Synopsis 
#include <imsls.h> 
int imsls_f_regressors_for_glm (int n_observations, float x[], 

int n_class, int n_continuous, ..., 0) 

The type double function is imsls_d_regressors_for_glm. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

float x[]   (Input) 
An n_observations � (n_class + n_continuous) array containing 
the data. The columns must be ordered such that the first n_class 
columns contain the class variables and the next n_continuous 
columns contain the continuous variables. (Exception: see optional 
argument IMSLS_X_CLASS_COLUMNS.) 

int n_class   (Input) 
Number of classification variables. 

int n_continuous   (Input) 
Number of continuous variables. 

Return Value 
An integer (n_regressors) indicating the number of regressors generated. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int imsls_f_regressors_for_glm (int n_observations, float x[], 

int n_class, int n_continuous,  
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_X_CLASS_COLUMNS, int x_class_columns[], 
IMSLS_MODEL_ORDER, int model_order, 
IMSLS_INDICES_EFFECTS, int n_effects, 
 int n_var_effects[], int indices_effects[], 
IMSLS_DUMMY, Imsls_dummy_method dummy_method, 
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IMSLS_REGRESSORS, float **regressors, 
IMSLS_REGRESSORS_USER, float regressors[], 
IMSLS_REGRESSORS_COL_DIM, int regressors_col_dim, 
0) 

Optional Arguments 
IMSLS_X_COL_DIM, int x_col_dim   (Input) 

Column dimension of x. 
Default: x_col_dim = n_class + n_continuous 

IMSLS_X_CLASS_COLUMNS, int x_class_columns[]   (Input) 
Index array of length n_class containing the column numbers of x that 
are the classification variables. The remaining variables are assumed to 
be continuous. 
Default: x_class_columns = 0, 1, ..., n_class 	 1 

IMSLS_MODEL_ORDER, int model_order   (Input) 
Order of the model. Model order can be specified as 1 or 2. Use optional 
argument IMSLS_INDICES_EFFECTS to specify more complicated 
models.  
Default: model_order = 1 
or 

IMSLS_INDICES_EFFECTS, int n_effects, int n_var_effects[], 
int indices_effects[]   (Input) 
Variable n_effects is the number of effects (sources of variation) in 
the model. Variable n_var_effects is an array of length n_effects 
containing the number of variables associated with each effect in the 
model. Argument indices_effects is an index array of length 
n_var_effects[0] + n_var_effects[1] + � + n_var_effects 
(n_effects 	 1). The first n_var_effects[0] elements give the 
column numbers of x for each variable in the first effect. The next 
n_var_effects[1] elements give the column numbers for each 
variable in the second effect. � The last n_var_effects 
[n_effects 	 1] elements give the column numbers for each variable in 
the last effect. 

IMSLS_DUMMY, Imsls_dummy_method dummy_method   (Input) 
Dummy variable option. Indicator variables are defined for each class 
variable as described in the “Description” section.  

 Dummy variables are then generated from the n indicator variables in 
one of the following three ways: 

dummy_method Method 

IMSLS_ALL The n indicator variables are the dummy 
variables (default). 
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dummy_method Method 

IMSLS_LEAVE_OUT_LAST The dummies are the first n 	 1 indicator 
variables. 

IMSLS_SUM_TO_ZERO The n 	 1 dummies are defined in terms of the 
indicator variables so that for balanced data, 
the usual summation restrictions are imposed 
on the regression coefficients. 

IMSLS_REGRESSORS, float **regressors   (Output) 
Address of a pointer to the internally allocated array of size 
n_observations � n_regressors containing the regressor variables 
generated from x. 

IMSLS_REGRESSORS_USER, float regressors[]   (Output) 
Storage for array regressors is provided by the user. See 
IMSLS_REGRESSORS. 

IMSLS_REGRESSORS_COL_DIM, int regressors_col_dim   (Input) 
Column dimension of regressors. 
Default: regressors_col_dim = n_regressors 

Description 
Function imsls_f_regressors_for_glm generates regressors for a general 
linear model from a data matrix. The data matrix can contain classification 
variables as well as continuous variables. Regressors for effects composed solely 
of continuous variables are generated as powers and crossproducts. Consider a 
data matrix containing continuous variables as Columns 3 and 4. The effect 
indices (3, 3) generate a regressor whose i-th value is the square of the i-th value 
in Column 3. The effect indices (3, 4) generates a regressor whose i-th value is 
the product of the i-th value in Column 3 with the i-th value in Column 4. 

Regressors for an effect (source of variation) composed of a single classification 
variable are generated using indicator variables. Let the classification variable A 
take on values a1, a2, ..., an. From this classification variable, 
imsls_f_regressors_for_glm creates n indicator variables. For  
k = 1, 2, ..., n, we have 

1 if 
0 otherwise

k
k

A a
I

��
� �
�

 

For each classification variable, another set of variables is created from the 
indicator variables. These new variables are called dummy variables. Dummy 
variables are generated from the indicator variables in one of three manners: 

1. The dummies are the n indicator variables. 

2. The dummies are the first n – 1 indicator variables. 
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3. The n – 1 dummies are defined in terms of the indicator variables so that 
for balanced data, the usual summation restrictions are imposed on the 
regression coefficients. 

In particular, for dummy_method = IMSLS_ALL, the dummy variables are 
Ak = Ik(k = 1, 2, ..., n). For dummy_method = IMSLS_LEAVE_OUT_LAST, the 
dummy variables are Ak = Ik(k = 1, 2, ..., n 	 1). For 
dummy_method = IMSLS_SUM_TO_ZERO, the dummy variables are  
Ak = Ik 	 In(k = 1, 2, ..., n 	 1). The regressors generated for an effect composed 
of a single-classification variable are the associated dummy variables. 

Let mj be the number of dummies generated for the j-th classification variable. 
Suppose there are two classification variables A and B with dummies 

11 2, , ..., mA A A  

and 

21 2, , ..., mB B B  

The regressors generated for an effect composed of two classification variables  
A and B are 

� � �1 2

2

2 1 1 1 2

1 2 1 2

1 1 1 2 1 2 1 2 2

2 1 2

, , ..., , , ...,

( , , ..., , , , ...,

, ..., , , ..., )

m m

m

m m m m m

A B A A A B B B

A B A B A B A B A B

A B A B A B A B

� � �

�

�
 

More generally, the regressors generated for an effect composed of several 
classification variables and several continuous variables are given by the 
Kronecker products of variables, where the order of the variables is specified in 
indices_effects. Consider a data matrix containing classification variables in 
Columns 0 and 1 and continuous variables in Columns 2 and 3. Label these four 
columns A, B, X1, and X2. The regressors generated by the effect indices  
(0, 1, 2, 2, 3) are A � B � X1X1X2. 

Remarks 
Let the data matrix x = (A, B, X1), where A and B are classification variables and 
X1 is a continuous variable. The model containing the effects A, B, AB, X1, 
AX1, BX1, and ABX1 is specified as follows (use optional keyword 
IMSLS_INDICES_EFFECTS): 

n_class � 2 
n_continuous � 1 
n_effects � 7 

n_var_effects � (1, 1, 2, 1, 2, 2, 3) 
indices_effects � (0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2) 
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For this model, suppose that variable A has two levels, A1 and A2, and that 
variable B has three levels, B1, B2, and B3. For each dummy_method option, the 
regressors in their order of appearance in regressors are given below. 

dummy_method regressors 

IMSLS_ALL A1, A2, B1, B2, B3, A1B1, A1B2, A1B3, A2B1, A2B2, 
A2B3, X1, A1X1, A2X1, B1X1, B2X1, B3X1, A1B1X1, 
A1B2X1, A1B3X1, A2B1X1, A2B2X1, A2B3X1 

IMSLS_LEAVE_OUT_LAST A1, B1, B2, A1B1, A1B2, X1, A1X1, B1X1, B2X1, 
A1B1X1, A1B2X1 

IMSLS_SUM_TO_ZERO A1 	 A2, B1 	 B3, B2 	 B3, (A1 	 A2) (B1 	 B2), 
(A1 	 A2) (B2 	 B3), X1, (A1 	 A2) X1, 
(B1 	 B3)X1, (B2 	 B3)X1, (A1 	 A2) (B1 	 B2)X1, 
(A1 	 A2) (B2 	 B3)X1 

Within a group of regressors corresponding to an interaction effect, the indicator 
variables composing the regressors vary most rapidly for the last classification 
variable, next most rapidly for the next to last classification variable, etc. 

By default, imsls_f_regressors_for_glm internally generates values for 
n_effects, n_var_effects, and indices_effects, which correspond to a 
first order model with NEF = n_continuous + n_class. The variables then are 
used to create the regressor variables. The effects are ordered such that the first 
effect corresponds to the first column of x, the second effect corresponds to the 
second column of x, etc. A second order model corresponding to the columns 
(variables) of x is generated if IMSLS_MODEL_ORDER with model_order = 2 is 
specified. 

There are 

NVAR
NEF=  + 2  +  

2
� �

� � �
� �

n_class n_continuous  

effects, where NVAR = n_continuous + n_class. The first NVAR effects 
correspond to the columns of x, such that the first effect corresponds to the first 
column of x, the second effect corresponds to the second column of x, ..., the 
NVAR-th effect corresponds to the NVAR-th column of x (i.e. x[NVAR 	 1]). 
The next n_continuous effects correspond to squares of the continuous 
variables. The last  

� �NVAR
2  

effects correspond to the two-variable interactions. 
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� Let the data matrix x = (A, B, X1), where A and B are classification 
variables and X1 is a continuous variable. The effects generated and 
order of appearance is 

2
1 1 1, , , , , ,A B X X AB AX BX  

� Let the data matrix x = (A, X1, X2), where A is a classification variable 
and X1 and X2 are continuous variables. The effects generated and order 
of appearance is 

2 2
1 2 1 2 1 2 1, , , , , , , 2A X X X X AX AX X X  

� Let the data matrix x = (X1, A, X2) (see IMSLS_CLASS_COLUMNS), 
where A is a classification variable and X1 and X2 are continuous 
variables. The effects generated and order of appearance is 

2 2
1 2 1 2 1 1 2, , , , , , ,X A X X X X A X X AX 2  

Higher-order and more complicated models can be specified using 
IMSLS_INDICES_EFFECTS. 

Examples 

Example 1 
In the following example, there are two classification variables, A and B, with two 
and three values, respectively. Regressors for a one-way model (the default model 
order) are generated using the IMSLS_ALL dummy method (the default dummy 
method). The five regressors generated are A1, A2, B1, B2, and B3. 

#include <imsls.h> 
void main() { 
    int n_observations = 6; 
    int n_class = 2; 
    int n_cont  = 0; 
    int n_regressors; 
    float x[12] = { 
        10.0,  5.0, 
        20.0, 15.0, 
        20.0, 10.0, 
        10.0, 10.0, 
        10.0, 15.0, 
        20.0,  5.0}; 
 
   n_regressors = imsls_f_regressors_for_glm (n_observations, x,  
       n_class, n_cont, 0); 
 
   printf("Number of regressors = %3d\n", n_regressors); 
} 

Output 

Number of regressors =   5 
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Example 2 
In this example, a two-way analysis of covariance model containing all the 
interaction terms is fit. First, imsls_f_regressors_for_glm is called to 
produce a matrix of regressors, regressors, from the data x. Then, 
regressors is used as the input matrix into imsls_f_regression to produce 
the final fit. The regressors, generated using 
dummy_method = IMSLS_LEAVE_OUT_LAST, are the model whose mean 
function is 

� + �i + �j + �ij + �xij + �ixij + �jxij + 
ijxij   i = 1, 2; j = 1, 2, 3 

where �2 = �3 = �21 = �22 = �23 = �2 = �3 = 
21 = 
22 = 
23 = 0. 

#include <imsls.h> 
void main() { 
#define N_OBSERVATIONS 18 
    int n_class = 2; 
    int n_cont  = 1; 
    float anova[15], *regressors; 
    int n_regressors; 
    float x[54] = {  
        1.0, 1.0, 1.11, 
        1.0, 1.0, 2.22, 
        1.0, 1.0, 3.33, 
        1.0, 2.0, 1.11, 
        1.0, 2.0, 2.22, 
        1.0, 2.0, 3.33, 
        1.0, 3.0, 1.11, 
        1.0, 3.0, 2.22, 
        1.0, 3.0, 3.33, 
        2.0, 1.0, 1.11, 
        2.0, 1.0, 2.22, 
        2.0, 1.0, 3.33, 
        2.0, 2.0, 1.11, 
        2.0, 2.0, 2.22, 
        2.0, 2.0, 3.33, 
        2.0, 3.0, 1.11, 
        2.0, 3.0, 2.22, 
        2.0, 3.0, 3.33}; 
   float y[N_OBSERVATIONS] = { 
       1.0, 2.0, 2.0, 4.0, 4.0, 6.0,  
       3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 
       2.0, 3.0, 4.0, 5.0, 6.0, 7.0}; 
   int class_col[2] = {0,1}; 
   int  n_effects = 7; 
   int n_var_effects[7] = {1, 1, 2, 1, 2, 2, 3}; 
   int indices_effects[12] = {0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2}; 
   float *coef; 
   char      *reg_labels[] = { 
        " ", "Alpha1", "Beta1", "Beta2", "Gamma11", "Gamma12", 
        "Delta", "Zeta1", "Eta1", "Eta2", "Theta11", "Theta12"}; 
   char      *labels[] = { 
        "degrees of freedom for the model", 
        "degrees of freedom for error", 
        "total (corrected) degrees of freedom", 
        "sum of squares for the model", 
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        "sum of squares for error", 
        "total (corrected) sum of squares", 
        "model mean square", "error mean square", 
        "F-statistic", "p-value", 
        "R-squared (in percent)","adjusted R-squared (in percent)", 
        "est. standard deviation of the model error", 
        "overall mean of y", 
        "coefficient of variation (in percent)"}; 
 
   n_regressors = imsls_f_regressors_for_glm (N_OBSERVATIONS, x,  
       n_class, n_cont,  
       IMSLS_X_CLASS_COLUMNS, class_col, 
       IMSLS_DUMMY, IMSLS_LEAVE_OUT_LAST, 
       IMSLS_INDICES_EFFECTS, n_effects, n_var_effects, indices_effects, 
       IMSLS_REGRESSORS, &regressors,  
       0); 
 
   printf("Number of regressors = %3d", n_regressors); 
 
   imsls_f_write_matrix ("regressors", N_OBSERVATIONS, n_regressors, 
       regressors,  
       IMSLS_COL_LABELS, reg_labels,  
       0); 
 
   coef = imsls_f_regression (N_OBSERVATIONS, n_regressors, regressors,  
       y,  
       IMSLS_ANOVA_TABLE_USER, anova, 
       0); 
 
   imsls_f_write_matrix ("* * * Analysis of Variance * * *\n", 15, 1, 
        anova, 
        IMSLS_ROW_LABELS,   labels, 
        IMSLS_WRITE_FORMAT, "%11.4f", 
        0); 
 
} 

Output 

Number of regressors =  11  
                                regressors 
        Alpha1       Beta1       Beta2     Gamma11     Gamma12       Delta 
 1        1.00        1.00        0.00        1.00        0.00        1.11 
 2        1.00        1.00        0.00        1.00        0.00        2.22 
 3        1.00        1.00        0.00        1.00        0.00        3.33 
 4        1.00        0.00        1.00        0.00        1.00        1.11 
 5        1.00        0.00        1.00        0.00        1.00        2.22 
 6        1.00        0.00        1.00        0.00        1.00        3.33 
 7        1.00        0.00        0.00        0.00        0.00        1.11 
 8        1.00        0.00        0.00        0.00        0.00        2.22 
 9        1.00        0.00        0.00        0.00        0.00        3.33 
10        0.00        1.00        0.00        0.00        0.00        1.11 
11        0.00        1.00        0.00        0.00        0.00        2.22 
12        0.00        1.00        0.00        0.00        0.00        3.33 
13        0.00        0.00        1.00        0.00        0.00        1.11 
14        0.00        0.00        1.00        0.00        0.00        2.22 
15        0.00        0.00        1.00        0.00        0.00        3.33 
16        0.00        0.00        0.00        0.00        0.00        1.11 
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17        0.00        0.00        0.00        0.00        0.00        2.22 
18        0.00        0.00        0.00        0.00        0.00        3.33 
 
         Zeta1        Eta1        Eta2     Theta11     Theta12 
 1        1.11        1.11        0.00        1.11        0.00 
 2        2.22        2.22        0.00        2.22        0.00 
 3        3.33        3.33        0.00        3.33        0.00 
 4        1.11        0.00        1.11        0.00        1.11 
 5        2.22        0.00        2.22        0.00        2.22 
 6        3.33        0.00        3.33        0.00        3.33 
 7        1.11        0.00        0.00        0.00        0.00 
 8        2.22        0.00        0.00        0.00        0.00 
 9        3.33        0.00        0.00        0.00        0.00 
10        0.00        1.11        0.00        0.00        0.00 
11        0.00        2.22        0.00        0.00        0.00 
12        0.00        3.33        0.00        0.00        0.00 
13        0.00        0.00        1.11        0.00        0.00 
14        0.00        0.00        2.22        0.00        0.00 
15        0.00        0.00        3.33        0.00        0.00 
16        0.00        0.00        0.00        0.00        0.00 
17        0.00        0.00        0.00        0.00        0.00 
18        0.00        0.00        0.00        0.00        0.00 
  
 
           * * * Analysis of Variance * * * 
 
degrees of freedom for the model                11.0000 
degrees of freedom for error                     6.0000 
total (corrected) degrees of freedom            17.0000 
sum of squares for the model                    43.9028 
sum of squares for error                         0.8333 
total (corrected) sum of squares                44.7361 
model mean square                                3.9912 
error mean square                                0.1389 
F-statistic                                     28.7364 
p-value                                          0.0003 
R-squared (in percent)                          98.1372 
adjusted R-squared (in percent)                 94.7221 
est. standard deviation of the model error       0.3727 
overall mean of y                                3.9722 
coefficient of variation (in percent)            9.3821 

regression 
Fits a multivariate linear regression model using least squares. 

Synopsis 
#include <imsls.h> 
float *imsls_f_regression (int n_rows, int n_independent, float x[], 

float y[], ..., 0) 

The type double function is imsls_d_regression. 
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Required Arguments 

int n_rows   (Input) 
Number of rows in x.  

int n_independent   (Input) 
Number of independent (explanatory) variables. 

float x[]   (Input) 
Array of size n_rows � n_independent containing the independent 
(explanatory) variables(s). The i-th column of x contains the i-th 
independent variable. 

float y[]   (Input) 
Array of size n_rows � n_dependent containing the dependent 
(response) variables(s). The i-th column of y contains the i-th dependent 
variable. See optional argument IMSLS_N_DEPENDENT to set the value 
of n_dependent.  

Return Value 
If the optional argument IMSLS_NO_INTERCEPT is not used, regression 
returns a pointer to an array of length n_dependent � (n_independent + 1) 
containing a least-squares solution for the regression coefficients. The estimated 
intercept is the initial component of each row, where the i-th row contains the 
regression coefficients for the i-th dependent variable. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_regresssion (int n_rows, int n_independent,  

float x[], float y[], 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_Y_COL_DIM, int y_col_dim, 
IMSLS_N_DEPENDENT, int n_dependent,  
IMSLS_X_INDICES, int indind[], int inddep[], int ifrq, 
 int iwt,  
IMSLS_IDO, int ido,  
IMSLS_ROWS_ADD, or 
IMSLS_ROWS_DELETE,  
IMSLS_INTERCEPT, or 
IMSLS_NO_INTERCEPT, 
IMSLS_TOLERANCE, float tolerance, 
IMSLS_RANK, int *rank, 
IMSLS_COEF_COVARIANCES, float **coef_covariances, 
IMSLS_COEF_COVARIANCES_USER, float coef_covariances[], 
IMSLS_COV_COL_DIM, int cov_col_dim,  
IMSLS_X_MEAN, float **x_mean,  
IMSLS_X_MEAN_USER, float x_mean[],  
IMSLS_RESIDUAL, float **residual,  
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IMSLS_RESIDUAL_USER, float residual[],  
IMSLS_ANOVA_TABLE, float **anova_table,  
IMSLS_ANOVA_TABLE_USER, float anova_table[],  
IMSLS_FREQUENCIES, float frequencies[],  
IMSLS_WEIGHTS, float weights[],  
IMSLS_REGRESSION_INFO, 
 Imsls_f_regression **regression_info, 
IMSLS_RETURN_USER, float coefficients[],  
0) 

Optional Arguments 
IMSLS_X_COL_DIM, int x_col_dim   (Input) 

Column dimension of x. 
Default: x_col_dim = n_independent 

IMSLS_Y_COL_DIM, int y_col_dim   (Input) 
Column dimension of y. 
Default: y_col_dim = n_dependent 

IMSLS_N_DEPENDENT, int n_dependent   (Input) 
Number of dependent variables. Input matrix y must be declared of size 
n_rows by n_dependent, where column i of y contains the i-th 
dependent variable.  
Default: n_dependent = 1 

IMSLS_X_INDICES, int indind[], int inddep, int ifrq, int iwt   (Input) 
This argument allows an alternative method for data specification. Data 
(independent, dependent, frequencies, and weights) is all stored in the 
data matrix x. Argument y, and keywords IMSLS_FREQUENCIES and 
IMSLS_WEIGHTS are ignored. 

Each of the four arguments contains indices indicating column numbers 
of x in which particular types of data are stored. Columns are numbered 
0 � x_col_dim 	 1.  

Parameter indind contains the indices of the independent variables.. 

Parameter inddep contains the indices of the dependent variables.  

Parameters ifrq and iwt contain the column numbers of x in which the 
frequencies and weights, respectively, are stored. Set ifrq = 	1 if there 
will be no column for frequencies. Set iwt = 	1 if there will be no 
column for weights. Weights are rounded to the nearest integer. 
Negative weights are not allowed. 

Note that required input argument y is not referenced, and can be 
declared a vector of length 1. 

IMSLS_IDO, int ido   (Input) 
Processing option. 
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ido Action 

0 This is the only invocation; all the data are input at once. (Default) 

1 This is the first invocation with this data; additional calls will be 
made. Initialization and updating for the n_rows observations of x 
will be performed. 

2 This is an intermediate invocation; updating for the n_rows 
observations of x will be performed. 

3 This is the final invocation of this function. Updating for the data in 
x and wrap-up computations are performed. Workspace is released. 
No further call to regression with ido greater than 1 should be 
made without first calling regression with ido = 1 

Default: ido = 0 

IMSLS_ROWS_ADD, or 
IMSLS_ROWS_DELETE 

By default (or if IMSLS_ROWS_ADD is specified), the observations in x 
are added to the discriminant statistics. If IMSLS_ROWS_DELETE is 
specified, then the observations are deleted. 

If ido = 0, these optional arguments are ignored (data is always added if 
there is only one invocation). 

IMSLS_INTERCEPT, or 
IMSLS_NO_INTERCEPT 

IMSLS_INTERCEPT is the default where the fitted value for observation 
i is  

0 1 1
ˆ ˆ ˆ... k kx x� � �� � �  

where k = n_independent. If IMSLS_NO_INTERCEPT is specified, the intercept 
term  

� �0�̂  

is omitted from the model and the return value from regression is a 
pointer to an array of length n_dependent � n_independent. 

IMSLS_TOLERANCE, float tolerance   (Input) 
Tolerance used in determining linear dependence. For regression, 
tolerance = 100 � imsls_f_machine(4) is the default choice. For 
imsls_d_regression, tolerance = 100 � imsls_d_machine(4) is 
the default. (See imsls_f_machine Chapter 14.) 

IMSLS_RANK, int *rank   (Output) 
Rank of the fitted model is returned in *rank. 
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IMSLS_COEF_COVARIANCES, float **coef_covariances   (Output) 
Address of a pointer to the n_dependent � m � m internally allocated 
array containing the estimated variances and covariances of the 
estimated regression coefficients. Here, m is the number of regression 
coefficients in the model. If IMSLS_NO_INTERCEPT is specified, 
n = n_independent; otherwise, m = n_independent + 1.  

The first m � m elements contain the matrix for the first dependent 
variable, the next m � m elements contain the matrix for the next 
dependent variable, ... and so on. 

IMSLS_COEF_COVARIANCES_USER, float coef_covariances[]   (Output) 
Storage for arrays coef_covariances is provided by the user. See 
IMSLS_COEF_COVARIANCES.  

IMSLS_COV_COL_DIM, int cov_col_dim   (Input) 
Column dimension of array coef_covariances. 
Default: cov_col_dim = m, where m is the number of regression 
coefficients in the model 

IMSLS_X_MEAN, float **x_mean   (Output) 
Address of a pointer to the internally allocated array containing the 
estimated means of the independent variables. 

IMSLS_X_MEAN_USER, float x_mean[]   (Output) 
Storage for array x_mean is provided by the user.  
See IMSLS_X_MEAN. 

IMSLS_RESIDUAL, float **residual   (Output) 
Address of a pointer to the internally allocated array of size n_rows by 
n_dependent containing the residuals. Residuals may not be requested 
if ido > 0. 

IMSLS_RESIDUAL_USER, float residual[]   (Output) 
Storage for array residual is provided by the user.  
See IMSLS_RESIDUAL. 

IMSLS_ANOVA_TABLE, float **anova_table   (Output) 
Address of a pointer to the internally allocated array of size  
15 � n_dependent containing the analysis of variance table for each 
dependent variable. The i-th column corresponds to the analysis for the 
i-th dependent variable.  

 The analysis of variance statistics are given as follows: 

Element Analysis of Variance Statistics 

0 degrees of freedom for the model 

1 degrees of freedom for error 
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Element Analysis of Variance Statistics 

2 total (corrected) degrees of freedom 

3 sum of squares for the model 

4 sum of squares for error 

5 total (corrected) sum of squares 

6 model mean square 

7 error mean square 

8 overall F-statistic 

9 p-value 

10 R2 (in percent) 

11 adjusted R2 (in percent) 

12 estimate of the standard deviation 

13 overall mean of y 

14 coefficient of variation (in percent) 

The anova statistics may not be requested if ido > 0. 

IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
Storage for array anova_table is provided by the user. See 
IMSLS_ANOVA_TABLE. 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array of length n_rows containing the frequency for each observation. 
Default: frequencies[] = 1 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_rows containing the weight for each observation. 
Default: weights[] = 1 

IMSLS_REGRESSION_INFO, Imsls_f_regression **regression_info   
(Output) 
Address of the pointer to an internally allocated structure of type 
Imsls_f_regression containing information about the regression fit. This 
structure is required as input for functions 
imsls_f_regression_prediction and 
imsls_f_regression_summary. 
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IMSLS_RETURN_USER, float coefficients[]   (Output) 
If specified, the least-squares solution for the regression coefficients is 
stored in array coefficients provided by the user. If 
IMSLS_NO_INTERCEPT is specified, the array requires  
n_dependent � n units of memory, where n = n_independent; 
otherwise, n = n_independent + 1. 

Description 
Function imsls_f_regression fits a multivariate multiple linear regression 
model with or without an intercept. The multiple linear regression model is  

yi = �0 + �1xi1 + �2xi2 + � � �kxik + �i  i = 1, 2, �, n 

where the observed values of the yi’s are the responses or values of the dependent 
variable; the xi1’s, xi2’s, �, xik’s are the settings of the k (input in 
n_independent) independent variables; �0, �1, �, �k are the regression 
coefficients whose estimated values are to be output by imsls_f_regression; 
and the �i’s are independently distributed normal errors each with mean 0 and 
variance s2. Here, n is the sum of the frequencies for all nonmissing observations, 
i.e.,  

1

0
i

i
n f

�

�

� �
�� �

� �
�

n_rows

 

where fi is equal to frequencies[i] if optional argument IMSLS_FREQUENCIES 
is specified and equal to 1.0 otherwise. Note that by default, �0 is included in the 
model. 

More generally, imsls_f_regression fits a multivariate regression model. See 
the chapter introduction for a description of the multivariate model. 

Function imsls_f_regression computes estimates of the regression 
coefficients by minimizing the sum of squares of the deviations of the observed 
response yi from the fitted response  

ˆiy  

for the n observations. This minimum sum of squares (the error sum of squares) is 
output as one of the analysis of variance statistics if IMSLS_ANOVA_TABLE (or 
IMSLS_ANOVA_TABLE_USER) is specified and is computed as follows: 

� �
2

1
ˆ

n

i i i
i

SSE w y y
�

� ��  

Another analysis of variance statistic is the total sum of squares. By default, the 
total sum of squares is the sum of squares of the deviations of yi from its mean  

y  

the so-called corrected total sum of squares. This statistic is computed as follows: 
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� �
2

1
i i

n

i
SST w y y

�

� ��  

When IMSLS_NO_INTERCEPT is specified, the total sum of squares is the sum of 
squares of yi, the so-called uncorrected total sum of squares. This is computed as 
follows: 

2

1
SST

n

i i
i

w y
�

��  

See Draper and Smith (1981) for a good general treatment of the multiple linear 
regression model, its analysis, and many examples. 

In order to compute a least-squares solution, imsls_f_regression performs an 
orthogonal reduction of the matrix of regressors to upper-triangular form. The 
reduction is based on one pass through the rows of the augmented matrix (x, y) 
using fast Givens transformations. (See Golub  and Van Loan 1983, pp. 156–162; 
Gentleman 1974.) This method has the advantage that the loss of accuracy 
resulting from forming the crossproduct matrix used in the normal equations is 
avoided. 

By default, the current means of the dependent and independent variables are 
used to internally center the data for improved accuracy. Let xi be a column 
vector containing the j-th row of data for the independent variables. Let xi 
represent the mean vector for the independent variables given the data for rows 1, 
2, �, i. The current mean vector is defined as follows:  

1

1

i

j j j
j

i i

j j
j

w f x
x

w f

�

�

�

�

�

 

where the wj’s and the fj’s are the weights and frequencies. The i-th row of data 
has  

ix  

 

subtracted from it and is multiplied by 

1

i
i i

i

a
w f

a
�

 

where 

1

i

i j
j

a w
�

�� jf  
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Although a crossproduct matrix is not computed, the validity of this centering 
operation can be seen from the following formula for the sum of squares and 
crossproducts matrix:  

� �� � � �� �
1 2 1

n n
T Ti

i i i n i n i i i i i i
i i i

a
w f x x x x w f x x x x

a
� � �

� � � � �� �  

An orthogonal reduction on the centered matrix is computed. When the final 
computations are performed, the intercept estimate and the first row and column 
of the estimated covariance matrix of the estimated coefficients are updated (if 
IMSLS_COEF_COVARIANCES or IMSLS_COEF_COVARIANCES_USER is 
specified) to reflect the statistics for the original (uncentered) data. This means 
that the estimate of the intercept is for the uncentered data. 

As part of the final computations, imsls_f_regression checks for linearly 
dependent regressors. In particular, linear dependence of the regressors is 
declared if any of the following three conditions are satisfied: 

� A regressor equals 0. 

� Two or more regressors are constant. 

2
1,2,..., 11 i iR
� �

�  

is less than or equal to tolerance. Here, 

1,2,..., 1i iR
� �

 

is the multiple correlation coefficient of the i-th independent variable 
with the first i – 1 independent variables. If no intercept is in the model, 
the multiple correlation coefficient is computed without adjusting for the 
mean. 

On completion of the final computations, if the i-th regressor is declared to be 
linearly dependent upon the previous i 	 1 regressors, the i-th coefficient estimate 
and all elements in the i-th row and i-th column of the estimated variance-
covariance matrix of the estimated coefficients (if IMSLS_COEF_COVARIANCES 
or IMSLS_COEF_COVARIANCES_USER is specified) are set to 0. Finally, if a 
linear dependence is declared, an informational (error) message, code 
IMSLS_RANK_DEFICIENT, is issued indicating the model is not full rank. 

Examples 

Example 1 
A regression model 

yi = �0 + �1xi1 + �2xi2 + �3xi3 + �i  i = 1, 2, �, 9 

is fitted to data taken from Maindonald (1984, pp. 203–204). 
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#include <imsls.h> 
 
#define INTERCEPT       1 
#define N_INDEPENDENT   3 
#define N_COEFFICIENTS  (INTERCEPT + N_INDEPENDENT) 
#define N_OBSERVATIONS  9 
 
main() 
{ 
    float       *coefficients; 
    float       x[][N_INDEPENDENT] = {7.0, 5.0, 6.0, 
                                      2.0,-1.0, 6.0, 
                                      7.0, 3.0, 5.0, 
                                     -3.0, 1.0, 4.0, 
                                      2.0,-1.0, 0.0, 
                                      2.0, 1.0, 7.0, 
                                     -3.0,-1.0, 3.0, 
                                      2.0, 1.0, 1.0, 
                                      2.0, 1.0, 4.0}; 
    float       y[] = {7.0,-5.0, 6.0, 5.0, 5.0, -2.0, 0.0, 8.0, 3.0}; 
 
    coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,  
                                     (float *)x, y, 0); 
    imsls_f_write_matrix("Least-Squares Coefficients", 1, N_COEFFICIENTS,  
                        coefficients,  
                        IMSLS_COL_NUMBER_ZERO, 
                        0); 
} 

Output 

          Least-Squares Coefficients 
         0           1           2           3 
     7.733      -0.200       2.333      -1.667 

Example 2 

A weighted least-squares fit is computed using the model 

yi = �0 + �1xi1 + �2xi2 + �i i = 1, 2, �, 4 

and weights 1�i2 discussed by Maindonald (1984, pp. 67	68).  

In the example, IMSLS_WEIGHTS is specified. The minimum sum of squares for 
error in terms of the original untransformed regressors and responses for this 
weighted regression is 

� �
4

2

=1

ˆSSE= i i i
i

w y y��  

where wi = 1/i2, represented in the C code as array w. 

#include <imsls.h> 
#include <math.h> 
 
#define N_INDEPENDENT   2 
#define N_COEFFICIENTS  N_INDEPENDENT + 1 
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#define N_OBSERVATIONS  4 
 
main() 
{ 
    int         i; 
    float       *coefficients, w[N_OBSERVATIONS], anova_table[15],  
                power; 
    float       x[][N_INDEPENDENT] = { 
                    -2.0, 0.0,  
                    -1.0, 2.0,  
                     2.0, 5.0, 
                     7.0, 3.0}; 
    float       y[] = {-3.0, 1.0, 2.0, 6.0}; 
    char        *anova_row_labels[] = { 
                   "degrees of freedom for regression",  
                   "degrees of freedom for error",  
                   "total (uncorrected) degrees of freedom", 
                   "sum of squares for regression",  
                   "sum of squares for error",  
                   "total (uncorrected) sum of squares", 
                   "regression mean square",  
                   "error mean square", "F-statistic", 
                   "p-value", "R-squared (in percent)",  
                   "adjusted R-squared (in percent)", 
                   "est. standard deviation of model error",  
                   "overall mean of y",  
                   "coefficient of variation (in percent)"}; 
 
                                /* Calculate weights */ 
    power = 0.0; 
    for (i = 0;  i < N_OBSERVATIONS;  i++)  { 
        power += 1.0; 
        w[i] = 1.0 / (power*power); 
    } 
 
                                /*Perform analysis */ 
    coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,  
        (float *) x, y, 
        IMSLS_WEIGHTS, w,  
        IMSLS_ANOVA_TABLE_USER, anova_table, 
        0); 
 
                                /* Print results */ 
    imsls_f_write_matrix("Least Squares Coefficients", 1,  
        N_COEFFICIENTS, coefficients, 0); 
    imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,  
        anova_table, 
        IMSLS_ROW_LABELS, anova_row_labels, 
        IMSLS_WRITE_FORMAT, "%10.2f",  
        0); 
} 

Output 

    Least Squares Coefficients 
         1           2           3 
    -1.431       0.658       0.748 
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         * * * Analysis of Variance * * * 
 
degrees of freedom for regression             2.00 
degrees of freedom for error                  1.00 
total (uncorrected) degrees of freedom        3.00 
sum of squares for regression                 7.68 
sum of squares for error                      1.01 
total (uncorrected) sum of squares            8.69 
regression mean square                        3.84 
error mean square                             1.01 
F-statistic                                   3.79 
p-value                                       0.34 
R-squared (in percent)                       88.34 
adjusted R-squared (in percent)              65.03 
est. standard deviation of model error        1.01 
overall mean of y                            -1.51 
coefficient of variation (in percent)       -66.55 

Example 3 
A multivariate regression is performed for a data set with two dependent 
variables. Also, usage of the keyword IMSLS_X_INDICES is demonstrated. Note 
that the required input variable y is not referenced and is declared as a pointer to 
a float. 

#include <imsls.h> 
 
#define INTERCEPT       1 
#define N_INDEPENDENT   3 
#define N_DEPENDENT     2 
#define N_COEFFICIENTS  (INTERCEPT + N_INDEPENDENT) 
#define N_OBSERVATIONS  9 
 
main() 
{ 
    float  coefficients[N_DEPENDENT*N_COEFFICIENTS]; 
    float  *dummy; 
    float  scpe[N_DEPENDENT*N_DEPENDENT]; 
    float  anova_table[15*N_DEPENDENT]; 
    static float   x[] =       { 7.0, 5.0, 6.0,  7.0,  1.0,  
                                 2.0,-1.0, 6.0, -5.0,  4.0,  
                                 7.0, 3.0, 5.0,  6.0, 10.0,  
                                -3.0, 1.0, 4.0,  5.0,  5.0,  
                                 2.0,-1.0, 0.0,  5.0, -2.0,  
                                 2.0, 1.0, 7.0, -2.0,  4.0,  
                                -3.0,-1.0, 3.0,  0.0, -6.0,  
                                 2.0, 1.0, 1.0,  8.0,  2.0,  
                                 2.0, 1.0, 4.0,  3.0,  0.0}; 
    int    ifrq = -1, iwt=-1; 
    static int indind[N_INDEPENDENT] = {0, 1, 2}; 
    static int inddep[N_DEPENDENT] = {3, 4}; 
    char   *fmt = "%10.4f"; 
    char   *anova_row_labels[] = { 
                   "d.f. regression",  
                   "d.f. error",  
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                   "d.f. total (uncorrected)", 
                   "ssr",  
                   "sse",  
                   "sst (uncorrected)", 
                   "msr",  
                   "mse", "F-statistic", 
                   "p-value", "R-squared (in percent)",  
                   "adj. R-squared (in percent)", 
                   "est. s.t.d. of model error",  
                   "overall mean of y",  
                   "coefficient of variation (in percent)"}; 
 
    imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,  
        (float *) x, dummy, 
        IMSLS_X_COL_DIM, N_INDEPENDENT+N_DEPENDENT, 
        IMSLS_N_DEPENDENT, N_DEPENDENT,  
        IMSLS_X_INDICES, indind, inddep, ifrq, iwt, 
        IMSLS_SCPE_USER, scpe,  
        IMSLS_ANOVA_TABLE_USER, anova_table, 
        IMSLS_RETURN_USER, coefficients, 
        0); 
 
    imsls_f_write_matrix("Least Squares Coefficients", N_DEPENDENT, 
        N_COEFFICIENTS, coefficients,  
        IMSLS_COL_NUMBER_ZERO, 0); 
 
    imsls_f_write_matrix("SCPE", N_DEPENDENT, N_DEPENDENT, scpe,  
        IMSLS_WRITE_FORMAT, "%10.4f", 0); 
 
    imsls_f_write_matrix("* * * Analysis of Variance * * *\n",  
        15, N_DEPENDENT,  
        anova_table, 
        IMSLS_ROW_LABELS, anova_row_labels, 
        IMSLS_WRITE_FORMAT, "%10.2f",  
        0); 
 
 
} 

Output 

           Least Squares Coefficients 
            0           1           2           3 
1       7.733      -0.200       2.333      -1.667 
2      -1.633       0.400       0.167       0.667 
  
          SCPE 
            1           2 
1      4.0000     20.0000 
2     20.0000    110.0000 
  
     * * * Analysis of Variance * * * 
 
                              1           2 
d.f. regression            3.00        3.00 
d.f. error                 5.00        5.00 
d.f. total (uncorre        8.00        8.00 
   cted)                                    
ssr                      152.00       56.00 
sse                        4.00      110.00 
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sst (uncorrected)        156.00      166.00 
msr                       50.67       18.67 
mse                        0.80       22.00 
F-statistic               63.33        0.85 
p-value                    0.00        0.52 
R-squared (in             97.44       33.73 
   percent)                                 
adj. R-squared            95.90        0.00 
   (in percent)                             
est. s.t.d. of             0.89        4.69 
   model error                              
overall mean of y          3.00        2.00 
coefficient of            29.81      234.52 
   variation (in                            
   percent)                                 

Warning Errors 
IMSLS_RANK_DEFICIENT The model is not full rank. There is not a 

unique least-squares solution. 

Fatal Errors 
IMSLS_BAD_IDO_6 “ido” = #. Initial allocations must be 

performed by making a call to function 
regression with “ido” = 1. 

IMSLS_BAD_IDO_7 “ido” = #. A new analysis may not begin 
until the previous analysis is terminated by 
a call to function regression with “ido” = 3. 

regression_summary 
Produces summary statistics for a regression model given the information from 
the fit. 

Synopsis 

#include <imsls.h> 
void imsls_f_regression_summary 

(Imsls_f_regression *regression_info, ..., 0) 

The type double function is imsls_d_regression_summary. 

Required Argument 

Imsls_f_regression *regression_info   (Input) 
Pointer to a structure of type Imsls_f_regression containing information 
about the regression fit. See imsls_f_regression. 
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Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_f_regression_summary 

(Imsls_f_regression *regression_info,  
IMSLS_INDEX_REGRESSION, int idep,  
IMSLS_COEF_T_TESTS, float **coef_t_tests 
IMSLS_COEF_T_TESTS_USER, float coef_t_tests[], 
IMSLS_COEF_COL_DIM, int coef_col_dim, 
IMSLS_COEF_VIF, float **coef_vif, 
IMSLS_COEF_VIF_USER, float coef_vif[], 
IMSLS_COEF_COVARIANCES, float **coef_covariances, 
IMSLS_COEF_COVARIANCES_USER, float coef_covariances[], 
IMSLS_COEF_COV_COL_DIM, int coef_cov_col_dim, 
IMSLS_ANOVA_TABLE, float **anova_table, 
IMSLS_ANOVA_TABLE_USER, float anova_table[], 
0) 

Optional Arguments 
IMSLS_INDEX_REGRESSION, int idep   (Input) 

Given a multivariate regression fit, this option allows the user to specify 
for which regression summary statistics will be computed. 
Default: idep = 0 

IMSLS_COEF_T_TESTS, float **coef_t_tests   (Output) 
Address of a pointer to the npar � 4 array containing statistics relating 
to the regression coefficients, where npar is equal to the number of 
parameters in the model. 

 Each row (for each dependent variable) corresponds to a coefficient in 
the model, where npar is the number of parameters in the model. Row 
i + intcep corresponds to the i-th independent variable, where intcep is 
equal to 1 if an intercept is in the model and 0 otherwise, for  
i = 0, 1, 2, �, npar – 1.  
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The statistics in the columns are as follows: 
Column Description 

0 coefficient estimate 

1 estimated standard error of the coefficient estimate 

2 t-statistic for the test that the coefficient is 0 

3 p-value for the two-sided t test 

IMSLS_COEF_T_TESTS_USER, float coef_t_tests[]   (Output) 
Storage for array coef_t_tests is provided by the user. See 
IMSLS_COEF_T_TESTS. 

IMSLS_COEF_COL_DIM, int coef_col_dim   (Input) 
Column dimension of coef_t_tests. 
Default: coef_col_dim = 4 

IMSLS_COEF_VIF, float **coef_vif   (Output) 
Address of a pointer to an internally allocated array of length npar 
containing the variance inflation factor, where npar is the number of 
parameters. The i + intcep-th column corresponds to the i-th independent 
variable, where i = 0, 1, 2, �, npar – 1, and intcep is equal to 1 if an 
intercept is in the model and 0 otherwise. 

The square of the multiple correlation coefficient for the i-th regressor 
after all others can be obtained from coef_vif by  

1.01.0
[ ]i

�

coef_vif
 

If there is no intercept, or there is an intercept and j = 0, the multiple 
correlation coefficient is not adjusted for the mean. 

IMSLS_COEF_VIF_USER, float coef_vif[]   (Output) 
Storage for array coef_t_tests is provided by the user. See 
IMSLS_COEF_VIF. 

IMSLS_COEF_COVARIANCES, float **coef_covariances   (Output) 
An npar by npar (where npar is equal to the number of parameters in the 
model) array that is the estimated variance-covariance matrix of the 
estimated regression coefficients when R is nonsingular and is from an 
unrestricted regression fit. See “Remarks” on page 82 for an explanation 
of coef_covariances when R is singular and is from a restricted 
regression fit.  

IMSLS_COEF_COVARIANCES_USER, float coef_covariances[]   (Output) 
Storage for coef_covariances is provided by the user. See 
IMSLS_COEF_COVARIANCES. 
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IMSLS_COEF_COV_COL_DIM, int coef_cov_col_dim   (Input) 
Column dimension of coef_covariances. 
Default: coef_cov_col_dim = the number of parameters in the model 

IMSLS_ANOVA_TABLE, float **anova_table   (Output) 
Address of a pointer to the array of size 15 containing the analysis of 
variance table. 

Row Analysis of Variance Statistic 

0 degrees of freedom for the model 

1 degrees of freedom for error 

2 total (corrected) degrees of freedom 

3 sum of squares for the model 

4 sum of squares for error 

5 total (corrected) sum of squares 

6 model mean square 

7 error mean square 

8 overall F-statistic 

9 p-value 

10 R2(in percent) 

11 adjusted R2 (in percent) 

12 estimate of the standard deviation 

13 overall mean of y 

14 coefficient of variation (in percent) 

If the model has an intercept, the regression and total are corrected for 
the mean; otherwise, the regression and total are not corrected for the 
mean, and anova_table[13] and anova_table[14] are set to NaN. 

IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
Storage for array anova_table is provided by the user. See 
IMSLS_ANOVA_TABLE. 
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Description 
Function imsls_f_regression_summary computes summary statistics from a 
fitted general linear model. The model is y = X� + �, where y is the n � 1 vector 
of responses, X is the n � p matrix of regressors, � is the p � 1 vector of 
regression coefficients, and � is the n � 1 vector of errors whose elements are 
each independently distributed with mean 0 and variance �2. Function 
regression can be used to compute the fit of the model. Next, 
imsls_f_regression_summary uses the results of this fit to compute 
summary statistics, including analysis of variance, sequential sum of squares,  
t tests, and an estimated variance-covariance matrix of the estimated regression 
coefficients. 

Some generalizations of the general linear model are allowed. If the i-th element 
of � has variance of 

2

iw
�  

and the weights wi are used in the fit of the model, 
imsls_f_regression_summary produces summary statistics from the 
weighted least-squares fit. More generally, if the variance-covariance matrix of � 
is �2V, imsls_f_regression_summary can be used to produce summary 
statistics from the generalized least-squares fit. Function regression can be 
used to perform a generalized least-squares fit, by regressing y* on X* where 
y* = (T-1)Ty, X* = (T-1)TX and T satisfies TTT = V.  
The sequential sum of squares for the i-th regression parameter is given by  

� �
2ˆ
i

R�  

The regression sum of squares is given by the sum of the sequential sums of 
squares. If an intercept is in the model, the regression sum of squares is adjusted 
for the mean, i.e.,  

� �
2

0
ˆR�  

is not included in the sum. 
The estimate of �2 is s2 (stored in anova_table[7]) that is computed as 
SSE/DFE. 
If R is nonsingular, the estimated variance-covariance matrix of  

�̂  

(stored in coef_covariances) is computed by s2R-1(R-1)T. 
If R is singular, corresponding to rank(X) < p, a generalized inverse is used. For a 
matrix G to be a gi (i = 1, 2, 3, or 4) inverse of a matrix A, G must satisfy 
conditions j (for j  i) for the Moore-Penrose inverse but generally must fail 
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conditions k (for k > i). The four conditions for G to be a Moore-Penrose inverse 
of A are as follows: 

1. AGA = A 
2. GAG = G 
3. AG is symmetric 
4. GA is symmetric 

In the case where R is singular, the method for obtaining coef_covariances 
follows the discussion of Maindonald (1984, pp. 101–103). Let Z be the diagonal 
matrix with diagonal elements defined by the following: 

1 if 0
0 if 0

ii
ii

ii

r
z

r
��

� �
��

 

Let G be the solution to RG = Z obtained by setting the i-th ({i : rii = 0}) row of G 
to 0. Argument coef_covariances is set to s2GGT. (G is a g3 inverse of R, 
represented by, 

3gR  

the result 

3 3
Tg gR R  

is a symmetric g2 inverse of RTR = XTX. See Sallas and Lionti 1988.) 

Note that argument coef_covariances can be used only to get variances and 
covariances of estimable functions of the regression coefficients, i.e., 
nonestimable functions (linear combinations of the regression coefficients not in 
the space spanned by the nonzero rows of R) must not be used. See, for example, 
Maindonald (1984, pp. 166–168) for a discussion of estimable functions. 

The estimated standard errors of the estimated regression coefficients (stored in 
Column 1 of coef_t_tests) are computed as square roots of the corresponding 
diagonal entries in coef_covariances. 

For the case where an intercept is in the model, put R  equal to the matrix R with 
the first row and column deleted. Generally, the variance inflation factor (VIF) 
for the i-th regression coefficient is computed as the product of the i-th diagonal 
element of RTR and the i-th diagonal element of its computed inverse. If an 
intercept is in the model, the VIF for those coefficients not corresponding to the 
intercept uses the diagonal elements of TR R  (see Maindonald 1984, p. 40). 

Remarks 
When R is nonsingular and comes from an unrestricted regression fit, 
coef_covariances is the estimated variance-covariance matrix of the 
estimated regression coefficients, and coef_covariances = (SSE/DFE) (RTR). 
Otherwise, variances and covariances of estimable functions of the regression 
coefficients can be obtained using coef_covariances, and 
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coef_covariances = (SSE/DFE) (GDGT). Here, D is the diagonal matrix with 
diagonal elements equal to 0 if the corresponding rows of R are restrictions and 
with diagonal elements equal to 1 otherwise. Also, G is a particular generalized 
inverse of R. 

Example 
#include <imsls.h> 
 
main() 
{ 
#define INTERCEPT       1 
#define N_INDEPENDENT   4 
#define N_OBSERVATIONS  13 
#define N_COEFFICIENTS  (INTERCEPT + N_INDEPENDENT) 
#define N_DEPENDENT     1 
 
    Imsls_f_regression   *regression_info; 
    float       *anova_table, *coef_t_tests, *coef_vif,  
                *coefficients, *coef_covariances; 
    float       x[][N_INDEPENDENT] = { 
        7.0, 26.0,  6.0, 60.0, 
        1.0, 29.0, 15.0, 52.0, 
       11.0, 56.0,  8.0, 20.0, 
       11.0, 31.0,  8.0, 47.0, 
        7.0, 52.0,  6.0, 33.0, 
       11.0, 55.0,  9.0, 22.0, 
        3.0, 71.0, 17.0,  6.0, 
        1.0, 31.0, 22.0, 44.0, 
        2.0, 54.0, 18.0, 22.0, 
       21.0, 47.0,  4.0, 26.0, 
        1.0, 40.0, 23.0, 34.0,  
       11.0, 66.0,  9.0, 12.0, 
       10.0, 68.0,  8.0, 12.0}; 
    float        y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,  
       102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4}; 
    char        *anova_row_labels[] = { 
                   "degrees of freedom for regression", 
                   "degrees of freedom for error", 
                   "total (uncorrected) degrees of freedom", 
                   "sum of squares for regression", 
                   "sum of squares for error", 
                   "total (uncorrected) sum of squares", 
                   "regression mean square", 
                   "error mean square", "F-statistic", 
                   "p-value", "R-squared (in percent)", 
                   "adjusted R-squared (in percent)", 
                   "est. standard deviation of model error", 
                   "overall mean of y", 
                   "coefficient of variation (in percent)"}; 
 
                                /* Fit the regression model */ 
    coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,  
        (float *)x, y, 
        IMSLS_REGRESSION_INFO, &regression_info, 
        0); 
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                                /* Generate summary statistics */ 
    imsls_f_regression_summary (regression_info, 
        IMSLS_ANOVA_TABLE, &anova_table,  
        IMSLS_COEF_T_TESTS, &coef_t_tests, 
        IMSLS_COEF_VIF, &coef_vif, 
        IMSLS_COEF_COVARIANCES, &coef_covariances, 
        0); 
 
                                /* Print results */ 
    imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1, 
        anova_table, 
        IMSLS_ROW_LABELS, anova_row_labels, 
        IMSLS_WRITE_FORMAT, "%10.2f", 0); 
 
    imsls_f_write_matrix("* * * Inference on Coefficients * * *\n",  
        N_COEFFICIENTS, 4, coef_t_tests,  
        IMSLS_WRITE_FORMAT, "%10.2f", 0); 
 
    imsls_f_write_matrix("* * * Variance Inflation Factors * * *\n", 
        N_COEFFICIENTS, 1, coef_vif,  
        IMSLS_WRITE_FORMAT, "%10.2f", 0); 
 
    imsls_f_write_matrix("* * * Variance-Covariance Matrix * * *\n", 
        N_COEFFICIENTS, N_COEFFICIENTS,  
        coef_covariances,  
        IMSLS_WRITE_FORMAT, "%10.2f", 0); 
} 

Output 

         * * * Analysis of Variance * * * 
degrees of freedom for regression             4.00 
degrees of freedom for error                  8.00 
total (uncorrected) degrees of freedom       12.00 
sum of squares for regression              2667.90 
sum of squares for error                     47.86 
total (uncorrected) sum of squares         2715.76 
regression mean square                      666.97 
error mean square                             5.98 
F-statistic                                 111.48 
p-value                                       0.00 
R-squared (in percent)                       98.24 
adjusted R-squared (in percent)              97.36 
est. standard deviation of model error        2.45 
overall mean of y                            95.42 
coefficient of variation (in percent)         2.56 
  
     * * * Inference on Coefficients * * * 
 
            1           2           3           4 
1       62.41       70.07        0.89        0.40 
2        1.55        0.74        2.08        0.07 
3        0.51        0.72        0.70        0.50 
4        0.10        0.75        0.14        0.90 
5       -0.14        0.71       -0.20        0.84 
  
* * * Variance Inflation Factors * * * 
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             1    10668.53 
             2       38.50 
             3      254.42 
             4       46.87 
             5      282.51 
  
 
           * * * Variance-Covariance Matrix * * * 
 
            1           2           3           4           5 
1     4909.95      -50.51      -50.60      -51.66      -49.60 
2      -50.51        0.55        0.51        0.55        0.51 
3      -50.60        0.51        0.52        0.53        0.51 
4      -51.66        0.55        0.53        0.57        0.52 
5      -49.60        0.51        0.51        0.52        0.50 

regression_prediction 
Computes predicted values, confidence intervals, and diagnostics after fitting a 
regression model. 

Synopsis 

#include <imsls.h> 
float *imsls_f_regression_prediction 

(Imsls_f_regression *regression_info, int n_predict, float x[], 
..., 0) 

The type double function is imsls_d_regression_prediction. 

Required Argument 

Imsls_f_regression *regression_info   (Input) 
Pointer to a structure of type Imsls_f_regression containing information 
about the regression fit. See imsls_f_regression (page 64). 

int n_predict   (Input) 
Number of rows in x. 

float x[]   (Input) 
Array of size n_predict by the number of independent variables 
containing the combinations of independent variables in each row for 
which calculations are to be performed. 

Return Value 
Pointer to an internally allocated array of length n_predict containing the 
predicted values. 

Synopsis with Optional Arguments 
#include <imsls.h> 
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float *imsls_f_regression_prediction 
(Imsls_f_regression *regression_info, int n_predict, float x[],  
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_Y_COL_DIM, int y_col_dim,  
IMSLS_INDEX_REGRESSION, int idep, 
IMSLS_X_INDICES, int indind[], int inddep[], int ifrq, 
 int iwt,  
IMSLS_WEIGHTS, float weights[], 
IMSLS_CONFIDENCE, float confidence, 
IMSLS_SCHEFFE_CI, float **lower_limit, 
 float **upper_limit, 
IMSLS_SCHEFFE_CI_USER, float lower_limit[], 
 float upper_limit[], 
IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit,  
 float **upper_limit, 
IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],  
 float upper_limit[], 
IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit,  
 float **upper_limit, 
IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, 
 float lower_limit[], float upper_limit[], 
IMSLS_LEVERAGE, float **leverage, 
IMSLS_LEVERAGE_USER, float leverage[], 
IMSLS_RETURN_USER, float y_hat[], 
IMSLS_Y, float y[], 
IMSLS_RESIDUAL, float **residual, 
IMSLS_RESIDUAL_USER, float residual[], 
IMSLS_STANDARDIZED_RESIDUAL, 
 float **standardized_residual, 
IMSLS_STANDARDIZED_RESIDUAL_USER,  
 float standardized_residual[], 
IMSLS_DELETED_RESIDUAL, float **deleted_residual, 
IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[], 
IMSLS_COOKSD, float **cooksd, 
IMSLS_COOKSD_USER, float cooksd[], 
IMSLS_DFFITS, float **dffits, 
IMSLS_DFFITS_USER, float dffits[], 
0) 

Optional Arguments 
IMSLS_X_COL_DIM, int x_col_dim   (Input) 

Number of columns in x. 
Default: x_col_dim is equal to the number of independent variables, 
which is input from the structure regression_info 
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IMSLS_Y_COL_DIM, int y_col_dim   (Input) 
Number of columns in y. 
Default: y_col_dim = 1 

IMSLS_INDEX_REGRESSION, int idep   (Input) 
Given a multivariate regression fit, this option allows the user to specify 
for which regression statistics will be computed. 
Default: idep = 0 

IMSLS_X_INDICES, int indind[], int inddep, int ifrq, int iwt   (Input) 
This argument allows an alternative method for data specification. Data 
(independent, dependent, frequencies, and weights) is all stored in the 
data matrix x. Argument y, and keyword IMSLS_WEIGHTS are ignored. 

Each of the four arguments contains indices indicating column numbers 
of x in which particular types of data are stored. Columns are numbered 
0, �, x_col_dim 	 1.  

Parameter indind contains the indices of the independent variables. 

Parameter inddep contains the indices of the dependent variables. If 
there is to be no dependent variable, this must be indicated by setting the 
first element of the vector to 	1. 

Parameters ifrq and iwt contain the column numbers of x in which the 
frequencies and weights, respectively, are stored. Set ifrq = 	1 if there 
will be no column for frequencies. Set iwt = 	1 if there will be no 
column for weights. Weights are rounded to the nearest integer. 
Negative weights are not allowed. 

Note that frequencies are not referenced by function 
regression_prediction, and is included here only for the sake of 
keyword consistency. 

Finally, note that IMSLS_X_INDICES and IMSLS_Y are mutually 
exclusive keywords, and may not be specified in the same call to 
regression_prediction. 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_predict containing the weight for each row of x. 
The computed prediction interval uses SSE/(DFE*weights[i]) for the 
estimated variance of a future response. 
Default: weights[] = 1 

IMSLS_CONFIDENCE, float confidence   (Input) 
Confidence level for both two-sided interval estimates on the mean and 
for two-sided prediction intervals, in percent. Argument confidence 
must be in the range [0.0, 100.0). For one-sided intervals with 
confidence level onecl, where 50.0  onecl < 100.0, set 
confidence = 100.0 	 2.0* (100.0 	 onecl). 
Default: confidence = 95.0 
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IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit   
(Output) 
Array lower_limit is the address of a pointer to an internally allocated 
array of length n_predict containing the lower confidence limits of 
Scheffé confidence intervals corresponding to the rows of x. Array 
upper_limit is the address of a pointer to an internally allocated array 
of length n_predict containing the upper confidence limits of Scheffé 
confidence intervals corresponding to the rows of x. 

IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[]   
(Output) 
Storage for arrays lower_limit and upper_limit is provided by the 
user. See IMSLS_SCHEFFE_CI. 

IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit, 
float **upper_limit   (Output) 
Array lower_limit is the address of a pointer to an internally allocated 
array of length n_predict containing the lower-confidence limits of the 
confidence intervals for two-sided interval estimates of the means, 
corresponding to the rows of x. Array upper_limit is the address of a 
pointer to an internally allocated array of length n_predict containing 
the upper-confidence limits of the confidence intervals for two-sided 
interval estimates of the means, corresponding to the rows of x. 

IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[], 
float upper_limit[]   (Output) 
Storage for arrays lower_limit and upper_limit is provided by the 
user. See IMSLS_POINTWISE_CI_POP_MEAN. 

IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit, 
float **upper_limit   (Output) 
Array lower_limit is the address of a pointer to an internally allocated 
array of length n_predict containing the lower-confidence limits of the 
confidence intervals for two-sided prediction intervals, corresponding to 
the rows of x. Array upper_limit is the address of a pointer to an 
internally allocated array of length n_predict containing the upper-
confidence limits of the confidence intervals for two-sided prediction 
intervals, corresponding to the rows of x. 

IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[], 
float upper_limit[]   (Output) 
Storage for arrays lower_limit and upper_limit is provided by the 
user. See IMSLS_POINTWISE_CI_NEW_SAMPLE. 

IMSLS_LEVERAGE, float **leverage   (Output) 
Address of a pointer to an internally allocated array of length 
n_predict containing the leverages. 

IMSLS_LEVERAGE_USER, float leverage[]   (Output) 
Storage for array leverage is provided by the user. See 
IMSLS_LEVERAGE. 
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IMSLS_RETURN_USER, float y_hat[]   (Output) 
Storage for array y_hat is provided by the user. The length n_predict 
array contains the predicted values. 

IMSLS_Y, float y[]   (Input) 
Array of length n_predict containing the observed responses.  

Note: IMSLS_Y (or IMSLS_X_INDICES) must be specified if any of the 
following optional arguments are specified. 

IMSLS_RESIDUAL, float **residual   (Output) 
Address of a pointer to an internally allocated array of length 
n_predict containing the residuals. 

IMSLS_RESIDUAL_USER, float residual[]   (Output) 
Storage for array residual is provided by the user. See 
IMSLS_RESIDUAL. 

IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual   
(Output) 
Address of a pointer to an internally allocated array of length 
n_predict containing the standardized residuals. 

IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[]   
(Output) 
Storage for array standardized_residual is provided by the user. 
See IMSLS_STANDARDIZED_RESIDUAL. 

IMSLS_DELETED_RESIDUAL, float **deleted_residual   (Output) 
Address of a pointer to an internally allocated array of length 
n_predict containing the deleted residuals. 

IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[]   (Output) 
Storage for array deleted_residual is provided by the user. See 
IMSLS_DELETED_RESIDUAL. 

IMSLS_COOKSD, float **cooksd   (Output) 
Address of a pointer to an internally allocated array of length 
n_predict containing the Cook’s D statistics. 

IMSLS_COOKSD_USER, float cooksd[]   (Output) 
Storage for array cooksd is provided by the user. See IMSLS_COOKSD. 

IMSLS_DFFITS, float **dffits   (Output) 
Address of a pointer to an internally allocated array of length 
n_predict containing the DFFITS statistics. 

IMSLS_DFFITS_USER, float dffits[]   (Output) 
Storage for array dffits is provided by the user. See IMSLS_DFFITS. 

Description 
The general linear model used by function imsls_f_regression_prediction is 
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y = X� + � 

where y is the n � 1 vector of responses, X is the n � p matrix of regressors,  
� is the p � 1 vector of regression coefficients, and � is the n � 1 vector of errors 
whose elements are independently normally distributed with mean 0 and the 
variance below. 

2

iw
�  

From a general linear model fit using the wi’s as the weights, function 
imsls_f_regression_prediction computes confidence intervals and 
statistics for the individual cases that constitute the data set. Let xi be a column 
vector containing elements of the i-th row of X. Let W = diag (w1, w2, �, wn). 
The leverage is defined as  

� �� �T T
i i ih x X WX x

�

� iw  

Put D = diag (d1, d2, �, dn) with dj = 1 if the j-th diagonal element of R is 
positive and 0 otherwise. The leverage is computed as hi = (aTDa) wi where  
a is a solution to RTa = xi. The estimated variance of  

ˆˆ T
iy x B�  

is given by the following: 
2

i

i

h s
w

 

where 

2 SSE
DFE

s �  

The computation of the remainder of the case statistics follow easily from their 
definitions. See case diagnostics (page 53). 

Informational errors can occur if the input matrix x is not consistent with the 
information from the fit (contained in regression_info), or if excess rounding 
has occurred. The warning error IMSLS_NONESTIMABLE arises when x contains a 
row not in the space spanned by the rows of R. An examination of the model that 
was fitted and the x for which diagnostics are to be computed is required in order 
to ensure that only linear combinations of the regression coefficients that can be 
estimated from the fitted model are specified in x. For further details, see the 
discussion of estimable functions given in Maindonald (1984, pp. 166	168) and 
Searle (1971, pp. 180	188). 

Often predicted values and confidence intervals are desired for combinations of 
settings of the independent variables not used in computing the regression fit. 
This can be accomplished by defining a new data matrix. Since the information 
about the model fit is input in regression_info, it is not necessary to send in 
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the data set used for the original calculation of the fit, i.e., only variable 
combinations for which predictions are desired need be entered in x.  

Examples 

Example 1 
#include <imsls.h> 
 
main() 
{ 
#define INTERCEPT       1 
#define N_INDEPENDENT   4 
#define N_OBSERVATIONS  13 
#define N_COEFFICIENTS  (INTERCEPT + N_INDEPENDENT) 
#define N_DEPENDENT     1 
 
    float       *y_hat, *coefficients; 
    Imsls_f_regression   *regression_info; 
    float       x[][N_INDEPENDENT] = { 
        7.0, 26.0,  6.0, 60.0, 
        1.0, 29.0, 15.0, 52.0, 
       11.0, 56.0,  8.0, 20.0, 
       11.0, 31.0,  8.0, 47.0, 
        7.0, 52.0,  6.0, 33.0, 
       11.0, 55.0,  9.0, 22.0, 
        3.0, 71.0, 17.0,  6.0, 
        1.0, 31.0, 22.0, 44.0, 
        2.0, 54.0, 18.0, 22.0, 
       21.0, 47.0,  4.0, 26.0, 
        1.0, 40.0, 23.0, 34.0,  
       11.0, 66.0,  9.0, 12.0, 
       10.0, 68.0,  8.0, 12.0}; 
    float        y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,  
       102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4}; 
 
                                /* Fit the regression model */ 
    coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,  
        (float *)x, y, 
        IMSLS_REGRESSION_INFO, &regression_info, 
        0); 
 
                                /* Generate case statistics */ 
    y_hat = imsls_f_regression_prediction(regression_info,  
        N_OBSERVATIONS, (float*)x, 0); 
 
                                /* Print results */ 
    imsls_f_write_matrix("Predicted Responses", 1, N_OBSERVATIONS,  
        y_hat, 0); 
} 

Output 

                          Predicted Responses 
         1           2           3           4           5           6 
      78.5        72.8       106.0        89.3        95.6       105.3 
  
         7           8           9          10          11          12 
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     104.1        75.7        91.7       115.6        81.8       112.3 
  
        13 
     111.7 

Example 2 
#include <imsls.h> 
 
main() 
{ 
#define INTERCEPT       1 
#define N_INDEPENDENT   4 
#define N_OBSERVATIONS  13 
#define N_COEFFICIENTS  (INTERCEPT + N_INDEPENDENT) 
#define N_DEPENDENT     1 
 
    float       *y_hat, *leverage, *residual, *standardized_residual, 
                *deleted_residual, *dffits, *cooksd, *mean_lower_limit, 
                *mean_upper_limit, *new_sample_lower_limit,  
                *new_sample_upper_limit, *scheffe_lower_limit,  
                *scheffe_upper_limit, *coefficients; 
    Imsls_f_regression   *regression_info; 
    float       x[][N_INDEPENDENT] = { 
        7.0, 26.0,  6.0, 60.0, 
        1.0, 29.0, 15.0, 52.0, 
       11.0, 56.0,  8.0, 20.0, 
       11.0, 31.0,  8.0, 47.0, 
        7.0, 52.0,  6.0, 33.0, 
       11.0, 55.0,  9.0, 22.0, 
        3.0, 71.0, 17.0,  6.0, 
        1.0, 31.0, 22.0, 44.0, 
        2.0, 54.0, 18.0, 22.0, 
       21.0, 47.0,  4.0, 26.0, 
        1.0, 40.0, 23.0, 34.0,  
       11.0, 66.0,  9.0, 12.0, 
       10.0, 68.0,  8.0, 12.0}; 
    float        y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,  
       102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4}; 
 
                                /* Fit the regression model */ 
    coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,  
        (float *)x, y, 
        IMSLS_REGRESSION_INFO, &regression_info, 
        0); 
 
                                /* Generate the case statistics */ 
    y_hat = imsls_f_regression_prediction(regression_info,  
        N_OBSERVATIONS, (float*)x,  
        IMSLS_Y,                       y, 
        IMSLS_LEVERAGE,                &leverage, 
        IMSLS_RESIDUAL,                &residual, 
        IMSLS_STANDARDIZED_RESIDUAL,   &standardized_residual, 
        IMSLS_DELETED_RESIDUAL,        &deleted_residual, 
        IMSLS_COOKSD,                  &cooksd, 
        IMSLS_DFFITS,                  &dffits, 
        IMSLS_POINTWISE_CI_POP_MEAN,   &mean_lower_limit,  
                                       &mean_upper_limit, 
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        IMSLS_POINTWISE_CI_NEW_SAMPLE, &new_sample_lower_limit,  
                                       &new_sample_upper_limit, 
        IMSLS_SCHEFFE_CI,              &scheffe_lower_limit,  
                                       &scheffe_upper_limit, 
        0); 
 
                                /* Print results */ 
    imsls_f_write_matrix("Predicted Responses", 1, N_OBSERVATIONS,  
        y_hat, 0); 
    imsls_f_write_matrix("Residuals", 1, N_OBSERVATIONS, residual, 0); 
    imsls_f_write_matrix("Standardized Residuals", 1, N_OBSERVATIONS,  
        standardized_residual, 0); 
    imsls_f_write_matrix("Leverages", 1, N_OBSERVATIONS, leverage, 0); 
    imsls_f_write_matrix("Deleted Residuals", 1, N_OBSERVATIONS, 
        deleted_residual, 0); 
    imsls_f_write_matrix("Cooks D", 1, N_OBSERVATIONS, cooksd, 0); 
    imsls_f_write_matrix("DFFITS", 1, N_OBSERVATIONS, dffits, 0); 
    imsls_f_write_matrix("Scheffe Lower Limit", 1, N_OBSERVATIONS, 
        scheffe_lower_limit, 0); 
    imsls_f_write_matrix("Scheffe Upper Limit", 1, N_OBSERVATIONS, 
        scheffe_upper_limit, 0); 
    imsls_f_write_matrix("Population Mean Lower Limit", 1,  
        N_OBSERVATIONS, mean_lower_limit, 0); 
    imsls_f_write_matrix("Population Mean Upper Limit", 1,  
        N_OBSERVATIONS, mean_upper_limit, 0); 
    imsls_f_write_matrix("New Sample Lower Limit", 1, N_OBSERVATIONS, 
        new_sample_lower_limit, 0); 
    imsls_f_write_matrix("New Sample Upper Limit", 1, N_OBSERVATIONS, 
        new_sample_upper_limit, 0); 
} 

Output 

                          Predicted Responses 
         1           2           3           4           5           6 
      78.5        72.8       106.0        89.3        95.6       105.3 
  
         7           8           9          10          11          12 
     104.1        75.7        91.7       115.6        81.8       112.3 
  
        13 
     111.7 
  
                               Residuals 
         1           2           3           4           5           6 
     0.005       1.511      -1.671      -1.727       0.251       3.925 
  
         7           8           9          10          11          12 
    -1.449      -3.175       1.378       0.282       1.991       0.973 
  
        13 
    -2.294 
  
                        Standardized Residuals 
         1           2           3           4           5           6 
     0.003       0.757      -1.050      -0.841       0.128       1.715 
  
         7           8           9          10          11          12 
    -0.744      -1.688       0.671       0.210       1.074       0.463 
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        13 
    -1.124 
  
                               Leverages 
         1           2           3           4           5           6 
    0.5503      0.3332      0.5769      0.2952      0.3576      0.1242 
  
         7           8           9          10          11          12 
    0.3671      0.4085      0.2943      0.7004      0.4255      0.2630 
  
        13 
    0.3037 
  
                           Deleted Residuals 
         1           2           3           4           5           6 
     0.003       0.735      -1.058      -0.824       0.120       2.017 
  
         7           8           9          10          11          12 
    -0.722      -1.967       0.646       0.197       1.086       0.439 
  
        13 
    -1.146 
  
                                Cooks D 
         1           2           3           4           5           6 
    0.0000      0.0572      0.3009      0.0593      0.0018      0.0834 
  
         7           8           9          10          11          12 
    0.0643      0.3935      0.0375      0.0207      0.1708      0.0153 
  
        13 
    0.1102 
  
                                DFFITS 
         1           2           3           4           5           6 
     0.003       0.519      -1.236      -0.533       0.089       0.759 
  
         7           8           9          10          11          12 
    -0.550      -1.635       0.417       0.302       0.935       0.262 
  
        13 
    -0.757 
                          Scheffe Lower Limit 
         1           2           3           4           5           6 
      70.7        66.7        98.0        83.6        89.4       101.6 
  
         7           8           9          10          11          12 
      97.8        69.0        86.0       106.8        75.0       106.9 
  
        13 
     105.9 
  
                          Scheffe Upper Limit 
         1           2           3           4           5           6 
      86.3        78.9       113.9        95.0       101.9       109.0 
  
         7           8           9          10          11          12 
     110.5        82.4        97.4       124.4        88.7       117.7 
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        13 
     117.5 
  
                      Population Mean Lower Limit 
         1           2           3           4           5           6 
      74.3        69.5       101.7        86.3        92.3       103.3 
  
         7           8           9          10          11          12 
     100.7        72.1        88.7       110.9        78.1       109.4 
  
        13 
     108.6 
  
                      Population Mean Upper Limit 
         1           2           3           4           5           6 
      82.7        76.0       110.3        92.4        99.0       107.3 
  
         7           8           9          10          11          12 
     107.6        79.3        94.8       120.3        85.5       115.2 
  
        13 
     114.8 
  
                        New Sample Lower Limit 
         1           2           3           4           5           6 
      71.5        66.3        98.9        82.9        89.1        99.3 
  
         7           8           9          10          11          12 
      97.6        69.0        85.3       108.3        75.1       106.0 
  
        13 
     105.3 
  
                        New Sample Upper Limit 
         1           2           3           4           5           6 
      85.5        79.3       113.1        95.7       102.2       111.3 
  
         7           8           9          10          11          12 
     110.7        82.4        98.1       123.0        88.5       118.7 
  
        13 
     118.1 

Warning Errors 
IMSLS_NONESTIMABLE Within the preset tolerance, the 

linear combination of regression 
coefficients is nonestimable. 

IMSLS_LEVERAGE_GT_1  A leverage (= #) much greater than 
1.0 is computed. It is set to 1.0. 

IMSLS_DEL_MSE_LT_0  A deleted residual mean square  
(= #) much less than 0 is 
computed. It is set to 0. 
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Fatal Errors 
IMSLS_NONNEG_WEIGHT_REQUEST_2 The weight for row # was #. 

Weights must be nonnegative. 

hypothesis_partial 
Constructs an equivalent completely testable multivariate general linear 
hypothesis H�U = G  from a partially testable hypothesis Hp�U = Gp. 

Synopsis 

#include <imsls.h> 

int imsls_f_hypothesis_partial 
(Imsls_f_regression *regression_info, int nhp, float hp[], ..., 
0) 

The type double function is imsls_d_hypothesis_partial. 

Required Argument 

Imsls_f_regression *regression_info   (Input) 
Pointer to a structure of type Imsls_f_regression containing information 
about the regression fit. See function imsls_f_regression (page 64). 

int nhp   (Input) 
Number of rows in the hypothesis matrix, hp. 

float hp[]   (Input) 
The Hp array of size nhp by n_coefficients with each row corresponding 
to a row in the hypothesis and containing the constants that specify a 
linear combination of the regression coefficients. Here, n_coefficients is 
the number of coefficients in the fitted regression model. 

Return Value  
Number of rows in the completely testable hypothesis, nh. This value is also the 
degrees of freedom for the hypothesis. The value nh classifies the hypothesis 
Hp�U = Gp as nontestable (nh = 0), partially testable (0 < nh < rank_hp) or 
completely testable (0 < nh = rank_hp), where rank_hp is the rank of Hp (see 
keyword IMSLS_RANK_HP). 

Synopsis with Optional Arguments 
#include <imsls.h> 
int imsls_f_hypothesis_partial 

(Imsls_f_regression *regression_info, int nhp, float hp[], 
IMSLS_GP, float gp[], 
IMSLS_U, int nu, float u[], 
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IMSLS_RANK_HP, int rank_hp 
IMSLS_H_MATRIX, float **h, 
IMSLS_H_MATRIX_USER, float h[], 
IMSLS_G, float **g, 
IMSLS_G_USER, float g[], 
0) 

Optional Arguments 
IMSLS_GP, float gp[]   (Input) 

Array of size nhp by nu containing the Gp matrix, the null hypothesis 
values. By default, each value of Gp is equal to 0. 

IMSLS_U, int nu, float u[]   (Input) 
Argument nu is the number of linear combinations of the dependent 
variables to be considered. The value nu must be greater than 0 and less 
than or equal to n_dependent. 

Argument u contains the n_dependent by nu U matrix for the test 
HpBU = Gp. This argument is not referenced by 
imsls_f_hypothesis_partial and is included only for consistency 
with functions imsls_f_hypothesis_scph and 
imsls_f_hypothesis_test. A dummy array of length 1 may be 
substituted for this argument. 

Default: nu = n_dependent and u is the identity matrix. 

IMSLS_RANK_HP, int*rank_hp   (Output) 
Rank of Hp. 

IMSLS_H_MATRIX, float **h   (Output) 
Address of a pointer to the internally allocated array of size nhp by 
n_parameters containing the H matrix. Each row of h corresponds to a 
row in the completely testable hypothesis and contains the constants that 
specify an estimable linear combination of the regression coefficients. 

IMSLS_H_MATRIX_USER, float h[]   (Output) 
Storage for array h is provided by the user. See IMSLS_H. 

IMSLS_G, float **g   (Output) 
Address of a pointer to the internally allocated array of size nph ny 
n_dependent containing the G matrix. The elements of g contain the 
null hypothesis values for the completely testable hypothesis. 

IMSLS_G_USER, float g[]   (Output) 
Storage for array g is provided by the user. See IMSLS_G. 

Description 
Once a general linear model y = X� + � is fitted, particular hypothesis tests are 
frequently of interest. If the matrix of regressors X is not full rank (as evidenced 
by the fact that some diagonal elements of the R matrix output from the fit are 
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equal to zero), methods that use the results of the fitted model to compute the 
hypothesis sum of squares (see function imsls_f_hypothesis_scph, 
page 101) require specification in the hypothesis of only linear combinations of 
the regression parameters that are estimable. A linear combination of regression 
parameters cT� is estimable if there exists some vector a such that cT = aTX, i.e., 
cT is in the space spanned by the rows of X. For a further discussion of estimable 
functions, see Maindonald (1984, pp. 166	168) and Searle (1971, pp. 180	188). 
Function imsls_f_hypothesis_partial is only useful in the case of non-full 
rank regression models, i.e., when the problem of estimability arises. 

Peixoto (1986) noted that the customary definition of testable hypothesis in the 
context of a general linear hypothesis test H� = g is overly restrictive. He 
extended the notion of a testable hypothesis (a hypothesis composed of estimable 
functions of the regression parameters) to include partially testable and 
completely testable hypothesis. A hypothesis H� = g is partially testable if the 
intersection of the row space H (denoted by �(H)) and the row space of  
X (�(X)) is not essentially empty and is a proper subset of �(H), i.e.,  
{0} � �(H) � �(X) � �(H). A hypothesis H� = g is completely testable if  
{0} � �(H) � �(H) � �(X). Peixoto also demonstrated a method for converting 
a partially testable hypothesis to one that is completely testable so that the usual 
method for obtaining sums of squares for the hypothesis from the results of the 
fitted model can be used. The method replaces Hp in the partially testable 
hypothesis Hp� = gp by a matrix H whose rows are a basis for the intersection of 
the row space of Hp and the row space of X. A corresponding conversion of the 
null hypothesis values from gp to g is also made. A sum of squares for the 
completely testable hypothesis can then be computed (see function 
imsls_f_hypothesis_scph, page 101). The sum of squares that is computed 
for the hypothesis H� = g equals the difference in the error sums of squares from 
two fitted models—the restricted model with the partially testable hypothesis 
Hp� = gp and the unrestricted model. 

For the general case of the multivariate model Y = X� + � with possible linear 
equality restrictions on the regression parameters, 
imsls_f_hypothesis_partial converts the partially testable hypothesis 
Hp� = gp to a completely testable hypothesis H�U = G. For the case of the linear 
model with linear equality restrictions, the definitions of the estimable functions, 
nontestable hypothesis, partially testable hypothesis, and completely testable 
hypothesis are similar to those previously given for the unrestricted model with 
the exception that �(X) is replaced by �(R) where R is the upper triangular 
matrix based on the linear equality restrictions. The nonzero rows of R form a 
basis for the rowspace of the matrix (XT, AT)T. The rows of H form an 
orthonormal basis for the intersection of two subspaces—the subspace spanned 
by the rows of Hp and the subspace spanned by the rows of R. The algorithm used 
for computing the intersection of these two subspaces is based on an algorithm for 
computing angles between linear subspaces due to Björk and Golub (1973). (See 
also Golub and Van Loan 1983, pp. 429	430). The method is closely related to a 
canonical correlation analysis discussed by Kennedy and Gentle (1980, pp. 561	

565). The algorithm is as follows: 
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1. Compute a QR factorization of  
T
PH  

 with column permutations so that 

1 1 1
T T
PH Q R P�  

Here, P1 is the associated permutation matrix that is also an orthogonal 
matrix. Determine the rank of Hp as the number of nonzero diagonal 
elements of R1, for example n1. Partition Q1 = (Q11, Q12) so that Q11 is 
the first n1 column of Q1. Set rank_hp = n. 

2. Compute a QR factorization of the transpose of the R matrix (input 
through regression_info) with column permuations so that  

2 2 2
T TR Q R P�  

Determine the rank of R from the number of nonzero diagonal elements 
of R, for example n2. Partition Q2 = (Q21, Q22) so that Q21 is the first n2 
columns of Q2. 

3. Form 

11 21
TA Q Q�  

4. Compute the singular values of A 

� �1 21 2 min ,... n n� � �� � �  

and the left singular vectors W of the singular value decomposition of A 
so that 

� �� �1 21 min ,diag ,...T
n nW AV � ��  

If �1 < 1, then the dimension of the intersection of the two subspaces is 
s = 0. Otherwise, assume the dimension of the intersection to be  
s if �s = 1 > �s+1. Set nh = s. 

5. Let W1 be the first s columns of W. Set H = (Q1W1)T. 

6. Assume R11 to be a nhp by nhp matrix related to R1 as follows: If 
nhp < n_parameters, R11 equals the first nhp rows of R1. Otherwise,  
R11 contains R1 in its first n_parameters rows and zeros in the remaining 
rows. Compute a solution Z to the linear system 

11 1
T T

pR Z P G�  

If this linear system is delcared inconsistent, an error message with error 
code equal to 2 is issued. 

7. Partition 
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� �1 2,T T TZ Z Z�  

so that Z1 is the first n1 rows of Z. Set 

1 1
TG W Z�  

The degrees of freedom (nh) classify the hypothesis Hp�U =Gp as 
nontestable (nh = 0), partially testable (0 < nh < rank_hp), or 
completely testable (0 < nh = rank_hp). 

For further details concerning the algorithm, see Sallas and Lionti (1988). 

Example 
A one-way analysis-of-variance model discussed by Peixoto (1986) is fitted to 
data. The model is  

yii = � + �i + �ii  (i, j) = (1, 1) (2, 1) (2, 2) 

The model is fitted using function imsls_f_regression (page 64). The 
partially testable hypothesis 

1

2

5
0 3:H �

�

�

�
 

is converted to a completely testable hypothesis. 

#include <imsls.h> 
#define N_ROWS 3 
#define N_INDEPENDENT 1 
#define N_DEPENDENT 1 
#define N_PARAMETERS 3 
#define NHP 2 
 
main() { 
    Imsls_f_regression *info; 
    int    n_class = 1; 
    int    n_continuous = 0; 
    int    nh, nreg, rank_hp; 
    float  *coefficients, *x, *g, *h; 
    static float   z[N_ROWS*N_INDEPENDENT] = { 1, 2, 2 }; 
    static float   y[] = {17.3, 24.1, 26.3}; 
    static float   gp[] = {5, 3}; 
    static float   hp[NHP*N_PARAMETERS] = {0, 1, 0,  
                                           0, 0, 1}; 
 
    nreg = imsls_f_regressors_for_glm(N_ROWS, z,  
        n_class, n_continuous,  
        IMSLS_REGRESSORS, &x, 0);     
  
    coefficients = imsls_f_regression(N_ROWS, nreg, x, y, 
        IMSLS_N_DEPENDENT, N_DEPENDENT,  
        IMSLS_REGRESSION_INFO, &info,  
        0); 
  
    nh = imsls_f_hypothesis_partial(info, NHP, hp,  
        IMSLS_GP, gp,  
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        IMSLS_H_MATRIX, &h,  
        IMSLS_G, &g,  
        IMSLS_RANK_HP, &rank_hp, 0); 
 
    if (nh == 0) { 
        printf("Nontestable Hypothesis\n"); 
    } else if (nh < rank_hp) { 
        printf("Partially Testable Hypothesis\n"); 
    } else { 
        printf("Completely Testable Hypothesis\n"); 
    } 
 
    imsls_f_write_matrix("H Matrix", nh, N_PARAMETERS, h, 0); 
 
    imsls_f_write_matrix("G", nh, N_DEPENDENT, g, 0); 
 
    free(coefficients); 
    free(info); 
    free(x); 
    free(h); 
    free(g);     
} 

Output 

Partially Testable Hypothesis 
  
             H Matrix 
         1           2           3 
    0.0000      0.7071     -0.7071 
  
     G 
     1.414 

Warning Errors 
IMSLS_HYP_NOT_CONSISTENT The hypothesis is inconsistent within the 

computed tolerance. 

hypothesis_scph 
Computes the matrix of sums of squares and crossproducts for the multivariate 
general linear hypothesis H�U = G given the regression fit.  

Synopsis 

#include <imsls.h> 
float *imsls_f_hypothesis_scph 

(Imsls_f_regression *regression_info, int nh, float h[], 
float *dfh, ..., 0) 

The type double function is imsls_d_hypothesis_scph. 
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Required Argument 

Imsls_f_regression *regression_info   (Input) 
Pointer to a structure of type Imsls_f_regression containing information 
about the regression fit. See function imsls_f_regression (page 64). 

int nh   (Input) 
Number of rows in the hypothesis matrix, h. 

float h[]   (Input) 
The H array of size nh by n_coefficients with each row corresponding to 
a row in the hypothesis and containing the constants that specify a linear 
combination of the regression coefficients. Here, n_coefficients is the 
number of coefficients in the fitted regression model. 

float *dfh   (Output) 
Degrees of freedom for the sums of squares and crossproducts matrix. 
This is equal to the rank of input matrix h. 

Return Value 
Array of size nu by nu containing the sums of squares and crossproducts 
attributable to the hypothesis. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_regression_scph 

(Imsls_f_regression *regression_info, int nh, float h[], 
float *dfh, 
IMSLS_G, float g[], 
IMSLS_U, int nu, float u[], 
IMSLS_RETURN_USER, scph[], 
0) 

Optional Arguments 
IMSLS_G, float g[]   (Input) 

Array of size nh by nu containing the G matrix, the null hypothesis 
values. By default, each value of G is equal to 0. 

IMSLS_U, int nu, float u[]   (Input) 
Argument nu is the number of linear combinations of the dependent 
variables to be considered. The value nu must be greater than 0 and less 
than or equal to n_dependent. 

Argument u contains the n_dependent by nu U matrix for the test 
Hp�U = Gp. 

Default: nu = n_dependent and u is the identity matrix 
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IMSLS_RETURN_USER, float scph[]   (Output) 
If specified, the sums of squares and crossproducts matrix is stored in 
array scph provided by the user, where scph is of size nu by nu. 

Description 
Function imsls_f_hypothesis_scph computes the matrix of sums of squares 
and crossproducts for the general linear hypothesis H�U = G for the multivariate 
general linear model Y = X� + �. 

The rows of H must be linear combinations of the rows of R, i.e., H� = G must be 
completely testable. If the hypothesis is not completely testable, function 
imsls_f_hypothesis_partial (page 96) can be used to construct an 
equivalent completely testable hypothesis. 

Computations are based on an algorithm discussed by Kennedy and Gentle (1980, 
p. 317) that is extended by Sallas and Lionti (1988) for mulitvariate non-full rank 
models with possible linear equality restrictions. The algorithm is as follows: 

1. Form W H . ˆU G�� �

2. Find C as the solution of RTC = HT. If the equations are declared 
inconsistent within a computed tolerance, a warning error message is 
issued that the hypothesis is not completely testable. 

3. For all rows of R corresponding to restrictions, i.e., containing negative 
diagonal elements from a restricted least-squares fit, zero out the 
corresponding rows of C, i.e., from DC. 

4. Decompose DC using Householder transformations and column pivoting 
to yield a square, upper triangular matrix T with diagonal elements of 
nonincreasing magnitude and permutation matrix P such that  

0
T

DCP Q
� �

� � �
� �

 

where Q is an orthogonal matrix. 

5. Determine the rank of T, say r. If t11 = 0, then r = 0. Otherwise, the rank 
of T is r if 

| trr | > | t11 | � � | tr + 1, r + 1 | 

where � = 10.0 � imsls_f_machine(4)  
(10.0 � imsls_d_machine(4) for the double-precision version).  

Then, zero out all rows of T below r. Set the degrees of freedom for the 
hypothesis, dfh, to r. 

6. Find V as a solution to TTV = PTW. If the equations are inconsistent, a 
warning error message is issued that the hypothesis is inconsistent within 
a computed tolerance, i.e., the linear system 

H�U = G 
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A� = Z 

does not have a solution for �. 

Form VTV, which is the required matrix of sum of squares and 
crossproducts, scph. 

In general, the two warning errors described above are serious user 
errors that require the user to correct the hypothesis before any 
meaningful sums of squares from this function can be computed. 
However, in some cases, the user may know the hypothesis is consistent 
and completely testable, but the checks in 
imsls_f_hypothesis_scph are too tight. For this reason, 
imsls_f_hypothesis_scph continues with the calculations. 

Function imsls_f_hypothesis_scph gives a matrix of sums of 
squares and crossproducts that could also be obtained from separate 
fittings of the two models: 

Y¹ = X�¹ + �¹  (1) 

A�¹ = Z¹   

H�¹ = G    

and 

Y¹ = X�¹ + �¹  (2) 

A�¹ = Z¹   

where Y¹ = YU, �¹ = �U, �¹ = �U, and Z¹ = ZU. The error sum of 
squares and crossproducts matrix for (1) minus that for (2) is the matrix 
sum of squares and crossproducts output in scph. Note that this 
approach avoids the question of testability.  

Example 
The data for this example are from Maindonald (1984, pp. 203	204). A 
multivariate regression model containing two dependent variables and three 
independent variables is fit using function imsls_f_regression and the results 
stored in the structure info. The sum of squares and crossproducts matrix, scph, 
is then computed by calling imsls_f_hypothesis_scph for the test that the 
third independent variable is in the model (determined by the specification of h). 
The degrees of freedom for scph also is computed. 

#include <imsls.h> 
main() 
{ 
    Imsls_f_regression *info; 
    float   *coefficients, *scph; 
    float   dfh; 
    float   x[]     = { 7.0, 5.0, 6.0,  
                        2.0,-1.0, 6.0,   
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                        7.0, 3.0, 5.0,   
                       -3.0, 1.0, 4.0, 
                        2.0,-1.0, 0.0, 
                        2.0, 1.0, 7.0, 
                       -3.0,-1.0, 3.0, 
                        2.0, 1.0, 1.0, 
                        2.0, 1.0, 4.0 }; 
    float   y[]     = { 7.0, 1.0,  
                       -5.0, 4.0,   
                        6.0, 10.0,   
                        5.0, 5.0,  
                        5.0, -2.0, 
                       -2.0, 4.0, 
                        0.0, -6.0,  
                        8.0, 2.0,  
                        3.0, 0.0 }; 
    int     n_observations = 9; 
    int     n_independent = 3; 
    int     n_dependent = 2; 
    int     nh = 1; 
    float h[]       = { 0, 0, 0, 1 }; 
 
    coefficients = imsls_f_regression(n_observations, n_independent,  
        x, y, 
        IMSLS_N_DEPENDENT, n_dependent,  
        IMSLS_REGRESSION_INFO, &info,  
        0); 
 
    scph = imsls_f_hypothesis_scph(info, nh, h, &dfh, 0); 
  
    printf("Degrees of Freedom Hypothesis = %4.0f\n", dfh); 
 
    imsls_f_write_matrix("Sum of Squares and Crossproducts",  
        n_dependent, n_dependent, scph,  
        IMSLS_NO_COL_LABELS, IMSLS_NO_ROW_LABELS,  
        0); 
 
} 

Output 

Degrees of Freedom Hypothesis =    1 
  
Sum of Squares and Crossproducts 
            100         -40 
            -40          16 

Warning Errors 
IMSLS_HYP_NOT_TESTABLE The hypothesis is not completely testable 

within the computed tolerance. Each row of 
“h” must be a linear combination of the 
rows of “r”. 

IMSLS_HYP_NOT_CONSISTENT The hypothesis is inconsistent within the 
computed tolerance. 
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hypothesis_test 
Performs tests for a multivariate general linear hypothesis H�U = G given the 
hypothesis sums of squares and crossproducts matrix SH.  

Synopsis 

#include <imsls.h> 

float imsls_f_hypothesis_test (Imsls_f_regression *regression_info, 
float dfh, float *scph, ..., 0) 

The type double function is imsls_d_hypothesis_test. 

Required Argument 

Imsls_f_regression *regression_info   (Input) 
Pointer to a structure of type Imsls_f_regression containing information 
about the regression fit. See function imsls_f_regression. 

float dfh   (Input) 
Degrees of freedom for the sums of squares and crossproducts matrix.  

float *scph   (Input) 
Array of size nu by nu containing SH, the sums of squares and 
crossproducts attributable to the hypothesis. 

Return Value 
The p-value corresponding to Wilks’ lambda test. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_hypothesis_test (Imsls_f_regression *regression_info, 

float dfh, float *scph, 
IMSLS_U, int nu, float u[], 
IMSLS_WILK_LAMBDA, float *value, float *p_value,  
IMSLS_ROY_MAX_ROOT, float *value, float *p_value, 
IMSLS_HOTELLING_TRACE, float *value, float *p_value, 
IMSLS_PILLAI_TRACE, float *value, float *p_value, 
0) 

Optional Arguments 
IMSLS_U, int nu, float u[]   (Input) 

Argument nu is the number of linear combinations of the dependent 
variables to be considered. The value nu must be greater than 0 and less 
than or equal to n_dependent. Argument u contains the n_dependent by 
nu U matrix for the test Hp�U = Gp. 
Default: nu = n_dependent and u is the identity matrix 
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IMSLS_WILK_LAMBDA, float *value, float *p_value   (Output) 
Wilk’s lamda and p-value. 

IMSLS_ROY_MAX_ROOT, float *value, float *p_value   (Output) 
Roy’s maximum root criterion and p-value. 

IMSLS_HOTELLING_TRACE, float *value, float *p_value   (Output) 
Hotelling’s trace and p-value. 

IMSLS_PILLAI_TRACE, float *value, float *p_value   (Output) 
Pillai’s trace and p-value. 

Description 
Function imsls_f_hypothesis_test computes test statistics and p-values for 
the general linear hypothesis H�U = G for the multivariate general linear model. 

The hypothesis sum of squares and crossproducts matrix input in scph is  

� � � � � �ˆ ˆT
T

HS H U G C DC H U G� �
�

� � �  

where C is a solution to RTC = H and where D is a diagonal matrix with diagonal 
elements 

1 if 0
0 otherwis

ii
ii

r
d

��
� �
�

 

See the section “Linear Dependence and the R Matrix” in the introduction 
(page 48). 

The error sum of squares and crossproducts matrix for the model Y = X� + � is 

� � � �ˆ ˆT
Y X Y X� �� �  

which is input in regression_info. The error sum of squares and 
crossproducts matrix for the hypothesis H�U = G computed by 
imsls_f_hypothesis_test is 

� � � �ˆ ˆT
T

ES U Y X Y X U� �� � �  

Let p equal the order of the matrices SE and SH, i.e., 

NU if NU 0
NDEP otherwise

p
�� �

� � �
� �

 

Let q (stored in dfh) be the degrees of freedom for the hypothesis. Let v (input in 
regression_info) be the degrees of freedom for error. Function 
imsls_f_hypothesis_test computed three test statistics based on 
eigenvalues �i (i = 1, 2, �, p) of the generalized eigenvalue problem SHx = �SEx. 
These test statistics are as follows: 
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Wilk’s lambda 

� �

� � 1

det 1
det 1

p
E

iH E

S
S S �

�

� � �
� �

�
i

 

The associated p-value is based on an approximation discussed by Rao (1973, 
p. 556). The statistic 

1/

1/

/ 2 11 s

s

ms pqF
pq

� � ��
�

�
 

has an approximate F distribution with pq and ms 	 pq � 2 + 1 numerator and 
denominator degrees of freedom, respectively, where  

2 2

2 2

1 if 1 

4 otherwise
5

p q

s p q
p q

� ��
�

� � �
� � ��

or 1

 

and 

� �1
2

p q
m �

� �

� �  

The F test is exact if min (p, q)  2 (Kshirsagar, 1972, Theorem 4, p. 299	300). 

Roy’s maximum root 

c = max �i over all i 

where c is output as value. The p-value is based on the approximation 

q sF c
s

� � �

�  

where s = max (p, q) has an approximate F distribution with s and � + q 	 s 
numerator and denominator degrees of freedom, respectively. The F test is exact 
if s = 1; the p-value is also exact. In general, the value output in p_value is 
lower bound on the actual p-value. 

Hotelling’s trace 

� �1

1

tr
p

i
i

U HE �
�

�

� ��  

U is output as value. The p-value is based on the approximation of McKeon 
(1974) that supersedes the approximation of Hughes and Saw (1972). McKeon’s 
approximation is also discussed by Seber (1984, p. 39). For 

� ��
� ��

�
�

24
1 1

3

pqb
q p

p p
� �

� �

�
� �

� � � �

� � �
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the p-value is based on the result that  

� �

� �

1
2

b p
F U

b pq
� � �

�

�

 

has an approximate F distribution with pq and b degrees of freedom. The test is 
exact if min (p, q) = 1. For �  p + 1, the approximation is not valid, and 
p_value is set to NaN. 

These three test statistics are valid when SE is positive definite. A necessary 
condition for SE to be positive definite is � � p. If SE is not positive definite, a 
warning error message is issued, and both value and p_value are set to NaN. 

Because the requirement � � p can be a serious drawback, 
imsls_f_hypothesis_test computes a fourth test statistic based on 
eigenvalues 
i (i = 1, 2, �, p) of the generalized eigenvalue problem 
SHw = 
(SH + SE) w. This test statistic requires a less restrictive assumption—
SH + SE is positive definite. A necessary condition for SH + SE to be positive 
definite is � + q � p. If SE is positive definite, imsls_f_hypothesis_test 
avoids the computation of the generalized eigenvalue problem from scratch. In 
this case, the eigenvalues 
i are obtained from �i by  

1
i

i
i

�
�

�
�

�

 

The fourth test statistic is as follows: 

Pillai’s trace 

� �
1

1

tr
p

H H E i
i

V S S S �
�

�

� �� � �
� � �  

V is output as value. The p-value is based on an approximation discussed by 
Pillai (1985). The statistic  

2 1
2 1

n s VF
m s s V
� �

�

� � �

 

has an approximate F distribution with s(2m + s + 1) and s(2n + s + 1) numerator 
and denominator degrees of freedom, respectively, where 

s = min (p, q) 

m = ½(|p 	 q| 	1) 

n = ½(� 	 p 	 1) 

The F test is exact if min (p, q) = 1. 
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Examples 

Example 1 
The data for this example are from Maindonald (1984, p. 203	204). A 
multivariate regression model containing two dependent variables and three 
independent variables is fit using function imsls_f_regression and the results 
stored in the structure regression_info. The sum of squares and crossproducts 
matrix, scph, is then computed with a call to imsls_f_hypothesis_scph for 
the test that the third independent variable is in the model (determined by 
specification of h). Finally, function imsls_f_hypothesis_test is called to 
compute the p-value for the test statistic (Wilk’s lambda). 

#include <imsls.h> 
main() 
{ 
    Imsls_f_regression *info; 
    float   *coefficients, *scph; 
    float   dfh, p_value; 
    float   x[]     = { 7.0, 5.0, 6.0,  
                        2.0,-1.0, 6.0,   
                        7.0, 3.0, 5.0,   
                       -3.0, 1.0, 4.0, 
                        2.0,-1.0, 0.0, 
                        2.0, 1.0, 7.0, 
                       -3.0,-1.0, 3.0, 
                        2.0, 1.0, 1.0, 
                        2.0, 1.0, 4.0 }; 
    float   y[]     = { 7.0, 1.0,  
                       -5.0, 4.0,   
                        6.0, 10.0,   
                        5.0, 5.0,  
                        5.0, -2.0, 
                       -2.0, 4.0, 
                        0.0, -6.0,  
                        8.0, 2.0,  
                        3.0, 0.0 }; 
    int     n_observations = 9; 
    int     n_independent = 3; 
    int     n_dependent = 2; 
    int     nh = 1; 
    float h[]       = { 0, 0, 0, 1 }; 
 
    coefficients = imsls_f_regression(n_observations, n_independent,  
        x, y, 
        IMSLS_N_DEPENDENT, n_dependent,  
        IMSLS_REGRESSION_INFO, &info,  
        0); 
 
    scph = imsls_f_hypothesis_scph(info, nh, h, &dfh, 0); 
  
    p_value = imsls_f_hypothesis_test(info, dfh, scph, 0); 
 
    printf("P-value = %10.6f\n", p_value); 
 
} 
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Output 

P-value =   0.000010 

Example 2 
This example is the same as the first example, but more statistics are computed. 
Also, the U matrix, u, is explicitly specified as the identity matrix (which is the 
same default configuration of U).  

#include <imsls.h> 
main() 
{ 
    Imsls_f_regression *info; 
    float   *coefficients, *scph; 
    float   dfh, p_value; 
    float   x[]     = { 7.0, 5.0, 6.0,  
                        2.0,-1.0, 6.0,   
                        7.0, 3.0, 5.0,   
                       -3.0, 1.0, 4.0, 
                        2.0,-1.0, 0.0, 
                        2.0, 1.0, 7.0, 
                       -3.0,-1.0, 3.0, 
                        2.0, 1.0, 1.0, 
                        2.0, 1.0, 4.0 }; 
    float   y[]     = { 7.0, 1.0,  
                       -5.0, 4.0,   
                        6.0, 10.0,   
                        5.0, 5.0,  
                        5.0, -2.0, 
                       -2.0, 4.0, 
                        0.0, -6.0,  
                        8.0, 2.0,  
                        3.0, 0.0 }; 
    int     n_observations = 9; 
    int     n_independent = 3; 
    int     n_dependent = 2; 
    int     nh = 1; 
    float   h[]     = { 0, 0, 0, 1 }; 
    int     nu = 2; 
    float   u[4]={1, 0, 0, 1}; 
    float   v1, v2, v3, v4, p1, p2, p3, p4; 
 
    coefficients = imsls_f_regression(n_observations, n_independent,  
        x, y, 
        IMSLS_N_DEPENDENT, n_dependent,  
        IMSLS_REGRESSION_INFO, &info,  
        0); 
 
    scph = imsls_f_hypothesis_scph(info, nh, h, &dfh, 0); 
  
    p_value = imsls_f_hypothesis_test(info, dfh, scph, 
        IMSLS_U, nu, u,   
        IMSLS_WILK_LAMBDA, &v1, &p1,  
        IMSLS_ROY_MAX_ROOT, &v2, &p2,  
        IMSLS_HOTELLING_TRACE, &v3, &p3, 
        IMSLS_PILLAI_TRACE, &v4, &p4,  
        0); 
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    printf("Wilk      value = %10.6f   p-value = %10.6f\n", v1, p1); 
    printf("Roy       value = %10.6f   p-value = %10.6f\n", v2, p2); 
    printf("Hotelling value = %10.6f   p-value = %10.6f\n", v3, p3); 
    printf("Pillai    value = %10.6f   p-value = %10.6f\n", v4, p4); 
} 

Output 

Wilk      value =   0.003149   p-value =   0.000010 
Roy       value = 316.600861   p-value =   0.000010 
Hotelling value = 316.600861   p-value =   0.000010 
Pillai    value =   0.996851   p-value =   0.000010 

Warning Errors 
IMSLS_SINGULAR_1 “u”*“scpe”*“u” is singular. Only Pillai’s 

trace can be computed. Other statistics are 
set to NaN. 

Fatal Errors 
IMSLS_NO_STAT_1 “scpe” + “scph” is singular. No tests can be 

computed. 

IMSLS_NO_STAT_2 No statistics can be computed. Iterations for 
eigenvalues for the generalized eigenvalue 
problem “scph”*x = 
(lambda)*(“scph”+“scpe”)*x failed to 
converge. 

IMSLS_NO_STAT_3 No statistics can be computed. Iterations  
for eigenvalues for the generalized  
eigenvalue problem “scph” 
*x = (lambda)*(“scph”+“u”*“scpe”*“u”)*x 
failed to converge. 

IMSLS_SINGULAR_2 “u”*“scpe”*“u” + “scph” is singular. No 
tests can be computed. 

IMSLS_SINGULAR_TRI_MATRIX The input triangular matrix is singular. The 
index of the first zero diagonal element is 
equal to #. 

regression_selection 
Selects the best multiple linear regression models. 

Synopsis 
#include <imsls.h> 
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void imsls_f_regression_selection (int n_rows, int n_candidate, 
float x[], float y[], ..., 0) 

The type double function is imsls_d_regression_selection. 

Required Arguments 

int n_rows   (Input) 
Number of observations or rows in x and y. 

int n_candidate   (Input) 
Number of candidate variables (independent variables) or columns in x. 
n_candidate must be greater than 2. 

float x[]   (Input) 
Array of size n_rows � n_candidate containing the data for the 
candidate variables. 

float y[]   (Input) 
Array of length n_rows containing the responses for the dependent 
variable. 

Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_f_regression_selection (int n_rows, int n_candidate, 

float x[], float y[], 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_PRINT, or 
IMSLS_NO_PRINT, 
IMSLS_WEIGHTS, float weights[], 
IMSLS_FREQUENCIES, float frequencies[], 
IMSLS_R_SQUARED, int max_subset_size, or 
IMSLS_ADJ_R_SQUARED, or 
IMSLS_MALLOWS_CP,  
IMSLS_MAX_N_BEST, int max_n_best, 
IMSLS_MAX_N_GOOD_SAVED, int max_n_good_saved, 
IMSLS_CRITERIONS, int **index_criterions, 
 float **criterions, 
IMSLS_CRITERIONS_USER, int index_criterions[], 
 float criterions[], 
IMSLS_INDEPENDENT_VARIABLES, int **index_variables,  
 int **independent_variables, 
IMSLS_INDEPENDENT_VARIABLES_USER, 
 int index_variables[],  
 int independent_variables[], 
IMSLS_COEF_STATISTICS, int **index_coefficients,  
 float **coefficients, 
IMSLS_COEF_STATISTICS_USER, int index_coefficients[],  
 float coefficients[], 
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IMSLS_INPUT_COV, int n_observations, float cov[], 
0) 

Optional Arguments 
IMSLS_X_COL_DIM, int x_col_dim   (Input) 

The column dimension of x. 
Default: x_col_dim = n_candidate 

IMSLS_PRINT 
Printing is performed. This is the default. 
or 

IMSLS_NO_PRINT 
Printing is not performed. 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_rows containing the weight for each row of x. 
Default: weights[] = 1 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array of length n_rows containing the frequency for each row of x. 
Default: frequencies[] = 1 

IMSLS_R_SQUARED, int max_subset_size   (Input) 
The R2 criterion is used, where subset sizes  
1, 2, ..., max_subset_size are examined.  
This option is the default with max_subset_size = n_candidate. 
or 

IMSLS_ADJ_R_SQUARED 
The adjusted R2 criterion is used, where subset sizes  
1, 2, ..., n_candidate are examined. 
or 

IMSLS_MALLOWS_CP 
Mallows Cp criterion is used, where subset sizes  
1, 2, ..., n_candidate are examined. 

IMSLS_MAX_N_BEST, int max_n_best   (Input) 
Number of best regressions to be found. If the R2 criterions are selected, 
the max_n_best best regressions for each subset size examined are 
found. If the adjusted R2 or Mallows Cp criterion is selected, the 
max_n_best overall regressions are found. 
Default: max_n_best = 1 

IMSLS_MAX_N_GOOD_SAVED, int max_n_good_saved   (Input) 
Maximum number of good regressions of each subset size to be saved in 
finding the best regressions. Argument max_n_good_saved must be 
greater than or equal to max_n_best. Normally, max_n_good_saved 
should be less than or equal to 10. It doesn't ever need to be larger than 
the maximum number of subsets for any subset size. Computing time 
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required is inversely related to max_n_good_saved. 
Default: max_n_good_saved = 10 

IMSLS_CRITERIONS, int **index_criterions, float **criterions   
(Output) 
Argument index_criterions is the address of a pointer to the 
internally allocated array of length nsize + 1(where nsize is equal to 
max_subset_size if optional argument IMSLS_R_SQUARED is 
specified; otherwise, nsize is equal to n_candidate) containing the 
locations in criterions of the first element for each subset size. For 
I = 0, 1, ..., nsize 	1, element numbers index_criterions[I], 
index_criterions[I] + 1, ..., index_criterions[I + 1] 	 1 of 
criterions correspond to the (I + 1)-st subset size. Argument 
criterions is the address of a pointer to the internally allocated array 
of length max (index_criterions [nsize] 	 1 , n_candidate) 
containing in its first index_criterions [nsize] 	 1 elements the 
criterion values for each subset considered, in increasing subset size 
order. 

IMSLS_CRITERIONS_USER, int index_criterions[], 
float criterions[]   (Output) 
Storage for arrays index_criterions and criterions is provided 
by the user. An upper bound on the length of criterions is 
max(max_n_good_saved � nsize, n_candidate). See 
IMSLS_CRITERIONS. 

IMSLS_INDEPENDENT_VARIABLES, int **index_variables, 
int **independent_variables   (Output) 
Argument index_variables is the address of a pointer to the 
internally allocated array of length nsize + 1 (where nsize is equal to 
max_subset_size if optional argument IMSLS_R_SQUARED is 
specified; otherwise, nsize is equal to n_candidate) containing the 
locations in independent_variables of the first element for each 
subset size. For I = 0, 1, ..., nsize 	 1, element numbers 
index_variables[I], index_variables[I] + 1, ..., 
index_variables[I + 1] 	 1 of independent_variables 
correspond to the (I+1)-st subset size. Argument 
independent_variables is the address of a pointer to the internally 
allocated array of length index_variables [nsize] 	 1 containing the 
variable numbers for each subset considered and in the same order as in 
criterions. 

IMSLS_INDEPENDENT_VARIABLES_USER, int index_variables[], 
int independent_variables[]   (Output) 
Storage for arrays index_variables and independent_variables 
is provided by the user. An upper bound for the length of 
independent_variables is as follows: 
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( 1
2

nsize nsize� � �max_n_good_saved )
 

where nsize is equal to max_subset_size. 

See IMSLS_INDEPENDENT_VARIABLES. 

IMSLS_COEF_STATISTICS, int **index_coefficients, 
float **coefficients   (Output) 
Argument index_coefficients is the address of a pointer to the 
internally allocated array of length ntbest + 1 containing the locations in 
coefficients or the first row for each of the best regressions. Here, 
ntbest is the total number of best regression found and is equal  
to max_subset_size � max_n_best if IMSLS_R_SQUARED is 
specified, equal to max_n_best if either IMSLS_MALLOWS_CP  
or IMSLS_ADJ_R_SQUARED is specified, and equal to  
max_n_best � n_candidate, otherwise. For I = 0, 1, ..., ntbest 	 1, 
rows index_coefficients[I], index_coefficients[I] + 1, ..., 
index_coefficients[I + 1] – 1 of coefficients correspond to the 
(I + 1)-st regression. Argument coefficients is the address of a 
pointer to the internally allocated array of size (index_coefficients 
[ntbest] 	 1) � 5 containing statistics relating to the regression 
coefficients of the best models. Each row corresponds to a coefficient 
for a particular regression. The regressions are in order of increasing 
subset size. Within each subset size, the regressions are ordered so that 
the better regressions appear first. The statistic in the columns are as 
follows (inferences are conditional on the selected model): 

Column Description 

0 variable number 

1 coefficient estimate 

2 estimated standard error of the estimate 

3 t-statistic for the test that the coefficient is 0 

4 p-value for the two-sided t test 

IMSLS_COEF_STATISTICS_USER, int index_coefficients[], 
float coefficients[]   (Output) 
Storage for arrays index_coefficients and coefficients is 
provided by the user. See IMSLS_COEF_STATISTICS. 

IMSLS_INPUT_COV, int n_observations, float cov[]   (Input) 
Argument n_observations is the number of observations associated 
with array cov. Argument cov is an (n_candidate + 1) by 
(n_candidate + 1) array containing a variance-covariance or sum of 
squares and crossproducts matrix, in which the last column must 
correspond to the dependent variable. Array cov can be computed using 
imsls_f_covariances. Arguments x and y, and optional arguments 
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frequencies and weights are not accessed when this option is 
specified. Normally, imsls_f_regression_selection computes 
cov from the input data matrices x and y. However, there may be cases 
when the user will wish to calculate the covariance matrix and 
manipulate it before calling imsls_f_regression_selection. See 
the description section below for a discussion of such cases. 

Description 
Function imsls_f_regression_selection finds the best subset regressions 
for a regression problem with n_candidate independent variables. Typically, 
the intercept is forced into all models and is not a candidate variable. In this case, 
a sum of squares and crossproducts matrix for the independent and dependent 
variables corrected for the mean is computed internally. There may be cases when 
it is convenient for the user to calculate the matrix; see the description of optional 
argument IMSLS_INPUT_COV. 

“Best” is defined, on option, by one of the following three criteria: 

� R2 (in percent) 

2 SSE
100 (1 )

SST
pR � �  

� 2
aR  (adjusted R2 in percent) 

2 SSE1100 1 ( )
SST

p
a

nR
n p

� ��
� �� �

�� �
 

Note that maximizing the criterion is equivalent to minimizing the 
residual mean square: 

� �

SSE p

n p�

 

� Mallows’ Cp statistic 

2

SSE
2p

pC p
s

� �

n_candidate

n�  

Here, n is equal to the sum of the frequencies (or n_rows if 
IMSLS_FREQUENCIES is not specified) and SST is the total sum of squares.  
SSEp is the error sum of squares in a model containing p regression parameters 
including �0 (or p 	 1 of the n_candidate candidate variables). Variable 

2sn_candidate  

is the error mean square from the model with all n_candidate variables in the 
model. Hocking (1972) and Draper and Smith (1981, pp. 296	302) discuss these 
criteria. 
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Function imsls_f_regression_selection is based on the algorithm of 
Furnival and Wilson (1974). This algorithm finds max_n_good_saved candidate 
regressions for each possible subset size. These regressions are used to identify a 
set of best regressions. In large problems, many regressions are not computed. 
They may be rejected without computation based on results for other subsets; this 
yields an efficient technique for considering all possible regressions. 

There are cases when the user may want to input the variance-covariance matrix 
rather than allow the function imsls_f_regression_selection to calculate 
it. This can be accomplished using optional argument IMSLS_INPUT_COV. Three 
situations in which the user may want to do this are as follows: 

1. The intercept is not in the model. A raw (uncorrected) sum of squares 
and crossproducts matrix for the independent and dependent variables is 
required. Argument n_observations must be set to 1 greater than the 
number of observations. Form ATA, where A = [A, Y], to compute the 
raw sum of squares and crossproducts matrix. 

2. An intercept is a candidate variable. A raw (uncorrected) sum of squares 
and crossproducts matrix for the constant regressor (= 1.0), independent, 
and dependent variables is required for cov. In this case, cov contains 
one additional row and column corresponding to the constant regressor. 
This row/column contains the sum of squares and crossproducts of the 
constant regressor with the independent and dependent variables. The 
remaining elements in cov are the same as in the previous case. 
Argument n_observations must be set to 1 greater than the number of 
observations. 

3. There are m variables to be forced into the models. A sum of squares 
and crossproducts matrix adjusted for the m variables is required 
(calculated by regressing the candidate variables on the variables to be 
forced into the model). Argument n_observations must be set to m 
less than the number of observations.  

Programming Notes 
Function imsls_f_regression_selection can save considerable CPU time 
over explicitly computing all possible regressions. However, the function has 
some limitations that can cause unexpected results for users who are unaware of 
the limitations of the software. 

1. For n_candidate + 1 > 	log2 (�), where � is imsls_f_machine(4) 
(imsls_d_machine(4) for double precision; see Chapter 14 ), some 
results can be incorrect. This limitation arises because the possible 
models indicated (the model numbers 1, 2, ..., 2n_candidate) are stored 
as floating-point values; for sufficiently large n_candidate, the model 
numbers cannot be stored exactly. On many computers, this means 
imsls_f_regression_selection (for n_candidate > 24) and 
imsls_d_regression_selection (for n_candidate > 49) can 
produce incorrect results. 
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2. Function imsls_f_regression_selection eliminates some subsets 
of candidate variables by obtaining lower bounds on the error sum of 
squares from fitting larger models. First, the full model containing all 
n_candidate is fit sequentially using a forward stepwise procedure in 
which one variable enters the model at a time, and criterion values and 
model numbers for all the candidate variables that can enter at each step 
are stored. If linearly dependent variables are removed from the full 
model, error IMSLS_VARIABLES_DELETED is issued. If this error is 
issued, some submodels that contain variables removed from the full 
model because of linear dependency can be overlooked if they have not 
already been identified during the initial forward stepwise procedure. If 
error IMSLS_VARIABLES_DELETED is issued and you want the 
variables that were removed from the full model to be considered in 
smaller models, you can rerun the program with a set of linearly 
independent variables. 

Examples 

Example 1 
This example uses a data set from Draper and Smith (1981, pp. 629	630). 
Function imsls_f_regression_selection is invoked to find the best 
regression for each subset size using the R2 criterion. By default, the function 
prints the results. 

#include <imsls.h> 
#define N_OBSERVATIONS 13 
#define N_CANDIDATE    4 
main() 
{ 
    float  x[N_OBSERVATIONS][N_CANDIDATE] =  
        {7., 26.,  6., 60., 
         1., 29., 15., 52., 
        11., 56.,  8., 20., 
        11., 31.,  8., 47., 
         7., 52.,  6., 33., 
        11., 55.,  9., 22., 
         3., 71., 17.,  6., 
         1., 31., 22., 44., 
         2., 54., 18., 22., 
        21., 47.,  4., 26., 
         1., 40., 23., 34., 
        11., 66.,  9., 12., 
        10., 68.,  8., 12.}; 
    float  y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9, 
        109.2, 102.7,  72.5, 93.1, 115.9, 83.8, 113.3, 109.4}; 
 
    imsls_f_regression_selection(N_OBSERVATIONS, N_CANDIDATE, x, y, 0); 
} 

Output 

 Regressions with   1 variable(s) (R-squared) 
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        Criterion         Variables 
             67.5          4 
             66.6          2 
             53.4          1 
             28.6          3 
 
 
 Regressions with   2 variable(s) (R-squared) 
 
        Criterion         Variables 
             97.9          1  2 
             97.2          1  4 
             93.5          3  4 
               68          2  4 
             54.8          1  3 
 
 
 Regressions with   3 variable(s) (R-squared) 
 
        Criterion         Variables 
             98.2          1  2  4 
             98.2          1  2  3 
             98.1          1  3  4 
             97.3          2  3  4 
 
 
 Regressions with   4 variable(s) (R-squared) 
 
        Criterion         Variables 
             98.2          1  2  3  4 
 
  
      Best Regression with   1 variable(s) (R-squared) 
Variable  Coefficient  Standard Error  t-statistic  p-value 
       4      -0.7382          0.1546       -4.775   0.0006 
  
  
  
      Best Regression with   2 variable(s) (R-squared) 
Variable  Coefficient  Standard Error  t-statistic  p-value 
       1        1.468          0.1213        12.10   0.0000 
       2        0.662          0.0459        14.44   0.0000 
  
  
  
      Best Regression with   3 variable(s) (R-squared) 
Variable  Coefficient  Standard Error  t-statistic  p-value 
       1        1.452          0.1170        12.41   0.0000 
       2        0.416          0.1856         2.24   0.0517 
       4       -0.237          0.1733        -1.36   0.2054 
  
  
  
      Best Regression with   4 variable(s) (R-squared) 
Variable  Coefficient  Standard Error  t-statistic  p-value 
       1        1.551          0.7448        2.083   0.0708 
       2        0.510          0.7238        0.705   0.5009 
       3        0.102          0.7547        0.135   0.8959 
       4       -0.144          0.7091       -0.203   0.8441 
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Example 2 
This example uses the same data set as the first example, but Mallow’s Cp 
statistic is used as the criterion rather than R2. Note that when Mallow’s Cp 
statistic (or adjusted R2) is specified, the variable max_n_best indicates the total 
number of “best” regressions (rather than indicating the number of best 
regressions per subset size, as in the case of the R2 criterion). In this example, the 
three best regressions are found to be (1, 2), (1, 2, 4), and (1, 2, 3).  

#include <imsls.h> 
#define N_OBSERVATIONS 13 
#define N_CANDIDATE    4 
main() 
{ 
    float  x[N_OBSERVATIONS][N_CANDIDATE] =  
        {7., 26.,  6., 60., 
         1., 29., 15., 52., 
        11., 56.,  8., 20., 
        11., 31.,  8., 47., 
         7., 52.,  6., 33., 
        11., 55.,  9., 22., 
         3., 71., 17.,  6., 
         1., 31., 22., 44., 
         2., 54., 18., 22., 
        21., 47.,  4., 26., 
         1., 40., 23., 34., 
        11., 66.,  9., 12., 
        10., 68.,  8., 12.}; 
    float  y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9, 
        109.2, 102.7,  72.5, 93.1, 115.9, 83.8, 113.3, 109.4}; 
    int    max_n_best = 3; 
 
    imsls_f_regression_selection(N_OBSERVATIONS, N_CANDIDATE,  
        (float *) x, y, 
        IMSLS_MALLOWS_CP,  
        IMSLS_MAX_N_BEST,   max_n_best,  
        0); 
} 

Output 

1 
 
 Regressions with   1 variable(s) (Mallows  CP) 
        Criterion         Variables 
              139          4 
              142          2 
              203          1 
              315          3 
 
 
 Regressions with   2 variable(s) (Mallows  CP) 
 
        Criterion         Variables 
             2.68          1  2 
              5.5          1  4 
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             22.4          3  4 
              138          2  4 
              198          1  3 
 
 
 Regressions with   3 variable(s) (Mallows  CP) 
 
        Criterion         Variables 
             3.02          1  2  4 
             3.04          1  2  3 
              3.5          1  3  4 
             7.34          2  3  4 
 
 
 Regressions with   4 variable(s) (Mallows  CP) 
 
        Criterion         Variables 
                5          1  2  3  4 
1 
  
     Best Regression with   2 variable(s) (Mallows CP) 
Variable  Coefficient  Standard Error  t-statistic  p-value 
       1        1.468          0.1213        12.10   0.0000 
       2        0.662          0.0459        14.44   0.0000 
  
  
  
     Best Regression with   3 variable(s) (Mallows CP) 
Variable  Coefficient  Standard Error  t-statistic  p-value 
       1        1.452          0.1170        12.41   0.0000 
       2        0.416          0.1856         2.24   0.0517 
       4       -0.237          0.1733        -1.36   0.2054 
  
  
    2nd Best Regression with   3 variable(s) (Mallows CP) 
Variable  Coefficient  Standard Error  t-statistic  p-value 
       1        1.696          0.2046         8.29   0.0000 
       2        0.657          0.0442        14.85   0.0000 
       3        0.250          0.1847         1.35   0.2089 

Warning Errors 
IMSLS_VARIABLES_DELETED At least one variable is deleted from the full 

model because the variance-covariance 
matrix “cov” is singular. 

Fatal Errors 
IMSLS_NO_VARIABLES No variables can enter any model. 
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regression_stepwise 
Builds multiple linear regression models using forward selection, backward 
selection, or stepwise selection. 

Synopsis 
#include <imsls.h> 
void imsls_f_regression_stepwise (int n_rows, int n_candidate, 

float x[], float y[], ..., 0) 

The type double function is imsls_d_regression_stepwise. 

Required Arguments 

int n_rows   (Input) 
Number of rows in x and the number of elements in y. 

int n_candidate   (Input) 
Number of candidate variables (independent variables) or columns in x. 

float x[]   (Input) 
Array of size n_rows � n_candidate containing the data for the 
candidate variables. 

float y[]   (Input) 
Array of length n_rows containing the responses for the dependent 
variable. 

Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_f_regression_stepwise (int n_rows, int n_candidate, 

float x[], float y[], 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_WEIGHTS, float weights[], 
IMSLS_FREQUENCIES, float frequencies[], 
IMSLS_FIRST_STEP, or 
IMSLS_INTERMEDIATE_STEP, or 
IMSLS_LAST_STEP, or 
IMSLS_ALL_STEPS, 
IMSLS_N_STEPS, int n_steps, 
IMSLS_FORWARD, or 
IMSLS_BACKWARD, or 
IMSLS_STEPWISE, 
IMSLS_P_VALUE_IN, float p_value_in, 
IMSLS_P_VALUE_OUT, float p_value_out, 
IMSLS_TOLERANCE, float tolerance, 
IMSLS_ANOVA_TABLE, float **anova_table, 
IMSLS_ANOVA_TABLE_USER, float anova_table[], 
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IMSLS_COEF_T_TESTS, float **coef_t_tests, 
IMSLS_COEF_T_TESTS_USER, float coef_t_tests[], 
IMSLS_COEF_VIF, float **coef_vif, 
IMSLS_COEF_VIF_USER, float coef_vif[], 
IMSLS_LEVEL, int level[], 
IMSLS_FORCE, int n_force, 
IMSLS_IEND, int *iend, 
IMSLS_SWEPT_USER, int swept[], 
IMSLS_HISTORY_USER, float history[],  
IMSLS_COV_SWEPT_USER, float *covs 
IMSLS_INPUT_COV, int n_observations, float *cov, 
0) 

Optional Arguments 
IMSLS_X_COL_DIM, int x_col_dim   (Input) 

Column dimension of x. 
Default: x_col_dim = n_candidate 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_rows containing the weight for each row of x. 
Default: weights[] = 1 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array of length n_rows containing the frequency for each row of x. 
Default: frequencies[] = 1 

 

IMSLS_FIRST_STEP, or 
IMSLS_INTERMEDIATE_STEP, or 
IMSLS_LAST_STEP, or 
IMSLS_ALL_STEPS 

One or none of these options can be specified. If none of these is 
specified, the action defaults to IMSLS_ALL_STEPS. 

Argument Action 

IMSLS_FIRST_STEP This is the first invocation; additional 
calls will be made. Initialization and 
stepping is performed. 

IMSLS_INTERMEDIATE_STEP This is an intermediate invocation.  
Stepping is performed. 

IMSLS_LAST_STEP This is the final invocation. Stepping 
and wrap-up computations are 
performed. 

IMSLS_ALL_STEPS This is the only invocation. 
Initialization, stepping, and wrap-up 
computations are performed. 
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IMSLS_N_STEPS, int n_steps   (Input) 
For nonnegative n_steps, n_steps steps are taken. If n_steps = 	1, 
stepping continues until completion. 

IMSLS_FORWARD, or 
IMSLS_BACKWARD, or 
IMSLS_STEPWISE 

One or none of these options can be specified. If none is specified, the 
action defaults to IMSLS_BACKWARD. 

Keyword Action 

IMSLS_FORWARD An attempt is made to add a variable to the model. A 
variable is added if its p-value is less than 
p_value_in. During initialization, only the forced 
variables enter the model. 

IMSLS_BACKWARD An attempt is made to remove a variable from the 
model. A variable is removed if its p-value exceeds 
p_value_out. During initialization, all candidate 
independent variables enter the model. 

IMSLS_STEPWISE A backward step is attempted. If a variable is not 
removed, a forward step is attempted. This is a 
stepwise step. Only the forced variables enter the 
model during initialization. 

IMSLS_P_VALUE_IN, float p_value_in   (Input) 
Largest p-value for variables entering the model. Variables with p-values 
less than p_value_in may enter the model. 
Default: p_value_in = 0.05 

IMSLS_P_VALUE_OUT, float p_value_out   (Input) 
Smallest p-value for removing variables. Variables with p_values 
greater than p_value_out may leave the model. Argument 
p_value_out must be greater than or equal to p_value_in. A 
common choice for p_value_out is 2*p_value_in. 
Default: p_value_out = 0.10 

IMSLS_TOLERANCE, float tolerance   (Input) 
Tolerance used in determining linear dependence.  
Default: tolerance = 100*eps, where eps = imsls_f_machine(4) for 
single precision and eps = imsls_d_machine(4) for double precision 

IMSLS_ANOVA_TABLE, float **anova_table   (Output) 
Address of a pointer to the internally allocated array containing the 
analysis of variance table. The analysis of variance statistics are as 
follows:  
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Element Analysis of Variance Statistic 

0 degrees of freedom for regression 

1 degrees of freedom for error 

2 total degrees of freedom 

3 sum of squares for regression 

4 sum of squares for error 

5 total sum of squares 

6 regression mean square 

7 error mean square 

8 F-statistic 

9 p-value 

10 R2 (in percent) 

11 adjusted R2 (in percent) 

12 estimate of the standard deviation 

IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
Storage for anova_table is provided by the user. See 
IMSLS_ANOVA_TABLE. 

IMSLS_COEF_T_TESTS, float **coef_t_tests   (Output) 
Address to a pointer to the internally allocated array containing statistics 
relating to the regression coefficient for the final model in this 
invocationing. The rows correspond to the n_candidate independent 
variables. The rows are in the same order as the variables in x (or, if 
IMSLS_INPUT_COV is specified, the rows are in the same order as the 
variables in cov). Each row corresponding to a variable not in the model 
contains statistics for a model which includes the variables of the final 
model and the variable corresponding to the row in question. 

Column Description 

0 coefficient estimate 

1 estimated standard error of the coefficient 
estimate 

2 t-statistic for the test that the coefficient is 0 

3 p-value for the two-sided t test 
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IMSLS_COEF_T_TESTS_USER, float coef_t_tests[]   (Output) 
Storage for array coef_t_tests is provided by the user. See 
IMSLS_COEF_T_TESTS. 

IMSLS_COEF_VIF, float **coef_vif   (Output) 
Address to a pointer to the internally allocated array containing variance 
inflation factors for the final model in this invocation. The elements 
correspond to the n_candidate dependent variables. The elements are 
in the same order as the variables in x (or, if IMSLS_INPUT_COV is 
specified, the elements are in the same order as the variables in cov). 
Each element corresponding to a variable not in the model contains 
statistics for a model which includes the variables of the final model and 
the variables corresponding to the element in question.  

The square of the multiple correlation coefficient for the I-th regressor 
after all others can be obtained from coef_vif[I] by the following 
formula: 

1.01.0
VIF

�  

IMSLS_COEF_VIF_USER, float coef_vif[]   (Output) 
Storage for array coef_vif is provided by the user. See 
IMSLS_COEF_VIF. 

IMSLS_LEVEL, int level[]   (Input) 
Array of length n_candidate + 1 containing levels of priority for 
variables entering and leaving the regression. Each variable is assigned a 
positive value which indicates its level of entry into the model. A 
variable can enter the model only after all variables with smaller nonzero 
levels of entry have entered. Similarly, a variable can only leave the 
model after all variables with higher levels of entry have left. Variables 
with the same level of entry compete for entry (deletion) at each step. 
Argument level[I] = 0 means the I-th variable is never to enter the 
model. Argument level[I] = 	1 means the I-th variable is the 
dependent variable. Argument level[n_candidate] must correspond 
to the dependent variable, except when IMSLS_INPUT_COV is specified. 
Default: 1, 1, ..., 1, 	1 where 	1 corresponds to level[n_candidate] 

IMSLS_FORCE, int n_force   (Input) 
Variable with levels 1, 2, ..., n_force are forced into the model as 
independent variables. See IMSLS_LEVEL. 

IMSLS_IEND, int *iend   (Output) 
Variable which indicates whether additional steps are possible.  
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iend Meaning 

0 Additional steps may be possible. 

1 No additional steps are possible. 

IMSLS_SWEPT_USER, int swept[]   (Output) 
A user-allocated array of length n_candidate + 1 with information to 
indicate the independent variables in the model. Argument 
swept[n_candidate] usually corresponds to the dependent variable. 
See IMSLS_LEVEL. 

swept[i] Status of i-th Variable 

	1 Variable i is not in model. 

1 Variable i is in model. 

IMSLS_HISTORY_USER, float history[]   (Output) 
User-allocated array of length n_candidate + 1 containing the recent 
history of the independent variables. Element history[n_candidate] 
usually corresponds to the dependent variable. See IMSLS_LEVEL. 

history[i] Status of i-th Variable 

0.0 Variable has never been added to model. 

0.5 Variable was added into the model during 
initialization. 

k > 0.0 Variable was added to the model during the k-th 
step. 

k < 0.0 Variable was deleted from model during the k-th 
step. 

IMSLS_COV_SWEPT_USER, float *covs   (Output) 
User-allocated array of length  
(n_candidate + 1) � (n_candidate + 1) that results after cov has 
been swept on the columns corresponding to the variables in the model. 
The estimated variance-covariance matrix of the estimated regression 
coefficients in the final model can be obtained by extracting the rows 
and columns of covs corresponding to the independent variables in the 
final model and multiplying the elements of this matrix by 
anova_table[7].  

IMSLS_INPUT_COV, int n_observations float *cov   (Input) 
An (n_candidate + 1) by (n_candidate + 1) array containing a 
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variance-covariance or sum of squares and crossproducts matrix, in 
which the last column must correspond to the dependent variable. 
Argument n_observations is an integer specifying the number of 
observations associated with cov. Argument cov can be computed using 
imsls_f_covariances. Arguments x, y, weights, and 
frequencies are not accessed when this option is specified. 

By default, imsls_regression_stepwise computes cov from the 
input data matrices x and y. 

Description 
Function imsls_f_regression_stepwise builds a multiple linear regression 
model using forward selection, backward selection, or forward stepwise (with a 
backward glance) selection. Function imsls_f_regression_stepwise is 
designed so the user can monitor, and perhaps change, the variables added 
(deleted) to (from) the model after each step. In this case, multiple calls to 
imsls_f_regression_stepwise (using optional arguments 
IMSLS_FIRST_STEP, IMSLS_INTERMEDIATE_STEP, ..., IMSLS_LAST_STEP) 
are made. Alternatively, imsls_f_regression_stepwise can be invoked 
once (default, or specify optional argument IMSLS_ALL_STEPS) in order to 
perform the stepping until a final model is selected. 

Levels of priority can be assigned to the candidate independent variables (use 
optional argument IMSLS_LEVEL). All variables with a priority level of 1 must 
enter the model before variables with a priority level of 2. Similarly, variables 
with a level of 2 must enter before variables with a level of 3, etc. Variables also 
can be forced into the model (see optional argument IMSLS_FORCE). Note that 
specifying optional argument IMSLS_FORCE without also specifying optional 
argument IMSLS_LEVEL will result in all variables being forced into the model. 

Typically, the intercept is forced into all models and is not a candidate variable. 
In this case, a sum-of-squares and crossproducts matrix for the independent and 
dependent variables corrected for the mean is required. Other possibilities are as 
follows: 

1. The intercept is not in the model. A raw (uncorrected) sum-of-squares 
and crossproducts matrix for the independent and dependent variables is 
required as input in cov (see optional argument IMSLS_INPUT_COV). 
Argument n_observations must be set to one greater than the number 
of observations. 

2. An intercept is a candidate variable. A raw (uncorrected) sum-of-squares 
and crossproducts matrix for the constant regressor (=1), independent 
and dependent variables are required for cov. In this case, cov contains 
one additional row and column corresponding to the constant regressor. 
This row/column contains the sum-of-squares and crossproducts of the 
constant regressor with the independent and dependent variables. The 
remaining elements in cov are the same as in the previous case. 
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Argument n_observations must be set to one greater than the number 
of observations. 

The stepwise regression algorithm is due to Efroymson (1960). Function 
imsls_f_regression_stepwise uses sweeps of the covariance matrix (input 
in cov, if optional argument IMSLS_INPUT_COV is specified, or generated 
internally by default) to move variables in and out of the model (Hemmerle 1967, 
Chapter 3). The SWEEP operator discussed in Goodnight (1979) is used. A 
description of the stepwise algorithm is also given by Kennedy and Gentle (1980, 
pp. 335	340). The advantage of stepwise model building over all possible 
regression (see function imsls_f_regression_selection, page 112) is that 
it is less demanding computationally when the number of candidate independent 
variables is very large. However, there is no guarantee that the model selected 
will be the best model (highest R2) for any subset size of independent variables. 

Example 
This example uses a data set from Draper and Smith (1981, pp. 629	630). 
Backwards stepping is performed by default.  

#include <imsls.h> 
#define N_OBSERVATIONS 13 
#define N_CANDIDATE    4 
main() 
{ 
    char           *labels[] = { 
                    "degrees of freedom for regression", 
                    "degrees of freedom for error", 
                    "total degrees of freedom", 
                    "sum of squares for regression", 
                    "sum of squares for error", 
                    "total sum of squares", 
                    "regression mean square", 
                    "error mean square", 
                    "F-statistic", 
                    "p-value", 
                    "R-squared (in percent)", 
                    "adjusted R-squared (in percent)", 
                    "est. standard deviation of within error" 
    }; 
    char           *c_labels[] = { 
                    "variable", 
                    "estimate", 
                    "s.e.", 
                    "t", 
                    "prob > t" 
    }; 
    float  *aov, *tt; 
    float  x[N_OBSERVATIONS][N_CANDIDATE] =  
        {7., 26.,  6., 60., 
         1., 29., 15., 52., 
        11., 56.,  8., 20., 
        11., 31.,  8., 47., 
         7., 52.,  6., 33., 
        11., 55.,  9., 22., 
         3., 71., 17.,  6., 
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         1., 31., 22., 44., 
         2., 54., 18., 22., 
        21., 47.,  4., 26., 
         1., 40., 23., 34., 
        11., 66.,  9., 12., 
        10., 68.,  8., 12.}; 
    float  y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9, 
        109.2, 102.7,  72.5, 93.1, 115.9, 83.8, 113.3, 109.4}; 
 
    imsls_f_regression_stepwise(N_OBSERVATIONS, N_CANDIDATE, x, y,  
        IMSLS_ANOVA_TABLE, &aov,  
        IMSLS_COEF_T_TESTS, &tt,  
        0); 
 
    imsls_f_write_matrix("* * * Analysis of Variance * * *\n",  
        13, 1, aov, 
        IMSLS_ROW_LABELS, labels, 
        IMSLS_WRITE_FORMAT, "%9.2f",  
        0); 
 
    imsls_f_write_matrix("* * * Inference on Coefficients * * *\n",  
        4, 4, tt, 
        IMSLS_COL_LABELS, c_labels,  
        IMSLS_WRITE_FORMAT, "%9.2f",  
        0); 
 
    return; 
} 

Output 

         * * * Analysis of Variance * * * 
 
degrees of freedom for regression             2.00 
degrees of freedom for error                 10.00 
total degrees of freedom                     12.00 
sum of squares for regression              2657.86 
sum of squares for error                     57.90 
total sum of squares                       2715.76 
regression mean square                     1328.93 
error mean square                             5.79 
F-statistic                                 229.50 
p-value                                       0.00 
R-squared (in percent)                       97.87 
adjusted R-squared (in percent)              97.44 
est. standard deviation of within error       2.41 
  
       * * * Inference on Coefficients * * * 
 
variable   estimate       s.e.          t   prob > t 
       1       1.47       0.12      12.10       0.00 
       2       0.66       0.05      14.44       0.00 
       3       0.25       0.18       1.35       0.21 
       4      -0.24       0.17      -1.36       0.21 
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Warning Errors 
IMSLS_LINEAR_DEPENDENCE_1 Based on “tolerance” = #, there are linear 

dependencies among the variables to be 
forced. 

Fatal Errors 
IMSLS_NO_VARIABLES_ENTERED No variables entered the model. All 

elements of “anova_table” are set to NaN. 

poly_regression 
Performs a polynomial least-squares regression. 

Synopsis 
#include <imsls.h> 
float *imsls_f_poly_regression (int n_observations, float x[], 

float y[], int degree, ..., 0) 

The type double function is imsls_d_poly_regression. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

float x[]   (Input) 
Array of length n_observations containing the independent variable. 

float y[]   (Input) 
Array of length n_observations containing the dependent variable. 

int degree   (Input) 
Degree of the polynomial. 

Return Value 
A pointer to the array of size degree + 1 containing the coefficients of the fitted 
polynomial. If a fit cannot be computed, NULL is returned. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_poly_regression (int n_observations, float x[],  

float y[], int degree,  
IMSLS_WEIGHTS, float weights[], 
IMSLS_SSQ_POLY, float **ssq_poly, 
IMSLS_SSQ_POLY_USER, float ssq_poly[], 
IMSLS_SSQ_POLY_COL_DIM, int ssq_poly_col_dim, 
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IMSLS_SSQ_LOF, float **ssq_lof, 
IMSLS_SSQ_LOF_USER, float ssq_lof[], 
IMSLS_SSQ_LOF_COL_DIM, int ssq_lof_col_dim, 
IMSLS_X_MEAN, float *x_mean, 
IMSLS_X_VARIANCE, float *x_variance, 
IMSLS_ANOVA_TABLE, float **anova_table,  
IMSLS_ANOVA_TABLE_USER, float anova_table[],  
IMSLS_DF_PURE_ERROR, int *df_pure_error,  
IMSLS_SSQ_PURE_ERROR, float *ssq_pure_error,  
IMSLS_RESIDUAL, float **residual,  
IMSLS_RESIDUAL_USER, float residual[], 
IMSLS_POLY_REGRESSION_INFO, 
 Imsls_f_poly_regression **poly_info, 
IMSLS_RETURN_USER, float coefficients[], 
0) 

Optional Arguments 
IMSLS_WEIGHTS, float weights[]   (Input) 

Array with n_observations components containing the array of 
weights for the observation.  
Default: weights[] = 1 

IMSLS_SSQ_POLY, float **ssq_poly   (Output) 
Address of a pointer to the internally allocated array containing the 
sequential sums of squares and other statistics. Row i corresponds to  
xi, i = 0, ..., degree 	 1, and the columns are described as follows: 

Column Description 

0 degrees of freedom 

1 sums of squares 

2 F-statistic 

3 p-value 

IMSLS_SSQ_POLY_USER, float ssq_poly[]   (Output) 
Storage for array ssq_poly is provided by the user. See 
IMSLS_SSQ_POLY. 

IMSLS_SSQ_POLY_COL_DIM, int ssq_poly_col_dim   (Input) 
Column dimension of ssq_poly. 
Default: ssq_poly_col_dim = 4 

IMSLS_SSQ_LOF, float **ssq_lof   (Output) 
Address of a pointer to the internally allocated array containing the lack-
of-fit statistics. Row i corresponds to xi, i = 0, ..., degree 	 1, and the 
columns are described in the following table: 
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Column Description 

0 degrees of freedom 

1 lack-of-fit sums of squares 

2 F-statistic for testing lack-of-fit for a 
polynomial model of degree i 

3 p-value for the test 

IMSLS_SSQ_LOF_USER, float ssq_lof[]   (Output) 
Storage for array ssq_lof is provided by the user. See 
IMSLS_SSQ_LOF. 

IMSLS_SSQ_LOF_COL_DIM, int ssq_lof_col_dim   (Input) 
Column dimension of ssq_lof. 
Default: ssq_lof_col_dim = 4 

IMSLS_X_MEAN, float *x_mean   (Output) 
Mean of x. 

IMSLS_X_VARIANCE, float *x_variance   (Output) 
Variance of x.  

IMSLS_ANOVA_TABLE, float **anova_table   (Output) 
Address of a pointer to the array containing the analysis of variance 
table. 

Column Description 

0 degrees of freedom for the model 

1 degrees of freedom for error 

2 total (corrected) degrees of freedom 

3 sum of squares for the model 

4 sum of squares for error 

5 total (corrected) sum of squares 

6 model mean square 

7 error mean square 

8 overall F-statistic 
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Column Description 

9 p-value 

10 R2 (in percent) 

11 adjusted R2 (in percent) 

12 estimate of the standard deviation 

13 overall mean of y 

14 coefficient of variation (in percent) 

IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
Storage for anova_table is provided by the user. See 
IMSLS_ANOVA_TABLE. 

IMSLS_DF_PURE_ERROR, int *df_pure_error   (Output) 
If specified, the degrees of freedom for pure error are returned in 
df_pure_error. 

IMSLS_SSQ_PURE_ERROR, float *ssq_pure_error   (Output) 
If specified, the sums of squares for pure error are returned in 
ssq_pure_error. 

IMSLS_RESIDUAL, float **residual   (Output) 
Address of a pointer to the array containing the residuals.  

IMSLS_RESIDUAL_USER, float residual[]   (Output) 
Storage for array residual is provided by the user. See 
IMSLS_RESIDUAL. 

IMSLS_POLY_REGRESSION_INFO, Imsls_f_poly_regression **poly_info   
(Output) 
Address of a pointer to an internally allocated structure containing the 
information about the polynomial fit required as input for IMSL function 
imsls_f_poly_prediction. 

IMSLS_RETURN_USER, float coefficients[]   (Output) 
If specified, the least-squares solution for the regression coefficients is 
stored in array coefficients of size degree + 1 provided by the user. 

Description 
Function imsls_f_poly_regression computes estimates of the regression 
coefficients in a polynomial (curvilinear) regression model. In addition to the 
computation of the fit, imsls_f_poly_regression computes some summary 
statistics. Sequential sums of squares attributable to each power of the 
independent variable (stored in ssq_poly) are computed. These are useful in 
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assessing the importance of the higher order powers in the fit. Draper and Smith 
(1981, pp. 101	102) and Neter and Wasserman (1974, pp. 278	287) discuss the 
interpretation of the sequential sums of squares. The statistic R2 is the percentage 
of the sum of squares of y about its mean explained by the polynomial curve. 
Specifically, 
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where 

ˆiy  

is the fitted y value at xi and y  is the mean of y. This statistic is useful in 
assessing the overall fit of the curve to the data. R2 must be between 0 and 100 
percent, inclusive. R2 = 100 percent indicates a perfect fit to the data. 

Estimates of the regression coefficients in a polynomial model are computed 
using orthogonal polynomials as the regressor variables. This reparameterization 
of the polynomial model in terms of orthogonal polynomials has the advantage 
that the loss of accuracy resulting from forming powers of the x-values is avoided. 
All results are returned to the user for the original model (power form). 

Function imsls_f_poly_regression is based on the algorithm of Forsythe 
(1957). A modification to Forsythe’s algorithm suggested by Shampine (1975) is 
used for computing the polynomial coefficients. A discussion of Forsythe’s 
algorithm and Shampine’s modification appears in Kennedy and Gentle (1980, 
pp. 342	347). 

Examples 

Example 1 
A polynomial model is fitted to data discussed by Neter and Wasserman  
(1974, pp. 279	285). The data set contains the response variable y measuring 
coffee sales (in hundred gallons) and the number of self-service coffee dispensers. 
Responses for 14 similar cafeterias are in the data set. A graph of the results is 
also given. 

#include <imsls.h> 
 
#define DEGREE          2 
#define NOBS           14 
 
main() 
{ 
    float       *coefficients; 
    float       x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0, 
                       4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0}; 
    float       y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3, 
                       758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4}; 
 
    coefficients = imsls_f_poly_regression (NOBS, x, y, DEGREE, 0); 
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    imsls_f_write_matrix("Least-Squares Polynomial Coefficients",  
                        DEGREE + 1, 1, coefficients,  
                        IMSLS_ROW_NUMBER_ZERO, 
                        0); 
} 

Output 

Least-Squares Polynomial Coefficients 
            0       503.3 
            1        78.9 
            2        -4.0 

 

Figure 2-1   A Polynomial Fit 

Example 2 
This example is a continuation of the initial example. Here, many optional 
arguments are used. 

#include <stdio.h> 
#include <imsls.h> 
 
#define DEGREE           2 
#define NOBS            14 
 
void main() 
{ 
    int         iset = 1, dfpe; 
    float       *coefficients, *anova_table, sspe, *ssqpoly, *ssqlof; 
    float       x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0, 
                       4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0}; 
    float       y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3, 
                       758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4}; 
    char        *coef_rlab[2]; 
    char        *coef_clab[] = {" ", "intercept", "linear",  
                                "quadratic"}; 
    char        *stat_clab[] = {" ", "Degrees of\nFreedom",  
                                "Sum of\nSquares",  
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                                "\nF-Statistic", "\np-value"}; 
    char        *anova_rlab[] = { 
                   "degrees of freedom for regression",  
                   "degrees of freedom for error",  
                   "total (corrected) degrees of freedom", 
                   "sum of squares for regression",  
                   "sum of squares for error",  
                   "total (corrected) sum of squares", 
                   "regression mean square",  
                   "error mean square", "F-statistic", 
                   "p-value", "R-squared (in percent)",  
                   "adjusted R-squared (in percent)", 
                   "est. standard deviation of model error",  
                   "overall mean of y",  
                   "coefficient of variation (in percent)"}; 
 
     coefficients = imsls_f_poly_regression(NOBS, x, y, DEGREE, 
                                           IMSLS_SSQ_POLY, &ssqpoly, 
                                           IMSLS_SSQ_LOF, &ssqlof, 
                                           IMSLS_ANOVA_TABLE, &anova_table, 
                                           IMSLS_DF_PURE_ERROR, &dfpe, 
                                           IMSLS_SSQ_PURE_ERROR, &sspe, 
                                           0); 
    imsls_write_options(-1, &iset); 
    imsls_f_write_matrix("Least Squares Polynomial Coefficients",  
                                            1, DEGREE + 1,  
                        coefficients,  
                        IMSLS_COL_LABELS, coef_clab, 
                        0); 
    coef_rlab[0] = coef_clab[2]; 
    coef_rlab[1] = coef_clab[3]; 
    imsls_f_write_matrix("Sequential Statistics", DEGREE, 4, ssqpoly,  
                        IMSLS_COL_LABELS, stat_clab, 
                        IMSLS_ROW_LABELS, coef_rlab, 
                        IMSLS_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f", 
                        0); 
    imsls_f_write_matrix("Lack-of-Fit Statistics", DEGREE, 4, ssqlof, 
                        IMSLS_COL_LABELS, stat_clab, 
                        IMSLS_ROW_LABELS, coef_rlab, 
                        IMSLS_WRITE_FORMAT,  "%3.1f%8.1f%6.1f%6.4f", 
                        0); 
    imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1, 
                                                         anova_table, 
                        IMSLS_ROW_LABELS, anova_rlab, 
                        IMSLS_WRITE_FORMAT, "%9.2f", 
                        0); 
} 

Output 

                     Least Squares Polynomial Coefficients 
                         intercept      linear   quadratic 
                             503.3        78.9        -4.0 
  
                             Sequential Statistics 
                        Degrees of    Sum of                       
                           Freedom   Squares  F-Statistic  p-value 
             linear            1.0  220644.2       3415.8   0.0000 



 

 
 

Chapter 2: Regression poly_regression � 139 

 

 

 

             quadratic         1.0    4387.7         67.9   0.0000 
  
                            Lack-of-Fit Statistics 
                        Degrees of    Sum of                       
                           Freedom   Squares  F-Statistic  p-value 
             linear            5.0    4793.7         22.0   0.0004 
             quadratic         4.0     405.9          2.3   0.1548 

                       * * * Analysis of Variance * * * 
 
               degrees of freedom for regression            2.00 
               degrees of freedom for error                11.00 
               total (corrected) degrees of freedom        13.00 
               sum of squares for regression           225031.94 
               sum of squares for error                   710.55 
               total (corrected) sum of squares        225742.48 
               regression mean square                  112515.97 
               error mean square                           64.60 
               F-statistic                               1741.86 
               p-value                                      0.00 
               R-squared (in percent)                      99.69 
               adjusted R-squared (in percent)             99.63 
               est. standard deviation of model error       8.04 
               overall mean of y                          710.99 
               coefficient of variation (in percent)        1.13 

Warning Errors 
IMSLS_CONSTANT_YVALUES The y values are constant. A zero-

order polynomial is fit. High order 
coefficients are set to zero. 

IMSLS_FEW_DISTINCT_XVALUES There are too few distinct x values 
to fit the desired degree 
polynomial. High order 
coefficients are set to zero. 

IMSLS_PERFECT_FIT A perfect fit was obtained with a 
polynomial of degree less than 
degree. High order coefficients 
are set to zero. 

Fatal Errors 
IMSLS_NONNEG_WEIGHT_REQUEST_2 All weights must be nonnegative. 

IMSLS_ALL_OBSERVATIONS_MISSING Each (x, y) point contains NaN. 
There are no valid data. 

IMSLS_CONSTANT_XVALUES The x values are constant. 
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poly_prediction 
Computes predicted values, confidence intervals, and diagnostics after fitting a 
polynomial regression model. 

Synopsis 
#include <imsls.h> 
float *imsls_f_poly_prediction (Imsls_f_poly_regression *poly_info, 

int n_predict, float x[], ..., 0) 

The type double function is imsls_d_poly_prediction. 

Required Arguments 

Imsls_f_poly_regression *poly_info   (Input) 
Pointer to a structure of type Imsls_f_poly_regression. See function 
imsls_f_poly_regression (page 132). 

int n_predict   (Input) 
Length of array x. 

float x[]   (Input) 
Array of length n_predict containing the values of the independent 
variable for which calculations are to be performed. 

Return Value 
A pointer to an internally allocated array of length n_predict containing the 
predicted values. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_poly_prediction (Imsls_f_poly_regression *poly_info, 

int n_predict, float x[],  
IMSLS_CONFIDENCE, float confidence, 
IMSLS_WEIGHTS, float weights[], 
IMSLS_SCHEFFE_CI, float **lower_limit, 
 float **upper_limit, 
IMSLS_SCHEFFE_CI_USER, float lower_limit[], 
 float upper_limit[], 
IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit,  
 float **upper_limit, 
IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],  
 float upper_limit[], 
IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit,  
 float **upper_limit, 
IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, 
 float lower_limit[],  
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 float upper_limit[],  
IMSLS_LEVERAGE, float **leverage, 
IMSLS_LEVERAGE_USER, float leverage[], 
IMSLS_RETURN_USER, float y_hat[], 
IMSLS_Y, float y[], 
IMSLS_RESIDUAL, float **residual, 
IMSLS_RESIDUAL_USER, float residual[], 
IMSLS_STANDARDIZED_RESIDUAL, 
 float **standardized_residual, 
IMSLS_STANDARDIZED_RESIDUAL_USER,  
 float standardized_residual[], 
IMSLS_DELETED_RESIDUAL, float **deleted_residual, 
IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[], 
IMSLS_COOKSD, float **cooksd, 
IMSLS_COOKSD_USER, float cooksd[], 
IMSLS_DFFITS, float **dffits, 
IMSLS_DFFITS_USER, float dffits[], 
0) 

Optional Arguments 
IMSLS_CONFIDENCE, float confidence   (Input) 

Confidence level for both two-sided interval estimates on the mean and 
for two-sided prediction intervals in percent. Argument confidence 
must be in the range [0.0, 100.0). For one-sided intervals with 
confidence level onecl, where 50.0  onecl < 100.0, set 
confidence = 100.0 – 2.0 * (100.0 	 onecl). 
Default: confidence = 95.0 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_predict containing the weight for each row of x. 
The computed prediction interval uses SSE/(DFE*weights[i]) for the 
estimated variance of a future response. 
Default: weights[] = 1 

IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit   
(Output) 
Array lower_limit is the address of a pointer to an internally allocated 
array of length n_predict containing the lower confidence limits of 
Scheffé confidence intervals corresponding to the rows of x. Array 
upper_limit is the address of a pointer to an internally allocated array 
of length n_predict containing the upper confidence limits of Scheffé 
confidence intervals corresponding to the rows of x. 

IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[]   
(Output) 
Storage for arrays lower_limit and upper_limit is provided by the user. 
See IMSLS_SCHEFFE_CI. 
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IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit, 
float **upper_limit   (Output) 
Array lower_limit is the address of a pointer to an internally allocated 
array of length n_predict containing the lower confidence limits of the 
confidence intervals for two-sided interval estimates of the means, 
corresponding to the rows of x. Array upper_limit is the address of 
a pointer to an internally allocated array of length n_predict 
containing the upper confidence limits of the confidence intervals for 
two-sided interval estimates of the means, corresponding to the rows  
of x. 

IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[], 
float upper_limit[]   (Output) 
Storage for arrays lower_limit and upper_limit is provided by the 
user. See IMSLS_POINTWISE_CI_POP_MEAN. 

IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit, 
float **upper_limit   (Output) 
Array lower_limit is the address of a pointer to an internally allocated 
array of length n_predict containing the lower confidence limits of the 
confidence intervals for two-sided prediction intervals, corresponding to 
the rows of x. Array upper_limit is the address of a pointer to an 
internally allocated array of length n_predict containing the upper 
confidence limits of the confidence intervals for two-sided prediction 
intervals, corresponding to the rows of x. 

IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[], 
float upper_limit[]   (Output) 
Storage for arrays lower_limit and upper_limit is provided by the 
user. See IMSLS_POINTWISE_CI_NEW_SAMPLE. 

IMSLS_LEVERAGE, float **leverage   (Output) 
Address of a pointer to an internally allocated array of length 
n_predict containing the leverages. 

IMSLS_LEVERAGE_USER, float leverage[]   (Output) 
Storage for array leverage is provided by the user. See 
IMSLS_LEVERAGE. 

IMSLS_RETURN_USER, float y_hat[]   (Output) 
Storage for array y_hat is provided by the user. The length n_predict 
array contains the predicted values. 

IMSLS_Y float y[]   (Input) 
Array of length n_predict containing the observed responses.  

Note: IMSLS_Y must be specified if any of the following optional arguments are 
specified. 

IMSLS_RESIDUAL, float **residual   (Output) 
Address of a pointer to an internally allocated array of length 
n_predict containing the residuals. 
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IMSLS_RESIDUAL_USER, float residual[]   (Output) 
Storage for array residual is provided by the user. See 
IMSLS_RESIDUAL. 

IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual   
(Output) 
Address of a pointer to an internally allocated array of length 
n_predict containing the standardized residuals. 

IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[]   
(Output) 
Storage for array standardized_residual is provided by the user. 
See IMSLS_STANDARDIZED_RESIDUAL. 

IMSLS_DELETED_RESIDUAL, float **deleted_residual   (Output) 
Address of a pointer to an internally allocated array of length 
n_predict containing the deleted residuals. 

IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[]   (Output) 
Storage for array deleted_residual is provided by the user. See 
IMSLS_DELETED_RESIDUAL. 

IMSLS_COOKSD, float **cooksd   (Output) 
Address of a pointer to an internally allocated array of length 
n_predict containing the Cook’s D statistics. 

IMSLS_COOKSD_USER, float cooksd[]   (Output) 
Storage for array cooksd is provided by the user. See IMSLS_COOKSD. 

IMSLS_DFFITS, float **dffits   (Output) 
Address of a pointer to an internally allocated array of length 
n_predict containing the DFFITS statistics. 

IMSLS_DFFITS_USER, float dffits[]   (Output) 
Storage for array dffits is provided by the user. See IMSLS_DFFITS. 

Description 
Function imsls_f_poly_prediction assumes a polynomial model  

0 1 ..., 1, 2, ...,k
i i k i iy x x i� � � �� � � � �  

where the observed values of the yi’s constitute the response, the xi’s are the 
settings of the independent variable, the �j’s are the regression coefficients and 
the �i’s are the errors that are independently distributed normal with mean 0 and 
the following variance: 

2

iw
�  

Given the results of a polynomial regression, fitted using orthogonal polynomials 
and weights wi, function imsls_f_poly_prediction produces predicted 
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values, residuals, confidence intervals, prediction intervals, and diagnostics for 
outliers and in influential cases. 

Often, a predicted value and confidence interval are desired for a setting of the 
independent variable not used in computing the regression fit. This is 
accomplished by simply using a different x matrix when calling 
imsls_f_poly_prediction than was used for the fit (function 
imsls_f_poly_regression). See Example 1on page 136. 

Results from function imsls_f_poly_regression, which produces the fit 
using orthogonal polynomials, are used for input by the structure poly_info. 
The fitted model from imsls_f_poly_regression is 

� � � � � �0 0 1 1ˆ ˆ ˆ ˆ...i i i k ky p z p z p z� � �� � � � i  

where the zi’s are settings of the independent variable x scaled to the interval  
[	2, 2] and the pj (z)’s are the orthogonal polynomials. The XTX matrix for this 
model is a diagonal matrix with elements dj. The case statistics are easily 
computed from this model and are equal to those from the original polynomial 
model with �j’s as the regression coefficients. 

The leverage is computed as follows: 

� �1 2

0

k

i i j j i
j

h w d p z�

�

� �  

The estimated variance of 

ˆiy  

is given by the following: 
2

i

i

h s
w

 

The computation of the remainder of the case statistics follows easily from the 
definitions. See “Diagnostics for Individual Cases” (page 53) for the  definition of 
the case diagnostics. 

Often, predicted values and confidence intervals are desired for combinations of 
settings of the independent variables not used in computing the regression fit. 
This can be accomplished by defining a new data matrix. Since the information 
about the model fit is input in poly_info, it is not necessary to send in the data 
set used for the original calculation of the fit, i.e., only variable combinations for 
which predictions are desired need be entered in x.  

Examples 

Example 1 
A polynomial model is fit to the data discussed by Neter and Wasserman  
(1974, pp. 279–285). The data set contains the response variable y measuring 



 

 
 

Chapter 2: Regression poly_prediction � 145 

 

 

 

coffee sales (in hundred gallons) and the number of self-service dispensers. 
Responses for 14 similar cafeterias are in the data set. 

#include <imsls.h> 
  
main() 
{ 
    Imsls_f_poly_regression *poly_info; 
    float     *y_hat, *coefficients;  
    int       n_observations = 14; 
    int       degree = 2; 
    int       n_predict = 8; 
    float     x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0, 
                     4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0}; 
    float     y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3, 
                     758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4}; 
    float     x2[] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}; 
 
    /* Generate the polynomial regression fit*/ 
    coefficients = imsls_f_poly_regression (n_observations, x, y,  
        degree, IMSLS_POLY_REGRESSION_INFO, &poly_info, 0); 
 
    /* Compute predicted values */ 
    y_hat = imsls_f_poly_prediction(poly_info, n_predict, x2, 0); 
  
    /* Print predicted values */ 
    imsls_f_write_matrix("Predicted Values", 1, n_predict, y_hat, 0);  
  
    free(coefficients); 
    free(y_hat); 
    return; 
} 

Output 

                           Predicted Values 
         1           2           3           4           5           6 
     503.3       578.3       645.4       704.4       755.6       798.8 
  
         7           8 
     834.1       861.4 

Example 2 
Predicted values, confidence intervals, and diagnostics are computed for the data 
set described in the first example. 

#include <imsls.h> 
  
main() 
{ 
#define N_PREDICT 14 
    Imsls_f_poly_regression *poly_info; 
    float     *coefficients, y_hat[N_PREDICT], 
              lower_ci[N_PREDICT], upper_ci[N_PREDICT], 
              lower_pi[N_PREDICT], upper_pi[N_PREDICT], 
              s_residual[N_PREDICT], d_residual[N_PREDICT], 
              leverage[N_PREDICT], cooksd[N_PREDICT],  
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              dffits[N_PREDICT], lower_scheffe[N_PREDICT],  
              upper_scheffe[N_PREDICT];  
    int       n_observations = N_PREDICT; 
    int       degree = 2; 
    float     x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0, 
                     4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0}; 
    float     y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3, 
                     758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4}; 
 
    /* Generate the polynomial regression fit*/ 
    coefficients = imsls_f_poly_regression (n_observations, x, y,  
        degree, IMSLS_POLY_REGRESSION_INFO, &poly_info, 0); 
 
    /* Compute predicted values and case statistics */ 
    imsls_f_poly_prediction(poly_info, N_PREDICT, x,  
        IMSLS_RETURN_USER, y_hat,  
        IMSLS_POINTWISE_CI_POP_MEAN_USER, lower_ci, upper_ci,  
        IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, lower_pi, upper_pi,  
        IMSLS_Y, y,  
        IMSLS_STANDARDIZED_RESIDUAL_USER, s_residual,  
        IMSLS_DELETED_RESIDUAL_USER, d_residual,  
        IMSLS_LEVERAGE_USER, leverage,  
        IMSLS_COOKSD_USER, cooksd,  
        IMSLS_DFFITS_USER, dffits, 
        IMSLS_SCHEFFE_CI_USER, lower_scheffe, upper_scheffe, 
        0); 
  
    /* Print results */ 
    imsls_f_write_matrix("Predicted Values", 1, N_PREDICT, y_hat, 0);  
    imsls_f_write_matrix("Lower Scheffe CI", 1, N_PREDICT,  
        lower_scheffe, 0);  
    imsls_f_write_matrix("Upper Scheffe CI", 1, N_PREDICT,  
        upper_scheffe, 0); 
    imsls_f_write_matrix("Lower CI", 1, N_PREDICT, lower_ci, 0);  
    imsls_f_write_matrix("Upper CI", 1, N_PREDICT, upper_ci, 0);  
    imsls_f_write_matrix("Lower PI", 1, N_PREDICT, lower_pi, 0);  
    imsls_f_write_matrix("Upper PI", 1, N_PREDICT, upper_pi, 0);  
    imsls_f_write_matrix("Standardized Residual", 1, N_PREDICT,  
        s_residual, 0);  
    imsls_f_write_matrix("Deleted Residual", 1, N_PREDICT,  
        d_residual, 0);  
    imsls_f_write_matrix("Leverage", 1, N_PREDICT, leverage, 0);  
    imsls_f_write_matrix("Cooks Distance", 1, N_PREDICT, cooksd, 0); 
    imsls_f_write_matrix("DFFITS", 1, N_PREDICT, dffits, 0);  
 
  
    free(coefficients); 
    return; 
 
} 

Output 

                           Predicted Values 
         1           2           3           4           5           6 
     503.3       503.3       578.3       578.3       645.4       645.4 
  
         7           8           9          10          11          12 
     755.6       755.6       798.8       798.8       834.1       834.1 
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        13          14 
     861.4       861.4 
  
                           Lower Scheffe CI 
         1           2           3           4           5           6 
     489.8       489.8       569.5       569.5       636.5       636.5 
  
         7           8           9          10          11          12 
     745.7       745.7       790.2       790.2       825.5       825.5 
  
        13          14 
     847.7       847.7 
  
                           Upper Scheffe CI 
         1           2           3           4           5           6 
     516.9       516.9       587.1       587.1       654.2       654.2 
  
         7           8           9          10          11          12 
     765.5       765.5       807.4       807.4       842.7       842.7 
  
        13          14 
     875.1       875.1 
  
                               Lower CI 
         1           2           3           4           5           6 
     492.8       492.8       571.5       571.5       638.4       638.4 
  
         7           8           9          10          11          12 
     747.9       747.9       792.1       792.1       827.4       827.4 
  
        13          14 
     850.7       850.7 
                               Upper CI 
         1           2           3           4           5           6 
     513.9       513.9       585.2       585.2       652.3       652.3 
  
         7           8           9          10          11          12 
     763.3       763.3       805.5       805.5       840.8       840.8 
  
        13          14 
     872.1       872.1 
  
                               Lower PI 
         1           2           3           4           5           6 
     482.8       482.8       559.3       559.3       626.4       626.4 
  
         7           8           9          10          11          12 
     736.3       736.3       779.9       779.9       815.2       815.2 
  
        13          14 
     840.8       840.8 
  
                               Upper PI 
         1           2           3           4           5           6 
     523.9       523.9       597.3       597.3       664.3       664.3 
  
         7           8           9          10          11          12 
     774.9       774.9       817.7       817.7       853.0       853.0 
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        13          14 
     882.1       882.1 
  
                         Standardized Residual 
         1           2           3           4           5           6 
     0.737      -0.766      -1.366      -0.137       0.859       1.575 
  
         7           8           9          10          11          12 
    -0.041       0.456      -1.507      -0.902       0.982      -0.308 
  
        13          14 
    -1.051       1.557 
  
                           Deleted Residual 
         1           2           3           4           5           6 
     0.720      -0.751      -1.429      -0.131       0.848       1.707 
  
         7           8           9          10          11          12 
    -0.039       0.439      -1.613      -0.894       0.980      -0.295 
  
        13          14 
    -1.056       1.681 
 
                               Leverage 
         1           2           3           4           5           6 
    0.3554      0.3554      0.1507      0.1507      0.1535      0.1535 
  
         7           8           9          10          11          12 
    0.1897      0.1897      0.1429      0.1429      0.1429      0.1429 
  
        13          14 
    0.3650      0.3650 
  
                            Cooks Distance 
         1           2           3           4           5           6 
    0.0997      0.1080      0.1104      0.0011      0.0446      0.1500 
  
         7           8           9          10          11          12 
    0.0001      0.0162      0.1262      0.0452      0.0536      0.0053 
  
        13          14 
    0.2116      0.4644 
  
                                DFFITS 
         1           2           3           4           5           6 
     0.535      -0.558      -0.602      -0.055       0.361       0.727 
  
         7           8           9          10          11          12 
    -0.019       0.212      -0.659      -0.365       0.400      -0.120 
  
        13          14 
    -0.801       1.274 

Warning Errors 
IMSLS_LEVERAGE_GT_1 A leverage (= #) much greater than one is 

computed. It is set to 1.0. 
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IMSLS_DEL_MSE_LT_0 A deleted residual mean square (= #) much 
less than zero is computed. It is set to zero. 

Fatal Errors 
IMSLS_NEG_WEIGHT “weights[#]” = #. Weights must be 

nonnegative. 

nonlinear_regression 
Fits a multivarite nonlinear regression model. 

Synopsis 
#include <imsls.h> 
float *imsls_f_nonlinear_regression (float fcn(), 

int n_parameters, int n_observations, int n_independent, 
float x[], float y[], ..., 0) 

The type double function is imsls_d_nonlinear_regression. 

Required Arguments 

float fcn (int n_independent, float xi[], int n_parameters, 
float theta[]) 
User-supplied function to evaluate the function that defines the nonlinear 
regression problem where xi is an array of length n_independent at 
which point the function is evaluated and theta is an array of length 
n_parameters containing the current values of the regression 
coefficients. Function fcn returns a predicted value at the point xi. In 
the following, f(xi;
), or just fi, denotes the value of this function at the 
point xi, for a given value of 
. (Both xi and 
 are arrays.) 

int n_parameters   (Input) 
Number of parameters to be estimated. 

int n_observations   (Input) 
Number of observations. 

int n_independent   (Input) 
Number of independent variables. 

float x[]   (Input) 
Array of size n_observations by n_independent containing the 
matrix of independent (explanatory) variables. 

float y[]   (Input) 
Array of length n_observations containing the dependent (response) 
variable. 
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Return Value 
A pointer to an array of length n_parameters containing a solution, �  for the 
nonlinear regression coefficients. To release this space, use free. If no solution 
can be computed, then NULL is returned. 

ˆ

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_nonlinear_regression (float fcn(), 

int n_parameters, int n_observations, int n_independent, 
float x[], float y[],  
IMSLS_THETA_GUESS, float theta_guess[], 
IMSLS_JACOBIAN, void jacobian(), 
IMSLS_THETA_SCALE, float theta_scale[], 
IMSLS_GRADIENT_EPS, float gradient_eps, 
IMSLS_STEP_EPS, float step_eps,  
IMSLS_SSE_REL_EPS, float sse_rel_eps, 
IMSLS_SSE_ABS_EPS, float sse_abs_eps, 
IMSLS_MAX_STEP, float max_step, 
IMSLS_INITIAL_TRUST_REGION, float trust_region, 
IMSLS_GOOD_DIGIT, int ndigit, 
IMSLS_MAX_ITERATIONS, int max_itn, 
IMSLS_MAX_SSE_EVALUATIONS, int max_sse_eval, 
IMSLS_MAX_JACOBIAN_EVALUATIONS, int max_jacobian, 
IMSLS_TOLERANCE, float tolerance, 
IMSLS_PREDICTED, float **predicted, 
IMSLS_PREDICTED_USER, float predicted[], 
IMSLS_RESIDUAL, float **residual, 
IMSLS_RESIDUAL_USER, float residual[], 
IMSLS_R, float **r, 
IMSLS_R_USER, float r[], 
IMSLS_R_COL_DIM, int r_col_dim, 
IMSLS_R_RANK, int *rank,  
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_DF, int *df, 
IMSLS_SSE, float *sse, 
IMSLS_RETURN_USER, float theta_hat[], 
IMSLS_FCN_W_DATA, void fcn(),void *data, 
IMSLS_JACOBIAN_W_DATA, void jacobian(),void *data, 
0) 

Optional Arguments 
IMSLS_THETA_GUESS, float theta_guess[]   (Input) 

Array with n_parameters components containing an initial guess. 
Default: theta_guess[] = 0 
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IMSLS_JACOBIAN, void jacobian (int n_independent, float xi[], 
int n_parameters, float theta[], float fjac[])   (Input/Output) 
User-supplied function to compute the i-th row of the Jacobian, where 
the n_independent data values corresponding to the i-th row are input 
in xi. Argument theta is an array of length n_parameters containing 
the regression coefficients for which the Jacobian is evaluated, fjac is 
the computed n_parameters row of the Jacobian for observation i at 
theta. Note that each derivative �f(xi)/�
j should be returned in fjac 
[j 	 1] for j = 1, 2, ..., n_parameters. 

IMSLS_THETA_SCALE, float theta_scale[]   (Input) 
Array with n_parameters components containing the scaling array for 

. Array theta_scale is used mainly in scaling the gradient and the 
distance between two points. See keywords IMSLS_GRADIENT_EPS and 
IMSLS_STEP_EPS for more detail.  
Default: theta_scale[] = 1 

IMSLS_GRADIENT_EPS, float gradient_eps   (Input) 
Scaled gradient tolerance. The j-th component of the scaled gradient at 
 
is calculated as 

� �

� �
2

2

max , 1/
1
2

j j jg t

F

�

�

�

 

where g = �F(
), t = theta_scale, and 

� � � �� �
22

12
;n

i ii
F y f� �

�

� �� x  

The value F(
) is the sum of the squared residuals, SSE, at the point 
. 
Default: 

��grad_tol  

( 3
�  in double, where � is the machine precision)  

IMSLS_STEP_EPS, float step_eps   (Input) 
Scaled step tolerance. The j-th component of the scaled step from points 

 and 
� is computed as 

� �max ,1/
j j

j jt

� �

�

��

 

where t = theta_scale 
Default: step_eps = �2/3,where � is the machine precision 

IMSLS_SSE_REL_EPS, float sse_rel_eps   (Input) 
Relative SSE function tolerance. 
Default: sse_rel_eps = max(10-10, �2/3), max(10-20, �2/3) in double, 
where � is the machine precision 
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IMSLS_SSE_ABS_EPS, float sse_abs_eps   (Input) 
Absolute SSE function tolerance. 
Default: sse_abs_eps = max(10-20,�2), max(10-40, �2) in double, 
where � is the machine precision 

IMSLS_MAX_STEP, float max_step   (Input) 
Maximum allowable step size. 
Default: max_step = 1000 max (�1, �2), where �1 = (tT
0)1/2, �2 = ||t||2, 
t = theta_scale, and 
0 = theta_guess 

IMSLS_INITIAL_TRUST_REGION, float trust_region   (Input) 
Size of initial trust region radius. The default is based on the initial 
scaled Cauchy step. 

IMSLS_GOOD_DIGIT, int ndigit   (Input) 
Number of good digits in the function.  
Default: machine dependent 

IMSLS_MAX_ITERATIONS, int max_itn   (Input) 
Maximum number of iterations. 
Default: max_itn = 100 

IMSLS_MAX_SSE_EVALUATIONS, int max_sse_eval   (Input) 
Maximum number of SSE function evaluations. 
Default: max_sse_eval = 400 

IMSLS_MAX_JACOBIAN_EVALUATIONS, int max_jacobian   (Input) 
Maximum number of Jacobian evaluations. 
Default: max_jacobian = 400 

IMSLS_TOLERANCE, float tolerance   (Input) 
False convergence tolerance.  
Default: tolerance = 100* eps, where eps = imsls_f_machine(4) if 
single precision and eps = imsls_d_machine(4) if double precision 

IMSLS_PREDICTED, float **predicted   (Output) 
Address of a pointer to a real internally allocated array of length 
n_observations containing the predicted values at the approximate 
solution.  

IMSLS_PREDICTED_USER, float predicted[]   (Output) 
Storage for array predicted is provided by the user. See 
IMSLS_PREDICTED. 

IMSLS_RESIDUAL, float **residual   (Output) 
Address of a pointer to a real internally allocated array of length 
n_observations containing the residuals at the approximate solution. 

IMSLS_RESIDUAL_USER, float residual[]   (Output) 
Storage for array residual is provided by the user. See 
IMSLS_RESIDUAL. 
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IMSLS_R, float **r   (Output) 
Address of a pointer to an internally allocated array of size  
n_parameters � n_parameters containing the R matrix from a QR 
decomposition of the Jacobian. 

IMSLS_R_USER, float r[]   (Output) 
Storage for array r is provided by the user. See IMSLS_R. 

IMSLS_R_COL_DIM, int r_col_dim   (Input) 
Column dimension of array r. 
Default: r_col_dim = n_parameters 

IMSLS_R_RANK, int *rank   (Output) 
Rank of r. Argument rank less than n_parameters may indicate the 
model is overparameterized. 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Column dimension of x. 
Default: x_col_dim = n_independent 

IMSLS_DF, int *df   (Output) 
Degrees of freedom. 

IMSLS_SSE, float *sse   (Output) 
Residual sum of squares. 

IMSLS_RETURN_USER, float theta_hat[]   (Output) 
User-allocated array of length n_parameters containing the estimated 
regression coefficients. 

IMSLS_FCN_W_DATA, float fcn (int n_independent, float xi[], int 
n_parameters, float theta[]), void *data, (Input) 
User-supplied function to evaluate the function that defines the nonlinear 
regression problem, which also accepts a pointer to data that is supplied 
by the user.  data is a pointer to the data to be passed to the user-
supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 

IMSLS_JACOBIAN_W_DATA, void jacobian (int n_independent, float 
xi[], int n_parameters, float theta[], float fjac[]), void 
*data, (Input) 
User-supplied function to compute the i-th row of the Jacobian, which 
also accepts a pointer to data that is supplied by the user.  data is a 
pointer to the data to be passed to the user-supplied function.  See the 
Introduction, Passing Data to User-Supplied Functions at the beginning 
of this manual for more details. 

Description 
Function imsls_f_nonlinear_regression fits a nonlinear regression model 
using least squares. The nonlinear regression model is 

yi = f(xi; 
� � �i  i � 1� 2, ..., n 
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where the observed values of the yi’s constitute the responses or values of the 
dependent variable, the known xi’s are the vectors of the values of the 
independent (explanatory) variables, 
 is the vector of p regression parameters, 
and the �i’s are independently distributed normal errors with mean 0 and variance 
�2. For this model, a least-squares estimate of 
 is also a maximum likelihood 
estimate of 
. 

The residuals for the model are as follows: 

ei(
) = yi – f(xi; 
� i = 1, 2, ..., n 

A value of 
 that minimizes 

� �
2

1

n
ii

e �
�

� �� ��  

is a least-squares estimate of 
. Function imsls_f_nonlinear_regression is 
designed so that the values of the function f(xi; 
� are computed one at a time by a 
user-supplied function. 

Function imsls_f_nonlinear_regression is based on MINPACK routines 
LMDIF and LMDER by Moré et al. (1980) that use a modified Levenberg-
Marquardt method to generate a sequence of approximations to a minimum point. 
Let 

ĉ�  

be the current estimate of 
. A new estimate is given by  

ĉ cs� �  

where sc is a solution to the following: 

ˆ ˆ ˆ( ( ) ( ) ) ( ) ( )T T
c c c c cJ J I s J e� � ĉ� � �� �  

Here 

ˆ( )cJ �  

is the Jacobian evaluated at 

ĉ�  

The algorithm uses a “trust region” approach with a step bound of �c. A solution 
of the equations is first obtained for 

�c = 0. If ||sc||2 < �c 

this update is accepted; otherwise, �c is set to a positive value and another 
solution is obtained. The method is discussed by Levenberg (1944), Marquardt 
(1963), and Dennis and Schnabel (1983, pp. 129	147, 218	338). 

If a user-supplied function is specified in IMSLS_JACOBIAN, the Jacobian is 
computed analytically; otherwise, forward finite differences are used to estimate 
the Jacobian numerically. In the latter case, especially if type float is used, the 
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estimate of the Jacobian may be so poor that the algorithm terminates at a 
noncritical point. In such instances, the user should either supply a Jacobian 
function, use type double, or do both. 

Programming Notes 
Nonlinear regression allows substantial flexibility over linear regression because 
the user can specify the functional form of the model. This added flexibility can 
cause unexpected convergence problems for users that are unaware of the 
limitations of the software. Also, in many cases, there are possible remedies that 
may not be immediately obvious. The following is a list of possible convergence 
problems and some remedies. There is not a one-to-one correspondence between 
the problems and the remedies. Remedies for some problems also may be relevant 
for the other problems. 

1. A local minimum is found. Try a different starting value. Good starting 
values often can be obtained by fitting simpler models. For example, for 
a nonlinear function 

� � 2
1; xf x e�� ��  

good starting values can be obtained from the estimated linear regression 
coefficients 

0�̂  

and 

1̂�  

from a simple linear regression of ln y on ln x. The starting values for the 
nonlinear regression in this case would be 

0
ˆ

1 2
ˆ and e�

� �� � 1�  

If an approximate linear model is not clear, then simplify the model by 
reducing the number of nonlinear regression parameters. For example, 
some nonlinear parameters for which good starting values are known 
could be set to these values in order to simplify the model for computing 
starting values for the remaining parameters. 

2. The estimate of 
 is incorrectly returned as the same or very close to the 
initial estimate. This occurs often because of poor scaling of the 
problem, which might result in the residual sum of squares being either 
very large or very small relative to the precision of the computer. The 
optional arguments allow control of the scaling. 

3. The model is discontinuous as a function of 
. (The function f(x;
� can 
be a discontinuous function of x.) 

4. Overflow occurs during the computations. Make sure the user-supplied 
functions do not overflow at some value of 
. 
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5. The estimate of 
 is going to infinity. A parameterization of the problem 
in terms of reciprocals may help. 

6. Some components of 
 are outside known bounds. This can sometimes 
be handled by making a function that produces artificially large residuals 
outside of the bounds (even though this introduces a discontinuity in the 
model function). 

Examples 

Example 1 
In this example (Draper and Smith 1981, p. 518), the following nonlinear model 
is fit: 

� � � �80.49 XY e �
� �

� �

� � � � �  

#include <math.h> 
#include <imsls.h> 
 
float fcn(int, float[], int, float[]); 
 
void main ()  
{ 
#define N_OBSERVATIONS 4 
    int         n_independent  = 1; 
    int         n_parameters   = 2; 
    float       *theta_hat; 
    float       x[N_OBSERVATIONS][1] = {10.0, 20.0, 30.0, 40.0}; 
    float       y[N_OBSERVATIONS] = {0.48, 0.42, 0.40, 0.39}; 
 
                                /* Nonlinear regression */ 
    theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters,  
        N_OBSERVATIONS, n_independent, (float *)x, y, 0);   
 
                                /* Print estimates */ 
    imsls_f_write_matrix("estimated coefficients", 1, n_parameters,  
        theta_hat, 0); 
 
}                               /* End of main */ 
 
float fcn(int n_independent, float x[], int n_parameters, float theta[]) 
{ 
    return (theta[0] + (0.49 - theta[0])*exp(theta[1]*(x[0] - 8))); 
}                               /* End of fcn */ 

Output 

estimated coefficients 
         1           2 
    0.3807     -0.0794 
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Example 2 
Consider the nonlinear regression model and data set discussed by Neter et al. 
(1983, pp. 475	478): 

2
1

ix
i iy e�� �� �  

There are two parameters and one independent variable. The data set considered 
consists of 15 observations. 

#include <math.h> 
#include <imsls.h> 
 
float fcn(int, float[], int, float[]); 
void jacobian(int, float[], int, float[], float[]); 
 
void main() 
{ 
#define N_OBSERVATIONS 15 
    int             n_independent=1; 
    int             n_parameters= 2; 
    float           *theta_hat, *r, *y_hat; 
    float           grad_eps = 1.0e-3; 
    float           theta_guess[2] = {60.0, -0.03};   
    float           y[N_OBSERVATIONS] = {  
                        54.0, 50.0, 45.0, 37.0, 35.0,  
                        25.0, 20.0, 16.0, 18.0, 13.0,   
                         8.0, 11.0,  8.0,  4.0,  6.0 }; 
    float           x[N_OBSERVATIONS] = {   
                         2.0,  5.0,  7.0, 10.0, 14.0,  
                        19.0, 26.0, 31.0, 34.0, 38.0,  
                       45.0, 52.0, 53.0, 60.0, 65.0 }; 
    char            *fmt="%12.5e"; 
 
                                /* Nonlinear regression */ 
    theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters,  
        N_OBSERVATIONS,  n_independent, x, y,  
        IMSLS_THETA_GUESS, theta_guess, 
        IMSLS_GRADIENT_EPS, grad_eps, 
        IMSLS_R, &r, 
        IMSLS_PREDICTED, &y_hat, 
        IMSLS_JACOBIAN, jacobian, 
        0); 
 
                                /* Print results */ 
    imsls_f_write_matrix("Estimated coefficients", 1, n_parameters,  
        theta_hat, 0); 
 
    imsls_f_write_matrix("Predicted values", 1, N_OBSERVATIONS,  
        y_hat, 0); 
 
    imsls_f_write_matrix("R matrix", n_parameters, n_parameters,  
        r, IMSLS_WRITE_FORMAT, "%10.2f", 0); 
 
}                               /* End of main */ 
 
 
float fcn(int n_independent, float x[], int n_parameters, float theta[]) 
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{ 
    return (theta[0]*exp(x[0]*theta[1])); 
}                               /* End of fcn */ 
 
void jacobian(int n_independent, float x[], int n_parameters,  
    float theta[], float fjac[]) 
{ 
    fjac[0] = exp(theta[1]*x[0]); 
    fjac[1] = theta[0]*x[0]*exp(theta[1]*x[0]); 
}    
                                /* End of jacobian */ 

Output 

Estimated coefficients 
         1           2 
     58.61       -0.04 
  
                           Predicted values 
         1           2           3           4           5           6 
     54.15       48.08       44.42       39.45       33.67       27.62 
  
         7           8           9          10          11          12 
     20.94       17.18       15.26       13.02        9.87        7.48 
  
        13          14          15 
      7.19        5.45        4.47 
  
        R matrix 
            1           2 
1        1.87     1139.93 
2        0.00     1139.80 

Informational Errors 
IMSLS_STEP_TOLERANCE Scaled step tolerance satisfied. 

The current point may be an 
approximate local solution, but it 
is also possible that the algorithm 
is making very slow progress and 
is not near a solution or that 
“step_eps” is too big. 

Warning Errors 
IMSLS_LITTLE_FCN_CHANGE Both the actual and predicted 

relative reductions in the function 
are less than or equal to the 
relative function tolerance. 

IMSLS_TOO_MANY_ITN Maximum number of iterations 
exceeded. 

IMSLS_TOO_MANY_FCN_EVAL Maximum number of function 
evaluations exceeded. 
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IMSLS_TOO_MANY_JACOBIAN_EVAL Maximum number of Jacobian 
evaluations exceeded. 

IMSLS_UNBOUNDED Five consecutive steps have been 
taken with the maximum step 
length. 

IMSLS_FALSE_CONVERGENCE The iterates appear to be 
converging to a noncritical point. 

nonlinear_optimization 
Fits data to a nonlinear model (possibly with linear constraints) using the 
successive quadratic programming algorithm (applied to the sum of squared 
errors, sse = !(yi 	 f(xi; 
�)2) and either a finite difference gradient or a user-
supplied gradient. 

Synopsis 

#include <imsls.h> 
float *imsls_f_nonlinear_optimization (float fcn(), 

int n_parameters, int n_observations, int n_independent, 
float x[], float y[], ..., 0) 

The type double function is imsls_d_nonlinear_optimization. 

Required Arguments 

float fcn (int n_independent, float xi[], int n_parameters, 
float theta[]) 
User-supplied function to evaluate the function that defines the nonlinear 
regression problem where xi is an array of length n_independent at 
which point the function is evaluated and theta is an array of length 
n_parameters containing the current values of the regression 
coefficients. Function fcn returns a predicted value at the point xi. In 
the following, f(xi; 
�, or just fi, denotes the value of this function at the 
point xi, for a given value of 
. (Both xi and 
 are arrays.) 

int n_parameters   (Input) 
Number of parameters to be estimated. 

int n_observations   (Input) 
Number of observations. 

int n_independent   (Input) 
Number of independent variables. 

float *x   (Input) 
Array of size n_observations by n_independent containing the 
matrix of independent (explanatory) variables. 
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float y[]   (Input) 
Array of length n_observations containing the dependent (response) 
variable. 

Return Value 
A pointer to an array of length n_parameters containing a solution, �  for the 
nonlinear regression coefficients. To release this space, use free. If no solution 
can be computed, then NULL is returned. 

ˆ

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_nonlinear_optimization (float fcn(), 

int n_parameters, int n_observations, int 
n_independent, float x[], float y[], 
IMSLS_THETA_GUESS, float theta_guess[], 
IMSLS_JACOBIAN, void jacobian(), 
IMSLS_SIMPLE_LOWER_BOUNDS, float theta_lb[], 
IMSLS_SIMPLE_UPPER_BOUNDS, float theta_ub[], 
IMSLS_LINEAR_CONSTRAINTS, int n_constraints, 
 int n_equality, float a[], float b[], 
IMSLS_FREQUENCIES, float frequencies, 
IMSLS_WEIGHTS, float weights, 
IMSLS_ACC, float acc, 
IMSLS_MAX_SSE_EVALUATIONS, int *max_sse_eval, 
IMSLS_PRINT_LEVEL, int print_level, 
IMSLS_STOP_INFO, int *stop_info, 
IMSLS_ACTIVE_CONSTRAINTS_INFO, int *n_active,  
 int **indices_active, float **multiplier, 
IMSLS_ACTIVE_CONSTRAINTS_INFO_USER, int *n_active,  
 int indices_active[], float multiplier[], 
IMSLS_PREDICTED, float **predicted, 
IMSLS_PREDICTED_USER, float predicted[], 
IMSLS_RESIDUAL, float **residual, 
IMSLS_RESIDUAL_USER, float residual[], 
IMSLS_SSE, float *sse, 
IMSLS_RETURN_USER, float theta_hat[], 
IMSLS_FCN_W_DATA, float fcn(), void *data, 
IMSLS_JACOBIAN_W_DATA, float jacobian(), void *data, 
0) 

Optional Arguments 
IMSLS_THETA_GUESS, float theta_guess[]   (Input) 

Array with n_parameters components containing an initial guess. 
Default: theta_guess[] = 0 

IMSLS_JACOBIAN, void jacobian (int n_independent, float xi[], 
int n_parameters, float theta[], float fjac[])   (Input/Output) 
User-supplied function to compute the i-th row of the Jacobian, where 
the n_independent data values corresponding to the i-th row are input 
in xi. Argument theta is an array of length n_parameters containing 
the regression coefficients for which the Jacobian is evaluated, fjac is 
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the computed n_parameters row of the Jacobian for observation i at 
theta. Note that each derivative f(xi)�
 should be returned in  
fjac[j-1] for i = 1, 2, ..., n_parameters. Further note that in order to 
maintain consistency with the other nonlinear solver, 
nonlinear_regression, the Jacobian values must be specified  
as the negative of the calculated derivatives. 

IMSLS_SIMPLE_LOWER_BOUNDS, float theta_lb[]   (Input) 
Vector of length n_parameters containing the lower bounds on the 
parameters; choose a very large negative value if a component should be 
unbounded below or set theta_lb[i] = theta_ub[i] to freeze the  
i-th variable. 
Default: All parameters are bounded below by -106. 

IMSLS_SIMPLE_UPPER_BOUNDS, float theta_ub[]   (Input) 
Vector of length n_parameters containing the upper bounds on the 
parameters; choose a very large value if a component should be 
unbounded above or set theta_lb[i] = theta_ub[i] to freeze the  
i-th variable. 
Default: All parameters are bounded above by 106. 

IMSLS_LINEAR_CONSTRAINTS, int n_constraints, int n_equality, 
float a[], float b[]   (Input) 
Argument n_constraints is the total number of linear constraints 
(excluding simple bounds). Argument n_equality is the number of 
these constraints which are equality constraints; the remaining 
n_constraints 	 n_equality constraints are inequality constraints. 
Argument a is a n_constraints by n_parameters array containing 
the equality constraint gradients in the first n_equality rows, followed 
by the inequality constraint gradients. Argument b is a vector of length 
n_constraints containing the right-hand sides of the linear 
constraints.  
Specifically, the constraints on 
 are: 
ai1 
1 + ... + aij 
j = bi   for i = 1, n_equality and j = 1, 
n_parameter, and  
ak1 
1 + ... + akj 
j  bk   for k = n_equality + 1, n_constraints and 
j = 1, n_parameter. 
Default: There are no default linear constraints. 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array of length n_observations containing the frequency for each 
observation. 
Default: frequencies[] = 1 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_observations containing the weight for each 
observation. 
Default: weights[] = 1 
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IMSLS_ACC, float acc   (Input) 
The nonnegative tolerance on the first order conditions at the calculated 
solution. 

IMSLS_MAX_SSE_EVALUATIONS, int *max_sse_eval   (Input/Output) 
On input max_sse_eval is the maximum number of sse evaluations 
allowed. On output, max_sse_eval contains the actual number of sse 
evaluations needed. 
Default: max_sse_eval = 400 

IMSLS_PRINT_LEVEL, int print_level   (Input) 
Argument print_level specifies the frequency of printing during 
execution. If print_level = 0, there is no printing. Otherwise, after 
ensuring feasibility, information is printed every print_level 
iterations and whenever an internal tolerance (called tol) is reduced. The 
printing provides the values of theta and the sse and gradient at the 
value of theta. If print_level is negative, this information is 
augmented by the current values of indices_active, multiplier, 
and reskt, where reskt is the Kuhn-Tucker residual vector at theta. 

IMSLS_STOP_INFO, int *stop_info   (Output) 
Argument stop_info will have one of the following integer values to 
indicate the reason for leaving the routine: 

stop_info Reason for leaving routine 

1 
 is feasible, and the condition that depends on acc is 
satisfied. 

2 
 is feasible, and rounding errors are preventing further 
progress. 

3 
 is feasible, but sse fails to decrease although a decrease 
is predicted by the current gradient vector. 

4 The calculation cannot begin because a contains fewer 
than n_constraints constraints or because the lower 
bound on a variable is greater than the upper bound. 

5 The equality constraints are inconsistent. These 
constraints include any components of � that are frozen 
by setting theta_lb[i] equal to theta_ub[i]. 

ˆ

6 The equality constraints and the bound on the variables 
are found to be inconsistent. 

7 There is no possible 
 that satisfies all of the constraints. 
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stop_info Reason for leaving routine 

8 Maximum number of sse evaluations (max_sse_eval) 
is exceeded. 

9 
 is determined by the equality constraints. 

IMSLS_ACTIVE_CONSTRAINTS_INFO, int *n_active, 
int **indices_active, float **multiplier   (Output) 
Argument n_active returns the final number of active constraints. 
Argument indices_active is the address of a pointer to an internally 
allocated integer array of length n_active containing the indices of the 
final active constraints. Argument multiplier is the address of a 
pointer to an internally allocated real array of length n_active 
containing the Lagrange multiplier estimates of the final active 
constraints. 

IMSLS_ACTIVE_CONSTRAINTS_INFO_USER, int *n_active, 
int indices_active[], float multiplier[]   (Output) 
Storage for arrays indices_active and multiplier are provided by 
the user. The maximum length needed for these arrays is 
n_constraints. See IMSLS_ACTIVE_CONSTRAINTS_INFO. 

IMSLS_PREDICTED, float **predicted   (Output) 
Address of a pointer to a real internally allocated array of length 
n_observations containing the predicted values at the approximate 
solution.  

IMSLS_PREDICTED_USER, float predicted[]   (Output) 
Storage for array predicted is provided by the user. See 
IMSLS_PREDICTED. 

IMSLS_RESIDUAL, float **residual   (Output) 
Address of a pointer to a real internally allocated array of length 
n_observations containing the residuals at the approximate solution.  

IMSLS_RESIDUAL_USER, float residual[]   (Output) 
Storage for array residual is provided by the user. See 
IMSLS_RESIDUAL. 

IMSLS_SSE, float *sse   (Output) 
Residual sum of squares. 

IMSLS_RETURN_USER, float theta_hat[]   (Output) 
User-allocated array of length n_parameters containing the estimated 
regression coefficients. 

IMSLS_FCN_W_DATA, float fcn (int n_independent, float xi[], int 
n_parameters, float theta[]), void *data, (Input) 
User-supplied function to evaluate the function that defines the nonlinear 
regression problem, which also accepts a pointer to data that is supplied 
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by the user.  data is a pointer to the data to be passed to the user-
supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 

IMSLS_JACOBIAN_W_DATA, void jacobian (int n_independent, float 
xi[], int n_parameters, float theta[], float fjac[]), void 
*data, (Input) 
User-supplied function to compute the i-th row of the Jacobian, which 
also accepts a pointer to data that is supplied by the user.  data is a 
pointer to the data to be passed to the user-supplied function.  See the 
Introduction, Passing Data to User-Supplied Functions at the beginning 
of this manual for more details. 

Description 
Function imsls_f_nonlinear_optimization is based on M.J.D. Powell’s 
TOLMIN, which solves linearly constrained optimization problems, i.e., 
problems of the form min f(
), 
 " �, subject to 

A1
 = b1 

A2
  b2 


I  
  
u 

given the vectors b1,  b2, 
I, and 
u and the matrices A1 and A2. 

The algorithm starts by checking the equality constaints for inconsistency and 
redundancy. If the equality constraints are consistent, the method will revise 
0, 
the initial guess provided by the user, to satisfy 

A1
 = b1 

Next, 
0 is adjusted to satisfy the simple bounds and inequality constraints. This 
is done by solving a sequence of quadratic programming subproblems to 
minimize the sum of the constraint or bound violations. 

Now, for each iteration with a feasible 
k, let Jk be the set of indices of inequality 
constraints that have small residuals. Here, the simple bounds are treated as 
inequality constraints. Let Ik be the set of indices of active constraints. The 
following quadratic programming problem  

� � � �
1min
2

k T k T kf d f d B d� �� � �  

subject to  

ajd = 0 j " Ik 

ajd  0 j " Jk 

is solved to get (dk, �k) where aj is a row vector representing either a constraint in 
A1 or A2 or a bound constraint on 
. In the latter case, the aj = ei for the bound 
constraint 
i  (
u)i and aj = 	ei for the constraint 
i  (
l)i. Here, ei is a vector 



 

 
 

Chapter 2: Regression nonlinear_optimization � 165 

 

 

 

i

with a 1 as the i-th component, and zeroes elsewhere. �k are the Lagrange 
multipliers, and Bk is a positive definite approximation to the second derivative  
�2 f(
k). 

After the search direction dk is obtained, a line search is performed to locate a 
better point. The new point 
k+1 = 
k + �kdk has to satisfy the conditions 

f (
k + �kdk)  f (
k) + 0.1�k (dk)T� f (
k) 

and 

(dk)T� f (
k + �kdk) � 0.7 (dk)T� f (
k) 

The main idea in forming the set Jk is that, if any of the inequality constraints 
restricts the step-length �k, then its index is not in Jk. Therefore, small steps are 
likely to be avoided. 

Finally, the second derivative approximation, Bk, is updated by the BFGS 
formula, if the condition  

(dk)T� f (
k + �kdk) 	 � f (
k) > 0 

holds. Let 
k # 
k+1, and start another iteration. 

The iteration repeats until the stopping criterion 

||� f (
k) 	 Ak�k||2  $ 

is satisfied; here, $ is a user-supplied tolerance. For more details, see Powell 
(1988, 1989). 

Since a finite-difference method is used to estimate the gradient for some single 
precision calculations, an inaccurate estimate of the gradient may cause the 
algorithm to terminate at a noncritical point. In such cases, high precision 
arithmetic is recommended. Also, whenever the exact gradient can be  
easily provided, the gradient should be passed to 
imsls_f_nonlinear_optimization using the optional argument 
IMSLS_JACOBIAN. 

Examples 

Example 1 
In this example, a data set is fitted to the nonlinear model function 

� �0sini iy x� �� �  
 

#include <imsls.h> 
#include <math.h> 
 
float fcn(int n_independent, float x[], int n_parameters, float theta[]); 
 
main() 
{ 
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    int     n_parameters   =  1; 
    int     n_observations = 11; 
    int     n_independent  =  1; 
    float   *theta_hat; 
    float   x[11] = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
                     0.7, 0.8, 0.9, 1.0}; 
    float   y[15] = {0.05, 0.21, 0.67, 0.72, 0.98, 0.94, 
                     1.00, 0.73, 0.44, 0.36, 0.02}; 
 
    theta_hat = 
        imsls_f_nonlinear_optimization(fcn, n_parameters, 
                                       n_observations, n_independent, x, y, 
                                       0); 
 
    imsls_f_write_matrix("Theta Hat", 1, n_parameters, theta_hat, 0); 
 
    free(theta_hat); 
} 
 
float fcn(int n_independent, float x[], int n_parameters, float theta[]) 
{ 
   return sin(theta[0]*x[0]); 
} 

Output 
 

 Theta Hat 
 
     3.161 
 

Example 2 
 
Draper and Smith (1981, p. 475) state a problem due to Smith and Dubey. [H. 
Smith and S. D. Dubey (1964), "Some reliability problems in the chemical 
industry", Industrial Quality Control, 21 (2), 1964, pp. 64	70] A certain product 
must have 50% available chlorine at the time of manufacture. When it reaches the 
customer 8 weeks later, the level of available chlorine has dropped to 49%. It was 
known that the level should stabilize at about 30%. To predict how long the 
chemical would last at the customer site, samples were analyzed at different 
times. It was postulated that the following nonlinear model should fit the data. 
 

� � � �8
0 0.49 ix

i iy e �
� �

� �

� � � �  
 

Since the chlorine level will stabilize at about 30%, the initial guess for theta1 is 
0.30. Using the last data point (x = 42, y = 0.39) and 
0 = 0.30 and the above 
nonlinear equation, an estimate for 
1of 0.02 is obtained. 
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The constraints that 
0 � = 0 and 
1 � = 0 are also imposed. These are equivalent 
to requiring that the level of available chlorine always be positive and never 
increase with time. 
 

The Jacobian of the nonlinear model equation is also used. 

#include <imsls.h> 
#include <math.h> 
 

float fcn(int n_independent, float x[], int n_parameters, float theta[]); 
void jacobian(int n_independent, float x[], int n_parameters,  
              float theta[],  
float fjac[]); 
main() 
{ 
    int     n_parameters   =  2; 
    int     n_observations = 44; 
    int     n_independent  =  1; 
    float   *theta_hat; 
    float   x[44] = { 
        8.0, 8.0, 10.0, 10.0, 10.0, 10.0, 12.0, 12.0, 12.0, 
        12.0, 14.0, 14.0, 14.0, 16.0, 16.0, 16.0, 18.0, 18.0, 20.0, 
        20.0, 20.0, 22.0, 22.0, 22.0, 24.0, 24.0, 24.0, 26.0, 26.0, 
        26.0, 28.0, 28.0, 30.0, 30.0, 30.0, 32.0, 32.0, 34.0, 36.0, 
        36.0, 38.0, 38.0, 40.0, 42.0}; 
    float   y[44] = { 
        .49, .49, .48, .47, .48, .47, .46, .46, .45, .43, .45, 
        .43, .43, .44, .43, .43, .46, .45, .42, .42, .43, .41, .41, 
        .4, .42, .4, .4, .41, .4, .41, .41, .4, .4, .4, .38, .41, 
        .4, .4, .41, .38, .4, .4, .39, .39}; 
    float   guess[2] =  {0.30, 0.02}; 
    float   xlb[2] = {0.0, 0.0}; 
    float   sse; 
 
    theta_hat = 
        imsls_f_nonlinear_optimization(fcn, n_parameters, n_observations, 
                                       n_independent, x, y, 
                                       IMSLS_THETA_GUESS, guess,  
                                       IMSLS_SIMPLE_LOWER_BOUNDS, xlb, 
                                       IMSLS_JACOBIAN, jacobian, 
                                       IMSLS_SSE, &sse, 
                                       0); 
    imsls_f_write_matrix("Theta Hat", 1, 2, theta_hat, 0); 
    free(theta_hat); 
} 
 
float fcn(int n_independent, float x[], int n_parameters, float theta[]) 
{ 
    return  theta[0] + (0.49-theta[0])*exp(-theta[1]*(x[0]-8.0)); 
} 
 
 
 
void jacobian(int n_independent, float x[], int n_parameters, 
              float theta[],  
float fjac[]) 
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{ 
    fjac[0] = -1.0 + exp(-theta[1]*(x[0]-8.0)); 
    fjac[1] = (0.49-theta[0])*(x[0]-8.0) * exp(-theta[1]*(x[0]-8.0)); 
} 
 

Output 
 

       Theta Hat 
 
         1           2 
 
    0.3901      0.1016 
 

Fatal Errors 
IMSLS_BAD_CONSTRAINTS_1 The equality constraints are 

inconsistent. 

IMSLS_BAD_CONSTRAINTS_2 The equality constraints and the 
bounds on the variables are found 
to be inconsistent. 

IMSLS_BAD_CONSTRAINTS_3 No vector “theta” satisfies all of 
the constraints. Specifically, the 
current active constraints prevent 
any change in “theta” that reduces 
the sum of constraint violations. 

IMSLS_BAD_CONSTRAINTS_4 The variables are determined by 
the equality constraints. 

IMSLS_TOO_MANY_ITERATIONS_1 Number of function evaluations 
exceeded “maxfcn” = #. 

Lnorm_regression 
Fits a multiple linear regression model using criteria other than least squares.  
Namely, imsls_f_Lnorm_regression allows the user to choose Least 
Absolute Value (L�), Least Lp norm (Lp ), or Least Maximum Value  (Minimax  
or L� ) method of multiple linear regression. 

Synopsis 
#include <imsls.h> 
float *imsls_f_Lnorm_regression (int n_rows, int n_independent, 

float x[], float y[], ..., 0) 

The type double function is imsls_d_Lnorm_regression. 
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Required Arguments 

int n_rows   (Input) 
Number of rows in x.  

int n_independent   (Input) 
Number of independent (explanatory) variables. 

float x[]   (Input) 
Array of size n_rows � n_independent containing the independent 
(explanatory) variables(s). The i-th column of x contains the i-th 
independent variable. 

float y[]   (Input) 
Array of size n_rows containing the dependent (response) variable.  

Return Value 
imsls_f_Lnorm_regression returns a pointer to an array of length 
n_independent + 1 containing a least absolute value solution for the regression 
coefficients.  The estimated intercept is the initial component of the array, where 
the i-th component contains the regression coefficients for the i-th dependent 
variable.  If the optional argument IMSLS_NO_INTERCEPT is used then the (i-1)-
st component contains the regression coefficients for the i-th dependent variable. 
imsls_f_Lnorm_regression returns the Lp norm or least maximum value 
solution for the regression coefficients when appropriately specified in the 
optional argument list. 

Synopsis with Optional Arguments 
#include <imsls.h>  

float *imsls_f_Lnorm__regression(int n_rows, int n_independent,  
          float x[], float y[], 

      IMSLS_METHOD_LAV, 

      IMSLS_METHOD_LLP, float p, 
      IMSLS_METHOD_LMV,  

      IMSLS_X_COL_DIM, int x_col_dim, 
      IMSLS_INTERCEPT, 

      IMSLS_NO_INTERCEPT,  

      IMSLS_RANK, int *rank, 
      IMSLS_ITERATIONS, int *iterations, 
      IMSLS_N_ROWS_MISSING, int *n_rows_missing, 
      IMSLS_TOLERANCE, float tolerence, 

      IMSLS_SEA, float *sum_lav_error, 

      IMSLS_MAX_RESIDUAL,  float *max_residual,                                 

      IMSLS_R, float **R_matrix, 

      IMSLS_R_USER, float R_matrix[], 



 

 
 

170 � Lnorm_regression IMSL C/Stat/Library 

 

 

 

      IMSLS_DEGREES_OF_FREEDOM, float df_error, 
      IMSLS_RESIDUALS, float **residual, 

      IMSLS_RESIDUALS_USER, float residual[], 

      IMSLS_SCALE, float *square_of_scale, 

      IMSLS_RESIDUALS_LP_NORM, float *Lp_norm_residual, 

      IMSLS_EPS, float epsilon, 

      IMSLS_WEIGHTS,  float weights[], 

      IMSLS_FREQUENCIES, float  frequencies[], 

      IMSLS_RETURN_USER, float coefficients[], 
      0) 

Optional Arguments 
IMSLS_METHOD_LAV,  or 

IMSLS_METHOD_LLP, float p, (Input) or 

IMSLS_METHOD_LMV,  
By default (or if IMSLS_METHOD_LAV is specified) the function fits a 
multiple linear regression model using the least absolute values criterion.  

IMSLS_METHOD_LLP requires the argument p, for , and fits a multiple linear 
regression model using the Lp  norm criterion. 

1p �

IMSLS_METHOD_LMV fits a multiple linear regression model using the minimax 
criterion. 

IMSLS_WEIGHTS, float weights[],  (Input)  
Array of size n_rows containing the weights for the independent 
(explanatory) variable. 

IMSLS_FREQUENCIES, float frequencies[], (Input)  
Array of size n_rows containing the frequencies for the independent 
(explanatory) variable. 

IMSLS_X_COL_DIM, int x_col_dim, (Input) 
Leading dimension of x exactly as specified in the dimension statement 
in the calling program. 

IMSLS_INTERCEPT, or 
IMSLS_NO_INTERCEPT,  

IMSLS_INTERCEPT is the default where the fitted value for 
observation i is  

0 1 1
ˆ ˆ ˆ... k kx x� � �� � �  

 where k = n_independent. If IMSLS_NO_INTERCEPT is specified, the 
intercept term  

� �0�̂  
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              is omitted from the model and the return value from regression is a 
pointer to an array of length n_independent. 

IMSLS_RANK, int *rank, (Output) 
Rank of the fitted model is returned in *rank. 

IMSLS_ITERATIONS, int *iterations, (Output) 
Number of iterations performed. 

IMSLS_N_ROWS_MISSING, int *n_rows_missing, (Output) 
Number of rows of data containing NaN (not a number) for the 
dependent or independent variables.   If a row of data contains NaN for 
any of these variables, that row is excluded from the computations. 

IMSLS_RETURN_USER, float coefficients[]  (Output) 
Storage for array coefficients is provided by the user.    
See Return Value. 

If IMSLS_METHOD_LAV is specified: 
IMSLS_SEA, float sum_lav_error, (Output) 

Sum of the absolute value of the errors. 

If IMSLS_METHOD_LMV is specified: 
IMSLS_MAX_RESIDUAL,  float max_residual, (Output) 

Magnitude of the largest residual. 

If IMSLS_METHOD_LLP is specified: 
IMSLS_TOLERANCE, float tolerence, (Input)  

Tolerance used in determining linear dependence.  
tolerence = 100 * imsls_f_machine(4) is the default.  
For more details see Chapter 14, “Utilities” function 
imsls_f_machine.                                                             

IMSLS_R, float **R_matrix, (Output) 
Upper triangular matrix of dimension (number of coeffieciencts  
by number of coeffecients) containing the R matrix from a QR 
decomposition of the matrix of regressors. 

IMSLS_R_USER, float R_matrix[],  (Output) 
Storage for array R_matrix is provided by the user. See IMSLS_R.. 

IMSLS_DEGREES_OF_FREEDOM, float df_error, (Output) 
Sum of the frequencies minus *rank.  In least squares fit (p =2) 
df_error is called the degrees of freedom of error. 

IMSLS_RESIDUALS, float **residual, (Output) 
Address of a pointer to an array (of length equal to the number of 
observations) containing the residuals. 

IMSLS_RESIDUALS_USER, float residual[],  (Output) 
Storage for array residual is provided by the user.  
See IMSLS_RESIDUALS. 
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IMSLS_SCALE, float *square_of_scale, (Output) 
Square of the scale constant used in an Lp analysis.  An estimated 
asymptotic variance-covariance matrix of the regression coefficients is 
square_of_scale * (RTR)-1. 

  IMSLS_RESIDUALS_LP_NORM, float *Lp_norm_residual, (Output) 
Lp norm of the residuals. 

  IMSLS_EPS, float epsilon, (Input) 
Convergence criterion. If the maximum relative difference in residuals 
from the k-th to (k+1)-st iterations is less than epsilon, convergence 
is declared. epsilon = 100 * machine(4) is the default. 

Description  

Least Absolute Value Criterion 
Function  imsls_f_Lnorm_regression computes estimates of the regression 
coefficients in a multiple linear regression model. For optional argument 
IMSLS_LAV (default), the criterion satisfied is the minimization of the sum of the 
absolute values of the deviations of the observed response yi from the fitted 
response 

ˆiy  

for a set on n observations. Under this criterion, known as the L� or LAV (least 
absolute value) criterion, the regression coefficient estimates minimize 

1

0

ˆ
n

i i
i

y y
�

�

��  

The estimation problem can be posed as a linear programming problem. The 
special nature of the problem, however, allows for considerable gains in 
efficiency by the modification of the usual simplex algorithm for linear 
programming. These modifications are described in detail by Barrodale and 
Roberts (1973, 1974). 

In many cases, the algorithm can be made faster by computing a least-squares 
solution prior to the invocation of IMSLS_LAV. This is particularly useful when a 
least-squares solution has already been computed. The procedure is as follows: 

1. Fit the model using least squares and compute the residuals from  
this fit. 

2. Fit the residuals from Step 1 on the regressor variables in the model 
using IMSLS_LAV. 

3 Add the two estimated regression coefficient vectors from Steps 1  
and 2. The result is an L� solution. 

When multiple solutions exist for a given problem, option IMSLS_LAV may yield 
different estimates of the regression coefficients on different computers, however, 
the sum of the absolute values of the residuals should be the same (within 
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rounding differences). The informational error indicating nonunique solutions 
may result from rounding accumulation. Conversely, because of rounding the 
error may fail to result even when the problem does have multiple solutions. 

Lp Norm Criterion 
Optional argument IMSLS_LLP computes estimates of the regression coefficients 
in a multiple linear regression model y = X� + � under the criterion of minimizing 
the Lp norm of the deviations for i = 0, �, n-1 of the observed response yi from 
the fitted response 

ˆiy  

for a set on n observations and for p � 1. For the case when IMSLS_WEIGHTS 
AND IMSLS_FREQUENCIES are not supplied, the estimated regression 
coefficient vector, 

�̂  

(output in coefficients []) minimizes the Lp norm  

1/1

0

ˆ
pn

P
i i

i
y y

�

�

� �
�� �

� �
�  

 

The choice p = 1 yields the maximum likelihood estimate for � when the errors 
have a Laplace distribution. The choice p = 2 is best for errors that are normally 
distributed. Sposito (1989, pages 36	40) discusses other reasonable alternatives 
for p based on the sample kurtosis of the errors.  

Weights are useful if the errors in the model have known unequal variances 
2
i�  

In this case, the weights should be taken as 
21/i iw ��  

Frequencies are useful if there are repetitions of some observations in the data set. 
If a single row of data corresponds to ni observations, set the frequency fi = ni.  
In general, IMSLS_LLP minimizes the Lp norm 

� �
1/1

0

ˆ
pn p

i i i i
i

f w y y
�

�

� �
�� �

� �
�  

The asymptotic variance-covariance matrix of the estimated regression 
coefficients is given by  

2ˆasy.var( ) ( )T 1R R� � �

�                         
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where R is from the QR decomposition of the matrix of regressors (output in  
R-Matrix)ere an estimate of �� is output in square_of_scale. 

In the discussion that follows, we will first present the algorithm with frequencies 
and weights all taken to be one. Later, we will present the modifications to handle 
frequencies and weights different from one.  

Option call IMSLS_LLP uses Newton’s method with a line search for p > 1.25 
and, for p  1.25, uses a modification due to Ekblom (1973, 1987) in which a 
series of perturbed problems are solved in order to guarantee convergence and 
increase the convergence rate. The cutoff value of 1.25 as well as some of the 
other implementation details given in the remaining discussion were investigated 
by Sallas (1990) for their effect on CPU times.  

In each case, for the first iteration a least-squares solution for the regression 
coefficients is computed using routine imsls_f_regression (page 64). If 
p = 2, the computations are finished. Otherwise, the residuals from the k-th 
iteration, 

( ) ( )ˆk k
i ie y y� �  

are used to compute the gradient and Hessian for the Newton step for the  
(k + 1)-st iteration for minimizing the p-th power of the Lp norm. (The exponent 
1/p in the Lp norm can be omitted during the iterations.)  

For subsequent iterations, we first discuss the p > 1.25 case. For p > 1.25, the 
gradient and Hessian at the (k + 1)-st iteration depend upon 

� �
1( 1) ( ) ( )sign

pk k
i i i

kz e e
�

�

�  

and  
2( 1) ( ) pk k

i iv e
�

�

�  

In the case 1.25 < p < 2 and  
� � � �10,k k
i ie v �

�  

and the Hessian are undefined; and we follow the recommendation of Merle and 
Spath (1974). Specifically, we modify the definition of  

( 1)k
iv �  

to the following: 

� �

� �

2

( 1)
2

if 2 and 

otherwise

kp
i

k
i pk

i

p e
v

e

� �
�

�

�

� � �
�

� �
�
�

 

where $ equals 100 * imsls_f_machine(4) (or 100.0 * imsls_d_machine(4) 
for the double precision version) times the square root of the residual mean 
square from the least-squares fit. (See routines imsls_f_machine and 
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imsls_d_machine which are documented in the section “Machine-Dependent 
Constants” in Reference Material.)  

Let V�k��� be a diagonal matrix with diagonal entries 
( 1)k
iv �  

and let z�k��� be a vector with elements 
( 1)k
iz �  

In order to compute the step on the (k + 1)-st iteration, the R from the QR 
decomposition of  

[V�k���]���X 

 is computed using fast Givens transformations. Let  

R�k���  

 denote the upper triangular matrix from the QR decomposition.  The linear 
system 

 [R(k+1)]TR(k+1)d(k+1)= XT z(k+1)  

is solved for  

d�k��� 

where R�k��� is from the QR decomposition of V�k���]1/2X . The step taken on the 
(k + 1)-st iteration is 

( 1) ( ) ( 1) ( 1)1ˆ ˆ
1

k k k d
p

� � �
� �

� �

�

k�  

The first attempted step on the (k + 1)-st iteration is with ��k��� = 1. If all of the 
� �k
ie  

are nonzero, this is exactly the Newton step. See Kennedy and Gentle (1980, 
pages 528	529) for further discussion. 

If the first attempted step does not lead to a decrease of at least one-tenth of the 
predicted decrease in the p-th power of the Lp norm of the residuals, a 
backtracking linesearch procedure is used. The backtracking procedure uses a 
one-dimensional quadratic model to estimate the backtrack constant p. The value 
of p is constrained to be no less that 0.1. An approximate upper bound for p is 
0.5. If after 10 successive backtrack attempts, ��k� = p1p2� p10 does not produce 
a step with a sufficient decrease, then imsls_f_Lnorm_regression issues a 
message with error code 5. For further details on the backtrack line-search 
procedure, see Dennis and Schnabel (1983, pages 126	127).  

Convergence is declared when the maximum relative change in the residuals from 
one iteration to the next is less than or equal to epsilon. The relative change 
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( 1)k
i�

�  

in the i-th residual from iteration k to iteration k + 1 is computed as follows: 
( 1) ( )

( 1)
( 1) ( ) ( ) ( 1)

0 if

/ max( e , , ) otherwise

k k
i ik

i k k k k
i i i i

e e

e e e s
�

�

�

� �

� � ��
� �

���

0

2

k
i

 

where s is the square root of the residual mean square from the least-squares fit on 
the first iteration. 

For the case 1  p  1.25, we describe the modifications to the previous 
procedure that incorporate Ekblom’s (1973) results. A sequence of perturbed 
problems are solved with a successively smaller perturbation constant c. On the 
first iteration, the least-squares problem is solved. This corresponds to an infinite 
c. For the second problem, c is taken equal to s, the square root of the residual 
mean square from the least-squares fit. Then, for the (j + 1)-st problem, the value 
of c is computed from the previous value of c according to 

5 4
1 /10 p

j jc c �

�
�  

Each problem is stated as  
1

2 2 /

0

( )
n

p
i

i

Minimize e c
�

�

��  

For each problem, the gradient and Hessian on the (k + 1)-st iteration depend 
upon 

( 1) ( ) ( )k k
i iz e r�

�  

and 
( ) 2

( 1) ( )
( ) 2 2

( 2)( )
1

( )

k
k ki

i ik
i

p e
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e c
�

� ��
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�� 	
 

where 
( 2) / 2( ) ( ) 2 2( )

pk k
i ir e c

�

� �� �� �  

The linear system [R�k���]TR�k���d�k���= XTz�k��� is solved for d�k��� where R�k��� 
is from the QR decomposition of [V �k���]���X. The step taken on the  
(k + 1)-st iteration is 

( 1) ( ) ( 1) ( 1)ˆ ˆk k k d� � �� �

� �
k�  

where the first attempted step is with ��k��� = 1. If necessary, the backtracking 
line-search procedure discussed earlier is used. 

Convergence for each problem is relaxed somewhat by using a convergence 
epsilon equal to max(epsilon, 10�j) where j = 1, 2, 3, � indexes the problems  
(j = 0 corresponds to the least-squares problem).  
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After the convergence of a problem for a particular c, Ekblom’s (1987) 
extrapolation technique is used to compute the initial estimate of � for the new 
problem. Let R�k�,  

�( ) , kk
i iv e �  

and c be from the last iteration of the last problem. Let 
( )

( ) 2 2

( 2)
( )

k
i

i k
i

p v
t

e c
�

�

�

 

and let t be the vector with elements ti. The initial estimate of � for the new 
problem with perturbation constant 0.01c is  

(0) ( )ˆ ˆ k cd� �� � �  

where %c = (0.01c 	 c) = 	0.99c, and where d is the solution of the linear system 
[R�k�]�R�k�d = XTt. 

Convergence of the sequence of problems is declared when the maximum relative 
difference in residuals from the solution of successive problems is less than 
epsilon.  

The preceding discussion was limited to the case for which weights[i] = 1 and 
frequencies[i] = 1, i.e., the weights and frequencies are all taken equal to 
one. The necessary modifications to the preceding algorithm to handle weights 
and frequencies not all equal to one are as follows: 

1. Replace  
� � � � by k k
i ie w ie  

in the definitions of 
( 1) ( 1) ( 1), ,k k k
i i iz v �

� � �  

and ti. 

2. Replace 
� � � � � � � �1 1 1( 1) ( 1) by , by ,  and  by k k kk k
i i i i i i i i i i i

1k
iz f w z v f w v t f w t� � �� � �  

These replacements have the same effect as multiplying the i-th row of X and y by 

iw  

and repeating the row fi times except for the fact that the residuals returned by 
imsls_f_Lnorm_regression are in terms of the original y and X.  

Finally, R and an estimate of �� are computed. Actually, R is recomputed because 
on output it corresponds to the R from the initial QR decomposition for least 
squares. The formula for the estimate of �� depends on p.  

For p = 1, the estimator for �� is given by (McKean and Schrader 1987) 
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with  

0.975
DFE DFE

2 4
kk z�

� �  

where z0.975�is the 97.5 percentile of the standard normal distribution, and where  

( ) ( 1, 2,..., )m DFEm� ��  

are the ordered residuals where rank zero residuals are excluded. Note that  
1

=0 ranki
n
iDFE f�

� ��  

For p = 2, the estimator of �� is the customary least-squares estimator given by 
1 2
02

1
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ˆ( )n
i i i i i
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For 1 < p < 2 and for p > 2, the estimator for �2 is given by (Gonin and Money 
1989) 
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Least Minimum Value Criterion (minimax) 
Optional call IMSLS_LMV computes estimates of the regression coefficients in a 
multiple linear regression model. The criterion satisfied is the minimization of the 
maximum deviation of the observed response yi from the fitted response  for a 
set on n observations. Under this criterion, known as the minimax or LMV (least 
maximum value) criterion, the regression coefficient estimates minimize  

ˆiy

0 1
ˆi ii n

max y y
� � �

�  

The estimation problem can be posed as a linear programming problem. A dual 
simplex algorithm is appropriate, however, the special nature of the problem 
allows for considerable gains in efficiency by modification of the dual simplex 
iterations so as to move more rapidly toward the optimal solution. The 
modifications are described in detail by Barrodale and Phillips (1975).  
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When multiple solutions exist for a given problem, IMSLS_LMV may yield 
different estimates of the regression coefficients on different computers, however, 
the largest residual in absolute value should have the same absolute value (within 
rounding differences). The informational error indicating nonunique solutions 
may result from rounding accumulation. Conversely, because of rounding, the 
error may fail to result even when the problem does have multiple solutions. 

Example 1 
A straight line fit to a data set is computed under the LAV criterion. 

#include <imsls.h> 
#include <stdio.h> 
void main() 
{ 
    float xx[] = {1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0}; 
    float yy[] = {1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0}; 
    float sea; 
    int irank, iter, nrmiss; 
 
    float *coefficients = NULL; 
     
    coefficients = imsls_f_Lnorm_regression(8, 1, xx, yy, 
                                      IMSLS_SEA, &sea, 
                                      IMSLS_RANK, &irank, 
                                      IMSLS_ITERATIONS, &iter, 
                                      IMSLS_N_ROWS_MISSING, &nrmiss,0);  
 
    printf("B = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]); 
    printf("Rank of Regressors Matrix   = %3d\n", irank); 
    printf("Sum Absolute Value of Error = %8.4f\n", sea); 
    printf("Number of Iterations        = %3d\n", iter); 
    printf("Number of Rows Missing      = %3d\n", nrmiss); 
 
} 

Output 
B =    0.50     0.50 
Rank of Regressors Matrix  =     2 
Sum Absolute Value of Error =     6.00000 
Number of Iterations  =     2 
Number of Rows Missing  =     0 
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Figure 2-2   Least Squares and Least Absolute Value Fitted Lines 

Example 2 
Different straight line fits to a data set are computed under the criterion of 
minimizing the Lp norm by using  p equal to 1, 1.5, 2.0 and 2.5. 

#include <imsls.h> 
#include <stdio.h> 
void main() 
{ 
    float xx[] = {1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0}; 
    float yy[] = {1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0}; 
    float p, tolerance, convergence_eps, square_of_scale, df_error,& 
                                                                                                        Lp_norm_residual; 
    float R_matrix[4], residuals[8]; 
    int   i, irank, iter, nrmiss; 
 
    int   n_row=2; 
    int   n_col=2; 
 
    float *coefficients = NULL; 
 
    tolerance = 100*imsls_f_machine(4); 
    convergence_eps = 0.001; 
    p = 1.0; 
    for(i=0; i<4; i++) 
    {     
    coefficients = imsls_f_Lnorm_regression(8, 1, xx, yy, 
     IMSLS_METHOD_LLP, p, 

IMSLS_EPS, convergence_eps, 
     IMSLS_RANK, &irank, 

IMSLS_ITERATIONS, &iter, 
IMSLS_N_ROWS_MISSING, &nrmiss, 

     IMSLS_R_USER, R_matrix, 
     IMSLS_DEGREES_OF_FREEDOM, &df_error, 
     IMSLS_RESIDUALS_USER, residuals, 
     IMSLS_SCALE, &square_of_scale, 
     IMSLS_RESIDUALS_LP_NORM, &Lp_norm_residual,
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0);  
printf("Coefficients = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]); 
printf("Residuals = %6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\n\n",  
         residuals[0], residuals[1], residuals[2], residuals[3],  
         residuals[4], residuals[5], residuals[6], residuals[7]); 
printf("P                           = %5.3f\n", p); 
printf("Lp norm of the residuals    = %5.3f\n", Lp_norm_residual); 
printf("Rank of Regressors Matrix   = %3d\n", irank); 

    printf("Degrees of Freedom Error    = %5.3f\n", df_error); 
    printf("Number of Iterations        = %3d\n", iter); 
    printf("Number of Missing Values    = %3d\n", nrmiss); 
    printf("Square of Scale Constant    = %5.3f\n", square_of_scale); 
     
    imsls_f_write_matrix("R Matrix\n", n_row, n_col, R_matrix, 0); 
    printf("---------------------------------------------------------\n\n"); 
    p += 0.5; 
    } 

} 
  

Output 
 
      Coefficients    0.50    0.50 
      Residuals    0.00    2.50   -1.50    0.50   -0.50    0.50   -0.50   0.00 
 
      p                                1.00 
      Lp norm of the residuals         6.00 
      Rank of the matrix of regressors    2 
      Degrees of freedom error         6.00 
      Number of iterations                8 
      Number of missing values            0 
      Square of the scale constant     6.25 
 
         R matrix 
              1       2 
      1   2.828   8.485 
      2   0.000   3.464 
 
      ------------------------------------------------------------------------ 
 
      Coefficients    0.39    0.55 
 
      Residuals    0.06    2.39   -1.50    0.50   -0.55    0.45   -0.61   -0.16 
      p                                1.50 
      Lp norm of the residuals         3.71 
      Rank of the matrix of regressors    2 
      Degrees of freedom error         6.00 
      Number of iterations                6 
      Number of missing values            0 
      Square of the scale constant     1.06 
 
         R matrix 
        1       2 
      1   2.828   8.485 
      2   0.000   3.464 
 
      ------------------------------------------------------------------------ 
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      Coefficients   -0.12    0.75 
      Residuals    0.38    2.12   -1.38    0.62   -0.62    0.38   -0.88   -0.62 
 
      p                                2.00 
      Lp norm of the residuals         2.94 
      Rank of the matrix of regressors    2 
      Degrees of freedom error         6.00 
      Number of iterations                1 
      Number of missing values            0 
      Square of the scale constant     1.44 
       
         R matrix 
              1       2 
      1   2.828   8.485 
      2   0.000   3.464 
 
      ------------------------------------------------------------------------ 
       
      Coefficients   -0.44    0.87 
      Residuals    0.57    1.96   -1.30    0.70   -0.67    0.33   -1.04   -0.91 
      p                                2.50 
      Lp norm of the residuals         2.54 
      Rank of the matrix of regressors    2 
      Degrees of freedom error         6.00 
      Number of iterations                4 
      Number of missing values            0 
      Square of the scale constant     0.79 
       
         R matrix 
              1       2 
      1   2.828   8.485 
      2   0.000   3.464 
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Figure 2-3   Various Lp Fitted Lines 

 

Example 3 
A straight line fit to a data set is computed under the LMV criterion. 

 

#include <imsls.h> 
#include <stdio.h> 
void main() 
{ 
    float xx[] = {0.0, 1.0, 2.0, 3.0, 4.0, 4.0, 5.0}; 
    float yy[] = {0.0, 2.5, 2.5, 4.5, 4.5, 6.0, 5.0}; 
    float max_residual; 
    int irank, iter, nrmiss; 
 
    float *coefficients = NULL; 
     
    coefficients = imsls_f_Lnorm_regression(7, 1, xx, yy, 
         IMSLS_METHOD_LMV, 
        IMSLS_MAX_RESIDUAL, &max_residual,                      
                                      IMSLS_RANK, &irank, 
                                      IMSLS_ITERATIONS, &iter, 
                                      IMSLS_N_ROWS_MISSING, &nrmiss, 
                                      0);  
    printf("B = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]); 
    printf("Rank of Regressors Matrix     = %3d\n", irank); 
    printf("Magnitude of Largest Residual = %8.4f\n", max_residual); 
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    printf("Number of Iterations          = %3d\n", iter); 
    printf("Number of Rows Missing        = %3d\n", nrmiss); 
  
} 
  

Output 
      B =    1.00     1.00 
      Rank of Regressors Matrix   =   2 
      Magnitude of Largest Residual  =  1.00000 
      Number of Iterations   =   3 
      Number of Rows Missing  =   0 

 

        

Figure 2-4 Least Squares and Least Maximum Value Fitted Lines 
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Chapter 3: Correlation and 
Covariance 

Routines 
 Variances, Covariances, and Correlations 

Variance-covariance or correlation matrix ....................covariances 185 
Partial correlations and covariances .................partial_covariances 193 
Pooled covariance matrix.................................pooled_covariances 198 
Robust estimate of covariance matrix...............robust_covariances 204 

Usage Notes 
This chapter is concerned with measures of correlation for bivariate data as 
follows: 
� The usual multivariate measures of correlation and covariance for continuous 

random variables are produced by routine imsls_f_covariances.   

� For data grouped by some auxiliary variable, routine 
imsls_f_pooled_covariances can be used to compute the pooled  
covariance matrix along with the means for each group.   

� Partial correlations or covariances are computed by 
imsls_f_partial_correlations.   

� Function imsls_f_robust_covariances computes robust M-estimates 
of the mean and covariance matrix from a matrix of observations. 

covariances 
Computes the sample variance-covariance or correlation matrix. 

Synopsis 

#include <imsls.h>  
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float *imsls_f_covariances (int n_rows, int n_variables, float x[], 
..., 0) 

The type double function is imsls_d_covariances. 

Required Arguments 

int n_rows   (Input) 
Number of rows in x. 

int n_variables   (Input) 
Number of variables. 

float x[]   (Input) 
Array of size n_rows � n_variables containing the data. 

Return Value 
If no optional arguments are used, imsls_f_covariances returns a pointer to 
an n_variables � n_variables array containing the sample variance-
covariance matrix of the observations. The rows and columns of this array 
correspond to the columns of x. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_covariances (int n_rows, int n_variables, float x[],  

IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_MISSING_VALUE_METHOD, int missing_value_method, 
IMSLS_INCIDENCE_MATRIX, int **incidence_matrix, 
IMSLS_INCIDENCE_MATRIX_USER, int incidence_matrix[], 
IMSLS_N_OBSERVATIONS, int *n_observations, 
IMSLS_VARIANCE_COVARIANCE_MATRIX, or 
IMSLS_CORRECTED_SSCP_MATRIX, or 
IMSLS_CORRELATION_MATRIX, or 
IMSLS_STDEV_CORRELATION_MATRIX, 
IMSLS_MEANS, float **means, 
IMSLS_MEANS_USER, float means[], 
IMSLS_COVARIANCE_COL_DIM, int covariance_col_dim, 
IMSLS_FREQUENCIES, float frequencies[], 
IMSLS_WEIGHTS, float weights[], 
IMSLS_SUM_WEIGHTS, float *sumwt, 
IMSLS_N_ROWS_MISSING, int *nrmiss, 
IMSLS_RETURN_USER, float covariance[], 
0) 
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Optional Arguments 
IMSLS_X_COL_DIM, int x_col_dim   (Input) 

Column dimension of array x. 
Default: x_col_dim = n_variables 

IMSLS_MISSING_VALUE_METHOD, int missing_value_method   (Input) 
Method used to exclude missing values in x from the computations, 
where NaN is interpreted as the missing value code. See function 
imsls_f_machine/imsls_d_machine (Chapter 14). The methods are 
as follows: 

missing_value_method Action 
0 The exclusion is listwise. (The entire row of x is 

excluded if any of the values of the row is equal 
to the missing value code.)  

1 Raw crossproducts are computed from all valid 
pairs and means, and variances are computed 
from all valid data on the individual variables. 
Corrected crossproducts, covariances, and 
correlations are computed using these 
quantities. 

2 Raw crossproducts, means, and variances are 
computed as in the case of 
missing_value_method = 1. However, cor-
rected crossproducts and covariances are 
computed only from the valid pairs of data. 
Correlations are computed using these 
covariances and the variances from all valid 
data. 

3 Raw crossproducts, means, variances, and 
covariances are computed as in the case of 
missing_value_method = 2. Correlations are 
computed using these covariances, but the vari-
ances used are computed from the valid pairs of 
data. 

IMSLS_INCIDENCE_MATRIX, int **incidence_matrix   (Output) 
Address of a pointer to an internally allocated array containing the 
incidence matrix. If missing_value_method is 0, 
incidence_matrix is 1 � 1 and contains the number of valid 
observations; otherwise, incidence_matrix is  
n_variables � n_variables and contains the number of pairs of 
valid observations used in calculating the crossproducts for covariance. 
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IMSLS_INCIDENCE_MATRIX_USER, int incidence_matrix[]   (Output) 
Storage for array incidence_matrix is provided by the user. See 
IMSLS_INCIDENCE_MATRIX. 

IMSLS_N_OBSERVATIONS, int *n_observations   (Output) 
Sum of the frequencies. If missing_value_method is 0, observations 
with missing values are not included in n_observations; otherwise, 
all observations are included except for observations with missing values 
for the weight or the frequency. 

IMSLS_VARIANCE_COVARIANCE_MATRIX, or 
IMSLS_CORRECTED_SSCP_MATRIX, or 
IMSLS_CORRELATION_MATRIX, or 
IMSLS_STDEV_CORRELATION_MATRIX 

Exactly one of these options can be used to specify the type of matrix to 
be computed. 

Keyword Type of Matrix 
IMSLS_VARIANCE_COVARIANCE_MATRIX variance-covariance matrix (default) 
IMSLS_CORRECTED_SSCP_MATRIX corrected sums of squares and crossproducts matrix 
IMSLS_CORRELATION_MATRIX correlation matrix 
IMSLS_STDEV_CORRELATION_MATRIX correlation matrix except for the diagonal elements 

which are the standard deviations 

IMSLS_MEANS, float **means   (Output) 
Address of a pointer to the internally allocated array containing the 
means of the variables in x. The components of the array correspond to 
the columns of x. 

IMSLS_MEANS_USER, float means[]   (Output) 
Storage for array means is provided by the user. See IMSLS_MEANS. 

IMSLS_COVARIANCE_COL_DIM, int covariance_col_dim   (Input) 
Column dimension of array covariance if IMSLS_RETURN_USER is 
specified; otherwise, the column dimension of the return value. 
Default: covariance_col_dim = n_variables 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array of length n_observations containing the frequency for each 
observation. 
Default: frequencies [ ] = 1 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_observations containing the weight for each 
observation. 
Default: weights [ ] = 1 

IMSLS_SUM_WEIGHTS, float *sum_wt   (Output) 
Sum of the weights of all observations. If missing_value_method is 
equal to 0, observations with missing values are not included in sum_wt. 
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Otherwise, all observations are included except for observations with 
mssing values for the weight or the frequency. 

IMSLS_N_ROWS_MISSING, int *nrmiss   (Output) 
Total number of observations that contain any missing values (NaN). 

IMSLS_RETURN_USER, float covariance[]   (Output) 
If specified, the output is stored in the array covariance of size 
n_variables � n_variables provided by the user. 

Description 
Function imsls_f_covariances computes estimates of correlations, 
covariances, or sums of squares and crossproducts for a data matrix x. Weights 
and frequencies are allowed but not required. 

The means, (corrected) sums of squares, and (corrected) sums of crossproducts 
are computed using the method of provisional means. Let xki denote the mean 
based on i observations for the k-th variable, fi denote the frequency of the i-th 
observation, wi denote the weight of the i-th observations, and cjki denote the sum 
of crossproducts (or sum of squares if j = k) based on i observations. Then the 
method of provisional means finds new means and sums of crossproducts as 
shown in the example below. 

The means and crossproducts are initialized as follows: 

xk0 = 0.0  for k = 1, �, p 

cjk0 = 0.0 for j, k = 1, �, p 

where p denotes the number of variables. Letting xk,i+1 denote the k-th variable of 
observation i + 1, each new observation leads to the following updates for xki and 
cjki using the update constant ri+1: 
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The default value for weights and frequencies is 1. Means and variances are 
computed based on the valid data for each variable or, if required, based on all 
the valid data for each pair of variables. 

Usage Notes 
Function imsls_f_covariances defines a sample mean by 
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where n is the number of observations.  

The following formula defines the sample covariance, sjk, between variables j and 
k: 
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The sample correlation between variables j and k, rjk, is defined as follows: 

jk
jk

jj kk

s
r

s s
�  

Examples 

Example 1 
This example illustrates the use of imsls_f_covariances for the first 50 
observations in the Fisher iris data (Fisher 1936). Note that the first variable is 
constant over the first 50 observations. 

#include <imsls.h> 
 
#define N_VARIABLES      5 
#define N_OBSERVATIONS  50 
 
 
main() 
{ 
    float       *covariances, *means; 
    float       x[] = { 
        1.0, 5.1, 3.5, 1.4, .2,  1.0, 4.9, 3.0, 1.4, .2, 
        1.0, 4.7, 3.2, 1.3, .2,  1.0, 4.6, 3.1, 1.5, .2, 
        1.0, 5.0, 3.6, 1.4, .2,  1.0, 5.4, 3.9, 1.7, .4, 
        1.0, 4.6, 3.4, 1.4, .3,  1.0, 5.0, 3.4, 1.5, .2, 
        1.0, 4.4, 2.9, 1.4, .2,  1.0, 4.9, 3.1, 1.5, .1, 
        1.0, 5.4, 3.7, 1.5, .2,  1.0, 4.8, 3.4, 1.6, .2, 
        1.0, 4.8, 3.0, 1.4, .1,  1.0, 4.3, 3.0, 1.1, .1, 
        1.0, 5.8, 4.0, 1.2, .2,  1.0, 5.7, 4.4, 1.5, .4, 
        1.0, 5.4, 3.9, 1.3, .4,  1.0, 5.1, 3.5, 1.4, .3, 
        1.0, 5.7, 3.8, 1.7, .3,  1.0, 5.1, 3.8, 1.5, .3, 
        1.0, 5.4, 3.4, 1.7, .2,  1.0, 5.1, 3.7, 1.5, .4, 
        1.0, 4.6, 3.6, 1.0, .2,  1.0, 5.1, 3.3, 1.7, .5, 
        1.0, 4.8, 3.4, 1.9, .2,  1.0, 5.0, 3.0, 1.6, .2, 
        1.0, 5.0, 3.4, 1.6, .4,  1.0, 5.2, 3.5, 1.5, .2, 
        1.0, 5.2, 3.4, 1.4, .2,  1.0, 4.7, 3.2, 1.6, .2, 
        1.0, 4.8, 3.1, 1.6, .2,  1.0, 5.4, 3.4, 1.5, .4, 
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        1.0, 5.2, 4.1, 1.5, .1,  1.0, 5.5, 4.2, 1.4, .2, 
        1.0, 4.9, 3.1, 1.5, .2,  1.0, 5.0, 3.2, 1.2, .2, 
        1.0, 5.5, 3.5, 1.3, .2,  1.0, 4.9, 3.6, 1.4, .1, 
        1.0, 4.4, 3.0, 1.3, .2,  1.0, 5.1, 3.4, 1.5, .2, 
        1.0, 5.0, 3.5, 1.3, .3,  1.0, 4.5, 2.3, 1.3, .3, 
        1.0, 4.4, 3.2, 1.3, .2,  1.0, 5.0, 3.5, 1.6, .6, 
        1.0, 5.1, 3.8, 1.9, .4,  1.0, 4.8, 3.0, 1.4, .3, 
        1.0, 5.1, 3.8, 1.6, .2,  1.0, 4.6, 3.2, 1.4, .2, 
        1.0, 5.3, 3.7, 1.5, .2,  1.0, 5.0, 3.3, 1.4, .2}; 
 
                                /* Perform analysis */ 
    covariances = imsls_f_covariances (N_OBSERVATIONS,  
        N_VARIABLES, x, 0); 
 
                                /* Print results */ 
    imsls_f_write_matrix ("The default case: variances/covariances", 
        N_VARIABLES, N_VARIABLES, covariances, 
        IMSLS_PRINT_UPPER, 0); 
} 

Output 

           The default case: variances/covariances 
            1           2           3           4           5 
1      0.0000      0.0000      0.0000      0.0000      0.0000 
2                  0.1242      0.0992      0.0164      0.0103 
3                              0.1437      0.0117      0.0093 
4                                          0.0302      0.0061 
5                                                      0.0111 

Example 2 
This example, which uses the first 50 observations in the Fisher iris data, 
illustrates the use of optional arguments. 

#include <imsls.h> 
 
#define N_VARIABLES      5 
#define N_OBSERVATIONS  50 
 
main() 
{ 
    char        *title; 
    float       *means, *correlations; 
    float       x[] = { 
        1.0, 5.1, 3.5, 1.4, .2,  1.0, 4.9, 3.0, 1.4, .2, 
        1.0, 4.7, 3.2, 1.3, .2,  1.0, 4.6, 3.1, 1.5, .2, 
        1.0, 5.0, 3.6, 1.4, .2,  1.0, 5.4, 3.9, 1.7, .4, 
        1.0, 4.6, 3.4, 1.4, .3,  1.0, 5.0, 3.4, 1.5, .2, 
        1.0, 4.4, 2.9, 1.4, .2,  1.0, 4.9, 3.1, 1.5, .1, 
        1.0, 5.4, 3.7, 1.5, .2,  1.0, 4.8, 3.4, 1.6, .2, 
        1.0, 4.8, 3.0, 1.4, .1,  1.0, 4.3, 3.0, 1.1, .1, 
        1.0, 5.8, 4.0, 1.2, .2,  1.0, 5.7, 4.4, 1.5, .4, 
        1.0, 5.4, 3.9, 1.3, .4,  1.0, 5.1, 3.5, 1.4, .3, 
        1.0, 5.7, 3.8, 1.7, .3,  1.0, 5.1, 3.8, 1.5, .3, 
        1.0, 5.4, 3.4, 1.7, .2,  1.0, 5.1, 3.7, 1.5, .4, 
        1.0, 4.6, 3.6, 1.0, .2,  1.0, 5.1, 3.3, 1.7, .5, 
        1.0, 4.8, 3.4, 1.9, .2,  1.0, 5.0, 3.0, 1.6, .2, 
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        1.0, 5.0, 3.4, 1.6, .4,  1.0, 5.2, 3.5, 1.5, .2, 
        1.0, 5.2, 3.4, 1.4, .2,  1.0, 4.7, 3.2, 1.6, .2, 
        1.0, 4.8, 3.1, 1.6, .2,  1.0, 5.4, 3.4, 1.5, .4, 
        1.0, 5.2, 4.1, 1.5, .1,  1.0, 5.5, 4.2, 1.4, .2, 
        1.0, 4.9, 3.1, 1.5, .2,  1.0, 5.0, 3.2, 1.2, .2, 
        1.0, 5.5, 3.5, 1.3, .2,  1.0, 4.9, 3.6, 1.4, .1, 
        1.0, 4.4, 3.0, 1.3, .2,  1.0, 5.1, 3.4, 1.5, .2, 
        1.0, 5.0, 3.5, 1.3, .3,  1.0, 4.5, 2.3, 1.3, .3, 
        1.0, 4.4, 3.2, 1.3, .2,  1.0, 5.0, 3.5, 1.6, .6, 
        1.0, 5.1, 3.8, 1.9, .4,  1.0, 4.8, 3.0, 1.4, .3, 
        1.0, 5.1, 3.8, 1.6, .2,  1.0, 4.6, 3.2, 1.4, .2, 
        1.0, 5.3, 3.7, 1.5, .2,  1.0, 5.0, 3.3, 1.4, .2}; 
 
                                /* Perform analysis */ 
    correlations = imsls_f_covariances (N_OBSERVATIONS,  
        N_VARIABLES-1, x+1, 
        IMSLS_STDEV_CORRELATION_MATRIX, 
        IMSLS_X_COL_DIM, N_VARIABLES, 
        IMSLS_MEANS, &means, 
        0); 
 
                                /* Print results */ 
    imsls_f_write_matrix ("Means\n", 1, N_VARIABLES-1, means, 0); 
    title = "Correlations with Standard Deviations on the Diagonal\n"; 
    imsls_f_write_matrix (title, N_VARIABLES-1, N_VARIABLES-1,  
        correlations, IMSLS_PRINT_UPPER, 0); 
} 

Output  

                    Means 
 
         1           2           3           4 
     5.006       3.428       1.462       0.246 
  
Correlations with Standard Deviations on the Diagonal 
 
               1           2           3           4 
   1      0.3525      0.7425      0.2672      0.2781 
   2                  0.3791      0.1777      0.2328 
   3                              0.1737      0.3316 
   4                                          0.1054 

Warning Errors 
IMSLS_CONSTANT_VARIABLE Correlations are requested, but the 

observations on one or more 
variables are constant. The 
corresponding correlations are set 
to NaN. 

IMSLS_INSUFFICIENT_DATA Variances and covariances are 
requested, but fewer than two valid 
observations are present for a 
variable. The pertinent statistics 
are set to NaN. 
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IMSLS_ZERO_SUM_OF_WEIGHTS_2 The sum of the weights is zero. 
The means, variances, and 
covariances are set to NaN. 

IMSLS_ZERO_SUM_OF_WEIGHTS_3 The sum of the weights is zero. 
The means and correlations are set 
to NaN. 

IMSLS_TOO_FEW_VALID_OBS_CORREL Correlations are requested, but 
fewer than two valid observations 
are present for a variable. The 
pertinent correlation coefficients 
are set to NaN. 

partial_covariances 
Computes partial covariances or partial correlations from the covariance or 
correlation matrix. 

Synopsis 

#include <imsls.h> 

float *imsls_f_partial_covariances (int n_independent, 
int n_dependent, float x, ..., 0) 

The type double function is imsls_d_partial_covariances. 

Required Argument 

int n_independent   (Input) 
Number of “independent” variables to be used in the partial 
covariances/correlations. The partial covariances/correlations are the 
covariances/correlations between the dependent variables after removing 
the linear effect of the independent variables. 

int n_dependent   (Input) 
Number of variables for which partial covariances/correlations are 
desired (the number of “dependent” variables). 

float x   (Input) 
The n � n covariance or correlation matrix, where 
n = n_independent + n_dependent. The rows/columns must be 
ordered such that the first n_independent rows/columns contain the 
independent variables, and the last n_dependent row/columns contain 
the dependent variables. Matrix x must always be square symmetric. 



 

 
 

194 � partial_covariances IMSL C/Stat/Library 

 

 

 

Return Value  
Matrix of size n_dependent by n_dependent containing the partial 
covariances (the default) or partial correlations (use keyword 
IMSLS_PARTIAL_CORR). 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_partial_covariances (int n_independent, 

int n_dependent, float x[], 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_X_INDICES, int indices[], 
IMSLS_PARTIAL_COV, or 
IMSLS_PARTIAL_CORR, 
IMSLS_TEST, int df, int *df_out, float **p_values, 
IMSLS_TEST_USER, int df, int *df_out, float p_values[], 
IMSLS_RETURN_USER, float c[], 
0) 

Optional Arguments 
IMSLS_X_COL_DIM, int x_col_dim   (Input) 

Row/Column dimension of x. 
Default: x_col_dim = n_independent + n_dependent. 

IMSLS_X_INDICES, int indices[]   (Input) 
An array of length x_col_dim containing values indicating the status of 
the variable as in the following table: 

indices[i] Variable is... 
�1 not used in analysis 
0 dependent variable 
1 independent variable 

By default, the first n_independent elements of indices are equal to 
1, and the last n_dependent elements are equal to 0. 

IMSLS_PARTIAL_COV, or 
IMSLS_PARTIAL_CORR, 

By default, and if IMSLS_PARTIAL_COV is specified, partial 
covariances are calculated. Partial correlations are calculated if 
IMSLS_PARTIAL_CORR is specified. 

IMSLS_TEST, int df, int *df_out, float **p_values    
(Input, Output, Output) 
Argument df is an input integer indicating the number of degrees of 
freedom associated with input matrix x. If the number of degrees of 
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freedom in x varies from element to element, then a conservative choice 
for df is the minimum degrees of freedom for all elements in x.  

Argument df_out contains the number of degrees of freedom in the test 
that the partial covariances/correlations are zero. This value will usually 
be df � n_independent, but will be greater than this value if the 
independent variables are computationally linearly related. 

Argument p_values is the address of a pointer to an internally 
allocated array of size n_dependent by n_dependent containing the 
p-values for testing the null hypothesis that the associated partial 
covariance/correlation is zero. It is assumed that the observations from 
which x was computed flows a multivariate normal distribution and that 
each element in x has df degrees of freedom. 

IMSLS_TEST_USER, int df, int *df_out, float p_values[]    
(Input, Output, Output) 
Storage for array p_values is provided by the user. See IMSLS_TEST 
above. 

IMSLS_RETURN_USER, float c[]   (Output) 
If specified, c returns the partial covariances/correlations. Storage for 
array c is provided by the user. 

Description 
Function imsls_f_partial_covariances computed partial covariances or 
partial correlations from an input covariance or correlation matrix. If the 
“independent” variables (the linear “effect” of the independent variables is 
removed in computing the partial covariances/correlations) are linearly related to 
one another, imsls_f_partial_covariances detects the linearity and 
eliminates one or more of the independent variables from the list of independent 
variables. The number of variables eliminated, if any, can be determined from 
argument df_out. 

Given a covariance or correlation matrix � partitioned as  

11 12

21 22

� �� �
� �
� �� �

 

function imsls_f_partial_covariances computed the partial covariances 
(of the standardized variables if � is a correlation matrix) as  

1
22 /1 22 21 11 12

�

� � � �� � �  

If partial correlations are desired, these are computed as  

� � � �
1/ 2 1/ 2

22 /1 22 /1 22 /1 22 /1P diag diag
� �

� � � �� � � �� � � �  

where diag denotes the matrix containing the diagonal of its argument along its 
diagonal with zeros off the diagonal. If �11 is singular, then as many variables as 
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required are deleted from �11 (and �12) in order to eliminate the linear 
dependencies. The computations then proceed as above. 

The p-value for a partial covariance tests the null hypothesis H0: �ij|1 = 0, where 
�ij|1 is the (i, j) element in matrix �22|1. The p-value for a partial correlation tests 
the null hypothesis H0: �ij|1 = 0, where �ij|1 is the (i, j) element in matrix P22|1. The 
p-values are returned in p_values. If the degrees of freedom for x, df, is not 
known, the resulting p-values may be useful for comparison, but they should not 
by used as an approximation to the actual probabilities. 

Examples 

Example 1 
The following example computes partial covariances, scaled from a nine-variable 
correlation matrix originally given by Emmett (1949). The first three rows and 
columns contain the independent variables and the final six rows and columns 
contain the dependent variables. 

#include <imsls.h> 
#include <math.h> 
 
main() 
{ 
    float *pcov; 
    float x[9][9] = { 
        6.300, 3.050, 1.933, 3.365, 1.317, 2.293, 2.586, 1.242, 4.363, 
        3.050, 5.400, 2.170, 3.346, 1.473, 2.303, 2.274, 0.750, 4.077, 
        1.933, 2.170, 3.800, 1.970, 0.798, 1.062, 1.576, 0.487, 2.673, 
        3.365, 3.346, 1.970, 8.100, 2.983, 4.828, 2.255, 0.925, 3.910, 
        1.317, 1.473, 0.798, 2.983, 2.300, 2.209, 1.039, 0.258, 1.687, 
        2.293, 2.303, 1.062, 4.828, 2.209, 4.600, 1.427, 0.768, 2.754, 
        2.586, 2.274, 1.576, 2.255, 1.039, 1.427, 3.200, 0.785, 3.309, 
        1.242, 0.750, 0.487, 0.925, 0.258, 0.768, 0.785, 1.300, 1.458, 
        4.363, 4.077, 2.673, 3.910, 1.687, 2.754, 3.309, 1.458, 7.400}; 
 
    pcov = imsls_f_partial_covariances(3, 6, x, 0); 
 
    imsls_f_write_matrix("Partial Covariances", 6, 6, pcov, 0); 
 
    free(pcov); 
    return; 
} 

Output 

                           Partial Covariances 
            1           2           3           4           5           6 
1       0.000       0.000       0.000       0.000       0.000       0.000 
2       0.000       0.000       0.000       0.000       0.000       0.000 
3       0.000       0.000       0.000       0.000       0.000       0.000 
4       0.000       0.000       0.000       5.495       1.895       3.084 
5       0.000       0.000       0.000       1.895       1.841       1.476 
6       0.000       0.000       0.000       3.084       1.476       3.403 
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Example 2 

The following example computes partial correlations from a 9 variable 
correlation matrix originally given by Emmett (1949). The partial correlations 
between the remaining variables, after adjusting for variables 1, 3 and 9, are 
computed. Note in the output that the row and column labels are numbers, not 
variable numbers. The corresponding variable numbers would be 2, 4, 5, 6, 7  
and 8, respectively. 

#include <imsls.h> 
 
main() 
{ 
    float *pcorr, *pval; 
    int   df; 
    float x[9][9] = { 
        1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,  
        0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,  
        0.395, 0.479, 1.0, .355, 0.27, 0.254, 0.452,  0.219, 0.504,  
        0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,  
        0.346, 0.418, 0.27, 0.691, 1.0, 0.679,  0.383, 0.149, 0.409,  
        0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,  
        0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,  
        0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,  
        0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0}; 
    int indices[9] = {1, 0, 1, 0, 0, 0, 0, 0, 1}; 
 
    pcorr = imsls_f_partial_covariances(3, 6, &x[0][0], 
                                        IMSLS_PARTIAL_CORR,  
                                        IMSLS_X_INDICES, indices,  
                                        IMSLS_TEST, 30, &df, &pval, 
                                        0); 
 
    printf ("The degrees of freedom are %d\n\n", df); 
    imsls_f_write_matrix("Partial Correlations", 6, 6, pcorr, 0); 
    imsls_f_write_matrix("P-Values", 6, 6, pval, 0); 
 
    free(pcorr); 
    free(pval); 
    return; 
} 

Output 

The degrees of freedom are 27 
 
                          Partial Correlations 
            1           2           3           4           5           6 
1       1.000       0.224       0.194       0.211       0.125      -0.061 
2       0.224       1.000       0.605       0.720       0.092       0.025 
3       0.194       0.605       1.000       0.598       0.123      -0.077 
4       0.211       0.720       0.598       1.000       0.035       0.086 
5       0.125       0.092       0.123       0.035       1.000       0.062 
6      -0.061       0.025      -0.077       0.086       0.062       1.000 
  
                                P-Values 
            1           2           3           4           5           6 
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1      0.0000      0.2525      0.3232      0.2801      0.5249      0.7576 
2      0.2525      0.0000      0.0006      0.0000      0.6417      0.9000 
3      0.3232      0.0006      0.0000      0.0007      0.5328      0.6982 
4      0.2801      0.0000      0.0007      0.0000      0.8602      0.6650 
5      0.5249      0.6417      0.5328      0.8602      0.0000      0.7532 
6      0.7576      0.9000      0.6982      0.6650      0.7532      0.0000 
 
 

Warning Errors 
IMSLS_NO_HYP_TESTS The input matrix “x” has # degrees of freedom, 

and the rank of the dependent variables is #. 
There are not enough degrees of freedom for 
hypothesis testing. The elements of “p_values” 
are set to NaN (not a number). 

Fatal Errors 
IMSLS_INVALID_MATRIX_1 The input matrix “x” is incorrectly specified. A 

computed correlation is greater than 1 for 
variables # and #. 

IMSLS_INVALID_PARTIAL A computed partial correlation for variables # 
and # is greater than 1. The input matrix “x” is 
not positive semi-definite. 

pooled_covariances 
Compute a pooled variance-covariance from the observations. 

Synopsis 

#include <imsls.h> 
float *imsls_f_pooled_covariances (int n_rows, int n_variables, 

float *x, int n_groups, ..., 0) 

The type double function is imsls_d_pooled_covariances. 

Required Argument 

int n_rows   (Input) 
Number of rows observations) in the input matrix x. 

int n_variables   (Input) 
Number of variables to be used in computing the covariance matrix.  

float *x   (Input) 
A n_rows � n_variables + 1 matrix containing the data. The first 
n_variables columns correspond to the variables, and the last column 
(column n_variables must contain the group numbers). 
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int n_groups   (Input) 
Number of groups in the data. 

Return Value 
Matrix of size n_variables by n_variables containing the matrix of 
covariances. 

Synopsis with Optional Arguments 
#include <imsls.h> 

float *imsls_f_pooled_covariances (int n_rows, int n_variables, 
float x[], int n_groups,  
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,  
IMSLS_IDO, int ido, 
IMSLS_ROWS_ADD, 
IMSLS_ROWS_DELETE, 
IMSLS_GROUP_COUNTS, int **gcounts,  
IMSLS_GROUP_COUNTS_USER, int gcounts[], 
IMSLS_SUM_WEIGHTS, float **sum_weights, 
IMSLS_SUM_WEIGHTS_USER, float sum_weights[], 
IMSLS_MEANS_USER, float means[], 
IMSLS_U, float **u, 
IMSLS_U_USER, float u[], 
IMSLS_N_ROWS_MISSING, int *nrmiss, 
IMSLS_RETURN_USER, float c[], 
0) 

Optional Arguments 
IMSLS_X_COL_DIM, int x_col_dim   (Input) 

Default: x_col_dim = n_variables + 1 

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt   (Input) 
Each of the four arguments contains indices indicating column numbers 
of x in which particular types of data are stored. Columns are numbered 
0 ... x_col_dim � 1. 

Parameter igrp contains the index for the column of x in which the 
group numbers are stored. 

Parameter ind contains the indices of the variables to be used in the 
analysis. 

Parameters ifrq and iwt contain the column numbers of x in which the 
frequencies and weights, respectively, are stored. Set ifrq = �1 if there 
will be no column for frequencies. Set iwt = �1 if there will be no 
column for weights. Weights are rounded to the nearest integer. 
Negative weights are not allowed. 
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Defaults: igrp = n_variables,  
ind[ ] = 0, 1, �, n_variables � 1, ifrq = �1, and iwt = �1 

IMSLS_IDO, int ido   (Input) 
Processing option. 

ido Action 
0 This is the only invocation; all the data are input at once. 

(Default) 
1 This is the first invocation with this data; additional calls 

will be made. Initialization and updating for the n_rows 
observations of x will be performed. 

2 This is an intermediate invocation; updating for the n_rows 
observations of x will be performed. 

3 All statistics are updated for the n_rows observations. The 
covariance matrix computed. 

Default: ido = 0 

IMSLS_ROWS_ADD, or 
IMSLS_ROWS_DELETE 

By default (or if IMSLS_ROWS_ADD is specified), the observations in x 
are added into the analysis. If IMSLS_ROWS_DELETE is specified, the 
observations are deleted from the analysis. If ido = 0, these optional 
arguments are ignored (data is always added if there is only one 
invocation). 

IMSLS_GROUP_COUNTS, int **gcounts   (Output) 
Address of a pointer to an integer array of length n_groups containing 
the number of observations in each group. Array gcounts is updated 
when ido is equal to 0, 1, or 2. 

IMSLS_GROUP_COUNTS_USER, int gcounts[]   (Output) 
Storage for integer array gcounts is provided by the user. See 
IMSLS_GROUP_COUNTS. 

IMSLS_SUM_WEIGHTS, float **sum_weights   (Output) 
Address of a pointer to an array of length n_groups containing the sum 
of the weights times the frequencies in the groups. 

IMSLS_SUM_WEIGHTS_USER, float sum_weights[]   (Output) 
Storage for array sum_weights is provided by the user. See 
IMSLS_SUM_WEIGHTS. 

IMSLS_MEANS, float **means   (Output) 
Address of a pointer to an array of size n_groups � n_variables. The 
i-th row of means contains the group i variable means. 

IMSLS_MEANS_USER, float means[]   (Output) 
Storage for array means is provided by the user. See IMSLS_MEANS. 
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IMSLS_U, float **u   (Output) 
Address of a pointer to an array of size n_variables �  
n_variables containing the lower matrix U, the lower triangular for 
the pooled sample cross-products matrix. U is computed from the  
pooled sample covariance matrix, S (See the “Description” section 
below), as S = UTU. 

IMSLS_U_USER, float u[]   (Output)” 
Storage for array u is provided by the user. See IMSLS_U. 

IMSLS_N_ROWS_MISSING, int *nrmiss   (Output) 
Number of rows of data encountered in calls to 
imsls_f_pooled_covariances containing missing values (NaN) for 
any of the variables used. 

IMSLS_RETURN_USER, float c[]   (Output) 
If specified, c returns the covariance matrix. Storage for array c is 
provided by the user. 

Description 
Function imsls_f_pooled_covariances computes the pooled variance-
covariance matrix from a matrix of observations. The within-groups means are 
also computed. Listwise deletion of missing values is assumed so that all 
observations used are complete; in any row of x, if any element of the observation 
is missing, the row is not used. Function imsls_f_pooled_covariances 
should be used whenever the user suspects that the data has been sampled from 
populations with different means but identical variance-covariance matrices. If 
these assumptions cannot be made, a different variance-covariance matrix should 
be estimated within each group. 

By default, all observations are processed in one call to 
imsls_f_pooled_covariances. The computations are the same as if 
imsls_f_pooled_covariances were consecutively called with ido equal to 
1, 2, and 3. For brevity, the following discusses the computations with ido > 0. 

When ido = 1 variables are initialized, workspace is allocated and input variables 
are checked for errrors. 

If n_rows � 	 (for any value of ido), the group observation totals, Ti, for 
i = 1, �, g, where g is the number of groups, are updated for the n_rows 
observations in x. The group totals are computed as: 

i ij i
j

T w f��  

where wij is the observation weight, xij is the j-th observation in the i-th group, 
and fij is the observation frequency. 

Modified Givens rotations are used in computed the Cholesky decomposition of 
the pooled sums of squares and crossproducts matrix. (Golub and Van Loan 
1983). 
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The group means and the pooled sample covariance matrix S are computed from 
the intermediate results when ido = 3. These quantities are defined by 
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Examples 

Example 1 
The following example computes a pooled variance-covariance matrix. The last 
column of the data set is the group indicator. 

#include <stdio.h> 
#include <stdlib.h> 
#include <imsls.h> 
 
main() { 
    int nobs = 6; 
    int nvar = 2; 
    int n_groups = 2; 
    float *cov; 
    static float x[6][3] = { 
        2.2, 5.6, 1, 
        3.4, 2.3, 1, 
        1.2, 7.8, 1, 
        3.2, 2.1, 2,  
        4.1, 1.6, 2, 
        3.7, 2.2, 2}; 
 
    cov = imsls_f_pooled_covariances(nobs, nvar, &x[0][0], n_groups, 0); 
 
    imsls_f_write_matrix("Pooled Covariance Matrix", nvar, nvar, cov, 0); 
    free(cov); 
} 

Output 

Pooled Covariance Matrix 
            1           2 
1       0.708      -1.575 
2      -1.575       3.883 

Example 2 
The following example computes a pooled variance-covariance matrix for the 
Fisher iris data. To illustrate the use of the ido argument, multiple calls to 
imsls_f_pooled_covariances are made. 
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The first column of data is the group indicator, requiring either a permuation of 
the matrix or the use of the IMSLS_X_INDICES optional keyword. This exampe 
chooses the keyword method. 

#include <stdio.h> 
#include <stdlib.h> 
#include <imsls.h> 
 
main() { 
    int nobs = 150; 
    int nvar = 4; 
    int n_groups = 3; 
    int igrp = 0; 
    static int ind[4] = {1, 2, 3, 4}; 
    int ifrq = -1; 
    int iwt = -1; 
    float *x, cov[16]; 
    float *means; 
    int i; 
 
    /* Retrieve the Fisher iris data set */ 
    x = imsls_f_data_sets(3, 0); 
 
    /* Initialize */ 
    imsls_f_pooled_covariances(0, nvar, x, n_groups,   
        IMSLS_IDO, 1,  
        IMSLS_RETURN_USER, cov,  
        IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0); 
 
    /* Add 10 rows at a time */ 
    for (i=0;i<15;i++) { 
    imsls_f_pooled_covariances(10, nvar, (x+i*50), n_groups,  
        IMSLS_IDO, 2,  
        IMSLS_RETURN_USER, cov,  
        IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0); 
    } 
 
    /* Calculate cov and free internal workspace */ 
    imsls_f_pooled_covariances(0, nvar, x, n_groups,  
        IMSLS_IDO, 3,  
        IMSLS_RETURN_USER, cov,  
        IMSLS_X_INDICES, igrp, ind, ifrq, iwt,  
        IMSLS_MEANS, &means, 0); 
 
    imsls_f_write_matrix("Pooled Covariance Matrix", nvar, nvar, cov, 0); 
    imsls_f_write_matrix("Means", n_groups, nvar, means, 0); 
 
    free(means); 
    free(x); 
} 
 

Output 

            Pooled Covariance Matrix 
            1           2           3           4 
1      0.2650      0.0927      0.1675      0.0384 
2      0.0927      0.1154      0.0552      0.0327 
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3      0.1675      0.0552      0.1852      0.0427 
4      0.0384      0.0327      0.0427      0.0419 
  
 
 
                      Means 
            1           2           3           4 
1       5.006       3.428       1.462       0.246 
2       5.936       2.770       4.260       1.326 
3       6.588       2.974       5.552       2.026 

Warning Errors 
IMSLS_OBSERVATION_IGNORED In call #, row # of the matrix “x” has group 

number = #. The group number must be 
between 1 and #, the number of groups. 
This observation will be ignored. 

Fatal Errors 
IMSLS_BAD_IDO_4 “ido” = #. Initial allocations must be 

performed by making a call to 
pooled_covariances with “ido” = 1. 

IMSLS_BAD_IDO_5 “ido” = #. A new analysis may not begin 
until the previous analysis is terminated by 
a call to imsls_f_pooled_covariances 
with “ido” equal to 3. 

robust_covariances 
Computes a robust estimate of a covariance matrix and mean vector. 

Synopsis 

#include <imsls.h> 

float *imsls_f_robust_covariances (int n_rows, int n_variables, 
float *x, int n_groups, ..., 0) 

The type double function is imsls_d_robust_covariances. 

Required Argument 

int n_rows   (Input) 
Number of rows observations) in the input matrix x. 

int n_variables   (Input) 
Number of variables to be used in computing the covariance matrix. 

float *x   (Input) 
A n_rows by n_variables + 1 matrix containing the data. The first 
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n_variables columns correspond to the variables, and the last column 
(column n_variables) must contain the group numbers. 

 

int n_groups   (Input) 
Number of groups in the data. 

Return Value 
Matrix of size n_variables by n_variables containing the matrix of 
covariances. 

Synopsis with Optional Arguments 
#include <imsls.h>  

float *imsls_f_robust_covariances (int n_rows, int n_variables, 
float x[], int n_groups, 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,  
IMSLS_INITIAL_EST_MEAN, 
IMSLS_INITIAL_EST_MEDIAN 
IMSLS_INITIAL_EST_INPUT, float input_means[], 
 float input_cov[], 
IMSLS_ESTIMATION_METHOD, int method, 
IMSLS_PERCENTAGE, float percentage, 
IMSLS_MAX_ITERATIONS, int maxit, 
IMSLS_TOLERANCE, float tolerance, 
IMSLS_MINIMAX_WEIGHTS, float *a, float *b, float *c, 
IMSLS_GROUP_COUNTS, int **gcounts,  
IMSLS_GROUP_COUNTS_USER, int gcounts[], 
IMSLS_SUM_WEIGHTS, float **sum_weights, 
IMSLS_SUM_WEIGHTS_USER, float sum_weights[], 
IMSLS_MEANS, float **means, 
IMSLS_MEANS_USER, float means[], 
IMSLS_U, float **u, 
IMSLS_U_USER, float u[], 
IMSLS_BETA, float *beta, 
IMSLS_N_ROWS_MISSING, int *nrmiss, 
IMSLS_RETURN_USER, float c[], 
0) 

Optional Arguments 
IMSLS_X_COL_DIM, int x_col_dim   (Input) 

Row/Column dimension of x. 
Default: x_col_dim = n_variables + 1 

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt   (Input) 
Each of the four arguments contains indices indicating column numbers 
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of x in which particular types of data are stored. Columns are numbered 
0 � x_col_dim � 1.  

Parameter igrp contains the index for the column of x in which the 
group numbers are stored. 

Parameter ind contains the indices of the variables to be used in the 
analysis.  

Parameters ifrq and iwt contain the column numbers of x in which the 
frequencies and weights, respectively, are stored. Set ifrq = �1 if there 
will be no column for frequencies. Set iwt = �1 if there will be no 
column for weights. Weights are rounded to the nearest integer. 
Negative weights are not allowed. 

Defaults: igrp = n_variables,  
ind [ ] = 0, 1, �, n_variables � 1, ifrq = �1, and iwt = �1 

IMSLS_INITIAL_EST_MEAN, or 
IMSLS_INITIAL_EST_MEDIAN, or 
IMSLS_INITIAL_EST_INPUT, float *input_mean, float *input_cov   

(Input) 
If IMSLS_INITIAL_EST_MEAN is specified, initial estimates are 
obtained as the usual estimate of a mean vector and of a covariance 
matrix. 

If IMSLS_INITIAL_EST_MEDIAN is specified, initial estimates are 
based upon the median and interquartile range are used. 

If IMSLS_INITIAL_EST_INPUT is specified, the initial estimates are 
specified in arrays input_mean and input_cov. Argument 
input_mean is an array of size n_groups by n_variables, and 
input_cov is an array of size n_variables by n_variables. 

Default: IMSLS_INITIAL_EST_MEAN 

IMSLS_ESTIMATION_METHOD, int method   (Input) 
Option parameter giving the algorithm to be used in computing the 
estimates. 

 

 

 

method Method Used 
0 Huber’s conjugate-gradient algorithm is used. 
1 Stahel’s algorithm is used. 
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IMSLS_PERCENTAGE, float percentage   (Input) 
Percentage of gross errors expected in the data. Argument percentage 
must be in the range 0.0 to 100.0 and contains the percentage of outliers 
expected in the data. If the percentage of gross errors expected in the 
data is not known, a reasonable strategy is to choose a value of 
percentage that is such that larger values do not result in significant 
changes in the estimates. 
Default: percentage = 5.0 

IMSLS_MAX_ITERATIONS, int maxit   (Input) 
Maximum number of iterations. 
Default: maxit = 30 

IMSLS_TOLERANCE, float tolerance   (Input) 
Convergence criterion. When the maximum absolute change in a 
location or covariance estimate is less than tolerance, convergence is 
assumed. 
Default: tolerance = 10-4 

IMSLS_MINIMAX_WEIGHTS, float *a, float *b, float *c   (Output) 
Arguments a, b, and c contain the values for the parameters of the 
weighting function. See the “Description” section. 

IMSLS_GROUP_COUNTS, int **gcounts   (Output) 
Address of a pointer to an integer array of length n_groups containing 
the number of observations in each group.  

IMSLS_GROUP_COUNTS_USER, int gcounts[]   (Output) 
Storage for integer array gcounts is provided by the user. See 
IMSLS_GROUP_COUNTS. 

IMSLS_SUM_WEIGHTS, float **sum_weights   (Output) 
Address of a pointer to an array of length n_groups containing the sum 
of the weights times the frequencies in the groups. 

IMSLS_SUM_WEIGHTS_USER, float sum_weights[](Output) 
Storage for array sum_weights is provided by the user. See 
IMSLS_SUM_WEIGHTS. 

IMSLS_MEANS, float **means   (Output) 
Address of a pointer to an array of size n_groups by n_variables. 
The i-th row of means contains the group i variable means. 

IMSLS_MEANS_USER, float means[]   (Output) 
Storage for array means is provided by the user. See IMSLS_MEANS. 

IMSLS_U, float **u   (Output) 
Address of a pointer to an array of size n_variables by n_variables 
containing the lower matrix U, the lower triangular for the robust sample 
cross-products matrix. U is computed from the robust sample covariance 
matrix, S (See the “Description” section), as S = UTU. 
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IMSLS_U_USER, float u[]   (Output) 
Storage for array u is provided by the user. See IMSLS_U. 

IMSLS_BETA, float *beta   (Output) 
Argument beta contains the constant used to ensure that the estimated 
covariance matrix has unbiased expectation (for a given mean vector) for 
a multivariate normal density. 

IMSLS_N_ROWS_MISSING, int *nrmiss   (Output) 
Number of rows of data encountered in calls to robust_covariances 
containing missing values (NaN) for any of the variables used. 

IMSLS_RETURN_USER, float c[]   (Output) 
If specified, c returns the covariance matrix. Storage for array c is 
provided by the user. 

Description 
Function imsls_f_robust_covariances computes robust M-estimates of the 
mean and covariance matrix from a matrix of observations. A pooled estimate of 
the covariance matrix is computed when multiple groups are present in the input 
data. M-estimate weights are obtained using the “minimax” weights of Huber 
(1981, pp. 231-235), with percentage expected gross errors. Huber’s (1981) 
weighting equations are given by: 

� �

� �
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2
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User specified observation weights and frequencies may be given for each row in 
x. Listwise deletion of missing values is assumed so that all observations used are 
“complete”.  

Let f (x;
i, �) denote the density of an observation p-vector x in population 
(group) i with mean vector 
i, for i = 1, �, �. Let the covariance matrix � be such 
that � = RTR. If  

y = R-T (x � 
i) 

then 

� � � �
1/ 2 ; ,T

i ig y f R y � �� � � �  

It is assumed that g(y) is a spherically symmetric density in p-dimensions. 

In imsls_f_robust_covariances, � and 
i are estimated as the solutions 
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of the estimation equations 
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where i indexes the � groups, ni, is the number of observations in group i, fij is the 
frequency for the j-th observation in group i, wij is the observation weight 
specified in column iwt of x, Ip is a p � p identity matrix, 

T
ij ij ijr y y�  

w(r) and u(r) are the weighting functions, and where � is a constant computed by 
the program to make the expected weighted Mahalanobis distance (yTy) equal the 
expected Mahalanobis distance from a multivariate normal distribution (see 
Marazzi 1985). The constant � is described more fully below. 

Function imsls_f_robust_covariances uses one of two algorithms for 
solving the estimation equations. The first algorithm is discussed in detail in 
Huber (1981) and is a variant of the conjugate gradient method. The second 
algorithm is due to Stahel (1981) and is discussed in detail by Marazzi (1985). In 
both algorithms, correction vectors Tki for the group i means and correction 
matrix Wk = Ip + Uk for the Cholesky factorization of � are found such that the 
updated mean vectors are given by  

, 1 ,ˆ ˆi k i k kiT� �
�
� �  

and the updated matrix R is given as  

1
ˆ ˆ

k k kR W R
�
�  

where k is the iteration number and  

ˆ T
k k kR R� �  

When all elements of Uk and Tki are less than  = tolerance, convergence is 
assumed. 

Three methods for obtaining estimates are allowed. In the first method, the 
sample weighted estimate of � is computed. In the second method, estimates 
based upon the median and the interquartile range are used. Finally, in the last 
method, the user inputs initial estimates.  

Function imsls_f_robust_covariances computes estimates based on the 
“minimax” weights discussed above. The constant � is chosen such that E  
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(u(r)r2) = �� where the expectation is with respect to a standard p-variate 
multivariate normal distribution. This yields estimates with the correct 
expectation for the multivariate normal distribution (for given mean vector). The 
expectation is computed via integration of estimated spline function. 200 knots 
are used on an equally apaced grid from 0.0 to the 99.999 percentile of  

2
p�  

distribution. An error estimate is computed based upon 100 of these knots. If the 
estimated relative error is greater than 0.0001, a warning message is issued. If � is 
not computed accurately (i.e., if the warning message is issued), the computed 
esimates are still optimal, but the scale of the estimated covariance matrix may 
need to be multiplied by a constant in order for 

�̂  

to have the correct multivariate normal covariance expectation. 

Examples 

Example 1 
The following example computes a robust variance-covariance matrix. The last 
column of the data set is the group indicator. 

#include <imsls.h> 
#include <stdlib.h> 
main() 
{ 
    int nobs = 6; 
    int nvar = 2; 
    int n_groups = 2; 
    float *cov; 
    float x[18] = { 
        2.2, 5.6, 1, 
        3.4, 2.3, 1, 
        1.2, 7.8, 1, 
        3.2, 2.1, 2,  
        4.1, 1.6, 2, 
        3.7, 2.2, 2}; 
 
    cov = imsls_f_robust_covariances(nobs, nvar, x, n_groups, 0);  
 
    imsls_f_write_matrix("Robust Covariance Matrix", nvar, nvar, cov,  
        IMSLS_COL_NUMBER_ZERO, 
        IMSLS_ROW_NUMBER_ZERO, 0); 
 
    free(cov); 
} 

Output 
  
Robust Covariance Matrix 
            0           1 
0       0.522      -1.160 
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1      -1.160       2.862 

Example 2 
The following example computes estimates of the pooled covariance matrix for 
the Fisher’s iris data. For comparison, the estimates are first computed via 
function imsls_f_pooled_covariances. Function 
imsls_f_robust_covariances with  percentage = 2.0 is then used to 
compute the robust estimates. As can be seen from the output, the resulting 
estimates are quite similar. 

Next, three observations are made into outliers, and again, estimates are 
computed using functions imsls_f_pooled_covariances and 
imsls_f_robust_covariances. When outliers are present, the estimates of 
imsls_f_pooled_covariances are adversely affected, while the estimates 
produced by imsls_f_robust_covariances are close the estimates produced 
when no outliers are present. 

include <imsls.h> 
#include <stdlib.h> 
main() 
{ 
    int     nobs = 150; 
    int     nvar = 4; 
    int     n_groups = 3; 
    float   percentage = 2.0; 
    int     igrp = 0; 
    int     ifrq = -1; 
    int     iwt = -1; 
    int     ind[4] = {1, 2, 3, 4}; 
    float   *x, cov[16], rbcov[16]; 
 
    x = imsls_f_data_sets(3, 0); 
 
    imsls_f_pooled_covariances(nobs, nvar, x, n_groups,  
        IMSLS_RETURN_USER, cov, 
        IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0); 
 
    imsls_f_write_matrix("Pooled Covariance with No Outliers", nvar, nvar,  
                         cov,  
        IMSLS_COL_NUMBER_ZERO, 
        IMSLS_ROW_NUMBER_ZERO, 
        IMSLS_PRINT_UPPER, 0); 
 
    imsls_f_robust_covariances(nobs, nvar, x, n_groups,  
        IMSLS_RETURN_USER, rbcov, 
        IMSLS_PERCENTAGE, percentage, 
        IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0); 
 
    imsls_f_write_matrix("Robust Covariance with No Outliers", nvar, nvar,  
                         rbcov,  
        IMSLS_COL_NUMBER_ZERO, 
        IMSLS_ROW_NUMBER_ZERO, 
        IMSLS_PRINT_UPPER, 0); 
 
    /* Add Outliers */ 
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    x[1] = 100.0; 
    x[19] = 100.0; 
    x[497] = -100.0; 
 
    imsls_f_pooled_covariances(nobs, nvar, x, n_groups,  
        IMSLS_RETURN_USER, cov, 
        IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0); 
 
    imsls_f_write_matrix("Pooled Covariance with Outliers", nvar, nvar,  
                         cov,  
        IMSLS_COL_NUMBER_ZERO, 
        IMSLS_ROW_NUMBER_ZERO, 
        IMSLS_PRINT_UPPER, 0); 
 
    imsls_f_robust_covariances(nobs, nvar, x, n_groups,  
        IMSLS_RETURN_USER, rbcov, 
        IMSLS_PERCENTAGE, percentage, 
        IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0); 
 
    imsls_f_write_matrix("Robust Covariance with Outliers", nvar, nvar,  
                         rbcov,  
        IMSLS_COL_NUMBER_ZERO, 
        IMSLS_ROW_NUMBER_ZERO, 
        IMSLS_PRINT_UPPER, 0); 
 
 
    free(x); 
} 
 

Output 
  
       Pooled Covariance with No Outliers 
            0           1           2           3 
0      0.2650      0.0927      0.1675      0.0384 
1                  0.1154      0.0552      0.0327 
2                              0.1852      0.0427 
3                                          0.0419 
  
       Robust Covariance with No Outliers 
            0           1           2           3 
0      0.2474      0.0872      0.1535      0.0360 
1                  0.1073      0.0538      0.0322 
2                              0.1705      0.0412 
3                                          0.0401 
  
         Pooled Covariance with Outliers 
            0           1           2           3 
0       60.43        0.30        0.13       -1.56 
1                   70.53        0.17       -0.17 
2                                0.19        0.07 
3                                           66.38 
  
         Robust Covariance with Outliers 
            0           1           2           3 
0      0.2555      0.0876      0.1553      0.0359 
1                  0.1127      0.0545      0.0322 
2                              0.1723      0.0412 
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3                                          0.0424 

Warning Errors 
IMSLS_NO_CONVERGE_MAX_ITER Failure to converge within “maxit” 

= # iterations for at least one of the 
“nroot” = # roots. 

Fatal Errors 
IMSLS_BAD_GROUP_2 The group number for observation 

# is equal to #. It must be greater 
than or equal to one and less than 
or equal to #, the number of 
groups. 
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Chapter 4: Analysis of Variance and 
Designed Experiments

Routines 
4.1 General Analysis of Variance 

One-way analysis of variance ..................................anova_oneway 230 
Analysis of variance for fixed effects, 
balanced factorial designs  .....................................anova_factorial 239 
Nested random effects analysis of variance ............. anova_nested 247 
Analysis of variance for balanced fixed,  
random, or mixed models ......................................anova_balanced 256 

4.2 Designed Experiments 
Analysis of balanced and unbalanced completely 
randomized factorial experiments................................ crd_factorial 267 
Analysis of balanced and unbalanced randomized  
complete block factorial experiments......................... rcbd_factorial  279 

Analysis of latin-square experiments ........................... latin_square 288 

Analysis of balanced and partially-balanced data from  
lattice experiments ..................................................................lattice 297 

Analysis of split-plot experiments.......................................split_plot 316 

Analysis of split-split-plot experiments ...................... split_split_plot 329 

Analysis of strip-plot experiments ..................................... strip_plot 345 

Analysis of strip-split-plot experiments...................... strip_split_plot 355 

4.3 Utilities 
Bartlett’s and Levene’s tests of the homogeneity  
of variance assumption in analysis of variance........... homogeneity  378 

Multiple comparisons of means ....................multiple_comparisons 385 

Yates’ method for estimating missing observations in  
designed experiments............................................................. yates 390 
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Usage Notes 
The functions in this chapter cover a wide variety of commonly used 
experimental designs. They can be categorized, not only based upon the 
underlying experimental design that generated the user’s data, but also on whether 
they provide support for missing values, factorial treatment structure, blocking 
and replication of the entire experiment, or multiple locations.  

Typically, responses are stored in the input vector y. For a few functions, such as 
imsls_f_anova_oneway (page 230)and imsls_f_anova_factorial  
(page 239), the full set of model subscripts is not needed to identify each 
response. They assume the usual pattern, which requires that the last model 
subscript change most rapidly, followed by the model subscript next in line, and 
so forth, with the first subscript changing at the slowest rate. This pattern is 
referred to as lexicographical ordering. 

However, for most of the functions in this chapter, one or more arrays are used to 
describe the experimental conditions associated with each value in the response 
input vector y.   The function imsls_f_split_plot (page 316), for example, 
requires three additional input arrays:  split, whole and rep.  They are used to 
identify the split-plot, whole-plot and replicate number associated with each value 
in y.   

Many of the functions described in this chapter permit users to enter missing data 
values using NaN (Not a Number) as the missing value code. Use function 
imsls_f_machine (or function imsls_d_machine with the double-precision) 
to retrieve NaN. Any element of y that is missing must be set to 
imsls_f_machine(6) or imsls_d_machine(6) (for double precision). See 
imsls_f_machine in Chapter 14, “Utilities” for a description. Functions 
imsls_f_anova_factorial (page 239), imsls_f_anova_nested  
(page 247)and imsls_f_anova_balanced (page 256) require complete, 
balanced data, and do not accept missing values. 

As a diagnostic tool for validating model assumptions, some functions in this 
chapter perform a test for lack of fit when replicates are available in each cell of 
the experimental design.. 

Completely Randomized Experiments 
Completely randomized experiments are analyzed using some variation of the 
one-way analysis of variance (Anova).  A completely randomized design (CRD) 
is the simplest and most common example of a statistically designed experiment.  
Researchers using a CRD are interested in comparing the average effect of two or 
more treatments.  In agriculture, treatments might be different plant varieties or 
fertilizers.  In industry, treatments might be different product designs, different 
manufacturing plants, different methods for delivering the product, etc.  In 
business, different business processes, such as different shipping methods or 
alternate approaches to a product repair process, might be considered treatments.  
Regardless of the area, the one thing they have in common is that random errors 
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in the observations cause variations in differences between treatment 
observations, making it difficult to confirm the effectiveness of one treatment to 
another.  

If observations on these treatments are completely independent then the design is 
referred to as a completely randomized design or CRD.  The IMSL C Numerical 
Library has two routines for analysis of data from CRD:  
imsls_f_anova_oneway (page 230) and imsls_f_crd_factorial 
(page 267). 

Both functions allow users to specify observations with missing values, have 
unequal group sizes, and output treatment means and standard deviations. The 
primary difference between the functions is that: 
1. imsls_f_anova_oneway (page 230) conducts multiple comparisons of 

treatment functions; whereas imsls_f_crd_factorial (page 267) 
requires users to make a call to imsls_f_multiple_comparisons  
(page 385) to compare treatment means. 

2. imsls_f_crd_factorial (page 267) can analyze treatments with a 
factorial treatment structure; whereas imsls_f_anova_oneway (page 230) 
does not analyze factorial structures. 

3. imsls_f_crd_factorial (page 267) can analyze data from CRD 
experiments that are replicated across several blocks or locations. This can 
happen when the same experiment is repeated at different times or different 
locations. 

Factorial Experiments 
In some cases, treatments are identified by a combination of experimental factors.  
For example, in an octane study comparing several different gasolines, each 
gasoline could be developed using a combination of two additives, denoted below 
in  Table 1, as Additive A and Additive B: 

 
Treatment Additive A Additive B 

1 No No 

2 Yes No 

3 No Yes 

4 Yes Yes 

Table 1 - A 2x2 Factorial Experiment 

This is referred to as a 2x2 or 22 factorial experiment.  There are 4 treatments 
involved in this study.  One contains no additives, i.e. Treatment 1. Treatment 2 
and 3 contain only one of the additives and treatment 4 contains both.  A one-way 
anova, such as found in anova_oneway can analyze these data as 4 different 
treatments.  Three functions, imsls_f_crd_factorial (page 267), 
imsls_f_rcbd_factorial (page 279) and imsls_f_anova_factorial 
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(page 239) will analyze these data exploiting the factorial treatment structure.  
These functions allow users to answer structural questions about the treatments 
such as:   
1. Are the average effects of the additives statistically significant?  This is 

referred to as the factor main effects. 
2. Is there an interaction effect between the additives.  That is, is the 

effectiveness of an additive independent of the other? 

Both imsls_f_crd_factorial (page 267) and imsls_f_rcbd_factorial  
(page 279) support analysis of a factorial experiment with missing values and 
multiple locations.  The function imsls_f_anova_factorial (page 239)  does 
not support analysis of experiments with missing values or experiments replicated 
over multiple locations.  The main difference, as the names imply, between 
imsls_f_crd_factorial and imsls_f_rcbd_factorial is that 
imsls_f_crd_factorial assumes that treatments were completely 
randomized to experimental units.  The imsls_f_rcbd_factorial routine 
assumes that treatments are blocked. 

Blocking 
Blocking is an important technique for reducing the impact of experimental error 
on the ability of the researcher to evaluate treatment differences.  Usually this 
experimental error is caused by differences in location (spatial differences), 
differences in time (temporal differences) or differences in experimental units. 
Researchers refer to these as blocking factors.  They are identifiable causes 
known to cause variation in observations between experimental units. 

There are several functions that specifically support blocking in an experiment:  
imsls_f_rcbd_factorial (page 279), imsls_f_lattice (page 297), and 
imsls_f_latin_square (page 288).  The first two functions, 
imsls_f_rcbd_factorial and imsls_f_lattice, support blocking on one 
factor. 

A requirement of RCBD experiments is that every block must contain 
observations on every treatment. However, when the number of treatments ( t ) is 
greater than the block size ( ), it is impossible to have every block contain 
observations on every treatment.     

b

In this case, when , an incomplete block design must be used instead of a 
RCBD.  Lattice designs are a type of incomplete block design in which the 
number of treatments is equal to the square of an integer such as 9, 16, 25, 
etc.  Lattice designs were originally described by Yates (1936).  The function 
imsls_f_lattice (page 297) supports analysis of data from lattice 
experiments. 

t b�

t �

Besides the requirement that , another characteristic of lattice experiments 
is that blocks be grouped into replicates, where each replicate contains one 
observation for every treatment.  This forces the number of blocks in each 
replicate to be equal to the number of observations per block.  That is, the number 

2t k�
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of blocks per replicate and the number of observations per block are both equal to 
k t�

n_

. 

In addition, the number of replicate groups in Lattice experiments is always less 
than or equal to .  If it is equal to  then the design is referred to as a 
Balanced Lattice.  If it is less than  then the design is referred to as a 
Partially Balanced Lattice.  Tables of these experiments and their analysis are 
tabulated in Cochran & Cox (1950). 

1k � 1k �

1k �

Consider, for example, a 3x3 balanced-lattice, i.e., k=3 and t=9.  Notice that the 
number of replicates is . And the number of blocks per replicate and 
block size are both k .  The total number of blocks is equal to 

.  For a balanced-lattice, 

1 4r k� � �

3
( 1) 1r k� � �

�

sb � location �

( 1)b r k k� � � � ( 1)t t� � � 4 3 1� � 2k� � . 
 

Replicate I Replicate II 
Block 1 (T1, T2, T3) Block 4 (T1, T4, T7) 
Block 2 (T4, T5, T6) Block 5 (T2, T5, T8) 
Block 3 (T7, T8, T9) Block 6 (T3, T6, T9) 

Replicate III Replicate IV 
Block 7 (T1, T5, T9) Block 10 (T1, T6, T8) 
Block 8 (T2, T6, T7) Block 11 (T2, T4, T9) 
Block 9 (T3, T4, T8) Block 12 (T3, T5, T7) 

Table 2 - A 3x3 Balanced-Lattice for Nine Treatments in Four Replicates. 

The Anova table for a balanced-lattice experiment, takes the form shared with 
other balanced incomplete block experiments.  In these experiments, the error 
term is divided into two components:  the Inter-Block Error and the Intra-Block 
Error. For single and multiple locations, the general format of the Anova tables 
for Lattice experiments is illustrated in Table 3 and Table 4.  

 
Source DF Sum of Squares Mean Squares 

  REPLICATES 1t �  SSR MSR 

  TREATMENTS(unadj) 1t �  SST MST 

TREATMENTS(adj) 1t �  SSTa MSTa 

BLOCKS(adj) ( 1)r k� �  SSBa MSBa 

INTRA-BLOCK ERROR ( 1)( 1)k r k k� � � �  SSE MSE 

TOTAL 1r t� �  SSTot 

Table 3 – The Anova Table for a Lattice Experiment at One Location 
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Source DF Sum of 
Squares 

Mean 
Squares 

LOCATIONS 1p �  SSL MSL 

REPLICATES WITHIN 
LOCATIONS 

� �1p r �  SSR MSR 

TREATMENTS(unadj) 1t �  SST MST 

TREATMENTS(adj) 1t �  SSTa MSTa 

BLOCKS(adj) ( 1)p r k� �  SSB MSB 

INTRA-BLOCK ERROR � �( 1) 1p k r k k� � � �  SSE MSE 

TOTAL 1p r t� � �  SSTot 

Table 4 – The Anova Table for a Lattice Experiment at Multiple Locations 

Latin Square designs are very popular in cases where: 
1. two blocking factors are involved 
2. the two blocking factors do not interact with treatments, and 
3. the number of blocks for each factor is equal to the number of treatments. 

Consider an octane study involving 4 test vehicles tested in 4 bays with 4 test 
gasolines.  This is a natural arrangement for a Latin square experiment.  In this 
case there are 4 treatments, and two blocking factors, test vehicle and bay, each 
with 4 levels. The Latin Square for this example would look like the following 
arrangement. 

 

 Test Vehicle 

 1 2 3 4 

1 A C B D 

2 D B A C 

3 C A D B 

Test 
 

Bay 

4 B D C A 
Table 5. A Latin Square Design for t=4 Treatments 

As illustrated above in Table 5, the letters A-D are used to denote the four test 
gasolines, or treatments.  The assignment of each treatment to a particular test 
vehicle and test bay is described in Table 5.  Gasoline A, for example, is tested in 
the following four vehicle/bay combinations: (1/1), (2/3), (3/2), and (4/4).   
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Notice that each treatment appears exactly once in every row and column.  This 
balance, together with the assumed absence of interactions between treatments 
and the two blocking factors is characteristic of a Latin Square. 

The corresponding Anova table for these data contains information on the 
blocking factors as well as treatment differences.  Notice that the F-test for one of 
the two blocking factors, test vehicle, is statistically significant  
(p = 0.048); whereas the other, test bay, is not statistically significant (p=0.321). 

Some researchers might use this as a basis to remove test bay as a blocking factor.  
In that case, the design can then be analyzed as a RCBD experiment since every 
treatment is repeated once and only once in every block, i.e., test vehicle. 

 
Source Degrees 

of  
Freedom 

Sum of 
Squares 

Mean Squares F-Test p-Value 

Test Vehicle 3 1.5825 0.5275 4.83 0.048 

Test Bay 3 0.0472 0.157 1.44 0.321 

Gasoline 3 4.247 1.416 12.97 0.005 

Error 6 0.655 0.109  

Total 15 6.9575  

Table 6 - Latin Square Anova Table for Octane Experiment 

Multiple Locations 
It is common for a researcher to repeat an experiment and then conduct an 
analysis of the data.  In agricultural experiments, for example, it is common to 
repeat an experiment at several different farms.  In other cases, a researcher may 
want to repeat an experiment at a specified frequency, such as week, month or 
year.  If these repeated experiments are independent of one another then we can 
treat them as multiple locations. 

Several of the functions in this chapter allow for multiple locations:  
imsls_f_crd_factorial (page 267), imsls_f_rcbd_factorial (page 279), 
imsls_f_lattice (page 297), imsls_f_latin_square (page 288), 
imsls_f_split_plot (page 316), imsls_f_split_split_plot (page 329), 
imsls_f_strip_plot (page 345), strip_split_plot (page 355).  All of these 
functions allow for analysis of experiments replicated at multiple locations.  By default 
they all treat locations as a random factor. Function imsls_f_split_plot  
also allows users to declare locations as a fixed effect. 
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Split-Plot Designs – Nesting and Restricted 
Randomization 
Originally, split-plot designs were developed for testing agricultural treatments, 
such as varieties of wheat, different fertilizers or different insecticides.  In these 
original experiments, growing areas were divided into plots.  The major treatment 
factor, such as wheat variety, was randomly assigned to these plots.  However, in 
addition to testing wheat varieties, they wanted to test another treatment factor 
such as fertilizer.  This could have been done using a CRD or RCBD design.  If a 
CRD design was used then treatment combinations would need to be randomly 
assigned to plots, such as shown below in Table 7. 
 

 
CRD 

W3F2 W1F3 W4F1 W2F1 
W2F3 W1F1 W1F3 W1F2 
W2F2 W3F1 W2F1 W4F2 
W3F2 W1F1 W2F3 W1F2 
W4F1 W3F2 W3F2 W4F3 
W4F3 W3F1 W2F2 W4F2 

Table 7 – Completely Randomized Experiments –Both Factors Randomized 

In the CRD illustration above, any plot could have any combination of wheat 
variety (W1, W2, W3 or W4) and fertilizer (F1, F2 or F3).  There is no restriction 
on randomization in a CRD.  Any of the  treatments can appear in 
any of the 24 plots. 

4 3 12t � � �

If a RCBD were used, all t=12 treatment combinations would need to be arranged 
in blocks similar to what is described in Table 8, which places one restriction on 
randomization. 

 
RCBD 

W3F3 W1F3 W4F1 W4F3 
W2F3 W1F1 W3F2 W1F2 

 
BLOCK 1 

W2F2 W3F1 W2F1 W4F2 
W3F2 W1F1 W2F3 W1F2 
W4F1 W1F3 W3F2 W4F3 

 
BLOCK 2 

W2F1 W3F1 W2F2 W4F2 
Table 8 – Randomized Complete Block Experiments –  

Both Factors Randomized Within a Block 

The RCBD arrangement is basically a replicated CRD design with a 
randomization restriction that treatments are divided into two groups of replicates 
which are assigned to a block of land.  Randomization of treatments only occurs 
within each block. 
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At first glance, a split-plot experiment could be mistaken for a RCBD experiment 
since it is also blocked.  The split-plot arrangement with only one replicate for 
this experiment is illustrated below in Table 9. Notice that it appears as if levels 
of the fertilizer factor (F1, F2, and F3) are nested within wheat variety (W1, W2, 
W3 and W4), however that is not the case.  Varieties were actually randomly 
assigned to one of four rows in the field.  After randomizing wheat varieties, 
fertilizer was randomized within wheat variety. 

 
Split-Plot Design 

Block 1 W2 W2F1 W2F3 W2F2 
W1 W1F3 W1F1 W1F2 
W4 W4F1 W4F3 W4F2 

 

W3 W3F2 W3F1 W3F3 
Block 2 W3 W3F2 W3F1 W3F3 

W1 W1F3 W1F1 W1F2 
W4 W4F1 W4F3 W4F2 
W2 W2F1 W2F3 W2F2 

Table 9 – A Split-Plot Experiment for Wheat (W) and Fertilizer (F) 

The essential distinction between split-plot experiments and completely 
randomized or randomized complete block experiments is the presence of a 
second factor that is blocked, or nested, within each level of the first factor. This 
second factor is referred to as the split-plot factor, and the first is referred to as 
the whole-plot factor.  

Both factors are randomized, but with a restriction on randomization of the 
second factor, the split-plot factor.  Whole plots (wheat variety) are randomly 
assigned, without restriction to plots, or rows in this example. However, the 
randomization of split-plots (fertilizer) is restricted.  It is restricted to random 
assignment within whole-plots.    

Strip-Plot Designs 
Strip-plot experiments look similar to split-plot experiments.  In fact they are 
easily confused, resulting in incorrect statistical analyses.  The essential 
distinction between strip-plot and split-plot experiments is the application of the 
second factor.  In a split-plot experiment, levels of the second factor are nested 
within the whole-plot factor (see Table 11). In strip-plot experiments, the whole-
plot factor is completely crossed with the second factor (see Table 10).   

This occurs, for example, when an agricultural field is used as a block and the 
levels of the whole-plot factor are applied in vertical strips across the entire field.  
Levels of the second factor are assigned to horizontal strips across the same 
block. 
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 Whole-Plot Factor 
 A2 A1 A4 A3 

B3 A2B3 A1B3 A4B3 A3B3 
B1 A2B1 A1B1 A4B1 A3B1 

Strip 
Plot B2 A2B2 A1B2 A4B2 A3B2 

Table 10 – Strip-Plot Experiments – Strip-Plots Completely Crossed 

Whole Plot Factor 
A2 A1 A4 A3 

A2B1 A1B3 A4B1 A3B3 
A2B3 A1B1 A4B3 A3B1 
A2B2 A1B2 A4B2 A3B2 

Table 11 – Split-Plot Experiments – Split-Plots Nested within Strip-Plots 

As described in the previous section, in a split-plot experiment the second 
experimental factor, referred to as the split-plot factor, is nested within the first 
factor, referred to as the whole-plot factor.  

Consider, for example, the semiconductor experiment described in Figure 1, 
“Split-Plot Randomization” below.  The wafers from each plater, the whole-plot 
factor, are divided into equal size groups and then randomly assigned to an 
etcher, the split-plot factor.  Wafers from different platers are etched separately 
from those that went through another plating machine.  Randomization occurred 
within each level of the whole-plot factor, i.e., plater. 

Graphically, as shown below, this arrangement appears similar to a tree or 
hierarchical structure. 

 

 

 

 

 

 

 

 



 

 
 

Chapter 4: Analysis of Variance and Designed Experiments Usage Notes � 225 

 

 

 

Wafer Lots 
 

Randomization to Plating Machines 
 
 
 

Plater 1 Plater 2 Plater 3 Plater 4 

    

Randomization Randomization Randomization Randomization 

    

E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 

Figure 1 - Split-Plot Randomization 

Notice that although there are only 3 etchers, 12 different runs are made using 
these etchers.  The wafers randomly assigned to the first plater and first etcher are 
processed separately from the wafers assigned to other plating machines. 

In a strip-plot experiment, the second randomization of the wafers to etchers 
occurs differently, see Figure 2, “Strip-Plot Semiconductor Experiment.”  Instead 
of randomizing the wafers from each plater to the three etchers and then running 
them separately from the wafers from another plater, the wafers from each plater 
are divided into three groups and then each randomly assigned to one of the three 
etchers.  However, the wafers from all four plating machines assigned to the same 
etcher are run together. 
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Wafer Lots 
 

Randomization to Plating Machines 
 
 
 

Plater 1 Plater 2 Plater 3 Plater 4 

    
Randomization to Etchers 

 

 

Etcher 1 Etcher 1 Etcher 1 

Figure 2 - Strip-Plot Semiconductor Experiment 

Strip-plot experiments can be analyzed using imsls_f_strip_plot (page 345).  
Function imsls_f_strip_plot returns a strip-plot Anova table with the 
following general structure: 

Source DF SS MS F-Test p-Value 
Blocks 1 0.0005 0.0005 0.955 0.431 

Whole-Plots:  Plating 
Machines 2 0.0139 0.0070 64.39 

0.015 

Whole-Plot Error 2 0.0002 0.0001 0.194 0.838 

Strip-Plots: Etchers 1 0.0033 0.0033 100.0 0.060 

Strip-Plot Error 1 <0.0001 <0.0001 0.060 0.830 

Whole-Plot x Strip-Plot 2 0.0033 0.0017 2.970 0.251 

Whole-Plot x Strip-Plot Error 2 0.0011 0.0006   

Total 11 0.0225  

Table 12 - Strip-Plot Anova Table for Semiconductor Experiment 
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Split-Split Plot and Strip-Split Plot Experiments 
There are hundreds of other designs used in research and industry.  The designs 
mentioned above are some of the most common.  Other frequently used designs 
include variations of the split and strip-plot designs: 

�� Split-Split-Plot Experiments, and 

�� Strip-Split Plot Experiments. 

The essential distinction between split-plot  and split-split-plot experiments is the 
presence of a third factor that is blocked, or nested, within each level of the 
whole-plot and split-plot factors.  This third factor is referred to as the sub-plot, 
factor.  A split-plot experiment, see Table 12, has only two factors, denoted by A 
and B.  The second factor is nested within the first factor.  Randomization of the 
second factor, the split-plot factor, occurs within each level of the first factor. 

 
Whole Plot Factor 

A2 A1 A4 A3 
A2B1 A1B3 A4B1 A3B2 
A2B3 A1B1 A4B3 A3B1 
A2B2 A1B2 A4B2 A3B3 

Table 13 - Split-Plot Experiment – Split-Plot B Nested  
within Whole-Plot A 

On the other hand, a split-split plot experiment has three factors, illustrated in 
Table 14 by A, B and C.  The second factor is nested within the first factor, and 
the third factor is nested within the second. 

 
Whole Plot Factor A 

A2 A1 A4 A3 
A2B3C2 
A2B3C1 

A1B2C1 
A1B2C2 

A4B1C2 
A4B1C1 

A3B3C2 
A3B3C1 

A2B1C1 
A2B1C2 

A1B1C1 
A1B1C2 

A4B3C2 
A4B3C1 

A3B2C2 
A3B2C1 

A2B2C2 
A2B2C1 

A1B3C1 
A1B3C2 

A4B2C1 
A4B2C2 

A3B1C2 
A3B1C1 

Table 14 – Split-Split Plot Experiment – Sub-Plot Factor C Nested Within  
Split-Plot Factor B, Nested Within Whole-Plot Factor A 

Contrast the split-split plot experiment to the same experiment run using a strip-
split plot design (see Table 15).  In a strip-split plot experiment factor B is 
applied in strip across factor A; whereas, in a split-split plot experiment, factor B 
is randomly assigned to each level of factor A.  In a strip-split plot experiment, 
the level of factor B is constant across a row; whereas in a split-split plot 
experiment, the levels of factor B change as you go across a row, reflecting the 
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fact that for split-plot experiments, factor B is randomized within each level of 
factor A. 

 
 

  Factor A Strip Plots 
  A2 A1 A4 A3 

B3 A2B3C2 
A2B3C1 

A1B3C1 
A1B3C2 

A4B3C2 
A4B3C1 

A3B3C2 
A3B3C1 

B1 A2B1C1 
A2B1C2 

A1B1C1 
A1B1C2 

A4B1C2 
A4B1C1 

A3B1C2 
A3B1C1 

 
Factor B 

Strip 
Plots B2 A2B2C2 

A2B2C1 
A1B2C1 
A1B2C2 

A4B2C1 
A4B2C2 

A3B2C2 
A3B2C1 

Table 15 – Strip-Split Plot Experiment, Split-Plots Nested Within  
Strip-Plot Factors A and B 

In some studies, split-split-plot or strip-split-plot experiments are replicated at 
several locations.  Functions imsls_f_split_split_plot (page 329) and 
imsls_f_strip_split_plot (page 355) can analyze these, even when the 
number of blocks or replicates at each location is different.  

Validating Key Assumptions in Anova 
The key output in the analysis of designed experiments is the F-tests in the Anova 
table for that experiment.  The validity of these tests relies upon several key 
assumptions: 
1. observational errors are independent of one another, 
2. observational errors are Normally distributed, and 
3. the variance of observational errors is homogeneous across treatments. 

These are referred to as the independence, Normality and homogeneity of 
variance assumptions.  All of these assumptions are evaluated by examining the 
properties of the residuals, which are estimates of the observational error for each 
observation.  Residuals are calculated by taking the difference between each 
observed value in the series and its corresponding estimate.  In most cases, the 
residual is the difference between the observed value and the mean for that 
treatment. 

The independence assumption can be examined by evaluating the magnitude of 
the correlations among the residuals sorted in the order they were collected.  The 
IMSL function imsls_f_autocorrelation (see Chapter 8, “Times Series and 
Forecasting”).  can be used to obtain these correlations.  The autocorrelations, to 
a maximum lag of about 20, can be examined to identify any that are statistically 
significant.   

Residuals should be independent of one another, which implies that all 
autocorrelations with a lag of 1 or higher should be statistically equivalent to 
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zero.  If a statistically significant autocorrelation is found, leading a researcher to 
conclude that an autocorrelation is not equal to zero, then this would provide 
sufficient evidence to conclude that the observational errors are not independent 
of one another. 

The second major assumption for analysis of variance is the Normality 
assumption.  In the IMSL C Numerical Library, the function 
imsls_f_normality_test (see Chapter 7, “Tests of Goodness of Fit” )can be 
used to determine whether the residuals are not Normally distributed.  A small  
p-value from this test provides sufficient evidence to conclude that the 
observational errors are not Normally distributed. 

The last assumption, homogeneity of variance, is evaluated by comparing 
treatment standard errors.  This is equivalent to testing whether 

 , where �  is the standard deviation of the observational error 
for the ith treatment.  This test can be conducted using imsls_f_homogeneity 
(page 378).  To conduct this test, the residuals, and their corresponding treatment 
identifiers are passed into imsls_f_homogeneity.  It calculates the  
p-values for both Bartlett’s and Levene’s tests for equal variance.  If a p-value is 
below the stated significance level, a researcher would conclude that the within 
treatment variances are not homogeneous. 

1 2 t� � �� � �� i

Missing Observations 
Missing observations create problems with the interpretation and calculation of  
F-tests for designed experiments.  The approach taken in the functions described 
in this chapter is to estimate missing values using the Yates method and then to 
compute the Anova table using these estimates. 

Essentially the Yates method, implemented in imsls_f_yates (page 390), 
replaces missing observations with the values that minimize the error sum of 
squares in the Anova table. The Anova table is calculated using these estimates, 
with one modification.  The total degrees of freedom and the error degrees of 
freedom are both reduced by the number of missing observations.  

For simple cases, in which only one observation is missing, formulas have been 
developed for most designs.  See Steel and Torrie (1960) and Cochran and Cox 
(1957) for a description of these formulas.  However for more than one missing 
observation, a multivariate optimization is conducted to simultaneously estimate 
the missing values.  For the simple case with only one missing value, this 
approach produces estimates identical to the published formulas for a single 
missing value. 

A potential issue arises when the Anova table contains more than one form of 
error, such as split-plot and strip-plot designs.  In every case, missing values are 
estimated by minimizing the last error term in the table. 
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anova_oneway 
Analyzes a one-way classification model. 

Synopsis 
#include <imsls.h> 
float imsls_f_anova_oneway (int n_groups, int n[], float y[], ..., 0) 

The type double function is imsls_d_anova_oneway 

Required Arguments 

int n_groups   (Input) 
Number of groups. 

int n[]   (Input) 
Array of length n_groups containing the number of responses for each 
group. 

float y[]   (Input) 
Array of length n [0] + n [1] + � + n [n_group � 1] containing the 
responses for each group. 

Return Value 
The p-value for the F-statistic. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_anova_oneway (int n_groups, int n[], float y[], 

IMSLS_ANOVA_TABLE, float **anova_table, 
IMSLS_ANOVA_TABLE_USER, float anova_table[], 
IMSLS_GROUP_MEANS, float **means, 
IMSLS_GROUP_MEANS_USER, float means[], 
IMSLS_GROUP_STD_DEVS, float **std_devs, 
IMSLS_GROUP_STD_DEVS_USER, float std_devs[], 
IMSLS_GROUP_COUNTS, int **counts, 
IMSLS_GROUP_COUNTS_USER, int counts[], 
IMSLS_CONFIDENCE, float confidence, 
IMSLS_TUKEY, float **ci_diff_means, or 
IMSLS_DUNN_SIDAK, float **ci_diff_means, or 
IMSLS_BONFERRONI, float **ci_diff_means, or 
IMSLS_SCHEFFE, float **ci_diff_means, or 
IMSLS_ONE_AT_A_TIME, float **ci_diff_means, 
IMSLS_TUKEY_USER, float ci_diff_means[], or 
IMSLS_DUNN_SIDAK_USER, float ci_diff_means[], or 
IMSLS_BONFERRONI_USER, float ci_diff_means[], or 
IMSLS_SCHEFFE_USER, float ci_diff_means[], or 
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IMSLS_ONE_AT_A_TIME_USER, float ci_diff_means[], 
0) 

Optional Arguments 
IMSLS_ANOVA_TABLE, float **anova_table   (Output) 

Address of a pointer to an internally allocated array of size 15 containing 
the analysis of variance table. The analysis of variance statistics are as 
follows: 

Element Analysis of Variance Statistics 
0 degrees of freedom for the model 
1 degrees of freedom for error 
2 total (corrected) degrees of freedom 
3 sum of squares for the model 
4 sum of squares for error 
5 total (corrected) sum of squares 
6 model mean square 
7 error mean square 
8 overall F-statistic 
9 p-value 

10 R2 (in percent) 
11 adjusted R2 (in percent) 
12 estimate of the standard deviation 
13 overall mean of y 
14 coefficient of variation (in percent) 

IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
Storage for array anova_table is provided by the user. See 
IMSLS_ANOVA_TABLE. 

IMSLS_GROUP_MEANS, float **means   (Output) 
Address of a pointer to an internally allocated array of length n_groups 
containing the group means. 

IMSLS_GROUP_MEANS_USER, float means[]   (Output) 
Storage for array means is provided by the user. See 
IMSLS_GROUP_MEANS. 

IMSLS_GROUP_STD_DEVS, float **std_devs   (Output) 
Address of a pointer to an internally allocated array of length n_groups 
containing the group standard deviations. 
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IMSLS_GROUP_STD_DEVS_USER, float std_devs[]   (Output) 
Storage for array std_devs is provided by the user. See 
IMSLS_STD_DEVS. 

IMSLS_GROUP_COUNTS, int **counts   (Output) 
Address of a pointer to an internally allocated array of length n_groups 
containing the number of nonmissing observations for the groups. 

IMSLS_GROUP_COUNTS_USER, int counts[]   (Output) 
Storage for array counts is provided by the user. See IMSLS_COUNTS. 

IMSLS_CONFIDENCE, float confidence   (Input) 
Confidence level for the simultaneous interval estimation. 
If IMSLS_TUKEY is specified, confidence must be in the range 
[90.0, 99.0). Otherwise, confidence is in the range [0.0, 100.0). 
Default: confidence = 95.0 

IMSLS_TUKEY, float **ci_diff_means   (Output), or 
IMSLS_DUNN_SIDAK, float **ci_diff_means   (Output), or 
IMSLS_BONFERRONI, float **ci_diff_means   (Output), or 
IMSLS_SCHEFFE, float **ci_diff_means   (Output), or 
IMSLS_ONE_AT_A_TIME, float **ci_diff_means   (Output) 

Function imsls_f_anova_oneway computes the confidence intervals 
on all pairwise differences of means using any one of six methods: 
Tukey, Tukey-Kramer, Dunn-Šidák, Bonferroni, Scheffé, or Fisher’s 
LSD (One-at-a-Time). If IMSLS_TUKEY is specified, the Tukey 
confidence intervals are calculated if the group sizes are equal; 
otherwise, the Tukey-Kramer confidence intervals are calculated. 

On return, ci_diff_means contains the address of a pointer to a 

� �2 5�ngroups  

internally allocated array containing the statistics relating to the 
difference of means. 

Column Description 
0 group number for the i-th mean 
1 group number for the j-th mean 
2 difference of means (i-th mean) � (j-th mean) 
3 lower confidence limit for the difference 
4 upper confidence limit for the difference 

IMSLS_TUKEY_USER, float ci_diff_means[]   (Output), or 
IMSLS_DUNN_SIDAK_USER, float ci_diff_means[]   (Output), or 
IMSLS_BONFERRONI_USER, float ci_diff_means[]   (Output), or 
IMSLS_SCHEFFE_USER, float ci_diff_means[]   (Output), or 
IMSLS_ONE_AT_A_TIME_USER, float ci_diff_means[]   (Output) 

Storage for array ci_diff_means is provided by the user. 
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Description 
Function imsls_f_anova_oneway performs an analysis of variance of 
responses from a oneway classification design. The model is  

yij = �i + �ij  i = 1, 2, �, k; j = 1, 2, �, ni 

where the observed value yij constitutes the j-th response in the i-th group,  
�i denotes the population mean for the i-th group, and the �ij arguments are errors 
that are identically and independently distributed normal with mean 0 and 
variance �2. Function imsls_f_anova_oneway requires the yij observed 
responses as input into a single vector y with responses in each group occupying 
contiguous locations. The analysis of variance table is computed along with the 
group sample means and standard deviations. A discussion of formulas and 
interpretations for the one-way analysis of variance problem appears in most 
elementary statistics texts, e.g., Snedecor and Cochran (1967, Chapter 10). 

Function imsls_f_anova_oneway computes simultaneous confidence intervals 
on all 

� �1
2

k k
k�

�

�  

pairwise comparisons of k means �1 �2, �, �k in the one-way analysis of variance 
model. Any of several methods can be chosen. A good review of these methods is 
given by Stoline (1981). The methods are also discussed in many elementary 
statistics texts, e.g., Kirk (1982, pp. 114�127). 

Let s2 be the estimated variance of a single observation. Let v be the degrees of 
freedom associated with s2. Let 

1
100.0

� � �

confidence  

The methods are summarized as follows: 

Tukey method: The Tukey method gives the narrowest simultaneous confidence 
intervals for all pairwise differences of means �i � �j in balanced  
(n1 = n2 = � = nk = n) one-way designs. The method is exact and uses the 
Studentized range distribution. The formula for the difference �i � �j is given by 

2
1 ; , sk vi j n

y y q
��

� �  

where q1-a;k,v is the (1 � �) 100 percentage point of the Studentized range 
distribution with parameters k and v. 

Tukey-Kramer method: The Tukey-Kramer method is an approximate 
extension of the Tukey method for the unbalanced case. (The method simplifies 
to the Tukey method for the balanced case.) The method always produces 
confidence intervals narrower than the Dunn-Šidák and Bonferroni methods. 
Hayter (1984) proved that the method is conservative, i.e., the method guarantees 
a confidence coverage of at least (1 � �) 100. Hayter’s proof gave further support 
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to earlier recommendations for its use (Stoline 1981). (Methods that are currently 
better are restricted to special cases and only offer improvement in severely 
unbalanced cases; see, for example, Spurrier and Isham 1985.) The formula for 
the difference �i � �j is given by the following: 

2 2
1 ; ,

2 2i j

s si j v k
n n

y y q
�� �

� �  

Dunn-Šidák method: The Dunn-Šidák method is a conservative method. The 
method gives wider intervals than the Tukey-Kramer method. (For large v and 
small � and k, the difference is only slight.) The method is slightly better than the 
Bonferroni method and is based on an improved Bonferroni (multiplicative) 
inequality (Miller 1980, pp. 101, 254�255). The method uses the t distribution 
(see function imsls_f_t_inverse_cdf, Chapter 11, “Probability Distribution 
Functions and Inverses. The formula for the difference �i � �j is given by 

� �
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where tf ;v is the 100f percentage point of the t distribution with 	 degrees of 
freedom. 

Bonferroni method: The Bonferroni method is a conservative method based on 
the Bonferroni (additive) inequality (Miller, p. 8). The method uses the t 
distribution. The formula for the difference �i � �j is given by the following: 
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Scheffé method: The Scheffé method is an overly conservative method for 
simultaneous confidence intervals on pairwise difference of means. The method is 
applicable for simultaneous confidence intervals on all contrasts, i.e., all linear 
combinations 
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where the following is true: 
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This method can be recommended here only if a large number of confidence 
intervals on contrasts in addition to the pairwise differences of means are to be 
constructed. The method uses the F distribution (see function 
imsls_f_F_inverse_cdf, Chapter 11, “Probabilty and Distribution Functions 
and Inverses”). The formula for the difference �i � �j is given by 
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where F1-a;(k-1),v is the (1 � �) 100 percentage point of the F distribution with  
k � 1 and 	 degrees of freedom. 

One-at-a-Time t method (Fisher’s LSD): The One-at-a-Time t method is 
appropriate for constructing a single confidence interval. The confidence 
percentage input is appropriate for one interval at a time. The method has been 
used widely in conjunction with the overall test of the null hypothesis  
�1 = �2 = � = �k by the use of the F statistic. Fisher’s LSD (least significant 
difference) test is a two-stage test that proceeds to make pairwise comparisons of 
means only if the overall F test is significant. Milliken and Johnson (1984, p. 31) 
recommend LSD comparisons after a significant F only if the number of 
comparisons is small and the comparisons were planned prior to the analysis. If 
many unplanned comparisons are made, they recommend Scheffé’s method. If the 
F test is insignificant, a few planned comparisons for differences in means can 
still be performed by using either Tukey, Tukey-Kramer, Dunn-Šidák,or 
Bonferroni methods. Because the F test is insignificant, Scheffé’s method does 
not yield any significant differences. The formula for the difference �i � �j is 
given by the following: 
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Examples 

Example 1 
This example computes a one-way analysis of variance for data discussed by 
Searle (1971, Table 5.1, pp. 165�179). The responses are plant weights for six 
plants of three different types—three normal, two off-types, and one aberrant. 
The responses are given by type of plant in the following table: 

Normal Off-Type Aberrant 
101 84 32 

105 88  
94   

 
#include <imsls.h> 
main() 
{ 
    int     n_groups=3; 
    int     n[] = {3, 2, 1}; 
    float   y[] = {101.0, 105.0, 94.0, 84.0, 88.0, 32.0}; 
    float   p_value; 
    p_value = imsls_f_anova_oneway (n_groups, n, y, 0); 
    printf ("p-value = %6.4f", p_value); 
  } 
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Output 
p-value = 0.002 

Example 2 
The data used in this example is the same as that used in the initial example. 
Here, the anova_table is printed. 

#include <imsls.h> 
main() 
{ 
    int     n_groups=3; 
    int     n[] = {3, 2, 1}; 
    float   y[] = {101.0, 105.0, 94.0, 84.0, 88.0, 32.0}; 
    float   p_value; 
    float   *anova_table; 
    char    *labels[] = { 
                   "degrees of freedom for among groups", 
                   "degrees of freedom for within groups", 
                   "total (corrected) degrees of freedom", 
                   "sum of squares for among groups", 
                   "sum of squares for within groups", 
                   "total (corrected) sum of squares", 
                   "among mean square", 
                   "within mean square", "F-statistic", 
                   "p-value", "R-squared (in percent)", 
                   "adjusted R-squared (in percent)", 
                   "est. standard deviation of within error", 
                   "overall mean of y", 
                   "coefficient of variation (in percent)"}; 
 
                      /* Perform analysis */ 
    p_value = imsls_f_anova_oneway (n_groups, n, y, 
        IMSLS_ANOVA_TABLE, &anova_table, 
        0); 
                      /* Print results */ 
    imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1, 
        anova_table, 
        IMSLS_ROW_LABELS, labels, 
        IMSLS_WRITE_FORMAT, "%9.2f", 
        0); 
} 

Output 
         * * * Analysis of Variance * * * 
degrees of freedom for among groups           2.00 
degrees of freedom for within groups          3.00 
total (corrected) degrees of freedom          5.00 
sum of squares for among groups            3480.00 
sum of squares for within groups             70.00 
total (corrected) sum of squares           3550.00 
among mean square                          1740.00 
within mean square                           23.33 
F-statistic                                  74.57 
p-value                                       0.00 
R-squared (in percent)                       98.03 
adjusted R-squared (in percent)              96.71 
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est. standard deviation of within error       4.83 
overall mean of y                            84.00 
coefficient of variation (in percent)         5.75 

Example 3 
Simultaneous confidence intervals are generated for the following measurements 
of cold-cranking power for five models of automobile batteries. Nelson (1989, 
pp. 232�241) provided the data and approach. 

Model 1 Model 2 Model 3 Model 4 Model 5 
41 42 27 48 28 
43 43 26 45 32 
42 46 28 51 37 
46 38 27 46 25 

The Tukey method is chosen for the analysis of pairwise comparisons, with a 
confidence level of 99 percent. The means and their confidence limits are output. 

#include <imsls.h> 
 
void main() 
{ 
 
   int    n_groups = 5; 
   int    n[] = {4, 4, 4, 4, 4}; 
   int    permute[] = {2, 3, 4, 0, 1}; 
   float  y[] = {41.0, 43.0, 42.0, 46.0, 42.0,  
                43.0, 46.0, 38.0, 27.0, 26.0, 
                28.0, 27.0, 48.0, 45.0, 51.0, 
                46.0, 28.0, 32.0, 37.0, 25.0}; 
   float  *anova_table, *ci_diff_means, tmp_diff_means[50]; 
   float  confidence = 99.0; 
   char   *labels[] = { 
                    "degrees of freedom for among groups", 
                    "degrees of freedom for within groups", 
                    "total (corrected) degrees of freedom", 
                    "sum of squares for among groups", 
                    "sum of squares for within groups", 
                    "total (corrected) sum of squares", 
                    "among mean square", 
                    "within mean square", "F-statistic", 
                    "p-value", "R-squared (in percent)", 
                    "adjusted R-squared (in percent)", 
                    "est. standard deviation of within error", 
                    "overall mean of y", 
                    "coefficient of variation (in percent)"}; 
   char   *mean_row_labels[] = { 
                    "first and second", 
                    "first and third", 
                    "first and fourth", 
                    "first and fifth", 
                    "second and third", 
                    "second and fourth", 
                    "second and fifth", 
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                    "third and fourth", 
                    "third and fifth", 
                    "fourth and fifth"}; 
   char   *mean_col_labels[] = { 
                    "Means", 
                    "Difference of means", 
                    "Lower limit", 
                    "Upper limit"}; 
                        /* Perform analysis */ 
    
 imsls_f_anova_oneway(n_groups, n, y, 
        IMSLS_ANOVA_TABLE, &anova_table,  
        IMSLS_CONFIDENCE, confidence,  
        IMSLS_TUKEY, &ci_diff_means, 
        0); 
                        /* Print anova_table */ 
   imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15,  
        1, anova_table,  
        IMSLS_ROW_LABELS, labels, 
        IMSLS_WRITE_FORMAT, "%9.2f", 
        0); 
                      /* Permute ci_diff_means for printing */ 
   imsls_f_permute_matrix(10, 5, ci_diff_means, permute, 
        IMSLS_PERMUTE_COLUMNS, 
        IMSLS_RETURN_USER, tmp_diff_means, 
        0); 
                      /* Print ci_diff_means */ 
   imsls_f_write_matrix("* * * Differences in Means * * *\n", 10, 
        3, tmp_diff_means, 
        IMSLS_A_COL_DIM, 5, 
        IMSLS_ROW_LABELS, mean_row_labels, 
        IMSLS_COL_LABELS, mean_col_labels, 
        IMSLS_WRITE_FORMAT, "%9.2f", 
        0); 
} 

Output 
         * * * Analysis of Variance * * * 
 
degrees of freedom for among groups           4.00 
degrees of freedom for within groups         15.00 
total (corrected) degrees of freedom         19.00 
sum of squares for among groups            1242.20 
sum of squares for within groups            150.75 
total (corrected) sum of squares           1392.95 
among mean square                           310.55 
within mean square                           10.05 
F-statistic                                  30.90 
p-value                                       0.00 
R-squared (in percent)                       89.18 
adjusted R-squared (in percent)              86.29 
est. standard deviation of within error       3.17 
overall mean of y                            38.05 
coefficient of variation (in percent)         8.33 
  
           * * * Differences in Means * * * 
 
Means              Difference  Lower limit  Upper limit 
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                     of means                           
first and second         0.75        -8.05         9.55 
first and third         16.00         7.20        24.80 
first and fourth        -4.50       -13.30         4.30 
first and fifth         12.50         3.70        21.30 
second and third        15.25         6.45        24.05 
second and fourth       -5.25       -14.05         3.55 
second and fifth        11.75         2.95        20.55 
third and fourth       -20.50       -29.30       -11.70 
third and fifth         -3.50       -12.30         5.30 
fourth and fifth        17.00         8.20        25.80 

anova_factorial 
Analyzes a balanced factorial design with fixed effects. 

Synopsis 
#include <imsls.h> 
float imsls_f_anova_factorial (int n_subscripts, int n_levels, 

float y[], ..., 0) 

The type double function is imsls_d_anova_factorial 

Required Arguments 

int n_subscripts   (Input) 
Number of subscripts. Number of factors in the model + 1 (for the error 
term). 

int n_levels   (Input) 
Array of length n_subscripts containing the number of levels for each 
of the factors for the first n_subscripts � 1 elements. n_levels 
[n_subscripts � 1] is the number of observations per cell. 

float y[]   (Input) 
Array of length n_levels [0]*n_levels [1]* � *n_levels 
[n_subscripts � 1] containing the responses. Argument y must not 
contain NaN for any of its elements, i.e., missing values are not allowed. 

Return Value 
The p-value for the overall F test. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_anova_factorial (int n_subscripts, int n_levels, 

float y[], 
IMSLS_MODEL_ORDER, int model_order, 
IMSLS_PURE_ERROR, or 
IMSLS_POOL_INTERACTIONS, 



 

 
 

240 � anova_factorial IMSL C/Stat/Library 

 

 

 

IMSLS_ANOVA_TABLE, float **anova_table, 
IMSLS_ANOVA_TABLE_USER, float anova_table[], 
IMSLS_TEST_EFFECTS, float **test_effects, 
IMSLS_TEST_EFFECTS_USER, float test_effects[], 
IMSLS_MEANS, float **means, 
IMSLS_MEANS_USER, float means[], 
0) 

Optional Arguments 
IMSLS_MODEL_ORDER, int model_order   (Input) 

Number of factors to be included in the highest-way interaction in the 
model. Argument model_order must be in the interval 
[1, n_subscripts � 1]. For example, a model_order of 1 indicates 
that a main effect model will be analyzed, and a model_order of 2 
indicates that two-way interactions will be included in the model. 
Default: model_order = n_subscripts � 1 

IMSLS_PURE_ERROR, or 
IMSLS_POOL_INTERACTIONS   (Input) 

IMSLS_PURE_ERROR, the default option, indicates factor 
n_subscripts is error. Its main effect and all its interaction effects are 
pooled into the error with the other (model_order + 1)-way and higher-
way interactions. IMSLS_POOL_INTERACTIONS indicates factor 
n_subscripts is not error. Only (model_order + 1)-way and higher-
way interactions are included in the error. 

IMSLS_ANOVA_TABLE, float **anova_table   (Output) 
Address of a pointer to an internally allocated array of size 15 containing 
the analysis of variance table. The analysis of variance statistics are 
given as follows: 

Element Analysis of Variance Statistics 
0 degrees of freedom for the model 
1 degrees of freedom for error 
2 total (corrected) degrees of freedom 
3 sum of squares for the model 
4 sum of squares for error 
5 total (corrected) sum of squares 
6 model mean square 
7 error mean square 
8 overall F-statistic 
9 p-value 

10 R2 (in percent) 
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Element Analysis of Variance Statistics 
11 adjusted R2 (in percent) 
12 estimate of the standard deviation 
13 overall mean of y 
14 coefficient of variation (in percent) 

IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
Storage for array anova_table is provided by the user. See 
IMSLS_ANOVA_TABLE. 

IMSLS_TEST_EFFECTS, float **test_effects   (Output) 
Address of a pointer to an NEF 
 4 internally allocated array containing a 
matrix containing statistics relating to the sums of squares for the effects 
in the model. Here, 

� � � � � �1 2 min ( ,| |)NEF n n n
n� � � � model_order�  

where n is given by n_subscripts if IMSLS_POOL_INTERACTIONS is 
specified; otherwise, n_subscripts � 1. 

Suppose the factors are A, B, C, and error. With model_order = 3, 
rows 0 through NEF � 1 would correspond to A, B, C, AB, AC, BC, and 
ABC, respectively. The columns of test_effects are as follows: 

Column Description 
0 degrees of freedom 
1 sum of squares 
2 F-statistic 
3 p-value 

IMSLS_TEST_EFFECTS_USER, float test_effects[]   (Output) 
Storage for array test_effects is provided by the user. See 
IMSLS_TEST_EFFECTS. 

IMSLS_MEANS, float **means   (Output) 
Address of a pointer to an internally allocated array of length 
(n_levels [0] + 1) 
 (n_levels [1] + 1) 
 � 
  
(n_levels[n � 1] + 1) containing the subgroup means.  

See argument IMSLS_TEST_EFFECTS for a definition of n. If the factors 
are A, B, C, and error, the ordering of the means is grand mean, A 
means, B means, C means, AB means, AC means, BC means, and ABC 
means. 

IMSLS_MEANS_USER, float means[]   (Output) 
Storage for array means is provided by the user. See IMSLS_MEANS. 
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Description 
Function imsls_f_anova_factorial performs an analysis for an n-way 
classification design with balanced data. For balanced data, there must be an 
equal number of responses in each cell of the n-way layout. The effects are 
assumed to be fixed effects. The model is an extension of the two-way model to 
include n factors. The interactions (two-way, three-way, up to n-way) can be 
included in the model, or some of the higher-way interactions can be pooled into 
error. The argument model_order specifies the number of factors to be included 
in the highest-way interaction. For example, if three-way and higher-way 
interactions are to be pooled into error, set model_order = 2. (By default, 
model_order = n_subscripts � 1 with the last subscript being the error 
subscript.) Argument IMSLS_PURE_ERROR indicates there are repeated responses 
within the n-way cell; IMSLS_POOL_INTERACTIONS_INTO_ERROR indicates 
otherwise. 

Function imsls_f_anova_factorial requires the responses as input into a 
single vector y in lexicographical order, so that the response subscript associated 
with the first factor varies least rapidly, followed by the subscript associated with 
the second factor, and so forth. Hemmerle (1967, Chapter 5) discusses the 
computational method. 

Examples 

Example 1 
A two-way analysis of variance is performed with balanced data discussed by 
Snedecor and Cochran (1967, Table 12.5.1, p. 347). The responses are the weight 
gains (in grams) of rats that were fed diets varying in the source (A) and level (B) 
of protein. The model is  

1, 2; 1, 2, 3; 1, 2, ...,10ijk i j ij ijky i j� � �� �� � � � � � � �  

where 
2 3 2 3

1 1 1 1
0; 0; 0 for 1, 2, 3; and 0i j ij ij

i j i j
j� � � �

� � � �

� � � �� � � �  

for i = 1, 2. The first responses in each cell in the two-way layout are given in the 
following table: 
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 Protein Source (A) 
Protein Level (B) Beef Cereal Pork 
High 73, 102, 118, 104, 

81, 107, 100, 87, 
117, 111 

98, 74, 56, 111, 
95, 88, 82, 77, 86, 
92 

94, 79, 96, 98, 
102, 102, 108, 91, 
120, 105 

Low 90, 76, 90, 64, 86, 
51, 72, 90, 95, 78 

107, 95, 97, 80, 
98, 74, 74, 67, 89, 
58 

49, 82, 73, 86, 81, 
97, 106, 70, 61, 
82 

 

#include <imsls.h> 
 
void main () 
{ 
    int        n_subscripts= 3; 
    int        n_levels[3] = {3,2,10}; 
    float      p_value; 
    float      y[60] = { 
        73.0, 102.0, 118.0, 104.0, 81.0,  
        107.0, 100.0, 87.0, 117.0, 111.0,  
        90.0, 76.0, 90.0, 64.0, 86.0,  
        51.0, 72.0, 90.0, 95.0, 78.0, 
        98.0, 74.0, 56.0, 111.0, 95.0,  
        88.0, 82.0, 77.0, 86.0, 92.0,  
        107.0, 95.0, 97.0, 80.0, 98.0,  
        74.0, 74.0, 67.0, 89.0, 58.0,  
        94.0, 79.0, 96.0, 98.0, 102.0,  
        102.0, 108.0, 91.0, 120.0, 105.0,  
        49.0, 82.0, 73.0, 86.0, 81.0,  
        97.0, 106.0, 70.0, 61.0, 82.0}; 
 
    p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y, 0); 
  
    printf("P-value = %10.6f",p_value); 
} 

Output 
P-value =   0.00229 

Example 2 
In this example, the same model and data is fit as in the initial example, but 
optional arguments are used for a more complete analysis. 

#include <imsls.h> 
 
void main () 
{ 
    int        n_subscripts= 3; 
    int        n_levels[3] = {3,2,10}; 
    float      p_value; 
    float      *test_effects, *means, *anova_table; 
    float      y[60] = { 
        73.0, 102.0, 118.0, 104.0, 81.0,  



 

 
 

244 � anova_factorial IMSL C/Stat/Library 

 

 

 

        107.0, 100.0, 87.0, 117.0, 111.0,  
        90.0, 76.0, 90.0, 64.0, 86.0,  
        51.0, 72.0, 90.0, 95.0, 78.0, 
        98.0, 74.0, 56.0, 111.0, 95.0,  
        88.0, 82.0, 77.0, 86.0, 92.0,  
        107.0, 95.0, 97.0, 80.0, 98.0,  
        74.0, 74.0, 67.0, 89.0, 58.0,  
        94.0, 79.0, 96.0, 98.0, 102.0,  
        102.0, 108.0, 91.0, 120.0, 105.0,  
        49.0, 82.0, 73.0, 86.0, 81.0,  
        97.0, 106.0, 70.0, 61.0, 82.0}; 
    char      *labels[] = { 
        "degrees of freedom for the model", 
        "degrees of freedom for error", 
        "total (corrected) degrees of freedom", 
        "sum of squares for the model", 
        "sum of squares for error", 
        "total (corrected) sum of squares", 
        "model mean square", "error mean square", 
        "F-statistic", "p-value", 
        "R-squared (in percent)","Adjusted R-squared (in percent)", 
        "est. standard deviation of the model error", 
        "overall mean of y", 
        "coefficient of variation (in percent)"}; 
 
    char      *test_row_labels[] = {"A", "B", "A*B"}; 
    char      *test_col_labels[] = { 
        "Source", "DF", "Sum of\nSquares",  
        "Mean\nSquare", "Prob. of\nLarger F"}; 
 
    char      *mean_row_labels[] = { 
        "grand mean", 
        "A1", "A2", "A3", 
        "B1", "B2",  
        "A1*B1", "A1*B2", "A2*B1", "A2*B2", "A3*B1", "A3*B2"}; 
                           /* Perform analysis */ 
    p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y,  
        IMSLS_ANOVA_TABLE,   &anova_table, 
        IMSLS_TEST_EFFECTS,  &test_effects,  
        IMSLS_MEANS,         &means, 
        0); 
  
    printf("P-value = %10.6f",p_value); 
                           /* Print results */ 
    imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1, 
        anova_table,  
        IMSLS_ROW_LABELS,   labels, 
        IMSLS_WRITE_FORMAT, "%11.4f",  
        0); 
 
    imsls_f_write_matrix("* * * Variation Due to the Model * * *", 3, 4, 
        test_effects, 
        IMSLS_ROW_LABELS,   test_row_labels, 
        IMSLS_COL_LABELS,   test_col_labels, 
        IMSLS_WRITE_FORMAT, "%11.4f",  
        0); 
 
    imsls_f_write_matrix("* * * Subgroup Means * * *", 12, 1, 
        means, 
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        IMSLS_ROW_LABELS,   mean_row_labels, 
        IMSLS_WRITE_FORMAT, "%11.4f",  
        0); 
} 

Output 
P-value =   0.002299  

 
           * * * Analysis of Variance * * * 
 
degrees of freedom for the model                 5.0000 
degrees of freedom for error                    54.0000 
total (corrected) degrees of freedom            59.0000 
sum of squares for the model                  4612.9346 
sum of squares for error                     11585.9990 
total (corrected) sum of squares             16198.9336 
model mean square                              922.5869 
error mean square                              214.5555 
F-statistic                                      4.3000 
p-value                                          0.0023 
R-squared (in percent)                          28.4768 
Adjusted R-squared (in percent)                 21.8543 
est. standard deviation of the model error      14.6477 
overall mean of y                               87.8667 
coefficient of variation (in percent)           16.6704 
  

 
          * * * Variation Due to the Model * * * 
Source           DF       Sum of         Mean     Prob. of 
                         Squares       Square     Larger F 
A            2.0000     266.5330       0.6211       0.5411 
B            1.0000    3168.2678      14.7667       0.0003 
A*B          2.0000    1178.1337       2.7455       0.0732 
  
 

* * * Subgroup Means * * * 
  grand mean      87.8667 
  A1              89.6000 
  A2              84.9000 
  A3              89.1000 
  B1              95.1333 
  B2              80.6000 
  A1*B1          100.0000 
  A1*B2           79.2000 
  A2*B1           85.9000 
  A2*B2           83.9000 
  A3*B1           99.5000 
  A3*B2           78.7000 

Example 3 
This example performs a three-way analysis of variance using data discussed by 
John (1971, pp. 91�92). The responses are weights (in grams) of roots of carrots 
grown with varying amounts of applied nitrogen (A), potassium (B), and 
phosphorus (C). Each cell of the three-way layout has one response. Note that the 
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ABC interactions sum of squares, which is 186, is given incorrectly by John 
(1971, Table 5.2.) The three-way layout is given in the following table: 

 A0 A1 A2 

 B0 B1 B2 B0 B1 B2 B0 B1 B2 

C0 88.76 91.41 97.85 94.83 100.4
9 

99.75 99.90 100.2
3 

104.51

C1 87.45 98.27 95.85 84.57 97.20 112.30 92.98 107.7
7 

110.94

C2 86.01 104.2
0 

90.09 81.06 120.8
0 

108.77 94.72 118.3
9 

102.87

#include <imsls.h> 
 
void main () 
{ 
    int        n_subscripts= 3; 
    int        n_levels[3] = {3,3,3}; 
    float      p_value; 
    float      *test_effects, *anova_table; 
    float      y[27] = { 
         88.76, 87.45, 86.01, 91.41, 98.27, 104.2, 97.85, 95.85,  
         90.09, 94.83, 84.57, 81.06, 100.49, 97.2, 120.8, 99.75, 
         112.3, 108.77, 99.9, 92.98, 94.72, 100.23, 107.77, 118.39,  
         104.51, 110.94, 102.87}; 
    char      *labels[] = { 
        "degrees of freedom for the model", 
        "degrees of freedom for error", 
        "total (corrected) degrees of freedom", 
        "sum of squares for the model", 
        "sum of squares for error", 
        "total (corrected) sum of squares", 
        "model mean square", "error mean square", 
        "F-statistic", "p-value", 
        "R-squared (in percent)","Adjusted R-squared (in percent)", 
        "est. standard deviation of the model error", 
        "overall mean of y", 
        "coefficient of variation (in percent)"}; 
 
    char      *test_row_labels[] = {"A", "B", "C", "A*B", "A*C", "B*C"}; 
    char      *test_col_labels[] = { 
        "Source", "DF", "Sum of\nSquares",  
        "Mean\nSquare", "Prob. of\nLarger F"}; 
                                  /* Perform analysis */ 
    p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y,  
        IMSLS_ANOVA_TABLE,   &anova_table, 
        IMSLS_TEST_EFFECTS,  &test_effects, 
        IMSLS_POOL_INTERACTIONS,  
        0); 
                                  /* Print results */ 
    printf("P-value = %10.6f",p_value); 
 
    imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1, 
        anova_table,  
        IMSLS_ROW_LABELS,   labels, 
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        IMSLS_WRITE_FORMAT, "%11.4f",  
        0); 
 
    imsls_f_write_matrix("* * * Variation Due to the Model * * *", 6, 4, 
        test_effects, 
        IMSLS_ROW_LABELS,   test_row_labels, 
        IMSLS_COL_LABELS,   test_col_labels, 
        IMSLS_WRITE_FORMAT, "%11.4f",  
        0); 
 
} 

Output 
P-value =   0.008299  
 
           * * * Analysis of Variance * * * 
 
degrees of freedom for the model                18.0000 
degrees of freedom for error                     8.0000 
total (corrected) degrees of freedom            26.0000 
sum of squares for the model                  2395.7290 
sum of squares for error                       185.7763 
total (corrected) sum of squares              2581.5054 
model mean square                              133.0961 
error mean square                               23.2220 
F-statistic                                      5.7315 
p-value                                          0.0083 
R-squared (in percent)                          92.8036 
Adjusted R-squared (in percent)                 76.6116 
est. standard deviation of the model error       4.8189 
overall mean of y                               98.9619 
coefficient of variation (in percent)            4.8695 
  
          * * * Variation Due to the Model * * * 
Source           DF       Sum of         Mean     Prob. of 
                         Squares       Square     Larger F 
A            2.0000     488.3678      10.5152       0.0058 
B            2.0000    1090.6559      23.4832       0.0004 
C            2.0000      49.1484       1.0582       0.3911 
A*B          4.0000     142.5856       1.5350       0.2804 
A*C          4.0000      32.3474       0.3482       0.8383 
B*C          4.0000     592.6240       6.3800       0.0131 

anova_nested 
Analyzes a completely nested random model with possibly unequal numbers in 
the subgroups.  

Synopsis 
#include <imsls.h> 
float *imsls_f_anova_nested (int n_factors, int equal_option,  int 

n_levels[], float y[], ..., 0) 

The type double function is imsls_d_anova_nested. 
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Required Arguments 

int  n_factors (Input) 
Number of factors (number of subscripts) in the model, including error. 

int equal_option  (Input)                                                                             
Equal numbers option.  

equal_option Description 

0   Unequal numbers in the subgroups 

1   Equal numbers in the subgroups 

int  n_levels[]   (Input) 
Array with the number of levels.                                                             

 If equal_option = 1, n_levels is of length n_factors and contains 
the number of levels for each of the factors. In this case, the following 
additional variables are referred to in the description of anova_nested:  

Variable  Description 

LNL  n_levels[0] + n_levels[0] * n_levels[1] +  
... + n_levels[0] * n_levels[1] * ... * 
n_levels[n_factors – 2] 

LNLNF  n_levels[0] * n_levels[1] * ...* 
 n_levels[n_factors – 2] 

NOBS     The number of observations. NOBS equals n_levels[0] * 
n_levels[1] * ... * n_levels[n_factors-1]. 
 

If equal_option = 0, n_levels contains the number of levels of each factor at 
each level of the factor in which it is nested. In this case, the following additional 
variables are referred to in the description of anova_nested:  

Variable  Description 

LNL  Length of n_levels. 

LNLNF  Length of the subvector of n_levels for the last factor. 

NOBS     Number of observations. NOBS equals the sum of the last 
LNLNF elements of n_levels. 

For example, a random one-way model with two groups, five responses in the 
first group and ten in the second group, would have LNL= 3, LNLNF= 2, 
NOBS = 15, n_levels[0] = 2, n_levels[1] = 5, and  
n_levels[2] = 10. 

float y[]   (Input) 
Array of length NOBS containing the responses.  The elements of  Y are 
ordered lexicographically, i.e., the last model subscript changes most 
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rapidly, the next to last model subscript changes the next most rapidly, 
and so forth, with the first subscript changing the slowest. 

Return Value 
The p-value for the F-statistic, anova_table[9]. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float * imsls_f_anova_nested (int n_factors, int equal_option,  int 

n_levels[], float y[],  
 IMSLS_ANOVA_TABLE, float **anova_table, 
 IMSLS_ANOVA_TABLE_USER, float anova_table[]  

IMSLS_CONFIDENCE, float confidence, 
IMSLS_VARIANCE_COMPONENTS, float **variance_components,      
IMSLS_VARIANCE_COMPONENTS_USER, float 
variance_components[],                          
IMSLS_EMS, float **expect_mean_sq,                     
IMSLS_EMS_USER, float expect_mean_sq[],               
IMSLS_Y_MEANS, float **y_means,                
IMSLS_Y_MEANS_USER, float y_means[], 
 0) 

Optional Arguments 
IMSLS_ANOVA_TABLE,  float **anova_table,  (Output) 

Address of a pointer to an internally allocated array of size 15  
containing the analysis of variance table. The analysis of variance 
statistics are as follows: 

Element Analysis of Variance Statistics 

0 Degrees of freedom for the model 

1 Degrees of freedom for error 

2 Total (corrected) degrees of freedom 

3 Sum of squares for the model 

4 Sum of squares for error 

5 Total (corrected) sum of squares 

6 Model mean square 

7 Error mean square 

8 Overall F-statistic 

9 p-value 

10 R2 (in percent) 
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11 Adjusted R2 (in percent) 

12 Estimate of the standard deviation 

13 Overall mean of y 

14 Coefficient of variation (in percent) 

IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
Storage for array anova_table is provided by the user.  
See IMSLS_ANOVA_TABLE.  

IMSLS_CONFIDENCE, float confidence   (Input) 
Confidence level for two-sided interval estimates on the variance 
components, in percent.  confidence  percent confidence intervals are 
computed, hence, confidence must be in the interval  
[0.0, 100.0). confidence often will be 90.0, 95.0,  
or 99.0. For one-sided intervals with confidence level ONECL, 
ONECL in the interval [50.0, 100.0), set  
confidence = 100.0 - 2.0 * (100.0 - ONECL).   
Default: confidence = 95.0 

IMSLS_VARIANCE_COMPONENTS,  float **variance_components, (Output)       
Address to a pointer to an internally allocated array. 
variance_components is an n_factors by 9 matrix containing 
statistics relating to the particular variance components in the model.  
Rows of variance_components correspond to the n_factors  
factors. Columns of variance_components are as follows:  

Column Description 

 1   Degrees of freedom 

 2   Sum of squares 

 3   Mean squares 

 4   F -statistic 

 5  p-value for F test 

 6   Variance component estimate 

 7   Percent of variance of variance explained by variance component 

 8  Lower endpoint for a confidence interval on the variance 
component 

 9    Upper endpoint for a confidence interval on the variance  
  component 

A test for the error variance equal to zero cannot be performed. 
variance_components(n_factors, 4) and 
variance_components(n_factors, 5) are set to NaN (not a number). 
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IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[]  
(Output)  Storage for array variance_components is provided by the 
user.  See IMSLS_VARIANCE_COMPONENTS. 

IMSLS_EMS, float **expect_mean_sq,  (Output)                                                      
Address to a pointer to an internally allocated array of length  
with expected mean square coefficients.                   

IMSLS_EMS_USER, float expect_mean_sq[], (Output)                               
Storage for array expect_mean_sq is provided by the user.   
See IMSLS_EMS. 

IMSLS_Y_MEANS, float **y_means  (Output) 
Address to a pointer to an internally allocated array containing the 
subgroup means.  

Equal options Length of y means 

0   1 + n_levels[0] + n_levels[1] + … n_levels[ 
(LNL - LNLNF)-1] (See the description of argument n_levels 
for definitions of LNL and LNLNF.) 

1   1 + n_levels[0] + n_levels[0] * n_levels[1]  
+ … + n_levels[0]* n_levels[1] * … * n_levels 
[n_factors – 2] 

If the factors are labeled A, B, C, and error, the ordering of the means is grand 
mean, A means, AB means, and then ABC means. 

IMSLS_Y_MEANS_USER, float y_means[], Storage for array y_means  
is provided by the user.  See IMSLS_Y_MEANS 

Description 
Routine imsls_f_anova_nested analyzes a nested random model with equal 
or unequal numbers in the subgroups. The analysis includes an analysis of 
variance table and computation of subgroup means and variance component 
estimates. Anderson and Bancroft (1952, pages 325�330) discuss the 
methodology. The analysis of variance method is used for estimating the variance 
components. This method solves a linear system in which the mean squares are 
set to the expected mean squares. A problem that Hocking (1985, pages  
324�330) discusses is that this method can yield negative variance component 
estimates.  Hocking suggests a diagnostic procedure for locating the cause of a 
negative estimate. It may be necessary to reexamine the assumptions of the 
model. 

Example 1 
An analysis of a three-factor nested random model with equal numbers in the 
subgroups is performed using data discussed by Snedecor and Cochran (1967, 
Table 10.16.1, pages 285�288). The responses are calcium concentrations  
(in percent, dry basis) as measured in the leaves of turnip greens. Four plants are 
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taken at random, then three leaves are randomly selected from each plant.  
Finally, from each selected leaf two samples are taken to determine calcium 
concentration. The model is 

yijk = � + �i + �ij + eijk     i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2 

where yijk is the calcium concentration for the k-th sample of the j-th leaf of the  
i-th plant, the �i’s are the plant effects and are taken to be independently 
distributed  

2(0, )N �  

the �ij’s are leaf effects each independently distributed 
2(0, )N
�

�  

and the �ijk’s are errors each independently distributed N(0, ��). The effects are 
all assumed to be independently distributed. The data are given in the following 
table: 

 
Plant Leaf Samples 

1 1 
2 
3 

3.28 
3.52 
2.88 

3.09 
3.48 
2.80 

2 1 
2 
3 

2.46 
1.87 
2.19 

2.44 
1.92 
2.19 

3 1 
2 
3 

2.77 
3.74 
2.55 

2.66 
3.44 
2.55 

4 1 
2 
3 

3.78 
4.07 
3.31 

3.87 
4.12 
3.31 

 
 
#include <imsls.h> 
#include <stdio.h> 
#define Mfloat float 
void main() 
{ 
      Mfloat pvalue, *aov, *varc, *ymeans, *ems; 

Mfloat y[] = {3.28, 3.09, 3.52, 3.48, 2.88, 2.80, 2.46, 2.44, 1.87, 
  1.92, 2.19, 2.19, 2.77, 2.66, 3.74, 3.44, 2.55, 2.55, 3.78,  
  3.87, 4.07, 4.12, 3.31, 3.31}; 

int n_levels[] = {4, 3, 2}; 
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 char    *aov_labels[] = { 
                   "degrees of freedom for model", 
                   "degrees of freedom for error", 
                   "total (corrected) degrees of freedom", 
                   "sum of squares for model", 
                   "sum of squares for error", 
                   "total (corrected) sum of squares", 
                   "model mean square", 
                   "error mean square", 
                   "F-statistic", 
                   "p-value",  
    "R-squared (in percent)", 
                   "adjusted R-squared (in percent)", 
                   "est. standard deviation of within error", 
                   "overall mean of y", 
                   "coefficient of variation (in percent)"}; 
 char    *ems_labels[] = { 
    "Effect A and Error",  
    "Effect A and Effect B",  
    "Effect A and Effect A", 
    "Effect B and Error",  
    "Effect B and Effect B",  
    "Error and Error"}; 
 char    *means_labels[] = { 
    "Grand mean",  
    " A means 1", 
    " A means 2",  
    " A means 3", 
    " A means 4", 
    "AB means 1 1", 
    "AB means 1 2", 
    "AB means 1 3", 
    "AB means 2 1", 
    "AB means 2 2", 
     "AB means 2 3", 
    "AB means 3 1", 
    "AB means 3 2", 
    "AB means 3 3", 
    "AB means 4 1", 
    "AB means 4 2", 
    "AB means 4 3"}; 
 char    *components_labels[] = { 
                   "degrees of freedom for A", 
                   "sum of squares for A", 
                   "mean square of A", 
                   "F-statistic for A", 
                   "p-value for A", 
    "Estimate of A",  
    "Percent Variation Explained by A", 
    "95% Confidence Interval Lower Limit for A", 
     "95% Confidence Interval Upper Limit for A", 
    "degrees of freedom for B", 
                   "sum of squares for B", 
                   "mean square of B", 
                   "F-statistic for B", 
                   "p-value for B", 
    "Estimate of B",  
    "Percent Variation Explained by B", 
    "95% Confidence Interval Lower Limit for B", 
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     "95% Confidence Interval Upper Limit for B", 
    "degrees of freedom for Error", 
                   "sum of squares for Error", 
                   "mean square of Error", 
                   "F-statistic for Error", 
                   "p-value for Error", 
    "Estimate of Error",  
    "Percent Explained by Error", 
    "95% Confidence Interval Lower Limit for Error", 
     "95% Confidence Interval Upper Limit for Error"};                 
 

pvalue = imsls_f_anova_nested(3, 1, n_levels, y,  
     IMSLS_ANOVA_TABLE, &aov, 
     IMSLS_Y_MEANS, &ymeans, 
     IMSLS_VARIANCE_COMPONENTS, &varc, 
     IMSLS_EMS, &ems, 
     0); 
 
 printf("pvalue = %f\n", pvalue);  
 imsls_f_write_matrix("* * * Analysis of Variance * * *", 15, 1, aov,  
    IMSLS_ROW_LABELS, aov_labels, 
    IMSLS_WRITE_FORMAT, "%10.5f", 
    0); 

imsls_f_write_matrix("* * * Expected Mean Square Coefficients * * *"  
6, 1, ems, 

      IMSLS_ROW_LABELS, ems_labels,   
    IMSLS_WRITE_FORMAT, "%6.2f",  
    0); 

imsls_f_write_matrix("* * * Means * * *", 17, 1, ymeans,   
    IMSLS_ROW_LABELS, means_labels, 
    IMSLS_WRITE_FORMAT, "%6.2f", 
    0); 

imsls_f_write_matrix("* * Analysis of Variance / Variance Components * *", 
27, 1, varc, 

    IMSLS_ROW_LABELS, components_labels, 
    IMSLS_WRITE_FORMAT, "%10.5f", 
    0); 
} 

Output 
pvalue = 0.079854 
 

* * * Analysis of Variance * * * 
degrees of freedom for model   11.00000 
degrees of freedom for error   12.00000 
total (corrected) degrees of freedom  23.00000 
sum of squares for model    10.19054 
sum of squares for error      0.07985 
total (corrected) sum of squares   10.27040 
model mean square       0.92641 
error mean square       0.00665        
F-statistic                      139.21599 
p-value       0.00000 
R-squared (in percent)    99.22248 
adjusted R-squared (in percent)   98.50976 
est. standard deviation of within error    0.08158 
overall mean of y       3.01208 
coefficient of variation (in percent)    2.70826 
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 * * * Expected Mean Square Coefficients * * * 
Effect A and Error    1.00 
Effect A and Effect B   2.00 
Effect A and Effect A   6.00 
Effect B and Error    1.00 
Effect B and Effect B   2.00 
Error and Error    1.00 
 
 * * * Means * * * 
Grand mean   3.01 
A means 1   3.17 
A means 2   2.18 
A means 3   2.95 
A means 4   3.74 
AB means 1 1   3.18 
AB means 1 2   3.50 
AB means 1 3   2.84 
AB means 2 1   2.45 
AB means 2 2 1.89 
AB means 2 3 2.19 
AB means 3 1 2.72 
AB means 3 2 3.59 
AB means 3 3 2.55 
AB means 4 1 3.82 
AB means 4 2 4.10 
AB means 4 3 3.31 
 
  * * Analysis of Variance / Variance Components * *  
degrees of freedom for A                             3.00000 
sum of squares for A                                 7.56034 
mean square of A                                     2.52011 
F-statistic for A                                    7.66516 
p-value for A                                        0.00973 
Estimate of A                                        0.36522 
Percent Variation Explained by A                    68.53015 
95% Confidence Interval Lower Limit for A 0.03955 
95% Confidence Interval Upper Limit for A 5.78674 
degrees of freedom for B 8.00000 
sum of squares for B 2.63020 
mean square of B 0.32878 
F-statistic for B 49.40642 
p-value for B 0.00000 
Estimate of B 0.16106 
Percent Variation Explained by B 30.22121 
95% Confidence Interval Lower Limit for B 0.06967 
95% Confidence Interval Upper Limit for B 0.60042 
degrees of freedom for Error 12.00000 
sum of squares for Error 0.07985 
mean square of Error 0.00665 
F-statistic for Error *********** 
p-value for Error *********** 
Estimate of Error 0.00665 
Percent Explained by Error 1.24864 
95% Confidence Interval Lower Limit for Error 0.00342 
95% Confidence Interval Upper Limit for Error 0.01813 
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anova_balanced 
Analyzes a balanced complete experimental design for a fixed, random, or mixed 
model. 

Synopsis 
#include <imsls.h> 
float *imsls_f_anova_balanced (int n_factors, int n_levels[], float 

y[], int n_random, int index_random_factor[], int 
n_model_effects, int n_factors_per_effect[], int 
index_factor_per_effect[], ..., 0) 

The type double function is imsls_d_anova_balanced. 

Required Arguments 

int  n_factors (Input) 
Number of factors (number of subscripts) in the model, including error. 

 int  n_levels[]   (Input) 
Array of length n_factors containing the number of levels for each of 
the factors. 

float y[]   (Input) 
Array of length n_levels[0] * n_levels[1] *. . .* 
n_levels[n_factors-1] containing the responses.  y[] must not 
contain NaN (not a number) for any of its elements, i.e., missing values 
are not allowed. 

int  n_random (Input) 
For positive n_random, |n_random| is the number of random factors. 
For negative n_random, |n_random|  is the number of random 
effects (sources of variation). 

 int index_random_factor[]  (Input) 
Index array of length |n_random| containing either the factor numbers 
to be considered random (for n_random positive) or containing the 
effect numbers to be considered random (for n_random negative).  If 
n_random = 0, index_random_factor is not referenced.  

 int n_model_effects  (Input) 
Number of effects (sources of variation) due to the model excluding the 
overall mean and error. 

int n_factors_per_effect[] (Input) 
Array of length n_model_effects containing the number of factors 
associated with each effect in the model. 

int index_factor_per_effect[]  (Input) 
Index vector of length n_factors_per_efffect[0] + 
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n_factors_per_effect[1] + . . . + 
n_factors_per_effect[n_model_effects-1]. The first 
n_factors_per_effect[0] elements give the factor numbers in the 
first effect. The next n_factors_per_effect[1] elements give the 
factor numbers in the second effect. The last n_factors_per_effect 
[n_model_effects-1] elements give the factor numbers in the last 
effect. Main effects must appear before their interactions. In general, an 
effect E cannot appear after an effect  
F if all of the indices for E appear also in F. 

Return Value 
The p-value for the F-statistic. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_anova_balanced (int n_factors, int n_levels[], float 

y[], int n_random, int index_random_factor[], int 
n_model_effects, int n_factors_per_effect[], int 
index_factor_per_effect[],  

 IMSLS_ANOVA_TABLE, float **anova_table, 
 IMSLS_ANOVA_TABLE_USER, float anova_table[] 

IMSLS_MODEL, int model, 
IMSLS_CONFIDENCE, float confidence, 
IMSLS_VARIANCE_COMPONENTS, float **variance_components,        
IMSLS_VARIANCE_COMPONENTS_USER, float 
variance_components[], 

 IMSLS_EMS, float **ems,  
IMSLS_EMS_USER, float ems[],  
IMSLS_Y_MEANS, float **y_means,                
IMSLS_Y_MEANS_USER, float y_means[], 
0) 

Optional Arguments 
IMSLS_ANOVA_TABLE,  float **anova_table,  (Output) 

Address of a pointer to an internally allocated array of size 15 containing 
the analysis of variance table. The analysis of variance statistics are as 
follows: 

Element Analysis of Variance Statistics 

0 Degrees of freedom for the model 

1 Degrees of freedom for error 

2 Total (corrected) degrees of freedom 

3 Sum of squares for the model 
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4 Sum of squares for error 

5 Total (corrected) sum of squares 

6 Model mean square 

7 Error mean square 

8 Overall F-statistic 

9 p-value 

10 R2 (in percent) 

11 adjusted R2 (in percent) 

12 estimate of the standard deviation 

13 overall mean of Y 

14 coefficient of variation (in percent) 

IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
Storage for array anova_table is provided by the user.  
See IMSLS_ANOVA_TABLE. 

IMSLS_MODEL, int model,    (Input) 
Model Option 

MODEL  Meaning 

0  Searle model 

1  Scheffe model  

For the Scheffe model, effects corresponding to interactions of fixed and random 
factors have their sum over the subscripts corresponding to fixed factors equal to 
zero. Also, the variance of a random interaction effect involving some fixed 
factors has a multiplier for the associated variance component that involves the 
number of levels in the fixed factors. The Searle model has no summation 
restrictions on the random interaction effects and has a multiplier of one for each 
variance component.  The default is model = 0. 

IMSLS_CONFIDENCE, float confidence   (Input) 
Confidence level for two-sided interval estimates on the variance 
components, in percent.  confidence  percent confidence intervals are 
computed, hence, confidence must be in the interval [0.0, 
100.0). confidence often will be 90.0, 95.0, or 99.0.  
For one-sided intervals with confidence level �, �  
in the interval [50.0, 100.0),  
set confidence = 100.0 - 2.0 * 100.0 - �).  
Default:   confidence = 95.0 
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IMSLS_VARIANCE_COMPONENTS,  float **variance_components, (Output)      
Address of a pointer to an array, variance_components. 
variance_components is an (n_model_effects + 1) by 9 array 
containing statistics relating to the particular variance components or 
effects in the model and the error.  Rows of variance_components 
correspond to the n_model_effects  effects plus error.  

Element  Description 

 1  Degrees of freedom 

 2  Sum of squares 

 3  Mean squares 

 4  F -statistic 

 5 p-value for F test 

 6  Variance component estimate 

 7  Percent of variance of y explained by random effect 

 8  Lower endpoint for a confidence interval on the variance component 

 9   Upper endpoint for a confidence interval on the variance   
 component 

Elements 6 through 9 contain NaN (not a number) if the effect is fixed, i.e., if 
there is no variance component to be estimated. If the variance component 
estimate is negative, columns 8 and 9 contain NaN.                                                                                     

IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[]  
(Output)   
Storage for array variance_components is provided by the user.   
See IMSLS_VARIANCE_COMPONENTS. 

IMSLS_EMS, float **ems,  (Output)  
Address of a pointer to an internally allocated array of length 
(n_model_effects + 1) * (n_model_effects + 2)/2 
containing expected mean square coefficients. Suppose the effects are  
A, B, and AB. The ordering of the coefficients in ems is as follows: 

 Error AB B A 

A ems[0]  ems[1] ems[2
] 

ems[2 

B ems[4] ems[5] ems[6
] 
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 Error AB B A 

AB ems[7] ems[8]   

Error ems[9]    

IMSLS_EMS_USER, float ems[]  (Output)   
Storage for ems is provided by the user.   
See IMSLS_EMS. 

IMSLS_Y_MEANS, float **y_means  (Output) 
Address of a pointer to an internally allocated array of length 
(n_levels(0) + 1) * (n_levels (1) + 1) * . . . *  
(n_levels (n-1) + 1) containing the subgroup means. Suppose the factors 
are A, B, and C. The ordering of the means is grand mean, A means, B 
means, C means, AB means, AC means, BC means, and ABC means.  

IMSLS_Y_MEANS_USER, float y_means  (Output) 
Storage for y_means is provided by the user.   
See IMSLS_Y_MEANS. 

Description 
Function imsls_f_anova_balanced analyzes a balanced complete 
experimental design for a fixed, random, or mixed model. The analysis includes 
an analysis of variance table, and computation of subgroup means and variance 
component estimates. A choice of two parameterizations of the variance 
components for the model can be made.  

Scheffé (1959, pages 274�289) discusses the parameterization for model = 1. 
For example, consider the following model equation with fixed factor A and 
random factor B: 

yijk = � + �i + bj + cij + eijk     i = 1, 2, �, a; j = 1, 2, �, b; k = 1, 2, �, n 

The fixed effects �i’s are subject to the restriction 

1 0a
i i�
�

� �  

the bj’s are random effects identically and independently distributed 
2(0, )BN �  

cij are interaction effects each distributed 

21(0, )AB
aN

a
�

�  

and are subject to the restrictions 
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b1 0 for 1, 2, ...,a
i ijc j
�

� � �  

and the eijk’s are errors identically and independently distributed N(0, ��). In 
general, interactions of fixed and random factors have sums over subscripts 
corresponding to fixed factors equal to zero. Also in general, the variance of a 
random interaction effect is the associated variance component times a product of 
ratios for each fixed factor in the random interaction term. Each ratio depends on 
the number of levels in the fixed factor. In the earlier example, the random 
interaction AB has the ratio (a �1)/a as a multiplier of  

 
2
AB�  

and 

2 21var( )ijk B AB
ay

a
� �

�

� � �
2

�  

In a three-way crossed classification model, an ABC interaction effect with A 
fixed, B random, and C fixed would have variance 

2( 1)( 1)
ABC

a c
ac

�

� �  

Searle (1971, pages 400�401) discusses the parameterization for model = 0. This 
parameterization does not have the summation restrictions on the effects 
corresponding to interactions of fixed and random factors. Also, the variance of 
each random interaction term is the associated variance component, i.e., without 
the multiplier. This parameterization is also used with unbalanced data, which is 
one reason for its popularity with balanced data also. In the earlier example, 

� � 2 2var ijk B ABy � � �� � �� �
2  

Searle (1971, pages 400�404) compares these two parameterizations. Hocking 
(1973) considers these different parameterizations and concludes they are 
equivalent because they yield the same variance-covariance structure for the 
responses. Differences in covariances for individual terms, differences in 
expected mean square coefficients and differences in F tests are just a 
consequence of the definition of the individual terms in the model and are not 
caused by any fundamental differences in the models. For the earlier two-way 
model, Hocking states that the relations between the two parameterizations of the 
variance components are 

2 2 2

2 2

1
B B A

AB AB

a� � �

� �

� �

�

� �

�

B

B

 

where  
2 2and B A� �� �  



 

 
 

262 � anova_balanced IMSL C/Stat/Library 

 

 

 

are the variance components in the parameterization with model = 0. 

The computations for degrees of freedom and sums of squares are the same 
regardless of the option specified by model.  imsls_f_anova_balanced first 
computes degrees of freedom and sum of squares for a full factorial design. 
Degrees of freedom for effects in the factorial design that are missing from the 
specified model are pooled into the model effect containing the fewest subscripts 
but still containing the factorial effect. If no such model effect exists, the factorial 
effect is pooled into error. If more than one such effect exists, a terminal error 
message is issued indicating a misspecified model. 

The analysis of variance method is used for estimating the variance components.  
This method solves a linear system in which the mean squares are set to the  
expected mean squares. A problem that Hocking (1985, pages 324�330)  
discusses is that this method can yield a negative variance component estimate.  
Hocking suggests a diagnostic procedure for locating the cause of the negative  
estimate. It may be necessary to re-examine the assumptions of the model. 

The percentage of variation explained by each random effect is computed  
(output in variance_components element 7) as the variance of the associated 
random effect divided by the variance of y. The two parameterizations can lead to 
different values because of the different definitions of the individual terms in the 
model. For example, the percentage associated with the AB interaction term in the 
earlier two-way mixed model is computed for model = 1 using the formula 

2

2 2

1

% variation(AB|Model=1)
1

AB

B AB

a
a

a
a

�

� �

�

�

�
� �

2
�

 

while for the parameterization model  = 0, the percentage is computed using the 
formula 

2

2 2% variation(AB|Model=0) AB

B AB

�

� � �

�

� �

�

� �
2  

In each case, the variance components are replaced by their estimates (stored in 
variance_components element 6). 

Confidence intervals on the variance components are computed using the method 
discussed by Graybill (1976, Theorem 15.3.5, page 624, and Note 4, page 620).  

Example 1 
An analysis of a generalized randomized block design is performed using data 
discussed by Kirk (1982, Table 6.10-1, pages 293�297). The model is 

yijk = � + �i + bj + cij + eijk     i = 1, 2, 3, 4; j = 1, 2, 3, 4; k = 1, 2 

where yijk is the response for the k-th experimental unit in block j with treatment  
i; the �i’s are the treatment effects and are subject to the restriction 
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2
1 0i i�
�

� �  

the bj’s are block effects identically and independently distributed 
2(0, )BN �  

cij are interaction effects each distributed 
23

4(0, )ABN �  

and are subject to the restrictions 
4

1 0 for 1, 2, 3, 4i ijc j
�

� � �  

and the eijk’s are errors, identically and independently distributed N(0, ��). The 
interaction effects are assumed to be distributed independently of the errors.  

 

The data are given in the following table: 

 Block 
Treatment 1 2 3 4 

1 3, 6 3, 1 2, 2 3, 2 

2 4, 5 4, 2 3, 4 3, 3 

3 7, 8 7, 5 6, 5 6, 6 

4 7, 8 9, 10 10, 9 8, 11 

#include <imsls.h> 
#include <stdio.h> 
 
void main() 
{ 
  float pvalue = -99.; 
  int n_levels[] = {4, 4, 2}; 
  int indrf[] = {2, 3}; 
  int nfef[] = {1, 1, 2}; 
  int indef[] = {1, 2, 1, 2}; 
  float y[] = {3.0, 6.0, 3.0, 1.0, 2.0, 2.0, 3.0, 2.0, 4.0, 5.0, 4.0, 
        2.0, 3.0, 4.0, 3.0, 3.0, 7.0, 8.0, 7.0, 5.0, 6.0, 5.0, 
        6.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 9.0, 8.0, 11.0}; 
  float *aov=NULL, *y_means, *variance_components, *ems; 
 
  char    *aov_labels[] = { 
                   "degrees of freedom for model", 
                   "degrees of freedom for error", 
                   "total (corrected) degrees of freedom", 
                   "sum of squares for model", 
                   "sum of squares for error", 
                   "total (corrected) sum of squares", 
                   "model mean square", 
                   "error mean square", 
                   "F-statistic", 
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                   "p-value",  
        "R-squared (in percent)", 
                   "adjusted R-squared (in percent)", 
                   "est. standard deviation of within error", 
                   "overall mean of y", 
                   "coefficient of variation (in percent)"}; 
  char    *ems_labels[] = { 
    "Effect A and Error",  
    "Effect A and Effect AB",  
    "Effect A and Effect B",  
    "Effect A and Effect A", 
    "Effect B and Error",  
    "Effect B and Effect AB",  
    "Effect B and Effect B",  
    "Effect AB and Error",  
    "Effect AB and Effect AB",  
    "Error and Error"}; 
  char    *means_labels[] = { 
    "Grand mean",  
    " A means 1", 
    " A means 2",  
    " A means 3", 
    " A means 4", 
    " B means 1", 
    " B means 2",  
    " B means 3", 
    " B means 4", 
    "AB means 1 1", 
    "AB means 1 2", 
    "AB means 1 3", 
    "AB means 1 4", 
    "AB means 2 1", 
    "AB means 2 2", 
     "AB means 2 3", 
    "AB means 2 4", 
    "AB means 3 1", 
    "AB means 3 2", 
    "AB means 3 3", 
    "AB means 3 4", 
    "AB means 4 1", 
    "AB means 4 2", 
    "AB means 4 3",  
    "AB means 4 4",}; 
  char    *components_labels[] = { 
                   "degrees of freedom for A", 
                   "sum of squares for A", 
                   "mean square of A", 
                   "F-statistic for A", 
                   "p-value for A", 
        "Estimate of A",  
        "Percent Variation Explained by A", 

      "95% Confidence Interval Lower Limit for A", 
         "95% Confidence Interval Upper Limit for A", 
        "degrees of freedom for B", 
                   "sum of squares for B", 
                   "mean square of B", 
                   "F-statistic for B", 
                   "p-value for B", 

      "Estimate of B",  
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        "Percent Variation Explained by B", 
        "95% Confidence Interval Lower Limit for B", 
         "95% Confidence Interval Upper Limit for B", 
        "degrees of freedom for AB", 

      "sum of squares for AB", 
      "mean square of AB", 
      "F-statistic for AB", 
      "p-value for AB", 

        "Estimate of AB",  
        "Percent Variation Explained by AB", 
        "95% Confidence Interval Lower Limit for AB", 
         "95% Confidence Interval Upper Limit for AB", 
        "degrees of freedom for Error", 

      "sum of squares for Error", 
             "mean square of Error", 

      "F-statistic for Error", 
      "p-value for Error", 

        "Estimate of Error",  
        "Percent Explained by Error", 
        "95% Confidence Interval Lower Limit for Error", 
        "95% Confidence Interval Upper Limit for Error"}; 
 
pvalue = imsls_f_anova_balanced(3, n_levels, y, 2, indrf, 3, nfef, indef,  
      IMSLS_MODEL, 1,  
      IMSLS_EMS, &ems,  
      IMSLS_VARIANCE_COMPONENTS, &variance_components, 
      IMSLS_Y_MEANS, &y_means, 
      IMSLS_ANOVA_TABLE, &aov, 
      0); 
 
printf("p value of F statistic = %f\n", pvalue); 
imsls_f_write_matrix("* * * Analysis of Variance * * *", 15, 1, aov,  
     IMSLS_ROW_LABELS, aov_labels, 
     IMSLS_WRITE_FORMAT, "%10.5f", 
     0);  
imsls_f_write_matrix("* * * Expected Mean Square Coefficients * * *",  

 10, 1, ems, 
     IMSLS_ROW_LABELS, ems_labels,   
     IMSLS_WRITE_FORMAT, "%6.2f",  
     0);   
imsls_f_write_matrix("* * Analysis of Variance / Variance Components * *", 

 36, 1, 
variance_components, 

     IMSLS_ROW_LABELS, components_labels, 
     IMSLS_WRITE_FORMAT, "%10.5f", 
     0); 
imsls_f_write_matrix("means", 25, 1, y_means,   
     IMSLS_ROW_LABELS, means_labels, 
     IMSLS_WRITE_FORMAT, "%6.2f", 
     0); 
 
} 

Output 
 p value of F statistic = 0.000005 

     * * * Analysis of Variance * * * 
 

 degrees of freedom for model    15.00000 
 degrees of freedom for error    16.00000 
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 total (corrected) degrees of freedom   31.00000 
        sum of squares for model    216.50000 
        sum of squares for error     19.00000 
        total (corrected) sum of squares  235.50000 
        model mean square      14.43333 
        error mean square       1.18750 
        F-statistic       12.15439 
        p-value        0.00000 
        R-squared (in percent)     91.93206 
        adjusted R-squared (in percent)    84.36836 
        est. standard deviation of within error   1.08972 

 overall mean of y                               5.37500 
        coefficient of variation (in percent) 20.27395 
 
   * * * Expected Mean Square Coefficients * * * 

Effect A and Error                               1.00 
Effect A and Effect AB                           2.00 
Effect A and Effect B                            0.00 
Effect A and Effect A                            8.00 
Effect B and Error                               1.00 
Effect B and Effect AB                           0.00 
Effect B and Effect B                            8.00 
Effect AB and Error                               1.00 
Effect AB and Effect AB                          2.00 
Error and Error                                  1.00 
 

     * * Analysis of Variance / Variance Components * * 
        degrees of freedom for A                          3.00000 
        sum of squares for A                            194.50000 
        mean square of A                                 64.83334 
        F-statistic for A                                32.87324 
        p-value for A                                     0.00004 
        Estimate of A                                  .......... 
        Percent Variation Explained by A               .......... 
        95% Confidence Interval Lower Limit for A      .......... 
        95% Confidence Interval Upper Limit for A      .......... 
        degrees of freedom for B                          3.00000 
        sum of squares for B                              4.25000 
        mean square of B                                  1.41667 
        F-statistic for B                                 1.19298 
        p-value for B                                     0.34396 
        Estimate of B                                     0.02865 
        Percent Variation Explained by B                  1.89655 
        95% Confidence Interval Lower Limit for B         0.00000 
        95% Confidence Interval Upper Limit for B         2.31682 
        degrees of freedom for AB                         9.00000 
        sum of squares for AB                            17.75000 
        mean square of AB                                 1.97222 
        F-statistic for AB                                1.66082 
        p-value for AB                                    0.18016 
        Estimate of AB                                    0.39236 
        Percent Variation Explained by AB                19.48276 
        95% Confidence Interval Lower Limit for AB        0.00000 
        95% Confidence Interval Upper Limit for AB        2.75803 
        degrees of freedom for Error                     16.00000 
        sum of squares for Error                         19.00000 
        mean square of Error                              1.18750 
        F-statistic for Error                          .......... 
        p-value for Error                              .......... 
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        Estimate of Error                                 1.18750 
        Percent Explained by Error                       78.62069 
        95% Confidence Interval Lower Limit for Error     0.65868 
        95% Confidence Interval Upper Limit for Error     2.75057 
  
  
  means 
  Grand mean  5.38  
  A means 1  2.75 
  A means 2   3.50 
  A means 3  6.25 
  A means 4  9.00 
  B means 1  6.00 
  B means 2   5.13 
  B means 3  5.13 
  B means 4  5.25 
  AB means 1 1  4.50 
  AB means 1 2  2.00 
  AB means 1 3  2.00 
  AB means 1 4  2.50 
  AB means 2 1  4.50 
  AB means 2 2  3.00 
   AB means 2 3  3.50 
  AB means 2 4  3.00 
  AB means 3 1  7.50 
  AB means 3 2  6.00 
  AB means 3 3  5.50 
  AB means 3 4  6.00 
  AB means 4 1  7.50 
  AB means 4 2  9.50 
  AB means 4 3         9.50 
  AB means 4 4  9.50 

crd_factorial 
Analyzes data from balanced and unbalanced completely randomized 
experiments. Funtion crd_factorial does permit a factorial treatment 
structure. However, unlike anova_factorial, function crd_factorial 
allows for missing data, unequal replication and one or more locations. 

Synopsis 
#include <imsls.h> 

float * imsls_f_crd_factorial (int n_obs, int n_locations,  
int n_factors, int n_levels[], int model[], float y[],…, 0) 

The type double function is imsls_d_crd_factorial. 

Required Arguments 

int n_obs  (Input) 
Number of missing and non-missing experimental observations.   
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int n_locations (Input) 
Number of locations.  n_locations must be one or greater. 

int n_factors   (Input) 
Number of factors in the model. 

int n_levels[]   (Input) 
Array of length n_factors+1.  The n_levels[0] through 
n_levels[n_factors-1] contain the number of levels for each factor.  
The last element, n_levels[n_factors], contains the number of 
replicates for each treatment combination within a location. 

int model[] (Input) 
A n_obs by (n_factors+1) array identifying the location and factor 
levels associated with each  observation in y.  The first column must 
contain the location identifier and the remaining columns the factor level 
identifiers in the same order used in n_levels.  If n_locations = 1, 
the first column is still required, but its contents are ignored. 

float y[] (Input) 
An aray of length n_obs containing the experimental observations and 
any missing values.  Missing values are indicated by placing a NaN (not 
a number) in y. The NaN value can be set using either the function 
imsls_f_machine(6) or imsls_d_machine(6), depending upon 
whether single or double precision is being used, respectively.   

Return Value 
A pointer to the memory location of a two dimensional, n_anova by 6 array 
containing the ANOVA table, where: 

1

m
a

ii
� � �

�

� �
� �
� �

n_factors
n_anova ,  

where 

2 if 1
3 if 1 and treatments are not replicated
4 if 1 and treatments are replicated at each location

a
�

� �

�

�
�
�
��

n_locations

n_locations

n_locations

 

Each row in this array contains values for one of the effects in the ANOVA table.  
The first value in each row, anova_tablei,0 = anova_table[i*6], is the source 
identifier which identifies the type of effect associated with values in that row.  
The remaining values in a row contain the ANOVA table values using the 
following convention: 
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J anova_tablei,j = anova_table[i*6+j] 

0 Source Identifier (values described below) 

1 Degrees of freedom 

2 Sum of squares  

3 Mean squares  

4 F-statistic  

5 p-value for this F-statistic 

The values for the mean squares, F-statistic and p-value are set to NaN 
for the residual and corrected total effects. 

The Source Identifiers in the first column of anova_tablei,j are the 
only negative values in anova_table. The absolute value of the source 
identifier is equal to the order of the effect in that row.  Main effects, for 
example, have a source identifier of –1.  Two-way interactions use a 
source identifier of –2, and so on.  

 
Source 
Identifier 

 
ANOVA Source 

-1 Main Efects † 

-2 Two-Way Interactions ‡ 

-3 Three-Way Interactions ‡ 

. . 

. . 

. . 
-n_factors (n_factors)-way Interactions ‡ 

-n_factors-1 Effects Error Term 

-n_factors-2 Residual � 

-n_factors-3 Corrected Total 
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Notes: By default, model_order = n_factors when treatments are replicated, 
or n_locations >1. However, if treatments are not replicated and 
n_locations =1, model_order = n_factors -1. 

† The number of main effects is equal to n_factors+1 if n_locations >1, 
and n_factors if n_locations =1. The first row of values, 
anova_table[0] through anova_table[5] contain the location effect if 
n_locations >1.  If n_locations=1, then these values are the effects for 
factor 1.   

�  The residual term is only provided when treatments are replicated, i.e., 
n_levels[n_factors]>1. 

‡  The number of interaction effects for the nth-way interactions is equal to  

� �
� �
� �

n_factors

n_way
 .  

The order of these terms is in ascending order by treatment subscript.  The 
interactions for factor 1 appear first, followed by factor 2, factor 3, and so on. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float * imsls_f_crd_factorial (int n_obs, int n_locations,  

int n_factors, int n_levels[], int model[], float y[], 
IMSLS_RETURN_USER, float anova_table[] 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV, float *cv,  
IMSLS_GRAND_MEAN, float *grand_mean,  
IMSLS_FACTOR_MEANS, float **factor_means, 
IMSLS_FACTOR_MEANS_USER, float factor_means[],  
IMSLS_FACTOR_STD_ERRORS, float **factor_std_err, 
IMSLS_FACTOR_STD_ERRORS_USER,  
 float factor_std_err[],  
IMSLS_TWO_WAY_MEANS,  
 float **two_way_means,  
IMSLS_TWO_WAY_MEANS_USER,  
 float two_way_means[],  
IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err, 
IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[], 
IMSLS_TREATMENT_MEANS, float **treatment_means, 
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_TREATMENT_STD_ERROR, float **treatment_std_err, 
IMSLS_TREATMENT_STD_ERROR_USER,  
 float treatment_std_err[], 
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels  
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 0) 
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Optional Arguments 
IMSLS_RETURN_USER, float anova_table[] (Output) 

User defined n_anova by 6 array for the anova_table. 
IMSLS_N_MISSING, int *n_missing  (Output) 

 Number of missing values, if any, found in y.  Missing values are 
denoted with a NaN (Not a Number) value. 

IMSLS_CV, float *cv (Output) 
 Coefficient of Variation computed by: 

100 MS
CV residual�

�

grand_mean
 

 
IMSLS_GRAND_MEAN, float *grand_mean (Output) 

 Mean of all the data across every location. 

IMSLS_FACTOR_MEANS, float **factor_means (Output) 
 Address of a pointer to an internally allocated array of length 
n_levels[0]+n_levels[1]+…+n_levels[n_factors-1] 
containing the factor means. 

IMSLS_FACTOR_MEANS_USER, float factor_means[] (Output) 
Storage for the array factor_means, provided by the user. 

IMSLS_FACTOR_STD_ERRORS, float **factor_std_err (Output) 
Address of a pointer to an internally allocated  n_factors by 2 array 
containing factor standard errors and their associated degrees of 
freedom.  The first column contains the standard errors for comparing 
two factor means and the second its associated degrees of freedom. 

IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[] (Output) 
Storage for the array factor_std_err, provided by the user. 

IMSLS_TWO_WAY_MEANS, float **two_way_means (Output) 
Address of a pointer to an internally allocated one-dimensional array 
containing the two-way means for all two by two combinations of the 
factors.  The total length of this array when n_factors > 1 is equal to: 

1

0 1

where -2[ ] [ ],
f f

i j i
i j f

�

� � �

� ��� n_levels n_levels n_factors  

 If n_factors = 1, NULL is returned. If n_factors>1, the means 
would first be produced for all combinations of the first two factors 
followed by all combinations of the remaining factors using the subscript 
order suggested by the above formula.  For example, if the experiment is 
a 2x2x2 factorial, the 12 two-way means would appear in the following 
order:  A1B1,  A1B2, A2B1, A2B2, A1C1,  A1C2, A2C1, A2C2, B1C1, B1C2, 
B2C1, and B2C2.   
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IMSLS_TWO_WAY_MEANS_USER, float two_way_means[] (Output) 
Storage for the array two_way_means, provided by the user. 

IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err (Output) 
Address of a pointer to an internally allocated  n_two_way by 2 array 
containing factor standard errors and their associated degrees of 
freedom., where 

�

� �
� �
� �

n_factors
n_two_way

2
 

 The first column contains the standard errors for comparing two 2-way 
interaction means and the second its associated degrees of freedom.  The 
ordering of the rows in this array is similar to that used in  
IMSLS TWO_WAY_MEANS.  For example if n_factors=4, then  
n_two_way =6  with the order AB, AC, AD, BC, BD, CD.   

IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[] (Output) 
Storage for the array two_way_std_err, provided by the user. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size  

[0] [1] [ 1]� � �n_levels n_levels n_levels n_factors�  

 containing the treatment means. The order of the means is organized  in 
ascending order by the value of the factor identifier.  For example, if the 
experiment is a 2x2x2 factorial, the 8 means would appear in the 
following order: A1B1C1, A1B1C2, A1B2C1, A1B1C2, A2B1C1, A2B1C2, 
A2B2C1,  and A2B2C2. 

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_TREATMENT_STD_ERROR, float **treatment_std_err (Output) 
The array of length 2 containing standard error for comparing treatments 
based upon the average number of replicates per treatment and its 
associated degrees of freedom. 

IMSLS_TREATMENT_STD_ERROR_USER, float treatment_std_err[] (Output)  
Storage for the array treatment_std_err, provided by the user. 

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels   (Output) 
Address of a pointer to a pointer to an internally allocated array 
containing the labels for each of the  n_anova rows of the returned 
ANOVA table.  The label for the i-th row of the ANOVA table can be 
printed with  printf("%s", anova_row_labels[i]); 

The memory associated with anova_row_labels  can be freed with a 
single call to free(anova_row_labels). 

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]   (Output) 
Storage for the anova_row_labels, provided by the user.  The amount 
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of space required will vary depending upon the number of factors and 
n_anova.   An upperbound on the required memory is  
char *anova_row_labels[n_anova* 60]. 

Description 
The function imsls_f_crd_factorial analyzes factorial experiments 
replicated in different locations.  Unequal replication for each treatment and 
missing observations are allowed.  All factors are regarded as fixed effects in the 
analysis.  However, if multiple locations appear in the data, i.e.,  
n_locations > 1, then all effects involving locations are treated as random 
effects. 

If n_locations = 1, then the residual mean square is used as the error mean 
square in calculating the F-tests for all other effects.  That is 

MS

MS
effectF

residual
� , when n_locations = 1. 

 If n_locations > 1 then the error mean squares for all factor F-tests is the 
pooled location interaction.  For example, if n_factors = 2 then the error sum 
of squares, degrees of freedom and mean squares are calculated by: 

SS
df

SS SS SS SS

df df df df

MS error
error

error B LocationsA Locations A B Locations

error B LocationsA Locations A B Locations

error

� � �
�� �

� � �
�� �

�

�

�
 

Example 
The following example is based upon data from a 3x2x2 completely randomized 
design conducted at one location.  For demonstration purposes, observation 9 is 
set to missing. 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include "imsls.h" 

void ex_crd_doc(){ 

    int n_obs       = 12; 

    int n_locations = 1; 

    int n_factors   = 3; 

    int n_levels[4] ={3, 2, 2, 1};  

    int page_width = 132; 

    /*  model information */ 

    int model[]={ 

            1, 1, 1, 1, 
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            1, 1, 1, 2, 

            1, 1, 2, 1, 

            1, 1, 2, 2, 

            1, 2, 1, 1, 

            1, 2, 1, 2, 

            1, 2, 2, 1, 

            1, 2, 2, 2, 

            1, 3, 1, 1, 

            1, 3, 1, 2, 

            1, 3, 2, 1, 

            1, 3, 2, 2 

    }; 

    /* response data */ 

    float y[] ={ 

            4.42725419998168950,   

            2.12795543670654300,  

            2.55254390835762020,  

            1.21479606628417970, 

            2.47588264942169190,  

            5.01306104660034180,  

            4.73502767086029050,  

            4.58392113447189330,  

            5.01421167794615030,  

            4.11972457170486450,  

            6.51671624183654790,  

            4.73365202546119690 

    }; 

     

    int model_order; 

    int i, j, k, l, m, n_missing, i2, j2; 

    int n_factor_levels=0, n_treatments=1; 

    int n_two_way_means=0, n_two_way_std_err=0; 

    int n_two_way_interactions=0; 

    int n_subscripts, n_anova_table=2; 

    float cv, grand_mean; 

    float *anova_table; 

    float *two_way_means, *two_way_std_err; 

    float *treatment_means, *treatment_std_err; 

    float *factor_means; 

    float *factor_std_err;  

    float aNaN = imsls_f_machine(6); 

    char  **anova_row_labels; 

    char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ  ",  
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        "Mean  \nsquares", "\nF-Test", "\np-Value"}; 

    /*  

     * Compute the length of some of the output arrays. 

     */ 

    model_order = n_factors-1; 

    for (i=0; i < n_factors; i++){ 

        n_factor_levels = n_factor_levels + n_levels[i]; 

        n_treatments    = n_treatments*n_levels[i]; 

        for (j=i+1; j < n_factors; j++){ 

            n_two_way_interactions++; 

        } 

    } 

    n_two_way_std_err = n_two_way_interactions; 

    for (i=0; i < n_factors-1; i++){ 

        for (j=i+1; j < n_factors; j++){ 

            n_two_way_means = n_two_way_means + n_levels[i]*n_levels[j]; 

        } 

    }  

    n_subscripts = n_factors; 

    n_anova_table = 2; 

    for (i=1; i <= model_order; i++){ 

        n_anova_table += (int)imsls_f_binomial_coefficient(n_subscripts, i); 

    }    

     

    /* Set observation 9 to missing. */ 

    y[8] = aNaN; 

    anova_table = imsls_f_crd_factorial(n_obs, n_locations, n_factors, 

                                        n_levels, model, y, 

                                        IMSLS_N_MISSING, &n_missing,  

                                        IMSLS_CV, &cv,  

                                        IMSLS_GRAND_MEAN, &grand_mean, 

                                        IMSLS_FACTOR_MEANS, &factor_means, 

                                 IMSLS_FACTOR_STD_ERRORS, 
 &factor_std_err, 

                                        IMSLS_TWO_WAY_MEANS, &two_way_means,    

                                        IMSLS_TWO_WAY_STD_ERRORS, 
 &two_way_std_err, 

                                        IMSLS_TREATMENT_MEANS, &treatment_means,  

                                        IMSLS_TREATMENT_STD_ERROR, 
&treatment_std_err, 

                                        IMSLS_ANOVA_ROW_LABELS, 
&anova_row_labels, 

                                        0) ; 

    /* Output results. */ 
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    imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

    /* Print ANOVA table. */ 

    imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  

                         n_anova_table, 6, anova_table,  

                         IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.3f%8.3f%8.3f%8.3f", 

                         IMSLS_ROW_LABELS, anova_row_labels, 

                         IMSLS_COL_LABELS, col_labels, 

                         0); 

    printf("\n\nNumber of Missing Values Estimated: %d", n_missing); 

    printf("\nGrand Mean:                       %7.3f", grand_mean); 

    printf("\nCoefficient of Variation:         %7.3f", cv); 

 

    m=0; 

    /* Print Factor Means. */ 

    printf("\n\nFactor Means\n"); 

    for(i=0; i < n_factors; i++){ 

        printf("  Factor %d: ", i+1); 

        for(j=0; j < n_levels[i]; j++){ 

            printf("  %f ", factor_means[m]); 

            m++; 

        } 

        k = (int)factor_std_err[2*i+1]; 

        printf("\n              std. err.(df):        %f(%d) \n",  

               factor_std_err[2*i], k); 

    } 

 

    /* Print Two-Way Means. */ 

    printf("\n\nTwo-Way Means"); 

    m = 0; 

    l=0; 

    for(i=0; i < n_factors-1; i++){ 

        for(j=i+1; j < n_factors; j++){ 

            printf("\n  Factor %d by Factor %d: \n", i+1, j+1); 

            for(i2=0; i2 < n_levels[i]; i2++){ 

                for(j2=0; j2 < n_levels[j]; j2++){ 

                    printf("  %f ",two_way_means[m]); 

                    m++; 

                } 

                printf("\n"); 

            } 

            k = (int)two_way_std_err[l+1]; 

            printf("  std. err.(df): = %f(%d) \n", two_way_std_err[l], k); 

            l+=2; 
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        } 

    } 

 

    /* Print Treatment Means. */ 

    printf("\n\nTreatment Means\n"); 

    m = 0; 

    for(i=0; i < n_levels[0]; i++){ 

        for(j=0; j < n_levels[1]; j++){ 

            for(k=0; k < n_levels[2]; k++){ 

                printf("  Treatment[%d][%d][%d] Mean: %f \n", 

                        i+1, j+1, k+1, treatment_means[m]); 

                m++; 

            } 

        } 

    } 

    k = (int)treatment_std_err[1]; 

    printf("\n  Treatment Std. Err (df) %f(%d) \n",  

           treatment_std_err[0], k); 

} 

 

 

Output 
 

              *** ANALYSIS OF VARIANCE TABLE *** 

                                Mean 

           ID   DF     SSQ     squares    F-Test   p-Value 

[1]        -1    2    13.060     6.530     7.843     0.245 

[2]        -1    1     0.107     0.107     0.129     0.780 

[3]        -1    1     1.301     1.301     1.563     0.429 

[1]x[2]    -2    2     3.768     1.884     2.263     0.425 

[1]x[3]    -2    2     5.253     2.626     3.154     0.370 

[2]x[3]    -2    1     0.560     0.560     0.672     0.563 

Residual   -4    1     1.665     1.665  ........  ........ 

Total      -5   10    25.715  ........  ........  ........ 

 

 

Number of Missing Values Estimated: 1 

Grand Mean:                         3.961 

Coefficient of Variation:          32.574 

 

Factor Means 

  Factor 1:   2.580637   4.201973   5.101885 
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              std. err.(df):        0.912459(1) 

  Factor 2:   3.866888   4.056109 

              std. err.(df):        0.745020(1) 

  Factor 3:   4.290812   3.632185 

              std. err.(df):        0.745020(1) 

 

 

Two-Way Means 

  Factor 1 by Factor 2: 

  3.277605   1.883670 

  3.744472   4.659474 

  4.578587   5.625184 

  std. err.(df): = 1.290412(1) 

 

  Factor 1 by Factor 3: 

  3.489899   1.671376 

  3.605455   4.798491 

  5.777082   4.426688 

  std. err.(df): = 1.290412(1) 

 

  Factor 2 by Factor 3: 

  3.980195   3.753580 

  4.601429   3.510790 

  std. err.(df): = 1.053617(1) 

 

 

Treatment Means 

  Treatment[1][1][1] Mean: 4.427254 

  Treatment[1][1][2] Mean: 2.127955 

  Treatment[1][2][1] Mean: 2.552544 

  Treatment[1][2][2] Mean: 1.214796 

  Treatment[2][1][1] Mean: 2.475883 

  Treatment[2][1][2] Mean: 5.013061 

  Treatment[2][2][1] Mean: 4.735028 

  Treatment[2][2][2] Mean: 4.583921 

  Treatment[3][1][1] Mean: 5.037448 

  Treatment[3][1][2] Mean: 4.119725 

  Treatment[3][2][1] Mean: 6.516716 

  Treatment[3][2][2] Mean: 4.733652 

 

  Treatment Std. Err (df) 1.824919(1) 
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rcbd_factorial 
Analyzes data from balanced and unbalanced randomized complete-block 
experiments. Unlike anova_factorial, function rcbd_factorial allows for 
missing data, unequal replication and one or more locations. 

Synopsis 
#include <imsls.h> 
float * imsls_f_rcbd_factorial (int n_obs, int n_locations, int 

n_factors, int n_levels[],int model[], float y[],…, 0) 

The type double function is imsls_d_rcbd_factorial. 

Required Arguments 
int n_obs  (Input) 

Number of missing and non-missing experimental observations. 

int n_locations (Input) 
Number of locations.  n_locations must be one or greater. 

int n_factors   (Input) 
Number of factors in the model. 

int n_levels[]   (Input) 
Array of length n_factors+1. The n_levels[0] through 
n_levels[n_factors-1] contain the number of levels for each 
factor.  The last element, n_levels[n_factors], contains the number 
of blocks at a location. There must be at least two blocks and two levels 
for each factor, i.e., n_levels[i] >2 for i=0, 1, …, n_factors. 

int model[] (Input) 
A n_obs by (n_factors+2) array identifying the location, block and 
factor levels associated with each  observation in y.  The first column 
must contain the location identifier and the second column must contain 
the block identifier for the observation associated with that row.  The 
remaining columns, columns 3 through n_factors+2, should contain 
the factor level identifiers in the same order used in n_levels.  If 
n_locations =1, the first column is still required, but its contents are 
ignored. 

float y[] (Input) 
An array of length n_obs containing the experimental observations and 
any missing values.  Missing values are indicated by placing a NaN (not 
a number) in y. The NaN value can be set using either the function 
imsls_f_machine(6) or imsls_d_machine(6), depending upon 
whether single or double precision is being used, respectively. 
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Return Value 
A pointer to the memory location of a two dimensional, n_anova by 6 array 
containing the ANOVA table, where: 

1

m

i
a

i
�

� �
� � � �

� �
�

n_factors
n_anova ,  

3 if 1
5 if 1

a �
� 	



n_locations = 

n_locations > 
,  

and m= model_order = n_factors –1. 

Each row in this array contains values for one of the effects in the ANOVA table.  
The first value in each row, anova_tablei,0 = anova_table[i*6], is the 
source identifier which identifies the type of effect associated with values in that 
row.  The remaining values in a row contain the ANOVA table values using the 
following convention: 

 
j anova_table

i,j 
= anova_table[i*6+j] 

0 Source Identifier (values described below) 

1 Degrees of freedom 

2 Sum of squares  

3 Mean squares  

4 F-statistic  

5 p-value for this F-statistic 

The values for the mean squares, F-statistic and p-value are set to NaN for the 
residual and corrected total effects. 

The Source Identifiers in the first column of anova_tablei,j are the only 
negative values in anova_table[]. The absolute value of the source identifier is 
equal to the order of the effect in that row.  Main effects, for example, have a 
source identifier of –1. Two-way interactions use a source identifier of –2, –3 and 
so on. 

 
Source 

Identifier 
 

ANOVA Source 
-1 Main Effects † 

-2 Two-Way Interactions ‡ 

-3 Three-Way Interactions ‡ 

. . 

. . 
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Source 
Identifier 

 
ANOVA Source 

. . 

-n_factors (n_factors)-way Interactions ‡ 

-n_factors-1 Error Term for Factors and 
Interactions 

-n_factors-2 Residual * 

-n_factors-3 Corrected Total 
 

Notes:  The Effects Error Term is equal to the Residual effect if  
n_locations = 1. 

† The number of main effects is equal to n_factors+2 if  
n_locations > 1, and n_factors +1 if n_locations = 1.  The first two 
rows, anova_table[0] through anova_table[10] are used to represent the 
location and block effects if n_locations > 1.  If n_locations=1, then 
anova_table[0] through anova_table[5]contain the block effects.   

‡  The number of interaction effects for the nth-way interactions is equal to  

� �
� �
� �

n_factors

n_way
 .  

The order of these terms is in ascending order by treatment subscript.  The 
interactions for factor 1 appear first, followed by factor 2, factor 3, and so on. 

* The residual term is only produced when there is replication within blocks. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float * imsls_f_rcbd_factorial (int n_obs, int n_locations,  

int n_factors, int n_levels[], int model[],float y[], 
IMSLS_RETURN_USER, float anova_table[], 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV, float *cv, 
IMSLS_GRAND_MEAN, float *grand_mean, 
IMSLS_FACTOR_MEANS, float **factor_means, 
IMSLS_FACTOR_MEANS_USER, float factor_means[], 
IMSLS_FACTOR_STD_ERRORS, float **factor_std_err, 
IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[], 
IMSLS_TWO_WAY_MEANS, float **two_way_means, 
IMSLS_TWO_WAY_MEANS_USER, float two_way_means[], 
IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err, 
IMSLS_TWO_WAY_STD_ERRORS_USER,  
 float two_way_std_err[], 



 

 
 

282 � rcbd_factorial IMSL C/Stat/Library 

 

 

 

IMSLS_TREATMENT_MEANS, float **treatment_means, 
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_TREATMENT_STD_ERROR, *float treatment_std_err, 
IMSLS_TREATMENT_STD_ERROR_USER,  
 float treatment_std_err[] 
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels, 
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float anova_table[] (Output) 

User defined n_anova by 6 array for the anova_table. 

IMSLS_N_MISSING, int *n_missing  (Output) 
Number of missing values, if any, found in y.  Missing values are 
denoted with a NaN (Not a Number) value. 

IMSLS_CV, float *cv (Output) 
Coefficient of Variation computed by: 
  

100 MSresidualCV
�

�

grand_mean
. 

IMSLS_GRAND_MEAN, float *grand_mean (Output) 
Mean of all the data across every location. 

IMSLS_FACTOR_MEANS, float **factor_means (Output) 
Address of a pointer to an internally allocated array of length 
n_levels[0]+n_levels[1]+…+n_levels[n_factors-1] 
containing the factor means. 

IMSLS_FACTOR_MEANS_USER, float factor_means[] (Output) 
Storage for the array factor_means, provided by the user. 

IMSLS_FACTOR_STD_ERRORS, float **factor_std_err (Output) 
Address of a pointer to an internally allocated  n_factors by 2 array 
containing factor standard errors and their associated degrees of 
freedom.  The first column contains the standard errors for comparing 
two factor means and the second its associated degrees of freedom 

IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[] (Output) 
Storage for the array factor_std_err, provided by the user. 

IMSLS_TWO_WAY_MEANS, float **two_way_means (Output) 
Address of a pointer to an internally allocated one-dimensional array 
containing the two-way means for all two by two combinations of the 
factors.  The total length of this array when n_factors >1 is equal to: 
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1

0 1

[ ] [ ]
f f

i j i
i j

�

� � �

��� n_levels n_levels ,  

 where  

2f � �n_factors   

 If  n_factors = 1, NULL is returned. If n_factors>1, the means 
would first be produced for all combinations of the first two factors 
followed by all combinations of the remaining factors using the subscript 
order suggested by the above formula.  For example, if the experiment is 
a 2x2x2 factorial, the 12 two-way means would appear in the following 
order:  A1B1,  A1B2, A2B1, A2B2, A1C1,  A1C2, A2C1, A2C2, B1C1, B1C2, 
B2C1, and B2C2.   

IMSLS_TWO_WAY_MEANS_USER, float two_way_means[] (Output) 
Storage for the array two_way_means, provided by the user. 

IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err (Output) 
Address of a pointer to an internally allocated  n_two_way by 2 array 
containing factor standard errors and their associated degrees of 
freedom., where 

� �
� �
� �

n_factors
n_two_way =

2
 

 The first column contains the standard errors for comparing two 2-way 
interaction means and the second its associated degrees of freedom.  The 
ordering of the rows in this array is similar to that used in 
IMSLS_TWO_WAY_MEANS.  For example if n_factors=4, then 
n_two_way = 6 with the order AB, AC, AD, BC, BD, CD.   

IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[] (Output) 
Storage for the array two_way_std_err, provided by the user. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size 

[0] [1] [ 1]� � �n_levels n_levels n_levels n_factors�  

 containing the treatment means. The order of the means is organized in 
ascending order by the value of the factor identifier.  For example, if the 
experiment is a 2x2x2 factorial, the 8 means would appear in the following 
order:  A1B1C1, A1B1C2, A1B2C1, A1B1C2, A2B1C1, A2B1C2, A2B2C1, and 
A2B2C2. 

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_TREATMENT_STD_ERROR, float *treatment_std_err (Output) 
The array of length 2 containing standard error for comparing treatments 
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based upon the average number of replicates per treatment and its 
associated degrees of freedom. 

IMSLS_TREATMENT_STD_ERROR_USER, float treatment_std_err[] (Output) 
Storage for the array treatment_std_err, provided by the user. 

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels   (Output) 
Address of a pointer to a pointer to an internally allocated array 
containing the labels for each of the  n_anova rows of the returned 
ANOVA table.  The label for the ith row of the ANOVA table can be 
printed with printf("%s", anova_row_labels[i]). 

 The memory associated with anova_row_labels  can be freed with a 
single call to free(anova_row_labels). 

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]  (Output) 
Storage for the array anova_row_labels, provided by the user.  The 
amount of space required will vary depending upon the number of factors 
and n_anova.   An upperbound on the required memory is  
char *anova_row_labels[100*(n_anova+1)]. 

Description 
The function imsls_f_rcbd_factorial is capable of analyzing randomized 
complete block factorial experiments replicated in different locations.  Missing 
observations are estimated using the Yates method.  Locations, if used, and 
blocks are treated as random factors.  All treatment factors are regarded as fixed 
effects in the analysis.  If n_locations > 1, then blocks are treated as nested 
within locations and the number of blocks used at each location must be the same. 

If n_locations = 1, then the residual mean square is used as the error mean 
square in calculating the F-tests for all other effects.  That is 

effect
effect

residual

MS
F

MS
� , when n_locations = 1. 

In this case, the residual mean square is calculating by pooling all interactions 
between treatments and blocks.  For example, if treatments are formed from two 
factors, A and B, then  

residual A Blocks B Blocks A B Blocks

residual A Blocks B Blocks A B Blocks

residual
residual

residual

SS SS SS SS
df df df df

SSMS
df

� � � �

� � � �

� � �

� � �

�

 

When n_locations = 1, then is also used to calculate the standard 
errors between means. For example, in a two factor experiment: 

residualMS
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Std Err(A)

Std Err(B)  

Std Err(A B)

2     

2    

2

residual

A

residual

B

residual

A B

MS
N

MS
N

MS
N

�

�

�

� �

�

�

�

,  

where  

AN , BN  and A BN
�

  

are the number of observations for each level of the effects A, B and their 
interaction, respectively. 

 If n_locations > 1, then the error mean square is used as the denominator of 
the F-test for effects: 

effect
effect

error

MS
F

MS
� . 

The error mean square in this calculation is obtained by pooling all interactions 
between each factor and locations.  For example n_locations > 1 and 
n_factors=2 then: 

error A Locations B Locations A B Locations

error A Locations B Locations A B Locations

error
error

error

SS SS SS SS
df df df df

SSMS
df

� � � �

� � � �

� � �

� � �

�

 

In this case, n_locations > 1, the standard errors for means are calculated 
using 

  instead of error residualMS MS

The F-test for differences between locations is calculated using the mean squares 
for blocks within locations: 

( )

locations
locations

blocks location

MSF
MS

�  
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Example 
This example is based upon data from an agricultural trial conducted by DOW 
Agrosciences.  This is a three factor, 3x2x2, experiment replicated in two blocks 
at one location. For illustration, two observations are set to NaN to simulate 
missing observations.  

#include <stdio.h> 

#include <math.h> 

#include "imsls.h" 

 

void main(){ 

    int n_obs       = 24; 

    int n_locations = 1; 

    int n_factors   = 3; 

    int n_levels[4] ={3, 2, 2, 2};  

    int model[]={ 

            1, 1, 1, 1, 1, 

            1, 2, 1, 1, 1, 

            1, 1, 1, 1, 2, 

            1, 2, 1, 1, 2, 

            1, 1, 1, 2, 1, 

            1, 2, 1, 2, 1, 

            1, 1, 1, 2, 2, 

            1, 2, 1, 2, 2, 

            1, 1, 2, 1, 1, 

            1, 2, 2, 1, 1, 

            1, 1, 2, 1, 2, 

            1, 2, 2, 1, 2, 

            1, 1, 2, 2, 1, 

            1, 2, 2, 2, 1, 

            1, 1, 2, 2, 2, 

            1, 2, 2, 2, 2, 

            1, 1, 3, 1, 1, 

            1, 2, 3, 1, 1, 

            1, 1, 3, 1, 2, 

            1, 2, 3, 1, 2, 

            1, 1, 3, 2, 1, 

            1, 2, 3, 2, 1, 

            1, 1, 3, 2, 2, 

            1, 2, 3, 2, 2 

    }; 

    float y[] ={ 

            4.42725419998168950, 2.98526261840015650,  

            2.12795543670654300, 4.36357164382934570, 
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            2.55254390835762020, 2.78596709668636320, 

            1.21479606628417970, 2.68143519759178160, 

            2.47588264942169190, 4.69543695449829100, 

            5.01306104660034180, 3.01919978857040410, 

            4.73502767086029050, 0.00000000000000000, 

            0.00000000000000000, 5.05780076980590820, 

            5.01421167794615030, 3.61517095565795900, 

            4.11972457170486450, 4.71947982907295230, 

            6.51671624183654790, 4.22036057710647580, 

            4.73365202546119690, 4.68545144796371460 

    }; 

         

   int page_width = 132; 

   int model_order; 

   int i, n_subscripts, n_anova_table; 

   char **aov_labels; 

   char *col_labels[] = {" ", "ID", "df", "SS",  

                         "MS", "F-Test", "P-Value"}; 

   float *anova_table; 

 

   /* Compute number of rows in the anova table. */ 

   model_order = n_subscripts = n_factors; 

   n_anova_table = 3; 

   for (i=1; i <= model_order; i++){ 

       n_anova_table += imsls_d_binomial_coefficient(n_subscripts, i); 

   } 

    

   /* Set missing observations. */ 

   y[13] = imsls_d_machine(6); 

   y[14] = imsls_d_machine(6);  

 

   anova_table = imsls_f_rcbd_factorial(n_obs, n_locations, n_factors, 

                                        n_levels, model, y, 

                                        IMSLS_ANOVA_ROW_LABELS, &aov_labels, 

                                        0) ; 

   imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

   /* 

    * Print ANOVA table. 

    */ 

  imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  

                       10, 6, anova_table,  

                       IMSLS_ROW_LABELS, aov_labels,  

                       IMSLS_COL_LABELS, col_labels,  
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                       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f", 

                       0); 

} 

 

Output 
 

 

              *** ANALYSIS OF VARIANCE TABLE *** 

              ID   df        SS       MS   F-Test  P-Value 

Blocks        -1    1      0.01     0.01  .......  ....... 

[1]           -1    2     14.73     7.37     5.15    0.032 

[2]           -1    1      0.24     0.24     0.17    0.692 

[3]           -1    1      0.15     0.15     0.10    0.756 

[1]x[2]       -2    2      5.79     2.89     2.02    0.188 

[1]x[3]       -2    2      1.02     0.51     0.36    0.709 

[2]x[3]       -2    1      0.20     0.20     0.14    0.719 

[1]x[2]x[3]   -3    2      0.13     0.07     0.05    0.956 

Error         -4    9     12.88     1.43  .......  ....... 

Total         -6   21     35.15  .......  .......  ....... 

latin_square 
Analyzes data from latin-square experiments.  Function latin_square also 
analyzes latin-square experiments replicated at several locations. 

Synopsis 
#include <imsls.h> 
float * imsls_f_latin_square (int n, int n_locations,   

int n_treatments, int row[], int col[], int treatment[],  
 float y[], …,  0) 

The type double function is imsls_d_latin_square. 

Required Arguments 
int n  (Input) 

Number of missing and non-missing experimental observations.  
imsls_f_latin_square verifies that: 

2n � �n_locations n_treatments  

hint n_locations (Input) 
Number of locations.  n_locations must be one or greater.   If 
n_locations>1 then the optional array locations[] must be 
included as input to imsls_f_latin_square. 
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int n_treatments  (Input) 
Number of treatments.  n_treatments must be greater than one.  In 
addition the number of rows and columns must be equal to  
n_treatments. 

int row[]  (Input) 
An array of length n containing the row identifiers for each observation 
in y.  Each row must be assigned values from 1 to n_treatments.  
imsls_f_latin_square verifies that the number of unique factor A 
identifiers is equal to n_treatments. 

int col[]  (Input) 
An array of length n containing the column identifiers for each 
observation in y.  Each column must be assigned values from 1 to 
n_treatments.  imsls_f_latin_square verifies that the number of 
unique column identifiers is equal to n_treatments. 

int treatment[]  (Input) 
An array of length n containing the treatment identifiers for each 
observation in y.  Each treatment must be assigned values from 1 to 
n_treatments.  imsls_f_latin_square verifies that the number of 
unique treatment identifiers is equal to n_treatments. 

float y[] (Input) 
An array of length n containing the experimental observations and any 
missing values.  Missing values cannot be omitted.  They are indicated 
by placing a NaN (not a number) in y. The NaN value can be set using 
either the function imsls_f_machine(6) or imsls_d_machine((6), 
depending upon whether single or double precision is being used, 
respectively.  The location, row, column, and treatment number for each 
observation in y are identified by the corresponding values in the 
arguments locations, row, col, and treatment. 

Return Value 
Address of a pointer to the memory location of a two dimensional, 7 by 6 array 
containing the ANOVA table.  Each row in this array contains values for one of 
the effects in the ANOVA table.  The first value in each row,  
anova_tablei,0 = anova_table[i*6], identifies the source for the effect 
associated with values in that row.  The remaining values in a row contain the 
ANOVA table values using the following convention: 

 

J anova_table
i,j 

= anova_table[i*6+j] 
0 Source Identifier (values described below) 

1 Degrees of freedom 

2 Sum of squares  

3 Mean squares  
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J anova_table
i,j 

= anova_table[i*6+j] 
4 F-statistic  

5 p-value for this F-statistic 

The Source Identifiers in the first column of anova_tablei,j are the only 
negative values in anova_table[]. Assignments of identifiers to ANOVA 
sources use the following coding: 

 
Source 
Identifier 

 
ANOVA Source 

-1 LOCATIONS † 

-2 ROWS  

-3 COLUMNS  

-4 TREATMENTS 

-5 LOCATIONS × TREATMENTS † 

-6 ERROR WITHIN LOCATIONS 

-7 CORRECTED TOTAL 

 

Notes: † If n_locations=1 rows involving location are set to missing (NaN). 

Synopsis with Optional Arguments 
#include <imsl.h> 
float * imsls_f_latin_square (int n, int n_locations, int n_treatments, 

int row[], int col[], int treatment[], float y[], 
IMSLS_RETURN_USER, float anova_table[], 
IMSLS_LOCATIONS, int locations[], 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV, float *cv, 
IMSLS_GRAND_MEAN, float *grand_mean, 
IMSLS_TREATMENT_MEANS, float **treatment_means, 
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_STD_ERRORS, float **std_err, 
IMSLS_STD_ERRORS_USER, float std_err[], 
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table, 
IMSLS_LOCATION_ANOVA_TABLE_USER,  
 float location_anova_table[], 
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels, 
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 

 0) 
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Optional Arguments 
IMSLS_RETURN_USER, float anova_table[] (Output) 

User defined array of length 42 for storage of the 7 by 6 anova table 
described as the return argument for this routine.  For a detailed 
description of the format for this table, see the previous description of 
the return arguments for imsls_f_latin_square. 

IMSLS_LOCATIONS, int locations[]  (Input) 
An array of length n containing the location identifiers for each 
observation in y.  Unique integers must be assigned to each location in 
the study.  This argument is required when n_locations>1.  

IMSLS_N_MISSING, int *n_missing  (Output) 
Number of missing values, if any, found in y.   Missing values are 
denoted with a NaN (Not a Number) value. 

IMSLS_CV, float *cv (Output) 
The coefficient of variation computed by using the within location 
standard deviation. 

IMSLS_GRAND_MEAN, float *grand_mean (Output) 
Mean of all the data across every location. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size 
n_treatments containing the treatment means.  

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_STD_ERRORS, float **std_err (Output) 
 Address of a pointer to an internally allocated array of length 2 
containing the standard error and  associated degrees of freedom for 
comparing two treatment means.   std_err[0] contains the standard 
error and its degrees of freedom are returned in  std_err[1]. 

IMSLS_STD_ERRORS_USER, float std_err[] (Output) 
Storage for the array std_err, provided by the user. 

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output) 
 Address of a pointer to an internally allocated 3-dimensional array of 
size n_locations by 7 by 6 containing the anova tables associated 
with each location.  For each location, the 7 by 6 dimensional array 
corresponds to the anova table for that location.  For example, 
location_anova_table[(i-1)×42+(j-1)×6 + (k-1)] contains the 
value in the kth column and jth row of the anova-table for the ith 
location. 

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output) 
 Storage for the array location_anova_table, provided by the user. 
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IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels   (Output) 
Address of a pointer to a pointer to an internally allocated array 
containing the labels for each of the  n_anova rows of the returned 
ANOVA table.  The label for the ith row of the ANOVA table can be 
printed with printf("%s", anova_row_labels[i]). 

The memory associated with anova_row_labels  can be freed with a 
single call to free(anova_row_labels). 

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]   (Output) 
Storage for the array anova_row_labels, provided by the user.  The 
amount of space required will vary depending upon the number of 
factors and n_anova.  An upperbound on the required memory is  
char *anova_row_labels[600]. 

Description 
The function imsls_f_latin_square analyzes latin-square experiments, 
possibly replicated at multiple locations.  Latin-square experiments block 
treatments using two factors:  rows and columns.  The number of levels 
associated with rows and columns must equal the number of treatments.  
Treatments are blocked by rows and columns in a balanced arrangement to ensure 
that every row contain one replicate of every treatment. The same balance is 
required for every column, see Table 1.  Notice that the four treatments, T1, T2, 
T3, and T4, appear exactly once in every column and every row. 

 

  Columns 

  C1 C2 C3 C4 

R1 T1 T2 T3 T4 

R2 T2 T3 T4 T1 

R3 T3 T4 T1 T2 

 

 
Rows

R4 T4 T1 T2 T3 

   Table 1 – A Latin-Square Experiment with Four Treatments 

A necessary assumption in Latin-Square experiments is that there are no 
interactions between treatments and the row and column blocking factors.  For 
data collected at a single location, the Anova table for a Latin-Square experiment 
is usually organized into five rows, see Table 2. 
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SOURCE DF Sum of Squares Mean 
Squares 

ROWS 1t �  
SSR= 2

. ..
1

( )
t

i
i

t y y
�

��  
MSR 

COLUMNS 1t �  
SSC= 2

. ..
1

( )
t

j
j

t y y
�

��  
MSC 

TREATMENTS   1t �
SST= 2

..
1
( )

t

k
k

y
�

��t y  
MST 

ERROR ( 1)( 2)t t� �

 
SSE=SSTot-SSR-SSC-
SST 

MSE 

TOTAL 2 1t �  
SSTot= � �

2

..
1 1

t t

ij
i j

y y
� �

���  

Table 2 – The ANOVA Table for a Latin-Square Experiment at one Location 

The statistical model used to represent data is from a single location: 

( ) ( ) ( )ij k i j k ij ij ky � � � � �� � � � � ,  

where 

( )ij ky is the observation for the kth treatment in the ith row and jth column of the 
Latin Square, and,� is the effect associated with the kth treatment. and ( )k ij i�

j� are the ith row and jth column effects, respectively, and � is the noise 
associated with this observation. 

( )ij k

If multiple locations are involved, imsls_f_latin_square assumes that 
treatments are crossed with locations, but that row and column effects are nested 
within locations, see Table 3.  The statistical model used to represent these data 
is: 

( ) ( ) ( ) ( ) ( ) ( )lij k l i l j l k ij lk ij lij ky � � � � � �� �� � � � � � � ,  

where 

( )k ij�  

is the effect associated with the kth treatment, and  

( )lk ij��  

is the interaction effect between location l and treatment k. 
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SOURCE DF Sum of Squares Mean 
Squares 

LOCATIONS 1r �  
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LOCATIONS X 
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Table 3 – The ANOVA Table for a Latin-Square Experiment at Multiple Locations 

Example 
This example uses 4 treatments organized into a latin square. This example also 
uses the function l_print_LSD(), which is defined in the first example for 
imsls_f_lattice() (page 297). 

 

#include <stdio.h> 

#include <math.h> 

#include "imsls.h" 

 

void l_print_LSD(int n1, int* equalMeans, float *means); 

 

void main() 

{ 

  char **anova_row_labels; 

  char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ  ",  

                        "Mean  \nsquares", "\nF-Test", "\np-Value"}; 
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  float alpha = 0.05; 

  int i, l, page_width = 132; 

   

  int n            = 16; /* Total number of observations */ 

  int n_locations  = 1;  /* Number of locations */ 

  int n_treatments = 4;  /* Number of rows, columns and treatments */ 

  int n_aov_rows   = 7;  /* Number of rows in the latin-square anova table */ 

 

  int col[]={1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}; 

  int row[]={3, 2, 4, 1, 1, 4, 2, 3, 2, 3, 1, 4, 4, 1, 3, 2}; 

  int treatment[]={1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}; 

 

  float y[]={ 

         1.167,  1.185,  1.655, 1.345, 1.64, 1.29, 1.665, 1.29, 

         1.475, 0.71, 1.425, 0.66, 1.565, 1.29, 1.4, 1.18}; 

 

  float grand_mean; 

  float cv; 

  float *aov; 

  float *treatment_means; 

  float *std_err; 

  int    df; 

  int    *equal_means; 

 

  printf("\n\n*** Experimental Design ***"); 

  printf("\n==============================="); 

  printf("\n| COL  |  1  |  2  |  3  |  4  |"); 

  printf("\n==============================="); 

  printf("\n|ROW 1 |  2  |  4  |  3  |  1  |"); 

  printf("\n==============================="); 

  printf("\n|ROW 2 |  3  |  1  |  2  |  4  |"); 

  printf("\n==============================="); 

  printf("\n|ROW 3 |  1  |  3  |  4  |  2  |"); 

  printf("\n==============================="); 

  printf("\n|ROW 4 |  4  |  2  |  1  |  3  |"); 

  printf("\n==============================="); 

 

  aov = imsls_f_latin_square(n, n_locations, n_treatments, row, col,  

                             treatment, y,  

                             IMSLS_GRAND_MEAN, &grand_mean,  

                             IMSLS_CV, &cv, 

                             IMSLS_TREATMENT_MEANS, &treatment_means,  

                             IMSLS_STD_ERRORS, &std_err, 
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                             IMSLS_ANOVA_ROW_LABELS, &anova_row_labels, 

                             0); 

  /* Output results. */ 

   

  imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

  /* Print ANOVA table. */ 

  imsls_f_write_matrix("\n   *** ANALYSIS OF VARIANCE TABLE ***",  

                       7, 6, aov,  

                       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.3f%8.3f%8.3f%8.3f", 

                       IMSLS_ROW_LABELS, anova_row_labels, 

                       IMSLS_COL_LABELS, col_labels, 

                       0); 

 

  printf("\n\nGrand Mean:               %7.3f", grand_mean); 

  printf("\n\nCoefficient of Variation: %7.3f\n\n", cv); 

  l = 0; 

  printf("Treatment Means: \n"); 

  for (i=0; i < n_treatments; i++){ 

        printf("treatment[%2d]              %7.4f \n", i+1, 
treatment_means[l++]); 

  } 

  df = (int)std_err[1]; 

  printf("\n\nStandard Error for Comparing Two Treatment Means: %f \n(df=%d)\n",  

      std_err[0], df); 

  equal_means = imsls_f_multiple_comparisons(n_treatments, treatment_means, df, 

                                             std_err[0]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_print_LSD(n_treatments, equal_means, treatment_means); 

} 
 

Output 
 

*** Experimental Design *** 

=============================== 

| COL  |  1  |  2  |  3  |  4  | 

=============================== 

|ROW 1 |  2  |  4  |  3  |  1  | 

=============================== 

|ROW 2 |  3  |  1  |  2  |  4  | 

=============================== 

|ROW 3 |  1  |  3  |  4  |  2  | 
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=============================== 

|ROW 4 |  4  |  2  |  1  |  3  | 

=============================== 

 

                       *** ANALYSIS OF VARIANCE TABLE *** 

                                                   Mean 

                              ID   DF     SSQ     squares    F-Test   p-Value 

Locations .................   -1  ...  ........  ........  ........  ........ 

Rows within Locations .....   -2    3     0.185     0.062     2.064     0.207 

Columns within Locations ..   -3    3     0.589     0.196     6.579     0.025 

Treatments ................   -4    3     0.352     0.117     3.927     0.073 

Locations x Treatments ....   -5  ...  ........  ........  ........  ........ 

Error within Locations ....   -6    6     0.179     0.030  ........  ........ 

Corrected Total ...........   -7   15     1.305  ........  ........  ........ 

 

 

Grand Mean:                 1.309 

 

Coefficient of Variation:  13.204 

 

Treatment Means: 

treatment[ 1]               1.3380 

treatment[ 2]               1.4712 

treatment[ 3]               1.0675 

treatment[ 4]               1.3587 

 

 

Standard Error for Comparing Two Treatment Means: 0.122202 

(df=6) 

[group]           Mean          LSD Grouping 

  [3]           1.067500          * 

  [1]           1.338000          *       * 

  [4]           1.358750          *       * 

  [2]           1.471250                  * 
 
 

lattice 
Analyzes balanced and partially-balanced lattice experiments.  In these 
experiments, a requirement is that the number of treatments be equal to the square 
of an integer, such as 9, 16, or 25 treatments.  Function lattice also analyzes 
repetitions of lattice experiments. 
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Synopsis 
#include <imsls.h> 
float * imsls_f_lattice (int n, int n_locations, int n_reps,  

int n_blocks, int n_treatments, int rep[], int block[],  
int treatment[], float y[],…, 0) 

The type double function is imsls_d_lattice. 

Required Arguments 

int n  (Input) 
Number of missing and non-missing experimental observations.  
imsls_f_balanced_lattice verifies that: 

wheren = n_locations×t×r   

andt   r� �n_treatments n_reps . 

int n_locations (Input) 
Number of locations or repetitions of the lattice experiments.  
n_locations must be one or greater.   If n_locations>1 then the 
optional arguments IMSLS_LOCATIONS must be included as input to 
imsls_f_lattice. 

int n_reps  (Input) 
Number of replicates per location.  Each replicate should consist of  

t = n_treatments organized into k  blocks. t�

int n_blocks  (Input) 
Number of blocks per location. For every location,  n_blocks must be 

equal to n_blocks= r·k, where r = n_reps and  .k t�  

int n_treatments  (Input) 
Number of treatments t = n_treatments must be equal to k2. 

int rep[]  (Input) 
An array of length n containing the replicate identifiers for each 
observation in y.  For a balanced-lattice, the number of replicate 
identifiers must be equal to n_reps=(k+1). For a partially-balanced 
lattice, the number of replicate identifiers depends upon whether the 
design is a simple lattice, triple lattice, etc.  imsls_f_lattice verifies 
that the number of unique replicate identifiers is equal to n_reps.  If 
multiple locations or repetitions of the experiment is conducted, i.e., 
n_locations>1, then the replicate and block numbers contained in 
rep and block must agree between repetitions. 

int block[]  (Input) 
An array of length n containing the block identifiers for each 
observation in y.  imsls_f_lattice verifies that the number of unique 
block identifiers is equal to n_blocks.  If multiple locations or 
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repetitions of the experiment is conducted, i.e., n_locations>1, then 
block numbers must agree between repetitions.  That is, the ith block in 
every location or repetition must contain the same treatments. 

int treatment[]  (Input) 
An array of length n containing the treatment identifiers for each 
observation in y.  Each treatment must be assigned values from 1 to 
n_treatments.  imsls_f_lattice verifies that the number of unique 
treatment identifiers is equal to n_treatments. 

float y[] (Input) 
An array of length n containing the experimental observations and any 
missing values.  Missing values cannot be omitted.  They are indicated 
by placing a NaN (not a number) in y. The NaN value can be set using 
either the function imsls_f_machine(6) or imsls_d_machine(6), 
depending upon whether single or double precision is being used, 
respectively.  The location, replicate, block, and treatment number for 
each observation in y are identified by the corresponding values in the 
arguments locations, rep, block, and treatment. 

Return Value 
Address of a pointer to the memory location of a two dimensional, 7 by 6 array 
containing the ANOVA table.  Each row in this array contains values for one of 
the effects in the ANOVA table.  The first value in each row,  
anova_tablei,0 = anova_table[i*6], identifies the source for the effect 
associated with values in that row.  The remaining values in a row contain the 
ANOVA table values using the following convention: 

 
J anova_table

i,j 
= anova_table[i*6+j] 

0 Source Identifier (values described below) 

1 Degrees of freedom 

2 Sum of squares  

3 Mean squares  

4 F-statistic  

5 p-value for this F-statistic 
 

The Source Identifiers in the first column of anova_tablei,j are the only 
negative values in anova_table[]. Assignments of identifiers to ANOVA 
sources use the following coding: 
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Source Identifier ANOVA Source 
-1 LOCATIONS † 

-2 REPLICATES  

-3 TREATMENTS(unadjusted) 

-4 TREATMENTS(adjusted) 

-5 BLOCKS(adjusted) 

-6 INTRA-BLOCK ERROR 

-7 CORRECTED TOTAL 
 

Notes: † If n_locations=1, all entries in this row are set to missing (NaN). 

Synopsis with Optional Arguments 
#include <imsl.h> 
float * imsls_f_lattice(int n, int n_locations, int n_reps,  

int n_blocks, int n_treatments, int rep[], int block[],  
int  treatment[], float y[],  
IMSLS_RETURN_USER, float anova_table[] 
IMSLS_LOCATIONS, int locations[], 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV, float *cv, 
IMSLS_GRAND_MEAN, float *grand_mean, 
IMSLS_TREATMENT_MEANS, float **treatment_means, 
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_STD_ERRORS, float **std_err, 
IMSLS_STD_ERRORS_USER, float std_err[], 
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table, 
IMSLS_LOCATION_ANOVA_TABLE_USER,  
 float location_anova_table[], 
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels, 
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 

 0) 

Optional Arguments 
IMSLS_RETURN_USER, float anova_table[] (Output) 

User defined array of length 42 for storage of the 7 by 6 anova table 
described as the return argument for imsls_f_lattice.  For a detailed 
description of the format for this table, see the previous description of 
the return arguments for imsls_d_lattice. 

IMSLS_LOCATIONS, int locations[]  (Input) 
An array of length n containing the location or repetition identifiers for 
each observation in y.  Unique integers must be assigned to each 
location in the study.  This argument is required when n_locations>1. 
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IMSLS_N_MISSING, int *n_missing  (Output) 
 Number of missing values, if any, found in y.  Missing values are 
denoted with a NaN (Not a Number) value. 

IMSLS_CV, float *cv (Output) 
 The coefficient of variation computed by using the location standard 
deviation. 

IMSLS_GRAND_MEAN, float *grand_mean (Output) 
 The overall adjusted mean averaged over every location. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size 
n_treatments containing the adjusted treatment means.  

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_STD_ERRORS, float  **std_err (Output) 
 Address of a pointer to an internally allocated array of length 4 
containing the standard error and  associated degrees of freedom for 
comparing two treatment means.   std_err[0] contains the standard 
error for comparing two treatments that appear in the same block at least 
once.  std_err[1] contains the standard error for comparing two 
treatments that never appear in the same block together.  std_err[2] 
contains the standard error for comparing, on average, two treatments 
from the experiment averaged over cases in which the treatments do or 
do not appear in the same block.  Finally, std_err[3] contains  the 
degrees of freedom associated with each of these standard errors, i.e.,  
std_err[3]= degrees of freedom for intra-block error.  

IMSLS_STD_ERRORS_USER, float std_err[] (Output) 
Storage for the array std_err, provided by the user. 

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output) 
Address of a pointer to an internally allocated 3-dimensional array of 
size n_locations  by 7 by 6 containing the anova tables associated 
with each location or repetition of the lattice experiment.  For each 
location, the 7 by 6 dimensional array corresponds to the anova table for 
that location.   
For example, location_anova_table[(i-1)×42+(j-1)×6 + (k-1)] 
contains the value in the kth column and jth row of the anova-table for 
the ith location. 

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output) 
Storage for the array location_anova_table, provided by the user. 

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels   (Output) 
Address of a pointer to a pointer to an internally allocated array 
containing the labels for each of the  n_anova rows of the returned 
ANOVA table. The label for the ith row of the ANOVA table can be 
printed with printf("%s", anova_row_labels[i]); 
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The memory associated with anova_row_labels  can be freed with a 
single call to free(anova_row_labels). 

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]  (Output) 
Storage for the array anova_row_labels, provided by the user.  The 
amount of space required will vary depending upon the number of 
factors and n_anova. An upperbound on the required memory is  
char *anova_row_labels[600]; 

Description 
The function imsls_f_lattice analyzes both balanced and partially-balanced 
lattice experiments, possibly repeated at multiple locations.  These designs were 
originally described by Yates (1936).  A defining characteristic of these classes of 
lattice experiments is that the number of treatments is always the square of an 
integer, such as t=9, 16, 25, etc. where t is equal to the number of treatments.   

Another characteristic of lattice experiments is that blocks are organized into 
replicates, where each replicate contains one observation for each treatment.  This 
requires  the number of blocks in each replicate to be equal to the number of 
observations per block.  That is, the number of blocks per replicate and the 
number of observations per block are both equal to k t� . 

For balanced lattice experiments the number of replicates is always  .  For 
partially-balanced lattice experiments, the number of replicates is less than .  
Tables of balanced-lattice experiments are tabulated in Cochran & Cox (1950) for 
t=9, 16, 25, 49, 64 and 81.  

1k �

1k �

The analysis of balanced and partially-balanced experiments is detailed in 
Cochran & Cox (1950) and Kuehl (2000).   

Consider, for example, a 3x3 balanced-lattice, i.e., k=3 and t=9.  Notice that the 
number of replicates is 4 and the number of blocks per replicate is equal to 3.  
The total number of blocks is equal to 

( 1)r k� � � �n_blocks= n_locations 1  .   

For a balanced-lattice,  

( 1) ( 1) 4 3 1b r k k k t t� � � � � � � � � � � �n_blocks 2 . 
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Replicate I Replicate II 
Block 1 (T1, T2, T3) Block 4 (T1, T4, 

T7) 

Block 2 (T4, T5, T6) Block 5 (T2, T5, 
T8) 

Block 3 (T7, T8, T9) Block 6 (T3, T6, 
T9) 

Replicate III Replicate IV 

Block 7 (T1, T5, T9) Block 10 (T1, T6, 
T8) 

Block 8 (T2, T6, T7) Block 11 (T2, T4, 
T9) 

Block 9 (T3, T4, T8) Block 12 (T3, T5, 
T7) 

Table 1.  A 3x3 Balanced-Lattice for 9 Treatments in Four Replicates. 

The analysis of variance for data from a balanced-lattice experiment, takes the 
form familiar to other balanced incomplete block experiments.  In these 
experiments, the error term is divided into two components:  the Inter-Block 
Error and the Intra-Block Error. For single and multiple locations, the general 
format of the anova tables is illustrated in the Tables 2 and 3. 

 
SOURCE DF Sum of 

Squares 
Mean 
Squares 

REPLICATES 1r �  SSR MSR 

TREATMENTS(unadj) 1t �  SST MST 

TREATMENTS(adj) 1t �  SSTa MSTa 

BLOCKS(adj)   ( 1r k� � ) SSBa MSBa 

INTRA-BLOCK 
ERROR 

( 1)( 1k r k k� � � � )  SSI MSI 

TOTAL 1r t� �  
Table 2 – The ANOVA Table for a Lattice Experiment at one Location 
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SOURCE DF Sum of 

Squares 
Mean 
Squares 

LOCATIONS 1p �  SSL MSL 

REPLICATES WITHIN 
LOCATIONS 

( 1p r � )  SSR MSR 

TREATMENTS(unadj) 1t �  SST MST 

TREATMENTS(adj) 1t �  SSTa MSTa 

BLOCKS(adj)   ( 1)p r k� � SSB MSB 

INTRA-BLOCK ERROR ( 1)( 1)p k r k k� � � � �  SSI MSI 

TOTAL 1p r t� � �  
Table 3 – The ANOVA Table for a Lattice Experiment at Multiple Locations 

Example 1 
This example is a lattice design for 16 treatments conducted at one location.  A 
lattice design with t=k2=16 treatments is a balanced lattice design with r= k+1=5 
replicates and r·k=5(4)=20 blocks. 

 
#include <stdlib.h> 

#include <math.h> 

#include "imsls.h" 

 

void l_print_LSD(int n1, int* equalMeans, float *means); 

 

void main() 

{ 

  char **anova_row_labels = NULL; 

  char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ  ",  

                        "Mean  \nsquares", "\nF-Test", "\np-Value"}; 

  float alpha = 0.05; 

  int i, l, page_width = 132;   

  int n            = 80; /* Total number of observations      */ 

  int n_locations  = 1;  /* Number of locations               */ 

  int n_treatments =16;  /* Number of treatments              */ 

  int n_reps       = 5;  /* Number of replicates              */ 

  int n_blocks     =20;  /* Total number of blocks            */ 

  int n_aov_rows   = 7;  /* Number of rows in the anova table */ 

  

  int rep[]={                         

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
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        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,  

        3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 

        4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 

        5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 

  }; 

 

  int block[]={                         

         1,  1,  1,  1,  2,  2,  2,  2,  3,  3,  3,  3,  4,  4,  4,  4, 

         5,  5,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  8,  

         9,  9,  9,  9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 

        13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 

        17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20 

  }; 

 

  int treatment[]={         

         1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,  

         1,  5,  9, 13, 10,  2, 14,  6,  7, 15,  3, 11, 16,  8, 12,  4,   

         1,  6, 11, 16,  5,  2, 15, 12,  9, 14,  3,  8, 13, 10,  7,  4,   

         1, 14,  7, 12, 13,  2, 11,  8,  5, 10,  3, 16,  9,  6, 15,  4,   

         1, 10, 15,  8,  9,  2,  7, 16, 13,  6,  3, 12,  5, 14, 11,  4 

        }; 

  

  float y[] ={ 

        147, 152, 167, 150, 127, 155, 162, 172,  

        147, 100, 192, 177, 155, 195, 192, 205, 

        140, 165, 182, 152,  97, 155, 192, 142, 

        155, 182, 192, 192, 182, 207, 232, 162, 

        155, 132, 177, 152, 182, 130, 177, 165, 

        137, 185, 152, 152, 185, 122, 182, 192, 

        220, 202, 175, 205, 205, 152, 180, 187, 

        165, 150, 200, 160, 155, 177, 185, 172, 

        147, 112, 177, 147, 180, 205, 190, 167, 

        172, 212, 197, 192, 177, 220, 205, 225 

  }; 

 

  float grand_mean; 

  float cv; 

  float *aov; 

  float *treatment_means; 

  float *std_err; 

  int   *equal_means; 

  int   df; 
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  aov = imsls_f_lattice(n, n_locations, n_reps, n_blocks,   

                        n_treatments, rep, block, treatment, y,  

                        IMSLS_GRAND_MEAN, &grand_mean,  

                        IMSLS_CV, &cv, 

                        IMSLS_TREATMENT_MEANS, &treatment_means,  

                        IMSLS_STD_ERRORS, &std_err, 

                        IMSLS_ANOVA_ROW_LABELS, &anova_row_labels, 

                        0); 

   

  imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

  /* Print the ANOVA table. */ 

  imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  

                        7, 6, aov,  

                        IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f", 

                        IMSLS_ROW_LABELS, anova_row_labels, 

                        IMSLS_COL_LABELS, col_labels, 

                        0); 

 

  printf("\n\nAdjusted Grand Mean:      %7.3f", grand_mean); 

  printf("\n\nCoefficient of Variation: %7.3f\n\n", cv); 

  l = 0; 

  printf("Adjusted Treatment Means: \n"); 

  for (i=0; i < n_treatments; i++){ 

        printf("treatment[%2d]             %7.4f \n", i+1,        
  treatment_means[l++]); 

  } 

  df = (int)std_err[3]; 

  printf("\nStandard Error for Comparing Two Adjusted Treatment Means: %f \n(df=%d)\n",  

         std_err[2], df); 

  equal_means = imsls_f_multiple_comparisons(n_treatments, treatment_means, df, 

                                             std_err[2]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_print_LSD(n_treatments, equal_means, treatment_means); 

   

} 

 

/* 

 * Function to display means comparison. 

 */ 

void l_print_LSD(int n, int *equalMeans, float *means){ 

        float x=0.0; 

        int i, j, k; 
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        int iSwitch; 

        int *idx; 

         

        idx = (int *) malloc(n * sizeof (int)); 

 

        for (k=0; k < n; k++) { 

                idx[k]   =k+1; 

        } 

         

        /* Sort means in ascending order*/ 

         

        iSwitch=1; 

        while (iSwitch != 0){ 

                iSwitch = 0; 

                for (i = 0; i < n-1; i++){ 

                        if (means[i] > means[i+1]){ 

                                iSwitch = 1; 

                                x = means[i]; 

                                means[i] = means[i+1]; 

                                means[i+1] = x; 

                                j = idx[i]; 

                                idx[i] = idx[i+1]; 

                                idx[i+1] = j; 

                        } 

                } 

        } 

        printf("[group] \t  Mean \t\tLSD Grouping \n"); 

        for (i=0; i < n; i++){ 

                printf("  [%d] \t\t%f", idx[i], means[i]);                 

                for (j=1; j < i+1; j++){ 

                        if(equalMeans[j-1] >= i+2-j){ 

                                printf("\t  *"); 

                        }else{  

                                if(equalMeans[j-1]>0) printf("\t"); 

                        } 

                } 

                if (i < n-1 && equalMeans[i]>0) printf("\t  *"); 

                printf("\n"); 

        } 

        free(idx); 

        idx = NULL; 

        return; 

} 
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Output 
 

 

                      *** ANALYSIS OF VARIANCE TABLE *** 

                                                  Mean 

                              ID   DF     SSQ    squares   F-Test  p-Value 

Locations .................   -1  ...  ........  .......  .......  ....... 

Replicates ................   -2    4   6524.38  1631.10  .......  ....... 

Treatments (unadjusted) ...   -3   15  27297.13  1819.81     4.12    0.000 

Treatments (adjusted) .....   -4   15  21271.29  1418.09     4.21    0.000 

Blocks (adjusted) .........   -5   15  11339.28   755.95  .......  ....... 

Intra-Block Error .........   -6   45  15173.09   337.18  .......  ....... 

Corrected Total ...........   -7   79  60333.88  .......  .......  ....... 

 

 

Adjusted Grand Mean:      171.450 

 

Coefficient of Variation:  10.710 

 

Adjusted Treatment Means: 

treatment[ 1]             166.4533 

treatment[ 2]             160.7527 

treatment[ 3]             183.6289 

treatment[ 4]             175.6298 

treatment[ 5]             162.6806 

treatment[ 6]             167.6717 

treatment[ 7]             168.3821 

treatment[ 8]             176.5731 

treatment[ 9]             162.6928 

treatment[10]             118.5197 

treatment[11]             189.0615 

treatment[12]             190.4607 

treatment[13]             169.4514 

treatment[14]             197.0827 

treatment[15]             185.3560 

treatment[16]             168.8029 

 

Standard Error for Comparing Two Adjusted Treatment Means: 13.221801 

(df=45) 

[group]           Mean          LSD Grouping 

  [10]          118.519737 
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  [2]           160.752731        * 

  [5]           162.680649        *       * 

  [9]           162.692841        *       * 

  [1]           166.453323        *       *       * 

  [6]           167.671661        *       *       * 

  [7]           168.382111        *       *       * 

  [16]          168.802887        *       *       * 

  [13]          169.451370        *       *       * 

  [4]           175.629776        *       *       *       * 

  [8]           176.573090        *       *       *       * 

  [3]           183.628906        *       *       *       * 

  [15]          185.355988        *       *       *       * 

  [11]          189.061508                *       *       * 

  [12]          190.460724                        *       * 

  [14]          197.082703                                * 

Example 2 
This example consists of a 5 × 5 partially-balanced lattice repeated twice.  In this 
case,  the number of replicates is not k+1 = 6, it is only n_reps = 2.  Each lattice 
consists of total of 50 observations which is repeated twice. The first observation 
in this experiment is missing. 

#include <stdlib.h> 

#include <math.h> 

#include "imsls.h" 

 

void l_print_LSD(int n1, int* equalMeans, float *means); 

 

void main() 

{ 

  char **anova_row_labels = NULL; 

  char **loc_row_labels   = NULL; 

  char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ  ",  

                        "Mean  \nsquares", "\nF-Test", "\np-Value"}; 

  float alpha = 0.05; 

  int i, l, page_width = 132; 

   

  int n = 100;           /* Total number of observations      */ 

  int n_locations  = 2;  /* Number of locations               */ 

  int n_treatments =25;  /* Number of treatments              */ 

  int n_reps       = 2;  /* Number of replicates/location     */ 

  int n_blocks     =10;  /* Total number of blocks/location   */ 

  int n_aov_rows   = 7;  /* Number of rows in the anova table */ 
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  int rep[]={ 

        1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 

        2, 2, 2, 2, 2, 

        2, 2, 2, 2, 2, 

        2, 2, 2, 2, 2, 

        2, 2, 2, 2, 2, 

        2, 2, 2, 2, 2, 

        1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 

        2, 2, 2, 2, 2, 

        2, 2, 2, 2, 2, 

        2, 2, 2, 2, 2, 

        2, 2, 2, 2, 2, 

        2, 2, 2, 2, 2 

  }; 

 

  int block[]={         

         1,  1,  1,  1,  1, 

         2,  2,  2,  2,  2, 

         3,  3,  3,  3,  3, 

         4,  4,  4,  4,  4, 

         5,  5,  5,  5,  5, 

         6,  6,  6,  6,  6,  

         7,  7,  7,  7,  7, 

         8,  8,  8,  8,  8,  

         9,  9,  9,  9,  9, 

        10, 10, 10, 10, 10, 

         1,  1,  1,  1,  1, 

         2,  2,  2,  2,  2, 

         3,  3,  3,  3,  3, 

         4,  4,  4,  4,  4, 

         5,  5,  5,  5,  5, 

         6,  6,  6,  6,  6,  

         7,  7,  7,  7,  7, 

         8,  8,  8,  8,  8,  

         9,  9,  9,  9,  9, 
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        10, 10, 10, 10, 10 

  }; 

 

  int treatment[]={  

         1,  2,  3,  4,  5, 

         6,  7,  8,  9, 10, 

        11, 12, 13, 14, 15, 

        16, 17, 18, 19, 20, 

        21, 22, 23, 24, 25, 

         1,  6, 11, 16, 21, 

         2,  7, 12, 17, 22, 

         3,  8, 13, 18, 23, 

         4,  9, 14, 19, 24, 

         5, 10, 15, 20, 25, 

         1,  2,  3,  4,  5, 

         6,  7,  8,  9, 10, 

        11, 12, 13, 14, 15, 

        16, 17, 18, 19, 20, 

        21, 22, 23, 24, 25, 

         1,  6, 11, 16, 21, 

         2,  7, 12, 17, 22, 

         3,  8, 13, 18, 23, 

         4,  9, 14, 19, 24, 

         5, 10, 15, 20, 25 

        }; 

  int location[]={ 

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2,  

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2,  

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2,  

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2,  

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2 

  }; 

 

  float y[] ={ 

         6,  7,  5,  8,  6, 

        16, 12, 12, 13,  8, 

        17,  7,  7,  9, 14, 

        18, 16, 13, 13, 14, 
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        14, 15, 11, 14, 14, 

        24, 13, 24, 11,  8, 

        21, 11, 14, 11, 23, 

        16,  4, 12, 12, 12, 

        17, 10, 30,  9, 23, 

        15, 15, 22, 16, 19, 

        13, 26,  9, 13, 11, 

        15, 18, 22, 11, 15, 

        19, 10, 10, 10, 16, 

        21, 16, 17,  4, 17, 

        15, 12, 13, 20,  8, 

        16,  7, 20, 13, 21, 

        15, 10, 11,  7, 14, 

         7, 11, 15, 15, 16, 

        19, 14, 20,  6, 16, 

        17, 18, 20, 15, 14 

  }; 

 

  float grand_mean; 

  float cv; 

  float *aov; 

  float *location_anova_table; 

  float *loc_anova_table; 

  float *treatment_means; 

  float *std_err; 

  int   df; 

  int   n_missing; 

  int   *equal_means; 

   

  /* Set first observation to missing. */ 

  y[0] = imsls_f_machine(6); 

 

  aov = imsls_f_lattice(n, n_locations, n_reps, n_blocks,   

                           n_treatments, rep, block, treatment, y,  

                           IMSLS_LOCATIONS, location, 

                           IMSLS_GRAND_MEAN, &grand_mean,  

                           IMSLS_CV, &cv, 

                           IMSLS_TREATMENT_MEANS, &treatment_means,  

                           IMSLS_STD_ERRORS, &std_err, 

                           IMSLS_LOCATION_ANOVA_TABLE, &location_anova_table, 

                           IMSLS_ANOVA_ROW_LABELS, &anova_row_labels, 

                           IMSLS_N_MISSING, &n_missing, 

                           0); 
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  /* Output results. */ 

 

  imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

  /* Print the ANOVA table. */ 

  imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  

                       7, 6, aov,  

                       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f", 

                       IMSLS_ROW_LABELS, anova_row_labels, 

                       IMSLS_COL_LABELS, col_labels, 

                       0); 

 

  /* Print the location ANOVA tables. */ 

  for (i=0; i < n_locations; i++){ 

      printf("\n\n\t\t\t\tLOCATION %d", i+1); 

      imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  

                           7, 6, &(location_anova_table[i*42]),  

                           IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f", 

                           IMSLS_ROW_LABELS, anova_row_labels, 

                           IMSLS_COL_LABELS, col_labels, 

                           0); 

  } 

 

  printf("\n\nAdjusted Grand Mean:      %7.3f", grand_mean); 

  printf("\n\nCoefficient of Variation: %7.3f\n\n", cv); 

  l = 0; 

  printf("Adjusted Treatment Means: \n"); 

  for (i=0; i < n_treatments; i++){ 

        printf("treatment[%2d]              %7.4f \n", i+1, 
treatment_means[l++]); 

  } 

  df = std_err[3]; 

  printf("\nStandard Error for Comparing Two Adjusted Treatment Means: %f \n(df=%d)\n",  

         std_err[2], df); 

  equal_means = imsls_f_multiple_comparisons(n_treatments, treatment_means, df, 

                                             std_err[2]/sqrt(2),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_print_LSD(n_treatments, equal_means, treatment_means); 

  

  printf("\n\nNumber of missing observations: %d\n", n_missing); 

 

} 
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Output 
 

                        *** ANALYSIS OF VARIANCE TABLE *** 

                                                  Mean 

                              ID   DF     SSQ    squares   F-Test  p-Value 

Locations .................   -1    1     12.19    12.19     0.25    0.622 

Replicates within Locations   -2    2    203.99   101.99     7.44    0.001 

Treatments (unadjusted) ...   -3   24    795.46    33.14     0.02    1.000 

Treatments (adjusted) .....   -4   24    951.20    39.63     2.89    0.006 

Blocks (adjusted) .........   -5   16    770.50    48.16     3.51    0.000 

Intra-Block Error .........   -6   55    753.81    13.71  .......  ....... 

Corrected Total ...........   -7   98   2535.95  .......  .......  ....... 

 

 

                                LOCATION 1 

                      *** ANALYSIS OF VARIANCE TABLE *** 

                                                  Mean 

                              ID   DF     SSQ    squares   F-Test  p-Value 

Locations .................   -1  ...  ........  .......  .......  ....... 

Replicates within Locations   -2    1    203.67   203.67  .......  ....... 

Treatments (unadjusted) ...   -3   24    567.13    23.63     0.78    0.721 

Treatments (adjusted) .....   -4   24    661.08    27.54     2.04    0.078 

Blocks (adjusted) .........   -5    8    490.51    61.31  .......  ....... 

Intra-Block Error .........   -6   15    202.93    13.53  .......  ....... 

Corrected Total ...........   -7   48   1464.24  .......  .......  ....... 

 

 

                                LOCATION 2 

                      *** ANALYSIS OF VARIANCE TABLE *** 

                                                  Mean 

                              ID   DF     SSQ    squares   F-Test  p-Value 

Locations .................   -1  ...  ........  .......  .......  ....... 

Replicates within Locations   -2    1      0.32     0.32  .......  ....... 

Treatments (unadjusted) ...   -3   24    622.52    25.94     1.43    0.196 

Treatments (adjusted) .....   -4   24    707.51    29.48     2.83    0.018 

Blocks (adjusted) .........   -5    8    269.76    33.72  .......  ....... 

Intra-Block Error .........   -6   16    166.92    10.43  .......  ....... 

Corrected Total ...........   -7   49   1059.52  .......  .......  ....... 

 

 

Adjusted Grand Mean:       14.011 
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Coefficient of Variation:  26.423 

 

Adjusted Treatment Means: 

treatment[ 1]              17.1507 

treatment[ 2]              19.2200 

treatment[ 3]              11.1261 

treatment[ 4]              14.6230 

treatment[ 5]              12.6543 

treatment[ 6]              11.8133 

treatment[ 7]              11.9045 

treatment[ 8]              11.3106 

treatment[ 9]               9.5576 

treatment[10]              11.5889 

treatment[11]              22.1321 

treatment[12]              12.7233 

treatment[13]              13.1293 

treatment[14]              17.8763 

treatment[15]              18.6576 

treatment[16]              14.6568 

treatment[17]              11.4980 

treatment[18]              13.1540 

treatment[19]               5.4010 

treatment[20]              12.9323 

treatment[21]              15.4108 

treatment[22]              17.0020 

treatment[23]              13.9081 

treatment[24]              17.6550 

treatment[25]              13.1864 

 

Standard Error for Comparing Two Adjusted Treatment Means: 4.617277 

(df=55) 

[group]           Mean          LSD Grouping 

  [19]          5.400988          * 

  [9]           9.557555          *       * 

  [3]           11.126063         *       *       * 

  [8]           11.310598         *       *       * 

  [17]          11.497972         *       *       * 

  [10]          11.588868         *       *       * 

  [6]           11.813338         *       *       * 

  [7]           11.904538         *       *       * 

  [5]           12.654334         *       *       * 

  [12]          12.723251         *       *       * 
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  [20]          12.932302         *       *       *       * 

  [13]          13.129311         *       *       *       * 

  [18]          13.154031         *       *       *       * 

  [25]          13.186358         *       *       *       * 

  [23]          13.908089         *       *       *       * 

  [4]           14.623020         *       *       *       * 

  [16]          14.656771                 *       *       * 

  [21]          15.410829                 *       *       * 

  [22]          17.002029                 *       *       * 

  [1]           17.150679                 *       *       * 

  [24]          17.655045                 *       *       * 

  [14]          17.876268                 *       *       * 

  [15]          18.657581                 *       *       * 

  [2]           19.220003                         *       * 

  [11]          22.132051                                 * 

Number of missing observations: 1 

split_plot 
Analyzes a wide variety of split-plot experiments with fixed, mixed or random 
factors.  The whole-plots can be assigned to experimental units using either a 
completely randomized or randomized complete block design. Function 
split_plot also analyzes split-plot experiments replicated at several locations. 

Synopsis 
#include <imsls.h> 
float * imsls_f_split_plot (int n, int n_locations, int n_whole, 

 int n_split, int rep[], int whole[], int split[], float y[],…, 0) 

The type double function is imsls_d_split_plot. 

Required Arguments 
int n  (Input) 

Number of missing and non-missing experimental observations.  
imsls_f_split_plot verifies that: 

 

 � �
1

n i
i

� �

�

� n_wholen_splitn_blocks
n_locations

�

int n_locations (Input) 
Number of locations.  n_locations must be one or greater.   If 
n_locations>1, then the optional array locations[] must be 
included as input to imsls_f_split_plot. 
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int n_whole  (Input) 
Number of levels associated with the whole-plot factor.  n_whole must 
be greater than one. 

int n_split  (Input) 
Number of levels associated with the split-plot factor.  n_split must be 
greater than one.  

int rep[] (Input) 
 An array of length n containing the block, or replicate, identifiers for 

each observation in y.  Locations can have different numbers of blocks 
or replicates.  Each block or replicate at a single location must be 
assigned a different identifier, but different locations can have the same 
assignments. 

int whole[]  (Input) 
An array of length n containing the whole-plot identifiers for each 
observation in y.  Each level of the whole-plot factor must be assigned a 
different integer.  imsls_f_split_plot verifies that the number of 
unique whole-plot identifiers is equal to n_whole. 

int split[]  (Input) 
 An array of length n containing the split-plot identifiers for each 

observation in y.  Each level of the split-plot factor must be assigned a 
different integer. imsls_f_split_plot verifies that the number of 
unique split-plot identifiers is equal to n_split. 

float y[]  (Input) 
An array of length n containing the experimental observations and any 
missing values.  Missing values cannot be omitted.  They are indicated 
by placing a NaN (not a number) in y. The NaN value can be set using 
either the function imsls_f_machine(6) or imsls_d_machine(6), 
depending upon whether single or double precision is being used, 
respectively.  At a single location, only one missing value per whole-plot 
is allowed.  The location, whole-plot and split-plot for each observation 
in y are identified by the corresponding values in the arguments 
locations, whole and split. 

Return Value 
Address of a pointer to the memory location of a two dimensional, 11 by 6 array 
containing the ANOVA table.  Each row in this array contains values for one of 
the effects in the ANOVA table.  The first value in each row,  
anova_tablei,0 = anova_table[i*6], identifies the source for the effect 
associated with values in that row.  The remaining values in a row contain the 
ANOVA table values using the following convention: 
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j anova_tablei,j = anova_table[I*6+j] 

0 Source Identifier (values described below) 

1 Degrees of freedom 

2 Sum of squares  

3 Mean squares  

4 F-statistic  

5 p-value for this F-statistic 
 

The Source Identifiers in the first column of anova_tablei,j are the only 
negative values in anova_table[]. Assignments of identifiers to ANOVA 
sources use the following coding: 

 
Source 

Identifier 
 

ANOVA Source 
-1 LOCATION† 
-2 BLOCK WITHIN LOCATION‡  
-3 WHOLE-PLOT 
-4 LOCATION × WHOLE-PLOT† 
-5 WHOLE-PLOT ERROR  
-6 SPLIT-PLOT 
-7 LOCATION × SPLIT-PLOT† 
-8 WHOLE-PLOT × SPLIT-PLOT 
-9 LOCATION × WHOLE-PLOT × SPLIT-PLOT† 

-10 SPLIT-PLOT ERROR� 
-11 CORRECTED TOTAL 

 

Notes: † If n_locations=1 sources involving location are set to missing 
(NaN). 

‡   If IMSLS_CRD is set, entries for block within location are set to missing, and 
     its sum of squares and degrees of freedom are pooled into the whole-plot error. 

�  Split-plot error component calculation varies depending upon the settings for 
IMSLS_RCBD, IMSLS_LOC_FIXED, IMSLS_WHOLE_FIXED, 
IMSLS_SPLIT_FIXED, and upon whether n_locations=1. See the 
“Description” section below for details. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float * imsls_f_split_plot (int n, int n_locations, int n_whole,  

int n_split, int rep[], int whole[], int split[], float y[], 
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IMSLS_RETURN_USER, float anova_table[] 
IMSLS_LOCATIONS, int locations[], 
IMSLS_LOC_RANDOM or IMSLS_LOC_FIXED, 
IMSLS_RCBD or IMSLS_CRD, 
IMSLS_WHOLE_FIXED or IMSLS_WHOLE_RANDOM, 
IMSLS_SPLIT_FIXED or IMSLS_SPLIT_RANDOM, 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV, float **cv, 
IMSLS_CV_USER, float cv[], 
IMSLS_GRAND_MEAN, float *grand_mean, 
IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means, 
IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[], 
IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means, 
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[], 
IMSLS_TREATMENT_MEANS, float **treatment_means, 
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_STD_ERRORS, float **std_err, 
IMSLS_STD_ERRORS_USER, float std_err[], 
IMSLS_N_BLOCKS int **n_blocks, 
IMSLS_N_BLOCKS_USER, int n_blocks[], 
IMSLS_BLOCK_SS float **block_ss, 
IMSLS_BLOCK_SS_USER, float block_ss[], 
IMSLS_WHOLE_PLOT_SS float **whole_plot_ss, 
IMSLS_WHOLE_PLOT_SS_USER, float whole_plot_ss[], 
IMSLS_SPLIT_PLOT_SS float **split_plot_ss, 
IMSLS_SPLIT_PLOT_SS_USER, float split_plot_ss[], 
IMSLS_WHOLEXSPLIT_PLOT_SS float **wholexsplit_plot_ss, 
IMSLS_WHOLEXSPLIT_PLOT_SS_USER,  
 float wholexsplit_plot_ss[], 
IMSLS_WHOLE_PLOT_ERROR_SS float **whole_plot_error_ss, 
IMSLS_WHOLE_PLOT_ERROR_SS_USER,  
 float whole_plot_error_ss[], 
IMSLS_SPLIT_PLOT_ERROR_SS float **split_plot_error_ss, 
IMSLS_SPLIT_PLOT_ERROR_SS_USER,  
 float split_plot_error_ss[], 
IMSLS_TOTAL_SS float **total_ss, 
IMSLS_TOTAL_SS_USER, float total_ss[], 
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels, 
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 

 0) 

Optional Arguments 
IMSLS_RETURN_USER, float anova_table[] (Output) 

User defined array of length 66 for storage of the 11 by 6 Anova table 
described as the return argument for imsls_f_split_plot.  For a 
detailed description of the format for this table, see the previous 
description of the return arguments for imsls_f_split_plot. 
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IMSLS_LOCATIONS, int locations[]  (Input) 
An array of length n containing the location identifiers for each 
observation in y.  Unique integers must be assigned to each location in 
the study.  This argument is required when n_locations>1.  

IMSLS_LOC_FIXED or IMSLS_LOC_RANDOM (Input) 
 A characteristic controlling whether the location factor is treated as a 

fixed or random effect, when n_locations>1.  IMSLS_LOC_FIXED 
and IMSLS_LOC_RANDOM  imply that the factor is a fixed effect or 
random effect, respectively.   
Default: IMSLS_LOC_RANDOM 

IMSLS_RCBD or IMSLS_CRD (Input) 
Whole-plot randomization characteristic:  IMSLS_RCBD implies that 
whole-plots are assigned to whole-plot experimental units using a 
randomized complete block design.  IMSLS_CRD implies that whole-
plots are completely randomized to whole-plot experimental units.  
Default: IMSLS_RCBD 

IMSLS_WHOLE_FIXED or IMSLS_WHOLE_RANDOM (Input) 
Whole-plot characteristic.  IMSLS_WHOLE_FIXED implies that the 
whole-plot factor is a fixed effect, and IMSLS_WHOLE_RANDOM implies 
that it is a random effect. 
Default: IMSLS_WHOLE_FIXED 

IMSLS_SPLIT_FIXED or IMSLS_SPLIT_RANDOM (Input) 
Split-plot characteristic.  IMSLS_SPLIT_FIXED implies that the split-
plot factor is a fixed effect, and IMSLS_SPLIT_RANDOM implies that it is 
a random effect.  
Default: IMSLS_SPLIT_FIXED. 

IMSLS_N_MISSING, int *n_missing  (Output) 
 Number of missing values, if any, found in y. Missing values are 
denoted with a NaN (Not a Number) value. 

IMSLS_CV, float **cv (Output) 
Address of a pointer to  an internally allocated array of length 2 
containing the whole-plot and split-plot coefficients of variation.  cv[0] 
contains the whole-plot C.V., and cv[1] contains the split-plot C.V. 

IMSLS_CV_USER, float cv[] (Output) 
Storage for the array cv, provided by the user. 

IMSLS_GRAND_MEAN, float *grand_mean (Output) 
Mean of all the data across every location.  

IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means (Output) 
Address of a pointer to an internally allocated array of length n_whole 
containing the whole-plot means. 

IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[] (Output) 
Storage for the array whole_plot_means, provided by the user. 
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IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output) 
Address of a pointer to an internally allocated array of length n_split 
containing the split-plot means. 

IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output) 
Storage for the array split_plot_means, provided by the user. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size  
(n_whole * n_split) containing the treatment means. For  

i > 0 and  j > 0, treatment_meansi,j = treatment_means[(i-1)*n_split+j-1]  

contains the mean of the observations, averaged over all locations, blocks 
and replicates, for the jth split-plot within the ith whole-plot. 

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_STD_ERRORS, float **std_err (Output) 
 Address of a pointer to an internally allocated array of length 10 
containing five standard errors and their associated degrees of freedom. 

 
 

Element 
Standard Error for 

Comparisons 
Between Two 

Degrees of 
Freedom 

std_err[0] Whole-Plot Means std_err[5] 

std_err[1] Split-Plot Means std_err[6] 

std_err[2] Split-Plots within same 
Whole-Plot 

std_err[7] 

std_err[3] Whole-Plots within same 
Split-Plot 

std_err[8] 

std_err[4] Treatment Means   
(same whole-plot, split-
plot and sub-plot) 

std_err[9] 

 

IMSLS_STD_ERRORS_USER, float std_err[] (Output) 
Storage for the array std_err, provided by the user. 

IMSLS_N_BLOCKS, int **n_blocks (Output) 
 Address of a pointer to an internally allocated array of length 
n_locations containing the number of blocks, or replicates, at each 
location. 

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output) 
Storage for the array n_blocks, provided by the user. 
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IMSLS_BLOCK_SS, float **block_ss (Output) 
Address of a pointer to an internally allocated 2-dimensional array of 
size n_locations  by 2 containing the sum of squares for blocks and 
their associated degrees of freedom for each location.  

IMSLS_BLOCK_SS_USER, float block_ss[] (Output) 
Storage for the array block_ss, provided by the user. Address of a 
pointer to an internally allocated 2-dimensional array of size 
n_locations  by 2 containing the sum of squares for blocks and their 
associated degrees of freedom for each location. 

IMSLS_WHOLE_PLOT_SS, float **whole_plot_ss (Output) 
Address of a pointer to an internally allocated 2-dimensional array of 
size n_locations  by 2 containing the sum of squares for whole-plots 
and their associated degrees of freedom for each location. 

IMSLS_WHOLE_PLOT_SS_USER, float whole_plot_ss[] (Output) 
Storage for the array whole_plot_ss, provided by the user. 

IMSLS_SPLIT_PLOT_SS, float **split_plot_ss (Output) 
Address of a pointer to an internally allocated 2-dimensional array of 
size n_locations  by 2 containing the sum of squares for split-plots 
and their associated degrees of freedom for each location.  

IMSLS_SPLIT_PLOT_SS_USER, float split_plot_ss[] (Output) 
Storage for the array split_plot_ss, provided by the user. 

IMSLS_WHOLEXSPLIT_PLOT_SS, float **wholexsplit_plot_ss (Output) 
Address of a pointer to an internally allocated 2-dimensional array of 
size n_locations  by 2 containing the sum of squares for whole-plot 
by split-plot interaction and their associated degrees of freedom for each 
location. 

IMSLS_WHOLEXSPLIT_PLOT_SS_USER, float wholexsplit_plot_ss[] 
(Output) 
Storage for the array wholexsplit_plot_ss, provided by the user. 

IMSLS_WHOLE_PLOT_ERROR_SS, float **whole_plot_error_ss (Output) 
Address of a pointer to an internally allocated 2-dimensional array of 
size n_locations  by 2 containing the sum of squares for whole-plots 
and their associated degrees of freedom for each location. 

IMSLS_WHOLE_PLOT_ERROR_SS_USER, float whole_plot_error_ss[] 
(Output) 
Storage for the array whole_plot_error_ss, provided by the user. 

IMSLS_SPLIT_PLOT_ERROR_SS, float **split_plot_error_ss (Output) 
Address of a pointer to an internally allocated 2-dimensional array of 
size n_locations  by 2 containing the sum of squares for split-plots 
and their associated degrees of freedom for each location. 
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IMSLS_SPLIT_PLOT_ERROR_SS_USER, float split_plot_error_ss[] 
(Output) 
Storage for the array split_plot_error_ss, provided by the user. 

IMSLS_TOTAL_SS, float **total_ss (Output) 
Address of a pointer to an internally allocated 2-dimensional array of 
size n_locations  by 2 containing the corrected total sum of squares 
and their associated degrees of freedom for each location. 

IMSLS_TOTAL_SS_USER, float total_ss[] (Output) 
Storage for the array total_ss, provided by the user. 

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels   (Output) 
Address of a pointer to a pointer to an internally allocated array 
containing the labels for each of the  n_anova rows of the returned 
ANOVA table.  The label for the i-th row of the ANOVA table can be 
printed with  printf("%s", anova_row_labels[i]); 

 The memory associated with anova_row_labels  can be freed with a 
single call to free(anova_row_labels). 

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]   (Output) 
Storage for the array anova_row_labels, provided by the user.  The 
amount of space required will vary depending upon the number of 
factors and n_anova.   An upperbound on the required memory is  
char *anova_row_labels[600]. 

Description 
Function imsls_f_split_plot is capable of analyzing a wide variety of split-
plot experiments.   Whole-plot and split-plot factors can each be designated as 
either fixed or random, allowing for experiments with fixed, random or mixed 
treatment effects.  By default, imsls_f_split_plot assumes that all treatment 
factors are fixed effects, i.e. IMSLS_WHOLE_FIXED and IMSLS_SPLIT_FIXED 
are default settings. Whole-plot or split-plot factors can each be declared as 
random effects by setting the optional input arguments IMSLS_WHOLE_RANDOM 
and IMSLS_SPLIT_RANDOM, respectively.   

Split-plot experimental designs can also vary in the assignment of the whole-plot 
factor to its experimental units.  In some cases, this assignment is completely 
random.  For example, in a drug study the experimental unit might be the subject 
receiving a treatment.  The whole-plot factor, possibly different treatments, could 
be assigned in one of two ways.  Each subject could receive only one treatment or 
each could receive all treatments over an appropriate period of time.  If each 
subject received only a single randomly selected treatment, then this design 
constitutes a completely randomized design for the whole-plot factor, and the 
optional input argument IMSLS_CRD must be set.   

On the other hand, if each subject receives every treatment in random order, then 
the subject is a blocking factor, and this sampling scheme constitutes a 
randomized complete block design.  In this case, it is necessary to assume that 
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there are no carry-over effects from one treatment to another.  This sampling 
scheme is the default setting, i.e. IMSLS_RCBD is the default setting. 

A similar randomization choice occurs in agricultural field trials.  A trial designed 
to test different fertilizers and different seed lots can be conducted in one of two 
ways.  The whole-plot factor, fertilizer, can be applied to different fields, or each 
can be applied to sub-divisions of these fields. In either case, a field is the whole-
plot experimental unit.  In the first case in which only a single randomly selected 
fertilizer is applied to a single field, the whole-plot factor is not blocked and this 
scheme is called as a completely randomized design, and the optional input 
argument IMSLS_CRD must be set.  However, if fertilizers are applied to sub-
plots within a field, then the whole-plot factor is blocked within fields and this 
assignment is referred to as a randomized complete block design.  By default, this 
routine assumes that levels of the whole-plot factor are randomly assigned within 
blocks, i.e. IMSLS_RCBD is the default setting for randomizing whole-plots. 

The essential distinction between split-plot experiments and completely 
randomized or randomized complete block experiments is the presence of a 
second factor that is blocked, or nested, within each level of the whole-plot factor.  
This second factor is referred to as the split-plot factor, see Figure 1.  If levels of 
this factor were completely randomized, then two or more treatments with the 
same split-plot level could be assigned to the same whole-plot level, see Figure 2. 

 
Whole Plot Factor 

A2 A1 A4 A3 

A2B1 A1B3 A4B1 A3B2 

A2B3 A1B1 A4B3 A3B1 

A2B2 A1B2 A4B2 A3B2 

Figure 1 – Split-Plot Experiments – Split-Plot B Nested within Whole-Plot A 

CRD 

A3B2 A1B3 A4B1 A4B3 

A2B3 A1B1 A3B2 A1B2 

A2B2 A3B1 A2B1 A4B2 

Figure 2 – Completely Randomized Experiments – Both Factors Randomized 

In some studies, a split-plot experiment is replicated at several locations.  
Function imsls_f_split_plot can also analyze split-plot experiments 
replicated at multiple locations, even when the number of blocks or replicates at 
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each location are different.  If only a single replicate or block is used at each 
location, then location should be treated as a blocking factor, with n_locations 
set equal to one. If n_locations=1, it is assumed that the experiment was 
conducted at a single location with more than one block or replicate at that 
location.  In this case, the four entries associated with location in the Anova table 
will contain missing values. 

However, if n_locations>1, it is assumed the experiment was repeated at 
multiple locations, with replication or blocking occurring at each location.  
Although the number of blocks, or replicates, at each location can be different, 
the number of levels for whole-plot and split-plot factors, n_whole and 
n_split, must be the same at each location.  The location associated with y[i] 
is specified in location[i], which is a required input argument when 
n_locations>1.   

By default, locations are assumed to be random effects.  However, they can be 
specified as fixed effects by setting the optional argument IMSLS_LOC_FIXED.  
This setting changes the calculations of the F-tests for whole-plot and split-plot 
factors.  If locations are assumed to be fixed effects, then the whole-plot and split-
plot errors at each location are pooled to form the whole-plot and split-plot errors.  
This can dramatically increase the degrees of freedom associated with the F-test 
for the treatment factors, resulting in smaller p-values.  However, pooling the 
error terms from different locations requires experimenters to assume that the 
errors at each location are approximately the same.  This should be verified using 
a test for homogeneity of variance, such as Bartlett’s or Levene’s test. 

On the other hand, if locations are assumed to be random effects, then tests 
involving whole-plots use the interaction between whole-plots and locations as 
the error term for testing whether there are statistically significant differences 
among whole-plot factor levels.  However, this assumes that the interaction of 
whole-plots and locations is not statistically significant.  A test of this assumption 
uses the pooled whole-plot error.  If the interaction between whole-plots and 
locations is statistically significant, then the nature of that interaction should be 
explored since it impacts the interpretation of the significance of the whole-plot 
treatment factor. 

Similarly, when locations are assumed to be random effects, tests involving split-
plots do not use the split-plot errors pooled across locations.  Instead, the error 
term for split plots is the interaction between locations and split-plots.  The split-
plot by whole-plot interaction is tested against the location by split-plot by whole-
plot interaction.   

Suppose, for example, that a researcher wanted to conduct an agricultural 
experiment comparing the effectiveness of 4 fertilizers with 4 seed lots.  One 
replicate of the experiment is conducted at each of the 3 farms. That is, only a 
single field at each location is assigned to this experiment.   

The field at each farm is divided into 4 whole-plots and the fertilizers are 
randomly assigned to each of the 4 whole-plots.  Each whole-plot is then further 
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divided into 4 split-plots, and the seed lots are randomly assigned to these split-
plots. 

In this case, each farm is a blocking factor, fertilizers are whole-plots and seed 
lots are split-plots.  The input array rep would contain integers from 1 to the 
number of farms. 

However, if each farm allocated more than a single field for this study, then each 
farm would be treated as a different location with n_locations set equal to the 
number of farms, and fields would be treated as blocking factor.  The array rep 
would contain integers from 1 to the number fields used in a farm, and 
locations[] would contain integers from 1 to the number of farms. 

In summary this routine can analyze 3x2x2x2=24 different experimental 
situations, depending upon the settings of: 

1. Locations (none, fixed or random): specified by setting n_locations, 
locations[] and IMSLS_LOC_FIXED or IMSLS_LOC_RANDOM. 

2. Whole-plot sampling (CRD or RCBD):  specified by setting IMSLS_CRD or 
IMSLS_RCBD. 

3. Whole-plot effect (fixed or random):  specified by setting either 
IMSLS_WHOLE_FIXED or IMSLS_WHOLE_RANDOM. 

4. Split-plot effect (fixed or random):  specified by setting either 
IMSLS_SPLIT_FIXED or IMSLS_SPLIT_RANDOM. 

The default condition depends upon the value for n_locations. If 
n_locations>1, locations are assumed to be a random effect.  Assignment of 
experimental units to whole-plots is assumed to use a RCBD design and both 
whole-plots and split-plots are assumed to be fixed effects. 

Example 
This example uses data from a split-plot design consisting of 2 whole-plots and 4 
split-plots. 

 
#include <stdlib.h> 

#include <math.h> 

#include "imsls.h" 

 

void main() 

{ 

  char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",  

                        "Mean\nsquares", "\nF", "\np-value"}; 

  int i, page_width = 132; 

   

  int n = 24;                /* Total number of observations */ 

  int n_locations = 1;       /* Number of locations */ 
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  int n_whole = 2;           /* Number of Whole-plots within a location */ 

  int n_split = 4;           /* Number of Split-plots within a location, 
Whole_plot */ 

  int rep[]={ 

    1, 1, 1, 1, 1, 1, 1, 1, 

    2, 2, 2, 2, 2, 2, 2, 2, 

    3, 3, 3, 3, 3, 3, 3, 3}; 

  int whole[]={ 

    1, 1, 1, 1, 2, 2, 2, 2,  

    1, 1, 1, 1, 2, 2, 2, 2, 

    1, 1, 1, 1, 2, 2, 2, 2}; 

  int split[]={ 

    1, 2, 3, 4, 1, 2, 3, 4,  

    1, 2, 3, 4, 1, 2, 3, 4,   

    1, 2, 3, 4, 1, 2, 3, 4}; 

  float y[] ={ 

    30.0, 40.0, 38.9, 38.2, 

    41.8, 52.2, 54.8, 58.2, 

    20.5, 26.9, 21.4, 25.1, 

    26.4, 36.7, 28.9, 35.9, 

    21.0, 25.4, 24.0, 23.3, 

    34.4, 41.0, 33.0, 34.9}; 

  float grand_mean; 

  float *aov; 

  float *treatment_means; 

  float *whole_plot_means; 

  float *split_plot_means; 

  int *equal_means; 

  char **aov_row_labels; 

 

  aov = imsls_f_split_plot(n, n_locations, n_whole, n_split,  

                           rep, whole, split, y,  

                           IMSLS_GRAND_MEAN, &grand_mean,  

                           IMSLS_TREATMENT_MEANS, &treatment_means,  

                           IMSLS_WHOLE_PLOT_MEANS, &whole_plot_means,  

                           IMSLS_SPLIT_PLOT_MEANS, &split_plot_means, 

                           IMSLS_ANOVA_ROW_LABELS, &aov_row_labels, 

                           0); 

   

  /* Output results. */ 

  imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

 

  /* Print ANOVA table, without first column. */ 

  imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  
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                       11, 6, aov,  

                       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f", 

                       IMSLS_ROW_LABELS, aov_row_labels, 

                       IMSLS_COL_LABELS, col_labels, 

                       0); 

 

  /* Print the various means. */ 

  printf("\n\nGrand mean: %f\n", grand_mean); 

  imsls_f_write_matrix("Treatment Means", n_whole, n_split, 

                       treatment_means, 0); 

  imsls_f_write_matrix("Whole-plot  Means", n_whole, 1, 

                       whole_plot_means, 0); 

  imsls_f_write_matrix("Split-plot Means", n_split, 1, 

                       split_plot_means, 0); 

 

} 

 

Output 
 

                    *** ANALYSIS OF VARIANCE TABLE *** 

                                                Mean 

                          ID   DF       SSQ  squares        F  p-value 

Location                  -1  ...  ........  .......  .......  ....... 

Block Within Location     -2    2   1310.28   655.14    30.82    0.031 

Whole-Plot                -3    1    858.01   858.01    40.37    0.024 

Location x Whole-Plot     -4  ...  ........  .......  .......  ....... 

Whole-Plot Error          -5    2     42.51    21.26     2.03    0.173 

Split-Plot                -6    3    227.73    75.91     7.26    0.005 

Location x Split-Plot     -7  ...  ........  .......  .......  ....... 

Whole-Plot x Split-Plot   -8    3     13.40     4.47     0.43    0.737 

Location x Whole-Plot x   -9  ...  ........  .......  .......  ....... 

   Split-Plot 

Split-Plot Error         -10   12    125.39    10.45  .......  ....... 

Corrected Total          -11   23   2577.33  .......  .......  ....... 

 

 

Grand mean: 33.870834 

 

                   Treatment Means 

             1            2            3            4 

1        23.83        30.77        28.10        28.87 

2        34.20        43.30        38.90        43.00 
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Whole-plot  Means 

 1        27.89 

 2        39.85 

 

Split-plot Means 

 1        29.02 

 2        37.03 

 3        33.50 

 4        35.93 
 

split_split_plot 
Analyzes data from split-split-plot experiments.  The whole-plots can be assigned 
to experimental units using either a completely randomized or randomized 
complete block design.  Function split_split_plot also analyzes split-split-
plot experiments replicated at several locations. 

Synopsis 
#include <imsls.h> 
float * imsls_f_split_split_plot (int n, int n_locations, int 

n_whole, int n_split, int n_sub, int rep[], int whole[], int 
split[],  int sub[], float y[],…, 0) 

The type double function is imsls_d_split_split_plot. 

Required Arguments 
int n  (Input) 

Number of missing and non-missing experimental observations.  
imsls_f_split_split_plot verifies that: 

 

 
1

( )i
i

n
�

� �
n_locations

n_whole×n_split×n_sub×n_blocks

 where n_blocki is equal to the number of blocks or replicates at the ith 
location.  

int n_locations (Input) 
Number of locations.  n_locations must be one or greater.   If 
n_locations>1 then the optional array locations[] must be 
included as input. See optional argument IMSLS_LOCATIONS. 
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int n_whole  (Input) 
Number of levels associated with the whole-plot factor.  n_whole must 
be greater than one. 

int n_split  (Input) 
Number of levels associated with the split-plot factor.  n_split must be 
greater than one.  

int n_sub  (Input) 
Number of levels associated with the sub-plot factor.  n_sub must be 
greater than one. 

int rep[]  (Input) 
An array of length n containing the block, or replicate, identifiers for 
each observation in y.  Different locations can have different numbers of 
blocks or replicates.  Each block or replicate at a single location must be 
assigned a different identifier, but different locations can have the same 
assignments. 

int whole[]  (Input) 
An array of length n containing the whole-plot identifiers for each 
observation in y.  Each level of the whole-plot factor must be assigned a 
different integer.  imsls_f_split_split_plot verifies that the 
number of unique whole-plot identifiers is equal to n_whole. 

int split[]  (Input) 
An array of length n containing the split-plot identifiers for each 
observation in y.  Each level of the split-plot factor must be assigned a 
different integer.  imsls_f_split_split_plot verifies that the 
number of unique split-plot identifiers is equal to n_split. 

int sub[]  (Input) 
An array of length n containing the sub-plot identifiers for each 
observation in y.  Each level of the sub-plot factor must be assigned a 
different integer.  imsls_f_split_split_plot verifies that the 
number of unique sub-plot identifiers is equal to n_sub. 

float y[] (Input) 
An array of length n containing the experimental observations and any 
missing values.  Missing values cannot be omitted.  They are included by 
placing a NaN (not a number) in y. The NaN value can be set using 
either the function imsls_f_machine(6) or imsls_d_machine(6), 
depending upon whether single or double precision is being used, 
respectively.  At a single location, only one missing value per whole-plot 
is allowed.  The location, whole-plot, split-plot and sub-plot for each 
observation in y are identified by the corresponding values in the 
arguments locations, whole, split and sub. 
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Return Value 
Address of a pointer to the memory location of a two dimensional, 20 by 6 array 
containing the ANOVA table.  Each row in this array contains values for one of 
the effects in the ANOVA table.  The first value in each row,  
anova_tablei,0 = anova_table[i*6], identifies the source for the effect 
associated with values in that row.  The remaining values in a row contain the 
ANOVA table values using the following convention: 

 
J anova_table

i,j 
= anova_table[i*6+j] 

0 Source Identifier (values described below) 

1 Degrees of freedom 

2 Sum of squares  

3 Mean squares  

4 F-statistic  

5 p-value for this F-statistic 
 
The Source Identifiers in the first column of anova_tablei,j are the only 
negative values in anova_table[]. Assignments of identifiers to ANOVA 
sources use the following coding: 

 
Source 

Identifier 
 

ANOVA Source 
-1 LOCATION† 
-2 BLOCK WITHIN LOCATION‡  
-3 WHOLE-PLOT 
-4 LOCATION × WHOLE-PLOT† 
-5 WHOLE-PLOT ERROR  
-6 SPLIT-PLOT 
-7 LOCATION × SPLIT-PLOT† 
-8 WHOLE-PLOT × SPLIT-PLOT 
-9 LOCATION × WHOLE-PLOT × SPLIT-PLOT† 
-10 SPLIT-PLOT ERROR� 
-11 CORRECTED TOTAL 
-12 LOCATION × SUB-PLOT† 
-13 WHOLE-PLOT × SUB-PLOT 
-14 LOCATION × WHOLE-PLOT × SUB-PLOT† 
-15 SPLIT-PLOT × SUB-PLOT 
-16 LOCATION × SPLIT-PLOT × SUB-PLOT† 
-17 WHOLE-PLOT × SPLIT-PLOT × SUB-PLOT 
-18 LOCATION × WHOLE-PLOT × SPLIT-PLOT × SUBPLOT† 
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Source 
Identifier 

 
ANOVA Source 

-19 SUB-PLOT ERROR 
-20 CORRECTED TOTAL 

Notes: † If n_locations=1 sources involving location are set to missing 
(NaN). 

‡   If IMSLS_CRD is set, entries for blocks within location are set to missing, and 
     its sum of squares and degrees of freedom are pooled into the whole-plot error. 

*  Split-plot error component calculation varies depending upon n_locations. 
See description below for details. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float * imsls_f_split_split_plot (int n, int n_locations, int 

n_whole, int n_split, int n_sub, int rep[], int whole[], 
 int split[],int sub[], float y[], 
IMSLS_RETURN_USER, float anova_table[], 
IMSLS_LOCATIONS, int locations[], 
IMSLS_RCBD or IMSLS_CRD, 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV, float **cv, 
IMSLS_CV_USER, float cv[], 
IMSLS_GRAND_MEAN, float *grand_mean, 
IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means, 
IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[], 
IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means, 
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[], 
IMSLS_SUB_PLOT_MEANS, float **sub_plot_means, 
IMSLS_SUB_PLOT_MEANS_USER, float sub_plot_means[], 
IMSLS_WHOLE_SPLIT_PLOT_MEANS, 
  float **whole_split_plot_means, 
IMSLS_WHOLE_SPLIT_PLOT_MEANS_USER,  
 float whole_split_plot_means[], 
IMSLS_WHOLE_SUB_PLOT_MEANS, float 
**whole_sub_plot_means, 
IMSLS_WHOLE_SUB_PLOT_MEANS_USER 
 float whole_sub_plot_means[], 
IMSLS_SPLIT_SUB_PLOT_MEANS, float **split_sub_plot_means,  
IMSLS_SPLIT_SUB_PLOT_MEANS_USER,  
 float split_sub_plot_means[], 
IMSLS_TREATMENT_MEANS, float **treatment_means,  
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_STD_ERRORS, float **std_err, 
IMSLS_STD_ERRORS_USER, float std_err[], 
IMSLS_N_BLOCKS int **n_blocks, 
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IMSLS_N_BLOCKS_USER, int n_blocks[], 
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table, 
IMSLS_LOCATION_ANOVA_TABLE_USER,  
 float location_anova_table[], 
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels, 
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 

 0) 

Optional Arguments 
IMSLS_RETURN_USER, float anova_table[] (Output) 

User defined array of length 120 for storage of the 20 by 6 anova table 
described as the return argument for imsls_f_split_split_plot.  
For a detailed description of the format for this table, see the previous 
description of the return value for imsls_f_split_split_plot. 

IMSLS_LOCATIONS, int locations[]  (Input) 
An array of length n containing the location identifiers for each 
observation in y.  Unique integers must be assigned to each location in 
the study.  This argument is required when n_locations>1. 

IMSLS_RCBD or IMSLS_CRD (Input) 
Whole-plot randomization characteristic:  IMSLS_RCBD implies that 
whole-plots are assigned to whole-plot experimental units using a 
randomized complete block design.  IMSLS_CRD implies that whole-
plots are completely randomized to whole-plot experimental units.  
Default: IMSLS_RCBD 

IMSLS_N_MISSING, int *n_missing  (Output) 
Number of missing values, if any, found in y. Missing values are 
denoted with a NaN (Not a Number) value. 

IMSLS_CV, float **cv (Output) 
Address of a pointer to  an internally allocated array of length 3 
containing the whole-plot, split-plot and sub-plot coefficients of 
variation.  cv[0] contains the whole-plot C.V., cv[1] contains the split-
plot C.V., and cv[2] contains the sub-plot C.V. 

IMSLS_CV_USER, float cv[] (Output) 
Storage for the array cv, provided by the user. 

IMSLS_GRAND_MEAN, float *grand_mean (Output) 
Mean of all the data across every location. 

IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means (Output) 
 Address of a pointer to an internally allocated array of length n_whole 
containing the whole-plot means. 

IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[] (Output) 
Storage for the array whole_plot_means, provided by the user. 
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IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output) 
Address of a pointer to an internally allocated array of length n_split 
containing the split-plot means. 

IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output) 
Storage for the array split_plot_means, provided by the user. 

IMSLS_SUB_PLOT_MEANS, float **sub_plot_means (Output) 
 Address of a pointer to an internally allocated array of length n_sub 
containing the sub-plot means. 

IMSLS_SUB_PLOT_MEANS_USER, float sub_plot_means[] (Output) 
Storage for the array sub_plot_means, provided by the user. 

IMSLS_WHOLE_SPLIT_PLOT_MEANS, float **whole_split_plot_means 
(Output) 
 Address of a pointer to an internally allocated 2-dimensional array of 
size n_whole by n_split containing the whole-plot by split-plot 
means. 

IMSLS_WHOLE_SPLIT_PLOT_MEANS_USER, float 
whole_split_plot_means[] (Output) 
Storage for the array whole_split_plot_means, provided by the 
user. 

IMSLS_WHOLE_SUB_PLOT_MEANS, float **whole_sub_plot_means (Output) 
Address of a pointer to an internally allocated 2-dimensional array of 
size n_whole by  n_sub containing the whole-plot by sub-plot means. 

IMSLS_WHOLE_SUB_PLOT_MEANS_USER, float whole_sub_plot_means[] 
(Output) 
Storage for the array whole_sub_plot_means, provided by the user. 

IMSLS_SPLIT_SUB_PLOT_MEANS, float **split_sub_plot_means (Output) 
 Address of a pointer to an internally allocated 2-dimensional array of 
size n_split by n_sub containing the split-plot by sub-plot means. 

IMSLS_SPLIT_SUB_PLOT_MEANS_USER, float split_sub_plot_means[] 
(Output) 
Storage for the array split_sub_plot_means, provided by the user. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size 
(n_whole*n_split*n_sub) containing the treatment means.  
For i > 0, j > 0 and  k > 0, treatment_meansi,j,k = treatment_means 
[(i-1)*n_split*n_sub+(j-1)*n_sub + k-1] contains the mean of the 
observations, averaged over all locations, blocks and replicates, for the 
kth sub-plot within  the jth split-plot within the ith whole-plot. 

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output) 
Storage for the array treatment_means, provided by the user. 
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IMSLS_STD_ERRORS, float **std_err (Output) 
 Address of a pointer to an internally allocated array of length 8 
containing five standard errors and their associated degrees of freedom.   
The standard errors are in the first five elements and their associated 
degrees of freedom are reported in std_err[4] through std_err[7]. 

 
 

Element 
Standard Error for 

Comparisons Between Two 
Degrees of 

Freedom 
std_err[0] Whole-Plot Means std_err[4] 

std_err[1] Split-Plot Means std_err[5] 

std_err[2] Sub-Plot Means std_err[6] 

std_err[3] Treatment Means  (same whole-plot, split-
plot and sub-plot) 

std_err[7] 

IMSLS_STD_ERRORS_USER, float std_err[] (Output) 
Storage for the array std_err, provided by the user. 

IMSLS_N_BLOCKS, int **n_blocks (Output) 
Address of a pointer to an internally allocated array of length 
n_locations containing the number of blocks, or replicates, at each 
location.  

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output) 
Storage for the array n_blocks, provided by the user. 

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output) 
 Address of a pointer to an internally allocated 3-dimensional array of 
size n_locations  by 20 by 6 containing the anova tables associated 
with each location.  For each location, the 20 by 6 dimensional array 
corresponds to the anova table for that location.  For example, 
location_anova_table[(i-1)*120+(j-1)*6 + (k-1)] contains the value 
in the kth column and jth row of the returned anova-table for the ith 
location. 

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output) 
Storage for the array location_anova_table, provided by the user. 

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels   (Output) 
Address of a pointer to a pointer to an internally allocated array 
containing the labels for each of the n_anova rows of the returned 
ANOVA table. The label for the ith row of the ANOVA table can be 
printed with  

  printf("%s", anova_row_labels[i]); 

 The memory associated with anova_row_labels  can be freed with a 
single call to free(anova_row_labels). 

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]   (Output) 
Storage for the array anova_row_labels, provided by the user.  The 
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amount of space required will vary depending upon the number of 
factors and n_anova.   An upperbound on the required memory is 
char *anova_row_labels[600]. 

Description 
Function imsls_f_split_split_plot is capable of analyzing a wide variety 
of split-split-plot experiments.   

Split-split-plot experimental designs can vary in the assignment of whole-plot 
factors to experimental units.  In some cases, this assignment is completely 
random.  For example, in a drug study the experimental unit might be the subject 
receiving a treatment.  The whole-plot factor, possibly different treatments, could 
be assigned in one of two ways.  Each subject could receive only one treatment or 
each could receive all treatments over an appropriate period of time.  If each 
subject received only a single randomly selected treatment, then this design 
constitutes a completely randomized design for the whole-plot factor, and the 
optional input argument IMSLS_CRD must be set.   

On the other hand, if each subject receives every treatment in random order, then 
the subject is a blocking factor, and this sampling scheme constitutes a 
randomized complete block design.  In this case, it is necessary to assume that 
there are no carry-over effects from one treatment to another.  This sampling 
scheme is the default setting, i.e. IMSLS_RCBD is the default setting. 

This randomization choice occurs often in agricultural field trials.  A trial 
designed to test different fertilizers and different seed lots can be conducted in 
one of two ways.  The whole-plot factor, fertilizer, can be applied to different 
fields, or each can be applied to sub-divisions of these fields. In either case, a 
field, or a sub-division of a field, is the whole-plot experimental unit.  In the first 
case, in which only one randomly selected fertilizer is applied to each field, the 
whole-plot factor is not blocked and this scheme is called as a completely 
randomized design, and the optional input argument IMSLS_CRD must be set.  
However, if fertilizers are applied to sub-divisions within a field, then the whole-
plot factor is blocked within fields and this assignment is referred to as a 
randomized complete block design.  By default, imsls_f_split_split_plot 
assumes that levels of the whole-plot factor are randomly assigned within blocks, 
i.e. IMSLS_RCBD is the default setting for randomizing whole-plots. 

The essential distinction between split-plot  and split-split-plot experiments is the 
presence of a third factor that is blocked, or nested, within each level of the 
whole-plot and split-plot factors.  This third factor is referred to as the sub-plot 
factor. 
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Whole Plot Factor 
A2 A1 A4 A3 

A2B1 A1B3 A4B1 A3B2 

A2B3 A1B1 A4B3 A3B1 

A2B2 A1B2 A4B2 A3B2 

Figure 1 – Split-Plot Experiment – Split-Plot B Nested within Whole-Plot A 

Whole Plot Factor A 
A2 A1 A4 A3 

A2B3C2 
A2B3C1 

A1B2C1 
A1B2C2

A4B1C2 
A4B1C1

A3B3C2 
A3B3C1

A2B1C1 
A2B1C2 

A1B1C1 
A1B1C2

A4B3C2 
A4B3C1

A3B2C2 
A3B2C1

A2B2C2 
A2B2C1 

A1B3C1 
A1B3C2

A4B2C1 
A4B2C2

A3B1C2 
A3B1C1

Figure 2 – Split-Split Plot Experiment – Sub-Plot Factor C Nested Within Split-Plot Factor B, Nested 
Within Whole-Plot Factor A 

Contrast the split-split plot experiment to the same experiment run using a strip-
split plot design, see Figure 3.  In a strip-split plot experiment factor B is applied 
in strip across factor A; whereas, in a split-split plot experiment, factor B is 
randomly assigned to each level of factor A.  In a strip-split plot experiment, the 
level of factor B is constant across a row; whereas in a split-split plot experiment, 
the levels of factor B change as you go across a row, reflecting the fact that factor 
B is randomized within each level of factor A. 

 
  Factor A Strip Plots 
  A2 A1 A4 A3 

Factor 
B 

Strip 

Plots 

B3 A2B3C2 
A2B3C1 

A1B3C1 
A1B3C2

A4B3C2 
A4B3C1

A3B3C2 
A3B3C1 

 B1 A2B1C1 
A2B1C2 

A1B1C1 
A1B1C2

A4B1C2 
A4B1C1

A3B1C2 
A3B1C1 

 B2 A2B2C2 
A2B2C1 

A1B2C1 
A1B2C2

A4B2C1 
A4B2C2

A3B2C2 
A3B2C1 

Figure 3 – Strip-Split Plot Experiment - Split-Plots Nested Within Strip-Plot Factors A and B 
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In some studies, a split-split-plot experiment is replicated at several locations.  
Function imsls_f_split_split_plot can analyze these, even when the 
number of blocks or replicates at each location is different.  If only a single 
replicate or block is used at each location, then location should be treated as a 
blocking factor, with n_locations set equal to one.   If n_locations=1, it is 
assumed that the experiment was conducted at a single location with more than 
one block or replicate at that location.  In this case, all entries in the anova table 
associated with location will contain missing values. 

However, if n_locations>1, it is assumed the experiment was repeated at 
multiple locations, with replication or blocking occurring at each location.  
Although the number of blocks, or replicates, at each location can be different, 
the number of levels for whole-plot and split-plot factors, n_whole and 
n_split, must be the same at each location.  The locations associated with each 
of the observations in y are specified in the argument locations[], which is a 
required input argument when n_locations>1.   

By default, locations are assumed to be random effects. Tests involving whole-
plots use the interaction between whole-plots and locations as the error term for 
testing whether there are statistically significant differences among whole-plot 
factor levels.  This assumes that the interaction of whole-plots and locations is not 
statistically significant.  A test of this assumption uses the pooled whole-plot 
error.  If the interaction between location and whole-plots, split-plots or sub-plot 
is statistically significant, then the nature of that interaction should be explored 
since it impacts the interpretation of the significance of the treatment factors. 

When n_locations >1 are assumed to be random effects, tests involving split-
plots do not use the split-plot errors pooled across locations.  Instead, the error 
term for split plots is the interaction between locations and split-plots.  The split-
plot by whole-plot interaction is tested against the location by split-plot by whole-
plot interaction.   

Suppose, for example, that a researcher wanted to conduct an agricultural 
experiment comparing the effectiveness of 4 fertilizers with 3 rates of application 
and 2 seed lots.  One replicate of the experiment is conducted at each of the 3 
farms.  That is, only a single field at each location is assigned to this experiment.   

Each field is divided into 4 whole-plots and the fertilizers are randomly assigned 
to each of the 4 whole-plots.  Each whole-plot is then further sub-divided into 3 
split-plots which are each randomly assigned one of the three fertilizer application 
rates.  Finally, each of these sub-divisions assigned a particular fertilizer and 
application rate is sub-divided into 2 plots and randomly assigned one of the two 
seed lots. 

In this case, each farm is a blocking factor, fertilizers are whole-plots and 
fertilizer application rate are split plots, and seed lots are sub-plots.  The input 
array rep would contain integers from 1 to the number of farms, with 
n_whole=4, n_split=3 and n_sub=2. 

However, if each farm allocated more than a single field for this study, then each 
farm would be treated as a different location with n_locations set equal to the 
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number of farms, and fields might be treated as blocking factor.  The array rep 
would contain integers from 1 to the number fields used in a farm, and 
locations[] would contain integers from 1 to the number of farms. 

In summary imsls_f_split_split_plot can analyze 3x2=6 different 
experimental situations, depending upon the settings of: 
1. Locations (none, fixed or random): specified by setting n_locations, 

locations[] and IMSLS_LOC_FIXED or IMSLS_LOC_RANDOM. 
2. Whole-plot sampling (CRD or RCBD):  specified by setting IMSLS_CRD or 

IMSLS_RCBD. 

The default condition depends upon the value for n_locations. If 
n_locations>1, locations are assumed to be a random effect.  Assignment of 
experimental units to whole-plots is assumed to use a RCBD design and whole-
plots, split-plots and sub-plots are all assumed to be fixed effects. 

Example 
This example uses data from a split-split plot design consisting of 2 whole-plots, 
2-split-plots and 2 sub-plots. 

 
#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include "imsls.h" 

 

void main() 

{ 

  char **anova_row_labels = NULL; 

  char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",  

                        "Mean\nsquares", "\nF", "\np-value"}; 

  int i, j, k, l, page_width = 132; 

   

  int n = 24;         /* Total number of observations */ 

  int n_locations = 1;/* Number of locations */ 

  int n_whole = 2;    /* Number of Whole-plots within a location */ 

  int n_split = 2;    /* Number of Split-plots within a location, Whole_plot */ 

  int n_sub   = 2; 

  int rep[]={ 

    1, 1, 1, 1, 1, 1, 1, 1, 

    2, 2, 2, 2, 2, 2, 2, 2, 

    3, 3, 3, 3, 3, 3, 3, 3}; 

  int whole[]={ 

    1, 1, 1, 1, 2, 2, 2, 2,  

    1, 1, 1, 1, 2, 2, 2, 2, 
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    1, 1, 1, 1, 2, 2, 2, 2}; 

  int split[]={ 

    1, 1, 2, 2, 1, 1, 2, 2,  

    1, 1, 2, 2, 1, 1, 2, 2,   

    1, 1, 2, 2, 1, 1, 2, 2}; 

  int sub[]={ 

    1, 2, 1, 2, 1, 2, 1, 2,  

    1, 2, 1, 2, 1, 2, 1, 2,   

    1, 2, 1, 2, 1, 2, 1, 2}; 

  float y[] ={ 

    30.0, 40.0, 38.9, 38.2, 

    41.8, 52.2, 54.8, 58.2, 

    20.5, 26.9, 21.4, 25.1, 

    26.4, 36.7, 28.9, 35.9, 

    21.0, 25.4, 24.0, 23.3, 

    34.4, 41.0, 33.0, 34.9}; 

  float grand_mean; 

  float *cv; 

  float *aov; 

  float *treatment_means; 

  float *whole_plot_means; 

  float *split_plot_means; 

  float *sub_plot_means; 

  float *std_err; 

  int   *equal_means;   

 

  aov = imsls_f_split_split_plot(n, n_locations, n_whole, n_split, n_sub,  

                                 rep, whole, split, sub, y,  

                                 IMSLS_GRAND_MEAN, &grand_mean,  

                                 IMSLS_CV, &cv, 

                                 IMSLS_TREATMENT_MEANS,  &treatment_means,  

                                 IMSLS_WHOLE_PLOT_MEANS, &whole_plot_means,  

                                 IMSLS_SPLIT_PLOT_MEANS, &split_plot_means,  

                                 IMSLS_SUB_PLOT_MEANS,   &sub_plot_means, 

                                 IMSLS_STD_ERRORS,       &std_err, 

                                 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels, 

                                 0); 

   

  /* Output results. */ 

  imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

 

  /* Print ANOVA table. */ 

  imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  



 

 
 

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot � 341 

 

 

 

                       20, 6, aov,  

                       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f", 

                       IMSLS_ROW_LABELS, anova_row_labels, 

                       IMSLS_COL_LABELS, col_labels, 

                       0); 

 

  printf("\n\nGrand mean:    %7.3f\n", grand_mean); 

  printf("Coefficient of Variation ****\n"); 

  printf("  Whole-Plot: %7.3f\n", cv[0]); 

  printf("  Split-Plot: %7.3f\n", cv[1]); 

  printf("  Sub-Plot  : %7.3f\n", cv[2]); 

  l = 0; 

  /* 

   * Treatment Means 

   */ 

  printf("\n\n*************************************************************"); 

  printf("\nTreatment Means: \n"); 

  for (i=0; i < n_whole; i++){ 

      for(j=0; j < n_split; j++){ 

          for(k=0; k < n_sub; k++){ 

              printf("  treatment[%d][%d][%d] %f \n", i, j, k,  

                     treatment_means[l++]); 

          } 

      } 

  } 

  printf("\n  Standard Error for Comparing Two Treatment Means: %f \n  (df=%f)\n", 

         std_err[3], std_err[7]); 

  equal_means = imsls_f_multiple_comparisons(n_whole*n_split*n_sub,  

                                             treatment_means, std_err[7], 

                                             std_err[3]/sqrt(2),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, .05, 

                                             0); 

  printf("\n  LSD for Treatment Means (alpha=0.05)"); 

  imsls_i_write_matrix("  Size of Groups of Means", 1, n_whole*n_split*n_sub-1, 

                        equal_means, 0); 

  /* 

   * Whole-plot Means 

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Whole-plot Means", n_whole, 1, 

                       whole_plot_means, 0); 

  printf("\nStandard Error for Comparing Two Whole-Plot Means: %f \n(df=%f)\n", 
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         std_err[0], std_err[4]); 

  equal_means = imsls_f_multiple_comparisons(n_whole, whole_plot_means,  

                                             std_err[4], std_err[0]/sqrt(2),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, .05, 

                                             0); 

  printf("\nLSD for Whole-Plot Means (alpha=0.05) \n"); 

  imsls_i_write_matrix("Size of Groups of Means", 1, n_whole-1, 

                       equal_means, 0); 

  /* 

   * Split-plot Means 

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Split-plot Means", n_split, 1, 

                       split_plot_means, 0); 

  printf("\nStandard Error for Comparing Two Split-Plot Means: %f \n(df=%f)\n", 

         std_err[1], std_err[5]); 

  equal_means = imsls_f_multiple_comparisons(n_split, split_plot_means,  

                                             std_err[5], std_err[1]/sqrt(2),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, .05, 

                                             0); 

  printf("\nLSD for Split-Plot Means (alpha=0.05) \n"); 

  imsls_i_write_matrix("Size of Groups of Means", 1, n_split-1, 

                        equal_means, 0); 

  /* 

   * Sub-plot Means 

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Sub-plot Means", n_sub, 1, 

                       sub_plot_means, 0); 

  printf("\nStandard Error for Comparing Two Sub-Plot Means: %f \n(df=%f)\n", 

         std_err[2], std_err[6]); 

  equal_means = imsls_f_multiple_comparisons(n_sub, sub_plot_means,  

                                             std_err[6], std_err[2]/sqrt(2),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, .05, 

                                             0); 

  printf("\nLSD for Sub-Plot Means (alpha=0.05) \n"); 

  imsls_i_write_matrix(": Size of Groups of Means", 1, n_sub-1, 

      equal_means, 0); 

} 
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Output 
 

                        *** ANALYSIS OF VARIANCE TABLE *** 

                                                         Mean 

                                   ID   DF       SSQ  squares        F  p-value 

Location                           -1  ...  ........  .......  .......  ....... 

Block Within Location              -2    2   1310.28   655.14    30.82    0.031 

Whole-Plot                         -3    1    858.01   858.01    40.37    0.024 

Location x Whole-Plot              -4  ...  ........  .......  .......  ....... 

Whole-Plot Error                   -5    2     42.51    21.26     0.86    0.490 

Split-Plot                         -6    1     17.17    17.17     0.69    0.452 

Location x Split-Plot              -7  ...  ........  .......  .......  ....... 

Whole-Plot x Split-Plot            -8    1      1.55     1.55     0.06    0.815 

Location x Whole-Plot x            -9  ...  ........  .......  .......  ....... 

   Split-Plot 

Split-Plot Error                  -10    4     99.32    24.83     7.62    0.008 

Sub-Plot                          -11    1    163.80   163.80    50.27    0.000 

Location x Sub-Plot               -12  ...  ........  .......  .......  ....... 

Whole-Plot x Sub-Plot             -13    1     11.34    11.34     3.48    0.099 

Location x Whole-Plot x Sub-Plot  -14  ...  ........  .......  .......  ....... 

Split-plot x Sub-Plot             -15    1     46.76    46.76    14.35    0.005 

Location x Split-Plot x Sub-Plot  -16  ...  ........  .......  .......  ....... 

Whole_plot x Split-Plot           -17    1      0.51     0.51     0.16    0.703 

   x Sub-Plot 

Location x Whole-Plot x           -18  ...  ........  .......  .......  ....... 

   Split-Plot x Sub-Plot 

Sub-Plot Error                    -19    8     26.07     3.26  .......  ....... 

Corrected Total                   -20   23   2577.33  .......  .......  ....... 

 

 

Grand mean:     33.871 

Coefficient of Variation **** 

  Whole-Plot:  13.612 

  Split-Plot:  14.712 

  Sub-Plot  :   5.329 

 

 

************************************************************* 

Treatment Means: 

  treatment[0][0][0] 23.833334 
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  treatment[0][0][1] 30.766668 

  treatment[0][1][0] 28.100000 

  treatment[0][1][1] 28.866669 

  treatment[1][0][0] 34.200001 

  treatment[1][0][1] 43.299999 

  treatment[1][1][0] 38.899998 

  treatment[1][1][1] 43.000000 

 

  Standard Error for Comparing Two Treatment Means: 1.473846 

  (df=8.000000) 

 

  LSD for Treatment Means (alpha=0.05) 

   Size of Groups of Means 

 1   2   3   4   5   6   7 

 0   3   0   0   0   0   2 

 

 

************************************************************* 

Whole-plot Means 

 1        27.89 

 2        39.85 

 

Standard Error for Comparing Two Whole-Plot Means: 2.661792 

(df=2.000000) 

 

LSD for Whole-Plot Means (alpha=0.05) 

 

Size of Groups of Means 

           0 

 

 

************************************************************* 

Split-plot Means 

 1        33.03 

 2        34.72 

 

Standard Error for Comparing Two Split-Plot Means: 2.876944 

(df=4.000000) 

 

LSD for Split-Plot Means (alpha=0.05) 

 

Size of Groups of Means 

           2 
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************************************************************* 

Sub-plot Means 

1        31.26 

2        36.48 

 

Standard Error for Comparing Two Sub-Plot Means: 1.473846 

(df=8.000000) 

 

LSD for Sub-Plot Means (alpha=0.05) 

 

: Size of Groups of Means 

            0 

strip_plot 
Analyzes data from strip-plot experiments. Function strip_plot also analyzes 
strip-plot experiments replicated at several locations. 

Synopsis 
#include <imsls.h> 
float * imsls_f_strip_plot (int n, int n_locations, int n_strip_a,  

int n_strip_b, int block[], int strip_a[], int strip_b[],  
float y[],…, 0) 

The type double function  is imsls_d_strip_plot. 

Required Arguments 
int n  (Input) 

Number of missing and non-missing experimental observations. 
imsls_f_strip_plot verifies that: 

 

1

( )i
i

n
�

� �� �
n_locations

n_strip_a n_strip n_blocks  

int n_locations (Input) 
Number of locations.  n_locations must be one or greater.   If 
n_locations>1 then the optional array locations[] must be 
included as input to imsls_f_strip_plot. See optional argument 
IMSLS_LOCATIONS. 

int n_strip_a  (Input) 
Number of levels associated with the strip factor A.  n_strip_a must 
be greater than one. 
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int n_strip_b  (Input) 
Number of levels associated with the strip factor B.  n_strip_b must 
be greater than one. 

int block[]  (Input) 
 An array of length n containing the block identifiers for each 

observation in y.  Locations can have different numbers of blocks.  Each 
block at a single location must be assigned a different identifier, but 
different locations can have the same assignments. 

int strip_a[]  (Input) 
An array of length n containing the factor A strip-plot identifiers for 
each observation in y.  Each level of this factor must be assigned a 
different integer.  This routine verifies that the number of unique factor 
A strip-plot identifiers is equal to n_strip_a. 

int strip_b[]  (Input) 
An array of length n containing the factor B strip-plot identifiers for 
each observation in y.  Each level of this factor must be assigned a 
different integer.  This routine verifies that the number of unique factor 
B strip-plot identifiers is equal to n_strip_b. 

float y[] (Input) 
An array of length n containing the experimental observations and any 
missing values.  Missing values cannot be omitted.  They are indicated 
by placing a NaN (not a number) in y. The NaN value can be set using 
either the function imsls_f_machine(6) or imsls_d_machine(6), 
depending upon whether single or double precision is being used, 
respectively.  The location, strip-plot A, and strip-plot B for each 
observation in y are identified by the corresponding values in the 
arguments locations, strip_a, and strip_b. 

Return Value 
Address of a pointer to the memory location of a two dimensional, 12 by 6 array 
containing the ANOVA table.  Each row in this array contains values for one of 
the effects in the ANOVA table.  The first value in each row,  
anova_tablei,0 = anova_table[i*6], identifies the source for the effect 
associated with values in that row.  The remaining values in a row contain the 
ANOVA table values using the following convention: 

 
j anova_table

i,j 
= anova_table[i*6+j] 

0 Source Identifier (values described below) 

1 Degrees of freedom 

2 Sum of squares  

3 Mean squares  
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j anova_table
i,j 

= anova_table[i*6+j] 

4 F-statistic  

5 p-value for this F-statistic 
 

The Source Identifiers in the first column of anova_tablei,j are the only 
negative values in anova_table. Assignments of identifiers to ANOVA sources 
use the following coding: 

 
Source  

Identifier 
ANOVA Source 

-1 LOCATION† 
-2 BLOCK WITHIN LOCATION 
-3 STRIP-PLOT A 
-4 LOCATION × STRIP-PLOT A† 
-5 STRIP-PLOT A ERROR  
-6 STRIP-PLOT B 
-7 LOCATION × STRIP-PLOT B† 
-8 STRIP-PLOT B ERROR 
-9 STRIP-PLOT A × STRIP-PLOT B 
-10 LOCATION × STRIP-PLOT A × STRIP-PLOT B † 
-11 STRIP-PLOT A × STRIP-PLOT B ERROR 
-12 CORRECTED TOTAL 

 
Notes: † If n_locations=1 sources involving location are set to missing 
(NaN). 

Synopsis with Optional Arguments 
#include <imsl.h> 
float * imsls_f_strip_plot (int n, int n_locations, int n_strip_a, int 

n_strip_b, int block[], int strip_a[], int strip_b[], float y[], 
IMSLS_RETURN_USER, float anova_table[], 
IMSLS_LOCATIONS, int locations[], 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV,  float **cv, 
IMSLS_CV_USER, float cv[], 
IMSLS_GRAND_MEAN, float *grand_mean, 
IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means, 
IMSLS_STRIP_PLOT_A_MEANS_USER, 
  float strip_plot_a_means[], 
IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means, 
IMSLS_STRIP_PLOT_B_MEANS_USER, 
  float strip_plot_b_means[], 
IMSLS_TREATMENT_MEANS, float **treatment_means, 
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IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_STD_ERRORS, float **std_err, 
IMSLS_STD_ERRORS_USER, float std_err[], 
IMSLS_N_BLOCKS int **n_blocks, 
IMSLS_N_BLOCKS_USER, int n_blocks[], 
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table, 
IMSLS_LOCATION_ANOVA_TABLE_USER, 
  float location_anova_table[], 
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels, 
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 

 0) 

Optional Arguments 
IMSLS_RETURN_USER, float anova_table[] (Output) 

User defined array of length 72 for storage of the 12 by 6 ANOVA table 
described as the return argument for imsls_f_strip_plot.  For a 
detailed description of the format for this table, see the previous 
description of the return arguments for imsls_f_strip_plot. 

IMSLS_LOCATIONS, int locations[]  (Input) 
An array of length n containing the location identifiers for each 
observation in y.  Unique integers must be assigned to each location in 
the study.  This argument is required when n_locations>1.  

IMSLS_N_MISSING, int *n_missing  (Output) 
Number of missing values, if any, found in y.   Missing values are 
denoted with a NaN (Not a Number) value. 

IMSLS_CV, float **cv (Output) 
Address of a pointer to  an internally allocated array of length 3 
containing the whole-plot, split-plot and sub-plot coefficients of 
variation.  cv[0] contains the whole-plot C.V., cv[1] contains the 
split-plot C.V., and cv[2] contains the sub-plot C.V. 

IMSLS_CV_USER, float cv[] (Output) 
Storage for the array cv, provided by the user. 

IMSLS_GRAND_MEAN, float *grand_mean (Output) 
Mean of all the data across every location. 

IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means (Output) 
Address of a pointer to an internally allocated array of length 
n_strip_a containing the factor A strip-plot means. 

IMSLS_STRIP_PLOT_A_MEANS_USER, float strip_plot_a_means [] 
(Output) 
Storage for the array strip_plot_a_means, provided by the user. 

IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means (Output) 
Address of a pointer to an internally allocated array of length 
n_strip_b containing the factor B strip-plot means. 
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IMSLS_STRIP_PLOT_B_MEANS_USER, float strip_plot_b_means [] 
(Output) 
Storage for the array strip_plot_b_means, provided by the user. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size 
(n_split_a×n_split_b) containing the treatment means.  
For i > 0 and  j > 0, treatment_meansi,j = treatment_means 
[(i-1)×n_split_a +(j-1)] contains the mean of the observations, 
averaged over all locations, blocks and replicates, for the ith level of the 
factor A strip-plot and  the jth level of the factor B strip-plot. 

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_STD_ERRORS, float **std_err (Output) 
Address of a pointer to an internally allocated array of length 10 
containing five standard errors and their associated degrees of freedom.   
The standard errors are in the first five elements and their associated 
degrees of freedom are reported in std_err[5] through std_err[9]. 

 Element Standard Error for 
Comparisons Between Two 

Degrees of 
Freedom 

std_err[0] Factor A Strip-Plot Means std_err[5] 

std_err[1] Factor B Strip-Plot Means std_err[6] 

std_err[2] Factor A Strip-Plot Means at the 
same level of Factor B 

std_err[7] 

std_err[3]  Factor B Strip-Plot Means at the 
same level of Factor A 

std_err[8] 

std_err[4] Treatment Means  (same strip-
plot A and strip-plot B) 

std_err[9] 

IMSLS_STD_ERRORS_USER, float std_err[] (Output) 
Storage for the array std_err, provided by the user. 

IMSLS_N_BLOCKS, int **n_blocks (Output) 
Address of a pointer to an internally allocated array of length 
n_locations containing the number of blocks, or replicates, at each 
location. 

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output) 
Storage for the array n_blocks, provided by the user. 

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output) 
Address of a pointer to an internally allocated 3-dimensional array of 
size n_locations  by 12 by 6 containing the Anova tables associated 
with each location.  For each location, the 12 by 6 dimensional array 
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corresponds to the Anova table for that location.  For example, 
location_anova_table[(i-1)×72+(j-1)×6 + (k-1)] contains the value in 
the kth column and jth row of the returned Anova table for the ith 
location. 

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output) 
Storage for the array location_anova_table, provided by the user. 

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels   (Output) 
Address of a pointer to a pointer to an internally allocated array 
containing the labels for each of the  n_anova rows of the returned 
ANOVA table.  The label for the ith row of the ANOVA table can be 
printed with  

printf("%s", anova_row_labels[i]); 

The memory associated with anova_row_labels  can be freed with a 
single call to free(anova_row_labels). 

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]   (Output) 
Storage for the array anova_row_labels, provided by the user.  The 
amount of space required will vary depending upon the number of 
factors and n_anova.  An upperbound on the required memory is  
char *anova_row_labels[600]. 

Description 
Function imsls_f_strip_plot is capable of analyzing a wide variety of strip-
plot experiments.   

The essential distinction between strip-plot and split-plot experiments is the 
application of factor B.  In a split-plot experiment, levels of Factor B are nested 
within Factor A, see Figure 2.  In strip-plot experiments, Factors A and B are 
completely crossed, see Figure 1.  This occurs, for example, when an agricultural 
field is used as a block and the levels of factor A are applied in vertical strips 
across the entire field. Levels of factor B are assigned to horizontal strips across 
the same block. 

 

  Strip Plot Factor A 

  A2 A1 A4 A3 

B3 A2B3 A1B3 A4B3 A3B3 

B1 A2B1 A1B1 A4B1 A3B1 

Strip 

Plot 

Factor B 
B2 A2B2 A1B2 A4B2 A3B2 

Figure 1 – Strip-Plot Experiments – Strip-Plots Completely Crossed 
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Whole Factor Plot 

A2 A1 A4 A3 

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Figure 2 – Split-Plot Experiments – Split-Plot B Nested within Strip-Plot A 

In some studies, a strip-plot experiment is replicated at several locations.  
imsls_f_strip_plot can analyze strip-plot experiments replicated at multiple 
locations, even when the number of blocks or replicates at each location are 
different.  If only a single replicate or block is used at each location, then location 
should be treated as a blocking factor, with n_locations set equal to one.   If 
n_locations=1, it is assumed that the experiment was conducted at a single 
location with more than one block or replicate at that location.  In this case, the 
four entries associated with location in the ANOVA table will contain missing 
values. 

However, if n_locations>1, it is assumed the experiment was repeated at 
multiple locations, with blocking occurring at each location.  Although the 
number of blocks at each location can be different, the number of levels for the 
factor A and B strip-plots must be the same at each location.  The locations 
associated with each of the observations in y are specified in the argument 
locations[], which is a required input argument when n_locations>1.   

Locations are assumed to be random effects, then tests involving factor A strip-
plots use the interaction between factor A strip-plots and locations as the error 
term for testing whether there are statistically significant differences among the 
levels of factor A.  However, this assumes that the interaction of factor A and 
locations is not statistically significant.  A test of this assumption is included in 
the ANOVA table.  If the interaction between factor A strip-plots and locations is 
statistically significant, then the nature of that interaction should be explored 
since it impacts the interpretation of the significance of the factor A. 

Similarly, when locations are assumed to be random effects, tests involving factor 
B do not use the strip-plot B errors pooled across locations.  Instead, the error 
term for factor B is the interaction between locations and factor B.   

Example 
This example uses data from a strip-plot design with two levels for the first strip 
and four for the last strip. 

#include <stdlib.h> 

#include <math.h> 

#include "imsls.h" 
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void main() 

{ 

 

  char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",  

                        "Mean\nsquares", "\nF", "\np-value"}; 

  char **anova_row_labels = NULL; 

  int i, j, k, l, page_width = 132; 

  int n = 24;                /* Total number of observations */ 

  int n_locations = 1;       /* Number of locations */ 

  int n_strip_a   = 2;       /* Number of factor A strip-plots within a location */ 

  int n_strip_b   = 4;       /* Number of factor B strip-plots within a location */ 

 

  int block[]={ 

    1, 1, 1, 1, 1, 1, 1, 1, 

    2, 2, 2, 2, 2, 2, 2, 2, 

    3, 3, 3, 3, 3, 3, 3, 3}; 

  int strip_a[]={ 

    1, 1, 1, 1, 2, 2, 2, 2,  

    1, 1, 1, 1, 2, 2, 2, 2, 

    1, 1, 1, 1, 2, 2, 2, 2}; 

  int strip_b[]={ 

    1, 2, 3, 4, 1, 2, 3, 4,  

    1, 2, 3, 4, 1, 2, 3, 4,   

    1, 2, 3, 4, 1, 2, 3, 4}; 

  float y[] ={ 

    30.0, 40.0, 38.9, 38.2, 

    41.8, 52.2, 54.8, 58.2, 

    20.5, 26.9, 21.4, 25.1, 

    26.4, 36.7, 28.9, 35.9, 

    21.0, 25.4, 24.0, 23.3, 

    34.4, 41.0, 33.0, 34.9}; 

  float grand_mean=0; 

  float *cv; 

  float *aov; 

  float *treatment_means; 

  float *strip_plot_a_means; 

  float *strip_plot_b_means; 

  float *std_err; 

  int n_missing; 

  int *equal_means; 

   

  aov = imsls_f_strip_plot(n, n_locations, n_strip_a, n_strip_b,  

                           block, strip_a, strip_b, y,  

                           IMSLS_GRAND_MEAN, &grand_mean,  
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                           IMSLS_CV, &cv, 

                           IMSLS_N_MISSING,  &n_missing,   

                           IMSLS_STRIP_PLOT_A_MEANS, &strip_plot_a_means,  

                           IMSLS_STRIP_PLOT_B_MEANS, &strip_plot_b_means,  

                           IMSLS_TREATMENT_MEANS, &treatment_means, 

                           IMSLS_STD_ERRORS,  &std_err, 

                           IMSLS_ANOVA_ROW_LABELS, &anova_row_labels, 

                           0); 

   

  /* Output results. */ 

  imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

 

  /* Print ANOVA table. */ 

  imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  

                       12, 6, aov,  

                       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f", 

                       IMSLS_ROW_LABELS, anova_row_labels, 

                       IMSLS_COL_LABELS, col_labels, 

                       0); 

 

  printf("\nGrand mean: %f\n", grand_mean); 

 

  /* Print treatment means */ 

  imsls_f_write_matrix("Treatment Means", n_strip_a, n_strip_b, 

                       treatment_means, 0); 

  printf("\n\nStandard Error for Comparing Two Treatment Means: \n"); 

  printf("  Same Level of Factor B          %f (df=%f)\n", 

         std_err[2], std_err[7]); 

  printf("  Same Level of Factor A          %f (df=%f)\n", 

         std_err[3], std_err[8]); 

  printf("  Different Factor A and B Levels %f (df=%f)\n\n\n\n", 

         std_err[4], std_err[9]); 

   

 

  /* Print factor A means */ 

  imsls_f_write_matrix("Factor A Means", n_strip_a, 1, 

                       strip_plot_a_means, 0); 

  printf("\nStandard Error for Comparing Two Factor A Means: \n  %f (df=%f)\n", 

         std_err[0], std_err[5]); 

  equal_means = imsls_f_multiple_comparisons(n_strip_a, strip_plot_a_means,          
std_err[5], 

                                             std_err[0]/sqrt(2),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, .05, 

                                             0); 

  /* Print multiple comparison results */ 
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  imsls_i_write_matrix("LSD Comparison : Size of Groups of Means", 1, n_strip_a-1, 

      equal_means, 0); 

 

 

  /* Print factor B means */ 

  imsls_f_write_matrix("\n\nFactor B Means", n_strip_b, 1, 

                       strip_plot_b_means, 0); 

  printf("\nStandard Error for Comparing Two Factor B Means: \n  %f (df=%f)\n", 

         std_err[1], std_err[6]); 

  equal_means = imsls_f_multiple_comparisons(n_strip_b, strip_plot_b_means, 
std_err[6], 

                                             std_err[1]/sqrt(2),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, .05, 

                                             0); 

  /* Multiple comparison results */ 

  imsls_i_write_matrix("LSD Comparison : Size of Groups of Means",  

                       1, n_strip_b-1, equal_means, 0); 

} 

 

Output 
 

 

                         *** ANALYSIS OF VARIANCE TABLE *** 

                                                          Mean 

                                    ID   DF       SSQ  squares        F  p-value 

Location                            -1  ...  ........  .......  .......  ....... 

Block Within Location               -2    2   1310.28   655.14    19.89    0.009 

Strip-Plot A                        -3    1    858.01   858.01    40.37    0.024 

Location x Strip-Plot A             -4  ...  ........  .......  .......  ....... 

Strip-Plot A Error                  -5    2     42.51    21.26     4.62    0.061 

Strip-Plot B                        -6    3    227.73    75.91     4.66    0.052 

Location x Strip-Plot B             -7  ...  ........  .......  .......  ....... 

Strip-Plot B Error                  -8    6     97.76    16.29     3.54    0.075 

Strip-Plot A x Strip-Plot B         -9    3     13.40     4.47     0.97    0.466 

Location x Strip-Plot A            -10  ...  ........  .......  .......  ....... 

   x Strip-Plot B 

Strip-Plot A x Strip-Plot B Error  -11    6     27.63     4.60  .......  ....... 

Corrected Total                    -12   23   2577.33  .......  .......  ....... 

 

 

Grand mean: 33.870834 
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                   Treatment Means 

             1            2            3            4 

1        23.83        30.77        28.10        28.87 

2        34.20        43.30        38.90        43.00 

 

 

Standard Error for Comparing Two Treatment Means: 

  Same Level of Factor B          2.417643 (df=4.772558) 

  Same Level of Factor A          2.639322 (df=9.140633) 

  Different Factor A and B Levels 3.121075 (df=8.405353) 

 

 

Factor A Means 

1        27.89 

2        39.85 

 

Standard Error for Comparing Two Factor A Means: 

  1.882171 (df=2.000000) 

 

LSD Comparison : Size of Groups of Means 

                    0 

 

Factor B Means 

1        29.02 

2        37.03 

3        33.50 

4        35.93 

 

Standard Error for Comparing Two Factor B Means: 

  2.330465 (df=6.000000) 

 

LSD Comparison : Size of Groups of Means 

                1   2   3 

                2   3   0 
 

strip_split_plot 
Analyzes data from strip-split-plot experiments.  Function strip_split_plot 
also analyzes strip-split-plot experiments replicated at several locations. 

Synopsis 
#include <imsls.h> 
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float * imsls_f_strip_split_plot (int n, int n_locations, int 
n_strip_a, int n_strip_b, int n_split, int block[], int 
strip_a[], int strip_b[], int split[], float y[],…, 0) 

The type double function is imsls_d_strip_split_plot. 

Required Arguments 
int n  (Input) 

Number of missing and non-missing experimental observations.  
imsls_f_strip_split_plot verifies that: 

1

( )i
i

n
�

� �
n_locations

n_strip_a×n_strip_b×n_split×n_block  

 where n_blocksi is the number of blocks at location i. 
int n_locations (Input) 

Number of locations.  n_locations must be one or greater.   If 
n_locations>1 then the optional array locations[] must be 
included as input to imsls_f_strip_split_plot. 

int n_strip_a (Input) 
Number of levels associated with the strip-plot A factor.  n_strip_a 
must be greater than one. 

int n_strip_b  (Input) 
Number of levels associated with the strip-plots B factor.  n_strip_b 
must be greater than one. 

int n_split  (Input) 
Number of levels associated with the split factor. n_split must be 
greater than one. 

int block[]  (Input) 
An array of length n containing the block identifiers for each observation 
in y.  Locations can have different numbers of blocks.  Each block at a 
single location must be assigned a different identifier, but different 
locations can have the same assignments. 

int strip_a[]  (Input) 
An array of length n containing the strip-plot A level identifiers for each 
observation in y.  Each level of this factor must be assigned a different 
integer.  imsls_f_strip_split_plot verifies that the number of 
unique strip-plot identifiers is equal to n_strip_a. 

int strip_b[]  (Input) 
An array of length n containing the strip-plot B identifiers for each 
observation in y.  Each level of this factor must be assigned a different 
integer.  imsls_f_strip_split_plot verifies that the number of 
unique strip-plot identifiers is equal to n_strip_b. 

int split[]  (Input) 
An array of length n containing the split-plot level identifiers for each 



 

 
 

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot � 357 

 

 

 

observation in y.  Each level of this factor must be assigned a different 
integer.  imsls_f_strip_split_plot verifies that the number of 
unique split-plot identifiers is equal to n_split. 

float y[] (Input) 
An array of length n containing the experimental observations and any 
missing values.  Missing values cannot be omitted.  They are indicated 
by placing a NaN (not a number) in y. The NaN value can be set using 
either the function imsls_f_machine(6) or imsls_d_machine(6), 
depending upon whether single or double precision is being used, 
respectively.  The location, strip-plot A, strip-plot B and split-plot for 
each observation in y are identified by the corresponding values in the 
argument’s locations, strip_a, strip_b, and split. 

Return Value 
Address of a pointer to the memory location of a two dimensional, 22 by 6 array 
containing the ANOVA table.  Each row in this array contains values for one of 
the effects in the ANOVA table.  The first value in each row,  
anova_tablei,0 = anova_table[i*6], identifies the source for the effect 
associated with values in that row.  The remaining values in a row contain the 
ANOVA table values using the following convention: 

 
J anova_tablei,j = anova_table[i*6+j] 
0 Source Identifier (values described below) 

1 Degrees of freedom 

2 Sum of squares  

3 Mean squares  

4 F-statistic  

5 p-value for this F-statistic 
 

The Source Identifiers in the first column of anova_tablei,j are the only 
negative values in anova_table[]. Assignments of identifiers to ANOVA 
sources use the following coding: 

Source 
Identifier 

 
ANOVA Source 

-1 LOCATION† 

-2 BLOCKs WITHIN LOCATION  

-3 STRIP-PLOT A 

-4 LOCATION × STRIP-PLOT A † 

-5 STRIP-PLOT A ERROR  
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Source 
Identifier 

 
ANOVA Source 

-6 SPLIT-PLOT 

-7 SPLIT-PLOT × STRIP-PLOT A 

-8 LOCATION × SPLIT-PLOT † 

-9 SPLIT-PLOT ERROR 

-10 LOCATION × SPLIT-PLOT × STRIP-PLOT A † 

-11 STRIP-PLOT B 

-12 LOCATION × STRIP-PLOT B † 

-13 STRIP_PLOT B ERROR 

-14 STRIP-PLOT A × STRIP-PLOT B 

-15 LOCATION × STRIP-PLOT A × STRIP-PLOT B 

-16 STRIP-PLOT A × STRIP-PLOT B ERROR 

-17 SPLIT-PLOT × STRIP-PLOT B 

-18 STRIP-PLOT A × STRIP-PLOT B × SPLIT-PLOT 

-19 LOCATION × SPLIT-PLOT × STRIP-PLOT B † 

-20 LOCATION × STRIP-PLOT A × STRIP-PLOT B × SPLIT-
PLOT † 

-21 STRIP-PLOT A × STRIP-PLOT B × SPLIT-PLOT ERROR  

-22 CORRECTED TOTAL 

 

Notes: † If n_locations=1 sources involving location are set to missing 
(NaN). 

Synopsis with Optional Arugments 
#include <imsl.h> 
float * imsls_f_strip_split_plot (int n, int n_locations, 

 int n_strip_a, int n_strip_b, int n_split, int block[],  
int strip_a[], int strip_b[],int split[], float y[], 
IMSLS_RETURN_USER, float anova_table[] 
IMSLS_LOCATIONS, int locations[], 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV, float **cv, 
IMSLS_CV_USER, float cv[], 
IMSLS_GRAND_MEAN, float *grand_mean, 
IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means, 
IMSLS_STRIP_PLOT_A_MEANS_USER, 
  float strip_plot_a_means[], 
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IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means, 
IMSLS_STRIP_PLOT_B_MEANS_USER, 
  float strip_plot_b_means[], 
IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means, 
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[], 
IMSLS_STRIP_PLOT_AB_MEANS, float **strip_plot_ab_means, 
IMSLS_STRIP_PLOT_AB_MEANS_USER, 
  float strip_plot_ab_means[], 
IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS, 
 float **strip_plot_a_split_plot_means, 
IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS_USER, 
 float strip_plot_a_split_plot_means[], 
IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS, 
 float **strip_plot_b_split_plot_means, 
IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS_USER, 
 float strip_plot_b_split_plot_means[], 
IMSLS_TREATMENT_MEANS, float **treatment_means, 
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_STD_ERRORS, float **std_err, 
IMSLS_STD_ERRORS_USER, float std_err[], 
IMSLS_N_BLOCKS int **n_blocks, 
IMSLS_N_BLOCKS_USER, int n_blocks[], 
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table, 
IMSLS_LOCATION_ANOVA_TABLE_USER,  
 float location_anova_table[], 
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels, 
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float anova_table[] (Output) 

User defined array of length 132 for storage of the 22 by 6 anova table 
described as the return argument for imsls_f_strip_split_plot.  
For a detailed description of the format for this table, see the previous 
description of the return arguments for imsls_f_strip_split_plot. 

IMSLS_LOCATIONS, int locations[]  (Input) 
An array of length n containing the location identifiers for each 
observation in y.  Unique integers must be assigned to each location in 
the study.  This argument is required when n_locations>1.  

IMSLS_N_MISSING, int *n_missing  (Output) 
Number of missing values, if any, found in y.  Missing values are 
denoted with a NaN (Not a Number) value.  

IMSLS_CV, float **cv (Output) 
 Address of a pointer to  an internally allocated array of length 3 
containing the strip-plots and split-plot coefficients of variation.  cv[0] 
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contains the strip-plot A C.V., cv[1] contains the strip-plot B C.V., and 
cv[2] contains the split-plot C.V. 

IMSLS_CV_USER, float cv[] (Output) 
Storage for the array cv, provided by the user. 

IMSLS_GRAND_MEAN, float *grand_mean (Output) 
Mean of all the data across every location. 

IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means (Output) 
Address of a pointer to an internally allocated array of length 
n_strip_a containing the factor A strip-plot means. 

IMSLS_STRIP_PLOT_A_MEANS_USER, float strip_plot_a_means[] (Output) 
Storage for the array strip_plot_a_means, provided by the user. 

  
IMSLS_STRIP_PLOT_B_MEANS, float **split_plot_b_means (Output) 

 Address of a pointer to an internally allocated array of length n_split_b 
containing the strip-plot B means. 

IMSLS_STRIP_PLOT_B_MEANS_USER, float strip_plot_b_means[] (Output) 
Storage for the array split_plot_b_means, provided by the user. 

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output) 
 Address of a pointer to an internally allocated array of length n_split 
containing the strip-plot B means. 

IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output) 
Storage for the array split_plot_means, provided by the user. 

IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS,  float 
**strip_plot_a_split_plot_means (Output) 
 Address of a pointer to an internally allocated 2-dimensional array of 
size n_strip_a by n_split containing the means for all combinations 
of the factor A strip-plot and split-plots. 

IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS_USER,  float 
strip_plot_a_split_plot_means [] (Output) 
Storage for the array strip_a_split_plot_means, provided by the 
user. 

IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS,  float 
**split_plot_b_split_plot_means (Output) 
Address of a pointer to an internally allocated 2-dimensional array of 
size n_split_b by n_split containing the means for all combinations 
of strip-plot B and split-plots. 

IMSLS_STRIP_B_PLOT_SPLIT_PLOT_MEANS_USER, float 
strip_plot_b_split_plot_means[] (Output) 
Storage for the array strip_b_split_plot_means, provided by the 
user. 
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IMSLS_STRIP_PLOT_AB_MEANS, float **strip_plot_ab_means (Output) 
 Address of a pointer to an internally allocated 2-dimensional array of 
size n_strip_a by n_strip_b containing the means for all 
combinations of strip-plots. 

IMSLS_STRIP_PLOT_AB_MEANS_USER,  float strip_plot_ab_means[] 
(Output) 
Storage for the array strip_plot_ab_means, provided by the user. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size 
(n_strip_a*n_strip_b*n_split) containing the treatment means. 
For i > 0 and   j> 0, treatment_meansi, j = treatment_means 
[(i-1)*n_split +(j-1)] contains the mean of the observations, averaged 
over all locations, blocks and replicates, for the ith level of the strip-plot 
and  the jth level of the split-plot. 

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_STD_ERRORS, float **std_err (Output) 
 Address of a pointer to an internally allocated array of length 20 
containing ten standard errors and their associated degrees of freedom.   
The standard errors are in the first 10 elements and their associated 
degrees of freedom are reported in std_err[10] through std_err[19]. 

 
 

Element 
Standard Error for 

Comparisons Between Two 
Degrees of 

Freedom 
std_err[0]  Strip-Plot A Means std_err[10]

std_err[1]  Strip-Plot B Means std_err[11]

std_err[2]  Split-Plot Means std_err[12]

std_err[3]  Strip-Plot A Means at the same level of 
split-plots 

std_err[13]

std_err[4]  Strip-Plot A Means at the same level of 
strip-plot B 

std_err[14]

std_err[5]  Strip-Plot B Means at the same level of 
split-plots 

std_err[15]

std_err[6]  Strip-Plot B Means at the same level of 
strip-plot A 

std_err[16]

std_err[7]  Split-Plot Means at the same level of split-
plot A 

std_err[17]

std_err[8]  Split-Plot Means at the same level of strip-
plot B 

std_err[18]

std_err[9] Treatment Means  (same strip-plot A, strip-
plot B and split-plot) 

std_err[19]
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IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]   (Output) 
Storage for the array anova_row_labels, provided by the user.  The 
amount of space required will vary depending upon the number of 
factors and n_anova.   An upperbound on the required memory is  
char *anova_row_labels[800]. 

IMSLS_STD_ERRORS_USER, float std_err[] (Output) 
Storage for the array std_err, provided by the user. 

IMSLS_N_BLOCKS, int **n_blocks (Output) 
 Address of a pointer to an internally allocated array of length 
n_locations containing the number of blocks, or replicates, at each 
location.  This value must be greater than one, n_blocks > 1. 

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output) 
User provided storage for the array n_blocks. 

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output) 
Address of a pointer to an internally allocated 3-dimensional array of 
size n_locations  by 22 by 6 containing the anova tables associated 
with each location.  For each location, the 22 by 6 dimensional array 
corresponds to the anova table for that location.  For example, 
location_anova_table[(i-1)*132+(j-1)*6 +(k-1)] contains 
the value in the kth column and jth row of the returned anova-table for 
the ith location. 

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output) 
User provided storage for the array location_anova_table. 

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels   (Output) 
Address of a pointer to a pointer to an internally allocated array 
containing the labels for each of the  n_anova rows of the returned 
ANOVA table.  The label for the ith row of the ANOVA table can be 
printed with  

printf("%s", anova_row_labels[i]); 

The memory associated with anova_row_labels  can be freed with a 
single call to free(anova_row_labels). 

Description 
Function  imsls_f_strip_split_plot is capable of analyzing a wide variety 
of strip-split plot experiments, also referred to as strip-strip plot experiments.   By 
default, imsls_f_strip_split_plot assumes that both strip-plot factors, and 
split-plots are fixed effects, and the location effects, if any, are random effects. 
The nature of randomization used in an experiment determines analysis of the 
data.  Two popular forms of randomization in strip-plot and split-plot 
experiments are illustrated in the following two figures.  In both experiments, the 
strip-plot factor, factor A, has 4 levels that are randomly assigned to a block or 
field in four strips.   
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  Factor A Strip-Plots 
  A2 A1 A4 A3 

B3 A2B3 A1B3 A4B3 A3B3

B1 A2B1 A1B1 A4B1 A3B1

 
Factor B  

Strip Plots 

B2 A2B2 A1B2 A4B2 A3B2

 

 

 

 

Figure 1 – Strip-Plot Experiment - Strip-Plots Completely Crossed 

In the strip-plot experiment, factor B, has 3 levels that are randomly assigned as 
strips across each of the four levels of factor A.  In this case, factors A and B are 
completely crossed.  The randomization applied to factor B is independent of the 
application of the strip-plots, factor A. 

Contrast this to the randomization depicted in Figure 2.  In this split-plot 
experiment, the levels of factor B are nested within each level of factor A whole-
plots.  Factor B is randomized independently within each level of factor A.  
Unlike the strip-plot experiment, in the split-plot experiment different levels of 
factor B appear in the same row. 

 
Whole-Plot Factor 

A2 A1 A4 A3 

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Figure 2 – Split-Plot Experiment – Factor B Split-Plots Nested within Factor A Whole-Plots 

A strip-split plot experiment is a strip-plot experiment with a third factor 
randomized within each level of strip-plot factor A, see Figure 3.  The third 
factor, referred to as the split-plot factor, is randomly assigned to experimental 
units within each level of strip-plot factor A, see Figure 3. 
imsls_f_strip_split_plot analyzes strip-split plot experiments consisting 
of two strip-plot factors and one split-plot factor nested within strip-plot factors  
A and B. 
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  Factor A Strip Plots 
  A2 A1 A4 A3 

B3 A2B3C2 
A2B3C1 

A1B3C1 
A1B3C2 

A4B3C2 
A4B3C1 

A3B3C2 
A3B3C1 

B1 A2B1C1 
A2B1C2 

A1B1C1 
A1B1C2 

A4B1C2 
A4B1C1 

A3B1C2 
A3B1C1 

Factor 
B 

Strip 

Plots B2 A2B2C2 
A2B2C1 

A1B2C1 
A1B2C2 

A4B2C1 
A4B2C2 

A3B2C2 
A3B2C1 

Figure 3 – Strip-Split Plot Experiment - Split-Plots Nested Within Strip-Plot Factors A 

Strip-split plot experiments are closely related to split-split plot experiments, see 
Figure 4.  The main difference between the two is that in strip-split plot 
experiments, the order of the levels for factor B are not applied randomly across 
factor A.  Each level of factor B is constant across any row.  In this example, the 
entire first row is assigned to the third level of factor B.  In the equivalent split-
split plot experiment, the levels of factor B are not constant across any row.  The 
levels are randomized within each level of factor A. 

 
Whole Plot Factor A 

A2 A1 A4 A3 
A2B3C2 
A2B3C1 

A1B2C1 
A1B2C2

A4B1C2 
A4B1C1

A3B3C2 
A3B3C1

A2B1C1 
A2B1C2 

A1B1C1 
A1B1C2

A4B3C2 
A4B3C1

A3B2C2 
A3B2C1

A2B2C2 
A2B2C1 

A1B3C1 
A1B3C2

A4B2C1 
A4B2C2

A3B1C2 
A3B1C1

Figure 4 – Split-Split Plot Experiment – Sub-Plot Factor C Nested Within Split-Plot Factor B,  
Nested Within Whole-Plot Factor A 

In some studies, a strip-split-plot experiment is replicated at several locations.  
Function imsls_f_strip_split_plot can analyze strip-split plot experiments 
replicated at multiple locations, even when the number of blocks or replicates at 
each location might be different different.  If only a single replicate or block is 
used at each location, then location should be treated as a blocking factor, with 
n_locations=1. If n_locations=1, it is assumed that either the experiment 
was conducted at multiple locations, each with a single block, or at a single 
location with more than one block or replicate at that location.  When 
n_locations=1, all entries associated with location in the anova table will 
contain missing values. 

However, if n_locations>1, it is assumed the experiment was repeated at 
multiple locations, with blocking occurring at each location.  Although the 
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number of blocks at each location can be different, the number of levels for the 
strip-plot and split-plot factors strip-plots must be the same at each location.  The 
locations associated with each of the observations in y are specified in the 
argument locations[], which is a required input argument when 
n_locations>1.   

By default, locations are assumed to be random effects. Tests involving strip-
plots use the interaction between strip-plots and locations as the error term for 
testing whether there are statistically significant differences among strip-plots.  
However, this assumes that the interaction of strip-plots and locations is not 
statistically significant.  A test of this assumption is included in the anova table.  
If any interactions between locations and strip-plot or split-plot factors are 
statistically significant, then the nature of these interactions should be explored 
since this impacts the interpretation of the significance of the treatment factors. 

Similarly, when locations are assumed to be random effects, tests involving split-
plots do not use the split-plot errors pooled across locations.  Instead, the error 
term for split-plots is the interaction between locations and split-plots. 

Suppose, for example, that a researcher wanted to conduct an agricultural 
experiment comparing the effectiveness of 4 fertilizers with 3 seed lots and 3 
rates of application.  One replicate of the experiment is conducted at each of the 3 
farms.  That is, only a single field at each location is assigned to this experiment.   

Each field is divided into 4 vertical strips and 3 horizontal strips.  The vertical 
strips are randomly assigned to fertilizers and the rows are randomly assigned to 
application rates.  Fertilizers and application rates represent strip-plot factors A 
and B respectively.  Seed lots are randomly assigned to three sub-divisions within 
each combination of strip-plots. 

 

  Fertilizer Strip Plots 

  F2 F1 F4 F3 

R3 F2R3S1 
F2R3S2 
F2R3S3 

F1R3S3 
F1R3S2 
F1R3S1 

F4R3S3 
F4R3S2 
F4R3S1 

F3R3S2 
F3R3S1 
F3R3S3 

R2 F2R1S3 
F2R1S1 
F2R1S2 

F1R1S2 
F1R1S3 
F1R1S1 

F4R1S3 
F4R1S1 
F4R1S2 

F3R1S1 
F3R1S2 
F3R1S3 

 
Application 

Rate 

Strip 

Plot 

R1 F2R2S1 
F2R2S2 
F2R2S3 

F1R2S1 
F1R2S3 
F1R2S2 

F4R2S2 
F4R2S3 
F4R2S1 

F3R2S3 
F3R2S1 
F3R2S2 

Figure 4 – Strip-Split Plot Experiment – Fertilizer Strip-Plots, Application Rate Strip-Plots,  
and Seed Lot Split-Plots 
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In this case, each farm is a blocking factor, fertilizers are factor A strip-plots, 
fertilizer application rates are factor B strip-plots, and seed lots are split-plots.  
The input array rep would contain integers from 1 to the number of farms. 

In summary, imsls_f_strip_split_plot can analyze 2x2x2x2=16 different 
experimental situations, depending upon the settings of: 

Example 
The experiment was conducted using a 2 x 2 strip_split plot arrangement with 
each of the four plots divided into 2 sub-divisions that were randomly assigned 
one of two split-plot levels.  This was replicated 3 times producing an experiment 
with n = 2x2x2x3 = 24 observations.  

 
#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include "imsls.h" 

 

void l_printLSD(int n1, int *equalMeans, float *means); 

void l_printLSD2Table(int n1, int n2, int* equalMeans, float *means); 

void l_printLSD3Table(int n1, int n2, int n3, int* equalMeans, float *means); 

 

void main() 

{ 

  char **anova_row_labels; 

  char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",  

                        "Mean\nsquares", "\nF", "\np-value"}; 

  int i, j, k, l, page_width = 132; 

   

  int n = 24;            /* Total number of observations */ 

  int n_locations = 1;   /* Number of locations */ 

  int n_strip_a = 2;     /* Number of Factor A strip-plots within a location */ 

  int n_strip_b = 2;     /* Number of Factor B strip-plots within a location */ 

  int n_split   = 2;     /* Number of split-plots within each Factor A strip-plot */ 

  int block[]={ 

        1, 1, 1, 1, 1, 1, 1, 1, 

        2, 2, 2, 2, 2, 2, 2, 2, 

        3, 3, 3, 3, 3, 3, 3, 3}; 

  int strip_a[]={ 

        1, 1, 1, 1, 2, 2, 2, 2,  

        1, 1, 1, 1, 2, 2, 2, 2, 

        1, 1, 1, 1, 2, 2, 2, 2}; 

  int strip_b[]={ 

        1, 1, 2, 2, 1, 1, 2, 2,  
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        1, 1, 2, 2, 1, 1, 2, 2,   

        1, 1, 2, 2, 1, 1, 2, 2}; 

  int split[]={ 

        1, 2, 1, 2, 1, 2, 1, 2,  

        1, 2, 1, 2, 1, 2, 1, 2,   

        1, 2, 1, 2, 1, 2, 1, 2}; 

  float y[] ={ 

        30.0, 40.0, 38.9, 38.2, 

        41.8, 52.2, 54.8, 58.2, 

        20.5, 26.9, 21.4, 25.1, 

        26.4, 36.7, 28.9, 35.9, 

        21.0, 25.4, 24.0, 23.3, 

        34.4, 41.0, 33.0, 34.9}; 

  float alpha = 0.05; 

  float grand_mean = 0; 

  float *cv; 

  float *aov; 

  float *treatment_means; 

  float *strip_plot_a_means; 

  float *strip_plot_b_means; 

  float *split_plot_means; 

  float *strip_a_split_plot_means; 

  float *strip_b_split_plot_means; 

  float *strip_plot_ab_means; 

  float *std_err; 

  int   *equal_means; 

   

  aov = imsls_f_strip_split_plot(n, n_locations, n_strip_a, n_strip_b, n_split,  

                           block, strip_a, strip_b, split, y,  

                           IMSLS_GRAND_MEAN, &grand_mean,  

                           IMSLS_CV, &cv, 

                           IMSLS_TREATMENT_MEANS,  &treatment_means,  

                           IMSLS_STRIP_PLOT_A_MEANS, &strip_plot_a_means,  

                           IMSLS_STRIP_PLOT_B_MEANS, &strip_plot_b_means,  

                           IMSLS_SPLIT_PLOT_MEANS, &split_plot_means, 

      IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS, 
&strip_a_split_plot_means, 

                           IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS, 
&strip_b_split_plot_means, 

                           IMSLS_STRIP_PLOT_AB_MEANS, &strip_plot_ab_means, 

                           IMSLS_STD_ERRORS, &std_err, 

                           IMSLS_ANOVA_ROW_LABELS, &anova_row_labels, 

                           0); 
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  /* Output results. */ 

  imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

  /* Print ANOVA table, without first column. */ 

  imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  

                       22, 6, aov,  

                       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f", 

                       IMSLS_ROW_LABELS, anova_row_labels, 

                       IMSLS_COL_LABELS, col_labels, 

                       0); 

 

  /*  

   * Print the various means. 

   */ 

  printf("\nGrand mean: %f\n\n", grand_mean); 

  printf("Coefficient of Variation\n"); 

  printf("  Strip-Plot A:      %9.4f\n", cv[0]); 

  printf("  Strip-Plot B:      %9.4f\n", cv[1]); 

  printf("  Split-Plot:        %9.4f\n\n", cv[2]); 

  l = 0; 

 

  /*  

   * Print the Treatment Means. 

   */ 

  printf("\n\n*************************************************************"); 

  printf("\nTreatment Means\n"); 

  for (i=0; i < n_strip_a; i++){ 

     for(j=0; j < n_strip_b; j++){ 

        for(k=0; k < n_split; k++){ 

           printf("treatment[%d][%d][%d]   %9.4f \n",  

                  i+1, j+1, k+1, treatment_means[l++]); 

        } 

     } 

  } 

  printf("\nStandard Error for Comparing Two Treatment Means: %f \n(df=%f)\n", 

         std_err[9], std_err[19]); 

  equal_means = imsls_f_multiple_comparisons(n_strip_a*n_strip_b*n_split,   

                                             treatment_means, std_err[19], 

                                             std_err[9]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_printLSD3Table(n_strip_a, n_strip_b, n_split, equal_means, treatment_means); 
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  /*  

   * Print the Strip-plot A Means.  

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Strip-plot A Means", n_strip_a, 1, 

                       strip_plot_a_means, 0); 

  printf("\nStandard Error for Comparing Two Strip-Plot A Means: %f 
\n(df=%f)\n", 

         std_err[0], std_err[10]); 

  equal_means = imsls_f_multiple_comparisons(n_strip_a, strip_plot_a_means,  

                                             std_err[10], std_err[0]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_printLSD(n_strip_a, equal_means, strip_plot_a_means); 

 

  /*  

   * Print Strip-plot B Means.  

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Strip-plot B Means", n_strip_b, 1, 

                       strip_plot_b_means, 0); 

  printf("\nStandard Error for Comparing Two Strip-Plot B Means: %f \n(df=%f)\n", 

         std_err[1], std_err[11]); 

  equal_means = imsls_f_multiple_comparisons(n_strip_b, strip_plot_b_means,  

                                             std_err[11], std_err[1]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_printLSD(n_strip_b, equal_means, strip_plot_b_means); 

   

  /*  

   * Print the Split-plot Means.  

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Split-plot Means", n_split, 1, 

                       split_plot_means, 0); 

  printf("\nStandard Error for Comparing Two Split-Plot Means: %f \n(df=%f)\n", 

         std_err[2], std_err[12]); 

  equal_means = imsls_f_multiple_comparisons(n_split, split_plot_means,  

                                             std_err[12], std_err[2]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 



 

 
 

370 � strip_split_plot IMSL C/Stat/Library 

 

 

 

  l_printLSD(n_split, equal_means, split_plot_means); 

   

  /*  

   * Print the Strip-plot A by Split-plot Means.  

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Strip-plot A by Split-plot Means", n_strip_a, n_split, 

                       strip_a_split_plot_means, 0); 

  printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n", 

         std_err[3], std_err[13]); 

  equal_means = imsls_f_multiple_comparisons(n_strip_a*n_split,  

                                             strip_a_split_plot_means,  

                                             std_err[13], 

                                             std_err[3]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_printLSD2Table(n_strip_a, n_split, equal_means, strip_a_split_plot_means); 

 

  /*  

   * Print the Strip-plot A by Strip-plot B Means.  

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Strip-plot A by Strip-plot B Means", n_strip_a,  

                       n_strip_b, strip_plot_ab_means, 0); 

  printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n", 

         std_err[4], std_err[14]); 

  equal_means = imsls_f_multiple_comparisons(n_strip_a*n_strip_b,  

                                             strip_plot_ab_means, std_err[14], 

                                             std_err[4]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_printLSD2Table(n_strip_a, n_strip_b, equal_means, strip_plot_ab_means); 

 

  /*  

   * Print the Strip-Plot B by Split-Plot Means.  

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Strip-Plot B by Split-Plot Means", n_strip_b, n_split, 

                       strip_b_split_plot_means, 0); 

  printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n", 

         std_err[5], std_err[15]); 
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  equal_means = imsls_f_multiple_comparisons(n_strip_b*n_split,  

                                             strip_b_split_plot_means,  

                                             std_err[15], std_err[5]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_printLSD2Table(n_strip_b, n_split, equal_means, strip_b_split_plot_means); 

  

} 

/*  

 * Local functions to output  results of means comparisons. 

 */ 

void l_printLSD(int n, int *equalMeans, float *means){ 

        float x=0.0; 

        int i, j, k; 

        int iSwitch; 

        int *idx; 

         

        idx = (int *) malloc(n * sizeof (int)); 

 

        for (k=0; k < n; k++) { 

                idx[k] =k+1; 

        }         

        /* Sort means in ascending order*/ 

        iSwitch=1; 

        while (iSwitch != 0){ 

                iSwitch = 0; 

                for (i = 0; i < n-1; i++){ 

                        if (means[i] > means[i+1]){ 

                                iSwitch = 1; 

                                x = means[i]; 

                                means[i] = means[i+1]; 

                                means[i+1] = x; 

                                j = idx[i]; 

                                idx[i] = idx[i+1]; 

                                idx[i+1] = j; 

                        } 

                } 

        } 

        printf("[group] \t  Mean \t\tLSD Grouping \n"); 

        for (i=0; i < n; i++){ 

                printf("  [%d] \t\t%f", idx[i], means[i]); 
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                for (j=1; j < i+1; j++){ 

                        if(equalMeans[j-1] >= i+2-j){ 

                                printf("\t  *"); 

                        }else{  

                                if(equalMeans[j-1]>=0) printf("\t"); 

                        } 

                } 

                if (i < n-1 && equalMeans[i]>0) printf("\t  *"); 

                printf("\n"); 

        } 

        free(idx); 

        return; 

 

} 

void l_printLSD2Table(int n1, int n2, int *equalMeans, float *means){ 

        float x=0.0; 

        int i, j, k, n; 

        int iSwitch; 

        int *idx; 

        n = n1*n2; 

         

        idx = (int *) malloc(2*n * sizeof (int)); 

        i = 1; 

        j = 1; 

        for (k=0; k < n; k++) { 

                idx[2*k]   = i; 

                idx[2*k+1] = j++; 

                if (j > n2){ 

                        j = 1; 

                        i++; 

                } 

        } 

         

        /* sort means in ascending order*/ 

         

        iSwitch=1; 

        while (iSwitch != 0){ 

                iSwitch = 0; 

                for (i = 0; i < n-1; i++){ 

                        if (means[i] > means[i+1]){ 

                                iSwitch = 1; 

                                x = means[i]; 

                                means[i] = means[i+1]; 
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                                means[i+1] = x; 

                                j = idx[2*i]; 

                                idx[2*i] = idx[2*(i+1)]; 

                                idx[2*(i+1)] = j; 

                                j = idx[2*i+1]; 

                                idx[2*i+1] = idx[2*(i+1)+1]; 

                                idx[2*(i+1)+1] = j; 

                        } 

                } 

        } 

        printf("[A][B] \tMean \t\tLSD Grouping \n"); 

        for (i=0; i < n; i++){ 

                printf("[%d][%d] \t%f", idx[2*i], idx[2*i+1],means[i]); 

                 

                for (j=1; j < i+1; j++){ 

                        if(equalMeans[j-1] >= i+2-j){ 

                                printf("\t*"); 

                        }else{  

                                if(equalMeans[j-1]>0) printf("\t"); 

                        } 

                } 

                if (i < n-1 && equalMeans[i]>0) printf("\t*"); 

                printf("\n"); 

        } 

        free(idx); 

        idx = NULL; 

        return; 

 

} 

void l_printLSD3Table(int n1, int n2, int n3, int *equalMeans, float *means){ 

        float x=0.0; 

        int i, j, k, m, n; 

        int iSwitch; 

        int *idx; 

        n = n1*n2*n3; 

         

        idx = (int *) malloc(3*n * sizeof (int)); 

        i = 1; 

        j = 1; 

        k = 1; 

        for (m=0; m < n; m++) { 

                idx[3*m]   = i; 

                idx[3*m+1] = j; 
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                idx[3*m+2] = k++; 

                if (k > n3){ 

                        k = 1; 

                        j++; 

                        if (j > n2){ 

                                j = 1; 

                                i++; 

                        } 

                } 

        } 

 

        /* sort means in ascending order*/ 

         

        iSwitch=1; 

        while (iSwitch != 0){ 

                iSwitch = 0; 

                for (i = 0; i < n-1; i++){ 

                        if (means[i] > means[i+1]){ 

                                iSwitch = 1; 

                                x = means[i]; 

                                means[i] = means[i+1]; 

                                means[i+1] = x; 

                                j = idx[3*i]; 

                                idx[3*i] = idx[3*(i+1)]; 

                                idx[3*(i+1)] = j; 

                                j = idx[3*i+1]; 

                                idx[3*i+1] = idx[3*(i+1)+1]; 

                                idx[3*(i+1)+1] = j; 

                                j = idx[3*i+2]; 

                                idx[3*i+2] = idx[3*(i+1)+2]; 

                                idx[3*(i+1)+2] = j; 

                        } 

                } 

        } 

        printf("[A][B][Split] \t  Mean \t\t  LSD Grouping \n"); 

        for (i=0; i < n; i++){ 

                printf("[%d][%d]  [%d] \t%f", idx[3*i], idx[3*i+1], idx[3*i+2], 
means[i]); 

                 

                for (j=1; j < i+1; j++){ 

                        if(equalMeans[j-1] >= i+2-j){ 

                                printf("\t*"); 

                        }else{  

                                if(equalMeans[j-1]>0) printf("\t"); 



 

 
 

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot � 375 

 

 

 

                        } 

                } 

                if (i < n-1 && equalMeans[i]>0) printf("\t*"); 

                printf("\n"); 

        } 

        free(idx); 

        return; 

 

} 

 

Output 
 

 

                       *** ANALYSIS OF VARIANCE TABLE *** 

                                                      Mean 

                                ID   DF       SSQ  squares        F  p-value 

Location ....................   -1  ...  ........  .......  .......  ....... 

Blocks ......................   -2    2   1310.28   655.14    14.53    0.061 

Strip-Plot A ................   -3    1    858.01   858.01    40.37    0.024 

Location x A ................   -4  ...  ........  .......  .......  ....... 

Strip-Plot A Error ..........   -5    2     42.51    21.26     1.48    0.385 

Split-Plot ..................   -6    1    163.80   163.80    41.22    0.003 

Split-Plot x A ..............   -7    1     11.34    11.34     2.85    0.166 

Location x Split-Plot .......   -8  ...  ........  .......  .......  ....... 

Split-Plot Error ............   -9    4     15.90     3.97     1.56    0.338 

Location x Split-Plot x A ...  -10  ...  ........  .......  .......  ....... 

Strip-Plot B ................  -11    1     17.17    17.17     0.47    0.565 

Location x B ................  -12  ...  ........  .......  .......  ....... 

Strip-Plot B Error ..........  -13    2     73.51    36.75     2.85    0.260 

A x B .......................  -14    1      1.55     1.55     0.12    0.762 

Location x A x B ............  -15  ...  ........  .......  .......  ....... 

A x B Error .................  -16    2     25.82    12.91     5.08    0.080 

Split-Plot x B ..............  -17    1     46.76    46.76    18.39    0.013 

Split-Plot x A x B ..........  -18    1      0.51     0.51     0.20    0.677 

Location x Split-Plot x B ...  -19  ...  ........  .......  .......  ....... 

Location x Split-Plot x A x B  -20  ...  ........  .......  .......  ....... 

Split-Plot x A x B Error ....  -21    4     10.17     2.54  .......  ....... 

Corrected Total .............  -22   23   2577.33  .......  .......  ....... 

 

Grand mean: 33.870834 

 

Coefficient of Variation 
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  Strip-Plot A:        13.6116 

  Strip-Plot B:        17.8986 

  Split-Plot:           5.8854 

 

 

************************************************************* 

Treatment Means 

treatment[1][1][1]     23.8333 

treatment[1][1][2]     30.7667 

treatment[1][2][1]     28.1000 

treatment[1][2][2]     28.8667 

treatment[2][1][1]     34.2000 

treatment[2][1][2]     43.3000 

treatment[2][2][1]     38.9000 

treatment[2][2][2]     43.0000 

 

Standard Error for Comparing Two Treatment Means: 1.302029 

(df=4.000000) 

[A][B][Split]     Mean            LSD Grouping 

[1][1]  [1]     23.833334 

[1][2]  [1]     28.100000       * 

[1][2]  [2]     28.866669       * 

[1][1]  [2]     30.766668       *       * 

[2][1]  [1]     34.200001               * 

[2][2]  [1]     38.899998 

[2][2]  [2]     43.000000                       * 

[2][1]  [2]     43.299999                       * 

 

 

************************************************************* 

Strip-plot A Means 

  1        27.89 

  2        39.85 

 

Standard Error for Comparing Two Strip-Plot A Means: 1.882171 

(df=2.000000) 

[group]           Mean          LSD Grouping 

  [1]           27.891665 

  [2]           39.849998 

 

 

************************************************************* 

Strip-plot B Means 
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  1        33.03 

  2        34.72 

 

Standard Error for Comparing Two Strip-Plot B Means: 2.474972 

(df=2.000000) 

[group]           Mean          LSD Grouping 

  [1]           33.025002         * 

  [2]           34.716667         * 

 

 

************************************************************* 

Split-plot Means 

 1        31.26 

 2        36.48 

 

Standard Error for Comparing Two Split-Plot Means: 0.813813 

(df=4.000000) 

[group]           Mean          LSD Grouping 

  [1]           31.258331 

  [2]           36.483334 

 

 

************************************************************* 

Strip-plot A by Split-plot Means 

                1            2 

   1        25.97        29.82 

   2        36.55        43.15 

 

Standard Error for Comparing Two Means: 1.150906 

(df=4.000000) 

[A][B]  Mean            LSD Grouping 

[1][1]  25.966667 

[1][2]  29.816668 

[2][1]  36.549999 

[2][2]  43.149998 

 

 

************************************************************* 

Strip-plot A by Strip-plot B Means 

                 1            2 

    1        27.30        28.48 

    2        38.75        40.95 
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[1][1]  27.299997       * 

Standard Error for Comparing Two Means: 2.074280 

(df=2.000000) 

[A][B]  Mean            LSD Grouping 

[1][2]  28.483335       * 

[2][1]  38.750000               * 

[2][2]  40.949997               * 

 

 

************************************************************* 

Strip-Plot B by Split-Plot Means 

                1            2 

   1        29.02        37.03 

   2        33.50        35.93 

 

Standard Error for Comparing Two Means: 0.920673 

(df=4.000000) 

[A][B]  Mean            LSD Grouping 

[1][1]  29.016668 

[2][1]  33.500000       * 

[2][2]  35.933334       *       * 

[1][2]  37.033333               * 

homogeneity 
Conducts Bartlett’s and Levene’s tests of the homogeneity of variance assumption 
in analysis of variance. 

Synopsis 
#include <imsls.h> 
float * imsls_f_homogeneity (int n, int n_treatment, int treatment[], 

float y[],…, 0) 

The type double is imsls_d_homogeneity. 

Required Arguments 
int n  (Input) 

Number of experimental observations. 

int n_treatment  (Input) 
Number of treatments.  n_treatment must be greater than one. 

int treatment[]  (Input) 
An array of length n containing the treatment identifiers for each 
observation in y.  Each level of the treatment must be assigned a 
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different integer.  imsls_f_homogeneity verifies that the number of 
unique treatment identifiers is equal to n_treatment. 

float y[] (Input) 
An array of length n containing the experimental observations and any 
missing values.  Missing values can be included in this array, although 
they are ignored in the analysis.  They are indicated by placing a NaN 
(not a number) in y. The NaN value can be set using either the function 
imsls_f_machine(6) or imsls_d_machine(6), depending upon 
whether single or double precision is being used, respectively. 

Return Value 
Address of a pointer to the memory location of an array of length 2 containing the 
p-values for Bartletts and Levene’s tests.  

Synopsis with Optional Arugments 
#include <imsl.h> 

float * imsls_f_homogeneity (int n, int n_treatment,  
int n_treatment[], float y[], 
IMSLS_RETURN_USER, float p_value[] 
IMSLS_LEVENES_MEAN or IMSLS_LEVENES_MEDIAN, 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV, float *cv, 
IMSLS_GRAND_MEAN, float *grand_mean, 
IMSLS_TREATMENT_MEANS, float **treatment_means, 
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_RESIDUALS, float **residuals, 
IMSLS_RESIDUALS_USER, float residuals[], 
IMSLS_STUDENTIZED_RESIDUALS,  
 float **studentized_residuals, 
IMSLS_STUDENTIZED_RESIDUALS_USER,  
 float studentized_residuals[], 
IMSLS_STD_DEVS, float **std_devs, 
IMSLS_STD_DEVS_USER, float std_devs[], 
IMSLS_BARTLETTS, float *bartletts, 
IMSLS_LEVENES, float *levenes, 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float p_value[] (Output) 

User defined array of length 2 for storage of the p-values from Bartlett’s 
and Levene’s tests for homogeneity of variance.  The first value returned  
contains the p-value for Bartlett’s test and the second value contains the 
p-value for Levene’s test. 
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IMSLS_LEVENES_MEAN or IMSLS_LEVENES_MEDIAN (Input) 
Calculates Levene’s test using either the treatment means or medians.  
IMSLS_LEVENES_MEAN indicates that Levene’s test is calculated using 
the mean, and IMSLS_LEVENES_MEDIAN indicates that it is calculated 
using the median. 
 Default: IMSLS_LEVENES_MEAN 

IMSLS_N_MISSING, int *n_missing  (Output) 
Number of missing values, if any, found in y.   Missing values are 
denoted with a NaN (Not a Number) value in y.  In these analyses, any 
missing values are ignored. 

IMSLS_CV, float *cv (Output) 
The coefficient of variation computed using the grand mean and pooled 
within treatment standard deviation. 

IMSLS_GRAND_MEAN, float grand_mean (Output) 
Mean of all the data across every location. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size 
n_treatment containing the treatment means. 

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_RESIDUALS, float **residuals (Output) 
Address of a pointer to an internally allocated array of length n 
containing the residuals for non-missing observations.  The ordering of 
the values in this array corresponds to the ordering of values in y and 
identified by the values in treatments. 

IMSLS_RESIDUALS_USER, float residuals[] (Output) 
Storage for the array residuals, provided by the user. 

IMSLS_STUDENTIZED_RESIDUALS, float **studentized_residuals 
(Output) 
Address of a pointer to an internally allocated array of length n 
containing the studentized residuals for non-missing observations.  The 
ordering of the values in this array corresponds to the ordering of values 
in y and identified by the values in treatments. 

IMSLS_STUDENTIZED_RESIDUALS_USER, float studentized_residuals[] 
(Output) 
Storage for the array studentized_residuals, provided by the user. 

IMSLS_STD_DEVS, float **std_devs (Output) 
Address of a pointer to an internally allocated array of length 
n_treatment containing the treatment standard deviations. 

IMSLS_STD_DEVS_USER, float std_devs[] (Output) 
Storage for the array std_devs, provided by the user. 
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IMSLS_BARTLETTS, float *bartletts (Output) 
Test statistic for Bartlett’s test. 

IMSLS_LEVENES, float *levenes (Output) 
Test statistic for Levene’s test. 

Description 
Traditional analysis of variance assumes that variances within treatments are 
equal.  This is referred to as homogeneity of variance.  The function 
imsls_f_homogeneity conducts both the Bartlett’s and Levene’s tests for this 
assumption: 

: 1 2oH t� � �� � ��   

 versus  

:Ha i j� ��   

for at least one pair (i�j), where t=n_treatments. 

Bartlett’s test, Bartlett (1937),  uses the test statistic: 
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and is the variance of the non-missing observations in the ith treatment.  2
iS in

2
pS is referred to as the pooled variance, and it is also known as the error mean 

squares from a 1-way analysis of variance. 

If the usual assumptions associated with the analysis of variance are valid, then 
Bartlett’s test statistic is a chi-squared random variable with degrees of freedom 
equal to t-1. 

The original Levene’s test, Levene (1960) and Snedecor & Cochran (1967), uses 
a different test statistic, F0, equal to: 
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.| |ij ij iz x x� � , 

ijx is the jth observation from the ith treatment and .ix is the mean for the ith 
treatment.  Conover, Johnson, and Johnson (1981) compared over 50 similar tests 
for homogeneity and concluded that one of the best tests was Levene’s test when 
the treatment mean, .ix  is replaced with the treatment median, .ix� .  This version 
of Levene’s test can be requested by setting IMSLS_LEVENES_MEDIAN.  In either 
case, Levene’s test statistic is treated as a F random variable with numerator 
degrees of freedom equal to (t-1) and denominator degrees of freedom (N-t). 

The residual for the jth observation within the ith treatment, e , returned from 
IMSLS_RESIDUALS is unstandarized, i.e. 

ij

ij ij i� �e x .  For investigating 
problems of homogeneity of variance, the studentized residuals returned by 
IMSLS_STUDENTIZED_RESIDUALS are recommended since they are standarzied 
by the standard deviation of the residual.  The formula for calculating the 
studentized residual is: 

x
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where the coefficient of variation, returned from IMSLS_CV, is also calculated 
using the pooled variance and the grand mean .. ij

i j
x x��� : 
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Example 
This example applies Bartlett’s and Levene’s test to verify the homogeneity 
assumption for a one-way analysis of variance.  There are eight treatments, each 
with 3 replicates for a total of 24 observations.  The estimated treatment standard 
deviations range from 5.35 to 13.17.   

In this case, Bartlett's test is not statistically significant for a stated significance 
level of .05; whereas Levene's test is significant with p = 0.006. 

 
#include "imsls.h" 
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void ex_homog_b() 

{ 

  int i, page_width = 132; 

   

  int n = 24;  

  int n_treatment = 8; 

  int treatment[]={ 

    1, 2, 3, 4, 5, 6, 7, 8, 

    1, 2, 3, 4, 5, 6, 7, 8, 

    1, 2, 3, 4, 5, 6, 7, 8}; 

  float y[] ={ 

    30.0, 40.0, 38.9, 38.2, 

    41.8, 52.2, 54.8, 58.2, 

    20.5, 26.9, 21.4, 25.1, 

    26.4, 36.7, 28.9, 35.9, 

    21.0, 25.4, 24.0, 23.3, 

    34.4, 41.0, 33.0, 34.9}; 

 

  float bartletts; 

  float levenes; 

  float grand_mean; 

  float cv; 

  float *treatment_means=NULL; 

  float *residuals=NULL; 

  float *studentized_residuals=NULL; 

  float *std_devs=NULL; 

  int n_missing = 0; 

  float *p; 

 

  p = imsls_f_homogeneity(n, n_treatment, treatment, y, 

     IMSLS_BARTLETTS, &bartletts,  

     IMSLS_LEVENES, &levenes,  

     IMSLS_LEVENES_MEDIAN, 

     IMSLS_N_MISSING, &n_missing,  

     IMSLS_GRAND_MEAN, &grand_mean,  

     IMSLS_CV, &cv,  

     IMSLS_TREATMENT_MEANS, &treatment_means, 

     IMSLS_STD_DEVS, &std_devs, 

     0); 

 

  printf("\n\n\n *** Bartlett\'s Test ***\n\n"); 

  printf("Bartlett\'s p-value        = %10.3f\n", p[0]); 

  printf("Bartlett\'s test statistic = %10.3f\n", bartletts); 
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  printf("Levene\'s test statistic = %10.3f\n", levenes); 

 

  printf("\n\n\n *** Levene\'s Test ***\n\n"); 

  printf("Levene\'s p-value        = %10.3f\n", p[1]); 

 

  imsls_f_write_matrix("Treatment means", n_treatment, 1, treatment_means, 0); 

  imsls_f_write_matrix("Treatment std devs", n_treatment, 1, std_devs, 0); 

  printf("\ngrand_mean = %10.3f\n", grand_mean); 

  printf("cv         = %10.3f\n", cv); 

  printf("n_missing  = %d\n", n_missing); 

   

} 

 

Output 
 

 *** Bartlett's Test *** 

 

Bartlett's p-value        =      0.056 

Bartlett's test statistic =      2.257 

 

 

 

 *** Levene's Test *** 

 

Levene's p-value        =      0.006 

Levene's test statistic =      0.135 

 

Treatment means 

1        23.83 

2        30.77 

3        28.10 

4        28.87 

5        34.20 

6        43.30 

7        38.90 

8        43.00 

 

Treatment std devs 

  1         5.35 

  2         8.03 

  3         9.44 
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  4         8.13 

  5         7.70 

  6         8.00 

  7        13.92 

  8        13.17 

 

grand_mean =     33.871 

cv         =     28.378 

n_missing  = 0 

 

multiple_comparisons 
Performs multiple comparisons of means using one of  Student-Newman-Keuls, 
LSD, Bonferroni, Tukey’s, or Duncan’s MRT procedures.  

Synopsis 
#include <imsls.h> 
int *imsls_f_multiple_comparisons (int n_groups, float means[], 

int df, float std_error, ..., 0) 

The type double function is imsls_d_multiple_comparisons. 

Required Arguments 

int n_groups   (Input) 
Number of groups i.e., means, being compared. 

float means[]   (Input) 
Array of length n_groups containing the means. 

int df   (Input) 
Degrees of freedom associated with std_error. 

float std_error   (Input) 
Effective estimated standard error of a mean. In fixed effects models, 
std_error equals the estimated standard error of a mean. For example, 
in a one-way model 

2s
n

�std_error  

where s2 is the estimate of �2 and n is the number of responses in a 
sample mean. In models with random components, use 

2
sedif

�std_error  
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where sedif is the estimated standard error of the difference of two 
means. 

Return Value 
Pointer to the array of length n_groups � 1 indicating the size of the groups of 
means declared to be equal. Value equal_means [I] = J indicates the I-th 
smallest mean and the next J � 1 larger means are declared equal. Value 
equal_means [I] = 0 indicates no group of means starts with the I-th smallest 
mean. 

 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_multiple_comparisons (int n_groups, float means [], 

int df, float std_error, 
IMSLS_ALPHA, float alpha, 
IMSLS_SNK, or 
IMSLS_LSD, or 
IMSLS_TUKEY, or 
IMSLS_BONFERRONI,  
IMSLS_RETURN_USER, int *equal_means, 
0) 
 

Optional Arguments 
IMSLS_ALPHA, float alpha   (Input) 

Significance level of test. Argument alpha must be in the interval  
[0.01, 0.10]. 
Default: alpha = 0.01 

IMSLS_RETURN_USER, int *equal_means   (Output) 
If specified, equal_means is an array of length n_groups � 1 specified 
by the user. On return, equal_means contains the size of the groups of 
means declared to be equal. Value equal_means [I] = J indicates the 
ith smallest mean and the next J � 1 larger means are declared equal. 
Value equal_means [I] = 0 indicates no group of means starts with the 
ith smallest mean. 

IMSLS_SNK, or 

IMSLS_LSD, or 

IMSLS_TUKEY, or 

IMSLS_BONFERRONI, or 
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Argument Method 

IMSLS_SNK Student-Newman-Keuls (default) 

IMSLS_LSD Least significant difference 

IMSLS_TUKEY Tukey’s w-procedure, also called the 
honestly significant difference procedure. 

IMSLS_BONFERRONI Bonferroni t statistic 

Description 
Function imsls_f_multiple_comparisons performs a multiple comparison 
analysis of means using one of  Student-Newman-Keuls, LSD, Bonferroni, or 
Tukey’s procedures. The null hypothesis is equality of all possible ordered 
subsets of a set of means. The methods are discussed in many elementary 
statistics texts, e.g., Kirk (1982, pp. 123–125). 

The output consists of an array of n_groups –1 integers that describe grouping 
of means that are considered not statistically significantly different.  

For example, if n_groups=4 and the returned array is equal to {0, 2, 2} then we 
conclude that: 

1. The smallest mean is significantly different from the others, 

2. The second and third smallest means are not significantly different from 
one another,  

3. The second and fourth means are significantly different 

4. The third and fourth means are not significantly different from one 
another. 

These relationships can be depicted graphically as three groups of means: 

 
Smallest 

Mean 
Group  

1 
Group  

2 
Group  

3 

1 x   

2  x  

3  x x 

4   x 
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Examples 

Example 1 
A multiple-comparisons analysis is performed using data discussed by Kirk 
(1982, pp. 123�125). The results show that there are three groups of means with 
three separate sets of values: (36.7, 40.3, 43.4), (40.3, 43.4, 47.2), and (43.4, 
47.2, 48.7). 

In this case, the ordered means are {36.7, 40.3, 43.4, 47.2, 48.7} corresponding 
to treatments {1, 5, 3, 4, 2}. Since the output table is: 

� �
� �
� �

1 2 3 4

3 3 3 0
, 

we can say that within each of these three groups, means are not significantly 
different from one another.  

 
Treatment  

 
Mean Group  

1 
Group  

2 
Group  

3 

1 36.7 x   

5 40.3 x x  

3 43.4 x x x 

4 47.2  x x 

2 48.7   x 

 
#include <imsls.h> 
 
void main () 
{ 
    int n_groups       =  5; 
    int df             = 45; 
    float std_error    = 1.6970563; 
    float means[5]     = {36.7, 48.7, 43.4, 47.2, 40.3}; 
    int *equal_means; 
                       /* Perform multiple comparisons tests */ 
    equal_means = imsls_f_multiple_comparisons(n_groups, means, df,  
        std_error, 0); 
                       /* Print results */ 
    imsls_i_write_matrix("Size of Groups of Means", 1, n_groups-1,  
        equal_means, 0); 
 
} 



 

 
 

Chapter 4: Analysis of Variance and Designed Experiments multiple_comparisons � 389 

 

 

 

Output 
Size of Groups of Means 
     1   2   3   4 
     3   3   3   0 

Example 2 
This example uses the same data as the previous example but also uses additional 
methods by specifying optional arguments. 

Example 2 uses the same data as Example 1: Ordered treatment means 
correspond to treatment order {1,5,3,4,2}. 

The table produced for Bonferroni is: 

� �
� �
� �

1 2 3 4

3 4 0 0
 

Thus, these are two groups of similar means. 

 
Treatment  

 
Mean Group  

1 
Group  

2 

1 36.7 x  

5 40.3 x x 

3 43.4 x x 

4 47.2  x 

2 48.7  x 

 
#include <imsls.h> 
void main() 
{ 

    float std_error    = 1.6970563; 

      /* Bonferroni */ 

    int n_groups       =  5; 
    int df             = 45; 

    float means[5]     = {36.7, 48.7, 43.4, 47.2, 40.3}; 
    int equal_means[4]; 
     
  /* Student-Newman-Keuls */ 
       imsls_f_multiple_comparisons(n_groups, means, df, std_error,  
 IMSLS_RETURN_USER, equal_means, 0); 
       imsls_i_write_matrix("SNK         ", 1, n_groups-1, equal_means, 0); 
 

       imsls_f_multiple_comparisons(n_groups, means, df, std_error,  
 IMSLS_BONFERRONI,  
 IMSLS_RETURN_USER, equal_means,  
 0); 
       imsls_i_write_matrix("Bonferonni  ", 1, n_groups-1, equal_means, 0); 
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 IMSLS_RETURN_USER, equal_means,  

1   2   3   4 

 
      /* Least Significant Difference */ 
       imsls_f_multiple_comparisons(n_groups, means, df, std_error,  
 IMSLS_LSD,  

 0); 
       imsls_i_write_matrix("LSD         ", 1, n_groups-1, equal_means, 0); 
 
      /* Tukey's */ 
       imsls_f_multiple_comparisons(n_groups, means, df, std_error,  
 IMSLS_TUKEY, 
 IMSLS_RETURN_USER, equal_means,  
 0); 
       imsls_i_write_matrix("Tukey       ", 1, n_groups-1, equal_means, 0); 
 
 
} 

 

Output 
SNK 
1   2   3   4 
3   3   3   0 
 
Bonferonni 

3   4   0   0 
 
LSD 
1   2   3   4 
2   2   3   0 
 
Tukey 
1   2   3   4 
3   3   3   0 

yates 
Estimates missing observations in designed experiments using Yate’s method. 

Synopsis 
#include <imsls.h> 

int   imsls_f_yates(int n, int n_independent, float x[],…, 0) 

The type double function is imsls_d_yates. 

Required Arguments 
int n (Input) 

Number of observations. 

int n_independent  (Input) 
Number of independent variables. 
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float x[] (Input/Output) 
A n by (n_independent+1) 2-dimensional array containing the 
experimental observations and missing values.  The first 
n_independent columns contain values for the independent variables 
and the last column contains the corresponding observations for the 
dependent variable or response.  The columns assigned to the 
independent variables should not contain any missing values. Missing 
values are included in this array by placing a NaN (not a number) in the 
last column of x. The NaN value can be set using either the function 
imsls_f_machine(6) or imsls_d_machine(6), depending upon 
whether single or double precision is being used, respectively.  Upon 
successful completion, missing values are replaced with estimates 
calculated using Yates’ method.   

Return Value 
The number of missing values replaced with estimates using the Yates procedure.  
A negative return value  indicates that the routine was unable to successfully 
estimate all missing values.  Typically this occurs when all of the observations for 
a particular treatment combination are missing.  In this case, Yate’s missing value 
method does not produce a unique set of missing value estimates. 

Synopsis with Optional Arugments 
#include <imsls.h> 

int  imsls_f_yates (int n, int n_independent, float x[],  
IMSLS_DESIGN, int design, 
IMSLS_INITIAL_ESTIMATES, int  n_missing,   
 float initial_estimates[], 
IMSLS_GET_SS, float get_ss (int n, int n_independent, 
 int n_levels[], float dataMatrix[]), 
IMSLS_GRAD_TOL, float grad_tol, 
IMSLS_STEP_TOL, float step_tol, 
IMSLS_MAX_ITN, int **itmax, 
IMSLS_MISSING_INDEX, int **missing_index[], 
IMSLS_MISSING_INDEX_USER, int missing_index[], 
IMSLS_ERROR_SS, float *error_ss, 
0) 

Optional Arguments 
IMSLS_RETURN_USER, int n_missing (Output) 

The number of missing values replaced with Yate’s estimates.  A 
negative return value indicates that the routine was unable to 
successfully estimate all missing values. 

IMSLS_DESIGN, int design  (Input) 
An integer indicating whether a custom or standard design is being used.  
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The association of values for this variable and standard designs is 
described in the following table: 

 
Design Description 

 
0 

CRD – Completely Randomized Design.  The input matrix, x, 
is assumed to have only two columns.  The first is used to 
contain integers identifying the treatments.  The second 
column should contain corresponding observations for the 
dependent variable.  In this case, n_independent=1.  Default 
value when n_independent=1. 

 
1 

RCBD – Randomized Complete Block Design.  The input 
matrix is assumed to have only three columns.  The first is 
used to contain the treatment identifiers and the second the 
block identifiers.  The last column contains the corresponding 
observations for the dependent variable.  In this case, 
n_independent=2.  This is the default value when 
n_independent=2. 

 
2 

Another design.  In this case, the function get_ss is a 
required input.  The design matrix is passed to that 
routine.  Initial values for missing observations are set 
to the grand mean of the data, unless initial values are 
specified using IMSLS_INITIAL_ESTIMATES. 

 

 Default: design=0 or design=1, depending upon whether 
n_independent=1 or 2 respectively.  If n_independent>2, then 
design must be set to 2, and get_ss must be provided as input to 
imsls_f_yates.  

IMSLS_INITIAL_ESTIMATES, int n_missing,  
float initial_estimates[]  (Input) 
Initial estimates for the missing values.  Argument n_missing is the 
number of missing values.  Argument initial_estimates is an array 
of length n_missing containing the initial estimates. 
Default:  For design=0 and design=1, the initial estimates are 
calculated using the Yates formula for those designs. For design=2, the 
mean of the non-missing observations is used as the initial estimate for 
all missing values.  

IMSLS_MAX_ITN, int itmax (Input) 
Maximum number of iterations in the optimization routine for finding 
the missing value estimates that minimize the error sum of squares in the 
analysis of variance.  
Default: itmax = 500. 

IMSLS_GET_SS, float get_ss(int n, int n_independent, int n_levels[], 
float dataMatrix[]) (Input/Output) 
A user-supplied function that returns the error sum of squares calculated 



 

 
 

Chapter 4: Analysis of Variance and Designed Experiments yates � 393 

 

 

 

2/3

using the n by (n_independent+1) matrix dataMatrix.  
imsls_f_yates calculates the error sum of squares assuming that 
dataMatrix contains no missing observations.  In general, 
dataMatrix  should be equal to the input matrix x with missing values 
replaced by estimates.  imsls_f_yates is required input when 
design=2. The array n_levels should be of length n_independent 
and contain the number of levels associated with each of the first 
n_independent columns in the dataMatrix and x arrays. 

IMSLS_GRAD_TOL, float grad_tol (Input) 
Scaled gradient tolerance used to determine whether the difference 
between the error sum of squares is small enough to stop the search for 
missing value estimates.    

 Default: grad_tol = , where is the machine precision. 2/3ε ε

IMSLS_STEP_TOL, float step_tol (Input) 
Scaled step tolerance used to determine whether the difference between 
missing value estimates is small enough to stop the search for missing 
value estimates.  
Default: step_tol = ε , where is the machine precision. ε

IMSLS_MISSING_INDEX, int *missing_index  (Output) 
An array of length n_missing containing the indices for the missing 
values in x.  The number of missing values, n_missing, is the return 
value of imsls_f_yates. 

IMSLS_MISSING_INDEX_USER, int missing_index[]  (Output) 
Storage for the array missing_index, provided by the user. 

IMSLS_ERROR_SS, float *errr_ss  (Output) 
The value of the error sum of squares calculated using the missing value 
estimates.  If design=2 then this is equal to the value returned from 
get_ss using the Yates missing value estimates. 

Description 
Several functions for analysis of variance require balanced experimental data, i.e. 
data containing no missing values within a block and an equal number of 
replicates for each treatment.  If the number of missing observations in an 
experiment is smaller than the Yates method as described in Yates (1933) and 
Steel and Torrie (1960), can be used to estimate the missing values.  Once the 
missing values are replaced with these estimates, the data can be passed to an 
analysis of variance that requires balanced data. 

The basic principle behind the Yates method for estimating missing observations 
is to replace the missing values with values that minimize the error sum of squares 
in the analysis of variance.  Since the error sum of squares depends upon the 
underlying model for the analysis of variance, the Yates formulas for estimating 
missing values vary from anova to anova. 
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Consider, for example, the model underlying experiments conducted using a 
completely randomized design.  If  is the Ith observation for the ith treatment 
then the error sum of squares for a CRD is calculated using the following 
formula: 

ijy

� �
2

. .
1 1

is the th treatment mean.
t r

ij i i
i j

iSSE y y where y
� �

� ���  

If an observation  is missing then SSE is minimized by replacing that missing 
observation with the estimate  

ijy

.ˆij ix y� . 

For a randomized complete block design (RCBD), the calculation for estimating a 
single missing observation can be derived from the RCBD error sum of squares: 

� �
2

. . ..
1 1

t r

ij i j
i j

SSE y y y y
� �

� � � ���  

If only a single observation, , is missing from the jth block and ith treatment, 
the estimate for this missing observation can be derived by solving the equation: 

ijy

. .ˆij i j ..x y y y� � � . 

The solution is referred to as the Yates formula for a RCBD: 

. .ˆ
( 1)( 1)

j i
ij

t y r y y
x

r t
� � � �

�

� �

.. , where 

r=n_blocks, t=n_treatments, yi=total of all non-missing observations from 
the ith treatment, =total of all non-missing observations from the jth block, 
and y=total of all non-missing observations.   

. jy

If more than one observation is missing, imsls_f_yates minimization 
procedure is used to estimate missing values.  For a CRD, all missing 
observations are set equal to their corresponding treatment means calculated 
using the non-missing observations.  That is, .ˆij ix y� . 

For RCBD designs with more than one missing value, Yate’s formula for 
estimating a single missing observation is used to obtain initial estimates for all 
missing values.  These are passed to a function minimization routine to obtain the 
values that minimize SSE. 

For other designs, specify design=2 and IMSLS_GET_SS.  The function get_ss 
is used to obtain the Yates missing value estimates by selecting the estimates that 
minimize sum of squares returned by get_ss.  When called, get_ss calculates 
the error sum of squares at each iteration assuming that the data matrix it receives 
is balanced and contains no missing values.  
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Example 
Missing values can occur in any experiment.  Estimating missing values via the 
Yates method is usually done by minimizing the error sum of squares for that 
experiment.  If only a single observation is missing and there is an analytical 
formula for calculating the error sum of squares then a formula for estimating the 
missing value is fairly easily derived.  Consider for example a split-plot 
experiment with a single missing value. 

Suppose, for example, that ijkx , the observation for the ith whole-plot, jth split 
plot and kth block is missing. Then the estimate for a single missing observation 
in the ith whole plot is equal to: 

 

.

( 1)( 1)
ij ir W s x x

Y
r s

� � � �

�

� �

.. , where 

 

 = number of blocks, r s = number of split-plots, W  =  total of all non-missing 
values in same block as the missing observation, .ijx = total of the non-missing 
observations across blocks of observations from ith whole-plot factor level and 
the jth split-plot level, and ..ix = the total of all observations, across split-plots 
and blocks of the non-missing observations for the ith whole plot. 

If more than a single observation is missing, then an iterative solution is required 
to obtain missing value estimates that minimize the error sum of squares. 

Function imsls_f_yates simplifies this procedure. Consider, for example, a 
split-plot experiment conducted at a single location using fixed-effects whole and 
split plots.  If there are no missing values, then the error sum of squares can be 
calculated from a 3-way analysis of variance using whole-plot, split-plot and 
blocks as the 3 factors.  For balanced data without missing values, the errors sum 
of squares would be equal to the sum of the 3-way interaction between these 
factors and the split-plot by block interaction.   

Calculating the error sum of squares using this 3-way analysis of variance is 
achieved using the anova_factorial routine. 

 
float get_ss(int n, int n_independent, int *n_levels, float *x) 
{ 
/* This routine assumes that the first three columns of dataMatrix   */ 
/* contain the whole-plot,split-plot and block identifiers in that   */ 
/* order.  The last column of this matrix, the fourth column, must   */ 
/* contain the observations from the experiment.  It is assumed that */ 
/* dataMatrix is balanced and does not contain any missing           */ 

  /* observations.                                                     */ 
 
  int i; 
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  float errorSS, pValue; 
  float *test_effects = NULL; 
  float *anova_table = NULL; 
  float responses[24];  
  /* Copy responses from the last column of x into a 1-D array        */ 
  /* as expected by imsls_f_anova_factorial.                          */ 
 
  for (i=0;i<n;i++) { 
    responses[i] = x[i*(n_independent+1)+n_independent]; 
  } 
  /* Compute the error sum of squares.                                */ 
  pValue = imsls_f_anova_factorial(n_independent, n_levels, responses, 
       IMSLS_TEST_EFFECTS, &test_effects, 
       IMSLS_ANOVA_TABLE, &anova_table, 
       IMSLS_POOL_INTERACTIONS, 0); 
  errorSS = anova_table[4] + test_effects[21];  
 
  /* Free memory returned by imsls_f_anova_factorial.                 */ 
  if (test_effects != NULL) free(test_effects); 
  if (anova_table != NULL) free(anova_table); 
  return errorSS; 
} 

 

The above function is passed to the imsls_f_yates as an argument, together 
with a matrix containing the data for the split-plot experiment. For this example, 
the following data matrix obtained from an agricultural experiment will be used.  
In this experiment, 4 whole plots were randomly assigned to two 2 blocks.  
Whole-plots were subdivided into 2 split-plots.  The whole-plot factor consisted 
of 4 different seed lots, and the split-plot factor consisted of 2 seed protectants. 
The data matrix of this example is a n=24 by 4 matrix with two missing 
observations. 
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1 1 1
1 2 1 53.8
1 3 1 49.5
1 1 2 41.6
1 2 2
1 3 2 53.8
2 1 1 53.3
2 2 1 57.6
2 3 1 59.8
2 1 2 69.6
2 2 2 69.6
2 3 2 65.8
3 1 1 62.3
3 2 1 63.4
3 3 1 64.5
3 1 2 58.5
3 2 2 50.4
3 3 2 46.1
4 1 1 75.4
4 2 1 70.3
4 3 1 68.8
4 1 2 65.6
4 2 2 67.3
4 3 2 65.3

NaN

NaN

X
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The following program uses these data with imsls_f_yates to replace the two 
missing values with Yates estimates. 

 
#include <stdlib.h> 
#include "imsls.h" 
 
float get_ss(int n, int n_independent, int *n_levels, float *x); 
 
#define N 24 
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#define N_INDEPENDENT 3 
 
void main() 
{ 
  char *col_labels[] = {" ", "Whole", "Split", "Block", " "}; 
  int i; 
  int n = N; 
  int n_independent = N_INDEPENDENT;   
  int whole[N]={1,1,1,1,1,1, 
        2,2,2,2,2,2, 
        3,3,3,3,3,3, 
        4,4,4,4,4,4}; 
  int split[N]={1,2,3,1,2,3, 
        1,2,3,1,2,3, 
        1,2,3,1,2,3, 
        1,2,3,1,2,3}; 
  int block[N]={1,1,1,2,2,2, 
        1,1,1,2,2,2, 
        1,1,1,2,2,2, 
        1,1,1,2,2,2}; 
  float y[N] ={0.0,  53.8, 49.5, 41.6, 0.0,  53.8, 
               53.3, 57.6, 59.8, 69.6, 69.6, 65.8, 
        62.3, 63.4, 64.5, 58.5, 50.4, 46.1,  
        75.4, 70.3, 68.8, 65.6, 67.3, 65.3}; 
   
  float x[N][N_INDEPENDENT+1]; 
  float error_ss; 
  int *missing_idx; 
  int n_missing; 
 
  /* Set the first and fifth observations to missing values. */ 
  y[0] = imsls_f_machine(6); 
  y[4] = imsls_f_machine(6); 
 
  /* Fill the array x with the classification variables and observations. */ 
  for (i=0;i<n; i++) { 
    x[i][0] = (float)whole[i];  
    x[i][1] = (float)split[i];  
    x[i][2] = (float)block[i];  
    x[i][3] = y[i]; 
  } 
  /* Sort the data since imsls_f_anova_factorial expects sorted data. */ 
  imsls_f_sort_data(n, n_independent+1, (float*)x, 3, 0); 
   
  n_missing = imsls_f_yates(n, n_independent, (float *)&(x[0][0]), 
       IMSLS_DESIGN, 2,  
       IMSLS_GET_SS, get_ss, 



 

 
 

Chapter 4: Analysis of Variance and Designed Experiments yates � 399 

 

 

 

       IMSLS_ERROR_SS, &error_ss, 
       IMSLS_MISSING_INDEX, &missing_idx, 
       0); 
  printf("Returned error sum of squares = %f\n\n", error_ss); 
  printf("Missing values replaced: %d\n", n_missing); 
  printf("Whole     Split    Block    Estimate\n"); 
  for (i=0;i<n_missing;i++) { 
    printf("%3d        %3d      %3d      %7.3f\n",  
    (int)x[missing_idx[i]][0], 
    (int)x[missing_idx[i]][1], 
    (int)x[missing_idx[i]][2], 
    x[missing_idx[i]][n_independent]); 
  } 
  imsls_f_write_matrix("Sorted x, with estimates", n, n_independent+1, 
              (float*)x,  
                       IMSLS_WRITE_FORMAT, "%-4.0f%-4.0f%-4.0f%5.2f",  
             IMSLS_COL_LABELS, col_labels,  
             IMSLS_NO_ROW_LABELS, 0); 
   
} 
 
float get_ss(int n, int n_independent, int *n_levels, float *x) 
{ 
  int i; 
  float errorSS, pValue; 
  float *test_effects = NULL; 
  float *anova_table = NULL; 
  float responses[24]; 
  /*  
   * Copy responses from the last column of x into a 1-D array  
   * as expected by imsls_f_anova_factorial.  
   */ 
  for (i=0;i<n;i++) { 
    responses[i] = x[i*(n_independent+1)+n_independent]; 
  } 
  /* 
   * Compute the error sum of squares. 
   */ 
  pValue = imsls_f_anova_factorial(n_independent, n_levels, responses, 
       IMSLS_TEST_EFFECTS, &test_effects, 
       IMSLS_ANOVA_TABLE, &anova_table, 
       IMSLS_POOL_INTERACTIONS, 0); 
  errorSS = anova_table[4] + test_effects[21];  
 
  /* Free memory returned by imsls_f_anova_factorial. */ 
  if (test_effects != NULL) free(test_effects); 
  if (anova_table != NULL) free(anova_table); 



 

 
 

400 � yates IMSL C/Stat/Library 

 

 

 

 
  return errorSS; 
} 
 

After running this code to replace missing values with Yates estimates, it would be followed by a 
call to the split-plot analysis of variance: 

 
float *aov_table, y[24]; 
int expunit[24], whole[24], split[24]; 
for(int i=0; i < 24; i++){whole[i]  = x[i];    split[i] = x[i+24];  
                          expunit[i]= x[i+48]; y[i]     = x[i+72];} 
float aov_table = imsls_f_split_plot (24, 1, 4, 3, expunit, whole,  
                                     split, y[], 0); 

Output 
 

Returned error sum of squares = 95.620010 
 
Missing values replaced: 2 
Whole     Split    Block    Estimate 
  1          1        1       37.300 
  1          2        2       58.100 
 
  Sorted x, with estimates 
   Whole  Split  Block 
    1      1      1     37.30 
    1      1      2     41.60 
    1      2      1     53.80 
    1      2      2     58.10 
    1      3      1     49.50 
    1      3      2     53.80 
    2      1      1     53.30 
    2      1      2     69.60 
    2      2      1     57.60 
    2      2      2     69.60 
    2      3      1     59.80 
    2      3      2     65.80 
    3      1      1     62.30 
    3      1      2     58.50 
    3      2      1     63.40 
    3      2      2     50.40 
    3      3      1     64.50 
    3      3      2     46.10 
    4      1      1     75.40 
    4      1      2     65.60 
    4      2      1     70.30 
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    4      3      2     65.30 

    4      2      2     67.30 
    4      3      1     68.80 
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Chapter 5: Categorical and Discrete 
Data Analysis 

Routines 
5.1 Statistics in the Two-Way Contingency Table 

Two-way contingency table analysis ................... contingency_table 404 
Exact probabilities in an r � c table; 
total enumeration .............................................. exact_enumeration 417 
Exact probabilities in an r � c table ...........................exact_network 419 

5.2 Generalized Categorical Models 
Generalized linear models ......................................categorical_glm 425 

Usage Notes 
Routine imsls_f_contingency_table (page 404) computes many statistics of 
interest in a two-way table. Statistics computed by this routine includes the usual 
chi-squared statistics, measures of association, Kappa, and many others. Exact 
probabilities for two-way tables can be computed by 
imsls_f_exact_enumeration (page 417), but this routine uses the total 
enumeration algorithm and, thus, often uses orders of magnitude more computer 
time than imsls_f_exact_network (page 419), which computes the same 
probabilities by use of the network algorithm (but can still be quite expensive). 

The routine imsls_f_categorical_glm (page 425) in the second section is 
concerned with generalized linear models (see McCullagh and Nelder 1983) in 
discrete data. This routine can be used to compute estimates and associated 
statistics in probit, logistic, minimum extreme value, Poisson, negative binomial 
(with known number of successes), and logarithmic models. Classification 
variables as well as weights, frequencies and additive constants may be used so 
that general linear models can be fit. Residuals, a measure of influence, the 
coefficient estimates, and other statistics are returned for each model fit. When 
infinite parameter estimates are required, extended maximum likelihood 
estimation may be used. Log-linear models can be fit in 
imsls_f_categorical_glm through the use of Poisson regression models. 
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Results from Poisson regression models involving structural and sampling zeros 
will be identical to the results obtained from the log-linear model routines but will 
be fit by a quasi-Newton algorithm rather than through iterative proportional 
fitting. 

contingency_table 
Performs a chi-squared analysis of a two-way contingency table. 

Synopsis 

#include <imsls.h> 

float imsls_f_contingency_table (int n_rows, int n_columns, 
float table[], ..., 0) 

The type double function is imsls_d_contingency_table. 

Required Arguments 

int n_rows   (Input) 
Number of rows in the table. 

int n_columns   (Input) 
Number of columns in the table. 

float table[]   (Input) 
Array of length n_rows � n_columns containing the observed counts in 
the contingency table. 

Return Value 
Pearson chi-squared p-value for independence of rows and columns. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_contingency_table (int n_rows, int n_columns, 

float table[], 
IMSLS_CHI_SQUARED, int *df, float *chi_squared,  
 float *p_value, 
IMSLS_LRT, int *df, float *g_squared, float *p_value, 
IMSLS_EXPECTED, float **expected, 
IMSLS_EXPECTED_USER, float expected[], 
IMSLS_CONTRIBUTIONS, float **chi_squared_contributions, 
IMSLS_CONTRIBUTIONS_USER,  
 float chi_squared_contributions[], 
IMSLS_CHI_SQUARED_STATS, float **chi_squared_stats, 
IMSLS_CHI_SQUARED_STATS_USER,  
 float chi_squared_stats[], 
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IMSLS_STATISTICS, float **statistics, 
IMSLS_STATISTICS_USER, float statistics[], 
0) 

Optional Arguments 
IMSLS_CHI_SQUARED, int *df, float *chi_squared, float *p_value   

(Output) 
Argument df is the degrees of freedom for the chi-squared tests 
associated with the table, chi_squared is the Pearson chi-squared test 
statistic, and argument p_value is the probability of a larger Pearson 
chi-squared. 

IMSLS_LRT, int *df, float *g_squared, float *p_value   (Output) 
Argument df is the degrees of freedom for the chi-squared tests 
associated with the table, argument g_squared is the likelihood ratio 
G2 (chi-squared), and argument p_value is the probability of a larger 
G2. 

IMSLS_EXPECTED, float **expected   (Output) 
Address of a pointer to the internally allocated array of size 
(n_rows + 1) � (n_columns + 1) containing the expected values of 
each cell in the table, under the null hypothesis, in the first n_rows rows 
and n_columns columns. The marginal totals are in the last row and 
column. 

IMSLS_EXPECTED_USER, float expected[]   (Output) 
Storage for array expected is provided by the user. See 
IMSLS_EXPECTED. 

IMSLS_CONTRIBUTIONS, float **chi_squared_contributions   (Output) 
Address of a pointer to an internally allocated array of size 
(n_rows + 1) � (n_columns + 1) containing the contributions to chi-
squared for each cell in the table in the first n_rows rows and 
n_columns columns. The last row and column contain the total 
contribution to chi-squared for that row or column. 

IMSLS_CONTRIBUTIONS_USER, float chi_squared_contributions[]   
(Output) 
Storage for array chi_squared_contributions is provided by the 
user. See IMSLS_CONTRIBUTIONS. 

IMSLS_CHI_SQUARED_STATS, float **chi_squared_stats   (Output) 
Address of a pointer to an internally allocated array of length 5 
containing chi-squared statistics associated with this contingency table. 
The last three elements are based on Pearson’s chi-square statistic (see 
IMSLS_CHI_SQUARED).  
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 The chi-squared statistics are given as follows: 

Element Chi-squared Statistics 
0 exact mean 
1 exact standard deviation 
2 Phi 
3 contingency coefficient 
4 Cramer’s V 

IMSLS_CHI_SQUARED_STATS_USER, float chi_squared_stats[]   (Output) 
Storage for array chi_squared_stat is provided by the user. See 
IMSLS_CHI_SQUARED_STATS. 

IMSLS_STATISTICS, float **statistics   (Output) 
Address of a pointer to an internally allocated array of size 23 � 5 
containing statistics associated with this table. Each row corresponds to 
a statistic. 

Row Statistic 
0 Gamma 
1 Kendall’s �b 
2 Stuart’s �c 
3 Somers’ D for rows (given columns) 
4 Somers’ D for columns (given rows) 
5 product moment correlation 
6 Spearman rank correlation 
7 Goodman and Kruskal � for rows (given columns) 
8 Goodman and Kruskal � for columns (given rows) 
9 uncertainty coefficient U (symmetric) 

10 uncertainty Ur | c (rows) 
11 uncertainty Uc | r (columns) 
12 optimal prediction � (symmetric) 
13 optimal prediction �r | c (rows) 
14 optimal prediction �c | r (columns) 
15 optimal prediction �r | c (rows) 
16 optimal prediction �c | r (columns) 
17 test for linear trend in row probabilities if n_rows = 2 

If n_rows is not 2, a test for linear trend in column 
probabilities if n_columns = 2. 

18 Kruskal-Wallis test for no row effect 
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Row Statistic 
19 Kruskal-Wallis test for no column effect 

20 kappa (square tables only) 
21 McNemar test of symmetry (square tables only) 
22 McNemar one degree of freedom test of symmetry 

(square tables only) 

If a statistic cannot be computed, or if some value is not relevant for the 
computed statistic, the entry is NaN (Not a Number). The columns are as 
follows: 

Column Value 
0 estimated statistic 

1 standard error for any parameter value 

2 standard error under the null hypothesis 

3 t value for testing the null hypothesis 

4 p-value of the test in column 3 

In the McNemar tests, column 0 contains the statistic, column 1 contains 
the chi-squared degrees of freedom, column 3 contains the exact p-value 
(1 degree of freedom only), and column 4 contains the chi-squared 
asymptotic p-value. The Kruskal-Wallis test is the same except no exact 
p-value is computed. 

IMSLS_STATISTICS_USER, float statistics[]   (Output) 
Storage for array statistics provided by the user. See 
IMSLS_STATISTICS. 

Description 
Function imsls_f_contingency_table computes statistics associated with an 
r � c (n_rows � n_columns) contingency table. The function computes the chi-
squared test of independence, expected values, contributions to chi-squared, row 
and column marginal totals, some measures of association, correlation, 
prediction, uncertainty, the McNemar test for symmetry, a test for linear trend, the 
odds and the log odds ratio, and the kappa statistic (if the appropriate optional 
arguments are selected). 

Notation 

Let xij denote the observed cell frequency in the ij cell of the table and n denote 
the total count in the table. Let pij = pi•pj• denote the predicted cell probabilities 
under the null hypothesis of independence, where pi• and pj• are the row and 
column marginal relative frequencies. Next, compute the expected cell counts as 
eij = npij. 
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Also required in the following are auv and buv for u, v = 1, �, n. Let (rs, cs) 
denote the row and column response of observation s. Then, auv = 1, 0, or �1, 
depending on whether ru < rv, ru = rv, or ru > rv, respectively. The buv are 
similarly defined in terms of the cs variables. 

Chi-squared Statistic 

For each cell in the table, the contribution to �2 is given as (xij � eij)2/eij. The 
Pearson chi-squared statistic (denoted �2) is computed as the sum of the cell 
contributions to chi-squared. It has (r � 1) (c � 1) degrees of freedom and tests 
the null hypothesis of independence, i.e., H0:pij = pi•pj•. The null hypothesis is 
rejected if the computed value of �2 is too large. 

The maximum likelihood equivalent of �2, G2 is computed as follows: 

� �2

,

2 ln /ij ij ij
i j

G x x n� � � p  

G2 is asymptotically equivalent to �2 and tests the same hypothesis with the same 
degrees of freedom. 

Measures Related to Chi-squared (Phi, Contingency Coefficient, and 
Cramer’s V) 

There are three measures related to chi-squared that do not depend on sample 
size: 

� �

� �� �

2

2 2

2

phi, = /

contingency coefficient,  = /

Cramer's , / min ,

n

P n

V V n r c

� �

� �
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Since these statistics do not depend on sample size and are large when the 
hypothesis of independence is rejected, they can be thought of as measures of 
association and can be compared across tables with different sized samples. 
While both P and V have a range between 0.0 and 1.0, the upper bound of P is 
actually somewhat less than 1.0 for any given table (see Kendall and Stuart 1979, 
p. 587). The significance of all three statistics is the same as that of the  
�2 statistic, chi_squared. 

The distribution of the �2 statistic in finite samples approximates a chi-squared 
distribution. To compute the exact mean and standard deviation of the �2 statistic, 
Haldane (1939) uses the multinomial distribution with fixed table marginals. The 
exact mean and standard deviation generally differ little from the mean and 
standard deviation of the associated chi-squared distribution. 

Standard Errors and p-values for Some Measures of Association 

In Columns 1 through 4 of statistics, estimated standard errors and asymptotic 
p-values are reported. Estimates of the standard errors are computed in two ways. 
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The first estimate, in Column 1 of the array statistics, is asymptotically valid 
for any value of the statistic. The second estimate, in Column 2 of the array, is 
only correct under the null hypothesis of no association. The z-scores in Column 
3 of statistics are computed using this second estimate of the standard errors. The 
p-values in Column 4 are computed from this z-score. See Brown and Benedetti 
(1977) for a discussion and formulas for the standard errors in Column 2. 

Measures of Association for Ranked Rows and Columns 

The measures of association, �, P, and V, do not require any ordering of the row 
and column categories. Function imsls_f_contingency_table also computes 
several measures of association for tables in which the rows and column 
categories correspond to ranked observations. Two of these tests, the product-
moment correlation and the Spearman correlation, are correlation coefficients 
computed using assigned scores for the row and column categories. The cell 
indices are used for the product-moment correlation, while the average of the tied 
ranks of the row and column marginals is used for the Spearman rank correlation. 
Other scores are possible. 

Gamma, Kendall’s �b, Stuart’s �c, and Somers’ D are measures of association that 
are computed like a correlation coefficient in the numerator. In all these 
measures, the numerator is computed as the “covariance” between the  
auv variables and buv variables defined above, i.e., as follows: 

uv uv
u v

a b��  

Recall that auv and buv can take values �1, 0, or 1. Since the product auvbuv = 1 
only if auv and buv are both 1 or are both �1, it is easy to show that this 
‘‘covariance’’ is twice the total number of agreements minus the number of 
disagreements, where a disagreement occurs when auvbuv = �1. 

Kendall’s �b is computed as the correlation between the auv variables and the  
buv variables (see Kendall and Stuart 1979, p. 593). In a rectangular table  
(r � c), Kendall’s �b cannot be 1.0 (if all marginal totals are positive). For this 
reason, Stuart suggested a modification to the denominator of � in which the 
denominator becomes the largest possible value of the “covariance.” This 
maximizing value is approximately n2m/(m � 1), where m = min (r, c). Stuart’s �c 
uses this approximate value in its denominator. For large n, �c 	 m�b/(m � 1). 

Gamma can be motivated in a slightly different manner. Because the “covariance” 
of the auv variables and the buv variables can be thought of as twice the number of 
agreements minus the disagreements, 2(A � D), where A is the number of 
agreements and D is the number of disagreements, Gamma is motivated as the 
probability of agreement minus the probability of disagreement, given that either 
agreement or disagreement occurred. This is shown as 
 = (A � D)/(A + D). 

Two definitions of Somers’ D are possible, one for rows and a second for 
columns. Somers’ D for rows can be thought of as the regression coefficient for 
predicting auv from buv. Moreover, Somer’s D for rows is the probability of 
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agreement minus the probability of disagreement, given that the column variable, 
buv, is not 0. Somers’ D for columns is defined in a similar manner. 

A discussion of all of the measures of association in this section can be found in 
Kendall and Stuart (1979, p. 592). 

Measures of Prediction and Uncertainty 

Optimal Prediction Coefficients: The measures in this section do not require 
any ordering of the row or column variables. They are based entirely upon 
probabilities. Most are discussed in Bishop et al. (1975, p. 385). 

Consider predicting (or classifying) the column for a given row in the table. 
Under the null hypothesis of independence, choose the column with the highest 
column marginal probability for all rows. In this case, the probability of 
misclassification for any row is 1 minus this marginal probability. If 
independence is not assumed within each row, choose the column with the highest 
row conditional probability. The probability of misclassification for the row 
becomes 1 minus this conditional probability. 

Define the optimal prediction coefficient �c | r for predicting columns from rows 
as the proportion of the probability of misclassification that is eliminated because 
the random variables are not independent. It is estimated by 

� �

|

1 (1
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where m is the index of the maximum estimated probability in the row (pim) or 
row margin (p·m). A similar coefficient is defined for predicting the rows from the 
columns. The symmetric version of the optimal prediction � is obtained by 
summing the numerators and denominators of �r | c and �c | r, then dividing. 
Standard errors for these coefficients are given in Bishop et al. (1975, p. 388). 

A problem with the optimal prediction coefficients � is that they vary with the 
marginal probabilities. One way to correct this is to use row conditional 
probabilities. The optimal prediction �* coefficients are defined as the 
corresponding � coefficients in which first the row (or column) marginals are 
adjusted to the same number of observations. This yields 

| |

|
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where i indexes the rows, j indexes the columns, and pj|i is the (estimated) 
probability of column j given row i. 

|r c�
�  

is similarly defined. 



 

 
 

Chapter 5: Categorical and Discrete Data Analysis contingency_table � 411 

 

 

 

Goodman and Kruskal �: A second kind of prediction measure attempts to 
explain the proportion of the explained variation of the row (column) measure 
given the column (row) measure. Define the total variation in the rows as follows: 

� �2/ 2 ( ) / 2i
i

n x
�

� � n  

Note that this is 1/(2n) times the sums of squares of the auv variables. 

With this definition of variation, the Goodman and Kruskal � coefficient for rows 
is computed as the reduction of the total variation for rows accounted for by the 
columns, divided by the total variation for the rows. To compute the reduction in 
the total variation of the rows accounted for by the columns, note that the total 
variation for the rows within column j is defined as follows: 

� �2/ 2 ( ) / 2j j ij i
i

q x x x
� �

� � �  

The total variation for rows within columns is the sum of the qj variables. 
Consistent with the usual methods in the analysis of variance, the reduction in the 
total variation is given as the difference between the total variation for rows and 
the total variation for rows within the columns. 

Goodman and Kruskal’s � for columns is similarly defined. See Bishop et al. 
(1975, p. 391) for the standard errors. 

Uncertainty Coefficients: The uncertainty coefficient for rows is the increase in 
the log-likelihood that is achieved by the most general model over the 
independence model, divided by the marginal log-likelihood for the rows. This is 
given by the following equation: 

� �
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The uncertainty coefficient for columns is similarly defined. The symmetric 
uncertainty coefficient contains the same numerator as Ur | c and Uc | r but 
averages the denominators of these two statistics. Standard errors for U are given 
in Brown (1983). 

Kruskal-Wallis: The Kruskal-Wallis statistic for rows is a one-way analysis-of-
variance-type test that assumes the column variable is monotonically ordered. It 
tests the null hypothesis that no row populations are identical, using average ranks 
for the column variable. The Kruskal-Wallis statistic for columns is similarly 
defined. Conover (1980) discusses the Kruskal-Wallis test. 

Test for Linear Trend: When there are two rows, it is possible to test for a 
linear trend in the row probabilities if it is assumed that the column variable is 
monotonically ordered. In this test, the probabilities for row 1 are predicted by 
the column index using weighted simple linear regression. This slope is given by 
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where 

/j
j

j x j n
�

��  

is the average column index. An asymptotic test that the slope is 0 may then be 
obtained (in large samples) as the usual regression test of zero slope. 

In two-column data, a similar test for a linear trend in the column probabilities is 
computed. This test assumes that the rows are monotonically ordered. 

Kappa: Kappa is a measure of agreement computed on square tables only. In the 
kappa statistic, the rows and columns correspond to the responses of two judges. 
The judges agree along the diagonal and disagree off the diagonal. Let 

0 /ii
i

p x n��  

denote the probability that the two judges agree, and let 

/c ii
i

p e n��  

denote the expected probability of agreement under the independence model. 
Kappa is then given by (p0 � pc)/(1 � pc). 

McNemar Tests: The McNemar test is a test of symmetry in a square 
contingency table. In other words, it is a test of the null hypothesis H0:�ij = �ji. 
The multiple degrees-of-freedom version of the McNemar test with r (r � 1)/2 
degrees of freedom is computed as follows: 

� �
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The single degree-of-freedom test assumes that the differences, xij � xji, are all in 
one direction. The single degree-of-freedom test will be more powerful than the 
multiple degrees-of-freedom test when this is the case. The test statistic is given 
as follows: 
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The exact probability can be computed by the binomial distribution. 
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Examples 

Example 1 
The following example is taken from Kendall and Stuart (1979) and involves the 
distance vision in the right and left eyes. Output contains only the p-value. 

#include <imsls.h> 
 
void main() 
{ 
    int n_rows     = 4; 
    int n_columns  = 4; 
    float table[4][4]    = {821, 112, 85, 35, 
                            116, 494, 145, 27, 
                            72, 151, 583, 87, 
                            43, 34, 106, 331}; 
    float p_value; 
 
    p_value = imsls_f_contingency_table(n_rows, n_columns,  
                                        &table[0][0], 0); 
    printf ("P-value = %10.6f.\n", p_value); 
 
} 

Output 

P-value =   0.000000. 

Example 2 
The following example, which illustrates the use of Kappa and McNemar tests, 
uses the same distance vision data as the previous example. The available 
statistics are output using optional arguments.  

#include <imsls.h> 
 
void main() 
{ 
    int      n_rows = 4; 
    int      n_columns = 4; 
    int      df1, df2; 
    float    table[16]  =  {821.0, 112.0, 85.0, 35.0,  
                            116.0, 494.0, 145.0, 27.0,  
                            72.0, 151.0, 583.0, 87.0,  
                            43.0, 34.0, 106.0, 331.0}; 
    float    p_value1, p_value2, chi_squared, g_squared; 
    float    *expected, *chi_squared_contributions; 
    float    *chi_squared_stats, *statistics; 
    char     *labels[] = { 
             "Exact mean", 
             "Exact standard deviation", 
             "Phi", 
             "P", 
             "Cramer’s V"}; 
    char     *stat_row_labels[] = {"Gamma", "Tau B", "Tau C",  
             "D-Row", "D-Column", "Correlation", "Spearman", 
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             "GK tau rows", "GK tau cols.", "U - sym.", "U - rows", 
             "U - cols.", "Lambda-sym.", "Lambda-row", "Lambda-col.", 
             "l-star-rows", "l-star-col.", "Lin. trend",  
             "Kruskal row", "Kruskal col.", "Kappa", "McNemar", 
             "McNemar df=1"}; 
    char     *stat_col_labels[] = {"","statistic", "standard error", 
             "std. error under Ho", "t-value testing Ho",  
             "p-value"}; 
 
    imsls_f_contingency_table (n_rows, n_columns, table, 
             IMSLS_CHI_SQUARED, &df1, &chi_squared, &p_value1, 
             IMSLS_LRT, &df2, &g_squared, &p_value2, 
             IMSLS_EXPECTED, &expected,  
             IMSLS_CONTRIBUTIONS, 
                        &chi_squared_contributions,  
             IMSLS_CHI_SQUARED_STATS, &chi_squared_stats, 
             IMSLS_STATISTICS, &statistics, 
             0); 
 
    printf("Pearson chi-squared statistic     %11.4f\n", chi_squared); 
    printf("p-value for Pearson chi-squared   %11.4f\n", p_value1); 
    printf("degrees of freedom                %11d\n", df1); 
    printf("G-squared statistic               %11.4f\n", g_squared); 
    printf("p-value for G-squared             %11.4f\n", p_value2); 
    printf("degrees of freedom                %11d\n", df2); 
 
    imsls_f_write_matrix("* * * Table Values * * *\n", 4, 4, 
             table, 
             IMSLS_WRITE_FORMAT, "%11.1f", 
             0); 
 
    imsls_f_write_matrix("* * * Expected Values * * *\n", 5, 5, 
             expected, 
             IMSLS_WRITE_FORMAT, "%11.2f", 
             0); 
    imsls_f_write_matrix("* * * Contributions to Chi-squared* * *\n", 
             5, 5, 
             chi_squared_contributions, 
             IMSLS_WRITE_FORMAT, "%11.2f", 
             0); 
    imsls_f_write_matrix("* * * Chi-square Statistics * * *\n", 
             5, 1, 
             chi_squared_stats, 
             IMSLS_ROW_LABELS, labels, 
             IMSLS_WRITE_FORMAT, "%11.4f", 
             0); 
    imsls_f_write_matrix("* * * Table Statistics * * *\n", 
             23, 5, 
             statistics, 
             IMSLS_ROW_LABELS, stat_row_labels, 
             IMSLS_COL_LABELS, stat_col_labels, 
             IMSLS_WRITE_FORMAT, "%9.4f", 
             0); 
} 
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Output 

Pearson chi-squared statistic       3304.3682 
p-value for Pearson chi-squared        0.0000 
degrees of freedom                          9 
G-squared statistic                 2781.0188 
p-value for G-squared                  0.0000 
degrees of freedom                          9 
  
              * * * Table Values * * * 
 
             1            2            3            4 
1        821.0        112.0         85.0         35.0 
2        116.0        494.0        145.0         27.0 
3         72.0        151.0        583.0         87.0 
4         43.0         34.0        106.0        331.0 
  
                   * * * Expected Values * * * 
 
             1            2            3            4            5 
1       341.69       256.92       298.49       155.90      1053.00 
2       253.75       190.80       221.67       115.78       782.00 
3       289.77       217.88       253.14       132.21       893.00 
4       166.79       125.41       145.70        76.10       514.00 
5      1052.00       791.00       919.00       480.00      3242.00 
  
             * * * Contributions to Chi-squared* * * 
 
             1            2            3            4            5 
1       672.36        81.74       152.70        93.76      1000.56 
2        74.78       481.84        26.52        68.08       651.21 
3       163.66        20.53       429.85        15.46       629.50 
4        91.87        66.63        10.82       853.78      1023.10 
5      1002.68       650.73       619.88      1031.08      3304.37 
  
 * * * Chi-square Statistics * * * 
 
Exact mean                     9.0028 
Exact standard deviation       4.2402 
Phi                            1.0096 
P                              0.7105 
Cramer’s V                     0.5829 
  
                    * * * Table Statistics * * * 
 
              statistic  standard error  std. error  t-value testing 
                                           under Ho               Ho 
Gamma            0.7757          0.0123      0.0149          52.1897 
Tau B            0.6429          0.0122      0.0123          52.1897 
Tau C            0.6293          0.0121   .........          52.1897 
D-Row            0.6418          0.0122      0.0123          52.1897 
D-Column         0.6439          0.0122      0.0123          52.1897 
Correlation      0.6926          0.0128      0.0172          40.2669 
Spearman         0.6939          0.0127      0.0127          54.6614 
GK tau rows      0.3420          0.0123   .........        ......... 
GK tau cols.     0.3430          0.0122   .........        ......... 
U - sym.         0.3171          0.0110   .........        ......... 
U - rows         0.3178          0.0110   .........        ......... 
U - cols.        0.3164          0.0110   .........        ......... 
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Lambda-sym.      0.5373          0.0124   .........        ......... 
Lambda-row       0.5374          0.0126   .........        ......... 
Lambda-col.      0.5372          0.0126   .........        ......... 
l-star-rows      0.5506          0.0136   .........        ......... 
l-star-col.      0.5636          0.0127   .........        ......... 
Lin. trend    .........       .........   .........        ......... 
Kruskal row   1561.4861          3.0000   .........        ......... 
Kruskal col.  1563.0300          3.0000   .........        ......... 
Kappa            0.5744          0.0111      0.0106          54.3583 
McNemar          4.7625          6.0000   .........        ......... 
McNemar df=1     0.9487          1.0000   .........           0.3459 
  
                p-value 
Gamma            0.0000 
Tau B            0.0000 
Tau C            0.0000 
D-Row            0.0000 
D-Column         0.0000 
Correlation      0.0000 
Spearman         0.0000 
GK tau rows   ......... 
GK tau cols.  ......... 
U - sym.      ......... 
U - rows      ......... 
U - cols.     ......... 
Lambda-sym.   ......... 
Lambda-row    ......... 
Lambda-col.   ......... 
l-star-rows   ......... 
l-star-col.   ......... 
Lin. trend    ......... 
Kruskal row      0.0000 
Kruskal col.     0.0000 
Kappa            0.0000 
McNemar          0.5746 
McNemar df=1     0.3301 

Warning Errors 
IMSLS_DF_GT_30 The degrees of freedom for 

“IMSLS_CHI_SQUARED” are 
greater than 30. The exact mean, 
standard deviation, and the normal 
distribution function should be 
used. 

IMSLS_EXP_VALUES_TOO_SMALL Some expected values are less than 
#. Some asymptotic p-values may 
not be good. 

IMSLS_PERCENT_EXP_VALUES_LT_5 Twenty percent of the expected 
values are calculated less than 5. 
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exact_enumeration 
Computes exact probabilities in a two-way contingency table using the total 
enumeration method. 

Synopsis 

#include <imsls.h> 

float imsls_f_exact_enumeration (int n_rows, int n_columns, 
float table[], ..., 0) 

The type double function is imsls_d_exact_enumeration. 

Required Arguments 

int n_rows   (Input) 
Number of rows in the table. 

int n_columns   (Input) 
Number of columns in the table. 

float table[]   (Input) 
Array of length n_rows � n_columns containing the observed counts in 
the contingency table. 

Return Value 
The p-value for independence of rows and columns. The p-value represents the 
probability of a more extreme table where “extreme” is taken in the Neyman-
Pearson sense. The p-value is “two-sided”. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_exact_enumeration (int n_rows, int n_columns, float 

table[], 
IMSLS_PROB_TABLE, float *prt, 
IMSLS_P_VALUE, float *p_value, 
IMSLS_CHECK_NUMERICAL_ERROR, float *check, 
0) 

Optional Arguments 
IMSLS_PROB_TABLE, float *prt   (Output) 

Probablitity of the observed table occuring, given that the null 
hypothesis of independent rows and columns is true. 

IMSLS_P_VALUE, float *p_value   (Output) 
The p-value for independence of rows and columns. The p-value 
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represents the probability of a more extreme table where “extreme” is 
taken in the Neyman-Pearson sense. The p-value is “two-sided”. 

The p-value is also returned in functional form (see “Return Value”).  

A table is more extreme if its probability (for fixed marginals) is less 
than or equal to prt. 

IMSLS_CHECK_NUMERICAL_ERROR, float *check   (Output) 
Sum of the probabilities of all tables with the same marginal totals. 
Parameter check should have a value of 1.0. Deviation from 1.0 
indicates numerical error. 

Description 
Function imsls_f_exact_enumeration computes exact probabilities for an  
r � c contingency table for fixed row and column marginals (a marginal is the 
number of counts in a row or column), where r = n_rows and c = n_columns. 
Let fij denote the count in row i and column j of a table, and let fi• and f•j denote 
the row and column marginals. Under the hypothesis of independence, the 
(conditional) probability of the fixed marginals of the observed table is given by 
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where f•• is the total number of counts in the table. Pf  corresponds to output 
argument prt. 

A “more extreme” table X is defined in the probablistic sense as more extreme 
than the observed table if the conditional probability computed for table X (for 
the same marginal sums) is less than the conditional probability computed for the 
observed table. The user should note that this definition can be considered “two-
sided” in the cell counts. 

Because imsls_f_exact_enumeration used total enumeration in computing 
the probability of a more extreme table, the amount of computer time required 
increases very rapidly with the size of the table. Tables with a large total count f•• 
or a large value of r � c should not be analyzed using 
imsls_f_exact_enumeration. In such cases, try using 
imsls_f_exact_network. 

Example 

In this example, the exact conditional probability for the 2 � 2 contingency table  

8 12
8 2
� �
� �
� �

 

is computed. 
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#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    float p; 
    float table[4] = {8, 12, 
                      8,  2}; 
 
    p = imsls_f_exact_enumeration(2, 2, table, 0); 
    printf("p-value = %9.4f\n", p); 
} 

Output 

p-value =    0.0577 

exact_network 
Computes Fisher exact probabilities and a hybrid approximation of the Fisher 
exact method for a two-way contingency table using the network algorithm. 

Synopsis 
#include <imsls.h> 
float imsls_f_exact_network (int n_rows, int n_columns, 

float table[], ..., 0) 
The type double function is imsls_d_exact_network. 

Required Arguments 

int n_rows   (Input) 
Number of rows in the table. 

int n_columns   (Input) 
Number of columns in the table. 

float table[]   (Input) 
Array of length n_rows � n_columns containing the observed counts 
in the contingency table. 

Return Value 
The p-value for independence of rows and columns. The p-value represents the 
probability of a more extreme table where “extreme” is taken in the Neyman-
Pearson sense. The p-value is “two-sided”. 



 

 
 

420 � exact_network IMSL C/Stat/Library 

 

 

 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_exact_network (int n_rows, int n_columns, 

float table[], 
IMSLS_PROB_TABLE, float *prt, 
IMSLS_P_VALUE, float *p_value, 
IMSLS_APPROXIMATION_PARAMETERS, float expect, 
 float percent, float expected_minimum,  
IMSLS_NO_APPROXIMATION,  
IMSLS_WORKSPACE, int factor1, int factor2, 
 int max_attempts, int *n_attempts,  
0) 

Optional Arguments 
IMSLS_PROB_TABLE, float *prt   (Output) 

Probability of the observed table occurring given that the null hypothesis 
of independent rows and columns is true. 

IMSLS_P_VALUE, float *p_value   (Output) 
The p-value for independence of rows and columns. The p-value 
represents the probability of a more extreme table where “extreme” is in 
the Neyman-Pearson sense. The p_value is “two-sided”. The p-value is 
also returned in functional form (see “Return Value”).  

A table is more extreme if its probability (for fixed marginals) is less 
than or equal to prt. 

IMSLS_APPROXIMATION_PARAMETERS, float expect, float percent, 
float expected_minimum.   (Input) 
Parameter expect is the expected value used in the hybrid 
approximation to Fisher’s exact test algorithm for deciding when to use 
asymptotic probabilities when computing path lengths. Parameter 
percent is the percentage of remaining cells that must have estimated 
expected values greater than expect before asymptotic probabilities can 
be used in computing path lengths. Parameter expected_minimum is 
the minimum cell estimated value allowed for asymptotic chi-squared 
probabilities to be used. 

Asymptotic probabilities are used in computing path lengths whenever 
percent or more of the cells in the table have estimated expected 
values of expect or more, with no cell having expected value less than 
expected_minimum. See the “Description” section for details. 

Defaults: expect = 5.0, percent = 80.0, expected_minimum = 1.0 
Note that these defaults correspond to the “Cochran” condition. 

IMSLS_NO_APPROXIMATION, 
The Fisher exact test is used. Arguments expect, percent, and 
expected_minimum are ignored. 
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IMSLS_WORKSPACE, int factor1, int factor2,  
int max_attempts,   (Input) 
int *n_attempts   (Output) 
The network algorithm requires a large amount of workspace. Some of 
the workspace requirements are well-defined, while most of the 
workspace requirements can only be estimated. The estimate is based 
primarily on table size. 

Function imsls_f_exact_enumeration allocates a default amount of 
workspace suitable for small problems. If the algorithm determines that 
this initial allocation of workspace is inadaquate, the memory is freed, a 
larger amount of memory allocated (twice as much as the previous 
allocation), and the network algorithm is re-started. The algorithm 
allows for up to max_attempts attempts to complete the algorithm. 

Because each attempt requires computer time, it is suggested that 
factor1 and factor2 be set to some large numbers (like 1,000 and 
30,000) if the problem to be solved is large. It is suggested that 
factor2 be 30 times larger than factor1. Although 
imsls_f_exact_enumeration will eventually work its way up to a 
large enough memory allocation, it is quicker to allocate enough 
memory initially. 

The known (well-defined) workspace requirements are as follows: 
Define f•• = ��fij equal to the sum of all cell frequencies in the observed 
table, nt = f•• + 1, mx = max (n_rows, n_columns), 
mn = min (n_rows, n_columns), 
t1 = max (800 + 7mx, (5 + 2mx) (n_rows + n_columns + 1) ), and 
t2 = max (400 + mx, + 1, n_rows + n_columns + 1).  

The following amount of integer workspace is allocated: 
3mx + 2mn + t1. 

The following amount of float (or double, if using 
imsls_d_exact_network) workspace is allocated: nt + t2. 

The remainder of the workspace that is required must be estimated and 
allocated based on factor1 and factor2. The amount of integer 
workspace allocated is 6n (factor1 + factor2). The amount of real 
workspace allocated is n (6factor1 + 2factor2). Variable n is the 
index for the attempt, 1 < n  max_attempts.  

Defaults: factor1 = 100, factor2 = 3000, max_attempts = 10 

Description 
Function imsls_f_exact_network computes Fisher exact probabilities or a 
hybrid algorithm approximation to Fisher exact probabilities for an r � c 
contingency table with fixed row and column marginals (a marginal is the number 
of counts in a row or column), where r = n_rows and c = n_columns. Let  
fij denote the count in row i and column j of a table, and let fi and f•j denote the 
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row and column marginals. Under the hypothesis of independence, the 
(conditional) probability of the fixed marginals of the observed table is given by 
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where f•• is the total number of counts in the table. Pf  corresponds to output 
argument prt. 

A “more extreme” table X is defined in the probablistic sense as more extreme 
than the observed table if the conditional probability computed for table X (for 
the same marginal sums) is less than the conditional probability computed for the 
observed table. The user should note that this definition can be considered “two-
sided” in the cell counts. 

See Example 1 for a comparison of execution times for the various algorithms. 
Note that the Fisher exact probability and the usual asymptotic chi-squared 
probability will usually be different. (The network approximation is often 10 
times faster than the Fisher exact test, and even faster when compared to the total 
enumeration method.) 

Examples 

Example 1 
The following example demonstrates and compares the various methods of 
computing the chi-squared p-value with respect to accuracy and execution time. 
As seen in the output of this example, the Fisher exact probability and the usual 
asymptotic chi-squared probability (generated using function 
imsls_f_contingency_table) can be different. Also, note that the network 
algorithm with approximation can be up to 10 times faster than the network 
algorithm without approximation, and up to 100 times faster than the total 
enumeration method. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int n_rows = 3; 
    int n_columns = 5; 
    float p; 
    float table[15] = {20, 20, 0, 0, 0, 
                       10, 10, 2, 2, 1, 
                       20, 20, 0, 0, 0}; 
    double a, b; 
 
    printf("Asymptotic Chi-Squared p-value\n"); 
    p = imsls_f_contingency_table(n_rows, n_columns, table, 0); 
    printf("p-value = %9.4f\n", p); 
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    printf("\nNetwork Algorithm with Approximation\n"); 
    a = imsls_ctime(); 
    p = imsls_f_exact_network(n_rows, n_columns, table, 0); 
    b = imsls_ctime(); 
    printf("p-value = %9.4f\n", p); 
    printf("Execution time = %10.4f\n", b-a); 
 
    printf("\nNetwork Algoritm without Approximation\n"); 
    a = imsls_ctime(); 
    p = imsls_f_exact_network(n_rows, n_columns, table,  
        IMSLS_NO_APPROXIMATION, 0); 
    b = imsls_ctime(); 
    printf("p-value = %9.4f\n", p); 
    printf("Execution time = %10.4f\n", b-a); 
 
    printf("\nTotal Enumeration Method\n"); 
    a = imsls_ctime(); 
    p = imsls_f_exact_enumeration(n_rows, n_columns, table, 0); 
    b = imsls_ctime(); 
    printf("p-value = %9.4f\n", p); 
    printf("Execution time = %10.4f\n", b-a); 
 
} 

Output 
Asymptotic Chi-Squared p-value 
p-value =    0.0323 
 
Network Algorithm with Approximation 
p-value =    0.0601 
Execution time =     0.0400 
 
Network Algoritm without Approximation 
p-value =    0.0598 
Execution time =     0.4300 
 
Total Enumeration Method 
p-value =    0.0597 
Execution time =     3.1400 

Example 2 
This document example demonstrates the optional keyword IMSLS_WORKSPACE 
and how different workspace settings affect execution time. Setting the workspace 
available too low results in poor performance since the algorithm will fail, re-
allocate a larger amount of workspace (a factor of 10 larger) and re-start the 
calculations (See Test #3, for which n_attempts is returned with a value of 2). 
Setting the workspace available very large will provide no improvement in 
performance. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
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    int n_rows = 3; 
    int n_columns = 5; 
    float p; 
    float table[15] = {20, 20, 0, 0, 0, 
                       10, 10, 2, 2, 1, 
                       20, 20, 0, 0, 0}; 
    double a, b; 
    int i, n_attempts, simulation_size = 10; 
 
    printf("Test #1, factor1 = 1000, factor2 = 30000\n"); 
    a = imsls_ctime(); 
    for (i=0; i<simulation_size; i++) { 
        p = imsls_f_exact_network(n_rows, n_columns, table,  
            IMSLS_NO_APPROXIMATION, 
            IMSLS_WORKSPACE, 1000, 30000, 10, &n_attempts, 0); 
    } 
    b = imsls_ctime(); 
    printf("n_attempts = %2d\n", n_attempts);    
    printf("Execution time = %10.4f\n", b-a); 
 
    printf("\nTest #2, factor1 = 100, factor2 = 3000\n"); 
    a = imsls_ctime(); 
    for (i=0; i<simulation_size; i++) { 
        p = imsls_f_exact_network(n_rows, n_columns, table,  
            IMSLS_NO_APPROXIMATION, 
            IMSLS_WORKSPACE, 100, 3000, 10, &n_attempts, 0); 
    } 
    b = imsls_ctime(); 
    printf("n_attempts = %2d\n", n_attempts);    
    printf("Execution time = %10.4f\n", b-a); 
 
    printf("\nTest #3, factor1 = 10, factor2 = 300\n"); 
    a = imsls_ctime(); 
    for (i=0; i<simulation_size; i++) { 
        p = imsls_f_exact_network(n_rows, n_columns, table,  
            IMSLS_NO_APPROXIMATION, 
            IMSLS_WORKSPACE, 10, 300, 10, &n_attempts, 0); 
    } 
    b = imsls_ctime(); 
    printf("n_attempts = %2d\n", n_attempts);    
    printf("Execution time = %10.4f\n", b-a); 
} 

Output 

Test #1, factor1 = 1000, factor2 = 30000 
n_attempts =  1 
Execution time =     4.3700 
 
Test #2, factor1 = 100, factor2 = 3000 
n_attempts =  1 
Execution time =     4.2900 
 
Test #3, factor1 = 10, factor2 = 300 
n_attempts =  2 
Execution time =     8.3700 
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Warning Errors 
IMSLS_HASH_TABLE_ERROR_2 The value “ldkey” = # is too small. “ldkey” 

is calculated as 
“factor1”*pow(10,”n_attempt”�1) ending 
this execution attempt. 

IMSLS_HASH_TABLE_ERROR_3 The value “ldstp” = # is too small. “ldstp” 
is calculated as 
“factor2”*pow(10,”n_attempt”�1) ending 
this execution attempt. 

Fatal Errors 
IMSLS_HASH_TABLE_ERROR_1 The hash table key cannot be computed 

because the largest key is larger than the 
largest representable integer. The algorithm 
cannot proceed. 

categorical_glm 
Analyzes categorical data using logistic, Probit, Poisson, and other generalized 
linear models. 

Synopsis 
#include <imsls.h> 
int imsls_f_categorical_glm (int n_observations, int n_class, 

int n_continuous, int model, float x[], ..., 0) 
The type double function is imsls_d_categorical_glm. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

int n_class   (Input) 
Number of classification variables. 

int n_continuous   (Input) 
Number of continuous variables. 

int model   (Input) 
Argument model specifies the model used to analyze the data. The six 
models are as follows: 
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Model Relationship*  PDF of Response Variable 
0 Exponential Poisson 
1 Logistic Negative Binomial 
2 Logistic Logarithmic 
3 Logistic Binomial 
4 Probit Binomial 
5 Log-log Binomial 

Note that the lower bound of the response variable is 1 for model = 3 
and is 0 for all other models. See the “Description” section for more 
information about these models. 

float x[]   (Input) 
Array of size n_observations by  (n_class + n_continuous) + m 
containing data for the independent variables, dependent variable, and 
optional parameters. 

The columns must be ordered such that the first n_class columns 
contain data for the class variables, the next n_continuous columns 
contain data for the continuous variables, and the next column contains 
the response variable. The final (and optional) m � 1 columns contain 
the optional parameters. 

Return Value 
An integer value indicating the number of estimated coefficients  
(n_coefficients) in the model. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int imsls_f_categorical_glm (int n_observations, int n_class, 

int n_continuous, int model, float x[], 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_X_COL_FREQUENCIES, int ifrq, 
IMSLS_X_COL_FIXED_PARAMETER, int ifix, 
IMSLS_X_COL_DIST_PARAMETER, int ipar, 
IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[], 
 int iy, 
IMSLS_EPS, float eps, 
IMSLS_MAX_ITERATIONS, int max_iterations, 
IMSLS_INTERCEPT, 
IMSLS_NO_INTERCEPT, 

                                                           
*Relationship between the parameter, � or �, and a linear model of the explanatory variables, X �. 
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IMSLS_EFFECTS, int n_effects, int n_var_effects[],  
 int indices_effects, 
IMSLS_INITIAL_EST_INTERNAL, 
IMSLS_INITIAL_EST_INPUT, int n_coef_input, 
 float estimates[], 
IMSLS_MAX_CLASS, int max_class, 
IMSLS_CLASS_INFO, int **n_class_values, 
 float **class_values, 
IMSLS_CLASS_INFO_USER, int n_class_values[], 
 float class_values[], 
IMSLS_COEF_STAT, float **coef_statistics, 
IMSLS_COEF_STAT_USER, float coef_statistics[], 
IMSLS_CRITERION, float *criterion, 
IMSLS_COV, float **cov, 
IMSLS_COV_USER, float cov[], 
IMSLS_MEANS, float **means, 
IMSLS_MEANS_USER, float means[], 
IMSLS_CASE_ANALYSIS, float **case_analysis, 
IMSLS_CASE_ANALYSIS_USER, float case_analysis[], 
IMSLS_LAST_STEP, float **last_step,  
IMSLS_LAST_STEP_USER, float last_step[], 
IMSLS_OBS_STATUS, int **obs_status, 
IMSLS_OBS_STATUS_USER, int obs_status[], 
IMSLS_ITERATIONS, int *n, float **iterations, 
IMSLS_ITERATIONS_USER, int *n, float iterations[], 
IMSLS_N_ROWS_MISSING, int *n_rows_missing, 
0) 

Optional Arguments 
IMSLS_X_COL_DIM, int x_col_dim   (Input) 

Column dimension of input array x. 
Default: x_col_dim = n_class + n_continuous +1 

IMSLS_X_COL_FREQUENCIES, int ifrq   (Input) 
Column number ifrg of x containing the frequency of response for 
each observation. 

IMSLS_X_COL_FIXED_PARAMETER, int ifix   (Input) 
Column number ifix in x containing a fixed parameter for each 
observation that is added to the linear response prior to computing the 
model parameter. The ‘fixed’ parameter allows one to test hypothesis 
about the parameters via the log-likelihoods. 

IMSLS_X_COL_DIST_PARAMETER, int ipar   (Input) 
Column number ipar in x containing the value of the known 
distribution parameter for each observation, where x[i][ipar] is the 
known distribution parameter associated with the i-th observation. The 
meaning of the distributional parameter depends upon model as follows: 
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model Parameter Meaning of x [i] [ipar] 

0 E ln (E) is a fixed intercept to be included in 
the linear predictor (i.e., the offset). 

1 S Number of successes required for the 
negative binomial distribution. 

2 - Not used for this model. 
3-5 N Number of trials required for the binomial 

distribution. 

Default: When model � 2, each observation is assumed to have a 
parameter value of 1. When model = 2, this parameter is not referenced. 

IMSLS_X_COL_VARAIBLES, int iclass[], int icontinuous[], int iy   
(Input) 
This keyword allows specification of the variables to be used in the 
analysis and overrides the default ordering of variables described for 
input argument x. Columns are numbered 0 to x_col_dim_1. To avoid 
errors, always specify the keyword IMSLS_X_COL_DIM when using this 
keyword. 

Argument iclass is an index vector of length n_class containing the 
column numbers of x that correspond to classification variables. 

Argument icontinuous is an index vector of length n_continuous 
containing the column numbers of x that correspond to continuous 
variables. 

Argument iy indicates the column of x which contains the independent 
variable.  

IMSLS_EPS, float eps   (Input) 
Argument eps is the convergence criterion. Convergence is assumed 
when the maximum relative change in any coefficient estimate is less 
than eps from one iteration to the next or when the relative change in 
the log-likelihood, criterion, from one iteration to the next is less than 
eps / 100.0. 
Default: eps = 0.001 

IMSLS_MAX_ITERATIONS, int max_iterations   (Input) 
Maximum number of iterations. Use max_iterations = 0 to compute the 
Hessian, stored in cov, and the Newton step, stored in last_step, at the 
initial estimates (The initial estimates must be input. Use keyword 
IMSLS_INITIAL_EST_INPUT). 
Default: max_iterations = 30 

IMSLS_INTERCEPT, or 
IMSLS_NO_INTERCEPT, 

By default, or if IMSLS_INTERCEPT is specified, the intercept is 
automatically included in the model. If IMSLS_NO_INTERCEPT is 
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specified, there is no intercept in the model (unless otherwise provided 
for by the user). 

IMSLS_EFFECTS, int n_effects, int n_var_effects[], 
int indices_effects[]   (Input) 
Variable n_effects is the number of effects (sources of variation) in 
the model. Variable n_var_effects is an array of length n_effects 
containing the number of variables associated with each effect in the 
model. Argument indices_effects is an index array of length 
n_var_effects [0] + n_var_effects [1] +  �
+ n_var_effects [n_effects � 1]. The first n_var_effects [0] 
elements give the column numbers of x for each variable in the first 
effect. The next n_var_effects [1] elements give the column numbers 
for each variable in the second effect. The last 
n_var_effects [n_effects � 1] elements give the column  
numbers for each variable in the last effect. 

IMSLS_INITIAL_EST_INTERNAL, or 
IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[]   

(Input) 
By default, or if IMSLS_INIT_INTERNAL is specified, then unweighted 
linear regression is used to obtain initial estimates. If 
IMSLS_INITIAL_EST_INPUT is specified, then the n_coef_input 
elements of estimates contain initial estimates of the parameters 
(which requires that the user know the number of coefficients in the 
model prior to the call to imsls_f_categorical_glm which can be 
obtained by calling imsls_f_regressors_for_glm. 

IMSLS_MAX_CLASS, int max_class   (Input) 
An upper bound on the sum of the number of distinct values taken on by 
each classification variable. 
Default: max_class = n_observations � n_class 

IMSLS_CLASS_INFO, int **n_class_values, float **class_values   
(Output) 
Argument n_class_values the address of a pointer to the internally 
allocated array of length n_class containing the number of values 
taken by each classification variable; the i-th classification variable has 
n_class_values [i] distinct values. Argument class_values is the 
address of a pointer to the internally allocated array of length 

� �
1

0i
i

�

�

�
n_class

n_class_values   

containing the distinct values of the classification variables in ascending 
order. The first n_class_values [0] elements of class_values 
contain the values for the first classification variables, the next 
n_class_values [1] elements contain the values for the second 
classification variable, etc.  
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IMSLS_CLASS_INFO_USER, int n_class_values[], 
float class_values[]   (Output) 
Storage for arrays n_class_values and class_values is provided 
by the user. See IMSLS_CLASS_INFO. 

IMSLS_COEF_STAT, float **coef_statistics   (Output) 
Address of a pointer to an internally allocated array of size 
n_coefficients � 4 containing the parameter estimates and 
associated statistics, where n_coefficients can be computed by 
calling imsls_regressors_for_glm.  

Column Statistic 
0 Coefficient Estimate. 
1 Estimated standard deviation of the estimated coefficient. 
2 Asymptotic normal score for testing that the coefficient is 

zero. 
3 The p-value associated with the normal score in column 

2. 

IMSLS_COEF_STAT_USER, float coef_statistics[]   (Output) 
Storage for array coef_statistics is provided by the user. See 
IMSLS_COEF_STAT. 

IMSLS_CRITERION, float *criterion   (Output) 
Optimized criterion. The criterion to be maximized is a constant plus the 
log-likelihood. 

IMSLS_COV, float **cov   (Output) 
Address of a pointer to the internally allocated array of size 
n_coefficients � n_coefficients containing the estimated 
asymptotic covariance matrix of the coefficients. For 
max_iterations = 0, this is the Hessian computed at the initial 
parameter estimates, where n_coefficients can be computed by 
calling imsls_regressors_for_glm. 

IMSLS_COV_USER, float cov[]   (Ouput) 
Storage for array cov is provided by the user. See IMSLS_COV above. 

IMSLS_MEANS, float **means   (Output) 
Address of a pointer to the internally allocated array containing the 
means of the design variables. The array is of length n_coefficients 
if IMSLS_NO_INTERCEPT is specified, and of length 
n_coefficients � 1 otherwise, where n_coefficients can be 
computed by calling imsls_regressors_for_glm. 

IMSLS_MEANS_USER, float means[]   (Output) 
Storage for array means is provided by the user. See IMSLS_MEANS. 
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IMSLS_CASE_ANALYSIS, float **case_analysis   (Output) 
Address of a pointer to the internally allocated array of size 
n_observations � 5 containing the case analysis. 

Column Statistic 
0 Predicted mean for the observation if model = 0. Other-

wise, contains the probability of success on a single trial. 
1 The residual. 
2 The estimated standard error of the residual. 
3 The estimated influence of the observation. 
4 The standardized residual. 

Case statistics are computed for all observations except where missing 
values prevent their computation.  

IMSLS_CASE_ANALYSIS_USER, float case_analysis[]   (Output) 
Storage for array case_analysis is provided by the user. See 
IMSLS_CASE_ANALYSIS. 

IMSLS_LAST_STEP, float **last_step   (Output) 
Address of a pointer to the internally allocated array of length 
n_coefficients containing the last parameter updates (excluding step 
halvings). For max_iterations = 0, last_step contains the inverse 
of the Hessian times the gradient vector, all computed at the initial 
parameter estimates. 

IMSLS_LAST_STEP_USER, float last_step[]   (Output) 
Storage for array last_step is provided by the user. See 
IMSLS_LAST_STEP. 

IMSLS_OBS_STATUS, int **obs_status   (Output) 
Address of a pointer to the internally allocated array of length 
n_observations indicating which observations are included in the 
extended likelihood. 

obs_status [i] Status of observation 

0 Observation i is in the likelihood 
1 Observation i cannot be in the likelihood 

because it contains at least one missing value in 
x. 

2 Observation i is not in the likelihood. Its 
estimated parameter is infinite. 

IMSLS_OBS_STATUS_USER, int obs_status[]   (Output) 
Storage for array obs_status is provided by the user. See 
IMSLS_OBS_STATUS. 
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IMSLS_N_ROWS_MISSING, int *n_rows_missing   (Output) 
Number of rows of data that contain missing values in one or more of the 
following arrays or columns of x; ipar, iy, ifrq, ifix, iclass, 
icontinuous, or indices_effects. 

Remarks 
1. Dummy variables are generated for the classification variables as follows: 

An ascending list of all distinct values of each classification variable is 
obtained and stored in class_values. Dummy variables are then 
generated for each but the last of these distinct values. Each dummy 
variable is zero unless the classification variable equals the list value 
corresponding to the dummy variable, in which case the dummy variable is 
one. See keyword IMSLS_LEAVE_OUT_LAST for optional argument 
IMSLS_DUMMY in routine imsls_f_regressors_for_glm (Chapter 2, 
“Regression”). 

2. The “product” of a classification variable with a covariate yields dummy 
variables equal to the product of the covariate with each of the dummy 
variables associated with the classification variable. 

3. The “product” of two classification variables yields dummy variables in 
the usual manner. Each dummy variable associated with the first 
classification variable multiplies each dummy variable associated with 
the second classification variable. The resulting dummy variables are 
such that the index of the second classification variable varies fastest. 

Description 
Function imsls_f_categorical_glm uses iteratively reweighted least squares 
to compute (extended) maximum likelihood estimates in some generalized linear 
models involving categorized data. One of several models, including the probit, 
logistic, Poisson, logarithmic, and negative binomial models, may be fit. 

Note that each row vector in the data matrix can represent a single observation; 
or, through the use of optional argument IMSLS_X_COL_FREQUENCIES, each 
row can represent several observations. Also note that classification variables and 
their products are easily incorporated into the models via the usual regression-
type specifications. 

The models available in imsls_f_categorical_glm are: 
 

Model PDF of the Response 
Variable 

Parameterization 

0 f (y) = (�y exp (��) ) / y! � = N � exp (� + �) 

1 
� � � �

1
11

ySS y
f y y � �

� �� �
� ��� �
� 	

 

� �

� �

exp
1 exp

� �
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Model PDF of the Response 
Variable 

Parameterization 

2 f (y) = (1 � �)y / (yln �) � �

� �

exp
1 exp

� �
�

� �

�

�

� �

 

3 
� � � �1 N yyNf y y � �
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� � � �1 N yyNf y y � �
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� = � (� + �) 

5 
� � � �1 N yyNf y y � �

�� �
	 
� �
 �

 
 
� = 1 � exp (�exp (� + �) ) 

Here, � denotes the cumulative normal distribution, N and S are known distribution 
parameters specified for each observation via the optional argument 
IMSLS_X_COL_DIST_PARAMETER, and � is an optional fixed parameter of the 
linear response, 
i, specified for each observation. (If 
IMSLS_X_COL_FIXED_PARAMETER is not specified, then � is taken to be 0.) Since 
the log-log model (model = 5) probabilities are not symmetric with respect to 0.5, 
quantitatively, as well as qualitatively, different models result when the definitions of 
“success” and “failure” are interchanged in this distribution. In this model and all 
other models involving �, � is taken to be the probability of a“success”. 

Computational Details 
The computations proceed as follows: 

1. The input parameters are checked for consistency and validity. 

2. Estimates of the means of the “independent” or design variables are 
computed. The frequency or the observation in all but binomial 
distribution models is taken from vector frequencies. In binomial 
distribution models, the frequency is taken as the product of 
n = parameter [i] and frequencies [i]. Means are computed as 

i i

i

f x
x

f
�

�
�

 

3. By default, and when IMSLS_INITIAL_EST_INTERNAL is specified, 
initial estimates of the coefficients are obtained (based upon the 
observation intervals) as multiple regression estimates relating 
transformed observation probabilities to the observation design vector. 
For example, in the binomial distribution models, � may be estimated as  

� � � �ˆ i i� � y parameter  

and, when model = 3, the linear relationship is given by  
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�� �� �ˆ ˆln / 1 X� �� �  

while if model = 4, �-1 (�) = X�. When computing initial estimates, 
standard modifications are made to prevent illegal operations such as 
division by zero. Regression estimates are obtained at this point, as well 
as later, by use of function imsls_f_regression (Chapter 2, 
“Regression”). 

4. Newton-Raphson iteration for the maximum likelihood estimates is 
implemented via iteratively re-weighted least squares. Let 

� �T
ix ��  

denote the log of the probability of the i-th observation for coefficients 
�. In the least-squares model, the weight of the i-th observation is taken 
as the absolute value of the second derivative of 

� �T
ix ��  

with respect to 
T

i ix� ��  

(times the frequency of the observation), and the dependent variable is 
taken as the first derivative � with respect to 
i, divided by the square 
root of the weight times the frequency. The Newton step is given by 

� � � �1"( )T
i i i i ix x x�� ��� � � �� �

�  

where all derivatives are evaluated at the current estimate of 
 and 
�n+1 = � � ��. This step is computed as the estimated regression 
coefficients in the least-squares model. Step halving is used when 
necessary to ensure a decrease in the criterion. 

5. Convergence is assumed when the maximum relative change in any 
coefficient update from one iteration to the next is less than eps or when 
the relative change in the log-likelihood from one iteration to the next is 
less than eps / 100. Convergence is also assumed after maxit iterations 
or when step halving leads to a step size of less than 0.0001 with no 
increase in the log-likelihood. 

6. Residuals are computed according to methods discussed by Pregibon 
(1981). Let li (
i) denote the log-likelihood of the i-th observation 
evaluated at 
i. Then, the standardized residual is computed as 

� �

� �

ˆ

ˆ
i i

i

i i

l
r

l

�

�

�
�

�

 

where 

î�  
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is the value of 
i when evaluated at the optimal  

�̂  

The denominator of this expression is used as the “standard error of the 
residual” while the numerator is “raw” residual. Following Cook and 
Weisberg (1982), the influence of the i-th observation is assumed to be 

� � � � � �
1ˆ ˆT

i i i il l l� � �
�

� �� � ˆ  

This quantity is a one-step approximation to the change in the estimates 
when the i-th observation is deleted. Here, the partial derivatives are 
with respect to �. 

Programming Notes 
1. Indicator (dummy) variables are created for the classification variables 

using function imsls_f_regressors_for_glm  
(see Chapter 2, “Regression”) using keyword IMSLS_LEAVE_OUT_LAST 
as the argument to the IMSLS_DUMMY optional argument. 

2. To enhance precision, “centering” of covariates is performed if the 
model has an intercept and 
n_observations � n_rows_missing > 1. In doing so, the sample 
means of the design variables are subracted from each observation prior 
to its inclusion in the model. On convergence, the intercept, its variance, 
and its covariance with the remaining estimates are transformed to the 
uncentered estimate values. 

3. Two methods for specifying a binomial distribution model are possible. 
In the first method, frequencies contains the frequency of the observation 
while y is 0 or 1 depending upon whether the observation is a success or 
failure. In this case, N = parameter [i] is always 1. The model is treated 
as repeated Bernoulli trials, and interval observations are not possible. A 
second method for specifying binomial models is to use y to represent 
the number of successes in parameter [i] trials. In this case, frequencies 
will usually be 1. 

Examples 

Example 1 
The first example is from Prentice (1976) and involves the mortality of beetles 
after five hours exposure to eight different concentrations of carbon disulphide. 
The table below lists the number of beetles exposed (N) to each concentration 
level of carbon disulphide (x, given as log dosage) and the number of deaths 
which result (y). The data is given as follows: 
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Log Dosage Number of 
Beetles Exposed 

Number of Deaths 

1.690 59 6 

1.724 60 13 

1.755 62 18 

1.784 56 28 

1.811 63 52 

1.836 59 53 

1.861 62 61 

1.883 60 60 

The number of deaths at each concentration level are fitted as a binomial response 
using logit (model = 3), probit (model = 4), and log-log (model = 5) models. 
Note that the log-log model yields a smaller absolute log likelihood (14.81) than 
the logit model (18.78) or the probit model (18.23). This is to be expected since 
the response curve of the log-log model has an asymmetric appearance, but both 
the logit and probit models are symmetric about � = 0.5. 

 
#include <imsls.h> 
#include <stdio.h> 
 
main () 
 
{ 
 
    static float x[8][3] = {  1.69,  6, 59, 
                             1.724, 13, 60,   
                             1.755, 18, 62,  
                             1.784, 28, 56,  
                             1.811, 52, 63,   
                             1.836, 53, 59,  
                             1.861, 61, 62, 
                             1.883, 60, 60}; 
 
    float *coef_statistics, criterion; 
    int  n_obs=8, n_class=0, n_continuous=1; 
    int n_coef, model=3, ipar=2; 
    char *fmt = "%12.4f"; 
    static char *clabels[] = {"", "coefficients", "s.e", "z", "p"}; 
 
    n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous, 
             model, &x[0][0],  
             IMSLS_X_COL_DIST_PARAMETER, ipar, 
             IMSLS_COEF_STAT, &coef_statistics,  
             IMSLS_CRITERION, &criterion, 0); 
 
    imsls_f_write_matrix ("Coefficient statistics for model 3", n_coef, 4, 
                      coef_statistics, 
             IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS, 
                      clabels,0); 
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     printf ("\nLog likelihood    %f \n", criterion); 
 
    model=4; 
   
    n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous, 
             model, &x[0][0],  
             IMSLS_X_COL_DIST_PARAMETER, ipar, 
             IMSLS_COEF_STAT, &coef_statistics,  
             IMSLS_CRITERION, &criterion, 0); 
 
 
    imsls_f_write_matrix ("Coefficient statistics for model 4", n_coef, 4, 
                     coef_statistics, 
             IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS, 
                     clabels,0); 
     printf ("\nLog likelihood    %f \n", criterion); 
 
    model=5; 
   
    n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous, 
             model, &x[0][0],  
             IMSLS_X_COL_DIST_PARAMETER, ipar, 
             IMSLS_COEF_STAT, &coef_statistics,  
             IMSLS_CRITERION, &criterion, 0); 
 
 
    imsls_f_write_matrix ("Coefficient statistics for model 5", n_coef, 4, 
                     coef_statistics, 
             IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS, 
                     clabels,0); 
     printf ("\nLog likelihood    %f \n", criterion); 
 
} 

Output 
 
 

          Coefficient statistics for model 3 
coefficients           s.e             z             p 
    -60.7568        5.2093      -11.6632        0.0000 
     34.2985        2.9164       11.7607        0.0000 
 
Log likelihood    -18.778187 
 
          Coefficient statistics for model 4 
coefficients           s.e             z             p 
    -34.9441        2.6527      -13.1732        0.0000 
     19.7367        1.4852       13.2888        0.0000 
 
Log likelihood    -18.232355 
 
          Coefficient statistics for model 5 
coefficients           s.e             z             p 
    -39.6133        3.2428      -12.2156        0.0000 
     22.0685        1.8047       12.2284        0.0000 
 
Log likelihood    -14.807850 
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Example 2 
Consider the use of a loglinear model to analyze survival-time data. Laird and 
Oliver (1981) investigate patient survival post heart valve replacement surgery. 
Surveilance after surgery of the 109 patients included in the study ranged from 3 
to 97 months. All patients were classified by heart valve type (aortic or mitral) 
and by age (less than 55 years or at least 55 years). The data could be considered 
as a three-way contingency table where patients are classified by valve type, age, 
and survival (yes or no). However, it would be inappropriate to analyze this data 
using the standard methodology associated with contingency tables; since, this 
methodology ignores survival time. 

Consider a variable, say exposure time (Eij), that is defined as the sum of the 
length of times patients of each cross-classification are at risk. The length of time 
for a patient that dies is the number of months from surgery until death and for a 
survivor, the length of time is the number of months from surgery until the study 
ends or the patient withdraws from the study. Now we can model the effect of  
A = age and V = valve type on the expected number of deaths conditional on 
exposure time. Thus, for the data (shown in the table below), assume the number 
of deaths are independent Poisson random variables with means mij and fit the 
following model, 

log ij A V
i j

ij

m
u

E
� �

� �
� � �� �� �

� �
 

where u is the overall mean, 
A

i�  

is the effect of age, and 
V
j�  

is the effect of the valve type. 

  Heart Valve Type 
Age  Aortic (0) Mitral (1) 

< 55 years (Age = 0) Deaths        4        1 
 Exposure 1259 2082 
� 55 years (Age = 1) Deaths         7        9 
 Exposure 1417 1647 

From the coefficient statistics table of the output, note that the risk is estimated to 
be e1.22 = 3.39 times higher for older patients in the study. This increase in risk is 
significant (p = 0.02). However, the decrease in risk for the mitral valve patients 
is estimated to be e-0.33 = 0.72 times that of the aortic valve patients and this risk 
is not significant (p = 0.45). 
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#include <imsls.h> 
 
main () 
{ 
    int   nobs = 4; 
    int   n_class = 2; 
    int   n_cont = 0; 
    int   model = 0; 
    float x[16] = { 
        4, 1259, 0, 0, 
        1, 2082, 0, 1, 
        7, 1417, 1, 0, 
        9, 1647, 1, 1 
    }; 
    int iclass[2] = {2, 3}; 
    int icont[1] = {-1}; 
    int   n_coef; 
    float *coef; 
 
    char  *clabels[5] = {"", "coefficient", "std error", "z-statistic", "p-  
                    value"}; 
    char  *fmt = "%10.6W"; 
 
    n_coef = imsls_f_categorical_glm(nobs, n_class, n_cont, model, x, 
       IMSLS_COEF_STAT, &coef, 
       IMSLS_X_COL_VARIABLES, iclass, icont, 0, 
       IMSLS_X_COL_DIST_PARAMETER, 1, 
       0); 
 
        imsls_f_write_matrix("Coefficient Statistics", n_coef, 4, coef, 
        IMSLS_COL_LABELS, clabels, IMSLS_ROW_NUMBER_ZERO, 
        IMSLS_WRITE_FORMAT, fmt, 0); 
} 

 
 

Output 
 
 
 
              Coefficient Statistics 
   coefficient   std error  z-statistic     p-value 
0      -5.4210      0.3921     -13.8246      0.0000 
1      -1.2209      0.5138      -2.3763      0.0177 
2       0.3299      0.4382       0.7528      0.4517 

 

Warning Errors 
IMSLS_TOO_MANY_HALVINGS Too many step halvings. Convergence is 

assumed. 

IMSLS_TOO_MANY_ITERATIONS Too many iterations. Convergence is 
assumed. 
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Fatal Errors 
IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is specified 

and “n_coef_input” = #. The model 
specified requires # coefficients. 

IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of the 
classification variables exceeds  
“max_class” = #. 

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The number of 
distinct values for each classification 
variable must be greater than one. 

IMSLS_NMAX_EXCEEDED The number of observations to be deleted 
has exceeded “lp_max” = #. Rerun with a 
different model or increase the workspace. 

 



 

 

 

Chapter 6: Nonparametric Statistics Routines � 441 

 

 

 

Chapter 6: Nonparametric Statistics 

Routines 
6.1 One sample tests  - Nonparametric Statistics 

Sign test .............................................................................sign_test 442 
Wilcoxon rank sum test ....................................wilcoxon_sign_rank 445 
Noehter’s test for cyclical trend.................... noether_cyclical_trend 449 
Cox and Stuarts’ sign test for trends in location  
and dispersion ............................................ cox_stuart_trends_test 452 
Tie statistics ................................................................. tie_statistics 458 

6.2 Two or more samples    
Wilcoxon’s rank sum test................................. wilcoxon_rank_sum 460 
Kruskal-Wallis test .............................................kruskal_wallis_test 465 
Friedman’s test ........................................................ friedmans_test 467 
Cochran's Q test ..................................................... cochran_q_test 472 
K-sample trends test .................................................. k_trends_test 475 

Usage Notes 
Much of what is considered nonparametric statistics is included in other chapters. 
Topics of possible interest in other chapters are: nonparametric measures of 
location and scale (Chapter 1, “Basic Statistics”), nonparametric measures in a 
contingency table (Chapter 5, “Categorical and Discrete Data Analysis”), 
measures of correlation in a contingency table (Chapter 3, “Correlation and 
Covariance”), and tests of goodness of fit and randomness (Chapter 7, “Tests of 
Goodness of Fit and Randomness”). 

Missing Values 

Most routines described in this chapter automatically handle missing values 
(NaN, “Not a Number”; see the introduction of this manual). 
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Tied Observations 

Many of the routines described in this chapter contain an argument IMSLS_FUZZ 
in the input. Observations that are within fuzz of each other in absolute value are 
said to be tied. Moreover, in some routines, an observation within fuzz of some 
value is said to be equal to that value. In routine 
imsls_f_wilcoxon_sign_rank (page 445), for example, such observations 
are eliminated from the analysis. If fuzz = 0.0, observations must be identically 
equal before they are considered to be tied. Other positive values of fuzz allow 
for numerical imprecision or roundoff error. 

sign_test 
Performs a sign test. 

Synopsis 
#include <imsls.h> 
float imsls_f_sign_test (int n_observations, float x[], ..., 0) 

The type double function is imsls_d_sign_test. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

float x[]   (Input) 
Array of length n_observations containing the input data. 

Return Value 
Binomial probability of n_positive_deviations or more positive differences 
in n_observations � n_zero_deviation trials. Call this value probability. If 
no option is chosen, the null hypothesis is that the median equals 0.0. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_sign_test (int n_observations, float x[], 

IMSLS_PERCENTAGE, float percentage, 
IMSLS_PERCENTILE, float percentile, 
IMSLS_N_POSITIVE_DEVIATIONS, 
 int *n_positive_deviations, 
IMSLS_N_ZERO_DEVIATIONS, int *n_zero_deviations, 
0) 
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Optional Arguments 
IMSLS_PERCENTAGE, float percentage   (Input) 

Value in the range (0, 1). Argument percentile is the  
100 � percentage percentile of the population.  
Default: percentage = 0.5 

IMSLS_PERCENTILE, float percentile   (Input) 
Hypothesized percentile of the population from which x was drawn. 
Default: percentile = 0.0 

IMSLS_N_POSITIVE_DEVIATIONS, int *n_positive_deviations   
(Output) 
Number of positive differences x[j � 1] � percentile for 
j = 1, 2, �, n_observations. 

IMSLS_N_ZERO_DEVIATIONS, int *n_zero_deviations   (Output) 
Number of zero differences (ties) x[j � 1] � percentile for  
j = 1, 2, �, n_observations. 

Description 
Function imsls_f_sign_test tests hypotheses about the proportion p of a 
population that lies below a value q, where p corresponds to argument 
percentage and q corresponds to argument percentile. In continuous 
distributions, this can be a test that q is the 100 p-th percentile of the population 
from which x was obtained. To carry out testing, imsls_f_sign_test tallies 
the number of values above q in n_positive_deviations. The binomial 
probability of n_positive_deviations or more values above q is then 
computed using the proportion p and the sample size n_observations 
(adjusted for the missing observations and ties). 

Hypothesis testing is performed as follows for the usual null and alternative 
hypotheses: 

� H0: Pr(x � q) � p (the p-th quantile is at least q) 
H1: Pr(x � q) < p 
Reject H0 if probability is less than or equal to the significance level 

� H0: Pr(x � q) � p (the p-th quantile is at least q) 
H1: Pr(x � q) > p 
Reject H0 if probability is greater than or equal to 1 minus the significance 
level 

� H0: Pr (x � q) � p (the p-th quantile is q) 
H1: Pr((x � q) < p) or Pr((x � q) > p) 
Reject H0 if probability is less than or equal to half the significance level or 
greater than or equal to 1 minus half the significance level 
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The assumptions are as follows: 

1. They are independent and identically distributed. 

2. Measurement scale is at least ordinal; i.e., an ordering less than, greater 
than, and equal to exists in the observations. 

Many uses for the sign test are possible with various values of p and q. For 
example, to perform a matched sample test that the difference of the medians of  
y and z is 0.0, let p = 0.5, q = 0.0, and xi = yi � zi in matched observations  
y and z. To test that the median difference is c, let q = c. 

Examples 

Example 1 
This example tests the hypothesis that at least 50 percent of a population is 
negative. Because 0.18 < 0.95, the null hypothesis at the 5-percent level of 
significance is not rejected. 

#include <imsls.h> 
 
void main () 
{ 
    int         n_observations = 19; 
    float       probability; 
    float       x[19] = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0,  
          -25.0, -4.0, 22.0, 2.0, 41.0, 13.0, 8.0, 33.0,  
          45.0, -33.0, -45.0, -12.0}; 
 
    probability = imsls_f_sign_test(n_observations, x, 0); 
   
    printf("probability = %10.6f\n", probability); 
} 

Output 
probability =   0.179642 

Example 2 
This example tests the null hypothesis that at least 75 percent of a population is 
negative. Because 0.923 < 0.95, the null hypothesis at the 5-percent level of 
significance is rejected. 

#include <imsls.h> 
 
void main () 
{ 
    int         n_observations = 19; 
    int         n_positive_deviations, n_zero_deviations; 
    float       probability; 
    float       percentage = 0.75; 
    float       percentile = 0.0; 
    float       x[19] = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0, 
          -25.0, -4.0, 22.0, 2.0, 41.0, 13.0, 8.0, 33.0, 
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          45.0, -33.0, -45.0, -12.0}; 
 
 
    probability = imsls_f_sign_test(n_observations, x, IMSLS_PERCENTAGE, 
            percentage, IMSLS_PERCENTILE, percentile,  
            IMSLS_N_POSITIVE_DEVIATIONS, &n_positive_deviations, 
            IMSLS_N_ZERO_DEVIATIONS, &n_zero_deviations, 0); 
 
    printf("probability = %10.6f.\n", probability); 
    printf("Number of positive deviations is %d.\n",  
           n_positive_deviations); 
    printf("Number of ties is %d.\n", n_zero_deviations); 
} 

Output 
probability =   0.922543. 
Number of positive deviations is 12. 
Number of ties is 0. 

wilcoxon_sign_rank 
Performs a Wilcoxon signed rank test. 

Synopsis 
#include <imsls.h> 
float *imsls_f_wilcoxon_sign_rank (int n_observations,  

float x[], ..., 0) 

The type double function is imsls_d_wilcoxon_sign_rank. 

Required Arguments 

int n_observations   (Input) 
Number of observations in x.  

float x[]   (Input) 
Array of length n_observations containing the data. 

Return Value 
Pointer to an array of length two containing the values described below.  

The asymptotic probability of not exceeding the standardized (to an asymptotic 
variance of 1.0) minimum of (W+, W-) using method 1 under the null hypothesis 
that the distribution is symmetric about 0.0. 

And, the asymptotic probability of not exceeding the standardized (to an 
asymptotic variance of 1.0) minimum of (W+, W-) using method 2 under the null 
hypothesis that the distribution is symmetric about 0.0. 
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Synopsis with Optional Arguments 
#include <imsls.h>  
float * imsls_f_wilcoxon_sign_rank (int n_observations,  

float  x[], 
 IMSLS_FUZZ, float fuzz, 

IMSLS_STAT, float **stat, 
IMSLS_STAT_USER, float stat[], 
IMSLS_N_MISSING, float *n_missing, 
IMSLS_RETURN_USER, float prob[], 
0) 

Optional Arguments 
IMSLS_FUZZ, float fuzz   (Input) 

Nonnegative constant used to determine ties in computing ranks in the 
combined samples. A tie is declared when two observations in the 
combined sample are within fuzz of each other. 
Default value for fuzz is 0.0. 

IMSLS_STAT, float **stat   (Output) 
Address of a pointer to an internally allocated array of length  
10 containing the following statistics:  

Row Statistics 
0 The positive rank sum, W+, using method  
1 The absolute value of the negative rank sum, W-, using method 1. 
2 The standardized (to anasymptotic variance of 1.0) minimum of 

(W+, W-) using method  
3 The asymptotic probability of not exceeding stat(2) under the 

null hypothesis that the distribution is symmetric about 0.0. 
4 The positive rank sum, W+, using method 2. 
5 The absolute value of the negative rank sum, W-, using method 2. 
6 The standardized (to an asymptotic variance of 1.0) minimum of 

(W+, W-) using method 2. 
7 The asymptotic probability of not exceeding stat(6) under the 

null hypothesis that the distribution is symmetric about 0.0. 
8 The number of zero observations.  
9 The total number of observations that are tied, and that are not 

within fuzz of zero. 
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IMSLS_STAT_USER, float stat[]   (Output) 
Storage for array stat is provided by the user.  
See IMSLS_STAT. 

IMSLS_N_MISSING, float *n_missing, (Output) 
Number of missing values in y. 

IMSLS_RETURN_USER, float prob[],   (Output) 
User allocated storage for return values.   
See Return Value.                      

Description 
Function imsls_f_wilcoxon_sign_rank performs a Wilcoxon signed rank  
test of symmetry about zero. In one sample, this test can be viewed as a test  
that the population median is zero. In matched samples, a test that the medians  
of the two populations are equal can be computed by first computing difference 
scores. These difference scores would then be used as input to 
imsls_f_wilcoxon_sign_rank. A general reference for the methods used is 
Conover (1980). 

Routine imsls_f_wilcoxon_sign_rank computes statistics for two methods 
for handling zero and tied observations. In the first method, observations within 
fuzz of zero are not counted, and the average rank of tied observations is used. 
(Observations within fuzz of each other are said to be tied.) In the second 
method, observations within fuzz of zero are randomly assigned a positive or 
negative sign, and the ranks of tied observations are randomly permuted. 

The W+ and W� statistics are computed as the sums of the ranks of the positive 
observations and the sum of the ranks of the negative observations, respectively. 
Asymptotic probabilities are computed using standard methods (see, e.g., 
Conover 1980, page 282). 

The W+ and W� statistics may be used to test the following hypotheses about the 
median, M. In deciding whether to reject the null hypothesis, use the bracketed 
statistic if method 2 for handling ties is preferred. Possible null hypotheses and 
alternatives are given as follows: 
� H� : M � 0        H� : M > 0 

Reject if stat[0] [or stat[4]] is too large. 
� H� : M � 0        H� : M < 0  

Reject if stat[1] [or stat[5]] is too large. 
� H� : M = 0        H� : M � 0  

Reject if stat[2][or stat[6]] is too small. Alternatively, if an asymptotic 
test is desired, reject if 2 * stat[3] [or 2 * stat[7]] is less than the 
significance level. 

Tabled values of the test statistic can be found in the references. If possible, 
tabled values should be used. If the number of nonzero observations is too large, 
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then the asymptotic probabilities computed by imsls_f_wilcoxon_sign_rank 
can be used. 

The assumptions required for the hypothesis tests are as follows:  

1. The distribution of each Xi is symmetric. 

2. The Xi are mutually independent. 

3. All Xi’s have the same median. 

4. An ordering of the observations exists (i.e., X� > X� and X� > X� implies 
that X� > X�). 

If other assumptions are made, related hypotheses that are more (or less) 
restrictive can be tested. 

Example 
This example illustrates the application of the Wilcoxon signed rank test to a  
test on a difference of two matched samples (matched pairs) {X1 = 223, 216, 
211, 212, 209, 205, 201; and X2 = 208, 205, 202, 207, 206, 204, 203}. A test that 
the median difference is 10.0 (rather than 0.0) is performed by subtracting 10.0 
from each of the differences prior to calling wilcoxon_sign_rank. As can be 
seen from the output, the null hypothesis is rejected. The warning error will 
always be printed when the number of observations is 50 or less unless printing is 
turned off for warning errors.  

#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 
float *stat=NULL, *result=NULL; 
int nobs = 7, nmiss; 
float fuzz = .0001; 
float x[] = {-25., -21., -19., -15., -13., -11., -8.}; 
result = imsls_f_wilcoxon_sign_rank(nobs, x,   
                                    IMSLS_N_MISSING, &nmiss, 
                                    IMSLS_FUZZ, fuzz, 
                                    IMSLS_STAT, &stat, 
                                    0); 
printf("Statistic\t\t\tMethod 1\tMethod 2\n"); 
printf("W+\t\t\t\t %3.0f\t\t %3.0f\n", stat[0], stat[4]); 
printf("W-\t\t\t\t %3.0f\t\t %3.0f\n", stat[1], stat[5]); 
printf("Standardized Minimum\t\t%6.4f\t\t%6.4f\n", stat[2], stat[6]); 
printf("p-value\t\t\t\t %6.4f\t\t %6.4f\n\n", stat[3], stat[7]); 
printf("Number of zeros\t\t\t%3.0f\n", stat[8]); 
printf("Number of ties\t\t\t%3.0f\n", stat[9]); 
printf("Number of missing\t\t  %d\n", nmiss);        

} 
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Output 
 
 
*** WARNING  ERROR 4 from imsls_f_wilcoxon_sign_rank.  NOBS = 7.  The number   
***          of observations, NOBS, is less than 50, and exact  
***          tables should be referenced for probabilities. 
 
Statistic                    Method 1     Method 2 
W+.......................       0           0 
W-.......................      28          28 
Standardized Minimum.....  -2.3664      -2.3664 
p-value..................   0.0090       0.0090 
 
Number of zeros..........       0 
Number of ties...........       0 
Number of missing........       0 

noether_cyclical_trend 
Performs the Noether test for cyclical trend. 

Synopsis 
#include <imsls.h> 
float *imsls_f_noether_cyclical_trend (int n_observations, 

float x[], ..., 0) 

The type double function is imsls_d_noether_cyclical_trend. 

Required Arguments 

int n_observations   (Input) 
Number of observations in x. n_observations must be greater than 
or equal to 3.  

float x[]   (Input) 
Array of length n_observations containing the data in chronological 
order. 

Return Value 
Array, p,  of length 3 containing the probabilities of stat[1] or more, stat[2] 
or more, or stat[3] or more monotonic sequences.  

If stat[0] is less than 1, p[0] is set to NaN (not a number). 

Synopsis with Optional Arguments 
#include <imsls.h>  
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float *imsls_f_noether_cyclical_trend ((int n_observations, 
float x[], 

 IMSLS_FUZZ, float fuzz, 
 IMSLS_STAT, int **stat, 
 IMSLS_STAT_USER, int stat[],              

IMSLS_N_MISSING, int *n_missing, 
 IMSLS_RETURN_USER, float p[], 
 0) 

Optional Arguments 
IMSLS_FUZZ, float fuzz (Input) 

Nonnegative constant used to determine ties in computing ranks in the 
combined samples. A tie is declared when two observations in the 
combined sample are within fuzz of each other. 
Default value for fuzz is 0.0.  

IMSLS_STAT, int **stat   (Output) 
Address of a pointer to an internally allocated array of length 6 
containing the following statistics:  

Row Statistics 
stat[0] The number of consecutive sequences of length three used to detect 

cyclical trend when tying middle elements are eliminated from the 
sequence, and the next consecutive observation is used. 

stat[1]  The number of monotonic sequences of length three in the set defined by 
stat[0]. 

stat[2] The number of nonmonotonic sequences where tied threesomes are 
counted as nonmonotonic. 

stat[3]  The number of monotonic sequences where tied threesomes are counted as 
monotonic. 

stat[4] The number of middle observations eliminated because they were tied in 
forming the stat[0] sequences. 

stat[5] The number of tied sequences found in forming the stat[2] and 
stat[3] sequences. A sequence is called a tied sequence if the middle 
element is tied with either of the two other elements. 

IMSLS_STAT_USER, int stat[]   (Output) 
Storage for array stat is provided by the user.  
See IMSLS_STAT. 

IMSLS_N_MISSING, int *n_missing   (Output) 
Number of missing values in X. 



 

 

 

Chapter 6: Nonparametric Statistics noether_cyclical_trend � 451 

 

 

 

IMSLS_RETURN_USER, float p[]   (Input) 
User allocated array of length 3 containing the return values.    

Description 

Routine imsls_f_noether_cyclical_trend performs the Noether test for 
cyclical trend (Noether 1956) for a sequence of measurements. In this test, the 
observations are first divided into sets of three consecutive observations. Each set 
is then inspected, and if the set is monotonically increasing or decreasing, the 
count variable is incremented.  

The count variables, stat[1], stat[2], and stat[3], differ in the manner in 
which ties are handled. A tie can occur in a set (of size three) only if the middle 
element is tied with either of the two ending elements. Tied ending elements are 
not considered. In stat[1], tied middle observations are eliminated, and a new 
set of size 3 is obtained by using the next observation in the sample. In stat[2], 
the original set of size three is used, and tied middle observations are counted as 
nonmonotonic. In stat[3], tied middle observations are counted as monotonic.  

The probabilities of occurrence of the counts are obtained from the binomial 
distribution with p = 1/3, where p is the probability that a random sample of size 
three from a continuous distribution is monotonic. The binomial sample size is, of 
course, the number of sequences of size three found (adjusted for ties). 

Hypothesis test: 

H� : q = Pr(Xi > Xi - 1 > Xi - 2) + Pr(Xi < Xi - 1 < Xi - 2 ) � 1/3      H� : q > 1/3  
Reject if p[0] (or p[1] or p[2] depending on the method used for handling ties) 
is less than the significance level of the test. 

Assumption: The observations are independent and are from a continuous 
distribution. 

Example 
A test for cyclical trend in a sequence of 1000 randomly generated observations is 
performed. Because of the sample used, there are no ties and all three test 
statistics yield the same result. 

#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 

        float *pvalue=NULL; 

        int nobs = 1000, nmiss, *stat = NULL; 

        float *x = NULL; 

        imsls_random_seed_set(123457); 

        x = imsls_f_random_uniform(nobs, 0); 
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        pvalue = imsls_f_noether_cyclical_trend(nobs, x, 

                                          IMSLS_STAT, &stat, 

                                          IMSLS_N_MISSING, &nmiss, 

                                          0); 

        imsls_f_write_matrix("P", 0, 2, pvalue, 0); 

        imsls_i_write_matrix("STAT", 0, 5, stat, 0); 

        printf("\n n missing = %d\n", nmiss); 

} 

 

Output 
P 
 0        1        2 
0.6979   0.6979   0.6979 
STAT 
 0     1     2     3     4     5 
333   107   107   107     0     0 
n missing = 0 
 

cox_stuart_trends_test 
Performs the Cox and Stuart sign test for trends in location and dispersion. 

Synopsis 
#include <imsls.h> 
float *imsls_f_cox_stuart_trends_test (int n_observations, 

float x[], ..., 0) 

The type double function is imsls_d_ cox_stuart_trends_test. 

Required Arguments 

int n_observations   (Input) 
Number of observations in x. n_observations must be greater  
than or equal to 3.  

float x[]   (Input) 
Array of length n_observations containing the data in chronological 
order. 

Return Value 

Array, pstat, of length 8 containing the probabilities. The first four elements 
of pstat are computed from two groups of observations.  
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I  pstat[I] 

0  Probability of  nstat[0] + nstat[2] or more negative signs  
(ties are considered negative). 

1 Probability of obtaining  nstat[1] or more positive signs (ties are 
considered negative). 

2 Probability of  nstat[0] + nstat[2] or more negative signs (ties are 
considered positive). 

3  Probability of obtaining nstat[1] or more positive signs (ties are 
considered positive). 

The last four elements of pstat are computed from three groups of 
observations. 

4  Probability of  nstat[0] + nstat[2] or more negative signs (ties 
are considered negative). 

5  Probability of obtaining  nstat[1] or more positive signs (ties are 
considered negative). 

6  Probability of  nstat[0] + nstat[2] or more negative signs (ties 
are  considered positive). 

7  Probability of obtaining  nstat[1] or more positive signs (ties are 
considered positive). 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_cox_stuart_trends_test (int n_observations, 

float x[], 
 IMSLS_DISPERSION, int k, int ids,                              

IMSLS_FUZZ, float fuzz, 
 IMSLS_STAT, int **nstat, 
 IMSLS_STAT_USER, int nstat[],             

IMSLS_N_MISSING, int *n_missing, 
 IMSLS_RETURN_USER, float pstat[], 
 0) 

Optional Arguments 
IMSLS_DISPERSION, int k, int ids,  (Input) 

If IMSLS_DISPERSION is called, the Cox and Stuart tests for trends in 
dispersion are computed. Otherwise, as default, the Cox and Stuart tests 
for trends in location are computed. k is the number of consecutive x 
elements to be used to measure dispersion.                                                                                    
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If ids is zero, the range is used as a measure of dispersion.  
Otherwise, the centered sum of squares is used.  

IMSLS_FUZZ, float fuzz   (Input) 
Value used to determine when elements in x are tied.   
If |x[i] – x[j]| is less than or equal to fuzz, x[i] and x[j] 
are said to be tied.  fuzz must be nonnegative. Default value for fuzz is 
0.0. 

IMSLS_STAT, int **nstat   (Output) 
Address of a pointer to an internally allocated array of length 8 
containing the following statistics:  

I  nstat[I] 
0  Number of negative differences (two groups) 

1  Number of positive differences (two groups) 

2  Number of zero differences (two groups) 

3  Number of differences used to calculate pstat[0] 
through pstat[3] (two groups). 

4  Number of negative differences (three groups) 

5  Number of positive differences (three groups) 

6  Number of zero differences (three groups) 

7  Number of differences used to calculate pstat 
[4] through pstat[7] (three groups). 

IMSLS_STAT_USER, int nstat[]   (Output) 
Storage for array nstat is provided by the user.  
See IMSLS_STAT. 

IMSLS_N_MISSING, int *n_missing   (Output)                                               
Number of missing values in X. 

IMSLS_RETURN_USER, float pstat[]   (Input) 
User allocated array of length 8 containing the return values. 

Description 
Function imsls_f_cox_stuart_trends_test tests for trends in dispersion or 
location in a sequence of random variables depending upon the call of 
IMSLS_DISPERSION. A derivative of the sign test is used  
(see Cox and Stuart 1955). 
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Location Test 

For the location test (Default) with two groups, the observations are first 
divided into two groups with the middle observation thrown out if there are an 
odd number of observations. Each observation in group one is then compared 
with the observation in group two that has the same lexicographical order. A 
count is made of the number of times a group-one observation is less than 
(nstat[0]), greater than (nstat[1]), or equal to (nstat[2]), its counterpart in 
group two. Two observations are counted as equal if they are within fuzz of one 
another. 

In the three-group test, the observations are divided into three groups, with the 
center group losing observations if the division is not exact. The first and third 
groups are then compared as in the two-group case, and the counts are stored in 
nstat[4] through nstat[6]. 

Probabilities in pstat are computed using the binomial distribution with sample 
size equal to the number of observations in the first group (nstat[3] or 
nstat[7]), and binomial probability p = 0.5. 

Dispersion Test 

The dispersion tests (when optional argument IMSLS_DISPERSION is called) 
proceed exactly as with the tests for location, but using one of two derived 
dispersion measures. The input value k is used to define n_observations/k 
groups of consecutive observations starting with observation 1. The first k 
observations define the first group, the next k observations define the second 
group, etc., with the last observations omitted if n_observations is not evenly 
divisible by k. A dispersion score is then computed for each group as either the 
range (ids = 0), or a multiple of the variance (ids � 0) of the observations in the 
group. The dispersion scores form a derived sample. The tests proceed on the 
derived sample as above. 

Ties 

Ties are defined as occurring when a group one observation is within fuzz of its 
last group counterpart. Ties imply that the probability distribution of X is not 
strictly continuous, which means that Pr(X� > X�) � 0.5 under the null hypothesis 
of no trend (and the assumption of independent identically distributed 
observations). When ties are present, the computed binomial probabilities are not 
exact, and the hypothesis tests will be conservative. 

Hypothesis tests 

In the following, i indexes an observation from group 1, while j indexes the 
corresponding observation in group 2 (two groups) or group 3 (three groups). 
� H� : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5  

H� : Pr(Xi > Xj) < Pr(Xi < Xj)  
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Hypothesis of upward trend. Reject if pstat[2] (or pstat[6])is less than 
the significance level. 

� H� : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5  
H� : Pr(Xi > Xj) > Pr(Xi < Xj) 
Hypothesis of downward trend. Reject if pstat[1] (or pstat[5]) is less 
than the significance level. 

� H� : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5  
H� : Pr(Xi > Xj) � Pr(Xi < Xj)  
Two tailed test. Reject if 2 max(pstat[1], pstat[2]) (or 2 
max(pstat[5], pstat[6]) is less than the significance level. 

Assumptions 

1. The observations are a random sample; i.e., the observations are 
independently and identically distributed. 

2. The distribution is continuous. 

Example 
This example illustrates both the location and dispersion tests. The data, which 
are taken from Bradley (1968), page 176, give the closing price of AT&T on the 
New York stock exchange for 36 days in 1965. Tests for trends in location 
(Default), and for trends in dispersion (IMSLS_DISPERSION) are performed. 
Trends in location are found. 

#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 

float *pstat=NULL; 

int nobs = 36, ids = 0, k = 2, nmiss, *stat = NULL; 

float fuzz = 0.001; 

float x[] = {9.5, 9.875, 9.25, 9.5, 9.375, 9.0, 8.75, 8.625, 8.0, 8.25, 
8.25, 8.375, 8.125, 7.875, 7.5, 7.875, 7.875, 7.75,7.75, 7.75, 8.0, 7.5, 
7.5, 7.125, 7.25, 7.25, 7.125, 6.75,6.5, 7.0, 7.0, 6.75, 6.625, 6.625, 
7.125, 7.75}; 

pstat = imsls_f_cox_stuart_trends_test(nobs, x,  

                                    IMSLS_FUZZ, fuzz, 

                                    IMSLS_STAT, &stat, 

                                    IMSLS_N_MISSING, &nmiss, 

                                     0); 

imsls_i_write_matrix("nstat", 1, 8, stat, 0); 

imsls_f_write_matrix("pstat", 1, 8, pstat, 

                     IMSLS_WRITE_FORMAT, "%10.5f", 0); 



 

 

 

Chapter 6: Nonparametric Statistics cox_stuart_trends_test � 457 

 

 

 

printf("n missing = %d\n", nmiss); 

 pstat = imsls_f_cox_stuart_trends_test(nobs, x,   

                                   IMSLS_DISPERSION, k, ids, 

                                   IMSLS_FUZZ, fuzz, 

                                   IMSLS_STAT, &stat, 

                                   IMSLS_N_MISSING, &nmiss, 

                                   0); 

imsls_i_write_matrix("nstat", 0, 7, stat, 0); 

imsls_f_write_matrix("pstat", 0, 7, pstat, 0); 

printf("n missing = %d\n", nmiss); 

} 

Output 
*** WARNING  Error from imsls_cox_stuart_trends_test.  At least one tie is 
detected in X. 
 
            NSTAT 
0    1    2    3    4    5    6    7 
0   17    1   18    0   12    0   12 
 
            PSTAT 
      0             1             2             3             4 
1.00000       0.00007       1.00000       0.00000       1.00000 

 
      5             6             7 
0.00024       1.00000       0.00024 

 n missing = 0 

 
*** WARNING  Error from imsls_cox_stuart_trends_test.  At least one tie is 
detected in X. 
 
            NSTAT 
0   1   2   3   4   5   6   7 
4   3   2   9   4   2   0   6 
 
                      PSTAT 
       0             1             2             3             4 
0.253906      0.910156      0.746094      0.500000      0.343750 

       5             6             7 
0.890625      0.343750      0.890625 

 n missing = 0 
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tie_statistics 
Compute tie statistics for a sample of observations. 

Synopsis 
#include <imsls.h> 
float *imsls_f_tie_statistics (int n_oservations, float x[], ..., 0) 

The type double function is imsls_d_tie_statistics. 

Required Arguments 

int n_observations   (Input) 
Number of observations in x.  

float x[]   (Input) 
Array of length n_observations containing the observations. 

x must be ordered monotonically increasing with all missing values removed. 

Return Value 
Array of length 4 containing the tie statistics. 
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where tj is the number of ties in the j-th group (rank) of ties, and 	 is the number 
of tie groups in the sample. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float * imsls_f_tie_statistics (int n_oservations, float x[], 

IMSLS_FUZZ, float fuzz,               
IMSLS_RETURN_USER, float ties[],  
0) 
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Optional Arguments 
IMSLS_FUZZ, float fuzz, (Input) 

Value used to determine ties. 
Observations i and j are tied if the successive differences  
x[k + 1] – x[k] between observations i and j, inclusive, are all  
less than fuzz. fuzz must be nonnegative.  Default:  fuzz = 0.0 

IMSLS_RETURN_USER,  float ties[],  (Output) 
If specified ties[] returns the tie statistics.  Storage for ties[]  
is provided by the user.   See Return Value. 

Description 
Function imsls_f_tie_statistics computes tie statistics for a monotonically 
increasing sample of observations. “Tie statistics” are statistics that may be used 
to correct a continuous distribution theory nonparametric test for tied 
observations in the data. Observations i and j are tied if the successive differences 
X(k + 1) � X(k), inclusive, are all less than fuzz. Note that if each of the 
monotonically increasing observations is equal to its predecessor plus a constant, 
if that constant is less than fuzz, then all observations are contained in one tie 
group. For example, if fuzz = 0.11, then the following observations are all in one 
tie group. 
0.0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00 

Example 
We want to compute tie statistics for a sample of length 7. 

#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 

        float *ties=NULL; 

        int nobs = 7; 

        float fuzz = .001; 

        float x[] = {1.0, 1.0001, 1.0002, 2., 3., 3., 4.}; 

        ties = imsls_f_tie_statistics(nobs, x,   

                                      IMSLS_FUZZ, fuzz, 

                                      0); 

 imsls_f_write_matrix("TIES\n", 0, 3, ties,  

      IMSLS_WRITE_FORMAT, "%5.2f", 

      0); 

 } 
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Output 
TIES 
0       1       2       3 
4.00    2.50   84.00    6.00 

wilcoxon_rank_sum 
Performs a Wilcoxon rank sum test. 

Synopsis 
#include <imsls.h> 
float imsls_f_wilcoxon_rank_sum (int n1_observations, float x1[],  

int n2_observations, float x2[], ..., 0) 

The type double function is imsls_d_wilcoxon_rank_sum. 

Required Arguments 

int n1_observations   (Input) 
Number of observations in the first sample. 

float x1[]   (Input) 
Array of length n1_observations containing the first sample. 

int n2_observations   (Input) 
Number of observations in the second sample. 

float x2[]   (Input) 
Array of length n2_observations containing the second sample. 

Return Value 
The two-sided p-value for the Wilcoxon rank sum statistic that is computed with 
average ranks used in the case of ties. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_wilcoxon_rank_sum (int n1_observations, float x1[],  

int n2_observations, float x2[], 
IMSLS_FUZZ, float fuzz, 
IMSLS_STAT, float **stat, 
IMSLS_STAT_USER, float stat[], 
0) 
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Optional Arguments 
IMSLS_FUZZ, float fuzz   (Input) 

Nonnegative constant used to determine ties in computing ranks in the 
combined samples. A tie is declared when two observations in the 
combined sample are within fuzz of each other. 
Default: fuzz = 100 � imsls_f_machine(4) � max {
xi1
, 
xj2
} 

IMSLS_STAT, float **stat   (Output) 
Address of a pointer to an internally allocated array of length 10 
containing the following statistics:  

 
Row Statistics 

0 Wilcoxon W statistic (the sum of the ranks of the x 
observations) adjusted for ties in such a manner that W is  
as small as possible 

1 2 � E(W) � W, where E(W) is the expected value of W 
2 probability of obtaining a statistic less than or equal to 

min{W, 2 � E(W) � W} 
3 W statistic adjusted for ties in such a manner that W is as 

large as possible 
4 2 � E(W) � W, where E(W) is the expected value of W, 

adjusted for ties in such a manner that W is as large as 
possible 

5 probability of obtaining a statistic less than or equal to 
min{W, 2 � E(W) � W}, adjusted for ties in such a manner 
that W is as large as possible 

6 W statistic with average ranks used in case of ties 
7 estimated standard error of stat [6] under the null 

hypothesis of no difference 
8 standard normal score associated with stat [6] 
9 two-sided p-value associated with stat[8] 

IMSLS_STAT_USER, float stat[]   (Output) 
Storage for array stat is provided by the user. See IMSLS_STAT. 

Description 
Function imsls_f_wilcoxon_rank_sum performs the Wilcoxon rank sum test 
for identical population distribution functions. The Wilcoxon test is a linear 
transformation of the Mann-Whitney U test. If the difference between the two 
populations can be attributed solely to a difference in location, then the Wilcoxon 
test becomes a test of equality of the population means (or medians) and is the 
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nonparametric equivalent of the two-sample t-test. Function 
imsls_f_wilcoxon_rank_sum obtains ranks in the combined sample after first 
eliminating missing values from the data. The rank sum statistic is then computed 
as the sum of the ranks in the x1 sample. Three methods for handling ties are 
used. (A tie is counted when two observations are within fuzz of each other.) 
Method 1 uses the largest possible rank for tied observations in the smallest 
sample, while Method 2 uses the smallest possible rank for these observations. 
Thus, the range of possible rank sums is obtained.  

Method 3 for handling tied observations between samples uses the average rank 
of the tied observations. Asymptotic standard normal scores are computed for the 
W score (based on a variance that has been adjusted for ties) when average ranks 
are used (see Conover 1980, p. 217), and the probability associated with the two-
sided alternative is computed. 

Hypothesis Tests 
In each of the following tests, the first line gives the hypothesis (and its 
alternative) under the assumptions 1 to 3 below, while the second line gives the 
hypothesis when assumption 4 is also true. The rejection region is the same for 
both hypotheses and is given in terms of Method 3 for handling ties. Another 
output statistic should be used, (stat[0] or stat[3]), if another method for 
handling ties is desired. 

Test Null Hypothesis Alternative 
Hypothesis 

Action 

1 H0:Pr(x1 < x2) = 0.5 H1:Pr(x1 < x2) � 0.5 Reject if stat [9] is less than the 
significance level of the test. 
Alternatively,  

 H0:E(x1) = E(x2) H1:E(x1) � E(x2) reject the null hypothesis if stat 
[6] is too large or too small. 

2 H0:Pr(x1 < x2) � 0.5 H1:Pr(x1 < x2) > 0.5 Reject if stat [6] is too small 

 H0:E(x1) � E(x2) H1:E(x1) < E(x2)  

3 H0:Pr(x1 < x2) � 0.5 H1:Pr(x1 < x2) < 0.5 Reject if stat [6] is too large 

 Ho:E(x1) � E(x2)) H1:E(x1) > E(x2)  

Assumptions 
1. Arguments x1 and x2 contain random samples from their respective 

populations. 

2. All observations are mutually independent. 

3. The measurement scale is at least ordinal (i.e., an ordering less than, 
greater than, or equal to exists among the observations). 
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4. If f(x) and g(y) are the distribution functions of x and y, then 
g(y) = f(x + c) for some constant c(i.e., the distribution of y is, at worst, a 
translation of the distribution of x). 

Tables of critical values of the W statistic are given in the references for small 
samples. 

Examples 

Example 1 
The following example is taken from Conover (1980, p. 224). It involves the 
mixing time of two mixing machines using a total of 10 batches of a certain kind 
of batter, five batches for each machine. The null hypothesis is not rejected at the 
5-percent level of significance. The warning error is always printed when one or 
more ties are detected, unless printing for warning errors is turned off. See 
function imsls_error_options (Chapter 14, “Utilties”). 

#include <imsls.h> 
 
void main() 
{ 
    int    n1_observations = 5; 
    int    n2_observations = 5; 
    float  x1[5] = {7.3, 6.9, 7.2, 7.8, 7.2}; 
    float  x2[5] = {7.4, 6.8, 6.9, 6.7, 7.1}; 
    float  p_value; 
 
    p_value = imsls_f_wilcoxon_rank_sum(n1_observations, x1, 
                   n2_observations, x2, 0); 
    printf("p-value = %11.4f\n", p_value); 
 
} 

Output 
*** WARNING Error IMSLS_AT_LEAST_ONE_TIE from imsls_f_wilcoxon_rank_sum. 
***         At least one tie is detected between the samples. 
 
p-value =      0.1412 

Example 2 
The following example uses the same data as the previous example. Now, all the 
statistics are output in the array stat. 

#include <imsls.h> 
 
void main() 
{ 
    int    n1_observations = 5; 
    int    n2_observations = 5; 
    float  x1[5] = {7.3, 6.9, 7.2, 7.8, 7.2}; 
    float  x2[5] = {7.4, 6.8, 6.9, 6.7, 7.1}; 
    float  *stat; 
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    char   *labels[10] = {"Wilcoxon W statistic ......................", 
                     "2*E(W) - W ................................", 
                     "p-value ...................................", 
                     "Adjusted Wilcoxon statistic ...............", 
                     "Adjusted 2*E(W) - W .......................", 
                     "Adjusted p-value ..........................", 
                     "W statistics for averaged ranks............", 
                     "Standard error of W (averaged ranks) ......", 
                     "Standard normal score of W (averaged ranks)", 
                     "Two-sided p-value of W (averaged ranks ...."}; 
    imsls_f_wilcoxon_rank_sum(n1_observations, x1, 
                   n2_observations, x2,  
                   IMSLS_STAT, &stat, 
                   0); 
    imsls_f_write_matrix("statistics", 10, 1, stat,  
                   IMSLS_ROW_LABELS, labels, 
                   IMSLS_WRITE_FORMAT, "%7.3f",  
                   0); 
} 

Output 
*** WARNING Error IMSLS_AT_LEAST_ONE_TIE from imsls_f_wilcoxon_rank_sum. 
***         At least one tie is detected between the samples. 
 
                     statistics 
Wilcoxon W statistic ......................   34.000 
2*E(W) - W ................................   21.000 
p-value ...................................    0.110 
Adjusted Wilcoxon statistic ...............   35.000 
Adjusted 2*E(W) - W .......................   20.000 
Adjusted p-value ..........................    0.075 
W statistics for averaged ranks............   34.500 
Standard error of W (averaged ranks) ......    4.758 
Standard normal score of W (averaged ranks)    1.471 
Two-sided p-value of W (averaged ranks ....    0.141 

Warning Errors 
IMSLS_NOBSX_NOBSY_TOO_SMALL “n1_observations” = # and 

“n2_observations” = #. Both 
sample sizes, “n1_observations” 
and “n2_observations”, are less 
than 25. Significance levels should 
be obtained from tabled values.  

IMSLS_AT_LEAST_ONE_TIE At least one tie is detected 
between the samples. 

Fatal Errors 
IMSLS_ALL_X_Y_MISSING Each element of “x1” and/or “x2” 

is a missing (NaN, Not a Number) 
value. 
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kruskal_wallis_test 
Performs a Kruskal-Wallis test for identical population medians. 

Synopsis 
#include <imsls.h> 
float *imsls_f_kruskal_wallis_test (int n_groups, int ni[],  

float y[], ..., 0) 

The type double function is imsls_d_kruskal_wallis_test. 

Required Arguments 

int n_groups   (Input) 
Number of groups.  

int ni[]   (Input) 
Array of length n_groups containing the number of responses for each 
of the n_groups groups. 

float y[]   (Input) 
Array  of length ni[0] + ... + ni[n_groups-1] that contains the 
responses for each of the n_groups groups. y must be sorted by group, 
with the ni[0] observations in group 1 coming first, the ni[1] 
observations in group two coming second, and so on. 

Return Value 
Array of length 4 containing the Kruskal-Wallis statistics.  

I stat[I] 

 0  Kruskal-Wallis H statistic. 

1  Asymptotic probability of a larger H under the null hypothesis of 
identical population medians. 

2  H corrected for ties. 

3  Asymptotic probability of a larger H (corrected for ties) under the null 
hypothesis of identical populations 

Synopsis with Optional Arguments 
#include <imsls.h>  

float *imsls_f_kruskal_wallis_test (int n_groups, int ni, float y[],  
IMSLS_FUZZ, float fuzz, 
IMSLS_RETURN_USER, float stat[], 
0)         
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Optional Arguments 
IMSLS_FUZZ, float fuzz   (Input) 

Constant used to determine ties in y.  If (after sorting)  
|y[i] – y[i + 1]| is less than or equal to fuzz, then a tie  
is counted. fuzz must be nonnegative. 

IMSLS_RETURN_USER, float stat[]  (Output) 
User defined array for storage of Kruskal-Wallis statistics. 

Description 
The function imsls_f_kruskal_wallis_test generalizes the Wilcoxon two-
sample test computed by routine imsls_f_wilcoxon_rank_sum  
(page 460) to more than two populations. It computes a test statistic for testing 
that the population distribution functions in each of K populations are identical. 
Under appropriate assumptions, this is a nonparametric analogue of the one-way 
analysis of variance. Since more than two samples are involved, the alternative is 
taken as the analogue of the usual analysis of variance alternative, namely that the 
populations are not identical. 

The calculations proceed as follows: All observations are ranked regardless of the 
population to which they belong. Average ranks are used for tied observations 
(observations within fuzz of each other). Missing observations (observations 
equal to NaN, not a number) are not included in the ranking. Let Ri denote the 
sum of the ranks in the i-th population. The test statistic H is defined as: 
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where N is the total of the sample sizes, ni is the number of observations in the  
i-th sample, and S� is computed as the (bias corrected) sample variance of the Ri.  

The null hypothesis is rejected when stat[3] (or stat[1]) is less than the 
significance level of the test. If the null hypothesis is rejected, then the procedures 
given in Conover (1980, page 231) may be used for multiple comparisons. The 
routine imsls_f_kruskal_wallis_test (page 465)  computes asymptotic 
probabilities using the chi-squared distribution when the number of groups is 6 or 
greater, and a Beta approximation (see Wallace 1959) when the number of groups 
is 5 or less. Tables yielding exact probabilities in small samples may be obtained 
from Owen (1962). 

Example 
The following example is taken from Conover (1980, page 231). The data 
represents the yields per acre of four different methods for raising corn. Since  
H = 25.5, the four methods are clearly different. The warning error is always 
printed when the Beta approximation is used, unless printing for warning errors is 
turned off.  
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#include <imsls.h> 
void main() 
{ 
 int ngroup = 4, ni[] = {9, 10, 7, 8}; 

float y[] = {83., 91., 94., 89., 89., 96., 91., 92., 90., 91., 90.,  
      81., 83., 84., 83., 88., 91., 89., 84., 101., 100., 91., 
      93., 96., 95., 94., 78., 82., 81., 77., 79., 81., 80., 
      81.}; 

 float fuzz = .001, stat[4]; 
 char *rlabel[] = {"H (no ties)    =", 
        "Prob (no ties) =", 
        "H (ties)       =", 
        "Prob (ties)    ="}; 
 imsls_f_kruskal_wallis_test(ngroup, ni, y, 
        IMSLS_FUZZ, fuzz, 
        IMSLS_RETURN_USER, stat, 
           0); 
 imsls_f_write_matrix(" ", 4, 1, stat, 
       IMSLS_ROW_LABELS, rlabel, 
       0);         
}       

Output 
*** WARNING  ERROR  from imsls_kruskal_wallis_test.  The chi-squared degrees 
***   of freedom are less than 5, so the Beta approximation is used. 

 
H (no ties)    =     25.46 
Prob (no ties) =      0.00 
H (ties)       =     25.63 
Prob (ties)    =      0.00 

friedmans_test 
Performs Friedman’s test for a randomized complete block design. 

Synopsis 
#include <imsls.h> 
float imsls_f_friedmans_test (int n_blocks, int n_treatments,  

float y[], ..., 0) 

The type double function is imsls_d_friedmans_test. 

Required Arguments 

int n_blocks   (Input) 
Number of blocks.  
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int n_treatments   (Input) 
Number of treatments. 

float y[]   (Input) 
Array of size n_blocks * n_treatments containing the 
observations. The first n_treatments positions of y[] contain the 
observations on treatments 1, 2, …, n_treatments in the first block. 
The second n_treatments positions contain the observations in the 
second block, etc., and so on. 

Return Value 
The Chi-squared approximation of the asymptotic p-value for Friedman’s  
two-sided test statistic.  

Synopsis with Optional Arguments 
#include <imsls.h>  
float imsls_f_friedmans_test (int n_blocks, int n_treatments,  

float y[], 
IMSLS_FUZZ, float fuzz, 
IMSLS_ALPHA, float alpha, 
IMSLS_STAT, float **stat,  
IMSLS_STAT_USER, float stat[],  
IMSLS_SUM_RANK, int **sum_ranks, 

 IMSLS_SUM_RANK_USER, int  sum_rank[] 
IMSLS_DIFFERENCE, float *difference, 

 0) 

Optional Arguments 
IMSLS_FUZZ, float fuzz   (Input) 

Constant used to determine ties. In the ordered observations, if  
|y[i] –y[i + 1]| is less than or equal to fuzz, then y[i] and 
y[i + 1] are said to be tied.  Default value is 0.0. 

IMSLS_ALPHA, float alpha   (Input) 
Critical level for multiple comparisons.  alpha should be between 0 and 
1 exclusive.  Default value is 0.05. 

 IMSLS_STAT, float **stat   (Output)                                                           
Address of a pointer to an array of length 6 containing the Friedman 
statistics.  Probabilities reported are computed under the appropriate null 
hypothesis. 

I stat(I) 
0 Friedman two-sided test statistic. 

1 Approximate F value for stat[0]. 
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2 Page test statistic for testing the ordered alternative that the median of 
treatment i is less than or equal to the median of treatment i + 1, with 
strict inequality holding for some i. 

3 Asymptotic p-value for stat[0]. Chi-squared approximation. 

4. Asymptotic p-value for stat[1]. F approximation. 

5. Asymptotic p-value for stat[2]. Normal approximation. 

IMSLS_STAT_USER, float stat[]  (Output) 
Storage for array stat is provided by the user. See IMSLS_STAT. 

IMSLS_SUM_RANK, float **sum_rank,  (Output)  
Address of a pointer to an array of length n_treatments  
containing the sum of the ranks of each treatment. 

IMSLS_SUM_RANK_USER, float sum_rank[], (Output) 
Storage for array sum_rank is provided by the user.  
See IMSLS_SUM_RANK. 

IMSLS_DIFFERENCE, float *difference,  (Output 
Minimum absolute difference in two elements of sum_rank to infer at 
the alpha level of significance that the medians of the corresponding 
treatments are different. 

Description 
Function imsls_f_friedmans_test may be used to test the hypothesis of 
equality of treatment effects within each block in a randomized block design. No 
missing values are allowed. Ties are handled by using the average ranks. The test 
statistic is the nonparametric analogue of an analysis of variance F test statistic.  

The test proceeds by first ranking the observations within each block. Let A 
denote the sum of the squared ranks, i.e., let 
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where Rank(Yij) is the rank of the i-th observation within the j-th block, b = NB is 
the number of blocks, and k = NT is the number of treatments. Let 
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The Friedman test statistic (stat[0]) is given by: 
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that, under the null hypothesis, has an approximate chi-squared distribution with  
k � 1 degrees of freedom. The asymptotic probability of obtaining a larger chi-
squared random variable is returned in stat[3].  

If the F distribution is used in place of the chi-squared distribution, then the usual 
oneway analysis of variance F-statistic computed on the ranks is used. This 
statistic, reported in stat[1], is given by  
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and asymptotically follows an F distribution with (k � 1) and (b � 1)(k � 1) 
degrees of freedom under the null hypothesis. stat[4] is the asymptotic 
probability of obtaining a larger F random variable. (If A = B, stat[0] and 
stat[1] are set to machine infinity, and the significance levels are reported as 
k!/(k!)b, unless this computation would cause underflow, in which case the 
significance levels are reported as zero.) Iman and Davenport (1980) discuss the 
relative advantages of the chi-squared and F approximations. In general, the  
F approximation is considered best.  

The Friedman T statistic is related both to the Kendall coefficient of concordance 
and to the Spearman rank correlation coefficient. See Conover (1980) for a 
discussion of the relationships.  

If, at the � = alpha level of significance, the Friedman test results in rejection of 
the null hypothesis, then an asymptotic test that treatments i and j are different is 
given by: reject H� if |Ri � Rj| > D, where 
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where t has (b � 1)(k � 1) degrees of freedom. Page’s statistic (stat[2]) is used 
to test the same null hypothesis as the Friedman test but is sensitive to a 
monotonic increasing alternative. The Page test statistic is given by 
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It is largest (and thus most likely to reject) when the Ri are monotonically 
increasing. 
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Assumptions 
The assumptions in the Friedman test are as follows: 

1. The k-vectors of responses within each of the b blocks are mutually 
independent (i.e., the results within one block have no effect on the 
results within another block). 

2. Within each block, the observations may be ranked. 

The hypothesis tested is that each ranking of the random variables within each 
block is equally likely. The alternative is that at least one of the treatments tends 
to have larger values than one or more of the other treatments. The Friedman test 
is a test for the equality of treatment means or medians. 

Example 
The following example is taken from Bradley (1968), page 127, and tests the 
hypothesis that 4 drugs have the same effects upon a person’s visual acuity.  
Five subjects were used. 

#include <imsls.h> 

void main() 

{  

int n_blocks = 5, n_treatments = 4; 

float y[20] = {.39,.55,.33,.41,.21,.28,.19,.16,.73,.69,.64, 

               .62,.41,.57,.28,.35,.65,.57,.53,.60}; 

float fuzz = .001,  

alpha = .05;        

float pvalue, *sum_rank, stat[6], difference; 

pvalue = imsls_f_friedmans_test(n_blocks,  

  n_treatments, y,    

  IMSLS_SUM_RANK, &sum_rank,  

                            IMSLS_STAT_USER, stat,    

                            IMSLS_DIFFERENCE, &difference,  

    0); 

printf("\np value for Friedman's T = %f\n\n", pvalue); 

printf("Friedman's T = ............  %4.2f\n", stat[0]); 

printf("Friedman's F = ............  %4.2f\n", stat[1]); 

printf("Page Test = ...............%5.2f\n", stat[2]); 

printf("Prob Friedman's T = .......  %7.5f\n", stat[3]); 

printf("Prob Friedman's F = .......  %7.5f\n", stat[4]); 

printf("Prob Page Test = ..........  %7.5f\n", stat[5]); 

printf("Sum of Ranks = ............  %4.2f %4.2f %4.2 %4.2f\n"                       

        sum_rank[0], sum_rank[1], sum_rank[2], sum_rank[3]); 

printf("difference = ..............  %7.5f\n", difference); 
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} 

 

Output 
P value for Friedman’s T = 0.040566 

Friedman T.........    8.28 
Friedman F.........    4.93 
Page test..........  111.00 
Prob Friedman T....    0.04057 
Prob Friedman F....    0.01859 
Prob Page test.....    0.98495 
Sum of Ranks.......   16.00   17.00    7.00   10.00 
D..................    6.65638 

The Friedman null hypothesis is rejected at the � = .05 while the Page null 
hypothesis is not. (A Page test with a monotonic decreasing alternative would be 
rejected, however.) Using sum_rank and difference, one can conclude that 
treatment 3 is different from treatments 1 and 2, and that treatment 4 is different 
from treatment 2, all at the � = .05 level of significance. 

cochran_q_test 
Performs a Cochran Q test for related observations. 

Synopsis 

#include <imsls.h>  

float imsls_f_cochran_q_test (int n_observations, int n_variables, 
float *x, ..., 0) 

The type double function is imsls_d_cochran_q_test. 

Required Arguments 

int n_observations   (Input) 
Number of blocks for each treatment. 

int n_variables   (Input) 
Number of treatments. 

float *x   (Input) 
Array of size n_observations � n_variables containing the matrix 
of dichotomized data. There are n_observations readings of zero or 
one on each of the n_variables treatments. 

Return Value 
The p-value, p_value, for the Cochran Q statistic. 
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Synopsis with Optional Arguments 
#include <imsls.h> 

float imsls_f_cochran_q_test (int n_observations, 
int n_variables, float *x, 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_Q_STATISTIC, float *q, 
0) 

Optional Arguments 
IMSLS_X_COL_DIM, int x_col_dim   (Input) 

Number of columns in x. 
Default: x_col_dim = n_variables 

IMSLS_Q_STATISTIC, float *q   (Output) 
Cochran’s Q statistic. 

Description 
Function imsls_f_cochran_q_test computes the Cochran Q test statistic that 
may be used to determine whether or not M matched sets of responses differ 
significantly among themselves. The data may be thought of as arising out of a 
randomized block design in which the outcome variable must be success or 
failure, coded as 1.0 and 0.0, respectively. Within each block, a multivariate 
vector of 1’s of 0’s is observed. The hypothesis is that the probability of success 
within a block does not depend upon the treatment. 

Assumptions 
1. The blocks are a random sample from the population of all possible 

blocks. 

2. The outcome of each treatment is dichotomous. 

Hypothesis 
The hypothesis being tested may be stated in at least two ways. 

1. H0 : All treatments have the same effect. 
H1 : The treatments do not all have the same effect. 

2. Let pij denote the probability of outcome 1.0 in block i, treatment j. 
H0:pi1 = pi2 = � = pic for each i. 
H1:pij � pik for some i, and some j � k. 
where c (equal to n_variables) is the number of treatments. 

The null hypothesis is rejected if Cochrans’s Q statistic is too large. 



 

 

 

474 � cochran_q_test IMSL C/Stat/Library 

 

 

 

Remarks 
1. The input data must consist of zeros and ones only. For example, the 

data may be pass-fail information on n_variables questions asked of 
n_observations people or the test responses of n_observations 
individuals to n_variables different conditions. 

2. The resulting statistic is distributed approximately as chi-squared with 
n_variables � 1 degrees of freedom if n_observations is not too 
small. n_observations greater than or equal to 5 � n_variables is a 
conservative recommendation. 

Example 
The following example is taken from Siegal (1956, p. 164). It measures the 
responses of 18 women to 3 types of interviews. 

#include <imsls.h> 
main() 
{ 
    float pq; 
    float x[54] = { 
        0.0, 0.0, 0.0, 
        1.0, 1.0, 0.0, 
        0.0, 1.0, 0.0, 
        0.0, 0.0, 0.0, 
        1.0, 0.0, 0.0, 
        1.0, 1.0, 0.0, 
        1.0, 1.0, 0.0, 
        0.0, 1.0, 0.0, 
        1.0, 0.0, 0.0, 
        0.0, 0.0, 0.0, 
        1.0, 1.0, 1.0, 
        1.0, 1.0, 1.0, 
        1.0, 1.0, 0.0, 
        1.0, 1.0, 0.0, 
        1.0, 1.0, 0.0, 
        1.0, 1.0, 1.0, 
        1.0, 1.0, 0.0, 
        1.0, 1.0, 0.0}; 
 
    pq = imsls_f_cochran_q_test(18, 3, x, 0); 
    printf("pq = %9.5f\n", pq); 
    return; 

} 

Output 
pq =   0.00024 
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Warning Errors 
IMSLS_ALL_0_OR_1 “x” consists of either all ones or all zeros. 

“q” is set to NaN (not a number). “pq” is set 
to 1.0. 

Fatal Errors 
IMSLS_INVALID_X_VALUES “x[#][#]” = #. “x” must consist of zeros and 

ones only. 

k_trends_test 
Performs a k-sample trends test against ordered alternatives. 

Synopsis 
#include <imsls.h> 
float *imsls_f_ k_trends_test (int n_groups, int ni[], float y[], ..., 

0) 

The type double function is imsls_d_ k_trends_test. 

Required Arguments 

int n_groups   (Input) 
Number of groups.  Must be greater than or equal to 3. 

int ni[]   (Input) 
Array of length n_groups containing the number of responses for each 
of the n_groups groups. 

float y[]   (Input) 
Array  of length ni[0] + ... + ni[n_groups-1] that contains the 
responses for each of the n_groups groups. y must be sorted by group, 
with the ni[0] observations in group 1 coming first, the ni[1] 
observations in group two coming second, and so on. 

Return Value 
Array of length 17 containing the test results.  

I stat[I] 

0  Test statistic (ties are randomized). 

1  Conservative test statistic with ties counted in favor of the null 
hypothesis. 

2 p-value associated with stat[0]. 
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3 p-value associated with stat[1]. 

4  Continuity corrected stat[2]. 

5  Continuity corrected stat [3]. 

6  Expected mean of the statistic. 

7  Expected kurtosis of the statistic. (The expected skewness is zero.) 

8  Total sample size. 

9  Coefficient of rank correlation based upon stat[0]. 

10  Coefficient of rank correlation based upon stat[1]. 

11  Total number of ties between samples. 

12  The t-statistic associated with stat [2]. 

13  The t-statistic associated with stat[3]. 

14  The t-statistic associated with stat [4]. 

15  The t-statistic associated with stat[5]. 

 16  Degrees of freedom for each t-statistic. 

Synopsis with Optional Arguments 
#include <imsls.h>  

float *imsls_f_k_trends_test (int n_groups, int ni, float y[],  
IMSLS_RETURN_USER, float stat[],                           
0)         

Optional Arguments 
IMSLS_RETURN_USER, float stat[]  (Output) 

User defined array for storage of test results. 

Description 
Function imsls_f_k_trends_test performs a k-sample trends test against 
ordered alternatives. The alternative to the null hypothesis of equality is that 
F�(X) < F�(X) < � Fk(X), where F�, F�, etc., are cumulative distribution 
functions, and the operator < implies that the less than relationship holds for all 
values of X. While the trends test used in k_trends_test requires that the 
background populations be continuous, ties occurring within a sample have no 
effect on the test statistic or associated probabilities. Ties between samples are 
important, however. Two methods for handling ties between samples are used. 
These are: 

1. Ties are randomly split (stat[0]). 
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2. Ties are counted in a manner that is unfavorable to the alternative 
hypothesis (stat[1]). 

Computational Procedure 
Consider the matrices  

� �
2 if

0 otherwise
ki mjkm km

ij

X X
M m

�� �
� � � �

� �
 

where Xki is the i-th observation in the k-th population, Xmj is the j-th observation 
in the m-th population, and each matrix Mkm is nk by nm where ni = ni(i). Let  
Skm denote the sum of all elements in Mkm. Then, stat[1] is computed as the 
sum over all elements in Skm, minus the expected value of this sum (computed as 

k mk m n n
�

�  

when there are no ties and the distributions in all populations are equal). In 
stat[0], ties are broken randomly, and the element in the summation is taken as 
2.0 or 0.0 depending upon the result of breaking the tie.  

stat[2] and stat[3] are computed using the t distribution. The probabilities 
reported are asymptotic approximations based upon the t statistics in stat[12] 
and stat[13], which are computed as in Jonckheere (1954, page 141).  
Similarly, stat[4] and stat[5] give the probabilities for stat[14] and 
stat[15], the continuity corrected versions of stat[2] and stat[3]. The 
degrees of freedom for each t statistic (stat[16]) are computed so as to make  
the t distribution selected as close as possible to the actual distribution of the 
statistic (see Jonckheere 1954, page 141).  

stat[6], the variance of the test statistic stat[0], and stat[7], the kurtosis 
of the test statistic, are computed as in Jonckheere (1954, page 138). The 
coefficients of rank correlation in stat[8] and stat[9] reduce to the  
Kendall � statistic when there are just two groups.  

Exact probabilities in small samples can be obtained from tables in Jonckheere 
(1954). Note, however, that the t approximation appears to be a good one. 

Assumptions 
1. The Xmi for each sample are independently and identically distributed 

according to a single continuous distribution. 

2. The samples are independent. 

Hypothesis tests 
H� : F�(X) � F�(X) � � � Fk(X)  
H� : F�(X) < F�(X) < � < Fk(X)  
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Reject if stat[2] (or stat[3], or stat[4] or stat[5], depending upon the 
method used) is too large. 

Example 
The following example is taken from Jonckheere (1954, page 135). It involves 
four observations in four independent samples. 

 #include <imsls.h> 

 #include <stdio.h> 

 void main() 

 { 

       float *stat; 

       int n_groups = 4; 

       int ni[] = {4, 4, 4, 4}; 

 char *fmt = "%9.5f"; 

 char *rlabel[] = { 

 "stat[0] - Test Statistic  (random) ............", 

 "stat[1] - Test Statistic  (null hypothesis) ...", 

       "stat[2] - p-value for stat[0] .................", 

"stat[3] - p-value for stat[1] .................", 

"stat[4] - Continuity corrected for stat[2] ....", 

 "stat[5] - Continuity corrected for stat[3] ....", 

 "stat[6] - Expected mean .......................", 

 "stat[7] - Expected kurtosis ...................", 

 "stat[8] - Total sample size ...................", 

 "stat[9] - Rank corr. coef. based on stat[0] ...", 

 "stat[10]- Rank corr. coef. based on stat[1] ...", 

 "stat[11]- Total number of ties ................", 

 "stat[12]- t-statistic associated w/stat[2] ....", 

 "stat[13]- t-statistic asscoiated w/stat[3] ....", 

 "stat[14]- t-statistic associated w/stat[4] ....", 

 "stat[15]- t-statistic asscoiated w/stat[5] ....", 

"stat[16]- Degrees of freedom .................."}; 

 

       float y[] = {19., 20., 60., 130., 21., 61., 80., 129., 

                 40., 99., 100., 149., 49., 110., 151., 160.}; 

 

       stat = imsls_f_k_trends_test(n_groups, ni, y, 0); 

  

       imsls_f_write_matrix("stat", 17, 1, stat,  

        IMSLS_WRITE_FORMAT, fmt,  
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        IMSLS_ROW_LABELS, rlabel, 

        0); 

} 

Output 
stat(0) - Test statistic (random) ...........    46.00000 
stat(1) - Test statistic (null hypothesis) ..    46.00000 
stat(2) - p-value for stat(0) ...............     0.01483 
stat(3) - p-value for stat(1) ...............     0.01483 
stat(4) - Continuity corrected stat(2) ......     0.01683 
stat(5) - Continuity corrected stat(3) ......     0.01683 
stat(6) - Expected mean .....................   458.66666 
stat(7) - Expected kurtosis .................    -0.15365 
stat(8) - Total sample size .................    16.00000 
stat(9)- Rank corr. coef. based on stat(0) .     0.47917 
stat(10)- Rank corr. coef. based on stat(1) .     0.47917 
stat(11)- Total number of ties ..............     0.00000 
stat(12)- t-statistic associated w/stat(2) ..     2.26435 
stat(13)- t-statistic associated w/stat(3) ..     2.26435 
stat(14)- t-statistic associated w/stat(4) ..     2.20838 
stat(15)- t-statistic associated w/stat(5) ..     2.20838 
stat(16)- Degrees of freedom ................    36.04963 
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Chapter 7: Tests of Goodness of Fit 

Routines 
7.1 General Goodness-of-fit tests 

Chi-squared goodness-of-fit test...........................chi_squared_test 482 
Shapiro-Wilk W test for normality ..............................normality_test 490 
One-sample continuous data  
Kolmogorov-Smirnov ............................................ kolmogorov_one 494 
Two-sample continuous data  
Kolmogorov-Smirnov .............................................kolmogorov_two 497 
Mardia’s test for multivariate  
normality......................................................multivar_normality_test 501 

7.2 Tests for Randomness  
Runs test, Paris-serial test, d2 test or triplets  
tests ..................................................................... randomness_test 505 

Usage Notes 
The routines in this chapter are used to test for goodness of fit and randomness. 
The goodness-of-fit tests are described in Conover (1980). There are two 
goodness-of-fit tests for general distributions, a Kolmogorov-Smirnov test and a 
chi-squared test. The user supplies the hypothesized cumulative distribution 
function for these two tests. There are three routines that can be used to test 
specifically for the normal or exponential distributions. 

The tests for randomness are often used to evaluate the adequacy of 
pseudorandom number generators. These tests are discussed in Knuth (1981). 

The Kolmogorov-Smirnov routines in this chapter compute exact probabilities  
in small to moderate sample sizes. The chi-squared goodness-of-fit test may be 
used with discrete as well as continuous distributions. 

The Kolmogorov-Smirnov and chi-squared goodness-of-fit test routines allow for 
missing values (NaN, not a number) in the input data. The routines that test for 
randomness do not allow for missing values. 
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chi_squared_test 
Performs a chi-squared goodness-of-fit test. 

Synopsis 
#include <imsls.h> 
float imsls_f_chi_squared_test (float user_proc_cdf(), 

int n_observations, int n_categories, float x[], ..., 0) 

The type double function is imsls_d_chi_squared_test. 

Required Arguments 

float user_proc_cdf (float y)   (Input) 
User-supplied function that returns the hypothesized, cumulative 
distribution function at the point y. 

int n_observations   (Input) 
Number of data elements input in x. 

int n_categories   (Input) 
Number of cells into which the observations are to be tallied. 

float x[]   (Input) 
Array with n_observations components containing the vector of data 
elements for this test. 

Return Value 
The p-value for the goodness-of-fit chi-squared statistic. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_chi_squared_test (float user_proc_cdf(), 

int n_observations, int n_categories, float x[],  
IMSLS_N_PARAMETERS_ESTIMATED, int n_parameters, 
IMSLS_CUTPOINTS, float **cutpoints, 
IMSLS_CUTPOINTS_USER, float cutpoints[], 
IMSLS_CUTPOINTS_EQUAL, 
IMSLS_CHI_SQUARED, float *chi_squared, 
IMSLS_DEGREES_OF_FREEDOM, float *df, 
IMSLS_FREQUENCIES, float frequencies[], 
IMSLS_BOUNDS, float lower_bound, float upper_bound, 
IMSLS_CELL_COUNTS, float **cell_counts, 
IMSLS_CELL_COUNTS_USER, float cell_counts[], 
IMSLS_CELL_EXPECTED, float **cell_expected, 
IMSLS_CELL_EXPECTED_USER, float cell_expected[], 
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IMSLS_CELL_CHI_SQUARED, float **cell_chi_squared, 
IMSLS_CELL_CHI_SQUARED_USER, float cell_chi_squared[], 
IMSLS_FCN_W_DATA, float fcn(), void *data, 
0) 

Optional Arguments 
IMSLS_N_PARAMETERS_ESTIMATED, int n_parameters   (Input) 

Number of parameters estimated in computing the cumulative 
distribution function. 

IMSLS_CUTPOINTS, float **cutpoints   (Output) 
Address of a pointer to an internally allocated array of length 
n_categories � 1 containing the vector of cutpoints defining the cell 
intervals. The intervals defined by the cutpoints are such that the lower 
endpoint is not included and the upper endpoint is included in any 
interval. If IMSLS_CUTPOINTS_EQUAL is specified, equal probability 
cutpoints are computed and returned in cutpoints.  

IMSLS_CUTPOINTS_USER, float cutpoints []   (Input/Output) 
Storage for array cutpoints is provided by the user. See 
IMSLS_CUTPOINTS. 

IMSLS_CUTPOINTS_EQUAL 
If IMSLS_CUTPOINTS_USER is specified, then equal probability 
cutpoints can still be used if, in addition, the 
IMSLS_CUTPOINTS_EQUAL option is specified. If 
IMSLS_CUTPOINTS_USER is not specified, equal probability cutpoints 
are used by default. 

IMSLS_CHI_SQUARED, float *chi_squared   (Output) 
If specified, the chi-squared test statistic is returned in *chi_squared. 

IMSLS_DEGREES_OF_FREEDOM, float *df   (Output) 
If specified, the degrees of freedom for the chi-squared goodness-of-fit 
test is returned in *df. 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array with n_observations components containing the vector 
frequencies for the observations stored in x. 

IMSLS_BOUNDS, float lower_bound, float upper_bound   (Input) 
If IMSLS_BOUNDS is specified, then lower_bound is the lower bound 
of the range of the distribution and upper_bound is the upper bound of 
this range. If lower_bound = upper_bound, a range on the whole real 
line is used (the default). If the lower and upper endpoints are different, 
points outside the range of these bounds are ignored. Distributions 
conditional on a range can be specified when IMSLS_BOUNDS is used. 
By convention, lower_bound is excluded from the first interval, but 
upper_bound is included in the last interval. 
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IMSLS_CELL_COUNTS, float **cell_counts   (Output) 
Address of a pointer to an internally allocated array of length 
n_categories containing the cell counts. The cell counts are the 
observed frequencies in each of the n_categories cells.  

IMSLS_CELL_COUNTS_USER, float cell_counts[]   (Output) 
Storage for array cell_counts is provided by the user. See 
IMSLS_CELL_COUNTS. 

IMSLS_CELL_EXPECTED, float **cell_expected   (Output) 
Address of a pointer to an internally allocated array of length 
n_categories containing the cell expected values. The expected value 
of a cell is the expected count in the cell given that the hypothesized 
distribution is correct. 

IMSLS_CELL_EXPECTED_USER, float cell_expected[]   (Output) 
Storage for array cell_expected is provided by the user. See 
IMSLS_CELL_EXPECTED. 

IMSLS_CELL_CHI_SQUARED, float **cell_chi_squared   (Output) 
Address of a pointer to an internally allocated array of length 
n_categories containing the cell contributions to chi-squared.  

IMSLS_CELL_CHI_SQUARED_USER, float cell_chi_squared[]   (Output) 
Storage for array cell_chi_squared is provided by the user. See 
IMSLS_CELL_CHI_SQUARED. 

IMSLS_FCN_W_DATA, float user_proc_cdf (float y), void *data, (Input) 
User-supplied function that returns the hypothesized, cumulative 
distribution function, which also accepts a pointer to data that is supplied 
by the user.  data is a pointer to the data to be passed to the user-
supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 

Description 
Function imsls_f_chi_squared_test performs a chi-squared goodness-of-fit 
test that a random sample of observations is distributed according to a specified 
theoretical cumulative distribution. The theoretical distribution, which can be 
continuous, discrete, or a mixture of discrete and continuous distributions, is 
specified by the user-defined function user_proc_cdf. Because the user is 
allowed to give a range for the observations, a test that is conditional on the 
specified range is performed. 

Argument n_categories gives the number of intervals into which the 
observations are to be divided. By default, equiprobable intervals are computed 
by imsls_f_chi_squared_test, but intervals that are not equiprobable can be 
specified through the use of optional argument IMSLS_CUTPOINTS. 
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Regardless of the method used to obtain the cutpoints, the intervals are such that 
the lower endpoint is not included in the interval, while the upper endpoint is 
always included. If the cumulative distribution function has discrete elements, 
then user-provided cutpoints should always be used since 
imsls_f_chi_squared_test cannot determine the discrete elements in 
discrete distributions. 

By default, the lower and upper endpoints of the first and last intervals are  
�� and ��, respectively. If IMSLS_BOUNDS is specified, the endpoints are user-
defined by the two arguments lower_bound and upper_bound. 

A tally of counts is maintained for the observations in x as follows: 
� If the cutpoints are specified by the user, the tally is made in the interval 

to which xi belongs, using the user-specified endpoints. 
� If the cutpoints are determined by imsls_f_chi_squared_test, then 

the cumulative probability at xi, F(xi), is computed by the function 
user_proc_cdf. 

The tally for xi is made in interval number �mF(xi) + 1�, where 
m = n_categories and �·� is the function that takes the greatest integer that is 
no larger than the argument of the function. Thus, if the computer time required 
to calculate the cumulative distribution function is large, user-specified cutpoints 
may be preferred to reduce the total computing time. 

If the expected count in any cell is less than 1, then the chi-squared approximation 
may be suspect. A warning message to this effect is issued in this case, as well as 
when an expected value is less than 5. 

Examples 

Example 1 
This example illustrates the use of imsls_f_chi_squared_test on a 
randomly generated sample from the normal distribution. One-thousand randomly 
generated observations are tallied into 10 equiprobable intervals. The null 
hypothesis, that the sample is from a normal distribution, is specified by use of 
imsls_f_normal_cdf (Chapter 11, Probability Distribution Functions and 
Inverses) as the hypothesized distribution function. In this example, the null 
hypothesis is not rejected. 

#include <imsls.h> 
 
#define SEED                    123457 
#define N_CATEGORIES                10 
#define N_OBSERVATIONS            1000 
 
main() 
{ 
    float       *x, p_value; 
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    imsls_random_seed_set(SEED); 
                                /* Generate Normal deviates */ 
    x = imsls_f_random_normal (N_OBSERVATIONS, 0); 
                                /* Perform chi squared test */ 
    p_value = imsls_f_chi_squared_test (imsls_f_normal_cdf,  
                                        N_OBSERVATIONS, 
                                        N_CATEGORIES, x, 0); 
                                /* Print results */ 
    printf ("p-value = %7.4f\n", p_value); 
} 

Output 
p-value =  0.1546 

Example 2 
In this example, optional arguments are used for the data in the initial example. 

#include <imsls.h> 
 
#define SEED                    123457 
#define N_CATEGORIES                10 
#define N_OBSERVATIONS            1000 
 
main() 
{ 
    float       *cell_counts, *cutpoints, *cell_chi_squared; 
    float       chi_squared_statistics[3], *x; 
    char        *stat_row_labels[] = {"chi-squared", 
                                      "degrees of freedom","p-value"}; 
    imsls_random_seed_set(SEED); 
                                /* Generate normal deviates */ 
    x = imsls_f_random_normal (N_OBSERVATIONS, 0); 
                                /* Perform chi squared test */ 
    chi_squared_statistics[2] =  
        imsls_f_chi_squared_test (imsls_f_normal_cdf,  
                                 N_OBSERVATIONS,  N_CATEGORIES, x,  
                  IMSLS_CUTPOINTS,         &cutpoints,  
                  IMSLS_CELL_COUNTS,        &cell_counts,  
                  IMSLS_CELL_CHI_SQUARED,   &cell_chi_squared,  
                  IMSLS_CHI_SQUARED,        &chi_squared_statistics[0], 
                  IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1], 
                  0); 
                                /* Print results */ 
    imsls_f_write_matrix ("\nChi Squared Statistics\n", 3, 1,  
        chi_squared_statistics, 
        IMSLS_ROW_LABELS, stat_row_labels, 
        0); 
    imsls_f_write_matrix ("Cut Points", 1, N_CATEGORIES-1,  
        cutpoints, 0); 
    imsls_f_write_matrix ("Cell Counts", 1, N_CATEGORIES,  
        cell_counts, 0); 
    imsls_f_write_matrix ("Cell Contributions to Chi-Squared", 1,  
        N_CATEGORIES, cell_chi_squared,  
        0); 
} 
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Output 
    Chi Squared Statistics 
 
chi-squared              13.18 
degrees of freedom        9.00 
p-value                   0.15 
  
                              Cut Points 
         1           2           3           4           5           6 
    -1.282      -0.842      -0.524      -0.253      -0.000       0.253 
  
         7           8           9 
     0.524       0.842       1.282 
  
                              Cell Counts 
         1           2           3           4           5           6 
       106         109          89          92          83          87 
  
         7           8           9          10 
       110         104         121          99 
  

                   Cell Contributions to Chi-Squared 
         1           2           3           4           5           6 
      0.36        0.81        1.21        0.64        2.89        1.69 
  
         7           8           9          10 
      1.00        0.16        4.41        0.01 

Example 3 
In this example, a discrete Poisson random sample of size 1,000 with parameter 
� = 5.0 is generated by function imsls_f_random_poisson (Chapter 12, 
Random Number Generation”). In the call to imsls_f_chi_squared_test, 
function imsls_f_poisson_cdf (Chapter 11, “Probability Distribution 
Functions and Inverses) is used as function user_proc_cdf. 

#include <imsls.h> 
 
#define SEED                    123457 
#define N_CATEGORIES            10 
#define N_PARAMETERS_ESTIMATED  0 
#define N_NUMBERS               1000 
#define THETA                   5.0 
 
float           user_proc_cdf(float); 
 
main() 
{ 
    int         i, *poisson; 
    float       cell_statistics[3][N_CATEGORIES]; 
    float       chi_squared_statistics[3], x[N_NUMBERS]; 
    float       cutpoints[]       = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5,  
                                      7.5, 8.5, 9.5}; 
    char        *cell_row_labels[] = {"count", "expected count",  
                                      "cell chi-squared"}; 
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    char        *cell_col_labels[] = {"Poisson value", "0", "1", "2", 
                                      "3", "4", "5", "6", "7",  
                                      "8", "9"}; 
    char        *stat_row_labels[] = {"chi-squared", 
                                      "degrees of freedom","p-value"}; 
 
    imsls_random_seed_set(SEED); 
                                /* Generate the data */ 
    poisson = imsls_random_poisson(N_NUMBERS, THETA, 0); 
                               /* Copy data to a floating point vector*/ 
    for (i = 0; i < N_NUMBERS; i++)  
         x[i] = poisson[i]; 
 
    chi_squared_statistics[2] =  
        imsls_f_chi_squared_test(user_proc_cdf, N_NUMBERS,  
            N_CATEGORIES, x, 
                IMSLS_CUTPOINTS_USER,        cutpoints, 
                IMSLS_CELL_COUNTS_USER,      &cell_statistics[0][0],  
                IMSLS_CELL_EXPECTED_USER,    &cell_statistics[1][0],  
                IMSLS_CELL_CHI_SQUARED_USER, &cell_statistics[2][0], 
                IMSLS_CHI_SQUARED,           &chi_squared_statistics[0], 
                IMSLS_DEGREES_OF_FREEDOM,    &chi_squared_statistics[1], 
                0); 
                                /* Print results */ 
    imsls_f_write_matrix("\nChi-squared Statistics\n", 3, 1,  
                                            &chi_squared_statistics[0], 
                        IMSLS_ROW_LABELS,     stat_row_labels, 
                        0); 
    imsls_f_write_matrix("\nCell Statistics\n", 3, N_CATEGORIES,  
                                            &cell_statistics[0][0], 
                        IMSLS_ROW_LABELS,     cell_row_labels, 
                        IMSLS_COL_LABELS,     cell_col_labels, 
                        IMSLS_WRITE_FORMAT,   "%9.1f", 
                        0); 
} 
 
 
float user_proc_cdf(float k) 
{ 
    float           cdf_v; 
 
    cdf_v = imsls_f_poisson_cdf ((int) k, THETA); 
    return cdf_v; 
} 

Output 
    Chi-squared Statistics 
 
chi-squared              10.48 
degrees of freedom        9.00 
p-value                   0.31 
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                           Cell Statistics 
 
Poisson value             0          1          2          3          4 
count                  41.0       94.0      138.0      158.0      150.0 
expected count         40.4       84.2      140.4      175.5      175.5 
cell chi-squared        0.0        1.1        0.0        1.7        3.7 
  
Poisson value             5          6          7          8          9 
count                 159.0      116.0       75.0       37.0       32.0 
expected count        146.2      104.4       65.3       36.3       31.8 
cell chi-squared        1.1        1.3        1.4        0.0        0.0 

Programming Notes 
Function user_proc_cdf must be supplied with calling sequence 
user_proc_cdf(y), which returns the value of the cumulative distribution 
function at any point y in the (optionally) specified range. Many of the 
cumulative distribution functions in Chapter 11, “Probability Distribution 
Functions and Inverses,” can be used for user_proc_cdf, either directly if the 
calling sequence is correct or indirectly if, for example, the sample means and 
standard deviations are to be used in computing the theoretical cumulative 
distribution function. 

Warning Errors 
IMSLS_EXPECTED_VAL_LESS_THAN_1 An expected value is less than 1. 

IMSLS_EXPECTED_VAL_LESS_THAN_5 An expected value is less than 5. 

Fatal Errors 
IMSLS_ALL_OBSERVATIONS_MISSING All observations contain missing 

values. 

IMSLS_INCORRECT_CDF_1 Function user_proc_cdf is not a 
cumulative distribution function. 
The value at the lower bound must 
be nonnegative, and the value at 
the upper bound must not be 
greater than 1. 

IMSLS_INCORRECT_CDF_2 Function user_proc_cdf is not a 
cumulative distribution function. 
The probability of the range of the 
distribution is not positive. 

IMSLS_INCORRECT_CDF_3 Function user_proc_cdf is not a 
cumulative distribution function. 
Its evaluation at an element in x is 
inconsistent with either the 
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evaluation at the lower or upper 
bound. 

IMSLS_INCORRECT_CDF_4 Function user_proc_cdf is not a 
cumulative distribution function. 
Its evaluation at a cutpoint is 
inconsistent with either the 
evaluation at the lower or upper 
bound. 

 

IMSLS_INCORRECT_CDF_5 An error has occurred when 
inverting the cumulative 
distribution function. This function 
must be continuous and defined 
over the whole real line. 

normality_test 
Performs a test for normality. 

Synopsis 

#include <imsls.h> 
float imsls_f_normality_test (int n_observations, float x[], ..., 0) 

The type double function is imsls_d_normality_test. 

Required Arguments 

int n_observations   (Input) 
Number of observations. Argument n_observations must be in the 
range from 3 to 2,000, inclusive, for the Shapiro-Wilk W test and must 
be greater than 4 for the Lilliefors test. 

float x[]   (Input) 
Array of size n_observations containing the observations. 

Return Value 
The p-value for the Shapiro-Wilk W test or the Lilliefors test for normality. The 
Shapiro-Wilk test is the default. If the Lilliefors test is used, probabilities less 
than 0.01 are reported as 0.01, and probabilities greater than 0.10 for the normal 
distribution are reported as 0.5. Otherwise, an approximate probability is 
computed. 
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Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_normality_test (int n_observations, float x[], 

IMSLS_SHAPIRO_WILK_W, float *shapiro_wilk_w, 
IMSLS_LILLIEFORS, float *max_difference, 
IMSLS_CHI_SQUARED, int n_categories, float *df, 
 float *chi_squared, 
0) 

Optional Arguments 
IMSLS_SHAPIRO_WILK_W, float *shapiro_wilk_w   (Output) 

Indicates the Shapiro-Wilk W test is to be performed. The Shapiro-Wilk 
W statistic is returned in shapiro_wilk_w. Argument 
IMSLS_SHAPIRO_WILK_W is the default test. 

IMSLS_LILLIEFORS, float *max_difference   (Output) 
Indicates the Lilliefors test is to be performed. The maximum absolute 
difference between the empirical and the theoretical distributions is 
returned in max_difference. 

IMSLS_CHI_SQUARED, int n_categories   (Input),  
float *df, float *chi_squared   (Output) 
Indicates the chi-squared goodness-of-fit test is to be performed. 
Argument n_categories is the number of cells into which the 
observations are to be tallied. The degrees of freedom for the test are 
returned in argument df, and the chi-square statistic is returned in 
argument chi_squared. 

Description 
Three methods are provided for testing normality: the Shapiro-Wilk W test, the 
Lilliefors test, and the chi-squared test. 

Shapiro-Wilk W Test 
The Shapiro-Wilk W test is thought by D’Agostino and Stevens (1986, p. 406) to 
be one of the best omnibus tests of normality. The function is based on the 
approximations and code given by Royston (1982a, b, c). It can be used in 
samples as large as 2,000 or as small as 3. In the Shapiro and Wilk test, W is 
given by 

� �� � � �� �
2 2/i iiW a x x x� �� �

 
where x(i) is the i-th largest order statistic and x is the sample mean. Royston 
(1982) gives approximations and tabled values that can be used to compute the 
coefficients ai, i = 1, �, n, and obtains the significance level of the W statistic. 
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Lilliefors Test 
This function computes Lilliefors test and its p-values for a normal distribution in 
which both the mean and variance are estimated. The one-sample, two-sided 
Kolmogorov-Smirnov statistic D is first computed. The p-values are then 
computed using an analytic approximation given by Dallal and Wilkinson (1986). 
Because Dallal and Wilkinson give approximations in the range  
(0.01, 0.10) if the computed probability of a greater D is less than 0.01, an 
IMSLS_NOTE is issued and the p-value is set to 0.50. Note that because 
parameters are estimated, p-values in Lilliefors test are not the same as in the 
Kolmogorov-Smirnov Test. 

Observations should not be tied. If tied observations are found, an informational 
message is printed. A general reference for the Lilliefors test is Conover (1980). 
The original reference for the test for normality is Lilliefors (1967). 

Chi-Squared Test 
This function computes the chi-squared statistic, its p-value, and the degrees of 
freedom of the test. Argument n_categories finds the number of intervals into 
which the observations are to be divided. The intervals are equiprobable except 
for the first and last interval which are infinite in length.  

If more flexibility is desired for the specification of intervals, the same test can be 
performed with a call to function imsls_f_chi_squared_test (page 482) 
using the optional arguments described for that function. 

Examples 

Example 1 
The following example is taken from Conover (1980, pp. 195, 364). The data 
consists of 50 two-digit numbers taken from a telephone book. The W test fails to 
reject the null hypothesis of normality at the .05 level of significance. 

#include <imsls.h> 
 
void main() 
{ 
 
  int    n_observations = 50; 
  float  x[] = {23.0, 36.0, 54.0, 61.0, 73.0, 23.0,  
                37.0, 54.0, 61.0, 73.0, 24.0, 40.0,  
                56.0, 62.0, 74.0, 27.0, 42.0, 57.0,  
                63.0, 75.0, 29.0, 43.0, 57.0, 64.0,  
                77.0, 31.0, 43.0, 58.0, 65.0, 81.0,  
                32.0, 44.0, 58.0, 66.0, 87.0, 33.0,  
                45.0, 58.0, 68.0, 89.0, 33.0, 48.0,  
                58.0, 68.0, 93.0, 35.0, 48.0, 59.0,  
                70.0, 97.0}; 
  float  p_value; 
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                                   /* Shapiro-Wilk test */ 
  p_value = imsls_f_normality_test (n_observations, x, 
                                    0); 
  printf ("p-value = %11.4f.\n", p_value); 
 
} 

Output 
p-value =      0.2309 

Example 2 
The following example uses the same data as the previous example. Here, the 
Shapiro-Wilk W statistic is output. 

#include <imsls.h> 
 
void main() 
{ 
 
  int    n_observations = 50; 
  float  x[] = {23.0, 36.0, 54.0, 61.0, 73.0, 23.0,  
                37.0, 54.0, 61.0, 73.0, 24.0, 40.0,  
                56.0, 62.0, 74.0, 27.0, 42.0, 57.0,  
                63.0, 75.0, 29.0, 43.0, 57.0, 64.0,  
                77.0, 31.0, 43.0, 58.0, 65.0, 81.0,  
                32.0, 44.0, 58.0, 66.0, 87.0, 33.0,  
                45.0, 58.0, 68.0, 89.0, 33.0, 48.0,  
                58.0, 68.0, 93.0, 35.0, 48.0, 59.0,  
                70.0, 97.0}; 
  float  p_value, shapiro_wilk_w; 
 
                                   /* Shapiro-Wilk test */ 
  p_value = imsls_f_normality_test (n_observations, x, 
                                    IMSLS_SHAPIRO_WILK_W, 
                                    &shapiro_wilk_w, 
                                    0); 
  printf ("p-value = %11.4f.\n", p_value); 
  printf ("Shapiro Wilk W statistic = %11.4f.\n",  
          shapiro_wilk_w); 
 
} 

Output 
p-value =      0.2309. 
Shapiro Wilk W statistic =      0.9642 

Warning Errors 
IMSLS_ALL_OBS_TIED All observations in “x” are tied. 
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Fatal Errors 
IMSLS_NEED_AT_LEAST_5 All but # elements of “x” are missing. At 

least five nonmissing observations are 
necessary to continue. 

IMSLS_NEG_IN_EXPONENTIAL In testing the exponential distribution, an 
invalid element in “x” is found (“x[]” = #). 
Negative values are not possible in 
exponential distributions. 

IMSLS_NO_VARIATION_INPUT There is no variation in the input data. All 
nonmissing observations are tied. 

kolmogorov_one 
Performs a Kolmogorov-Smirnov one-sample test for continuous distributions. 

Synopsis 
#include <imsls.h> 
float *imsls_f_kolmogorov_one (float cdf(), int n_observations, 

float x[], ..., 0) 
The type double function is imsls_d_kolmogorov_one. 

Required Arguments 

float cdf (float x)  (Input) 
User-supplied function to compute the cumulative distribution function 
(CDF) at a given value.  The form is CDF(x), where                                   
x is the value at which cdf is to be evaluated  (Input) 
and cdf is the value of CDF at x. (Output) 

int n_observations   (Input) 
Number of observations. 

float x[]   (Input) 
Array of size n_observations containing the observations. 

Return Value 
Pointer to an array of length 3 containing  Z, p 1 , and p2  . 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_kolmogorov_one (float cdf(), int n_observations,  

float x[], 
IMSLS_DIFFERENCES, int **differences, 
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IMSLS_DIFFERENCES_USER, int differences[] 
IMSLS_N_MISSING, int *n_missing,  
IMSLS_RETURN_USER, , float test_statistic[], 
IMSLS_FCN_W_DATA, float cdf (), void *data, 
0) 

Optional Arguments 
IMSLS_DIFFERENCES, int **differences   (Output) 

Address of a pointer to the internally allocated array containing  
Dn , Dn

+, Dn
-. 

IMSLS_DIFFERENCES_USER, int differences[]                 
Storage for the array differences is provided by the user.   
See IMSLS_DIFFERENCES. 

IMSLS_N_MISSING, int *n_missing   (Ouput) 
Number of missing values is returned in *n_missing. 

IMSLS_RETURN_USER, float test_statistics[]   (Output) 
If specified, the Z-score and the p-values for hypothesis test against both 
one-sided and two-sided alternatives is stored in array 
test_statistics  provided by the user.  

IMSLS_FCN_W_DATA, float cdf (float x) , void *data, (Input) 
User-supplied function to compute the cumulative distribution function, 
which also accepts a pointer to data that is supplied by the user.  data is 
a pointer to the data to be passed to the user-supplied function.  See the 
Introduction, Passing Data to User-Supplied Functions at the beginning 
of this manual for more details. 

Description 

The routine imsls_f_kolmogorov_one performs a Kolmogorov-Smirnov 
goodness-of-fit test in one sample. The hypotheses tested follow: 

0 1

0 1

0 1

: ( ) ( ) : ( ) ( )
: ( ) ( ) : ( ) ( )
: ( ) ( ) : ( ) ( )

H F x F x H F x F x
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where F is the cumulative distribution function (CDF) of the random variable, and 
the theoretical cdf, F* , is specified via the user-supplied function cdf. Let  
n = n_observations � n_missing. The test statistics for both one-sided 
alternatives  

[1]nD differences�

�

 
and 

[2]nD differences�

�
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and the two-sided (Dn = differences[0]) alternative are computed as well as 
an asymptotic z-score (test_statistics[0]) and p-values associated with the 
one-sided (test_statistics[1]) and two-sided (test_statistics[2]) 
hypotheses. For n > 80, asymptotic p-values are used (see Gibbons 1971). For  
n 	 80, exact one-sided p-values are computed according to a method given by 
Conover (1980, page 350). An approximate two-sided test p-value is obtained as 
twice the one-sided p-value. The approximation is very close for one-sided  
p-values less than 0.10 and becomes very bad as the one-sided p-values get 
larger. 

Programming Notes 
1. The theoretical CDF is assumed to be continuous. If the CDF is not 

continuous, the statistics 

nD�

 
will not be computed correctly. 

2. Estimation of parameters in the theoretical CDF from the sample data 
will tend to make the p-values associated with the test statistics too 
liberal. The empirical CDF will tend to be closer to the theoretical CDF 
than it should be. 

3. No attempt is made to check that all points in the sample are in the 
support of the theoretical CDF. If all sample points are not in the support 
of the CDF, the null hypothesis must be rejected. 

Example 
In this example, a random sample of size 100 is generated via routine 
imsls_f_random_uniform (Chapter 12, Random Number Generation”) for the 
uniform (0, 1) distribution. We want to test the null hypothesis that the cdf is the 
standard normal distribution with a mean of 0.5 and a variance equal to the 
uniform (0, 1) variance (1/12). 

#include <imsls.h> 

#include <stdio.h> 

float cdf(float); 

void main() 

{ 

  float *statistics=NULL, *diffs = NULL, *x=NULL; 

  int nobs = 100, nmiss; 

  imsls_random_seed_set(123457); 

  x = imsls_f_random_uniform(nobs, 0); 

  statistics = imsls_f_kolmogorov_one(cdf, nobs, x,  

                                   IMSLS_N_MISSING, &nmiss, 
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                                   IMSLS_DIFFERENCES, &diffs, 

                                   0); 

  printf("D      = %8.4f\n", diffs[0]); 

  printf("D+     = %8.4f\n", diffs[1]); 

  printf("D-     = %8.4f\n", diffs[2]); 

  printf("Z      = %8.4f\n", statistics[0]); 

  printf("Prob greater D one sided  = %8.4f\n", statistics[1]); 

  printf("Prob greater D two sided  = %8.4f\n", statistics[2]); 

  printf("N missing = %d\n", nmiss); 

} 

float cdf(float x) 

{ 

  float mean = .5, std = .2886751, z; 

  z = (x-mean)/std; 

  return(imsls_f_normal_cdf(z)); 

} 

Output 
 
D     =   0.1471 
D+    =   0.0810 
D-    =   0.1471 
Z     =   1.4708 
Prob greater D one-sided =   0.0132 
Prob greater D two-sided =   0.0264 
N missing =    0 

kolmogorov_two 
Performs a Kolmogorov-Smirnov two-sample test. 

Synopsis 
#include <imsls.h> 
float *imsls_f_kolmogorov_two (int n_observations_x, float x[], int 

n_observations_y, float y[], ..., 0) 

The type double function is imsls_d_kolmogorov_two. 

Required Arguments 

int n_observations_x   (Input) 
Number of observations in sample one. 
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float x[]   (Input) 
Array of size n_observations_x containing the observations from 
sample one. 

int n_observations_y   (Input) 
Number of observations in sample two. 

float y[]   (Input) 
Array of size n_observations_y containing the observations from 
sample two. 

Return Value 
Pointer to an array of length 3 containing  Z, p 1 , and p 2  . 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_kolmogorov_two (int n_observations_x, float x[], int 

n_observations_y, float y[], ... 
IMSLS_DIFFERENCES, int **differences,  
IMSLS_DIFFERENCES_USER, int differences[], 
IMSLS_N_MISSING_X, int *xmissing,        
IMSLS_N_MISSING_Y, int *ymissing, 
IMSLS_RETURN_USER, float test_statistic[], 
0) 

Optional Arguments 
IMSLS_DIFFERENCES, int **differences   (Output) 

Address of a pointer to the internally allocated array containing  
Dn , Dn

+, Dn
-. 

IMSLS_DIFFERENCES_USER, int differences[]  (Output)                
Storage for array differences is provided by the user.   
See IMSLS_DIFFERENCES. 

IMSLS_N_MISSING_X, int *xmissing   (Ouput) 
Number of missing values in the x sample is returned in *xmissing. 

IMSLS_N_MISSING_Y, int *ymissing   (Ouput) 
Number of missing values in the y sample is returned in *ymissing. 

IMSLS_RETURN_USER, float test_statistics[]   (Output) 
If specified, the Z-score and the p-values for hypothesis test against both 
one-sided and two-sided alternatives is stored in array 
test_statistics  provided by the user.  
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Description 

Function imsls_f_kolmogorov_two  computes Kolmogorov-Smirnov two-
sample test statistics for testing that two continuous cumulative distribution 
functions (CDF’s) are identical based upon two random samples. One- or two-
sided alternatives are allowed. Exact p-values are computed for the two-sided test 
when n_observations_x * n_observations_y is less than 104.  

Let Fn(x) denote the empirical CDF in the X sample, let Gm(y) denote the empiri- 
cal CDF in the Y sample, where n = n_observations_x �  n_missing_x  
and m = n_observations_y �  n_missing_y, and let the corresponding 
population distribution functions be denoted by F(x) and G(y), respectively. Then, 
the hypotheses tested by imsls_f_kolmogorov_two are as follows: 

0 1

0 1
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The test statistics are given as follows: 

� �max , (diffs[0])

max ( ( ) ( )) (diffs[1])
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Asymptotically, the distribution of the statistic 

( ) /( *mn )Z D m n m n� �

 
(returned in test_statistics[0]) converges to a distribution given by 
Smirnov (1939).  

Exact probabilities for the two-sided test are computed when n*m is less than or 
equal to 10�, according to an algorithm given by Kim and Jennrich (1973). When 
n*m is greater than 10�, the very good approximations given by Kim and Jennrich 
are used to obtain the two-sided p-values. The one-sided probability is taken as 
one half the two-sided probability. This is a very good approximation when the p-
value is small (say, less than 0.10) and not very good for large  
p-values. 

Example 
The following example illustrates the imsls_f_kolmogorov_two routine with 
two randomly generated samples from a uniform(0,1) distribution. Since the two 
theoretical distributions are identical, we would not expect to reject the null 
hypothesis. 

#include <imsls.h> 

#include <stdio.h> 
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void main() 

{ 

        float *statistics=NULL, *diffs = NULL, *x=NULL, *y=NULL; 

        int nobsx = 100,  nobsy = 60, nmissx, nmissy; 

        imsls_random_seed_set(123457); 

        x = imsls_f_random_uniform(nobsx, 0); 

        y = imsls_f_random_uniform(nobsy, 0); 

        statistics = imsls_f_kolmogorov_two(nobsx, x, nobsy, y,  

                                        IMSLS_N_MISSING_X, &nmissx, 

                                        IMSLS_N_MISSING_Y, &nmissy, 

                                        IMSLS_DIFFERENCES, &diffs, 

                                        0); 

  printf("D      = %8.4f\n", diffs[0]); 

        printf("D+     = %8.4f\n", diffs[1]); 

  printf("D-     = %8.4f\n", diffs[2]); 

        printf("Z      = %8.4f\n", statistics[0]); 

  printf("Prob greater D one sided  = %8.4f\n", statistics[1]); 

        printf("Prob greater D two sided  = %8.4f\n", statistics[2]); 

        printf("Missing X = %d\n", nmissx); 

        printf("Missing Y = %d\n", nmissy); 

}  

Output 
 D     =   0.1800 

D+    =   0.1800 
D-    =   0.0100 
Z     =   1.1023 
Prob greater D one sided  =   0.0720 
Prob greater D two sided  =   0.1440 
Missing X =   0 
Missing Y =   0   
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multivar_normality_test 
Computes Mardia’s multivariate measures of skewness and kurtosis and tests for 
multivariate normality. 

Synopsis 
#include <imsls.h> 
float *imsls_f_multivar_normality_test (int n_observations,  

int n_variables, float x[], ..., 0) 

The type double function is imsls_d_multivar_normality_test. 

Required Arguments 

int n_observations   (Input) 
Number of observations (number of rows of data) x. 

int n_variables   (Input) 
Dimenionality of the multivariate space for which the skewness and 
kurtosis are to be computed. Number of variables in x. 

float x[]   (Input) 
Array of size n_observations by n_variables containing the data.   

Return Value 
A pointer to an array of dimension 13 containing output statistics  

I stat[ I ] 

0 estimated skewness 

1            expected skewness assuming a multivariate normal distribution 

2            asymptotic chi-squared statistic assuming a multivariate normal 
distribution 

3 probability of a greater chi-squared 

4 Mardia and Foster's standard normal score for skewness 

5 estimated kurtosis 

6 expected kurtosis assuming a multivariate normal distribution 

7 asymptotic standard error of the estimated kurtosis 

8 standard normal score obtained from stat[5] through stat[7] 

9 p-value corresponding to stat[8] 

10 Mardia and Foster's standard normal score for kurtosis 

11 Mardia's SW statistic based upon stat[4] and stat[10] 
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12 p-value for stat[11] 

Synopsis with Optional Arguments 
#include <imsls.h>  
float imsls_f_multivar_normality_test (int n_observations_x, int 

n_variables, float x[], ... 
 IMSLS_FREQUENCIES, float frequencies[], 
 IMSLS_WEIGHTS, float weights[], 
 IMSLS_SUM_FREQ, int *sum_frequencies, 
 IMSLS_SUM_WEIGHTS, float *sum_weights, 
 IMSLS_N_ROWS_MISSING, int *nrmiss, 
 IMSLS_MEANS, float **means, 
 IMSLS_MEANS_USER, float means[], 
 IMSLS_R, float **R_matrix, 
 IMSLS_R_USER, float R_matrix[], 
 IMSLS_RETURN_USER, float test_statistics[], 

0) 

Optional Arguments 
IMSLS_FREQUENCIES, float  frequencies[]  (Input) 

Array of size n_rows containing the frequencies.  Frequencies must be 
integer valued.  Default assumes all frequencies equal one. 

IMSLS_WEIGHTS, float weights[]  (Input) 
Array of size n_rows containing the weights.  Weights must be greater 
than non-negative.  Default assumes all weights equal one. 

IMSLS_SUM_FREQ, int *sum_frequencies  (Output) 
The sum of the frequencies of all observations used in the computations. 

IMSLS_SUM_WEIGHTS, float *weights[]  (Output) 
The sum of the weights times the frequencies for all observations used in 
the computations. 

IMSLS_N_ROWS_MISSING, int **nrmiss  (Output) 
Number of rows of data in x[] containing any missing values (NaN). 

IMSLS_MEANS, float **means  (Output) 
The address of a pointer to an array of length n_variables 
containing the sample means. 

IMSLS_MEANS_USER, float means[] (Output) 
Storage for array means is provided by user.  See IMSLS_MEANS. 

IMSLS_R,  float **R_matrix  (Output) 
The address of a pointer to an n_variables by n_variables upper 
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triangular matrix containing the Cholesky RTR factorization of the 
covariance matrix. 

IMSLS_R_USER,  float R_matrix[]  (Output) 
Storage for array R_matrix is provided by user.  See IMSLS_R. 

IMSLS_RETURN_USER, float stat[]   (Output) 
User supplied array of dimension 13 containing the estimates and their 
associated test statistics.  

Description 
Function imsls_f_multivar_normality_test computes Mardia’s (1970) 
measures b��p and b��p of multivariate skewness and kurtosis, respectfully, for  
p = n_variables. These measures are then used in computing tests for 
multivariate normality. Three test statistics, one based upon b��p alone, one based 
upon b��p alone, and an omnibus test statistic formed by combining normal scores 
obtained from b��p and b��p are computed. On the order of np�, operations are 
required in computing b��p when the method of Isogai (1983) is used, where  

n = n_observations. On the order of np2, operations are required in 
computing b��p.  

Let  
1( ) (T

ij i j i jd w w x x S x�
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fi is the frequency of the i-th observation, and wi is the weight for this 
observation. (Weights wi are defined such that xi is distributed according to a 
multivariate normal, N(
, �/wi) distribution, where � is the covariance matrix.) 
Mardia’s multivariate skewness statistic is defined as: 

3
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while Mardia’s kurtosis is given as: 
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Both measures are invariant under the affine (matrix) transformation AX + D,  
and reduce to the univariate measures when p = n_variables = 1. Using 
formulas given in Mardia and Foster (1983), the approximate expected value, 
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asymptotic standard error, and asymptotic p-value for b��p, and the approximate 
expected value, an asymptotic chi-squared statistic, and p-value for the b��p 
statistic are computed. These statistics are all computed under the null hypothesis 
of a multivariate normal distribution. In addition, standard normal scores W�(b��p) 
and W�(b��p) (different from but similar to the asymptotic normal and chi-squared 
statistics above) are computed. These scores are combined into an asymptotic chi-
squared statistic with two degrees of freedom: 

� � � �2 2
1 1, 2 2,W pS W b W b� � p  

This chi-squared statistic may be used to test for multivariate normality.  
A p-value for the chi-squared statistic is also computed. 

Example 
In the following example, 150 observations from a 5 dimensional standard normal 
distribution are generated via routine imsls_f_random_normal (Chapter 12, 
“Random Number Generation”). The skewness and kurtosis statistics are then 
computed for these observations. 

 
#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 

  float *x, swt, *xmean, *r,  *stats; 

  int nobs = 150, ncol = 5, nvar = 5, izero = 0, ni, nrmiss; 

  imsls_random_seed_set(123457); 

  x = imsls_f_random_normal(nobs*nvar,  0); 

  stats = imsls_f_multivar_normality_test(nobs, nvar, x,  

                                 IMSLS_SUM_FREQ, &ni, 

                                 IMSLS_SUM_WEIGHTS, &swt, 

                                 IMSLS_N_ROWS_MISSING, &nrmiss,  

                                 IMSLS_R, &r,IMSLS_MEANS, &xmean, 
                               0); 
  printf("Sum of frequencies  = %d\nSum of the weights =%8.3f\nNumber                   

rows missing = %3d\n", ni, swt, nrmiss); 

  imsls_f_write_matrix("stat", 13, 1, stats, 

 IMSLS_ROW_NUMBER_ZERO, 

 0) 

} 
  

Output 
Sum of frequencies  = 150  
Sum of the weights  = 150.000  
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Number rows missing =   0 
 
   stat 
0  0.73 
1  1.36 
2 18.62 
3  0.99 
4 -2.37 
5 32.67 
6 34.54 
7  1.27 
8      -1.48 
9  0.14 
10  1.62 
11  8.24 
12  0.02 
 
                  means 
     1        2        3        4        5 
0.02623   0.09238   0.06536   0.09819   0.05639 
 
                    R 
        1       2       3       4       5 
1   1.033  -0.084  -0.065   0.108  -0.067 
2   0.000   1.049  -0.097  -0.042  -0.021 
3   0.000   0.000   1.063   0.006  -0.145 
4   0.000   0.000   0.000   0.942  -0.084 
5   0.000   0.000   0.000   0.000   0.949 

randomness_test 
Performs a test for randomness. 

Synopsis 
#include <imsls.h> 
float imsls_f_randomness_test (int n_observations, float x[],  

int n_run..., 0) 

The type double function is imsls_d_randomness_test. 

Required Arguments 

int n_observations   (Input) 
Number of observations in x. 

float x[]   (Input) 
Array of size n_observations  containing the data. 

int n_run   (Input) 
Length of longest run for which tabulation is desired.  For optional 
arguments IMSLS_PAIRS, IMSLS_DSQUARE, and IMSLS_DCUBE, 
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n_run stands for the number of equiprobable cells into which the 
statistics are to be tabulated. 

Return Value               

The probability of a larger chi-squared statistic for testing the null hypothesis of a 
uniform distribution. 

Synopsis with Optional Arguments 

#include <imsls.h>  
float imsls_f_randomness_test (int n_observations_x, float x[], int 

n_run, ... 
 IMSLS_RUNS, float **runs_count,  float **covariances, 
 IMSLS_RUNS_USER, float runs_count[], float covariances[], 

IMSLS_PAIRS, int pairs_lag,  float **pairs_count,  
 IMSLS_PAIRS_USER, int pairs_lag, float pairs_count[], 
 IMSLS_DSQUARE, float **dsquare_count, 
 IMSLS_DSQUARE_USER, float dsquare_count[], 

 IMSLS_DCUBE, float **dcube_count, 
 IMSLS_DCUBE_USER, float dcube_count[], 
 IMSLS_RUNS_EXPECT, float **runs_expect, 
 IMSLS_RUNS_EXPECT_USER, float runs_expect[], 

 IMSLS_EXPECT, float *expect, 
 IMSLS_CHI_SQUARED, float *chi_squared, 
 IMSLS_DF, float *df, 
 IMSLS_RETURN USER, float *pvalue, 
  0) 

Optional Arguments 
IMSLS_RUNS, float **runs_count, float **covariances, (Output)  or 
IMSLS_PAIRS, int pairs_lag   (Input),   float **pairs_count,(Output) or 
IMSLS_DSQUARE, float **dsquare_count,   (Output) or 
IMSLS_DCUBE, float **dcube_count,   (Output) 
 IMSLS_RUNS indicates the runs test is to be performed.  Array of 

length n_run containing the counts of the number of runs up of each 
length is returned in *runs_counts. n_run by n_observations 
matrix containing the variances and covariances of the counts is returned 
in *covariances.  IMSLS_RUNS is the default test, however, to return 
the counts and covariances IMSLS_RUNS argument must be used. 
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 IMSLS_PAIRS indicates the pairs test is to be performed.  The lag to be 
used in computing the pairs statistic is stored in pairs_lag.  Pairs 
(X[i], X[i + pairs_lag]) for i = 0,…, N – pairs_lag -1 
are tabulated, where N is the total sample size. n_run by n_run matrix 
containing the count of the number of pairs in each cell is returned in 
pairs_user. 

 IMSLS_DSQUARE indicates the d2 test is to be performed.  
**dsquare_counts is an address of a pointer to an internally allocated 
array of length n_run containing the tabulations for the d2 test. 

 IMSLS_DCUBE indicates the triplets test is to be performed.  
**dcube_counts is an address of a pointer to an internally allocated 
array of length n_run by n_run by n_run containing the tabulations for 
the triplets test. 

IMSLS_RUNS_USER, float runs_counts[], float covariances[] (Output) 
Storage for runs_counts and covariances is provided by the user.  
See IMSLS_RUNS. 

IMSLS_PAIRS_USER, int pairs_lag, float pairs_counts[] (Output) 
Storage for pairs_lag and pairs_counts is provided by the user.  
See IMSLS_PAIRS. 

IMSLS_DSQUARE_USER, float dsquare_count[] (Output) 
Storage for dsquare_count is provided by the user.   
See IMSLS_DSQUARE. 

IMSLS_DCUBE_USER, float dcube_count[] (Output) 
Storage for dcube_count is provided by the user.  See IMSLS_DCUBE. 

IMSLS_CHI_SQUARED, float *chi_squared  (Output) 
Chi-squared statistic for testing the null hypothesis of a uniform 
distribution. 

IMSLS_DF, float *df  (Output) 
Degrees of freedom for chi-squared. 

IMSLS_RETURN_USER, float *pvalue  (Output) 
If specified, pvalue returns the probability of a larger chi-squared 
statistic for testing the null hypothesis of a uniform distribution. 

If IMSLS_RUNS is specified:          
IMSLS_RUNS_EXPECT,  float **runs_expect  (Output) 

The address of a pointer to an internally allocated array of length  
n_run containing the expected number of runs of each length. 

IMSLS_RUNS_EXPECT_USER,  float runs_expect[]  (Output) 
Storage for runs_expect is provided by the user.   
See IMSLS_RUNS_EXPECT. 

If IMSLS_PAIRS, IMSLS_DSQUARE, or IMSLS_DCUBE is specified:   
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IMSLS_EXPECT, float **expect  (Output) 
Expected number of counts for each cell.  This argument is optional only 
if one of IMSLS_PAIRS, IMSLS_DSQUARE, or IMSLS_DCUBE is used. 

Description  

Runs Up Test 

Function imsls_f_randomness_test performs one of four different tests for 
randomness. Optional argument IMSLS_RUNS computes statistics for the runs up 
test. Runs tests are used to test for cyclical trend in sequences of random 
numbers. If the runs down test is desired, each observation should first be 
multiplied by �1 to change its sign, and IMSLS_RUNS called with the modified 
vector of observations.  

IMSLS_RUNS first tallies the number of runs up (increasing sequences) of each 
desired length. For i = 1, �, r � 1, where r = n_run, runs_count[i] contains the 
number of runs of length i. runs_count[n_run] contains the number of runs of 
length n_run or greater. As an example of how runs are counted, the sequence 
(1, 2, 3, 1) contains 1 run up of length 3, and one run up of length 1. 

After tallying the number of runs up of each length, IMSLS_RUNS computes the  
expected values and the covariances of the counts according to methods given by 
Knuth (1981, pages 65�67). Let R denote a vector of length n_run containing  
the number of runs of each length so that the i-th element of R, ri, contains the 
count of the runs of length i. Let �R denote the covariance matrix of R under the 
null hypothesis of randomness, and let 
R denote the vector of expected values 
for R under this null hypothesis, then an approximate chi-squared statistic with 
n_run degrees of freedom is given as  

2 1( ) ( )T
R R RR R� � �

�

� � � �
 

In general, the larger the value of each element of 
R, the better the chi-squared 
approximation. 

Pairs Test 
IMSLS_PAIRS computes the pairs test (or the Good’s serial test) on a 
hypothesized sequence of uniform (0,1) pseudorandom numbers. The test 
proceeds as follows. Subsequent pairs (X(i), X(i + pairs_lag)) are tallied into a 
k � k matrix, where k = n_run. In this tally, element (j, m) of the matrix is 
incremented, where 

( ) 1

( )

j kX i

m kX i l

� �� �� �

� � 1�� �� �  

where l = pairs_lag, and the notation � � represents the greatest integer 
function, �Y� is the greatest integer less than or equal to Y, where Y is a real 
number. If l = 1, then i = 1, 3, 5, �, n � 1. If l > 1, then i = 1, 2, 3, �, n � l, 
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where n is the total number of pseudorandom numbers input on the current 
invocation of IMSLS_PAIRS (i.e., n = n_observations).  

Given the tally matrix in pairs_count, chi-squared is computed as 
21
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where e = oij/k2, and oij is the observed count in cell (i, j)  
(oij = pairs_count(i, j)).  

Because pair statistics for the trailing observations are not tallied on any call, the 
user should call IMSLS_PAIRS with n_observations as large as possible. For 
pairs_lag < 20 and  n_observations = 2000, little power is lost. 

d 2 Test 
IMSLS_DSQAR computes the d2 test for succeeding quadruples of hypothesized 
pseudorandom uniform (0, 1) deviates. The d 2 test is performed as follows. Let 
X�, X�, X�, and X� denote four pseudorandom uniform deviates, and consider 

D2 = (X� �X�)2 + (X� � X�)2 

The probability distribution of D2 is given as 
3 4

2 2 2 8Pr( )
3 2
d dD d d �� � � �

 

when D2 	 1, where � denotes the value of pi. If D2 > 1, this probability is given 
as 

2 2 2 2
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See Gruenberger and Mark (1951) for a derivation of this distribution.  

For each succeeding set of 4 pseudorandom uniform numbers input in X, d2 and 
the cumulative probability of d2 (Pr(D� 	 d 2)) are computed. The resulting 
probability is tallied into one of k = n_run equally spaced intervals.  

Let n denote the number of sets of four random numbers input (n = the total 
number of observations/4). Then, under the null hypothesis that the numbers input 
are random uniform (0, 1) numbers, the expected value for each element in 
dsquare_count is e = n/k. An approximate chi-squared statistic is computed as 
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where oi = dsquare_count(i) is the observed count. Thus, �2 has k � 1 degrees 
of freedom, and the null hypothesis of pseudorandom uniform (0, 1) deviates is 
rejected if �2 is too large. As n increases, the chi-squared approximation becomes 
better. A useful generalization is that e > 5 yields a good chi-squared 
approximation. 

Triplets Test 
IMSLS_DCUBE computes the triplets test on a sequence of hypothesized 
pseudorandom uniform(0, 1) deviates. The triplets test is computed as follows:  
 
Each set of three successive deviates, X

�
, X

�
, and X

�
, is tallied into one of m� equal 

sized cubes, where m = n_run. Let i = [mX�] + 1, j = [mX�] + 1, and  
k = [mX

�
] +  1. For the triplet (X

�
, X

�
, X

�
), dcube_count(i, j, k) is incremented.  

Under the null hypothesis of pseudorandom uniform(0, 1) deviates, the m� cells 
are equally probable and each has expected value e = n/m�, where n is the number 
of triplets tallied. An approximate chi-squared statistic is computed as 
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where oijk = dcube_count(i, j, k).  

The computed chi-squared has m� � 1 degrees of freedom, and the null hypothesis 
of pseudorandom uniform (0, 1) deviates is rejected if �2 is too large. 

Example 1 
The following example illustrates the use of the runs test on 104 pseudo-random 
uniform deviates. In the example, 2000 deviates are generated for each call to 
IMSLS_RUNS. Since the probability of a larger chi-squared statistic is 0.1872, 
there is no strong evidence to support rejection of this null hypothesis of 
randomness. 

#include <imsls.h> 

#include <stdio.h> 

void main() 

{  

       int nran = 10000, n_run = 6; 

 char *fmt = "%8.1f"; 

 float *x, pvalue, *runs_counts, *runs_expect, chisq, df; 

 imsls_random_seed_set(123457);  

 x = imsls_f_random_uniform(nran, 0); 

 pvalue = imsls_f_randomness_test(nran, x, n_run,  
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     IMSLS_CHI_SQUARED, &chisq, 

     IMSLS_DF, &df,  

     IMSLS_RUNS_EXPECT, &runs_expect, 

     IMSLS_RUNS, &runs_counts, &covariances,  

     0); 

 imsls_f_write_matrix("runs_counts", 1, n_run, runs_counts, 0); 

 imsls_f_write_matrix("runs_expect", 1, n_run, runs_expect,  

           IMSLS_WRITE_FORMAT, fmt, 

           0); 

 imsls_f_write_matrix("covariances", n_run, n_run, covariances, 

           IMSLS_WRITE_FORMAT, fmt, 

              0); 

 printf("chisq  =  %f\n", chisq); 

 printf("df     =  %f\n", df); 

 printf("pvalue =  %f\n", pvalue); 

 

} 

Output 
                runs_count   
     1        2        3        4        5        6 
1709.0   2046.0    953.0    260.0     55.0      4.0 
 
                  runs_expect 
     1        2        3        4        5        6 
1667.3   2083.4    916.5    263.8     57.5     11.9 
 
                  covariances 
         1        2        3        4        5        6 
1   1278.2   -194.6   -148.9    -71.6    -22.9     -6.7 
2   -194.6   1410.1   -490.6   -197.2    -55.2    -14.4 
3   -148.9   -490.6    601.4   -117.4    -31.2     -7.8 
4    -71.6   -197.2   -117.4    222.1    -10.8     -2.6 
5    -22.9    -55.2    -31.2    -10.8     54.8     -0.6 
6     -6.7    -14.4     -7.8     -2.6     -0.6     11.7 
chisq   =     8.76514 
df      =     6.00000 
pvalue  =    0.187225 

Example 2 
The following example illustrates the calculations of the IMSLS_PAIRS statistics 
when a random sample of size 10� is used and the pairs_lag is 1. The results 
are not significant. IMSL routine imsls_f_random_uniform (Chapter 12, 
“Random Number Generation) is used in obtaining the pseudorandom deviates. 

#include <imsls.h> 

#include <stdio.h> 
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void main() 

{ 

  int nran = 10000, n_run = 10; 

 float *x, pvalue, *pairs_counts, expect, chisq, df; 

 imsls_random_seed_set(123467);  

 x = imsls_f_random_uniform(nran, 0); 

 pvalue = imsls_f_randomness_test(nran, x, n_run,  

     IMSLS_CHI_SQUARED, &chisq, 

     IMSLS_DF, &df,  

     IMSLS_EXPECT, &expect, 

     IMSLS_PAIRS, 5, &pairs_counts,  

     0); 

 imsls_f_write_matrix("pairs_counts", n_run, n_run, pairs_counts, 0); 

 printf("expect =  %8.2f\n", expect); 

 printf("chisq  =  %8.2f\n", chisq); 

 printf("df     =  %8.2f\n", df); 

 printf("pvalue =  %10.4f\n", pvalue); 

} 

Output 
pairs_counts 
      1     2     3     4     5     6     7     8     9     10 
 1   112    82    95   118   103   103   113   84    90     74 
 2   104   106   109   108   101    98   102   92    109    88 
 3    88   111    86   106   112    79   103  105    106   101 
 4    91   110   108   92     88   108   113   93    105   114 
 5   104   105   103   104   101    94    96   87     93   104 
 6    98   104   103   104    79    89    92   104    92   100 
 7   103    91    97   101   116    83   118   118   106    99 
 8   105   105   111    91    93    82   100   104   110    89 
 9    92   102    82   101    94    128  102   110   125    98 
10    79    99   103    98   104    101   93    93    98   105 
  
expect =     99.95 
chisq  =    104.86 
df     =     99.00 
pvalue =      0.3242 

Example 3 
In the following example, 2000 observations generated via  IMSL routine 
imsls_f_random_uniform (Chapter 12, “Random Number Generation”) are 
input to IMSLS_DSQAR in one call. In the example, the null hypothesis of a 
uniform distribution is not rejected. 

 

#include <imsls.h> 

#include <stdio.h> 
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void main() 

{ 

 int nran = 2000, n_run = 6; 

 float *x, pvalue, *dsquare_counts, *covariances, expect, chisq, df; 

 imsls_random_seed_set(123457);  

 x = imsls_f_random_uniform(nran, 0); 

 pvalue = imsls_f_randomness_test(nran, x, n_run,  

     IMSLS_CHI_SQUARED, &chisq, 

     IMSLS_DF, &df,  

     IMSLS_EXPECT, &expect, 

     IMSLS_DSQUARE, &dsquare_counts,  

     0); 

 imsls_f_write_matrix("dsquare_counts", 1, n_run, dsquare_counts, 0); 

 printf("expect = %10.4f\n", expect); 

 printf("chisq  = %10.4f\n", chisq); 

 printf("df     = %8.2f\n", df); 

 printf("pvalue = %10.4f\n", pvalue); 

} 

Output 
             dsquare_counts 
    1       2       3       4       5       6 
   87      84      78      76      92      83 
expect   =     83.3333 
chisq    =      2.0560 
df       =      5.00 
pvalue   =      0.8413 

Example 4 
In the following example, 2001 deviates generated by IMSL routine 
imsls_f_random_uniform (Chapter 12, “Regression”) are input to 
IMSLS_DCUBE, and tabulated in 27 equally sized cubes. In the example, the null 
hypothesis is not rejected. 

 
#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 

  int nran = 2001, n_run = 3; 

 float *x, pvalue, *dcube_counts, expect, chisq, df; 

 imsls_random_seed_set(123457);  

 x = imsls_f_random_uniform(nran, 0); 

 pvalue = imsls_f_randomness_test(nran, x, n_run,  
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     IMSLS_CHI_SQUARED, &chisq, 

     IMSLS_DF, &df,  

     IMSLS_EXPECT, &expect, 

     IMSLS_DCUBE, &dcube_counts,  

     0); 

imsls_f_write_matrix("dcube_counts", n_run, n_run, dcube_counts, 0); 

imsls_f_write_matrix("dcube_counts", n_run, n_run,         
&dcube_counts[n_run*n_run], 0); 

imsls_f_write_matrix("dcube_counts", n_run, n_run, 
&dcube_counts[2*n_run*n_run], 0); 

 printf("expect = %10.4f\n", expect); 

 printf("chisq  = %10.4f\n", chisq); 

 printf("df     = %8.2f\n", df); 

 printf("pvalue = %10.4f\n", pvalue); 

} 

Output 
           dcube_counts 

  1      2      3 
1    26  27     24 
2    20  17    32 
3    30 18    21 
 
           dcube_counts 
  1      2      3 
1    20 16    26 
2    22 22    27 
3    30  24    26 
 
           dcube_counts 
 1       2      3 
1    28 30    22 
2    23 24    22 
3    33 30     27 
expect =     24.7037 
chisq  =     21.7631 
df     =     26.0000 
pvalue =    0.701586 
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Appendix B:  Alphabetical Summary 
of Routines 

 

Function Purpose Statement Page 
anova_balanced Analyzes a balanced complete experimental design for 

a fixed, random, or mixed model. 
256 

anova_factorial Analyzes a balanced factorial design with fixed effects. 239 

anova_nested Analyzes a completely nested random model with 
possibly unequal numbers in the subgroups. 

247 

anova_oneway Analyzes a one-way classification model. 230 

arma Computes least-square estimates of parameters for an 
ARMA model. 

517 

arma_forecast Computes forecasts and their associated probability 
limits for an ARMA model. 

527 

autocorrelation Computes the sample autocorrelation function of a 
stationary time series. 

541 

beta Evaluates the complete beta function. 901 

beta_cdf Evaluates the beta probability distribution function. 730 

beta_incomplete Evaluates the real incomplete beta function. 903 

beta_inverse_cdf Evaluates the inverse of the beta distribution function. 731 

binomial_cdf Evaluates the binomial distribution function. 720 

binomial_coefficient Evaluates the binomial coefficient. 900 

binomial_pdf Evaluates the binomial probability function.  722 

bivariate_normal_cdf Evaluates the bivariate normal distribution function. 732 

box_cox_transform Performs a Box-Cox transformation. 537 

categorical_glm Analyzes categorical data using logistic, Probit, 
Poisson, and other generalized linear models. 

425 

chi_squared_cdf Evaluates the chi-squared distribution function. 734 
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Function Purpose Statement Page 
chi_squared_inverse_cdf Evaluates the inverse of the chi-squared distribution 

function. 
736 

chi_squared_test Performs a chi-squared goodness-of-fit test. 482 

cluster_hierarchical Performs a hierarchical cluster analysis given a 
distance matrix. 

590 

cluster_k_means Performs a K-means (centroid) cluster analysis. 598 

cluster_number Computes cluster membership for a hierarchical cluster 
tree. 

594 

cochran_q_test Performs a Cochran Q test for related observations. 472 

contingency_table Performs a chi-squared analysis of a two-way 
contingency table. 

404 

continuous_table_setup Sets up table to generate pseudorandom numbers from 
a general continuous distribution. 

812 

covariances Computes the sample variance-covariance or 
correlation matrix. 

185 

cox_stuart_trends_test Performs the Cox and Stuart’ sign test for trends in 
location and dispersion. 

452 

crd_factorial Analyzes data from balanced and unbalanced 
completely randomized experiments. 

267 

crosscorrelation Computes the sample cross-correlation function of two 
stationary time series 

546 

ctime Returns the number of CPU seconds used. 911 

data_sets Retrieves a commonly analyzed data set. 890 

difference Differences a seasonal or nonseasonal time series. 532 

discrete_table_setup Sets up a table to generate pseudorandom numbers 
from a general discrete distribution. 

781 

discriminant_analysis Performs discriminant function analysis. 628 

dissimilarities Computes a matrix of dissimilarities (or similarities) 
between the columns (or rows) of a matrix. 

586 

error_code Returns the code corresponding to the error message 
from the last function called. 

885 

error_options Sets various error handling options. 879 

exact_enumeration Computes exact probabilities in a two-way contingency 
table, using the total enumeration method. 

417 

exact_network Computes exact probabilities in a two-way contingency 
table using the network algorithm. 

419 
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Function Purpose Statement Page 
F_cdf Evaluates the F distribution function. 742 

F_inverse_cdf Evaluates the inverse of the F distribution function. 744 

factor_analysis Extracts initial factor-loading estimates in factor 
analysis. 

609 

faure_next_point Computes a shuffled Faure sequence 856 

friedmans_test Performs Friedman’s test for a randomized complete 
block design. 

467 

gamma Evaluates the real gamma functions. 905 

gamma_cdf Evaluates the gamma distribution function. 745 

gamma_incomplete Evaluates the incomplete gamma function. 907 

gamma_inverse_cdf Evaluates the inverse of the gamma distribution 
function. 

747 

garch Computes estimates of the parameters of  
a GARCH(p, q) model 

566 

homogeneity Conducts Bartlett’s and Levene’s tests of the 
homogeneity of variance assumption in analysis of 
variance. 

378 

hypergeometric_cdf Evaluates the hypergeometric distribution function. 723 

hypergeometric_pdf Evaluates the hypergeometric probability function. 725 

hypothesis_partial Constructs a completely testable hypothesis. 96 

hypothesis_scph Sums of cross products for a multivariate hypothesis. 101 

hypothesis_test Tests for the multivariate linear hypothesis. 106 

k_trends_test Performs k-sample trends test against ordered 
alternatives. 

475 

kalman Performs Kalman filtering and evaluates the likelihood 
function for the state-space model.  

571 

kaplan_meier_estimates Computes Kaplan-Meier estimates of survival 
probabilities in stratified samples. 

654 

kolmogorov_one Performs a Kolmogorov-Smirnov’s one-sample test for 
continuos distributions. 

494 

kolmogorov_two Performs a Kolmogorov-Smirnov’s two-sample test 497 

kruskal_wallis_test Performs a Kruskal-Wallis’s test for identical 
population medians.  

465 

lack_of_fit Performs lack-of-fit test for an univariate time series or 
transfer function given the appropriate correlation 
function. 

563 
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Function Purpose Statement Page 
latin_square Analyzes data from latin-square experiments. 288 

lattice Analyzes balanced and partially-balanced lattice 
experiments. 

297 

life_tables Produces population and cohort life tables. 712 

Lnorm_regression Fits a multiple linear regression model using criteria 
other than least squares. 

168 

log_beta Evaluates the log of the real beta function. 904 

log_gamma Evaluates the logarithm of the absolute value of the 
gamma function. 

909 

machine (float) Returns information describing the computer's floating-
point arithmetic. 

888 

machine (integer) Returns integer information describing the computer's 
arithmetic. 

886 

mat_mul_rect Computes the transpose of a matrix, a matrix-vector 
product, a matrix-matrix product, a bilinear form, or 
any triple product. 

893 

multi_crosscorrelation Computes the multichannel cross-correlation function 
of two mutually stationary multichannel time series. 

552 

multiple_comparisons Performs Student-Newman-Keuls multiple 
comparisons test. 

385 

multivar_normality_test Computes Mardia’s multivariate measures of skewness 
and kurtosis and tests for multivariate normality. 

501 

noether_cyclical_trend Performs the Noether’s test for cyclical trend. 449 

non_central_chi_sq Evaluates the noncentral chi-squared distribution 
function. 

738 

non_central_chi_sq_inv Evaluates the inverse of the noncentral chi-squared 
function. 

740 

non_central_t_cdf Evaluates the noncentral Student’s t distribution 
function. 

754 

non_central_t_inv_cdf Evaluates the inverse of the noncentral Student’s t 
distribution function. 

757 

nonlinear_optimization Fits a nonlinear regression model using Powell's 
algorithm. 

159 

nonlinear_regression Fits a nonlinear regression model. 149 

nonparam_hazard_rate Performs nonparametric hazard rate estimation using 
kernel functions and quasi-likelihoods. 

703 
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Function Purpose Statement Page 
normal_cdf Evaluates the standard normal (Gaussian) distribution 

function. 
748 

normal_inverse_cdf Evaluates the inverse of the standard normal 
(Gaussian) distribution function. 

750 

normal_one_sample Computes statistics for mean and variance inferences 
using a sample from a normal population. 

7 

normal_two_sample Computes statistics for mean and variance inferences 
using samples from two normal population. 

11 

normality_test Performs a test for normality. 490 

output_file Sets the output file or the error message output file. 874 

page Sets or retrieves the page width or length. 867 

partial_autocorrelation Computes the sample partial autocorrelation function 
of a stationary time series.  

560 

partial_covariances Computes partial covariances or partial correlations 
from the covariance or correlation matrix. 

193 

permute_matrix Permutes the rows or columns of a matrix. 898 

permute_vector Rearranges the elements of a vector as specified by a 
permutation. 

 897 

poisson_cdf Evaluates the Poisson distribution function. 726 

poisson_pdf Evaluates the Poisson probability function. 728 

poly_prediction Computes predicted values, confidence intervals, and 
diagnostics after fitting a polynomial regression model. 

140 

poly_regression Performs a polynomial least-squares regression. 132 

pooled_covariances Computes a pooled variance-covariance from the 
observations. 

198 

principal_components Computes principal components. 603 

prop_hazard_gen_lin Analyzes time event data via the proportional hazards 
model. 

660 

random_arma Generates pseudorandom ARMA process numbers. 831 

random_beta Generates pseudorandom numbers from a beta 
distribution. 

786 

random_binomial Generates pseudorandom binomial numbers. 765 

random_cauchy Generates pseudorandom numbers from a Cauchy 
distribution. 

 788 

random_chi_squared Generates pseudorandom numbers from a chi-squared 
distribution. 

789 
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Function Purpose Statement Page 
random_exponential Generates pseudorandom numbers from a standard 

exponential distribution. 
791 

random_exponential_mix Generates pseudorandom mixed numbers from a 
standard exponential distribution. 

792 

random_gamma Generates pseudorandom numbers from a standard 
gamma distribution. 

794 

random_general_continuous Generates pseudorandom numbers from a general  
continuous distribution. 

810 

random_general_discrete Generates pseudorandom numbers from a general 
discrete distribution using an alias method or optionally 
a table lookup method.  

777 

random_geometric Generates pseudorandom numbers from a geometric 
distribution. 

766 

random_GFSR_table_get Retrieves the current table used in the GFSR generator. 853 

random_GFSR_table_set Sets the current table used in the GFSR generator. 853 

random_hypergeometric Generates pseudorandom numbers from a 
hypergeometric distribution. 

768 

random_logarithmic Generates pseudorandom numbers from a logarithmic 
distribution. 

770 

random_lognormal Generates pseudorandom numbers from a lognormal 
distribution. 

796 

random_multinomial Generates pseudorandom numbers from a multinomial 
distribution. 

821 

random_mvar_from_data Generates pseudorandom numbers from a multivariate 
distribution determined from a given sample. 

819 

random_neg_binomial Generates pseudorandom numbers from a negative 
binomial distribution. 

772 

random_normal Generates pseudorandom numbers from a standard 
normal distribution using an inverse CDF method. 

798 

random_normal_multivariate Generates pseudorandom numbers from a multivariate 
normal distribution. 

 815 

random_npp Generates pseudorandom numbers from a 
nonhomogeneous Poisson process. 

835 

random_option Selects the uniform (0, 1) multiplicative congruential 
pseudorandom number generator. 

845 

random_option_get Retrieves the uniform (0, 1) multiplicative congruential 
pseudorandom number generator. 

846 
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Function Purpose Statement Page 
random_order_normal Generates pseudorandom order statistics from a 

standard normal distribution. 
827 

random_order_uniform Generates pseudorandom order statistics from a 
uniform (0, 1) distribution  

829 

random_orthogonal_matrix Generates a pseudorandom orthogonal matrix  
or a correlation matrix. 

816 

random_permutation Generates a pseudorandom permutation. 839 

random_poisson Generates pseudorandom numbers from a Poisson 
distribution. 

774 

random_sample Generates a simple pseudorandom sample from a finite 
population. 

842 

random_sample_indices Generates a simple pseudorandom sample of indices. 840 

random_seed_get Retrieves the current value of the seed used in the 
IMSL random number generators. 

847 

random_seed_set Initializes a random seed for use in the IMSL random 
number generators. 

850 

random_sphere Generates pseudorandom points on a unit circle or K-
dimensional sphere. 

823 

random_stable Sets up a table to generate pseudorandom numbers 
from a general discrete distribution. 

800 

random_student_t Generates pseudorandom Student's  t. 802 

random_substream_seed_get Retrieves  a seed for the congruential generators that 
do not do shuffling that will generate random numbers 
beginning 100,000 numbers farther along.  

848 

random_table_get Retrieves the current table used in the shuffled 
generator. 

852 

random_table_set Sets the current table used in the shuffled generator. 851 

random_table_twoway Generates a pseudorandom two-way table. 825 

random_triangular Generates pseudorandom numbers from a triangular 
distribution. 

803 

random_uniform Generates pseudorandom numbers from a uniform (0, 
1) distribution. 

804 

random_uniform_discrete Generates pseudorandom numbers from a discrete 
uniform distribution. 

775 

random_von_mises Generates pseudorandom numbers from a von Mises 
distribution. 

806 
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Function Purpose Statement Page 
random_weibull Generates pseudorandom numbers from a Weibull 

distribution. 
808 

randomness_test Performs a test for randomness. 505 

ranks Computes the ranks, normal scores, or exponential 
scores for a vector of observations. 

36 

rcbd_factorial Analyzes data from balanced and unbalanced 
randomized complete-block experiments. 

279 

regression Fits a multiple linear regression model using least 
squares. 

64 

regression_prediction Computes predicted values, confidence intervals, and 
diagnostics after fitting a regression model. 

85 

regression_selection Selects the best multiple linear regression models. 112 

regression_stepwise Builds multiple linear regression models using forward 
selection, backward selection or stepwise selection. 

123 

regression_summary Produces summary statistics for a regression model 
given the information from the fit. 

77 

regressors_for_glm Generates regressors for a general linear model. 56 

robust_covariances Computes a robust estimate of a covariance matrix and 
mean vector. 

204 

sign_test Performs a sign test. 442 

simple_statistics Computes basic univariate statistics. 2 

sort_data Sorts observations by specified keys, with option to 
tally cases into a multi-way frequency table. 

27 

split_plot Analyzes a wide variety of split-plot experiments with 
fixed, mixed or random factors. 

316 

split_split_plot Analyzes data from split-split-plot experiments. 329 

strip_plot Analyzes data from strip-plot experiments. 345 

strip_split_plot Analyzes data from strip-split-plot experiments. 355 

survival_estimates Estimates using various parametric models. 697 

survival_glm Analyzes survival data using a generalized linear 
model. 

673 

t_cdf Evaluates the Student's t distribution function. 751 

t_inverse_cdf Evaluates the inverse of the Student's  t distribution 
function. 

753 

table_oneway Tallies observations into one-way frequency table. 18 

table_twoway Tallies observations into a two-way frequency table. 22 
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Function Purpose Statement Page 
tie_statistics Computes tie statistics for a sample of observations. 458 

version Returns integer information describing the version of 
the library, license number, operating system, and 
compiler. 

878 

wilcoxon_rank_sum Performs a Wilcoxon rank sum test. 460 

wilcoxon_sign_rank Performs a Wilcoxon sign rank test. 445 

write_matrix Prints a rectangular matrix (or vector) stored in 
contiguous memory locations. 

861 

write_options Sets or retrieves an option for printing a matrix. 868 

yates Estimates missing observations in designed 
experiments using Yate’s method. 

390 
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Index 

A 

alpha factor analysis 619 
ANOVA 

balanced 256 
factorial 239 
multiple comparisons 385 
nested 247 
oneway 230 

ANSI C vii 
ARIMA models 

forecasts 527 
least-square estimates 517 

association, measures of 410 
Autoregressive Moving Average 

Model 516 

B 

backward selection 123 
balanced 256 
balanced experimental design 256 
beta distribution function 730 

inverse 731 
beta distribution, simulation 786 
beta functions 901, 903, 904 
binomial coefficient 900 
binomial distribution 720 
binomial distributions 760, 765, 772, 

781, 812, 1, 6, 7 
binomial probability 722 
bivariate normal distribution 

function 732 
Bonferroni method 234 
Box-Cox transformation 537 

C 

Cartesian coordinates 824 
cauchy distributions 788 
chi-squared analysis 404 

chi-squared distribution function 
734, 736 

chi-squared distributions 789 
chi-squared goodness-of-fit test 482 
chi-squared statistics 403, 408 
chi-squared test 481 
classification model 

one-way 230 
cluster analysis 583, 598 
cluster membership 594, 2 
cluster_hierarchical 590 
cluster_number 594 
Cochran Q test 472 
coefficient 

excess (kurtosis) 2 
skewness 2 
variation 6 

compiler 878 
computer constants 886, 888 
confidence intervals 140 

mean 3 
constants 886, 888 
contingency coefficient 408 
contingency tables 417, 419 

two-way 404 
correlation matrix 185, 816, 6, 7 
correlations 193 
counts 2, 27 
covariances 204 
Cox and Stuart sign test 452 
CPU 911 
Cramer’s V 408 
Crd factorial 267 

factorial experiments 273 
pooled location interaction 273 
unbalanced 267, 2 
unbalanced completely 

randomized experiments 267 
crosscorrelation 546 
cross-correlation function 515, 546, 

552, 654, 660, 703, 712, 2, 4 

D 

data sets 890 
deviation, standard 2 
diagnostic checking 516 
diagnostics 140 
discrete uniform distributions 775 
discriminant function analysis 628 
dissimilarities 586 
distribution functions 

beta 730 
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inverse 731 
bivariate normal 732 
chi-squared 734 

inverse 736 
chi-squared, noncentral 738, 740 

inverse 740 
F_cdf 

inverse 742 
F_inverse_cdf 744 
gamma 745 
Gaussian 748 
hypergeometric 723 
inverse 750 
normal 748 
Poisson 726 
Student’s t 751 

inverse 753 
Student’s t, noncentral 754 

inverse 757 
Dunn-Sidák method 234 

E 

eigensystem analysis 584 
empirical tests 764 
error handling xiii, 879, 885, 913 
error messages 874 
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analysis 239 
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Fisher’s LSD 235 
forecasting 516 
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multi-way 27 
Friedman’s test 467 
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gamma distribution function 745 
gamma distribution, simulation 794 
gamma functions 905, 907, 909 
gamma_inverse_cdf 747 
GARCH 
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Gaussian distribution functions 748 
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general continuous distribution 810 
general discrete distribution 777, 
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general linear models 56 
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method 761 
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GFSR generator 762, 853 
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Haar measure 817 
hierarchical cluster analysis 590, 2 
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723 
hypergeometric distributions 768 
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hyper-rectangle 857 
hypothesis 96, 101, 106 
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image analysis 618 
integrated rate function 837 
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Kalman filtering 571 
Kaplan_meier estimates 655 
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computes 654 
Kappa analysis 403 
K-dimensional sphere 823 
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K-means analysis 598 
Kolmogorov one-sample test 494 
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Kruskal-Wallis test 465 
k-sample trends test 475 
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lack-of-fit test 563 
lack-of-fit tests 52 
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3x3 balanced-lattice 302 
balanced lattice experiments 302 
intra-Block Error 303 
partially-balanced lattice 

experiments 297, 302 
Least Absolute Value 55, 168, 172, 

180 
Least Maximum Value 55, 168, 184 
Least Squares 

Alternatives 
Least Absolute Value 55 
Least Maximum Value 55 
Lp Norm 55 

least-squares fit 64, 168, 247, 256, 
445, 449, 452, 458, 467, 494, 
497, 560 

Lebesque measure 858 
library version 878 
linear dependence 48 
linear discriminant function analysis 

628 
linear regression 

multiple 44 
simple 44 

logarithmic distributions 770 
low-discrepancy 859 
Lp Norm 55, 173 
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MAD (Median Absolute Deviation) 
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Mardia’s multivariate measures 503 
Mardia’s multivariate tests 501 

matrices 586, 893, 2 
matrix of dissimilarities 586, 2 
matrix storage modes ix 
maximum 2, 5 
maximum likelihood estimates 577 
mean 2, 5, 7, 9 

for two normal populations 11 
normal population 7 

measures of association 403, 409 
measures of prediction 410 
measures of uncertainty 410 
median 6 

absolute deviation 6 
memory allocation x 
minimum 2, 5 
missing values 55 
models 149 

general linear 56 
multiple linear regression 112 
nonlinear regression 50 
polynomial 45 
polynomial regression 140 

Monte Carlo applications 764 
multinomial distribution 821 
Multiple comparisons 385 
Multiple comparisons test 

Bonferroni, Tukey’s, or Duncan’s 
MRT 385 

Student-Newman-Keuls 385 
multiple linear regression models 64, 

112, 123, 168, 247, 256, 445, 
449, 452, 458, 467, 494, 497, 
560 

multiple_crosscorrelation 552 
multiplicative congruential generator 

762 
multiplicative generator 762 
multiplying matrices 893 
multivariate distribution 760, 819, 6 
multivariate general linear 

hypothesis 101, 106 
multivariate normal distribution, 

simulation 815 
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nested 247 
nested random model 215, 247, 251 
Noether test 449 
non-ANSI C vii 
noncentral chi-squared distribution 

function 738 
inverse 740 
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noncentral Student’s t distribution 
function 754, 757 

nonhomogeneous Poisson process 
835 

nonlinear model 159 
nonlinear regression 149 
nonlinear regression models 50, 149 
nonparam_hazard_rate 703 
nonparametric hazard rate estimation 

703, 4 
nonuniform generators 764 
normal distribution function 750 
normal distribution, simulation 798 
normal populations 

mean 7 
variance 7 

normal scores 36 
normality test 490 
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observations 
number of 2 

oneway 230 
one-way classification model 230 
one-way frequency table 18 
operating system 878 
order statistics 827, 829 
orthogonal matrix 816 
output files 874 
overflow xiii 

P 

parameter estimation 516 
partial correlations 193 
partial covariances 193 
partially tested hypothesis 96 
permutations 897, 898 
phi 408 
Poisson distribution function 726 
Poisson distribution, simulation 774 
poisson_pdf 728 
polynomial models 45 
polynomial regression 132 
polynomial regression models 140 
pooled variance-covariance 198 
population 712, 4 
predicted values 140 
prediction coefficient 410 
principal components 603 
printing 

matrices 861 

options 868 
retrieving page size 867 
setting paper size 867 
vectors 861 

probability limits 
ARMA models 527 

prop_hazards_gen_lin 660 
pseudorandom number generators 

481 
pseudorandom numbers 760, 778, 

781, 796, 802, 806, 808, 812, 
2, 6 

pseudorandom order statistics 760, 7 
pseudorandom orthogonal matrix 

760, 7 
pseudorandom permutation 839 
pseudorandom points 760, 7 
pseudorandom sample 760, 840, 7 
p-values 408 

Q 

quadratic discriminant function 
analysis 628 

R 

random numbers 
beta distribution 786 
exponential distribution 791 
gamma distribution 794 
Poisson distribution 774 
seed 

current value 847, 7 
initializing 850 

selecting generator 845, 846 
random numbers generators 798 
randomness test 505 
range 2, 6 
ranks 36 
Rcbd factorial 279 
regression models 44, 77, 85 
regressors 56 
robust covariances 204 

S 

sample autocorrelation function 541 
sample correlation function 516 
sample partial autocorrelation 

function 560 
Scheffé method 234 
scores 



 

 
 

IMSL C/Stat/Library Index � v 

 

 

 

exponential 36 
normal 36 

seed 848 
Seed 763 
serial number 878 
shuffled generator 851, 852 
sign test 442 
simulation of random variables 761 
skewness 2, 5 
Split plot 316 

blocking factor 323 
completely randomized 316 
completely randomized design 323 
experiments 316, 8 
fixed effects 323 
IMSLS_RCBD default setting 324 
random effects 325 
randomized complete block design 

316, 323 
randomizing whole-plots 324 
split plot factor 324 
split plot factors 323 
whole plot 323 
whole plot factor 324 
whole plot factors 323 

Split Plots 
whole-plots 316 

Split-split plot 329 
split-plot factors 330 
split-split-plot experiments 329 
sub-plot factors 330 
whole plot factors 330 

stable distribution 800 
standard deviation 2, 9 
standard errors 408 
state vector 571 
statespace model 571 
stepwise selection 123 
Strip plot 345 
Strip-split plot 355 
Student’s t distribution function 751 

inverse 753 
summary statistics 50 
survival probabilities 654, 655, 3 

T 

t statistic 15 
tests for randomness 481 
Thread Safe viii 

multithreaded application viii 
single-threaded application ix 
threads and error handling 915 

tie statistics 458 
time domain methodology 516 
time event data 653, 660, 5 
time series 516, 831 

difference 532 
transformation 516 
transformations 54 
transposing matrices 893 
triangular distributions 803 
Tukey method 233 
Tukey-Kramer method 233 
two-way contingency table 826 
two-way frequency tables 22 
two-way table 825 

U 

uncertainty, measures of 410 
underflow xiii 
uniform distribution, simulation 804 
unit circle 760, 7 
unit sphere 824 
univariate statistics 2, 425, 673, 697, 

792 
update equations 572 
user-supplied gradient 159 

V 

variable selection 45 
variance 2, 5, 7 

for two normal populations 11 
normal population 7 

variance-covariance matrix 185 
variation, coefficient of 6 

W 

weighted least squares 50 
Wilcoxon rank sum test 460 
Wilcoxon signed rank test 445 
Wilcoxon two-sample test 466 
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