
C Numerical Library™
User's Guide
VOLUME 3 o f 4 : C Stat Library™ [CHAPTERS 1 -7]

V E R S I O N 5 . 5

Visual Numerics, Inc.
Corporate Headquarters
2500 Wilcrest Drive, Ste 200
Houston, Texas 77042-2759
USA

PHONE: 713-784-3131
FAX: 713-781-9260
e-mail: info@vni.com

Visual Numerics
International Ltd.
Centennial Court
Suite 1, North Wing
Easthampstead Road
BRACKNELL BERSHIRE
RG12 1YQ
United Kingdom

PHONE: +44-1-344-45-8700
FAX: +44-1-344-45-8748
e-mail: info@vniuk.co.uk

Visual Numerics SARL
Tour Europe
33 Place des Corolles Cedex
F-92049 Paris La Defense
France

PHONE: +33-1-46-93-94-20
FAX: +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics S. A. de C.V.
Florencia 57 Piso 10-01
Col. Juarez
Mexico D. F. C. P. 06000
Mexico
PHONE: +52-5514-9730 or 9628
FAX: +52-5514-5880

Visual Numerics International GmbH
Zettachring 10
D-70567 Stuttgart
Germany

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Japan, Inc
GOBANCHO HIKARI Building 4th Floor
14 Goban-cho ChIiyoda-KU
Tokyo, 113
JAPAN

PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

Visual Numerics, Inc.
7/F, #510, Chung Hsiao E. Road
Section 5
Taipei, TAIWAN 110
Republic of China

PHONE: (886) 2-727-2255
FAX: (886) 2-727-6798
e-mail: info@vni.com.tw

World Wide Web site: http://www.vni.com

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-Mapo-Dong, Mapo-gu
Seoul 121-050
Korea

PHONE:+82-2-3273-2632 or 2633
FAX: +82-2-3273-2634
e-mail: info@vni.co.kr

COPYRIGHT NOTICE: Copyright 1990-2003, an unpublished work by Visual Numerics, Inc. All rights reserved.

VISUAL NUMERICS, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Visual Numerics, Inc., shall not be liable for errors contained herein or for incidental, consequential, or other indirect
damages in connection with the furnishing, performance, or use of this material.

TRADEMARK NOTICE: IMSL, Visual Numerics, IMSL FORTRAN Numerical Libraries, IMSL Productivity Toolkit, IMSL
Libraries Environment and Installation Assurance Test, C Productivity Tools, FORTRAN Productivity Tools, IMSL C/Math/Library,
IMSL C/Stat/Library, IMSL Fortran 90 MP Library, and IMSL Exponent Graphics are registered trademarks or trademarks of Visual
Numerics, Inc., in the U.S. and other countries. Sun, SunOS, and Solaris are registered trademarks or trademarks of Sun Microsystems,
Inc. SPARC and SPARCompiler are registered trademarks or trademarks of SPARC International, Inc. Silicon Graphics is a registerd
trademark of Silicon Graphics, Inc. IBM, AIX, and RS/6000 are registered trademarks or trademarks of International Business
Machines Corporation. HP is a trademark of Hewlett-Packard. Silicon Graphics and IRIX are registered trademarks or trademarks of
Silicon Graphics, Inc. DEC and AXP are registered trademarks or trademarks of Digital Equipment Corporation. All other trademarks
are the property of their respective owners.

Use of this document is governed by a Visual Numerics Software License Agreement. This document contains confidential and
proprietary information constituting valuable trade secrets. No part of this document may be reproduced or transmitted in any form
without the prior written consent of Visual Numerics.

RESTRICTED RIGHTS LEGEND: This documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by
the U.S. Government is subject to the restrictions set forth in subparagraph (c)(1)(ll) of the Rights in Technical Data and Computer
Software clause at DFAR 252.227-7013, and in subparagraphs (a) through (d) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR Supplement, when applicable. Contractor/Manufacturer is
Visual Numerics, Inc., 2500 Wilcrest Drive, Ste 200, Houston, Texas 77042.

IMSL Fortran and C and Java
Application Development Tools

IMSL C/Stat/Library CStat Library /V1 Table of Contents • i

CStat Library /V1 Table of Contents

Introduction vii

Chapter 1: Basic Statistics 1

Chapter 2: Regression 43

Chapter 3: Correlation and Covariance 185

Chapter 4: Analysis of Variance and Designed Experiments 215

Chapter 5: Categorical and Discrete Data Analysis 403

Chapter 6: Nonparametric Statistics 441

Chapter 7: Tests of Goodness of Fit 481

Appendix A: References A-1

Appendix B: Alphabetical Summary of Routines B-1

Index i

Introduction IMSL C/Stat/Library � vii

Introduction

IMSL C/Stat/Library
The IMSL C/Stat/Library is a library of C functions useful in scientific
programming. Each function is designed and documented to be used in research
activities as well as by technical specialists. A number of the example programs
also show graphs of resulting output.

Getting Started
To use any of the C/Stat/Library functions, you must first write a program in C to
call the function. Each function conforms to established conventions in
programming and documentation. First priority in development is given to
efficient algorithms, clear documentation, and accurate results. The uniform
design of the functions makes it easy to use more than one function in a given
application. Also, you will find that the design consistency enables you to apply
your experience with one C/Stat/Library function to all other C functions that you
use.

ANSI C vs. Non-ANSI C
All of the examples in this documentation conform to ANSI C. If you are not
using ANSI C, you will need to modify your examples in functions that are
declared or in those arrays that are initialized as type float.

Non-ANSI C does not allow for automatic aggregate initialization, and thus, all
auto arrays that are initialized as type float in ANSI C must be initialized as type
static float in non-ANSI C. The following program contains arrays that are
initialized as type float and also a user-defined function:

1 #include <imsls.h>
2
3 float fcn(int, float[], int, float[]);
4
5 main()
6 {
7 int n_observations = 3,
8 n_parameters = 1,
9 n_independent = 1;
10 float *theta_hat;

viii � Thread Safe Usage IMSL C/Stat/Library

11 float x[3] = {1.0, 2.0, 3.0};
12 float y[3] = {2.0, 4.0, 3.0};
13 /* Evaluate the integral */
14 theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters,
15 n_observations, n_independent, x, y, 0);
16 /* Print the result and the exact answer */
17 imsls_f_write_matrix("estimated coefficient", 1, 1, theta_hat, 0);
18 }
19 float fcn(int n_independent, float x[], int n_parameters,
20 float theta[])
21 {
22 return exp(theta[0]*x[0]);
23 }

If using non-ANSI C, you will need to modify lines 3, 11, 12, 19, and 20 as
follows:

3 float fcn(); /* Function is not prototyped */
 .
 .
 .
11 static float x[3] = {1.0, 2.0, 3.0};
12 static float y[3] = {2.0, 4.0, 3.0};
 .
 .
 .
19 float fcn(n_independent, x, n_parameters,
20 theta) /*Declaration of variable names*/
20a int n_independent;
20b float x[];
20c int n_parameters;
20d float theta[]; /*Type definitions of variables*/

The imsls.h File
The include file <imsls.h> is used in all the examples in this manual. This file
contains prototypes for all IMSL-defined functions; the structures,
Imsls_f_regression, Imsls_d_regression, Imsls_f_poly_regression,
Imsls_d_poly_regression, Imsls_f_arma, and Imsls_d_arma; and the enumerated
data types, Imsls_arma_method, Imsls_permute, Imsls_dummy_method,
Imsls_write_options, Imsls_page_options, and Imsls_error.

Thread Safe Usage
On systems that support either POSIX threads or WIN32 threads, IMSL
C/Stat/Library can be safely called from a multithreaded application. When
IMSL C/Stat/Library is used in a multithreaded application, the calling program
must adhere to a few important guidelines. In particular, IMSL C/Stat/Library's
implementation of signal handling, error handling, and I/O must be understood.

Signal Handling
When calling C/Stat/Library from a multithreaded application it is necessary to
turn C/Stat/Library 's signal-handling capability off. This is accomplished by

Introduction Matrix Storage Modes � ix

making a single call to imsls_error_options before any calls are made to
C/Stat/Library. For an example of turning off C/Stat/Library's internal-signal
handling , see Chapter 14, “Utilities”, Example 3 of imsls_error_options.

C/Stat/Library 's error handling in a multithreaded application behaves similarly
to how it behaves in a single-threaded application. The major difference is that
an error stack exists for each thread calling C/Stat/Library functions. The result
of separate error stacks for each thread is greater control of the error handler
options for each thread. Each thread can set its own options for the
C/Stat/Library error handler using imsls_error_options. For an example of
setting error handler options for separate threads, see Chapter 14, “Utilities”,
Example 3 of imsls_error_options.

Routines that Produce Output
A number of routines in C/Stat/Library can be used to produce output. The
function imsls_output_file can be used to control which file the output is
directed. In an application with a single thread of execution, a single call to
imsls_output_file can be used to set the file to which the output will be
directed. In a multithreaded application each thread must call
imsls_output_file to change the default setting of where output will be
directed. See Chapter 14, “Utilities”, Example 2 of imsls_output_ file for
more details.

Input Arguments
In a multithreaded application attention must be given to the data sent to
C/Stat/Library. Some arguments that may appear to be input-only are temporarily
modified during the call and restored before returning to the caller. Care must be
used to avoid usage of the same data space in separate threads calling functions in
C/Stat/Library.

Matrix Storage Modes
In this section, the word matrix is used to refer to a mathematical object and the
word array is used to refer to its representation as a C data structure. In the
following list of array types, the C/Stat/Library functions require input consisting
of matrix dimension values and all values for the matrix entries. These values are
stored in row-major order in the arrays.

Each function processes the input array and typically returns a pointer to a
“result.” For example, in solving linear regression, the pointer points to the
estimated coefficients. Normally, the input array values are not changed by the
functions.

In the C/Stat/Library, an array is a pointer to a contiguous block of data. An array
is not a pointer to a pointer to the rows of the matrix. Typical declarations are as
follows:

x � Memory Allocation for Output Arrays IMSL C/Stat/Library

 float *a = {1, 2, 3, 4};
 float b[2][2] = {1, 2, 3, 4};
 float c[] = {1, 2, 3, 4};

Note: If you are using non-ANSI C and the variables are of type auto, the above
declarations would need to be declared as type static float.

General Mode
A general matrix is a square n � n matrix. The data type of a general array can be
int, float, or double.

Rectangular Mode
A rectangular matrix is an m � n matrix. The data type of a rectangular array can
be int, float, or double.

Symmetric Mode

A symmetric matrix is a square n � n matrix A, such that AT = A. (The matrix
AT is the transpose of A.) The data type of a symmetric array can be int, float, or
double.

Memory Allocation for Output Arrays
Many functions return a pointer to an array containing the computed answers. If
the function invocation uses the optional arguments

IMSLS_RETURN_USER, float a[]

then the computed answers are stored in the user-provided array a, and the
pointer returned by the function is set to point to the user-provided array a. If an
invocation does not use IMSLS_RETURN_USER, then a pointer to the function is
internally initialized (through a memory allocation request to malloc) and stores
the answers there. (To release this space, free can be used. Both malloc and
free are standard C library functions declared in the header.) In this way, the
allocation of space for the computed answers can be made either by the user or
internally by the function.

Similarly, other optional arguments specify whether additional computed output
arrays are allocated by the user or are to be allocated internally by the function.
For example, in many functions, the optional arguments

IMSLS_ANOVA_TABLE, float **anova_table (Output)
IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)

specify two mutually exclusive optional arguments. If the first option is chosen,
float **anova_table refers to the address of a pointer to an internally allocated
array containing the analysis of variance statistics. On return, the pointer is
initialized (through a memory allocation request to malloc), and the array is

Introduction Finding the Right Function � xi

stored there. Typically, float *anova_table is declared, &anova_table is used
as an argument to this function, and free(anova_table) is used to release the
space. In the second option, the analysis of variance statistics are stored in the
user-provided array anova_table.

Finding the Right Function
The C/Stat/Library documentation is organized into chapters; each chapter
contains functions with similar computational or analytical capabilities. To locate
the right function for a given problem, use either the table of contents located in
each chapter introduction or the alphabetical summary at the end of this manual.

Often, the quickest way to use the C/Stat/Library is to find an example similar to
your problem, then mimic the example. Each function documented has at least
one example demonstrating its application.

Organization of the Documentation
This manual contains a concise description of each function with at least one
example demonstrating the use of each function, including sample input and
results. All information pertaining to a particular function is in one place within a
chapter.

Each chapter begins with an introduction followed by a table of contents listing
the functions included in the chapter. Documentation of the functions consists of
the following information:

� Section Name: Usually, the common root for the type float and type double
versions of the function.

� Purpose: A statement of the purpose of the function.

� Synopsis: The form for referencing the subprogram with required arguments
listed.

� Required Arguments: A description of the required arguments in the order of
their occurrence.

Input: Argument must be initialized; it is not changed by the function.

Input/Output: Argument must be initialized; the function returns output
through this argument. The argument cannot be a constant or an expression.

Output: No initialization is necessary. The argument cannot be a constant
or an expression; the function returns output through this argument.

� Return Value: The value returned by the function.

� Synopsis with Optional Arguments: The form for referencing the function
with both required and optional arguments listed.

xii � Naming Conventions IMSL C/Stat/Library

� Optional Arguments: A description of the optional arguments in the order of
their occurrence.

� Description: A description of the algorithm and references to detailed
information. In many cases, other IMSL functions with similar or
complementary functions are noted.

� Examples: At least one application of this function showing input and
optional arguments.

� Errors: Listing of any errors that may occur with a particular function. A
discussion on error types is given in the “User Errors” section of the Reference
Material. The errors are listed by their type as follows:

Informational Errors: List of informational errors that may occur with the
function.

Alert Errors: List of alert errors that may occur with the function.

Warning Errors: List of warning errors that may occur with the function.

Fatal Errors: List of fatal errors that may occur with the function.

References: References are listed alphabetically by author.

Naming Conventions
Most functions are available in both a type float and a type double version, with
names of the two versions sharing a common root. Some functions are also
available in type int. The following list is of each type and the corresponding
prefix of the function name in which multiple type versions exist:

Type Prefix
float imsls_f_

double imsls_d_

int imsls_i_

The section names for the functions contain only the common root to make
finding the functions easier. For example, the functions
imsls_f_simple_statistics and imsls_d_simple_statistics can be
found in Chapter 1, Basic Statistics, in the “simple_statistics” section.

Where appropriate, the same variable name is used consistently throughout the
C/Stat/Library. For example, anova_table denotes the array containing the
analysis of variance statistics and y denotes a vector of responses for a dependent
variable.

When writing programs accessing the C/Stat/Library, choose C names that do not
conflict with IMSL external names. The careful user can avoid any conflicts with
IMSL names if, in choosing names, the following rule is observed:

Introduction Error Handling, Underflow, and Overflow � xiii

� Do not choose a name beginning with “imsls_” in any combination of
uppercase or lowercase characters.

Error Handling, Underflow, and Overflow
The functions in the C/Stat/Library attempt to detect and report errors and invalid
input. This error-handling capability provides automatic protection for the user
without requiring the user to make any specific provisions for the treatment of
error conditions. Errors are classified according to severity and are assigned a
code number. By default, errors of moderate or higher severity result in messages
being automatically printed by the function. Moreover, errors of highest severity
cause program execution to stop. The severity level, as well as the general nature
of the error, is designated by an “error type” with symbolic names IMSLS_FATAL,
IMSLS_WARNING, etc. See the section “User Errors” in the Reference Material for
further details.

In general, the C/Stat/Library codes are written so that computations are not
affected by underflow, provided the system (hardware or software) replaces an
underflow with the value 0. Normally, system error messages indicating
underflow can be ignored.

IMSL codes also are written to avoid overflow. A program that produces system
error messages indicating overflow should be examined for programming errors
such as incorrect input data, mismatch of argument types, or improper
dimensions.

In many cases, the documentation for a function points out common pitfalls that
can lead to failure of the algorithm.

Printing Results
Most functions in the C/Stat/Library do not print any of the results; the output is
returned in C variables. The C/Stat/Library does contain some special functions
just for printing arrays. For example, IMSL function imsls_f_write_matrix
is convenient for printing matrices of type float. See Chapter 13, “Printing
Functions,” for detailed descriptions of these functions.

Missing Values
Some of the functions in the C/Stat/Library allow the data to contain missing
values. These functions recognize as a missing value the special value referred to
as “Not a Number” or NaN. The actual value is different on different computers,
but it can be obtained by reference to the function imsls_f_machine, described
in Chapter 14, “Utilities”.

The way that missing values are treated depends on the individual function and is
described in the documentation for the function.

xiv � Passing Data to User-Supplied Functions IMSL C/Stat/Library

Passing Data to User-Supplied Functions
In some cases it may be advantageous to pass problem-specific data to a user-
supplied function through the IMSL C/Stat/Library interface. This ability can be
useful if a user-supplied function requires data that is local to the user's calling
function, and the user wants to avoid using global data to allow the user-supplied
function to access the data. Functions in IMSL C/Stat/Library that accept user-
supplied functions have an optional argument(s) that will accept an alternative user-
supplied function, along with a pointer to the data, that allows user-specified data
to be passed to the function. The example below demonstrates this feature using the
IMSL C/Stat/Library function imsls_f_kolmogorov_one and optional argument
IMSLS_FCN_W_DATA.

#include <imsls.h>
#include <stdio.h>
float cdf_w_data(float, void *data_ptr);
float cdf(float);
void main()
{
 float *statistics=NULL, *diffs = NULL, *x=NULL;
 int nobs = 100, nmiss;
 float usr_data[] = {0.5, .2886751};

 imsls_random_seed_set(123457);
 x = imsls_f_random_uniform(nobs, 0);

 statistics = imsls_f_kolmogorov_one(cdf, nobs, x,
 IMSLS_N_MISSING, &nmiss,
 IMSLS_DIFFERENCES, &diffs,
 IMSLS_FCN_W_DATA, cdf_w_data, usr_data,
 0);
 printf("D = %8.4f\n", diffs[0]);
 printf("D+ = %8.4f\n", diffs[1]);
 printf("D- = %8.4f\n", diffs[2]);
 printf("Z = %8.4f\n", statistics[0]);
 printf("Prob greater D one sided = %8.4f\n", statistics[1]);
 printf("Prob greater D two sided = %8.4f\n", statistics[2]);
 printf("N missing = %d\n", nmiss);
}
/*
 * User function that accepts additional data in a (void*) pointer.
 * This (void*) pointer can be cast to any type and dereferenced to
 * get at any sort of data-type or structure that is needed.
 * For example, to get at the data in this example
 * *((float*)data_ptr) contains the value 0.5
 * *((float*)data_ptr+1) contains the value 0.2886751.
 */
float cdf_w_data(float x, void *data_ptr)
{
 float mean, std, z;
 mean = *((float*)data_ptr);
 std = *((float*)data_ptr+1);

 z = (x-mean)/std;
 return(imsls_f_normal_cdf(z));

Introduction Passing Data to User-Supplied Functions � xv

}
/* Dummy function to satisfy C prototypes. */
float cdf(float x)
{
 return;
}

Chapter 1: Basic Statistics Routines � 1

Chapter 1: Basic Statistics

Routines
1.1 Simple Summary Statistics

Univariate summary statisticssimple_statistics 2
Mean and variance inference
for a single normal population......................... normal_one_sample 7
Inferences for two normal populations.............normal_two_sample 11

1.2 Tabulate, Sort, and Rank
Tally observations into a one-way frequency table table_oneway 18
Tally observations into a two-way frequency table..... table_twoway 22
Sort data with options to tally cases
into a multi-way frequency table.. sort_data 27
Ranks, normal scores, or exponential scores......................... ranks 36

Usage Notes
The functions for computations of basic statistics generally have relatively simple
arguments. In most cases, the first required argument is the number of
observations. The data are input in either a one- or two-dimensional array. As
usual, when a two-dimensional array is used, the rows contain observations and
the columns represent variables. Most of the functions in this chapter allow for
missing values. Missing value codes can be set by using function
imsls_f_machine, described in Chapter 14, Utilities.

Several functions in this chapter perform statistical tests. These functions
generally return a “p-value” for the test, often as the return value for the C
function. The p-value is between 0 and 1 and is the probability of observing data
that would yield a test statistic as extreme or more extreme under the assumption
of the null hypothesis. Hence, a small p-value is evidence for the rejection of the
null hypothesis.

2 � simple_statistics IMSL C/Stat/Library

simple_statistics
Computes basic univariate statistics.

Synopsis
#include <imsls.h>
float *imsls_f_simple_statistics (int n_observations,

int n_variables, float x[], ..., 0)

The type double function is imsls_d_simple_statistics.

Required Arguments

int n_observations (Input)
Number of observations.

int n_variables (Input)
Number of variables.

float x[] (Input)
Array of size n_observations � n_variables containing the data
matrix.

Return Value
A pointer to an array containing some simple statistics for each of the columns in
x. If IMSLS_MEDIAN and IMSLS_MEDIAN_AND_SCALE are not used as optional
arguments, the size of the matrix is 14 � n_variables. The columns of this
matrix correspond to the columns of x, and the rows contain the following
statistics:

Row Statistic
0 mean

1 variance

2 standard deviation

3 coefficient of skewness

4 coefficient of excess (kurtosis)

5 minimum value

6 maximum value

7 range

8 coefficient of variation (when defined)
If the coefficient of variation is not defined, 0 is returned.

9 number of observations (the counts)

Row Statistic

Chapter 1: Basic Statistics simple_statistics � 3

10 lower confidence limit for the mean (assuming normality)
The default is a 95-percent confidence interval.

11 upper confidence limit for the mean (assuming normality)

12 lower confidence limit for the variance (assuming normality)
The default is a 95-percent confidence interval.

13 upper confidence limit for the variance (assuming normality))

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_simple_statistics (int n_observations,

int n_variables, float x[],
IMSLS_CONFIDENCE_MEANS, float confidence_means,
IMSLS_CONFIDENCE_VARIANCES, float confidence_variances,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_STAT_COL_DIM, int stat_col_dim,
IMSLS_MEDIAN, or
IMSLS_MEDIAN_AND_SCALE,
IMSLS_MISSING_LISTWISE, or
IMSLS_MISSING_ELEMENTWISE,
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_WEIGHTS, float weights[],
IMSLS_RETURN_USER, float simple_statistics[],
0)

Optional Arguments
IMSLS_CONFIDENCE_MEANS, float confidence_means (Input)

Confidence level for a two-sided interval estimate of the means
(assuming normality) in percent. Argument confidence_means must
be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For a one-
sided confidence interval with confidence level c, set
confidence_means = 100.0 � 2(100 � c). If
IMSLS_CONFIDENCE_MEANS is not specified, a 95-percent confidence
interval is computed.

IMSLS_CONFIDENCE_VARIANCES, float confidence_variances (Input)
The confidence level for a two-sided interval estimate of the variances
(assuming normality) in percent. The confidence intervals are symmetric
in probability (rather than in length). For a one-sided confidence interval
with confidence level c, set confidence_means = 100.0 � 2(100 � c).
If IMSLS_CONFIDENCE_VARIANCES is not specified, a 95-percent
confidence interval is computed.

4 � simple_statistics IMSL C/Stat/Library

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of array x.
Default: x_col_dim = n_variables

IMSLS_STAT_COL_DIM, int stat_col_dim (Input)
Column dimension of the returned value array, or if
IMSLS_RETURN_USER is specified, the column dimension of array
simple_statistics.
Default: stat_col_dim = n_variables

IMSLS_MEDIAN, or
IMSLS_MEDIAN_AND_SCALE

Exactly one of these optional arguments can be specified in order to
indicate the additional simple robust statistics to be computed. If
IMSLS_MEDIAN is specified, the medians are computed and stored in
one additional row (row number 14) in the returned matrix of simple
statistics. If IMSLS_MEDIAN_AND_SCALE is specified, the medians, the
medians of the absolute deviations from the medians, and a simple
robust estimate of scale are computed, then stored in three additional
rows (rows 14, 15, and 16) in the returned matrix of simple statistics.

IMSLS_MISSING_LISTWISE, or
IMSLS_MISSING_ELEMENTWISE

If IMSLS_MISSING_ELEMENTWISE is specified, all non missing data for
any variable is used in computing the statistics for that variable. If
IMSLS_MISSING_LISTWISE is specified and if an observation (row of x)
contains a missing value, the observation is excluded from computations
for all variables. The default is IMSLS_MISSING_LISTWISE. In either
case, if weights and/or frequencies are specified and the value of the
weight and/or frequency is missing, the observation is excluded from
computations for all variables.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency for each
observation.
Default: Each observation has a frequency of 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_observations containing the weight for each
observation.
Default: Each observation has a weight of 1

IMSLS_RETURN_USER, float simple_statistics[] (Output)
User-supplied array containing the matrix of statistics. If neither
IMSLS_MEDIAN nor IMSLS_MEDIAN_AND_SCALE is specified, the
matrix is 14 � n_variables. If IMSLS_MEDIAN is specified, the matrix
is 15 � n_variables. If IMSLS_MEDIAN_AND_SCALE is specified, the
matrix is 17 � n_variables.

Description
For the data in each column of x, imsls_f_simple_statistics computes the
sample mean, variance, minimum, maximum, and other basic statistics. This
function also computes confidence intervals for the mean and variance (under the
hypothesis that the sample is from a normal population).

Frequencies are interpreted as multiple occurrences of the other values in the
observations. In other words, a row of x with a frequency variable having a value
of 2 has the same effect as two rows with frequencies of 1. The total of the
frequencies is used in computing all the statistics based on moments (mean,
variance, skewness, and kurtosis). Weights are not viewed as replication factors.
The sum of the weights is used only in computing the mean (the weighted mean is
used in computing the central moments). Both weights and frequencies can be 0,
but neither can be negative. In general, a 0 frequency means that the row is to be
eliminated from the analysis; no further processing or error checking is done on
the row. A weight of 0 results in the row being counted, and updates are made of
the statistics.

The definitions of some of the statistics are given below in terms of a single
variable x of which the i-th datum is xi.

Mean

x
f w x

f w
w

i i i

i i

�

�
�

Variance

s
f w x x

nw
i i i w2

2

1
�

�

�

� b g

Skewness
f w x x n

f w x x n

i i i w

i i i w

�

�

�

�

b g
b g

3

2 3 2

/

/
/

Excess or Kurtosis
f w x x n

f w x x n

i i i w

i i i w

�

�

�

�

�

b g
b g

4

2 2 3
/

/

Minimum
x ximin min� b g

Maximum
x ximax max� b g

Chapter 1: Basic Statistics simple_statistics � 5

Range
x xmax min�

Coefficient of Variation
s
x

xw

w
wfor � 0

Median

median
middle after sorting if is odd
average of middle two 's if is even

x
x n

x ni
i

i
l q � RST

Median Absolute Deviation
MAD = median {|xi � median {xj}|}

Simple Robust Estimate of Scale
MAD/�-1(3/4)

where �-1(3/4) � 0.6745 is the inverse of the standard normal distribution
function evaluated at 3/4. This standardizes MAD in order to make the scale
estimate consistent at the normal distribution for estimating the standard deviation
(Huber 1981, pp. 107�108).

Example
Data from Draper and Smith (1981) are used in this example, which includes
5 variables and 13 observations.

#include <imsls.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 13

main()
{
 float *simple_statistics;
 float x[] = {
 7., 26., 6., 60., 78.5,
 1., 29., 15., 52., 74.3,
 11., 56., 8., 20., 104.3,
 11., 31., 8., 47., 87.6,
 7., 52., 6., 33., 95.9,
 11., 55., 9., 22., 109.2,
 3., 71., 17., 6., 102.7,
 1., 31., 22., 44., 72.5,
 2., 54., 18., 22., 93.1,
 21., 47., 4., 26., 115.9,
 1., 40., 23., 34., 83.8,
 11., 66., 9., 12., 113.3,
 10., 68., 8., 12., 109.4};
 char *row_labels[] = {
 "means", "variances", "std. dev", "skewness", "kurtosis",
 "minima", "maxima", "ranges", "C.V.", "counts", "lower mean",
 "upper mean", "lower var", "upper var"};

6 � simple_statistics IMSL C/Stat/Library

Chapter 1: Basic Statistics normal_one_sample � 7

 simple_statistics = imsls_f_simple_statistics(N_OBSERVATIONS,
 N_VARIABLES, x, 0);

 imsls_f_write_matrix("* * * Statistics * * *\n", 14, N_VARIABLES,
 simple_statistics,
 IMSLS_ROW_LABELS, row_labels,
 IMSLS_WRITE_FORMAT, "%7.3f", 0);
}

Output
 * * * Statistics * * *

 1 2 3 4 5
means 7.462 48.154 11.769 30.000 95.423
variances 34.603 242.141 41.026 280.167 226.314
std. dev 5.882 15.561 6.405 16.738 15.044
skewness 0.688 -0.047 0.611 0.330 -0.195
kurtosis 0.075 -1.323 -1.079 -1.014 -1.342
minima 1.000 26.000 4.000 6.000 72.500
maxima 21.000 71.000 23.000 60.000 115.900
ranges 20.000 45.000 19.000 54.000 43.400
C.V. 0.788 0.323 0.544 0.558 0.158
counts 13.000 13.000 13.000 13.000 13.000
lower mean 3.907 38.750 7.899 19.885 86.332
upper mean 11.016 57.557 15.640 40.115 104.514
lower var 17.793 124.512 21.096 144.065 116.373
upper var 94.289 659.817 111.792 763.434 616.688

normal_one_sample
Computes statistics for mean and variance inferences using a sample from a
normal population.

Synopsis
#include <imsls.h>
float imsls_f_normal_one_sample (int n_observations, float x[], ...,

0)

The type double function is imsls_d_normal_one_sample.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations.

Return Value
The mean of the sample.

8 � normal_one_sample IMSL C/Stat/Library

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_normal_one_sample (int n_observations, float x[],

IMSLS_CONFIDENCE_MEAN, float confidence_mean,
IMSLS_CI_MEAN, float *lower_limit, float *upper_limit,
IMSLS_STD_DEV, float *std_dev,
IMSLS_T_TEST, int *df, float *t, float *p_value,
IMSLS_T_TEST_NULL, float mean_hypothesis_value,
IMSLS_CONFIDENCE_VARIANCE, float confidence_variance,
IMSLS_CI_VARIANCE, float *lower_limit,
 float *upper_limit,
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,
 float *p_value,
IMSLS_CHI_SQUARED_TEST_NULL,
 float variance_hypothesis_value,
0)

Optional Arguments
IMSLS_CONFIDENCE_MEAN, float confidence_mean (Input)

Confidence level (in percent) for two-sided interval estimate of the
mean. Argument confidence_mean must be between 0.0 and 100.0
and is often 90.0, 95.0, or 99.0. For a one-sided confidence interval with
confidence level c (at least 50 percent), set
confidence_mean = 100.0 � 2.0 � (100.0 � c). If
IMSLS_CONFIDENCE_MEAN is not specified, a 95-percent confidence
interval is computed.

IMSLS_CI_MEAN, float *lower_limit, float *upper_limit (Output)
Argument lower_limit contains the lower confidence limit for the
mean, and argument upper_limit contains the upper confidence limit
for the mean.

IMSLS_STD_DEV, float *std_dev (Output)
Standard deviation of the sample.

IMSLS_T_TEST, int *df, float *t, float *p_value (Output)
Argument df is the degrees of freedom associated with the t test for the
mean, t is the test statistic, and p_value is the probability of a larger
t in absolute value. The t test is a test, against a two-sided alternative, of
the hypothesis � = �0, where �0 is the null hypothesis value as described
in IMSLS_T_TEST_NULL.

IMSLS_T_TEST_NULL, float mean_hypothesis_value (Input)
Null hypothesis value for t test for the mean.
Default: mean_hypothesis_value = 0.0

IMSLS_CONFIDENCE_VARIANCE, float confidence_variance (Input)
Confidence level (in percent) for two-sided interval estimate of the
variances. Argument confidence_variance must be between 0.0 and
100.0 and is often 90.0, 95.0, 99.0. For a one-sided confidence interval
with confidence level c (at least 50 percent), set
confidence_variance = 100.0 � 2.0 � (100.0 � c). If this option is
not used, a 95-percent confidence interval is computed.

IMSLS_CI_VARIANCE, float *lower_limit, float *upper_limit (Output)
Contains the lower and upper confidence limits for the variance.

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,
float *p_value (Output)
Argument df is the degrees of freedom associated with the chi-squared
test for variances, chi_squared is the test statistic, and p_value is the
probability of a larger chi-squared. The chi-squared test is a test of the
hypothesis � � is the null hypothesis value as described
in IMSLS_CHI_SQUARED_TEST_NULL.

�
2

0
2

0
2

� where

IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value
(Input)
Null hypothesis value for the chi-squared test.
Default: variance_hypothesis_value = 1.0

Description
Statistics for mean and variance inferences using a sample from a normal
population are computed, including confidence intervals and tests for both mean
and variance. The definitions of mean and variance are given below. The
summation in each case is over the set of valid observations, based on the
presence of missing values in the data.

Mean, return value

x
x

n
i

�

�

Standard deviation, std_dev

s
x x

n
i

�

�

�

� b g2
1

The t statistic for the two-sided test concerning the population mean is given by

t
x
s n

�
� �0

/

where s and x are given above. This quantity has a T distribution with n � 1
degrees of freedom.

Chapter 1: Basic Statistics normal_one_sample � 9

The chi-squared statistic for the two-sided test concerning the population variance
is given by

�

�

2
2

0
2

1
�

�n sb g

where s is given above. This quantity has a �2 distribution with n � 1 degrees of
freedom.

Examples

Example 1
This example uses data from Devore (1982, p. 335), which is based on data
published in the Journal of Materials. There are 15 observations; the mean is the
only output.

#include <imsls.h>

main()
{
#define N_OBSERVATIONS 15

 float mean;
 float x[N_OBSERVATIONS] = {
 26.7, 25.8, 24.0, 24.9, 26.4,
 25.9, 24.4, 21.7, 24.1, 25.9,
 27.3, 26.9, 27.3, 24.8, 23.6};

 /* Perform analysis */
 mean = imsls_f_normal_one_sample(N_OBSERVATIONS, x, 0);

 /* Print results */
 printf("Sample Mean = %5.2f", mean);
}

Output
Sample Mean = 25.3

Example 2
This example uses the same data as the initial example. The hypothesis
H0: � = 20.0 is tested. The extremely large t value and the correspondingly
small p-value provide strong evidence to reject the null hypothesis.

#include <imsls.h>

main()
{
#define N_OBSERVATIONS 15

 int df;
 float mean, s, lower_limit, upper_limit, t, p_value;
 static float x[N_OBSERVATIONS] = {

10 � normal_one_sample IMSL C/Stat/Library

Chapter 1: Basic Statistics normal_two_sample � 11

 26.7, 25.8, 24.0, 24.9, 26.4,
 25.9, 24.4, 21.7, 24.1, 25.9,
 27.3, 26.9, 27.3, 24.8, 23.6};

 /* Perform analysis +*/
 mean = imsls_f_normal_one_sample(N_OBSERVATIONS, x,
 IMSLS_STD_DEV, &s,
 IMSLS_CI_MEAN, &lower_limit, &upper_limit,
 IMSLS_T_TEST_NULL, 20.0,
 IMSLS_T_TEST, &df, &t, &p_value,
 0);

 /* Print results */
 printf("Sample Mean = %5.2f\n", mean);
 printf("Sample Standard Deviation = %5.2f\n", s);
 printf("95%% CI for the mean is (%5.2f,%5.2f)\n", lower_limit,
 upper_limit);
 printf("df = %3d\n", df);
 printf("t = %5.2f\n", t);
 printf("p-value = %8.5f\n", p_value);
}

Output
Sample Mean = 25.31
Sample Standard Deviation = 1.58
95% CI for the mean is (24.44,26.19)
df = 14
t = 13.03
p-value = 0.00000

normal_two_sample
Computes statistics for mean and variance inferences using samples from two
normal populations.

Synopsis
#include <imsls.h>
float imsls_f_normal_two_sample (int n1_observations, float x1[],

int n2_observations, float x2[], ..., 0)

The type double function is imsls_d_normal_two_sample.

Required Arguments

int n1_observations (Input)
Number of observations in the first sample, x1.

float x1[] (Input)
Array of length n1_observations containing the first sample.

int n2_observations (Input)
Number of observations in the second sample, x2.

12 � normal_two_sample IMSL C/Stat/Library

float x2[] (Input)
Array of length n2_observations containing the second sample.

Return Value
Difference in means, x1_mean � x2_mean.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_normal_two_sample (int n1_observations, float x1[],

int n2_observations, float x2[],
IMSLS_MEANS, float *x1_mean, float *x2_mean,
IMSLS_CONFIDENCE_MEAN, float confidence_mean,
IMSLS_CI_DIFF_FOR_EQUAL_VARS, float *lower_limit,
 float *upper_limit,
IMSLS_CI_DIFF_FOR_UNEQUAL_VARS, float *lower_limit,
 float *upper_limit
IMSLS_T_TEST_FOR_EQUAL_VARS, int *df, float *t,
 float *p_value,
IMSLS_T_TEST_FOR_UNEQUAL_VARS, float *df, float *t,
 float *p_value,
IMSLS_T_TEST_NULL, float mean_hypothesis_value,
IMSLS_POOLED_VARIANCE, float *pooled_variance,
IMSLS_CONFIDENCE_VARIANCE, float confidence_variance,
IMSLS_CI_COMMON_VARIANCE, float *lower_limit,
 float *upper_limit,
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,
 float *p_value,
IMSLS_CHI_SQUARED_TEST_NULL,
 float variance_hypothesis_value,
IMSLS_STD_DEVS, float *x1_std_dev, float *x2_std_dev,
IMSLS_CI_RATIO_VARIANCES, float *lower_limit,
 float *upper_limit,
IMSLS_F_TEST, int *df_numerator, int *df_denominator,
 float *F, float *p_value,
0)

Optional Arguments
IMSLS_MEANS, float *x1_mean, float *x2_mean (Output)

Means of the first and second samples.

IMSLS_CONFIDENCE_MEAN, float confidence_mean (Input)
Confidence level for two-sided interval estimate of the mean of x1
minus the mean of x2, in percent. Argument confidence_mean must
be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For a one-
sided confidence interval with confidence level c (at least 50 percent),

Chapter 1: Basic Statistics normal_two_sample � 13

set confidence_mean = 100.0 � 2.0 � (100.0 � c).
Default: confidence_mean = 95.0

IMSLS_CI_DIFF_FOR_EQUAL_VARS, float *lower_limit,
float *upper_limit (Output)
Argument lower_limit contains the lower confidence limit, and
upper_limit contains the upper limit for the mean of the first
population minus the mean of the second, assuming equal variances.

IMSLS_CI_DIFF_FOR_UNEQUAL_VARS, float *lower_limit,
float *upper_limit (Output)
Argument lower_limit contains the approximate lower confidence
limit, and upper_limit contains the approximate upper limit for the
mean of the first population minus the mean of the second, assuming
unequal variances.

IMSLS_T_TEST_FOR_EQUAL_VARS, int *df, float *t, float *p_value
(Output)
A t test for �1 � �2 = c, where c is the null hypothesis value. (See the
description of IMSLS_T_TEST_NULL.) Argument df contains the
degrees of freedom, argument t contains the t value, and argument
p_value contains the probability of a larger t in absolute value,
assuming equal means. This test assumes equal variances.

IMSLS_T_TEST_FOR_UNEQUAL_VARS, float *df, float *t, float *p_value
(Output)
A t test for �1 � �2 = c, where c is the null hypothesis value. (See the
description of IMSLS_T_TEST_NULL.) Argument df contains the
degrees of freedom for Satterthwaite’s approximation, argument t
contains the t value, and argument p_value contains the approximate
probability of a larger t in absolute value, assuming equal means. This
test does not assume unequal variances.

IMSLS_T_TEST_NULL, float mean_hypothesis_value (Input)
Null hypothesis value for the t test.
Default: mean_hypothesis_value = 0.0

IMSLS_POOLED_VARIANCE, float *pooled_variance (Output)
Pooled variance for the two samples.

IMSLS_CONFIDENCE_VARIANCE, float confidence_variance (Input)
Confidence level for inference on variances. Under the assumption of
equal variances, the pooled variance is used to obtain a two-sided
confidence_variance percent confidence interval for the common
variance if IMSLS_CI_COMMON_VARIANCE is specified. Without
making the assumption of equal variances, the ratio of the variances is of
interest. A two-sided confidence_variance percent confidence

interval for the ratio of the variance of the first sample to that of the
second sample is computed and is returned if
IMSLS_CI_RATIO_VARIANCES is specified. The confidence intervals
are symmetric in probability.
Default: confidence_variance = 95.0

IMSLS_CI_COMMON_VARIANCE, float *lower_limit, float *upper_limit
(Output)
Argument lower_limit contains the lower confidence limit, and
upper_limit contains the upper limit for the common, or pooled,
variance.

14 � normal_two_sample IMSL C/Stat/Library

2

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,
float *p_value (Output)
The chi-squared test for is the common, or pooled,
variance, and � is the null hypothesis value. (See description of
IMSLS_CHI_SQUARED_TEST_NULL.) Argument df contains the degrees
of freedom, argument chi_squared contains the chi-squared value, and
argument p_value contains the probability of a larger chi-squared in
absolute value, assuming equal means.

� � �
2

0
2

� where
0
2

IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value
(Input)
Null hypothesis value for the chi-squared test.
Default: variance_hypothesis_value = 1.0

IMSLS_STD_DEVS, float *x1_std_dev, float *x2_std_dev (Output)
Standard deviations of the first and second samples.

IMSLS_CI_RATIO_VARIANCES, float *lower_limit, float *upper_limit
(Output)
Argument lower_limit contains the approximate lower confidence
limit, and upper_limit contains the approximate upper limit for the
ratio of the variance of the first population to the second.

IMSLS_F_TEST, int *df_numerator, int *df_denominator, float *F,
float *p_value (Output)
The F test for equality of variances. Argument df_numerator and
df_denominator contain the numerator degrees of freedom, argument
F contains the F test value, and argument p_value contains the
probability of a larger F in absolute value, assuming equal variances.

Description
Function imsls_f_normal_two_sample computes statistics for making
inferences about the means and variances of two normal populations, using

independent samples in x1 and x2. For inferences concerning parameters of a
single normal population, see function imsls_normal_one_sample on page 7.

Let �1 and be the mean and variance of the first population, and let �2 and
 be the corresponding quantities of the second population. The function

contains test confidence intervals for difference in means, equality of variances,
and the pooled variance.

�1
2

�2
2

The means and variances for the two samples are as follows:

x x n x xi i1 1 1 2 2� �� �(/), () / n2

and

s x x n s x x ni i1
2

1 1
2

1 2
2

2 2
2

21 1� � � � �� �() / , /b g b g b � g
Inferences about the Means

The test that the difference in means equals a certain value, for example, �0,
depends on whether or not the variances of the two populations can be considered
equal. If the variances are equal and mean_hypothesis_value equals 0, the
test is the two-sample t test, which is equivalent to an analysis-of-variance test.
The pooled variance for the difference-in-means test is as follows:

s
n s n s

n n
2 1 1 2

1 2

1 1
2

�

� � �

� �

b g b g 2

The t statistic is as follows:

t x x
s n n

�
� �

�

1 2 0

1 21 1
�

/ /b g b g

Also, the confidence interval for the difference in means can be obtained by
specifying IMSLS_CI_DIFF_FOR_EQUAL_VARS.

If the population variances are not equal, the ordinary t statistic does not have a
t distribution and several approximate tests for the equality of means have been
proposed. (See, for example, Anderson and Bancroft 1952, and
Kendall and Stuart 1979.) One of the earliest tests devised for this situation is the
Fisher-Behrens test, based on Fisher’s concept of fiducial probability. A
procedure used if IMSLS_T_TEST_FOR_UNEQUAL_VARS and/or
IMSLS_CI_DIFF_FOR_UNEQUAL_VARS are specified is the Satterthwaite’s
procedure, as suggested by H.F. Smith and modified by F.E. Satterthwaite
(Anderson and Bancroft 1952, p. 83).

The test statistic is

� � � �t x x sd1 2 0�b g /
where

Chapter 1: Basic Statistics normal_two_sample � 15

s s n s nd � �1
2

1 2
2

2/ /e j e j
Under the null hypothesis of �1 � �2 = c, this quantity has an approximate t
distribution with degrees of freedom df (in IMSLS_T_TEST_FOR_UNEQUAL_VARS),
given by the following equation:

df �

�

�

�

s

s n

n

s n

n

d
4

1
2

1
2

1

2
2

2
2

21 1

/ /e j e j

Inferences about Variances

The F statistic for testing the equality of variances is given by ,

where s is the larger of s and . If the variances are equal, this quantity
has an F distribution with n1 � 1 and n2 � 1 degrees of freedom.

F s s� max min/2 2

max
2

1
2 s2

2

It is generally not recommended that the results of the F test be used to decide
whether to use the regular t test or the modified t� on a single set of data. The
modified t� (Satterthwaite’s procedure) is the more conservative approach to use
if there is doubt about the equality of the variances.

Examples

Example 1
This example, taken from Conover and Iman (1983, p. 294), involves scores on
arithmetic tests of two grade-school classes. The question is whether a group
taught by an experimental method has a higher mean score. Only the difference in
means is output. The data are shown below.

Scores for Standard Group Scores for Experimental Group
72 111
75 118
77 128
80 138

104 140
110 150
125 163

 164
 169

16 � normal_two_sample IMSL C/Stat/Library

Chapter 1: Basic Statistics normal_two_sample � 17

#include <imsls.h>

main()
{
#define N1_OBSERVATIONS 7
#define N2_OBSERVATIONS 9

 float diff_means;
 float x1[N1_OBSERVATIONS] = {
 72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0};
 float x2[N2_OBSERVATIONS] = {
 111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0,
 164.0, 169.0};

 /* Perform analysis */
 diff_means = imsls_f_normal_two_sample(N1_OBSERVATIONS, x1,
 N2_OBSERVATIONS, x2, 0);

 /* Print results */
 printf("\nx1_mean - x2_mean = %5.2f\n", diff_means);
}

Output
x1_mean - x2_mean = -50.48

Example 2
The same data is used for this example as for the initial example. Here, the results
of the t test are output. The variances of the two populations are assumed to be
equal. It is seen from the output that there is strong reason to believe that the two
means are different (t value of �4.804). Since the lower 97.5-percent confidence
limit does not include 0, the null hypothesis is that �1 � �2 would be rejected at
the 0.05 significance level. (The closeness of the values of the sample variances
provides some qualitative substantiation of the assumption of equal variances.)

#include <imsls.h>

main()
{
#define N1_OBSERVATIONS 7
#define N2_OBSERVATIONS 9

 int df;
 float diff_means, lower_limit, upper_limit, t, p_value, sp2;
 float x1[N1_OBSERVATIONS] = {
 72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0};
 float x2[N2_OBSERVATIONS] = {
 111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0,
 164.0, 169.0};

 /* Perform analysis */
 diff_means = imsls_f_normal_two_sample(N1_OBSERVATIONS, x1,
 N2_OBSERVATIONS, x2,
 IMSLS_POOLED_VARIANCE, &sp2,
 IMSLS_CI_DIFF_FOR_EQUAL_VARS, &lower_limit, &upper_limit,
 IMSLS_T_TEST_FOR_EQUAL_VARS, &df, &t, &p_value,
 0);

18 � table_oneway IMSL C/Stat/Library

 /* Print results */
 printf("\nx1_mean - x2_mean = %5.2f\n", diff_means);
 printf("Pooled variance = %5.2f\n", sp2);
 printf("95%% CI for x1_mean - x2_mean is (%5.2f,%5.2f)\n",
 lower_limit, upper_limit);
 printf("df = %3d\n", df);
 printf("t = %5.2f\n", t);
 printf("p-value = %8.5f\n", p_value);
}

Output
x1_mean - x2_mean = -50.48
Pooled variance = 434.63
95% CI for x1_mean - x2_mean is (-73.01,-27.94)
df = 14
t = -4.80
p-value = 0.00028

table_oneway
Tallies observations into a one-way frequency table.

Synopsis
#include <imsls.h>
float *imsls_f_table_oneway (int n_observations, float x[],

int n_intervals, ..., 0)

The type double function is imsls_d_table_oneway.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations containing the observations.

int n_intervals (Input)
Number of intervals (bins).

Return Value
Pointer to an array of length n_intervals containing the counts.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_table_oneway (int n_observations, float x[],

int n_intervals,

IMSLS_DATA_BOUNDS, float *minimum, float *maximum, or
IMSLS_KNOWN_BOUNDS, float lower_bound, float upper_bound,
or
IMSLS_CUTPOINTS, float cutpoints[], or
IMSLS_CLASS_MARKS, float class_marks[],
IMSLS_RETURN_USER, float table[],
0)

Optional Arguments
IMSLS_DATA_BOUNDS, float *minimum, float *maximum (Output)

If none is specified or if IMSLS_DATA_BOUNDS is specified,
n_intervals intervals of equal length are used with the initial interval
starting with the minimum value in x and the last interval ending with the
maximum value in x. The initial interval is closed on the left and right. The
remaining intervals are open on the left and closed on the right. When
IMSLS_DATA_BOUNDS is explicitly specified, the minimum and maximum
values in x are output in minimum and maximum. With this option, each
interval is of length (maximum � minimum)/n_intervals.

 or

IMSLS_KNOWN_BOUNDS, float lower_bound, float upper_bound (Input)
If IMSLS_KNOWN_BOUNDS is specified, two semi-infinite intervals are
used as the initial and last intervals. The initial interval is closed on the
right and includes lower_bound as its right endpoint. The last interval
is open on the left and includes all values greater than upper_bound.
The remaining n_intervals � 2 intervals are each of length

upper_bound lower_bound

n_intervals

-
 � 2

and are open on the left and closed on the right. Argument
n_intervals must be greater than or equal to 3 for this option.

or

IMSLS_CUTPOINTS, float cutpoints[] (Input)
If IMSLS_CUTPOINTS is specified, cutpoints (boundaries) must be
provided in the array cutpoints of length n_intervals � 1. This
option allows unequal interval lengths. The initial interval is closed on
the right and includes the initial cutpoint as its right endpoint. The last
interval is open on the left and includes all values greater than the last
cutpoint. The remaining n_intervals � 2 intervals are open on the left
and closed on the right. Argument n_interval must be greater than or
equal to 3 for this option.

 or

Chapter 1: Basic Statistics table_oneway � 19

20 � table_oneway IMSL C/Stat/Library

IMSLS_CLASS_MARKS, float class_marks[] (Input)
If IMSLS_CLASS_MARKS is specified, equally spaced class marks in
ascending order must be provided in the array class_marks of length
n_intervals. The class marks are the midpoints of each of the
n_intervals. Each interval is assumed to have length
class_marks [1] � class_marks [0]. Argument n_intervals must
be greater than or equal to 2 for this option.

None or exactly one of the four optional arguments described above can
be specified in order to define the intervals or bins for the one-way table.

IMSLS_RETURN_USER, float table[] (Output)
Counts are stored in the array table of length n_intervals, which is
provided by the user.

Examples

Example 1
The data for this example is from Hinkley (1977) and Velleman and Hoaglin
(1981). The measurements (in inches) are for precipitation in Minneapolis/St.
Paul during the month of March for 30 consecutive years.

#include <imsls.h>
main()
{
 int n_intervals=10;
 int n_observations=30;
 float *table;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 table = imsls_f_table_oneway (n_observations, x, n_intervals, 0);
 imsls_f_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output
 counts
 1 2 3 4 5 6
 4 8 5 5 3 1

 7 8 9 10
 3 0 0 1

Example 2
In this example, IMSLS_KNOWN_BOUNDS is used, and lower_bound = 0.5 and
upper_bound = 4.5 are set so that the eight interior intervals each have width
(4.5 � 0.5)/(10 � 2) = 0.5. The 10 intervals are (��, 0.5], (0.5, 1.0], 	, (4.0, 4.5],
and (4.5, �].

Chapter 1: Basic Statistics table_oneway � 21

#include <imsls.h>
main()
{
 int n_observations=30;
 int n_intervals=10;
 float *table;
 float lower_bound=0.5, upper_bound=4.5;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 table = imsls_f_table_oneway (n_observations, x, n_intervals,
 IMSLS_KNOWN_BOUNDS, lower_bound,
 upper_bound,
 0);
 imsls_f_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output
 counts
 1 2 3 4 5 6
 2 7 6 6 4 2

 7 8 9 10
 2 0 0 1

Example 3
In this example, 10 class marks, 0.25, 0.75, 1.25, ..., 4.75, are input. This defines
the class intervals (0.0, 0.5], (0.5, 1.0], ..., (4.0, 4.5], (4.5, 5.0]. Note that unlike
the previous example, the initial and last intervals are the same length as the
remaining intervals.

#include <imsls.h>
main()
{
 int n_intervals=10;
 int n_observations=30;
 double *table;
 double x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,
 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,
 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,
 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,1.89,
 0.90, 2.05};
 double class_marks[] = {0.25, 0.75, 1.25, 1.75, 2.25,
 2.75, 3.25,3.75, 4.25, 4.75};
 table = imsls_d_table_oneway (n_observations, x, n_intervals,
 IMSLS_CLASS_MARKS, class_marks,
 0);
 imsls_d_write_matrix("counts", 1, n_intervals, table, 0);
 }

22 � table_twoway IMSL C/Stat/Library

Output
 counts
 1 2 3 4 5 6
 2 7 6 6 4 2

 7 8 9 10
 2 0 0 1

Example 4
In this example, cutpoints, 0.5, 1.0, 1.5, 2.0, ..., 4.5, are input to define the same
10 intervals as in Example 2. Here again, the initial and last intervals are semi-
infinite intervals.

#include <imsls.h>
main()
{
 int n_intervals=10;
 int n_observations=30;
 double *table;
 double x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,
 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,
 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,
 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89,
 0.90, 2.05};
 double cutpoints[] = {0.5, 1.0, 1.5, 2.0, 2.5,
 3.0, 3.5, 4.0, 4.5};
 table = imsls_d_table_oneway (n_observations, x, n_intervals,
 IMSLS_CUTPOINTS, cutpoints,
 0);
 imsls_d_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output
 counts
 1 2 3 4 5 6
 2 7 6 6 4 2
 7 8 9 10
 2 0 0 1

table_twoway
Tallies observations into two-way frequency table.

Synopsis

#include <imsls.h>

float *imsls_f_table_twoway (int n_observations, float x[],
float y[], int nx, int ny, ..., 0)

The type double function is imsls_d_table_twoway.

Chapter 1: Basic Statistics table_twoway � 23

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations containing the data for the first
variable.

float y[] (Input)
Array of length n_observations containing the data for the second
variable.

int nx (Input)
Number of intervals (bins) for variable x.

int nx (Input)
Number of intervals (bins) for variable y.

Return Value
Pointer to an array of size nx by ny containing the counts.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_table_twoway (int n_observations, float x[],
float y[], int nx, int ny,
IMSLS_DATA_BOUNDS, float *xmin, float *xmax, float *ymin,
 float *ymax, or
IMSLS_KNOWN_BOUNDS, float xlo, float xhi, float ylo,
 float yhi, or
IMSLS_CUTPOINTS, float cx[], float cy[], or
IMSLS_CLASS_MARKS, float cx[], float cy[],
IMSLS_RETURN_USER, float table[],
0)

Optional Arguments
IMSLS_DATA_BOUNDS, float *xlo, float *xhi, float *ylo, float *yhi

(Output)
If none is specified or if IMSLS_DATA_BOUNDS is specified,
n_intervals intervals of equal length are used. Let xmin and xmax be
the minimum and maximum values in x, respectively, with similar
meanings for ymin and ymax. Then, table[0] is the tally of
observations with the x value less than or equal to
xmin + (xmax � xmin)/nx, and the y value less than or equal to

24 � table_twoway IMSL C/Stat/Library

ymin + (ymax � ymin)/ny. When IMSLS_DATA_BOUNDS is explicitly
specified, the minimum and maximum values in x and y are output in
xmin, xmax, ymin, and ymax.

or

IMSLS_KNOWN_BOUNDS, float xlo, float xhi, float ylo, float yhi (Input)
Intervals of equal lengths are used just as in the case of
IMSLS_DATA_BOUNDS, except the upper and lower bounds are taken as
the user supplied variables xlo, xhi, ylo, and yhi, instead of the actual
minima and maxima in the data. Therefore, the first and last intervals for
both variables are semi-infinite in length. Arguments nx and ny must be
greater than or equal to 3.

or

IMSLS_CUTPOINTS, float cx[], float cy[] (Input)
If IMSLS_CUTPOINTS is specified, cutpoints (boundaries) must be
provided in the arrays cx and cy, of length (nx-1) and (ny-1)
respectively. The tally in table[0] is the number of observations for
which the x value is less than or equal to cx[0], and the y value is less
than or equal to cy[0]. This option allows unequal interval lengths.
Arguments nx and ny must be greater than or equal to 2.

or

IMSLS_CLASS_MARKS, float cx[], float cy[] (Input)
If IMSLS_CLASS_MARKS is specified, equally spaced class marks in
ascending order must be provided in the arrays cx and cy. The class
marks are the midpoints of each interval. Each interval is taken to have
length cx[1] � cx[0] in the x direction and cy[1] � cy[0] in the y
direction. The total number of elements in table may be less than
n_observations. Arguments nx and ny must be greater than or equal
to 2.

None or exactly one of the four optional arguments described above can be
specified in order to define the intervals or bins for the one-way table.

IMSLS_RETURN_USER, float table[] (Output)
Counts are stored in the array table of size nx by ny, which is provided
by the user.

Examples

Example 1
The data for x in this example are the same as those used in the examples for
table_oneway. The data for y were created by adding small integers to the data

Chapter 1: Basic Statistics table_twoway � 25

in x. This example uses the default tally method, IMSLS_DATA_BOUNDS, which
may be appropriate when the range of the data is unknown.

#include <imsls.h>
main()
{
 int nx = 5;
 int ny = 6;
 int n_observations=30;
 float *table;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 float y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
 2.89, 2.90, 5.05};
 table = imsls_f_table_twoway (n_observations, x, y, nx, ny, 0);
 imsls_f_write_matrix("counts", nx, ny, table,
 IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
 }

Output
 counts
 0 1 2 3 4 5
0 4 2 4 2 0 0
1 0 4 3 2 1 0
2 0 0 1 2 0 1
3 0 0 0 0 1 2
4 0 0 0 0 0 1

Example 2
In this example, xlo, xhi, ylo, and yhi are chosen so that the intervals will be 0
to 1, 1 to 2, and so on for x, and 1 to 2, 2 to 3, and so on for y.

#include <imsls.h>
main()
{
 int nx = 5;
 int ny = 6;
 int n_observations=30;
 float *table;
 float xlo = 1.0;
 float xhi = 4.0;
 float ylo = 2.0;
 float yhi = 6.0;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 float y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
 2.89, 2.90, 5.05};
 table = imsls_f_table_twoway (n_observations, x, y, nx, ny,
 IMSLS_KNOWN_BOUNDS, xlo, xhi, ylo, yhi, 0);
 imsls_f_write_matrix("counts", nx, ny, table,

26 � table_twoway IMSL C/Stat/Library

 IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
 }

Output
 counts
 0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

Example 3
In this example, the class boundaries are input in cx and cy. The same intervals
are chosen as in Example 2, where the first element of cx and cy specify the first
cutpoint between classes.

#include <imsls.h>
main()
{
 int nx = 5;
 int ny = 6;
 int n_observations=30;
 float *table;
 float cmx[] = {0.5, 1.5, 2.5, 3.5, 4.5};
 float cmy[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5};
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 float y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
 2.89, 2.90, 5.05};
 table = imsls_f_table_twoway (n_observations, x, y, nx, ny,
 IMSLS_CLASS_MARKS, cmx, cmy, 0);
 imsls_f_write_matrix("counts", nx, ny, table,
 IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
 }

Output

 counts
 0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

Example 4
This example, uses the IMSLS_CUTPOINTS tally option with cutpoints such that
the intervals are specified as in the previous examples.

Chapter 1: Basic Statistics sort_data � 27

#include <imsls.h>
main()
{
 int nx = 5;
 int ny = 6;
 int n_observations=30;
 float *table;
 float cpx[] = {1, 2, 3, 4};
 float cpy[] = {2, 3, 4, 5, 6};
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 float y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
 2.89, 2.90, 5.05};
 table = imsls_f_table_twoway (n_observations, x, y, nx, ny,
 IMSLS_CUTPOINTS, cpx, cpy, 0);
 imsls_f_write_matrix("counts", nx, ny, table,
 IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
 }

Output

 counts
 0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

sort_data
Sorts observations by specified keys, with option to tally cases into a multi-way
frequency table.

Synopsis
#include <imsls.h>
void imsls_f_sort_data (int n_observations, int n_variables, float

x[], int n_keys, ..., 0)

The type double function is imsls_d_sort_data.

Required Arguments

int n_observations (Input)
Number of observations (rows) in x.

int n_variables (Input)
Number of variables (columns) in x.

28 � sort_data IMSL C/Stat/Library

float x[] (Input/Output)
An n_observations � n_variables matrix containing the
observations to be sorted. The sorted matrix is returned in x (exception:
see optional argument IMSLS_PASSIVE).

int n_keys (Input)
Number of columns of x on which to sort. The first n_keys columns of
x are used as the sorting keys (exception: see optional argument
IMSLS_INDICES_KEYS).

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_sort_data (int n_observations, int n_variables,

float x[], int n_keys,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_INDICES_KEYS, int indices_keys[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_ASCENDING, or
IMSLS_DESCENDING,
IMSLS_ACTIVE, or
IMSLS_PASSIVE,
IMSLS_PERMUTATION, int **permutation,
IMSLS_PERMUTATION_USER, int permutation[],
IMSLS_TABLE, int **n_values, float **values, float **table,
IMSLS_TABLE_USER, int n_values[], float values[],
 float table[],

IMSLS_LIST_CELLS, int *n_cells, float **list_cells,
 float **table_unbalanced,
IMSLS_LIST_CELLS_USER, int *n_cells, float list_cells[],
 float table_unbalanced[],
IMSLS_N, int *n_cells, int **n,
IMSLS_N_USER, int *n_cells, int n[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of x.
Default: x_col_dim = n_variables

IMSLS_INDICES_KEYS, int indices_keys[] (Input)
Array of length n_keys giving the column numbers of x which are to be
used in the sort.
Default: indices_keys [] = 0, 1, 	, n_keys � 1

Chapter 1: Basic Statistics sort_data � 29

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency for each
observation in x.
Default: frequencies [] = 1

IMSLS_ASCENDING, or

IMSLS_DESCENDING
By default, or if IMSLS_ASCENDING is specified, the sort is in ascending
order. If IMSLS_DESCENDING is specified, the sort is in descending
order.

IMSLS_ACTIVE, or

IMSLS_PASSIVE
By default, or if IMSLS_ACTIVE is specified, the sorted matrix is
returned in x. If IMSLS_PASSIVE is specified, x is unchanged by
imsls_f_sort_data (i.e., x becomes input only).

IMSLS_PERMUTATION, int **permutation (Output)
Address of a pointer to an internally allocated array of length
n_observations specifying the rearrangement (permutation) of the
observations (rows).

IMSLS_PERMUTATION_USER, int permutation[] (Output)
Storage for array permutation is provided by the user. See
IMSLS_PERMUTATION.

IMSLS_TABLE, int **n_values, float **values, float **table (Output)
Argument n_values is the address of a pointer to an internally
allocated array of length n_keys containing in its i-th element
(i = 0, 1, 	, n_keys � 1), the number of levels or categories of the
i-th classification variable (column).

Argument values is the address of a pointer to an internally allocated
array of length
n_values [0] + n_values [1] + 	 + n_values [n_keys � 1]
containing the values of the classification variables. The first
n_values [0] elements of values contain the values for the first
classification variable. The next n_values [1] contain the values for the
second variable. The last n_values [n_keys � 1] positions contain the
values for the last classification variable.

Argument table is the address of a pointer to an internally allocated array
of length n_values [0] � n_values [1] � 	 � n_values [n_keys � 1]
containing the frequencies in the cells of the table to be fit.

30 � sort_data IMSL C/Stat/Library

Empty cells are included in table, and each element of table is
nonnegative. The cells of table are sequenced so that the first variable
cycles through its n_values [0] categories one time, the second
variable cycles through its n_values [1] categories n_values [0]
times, the third variable cycles through its n_values [2] categories
n_values [0] � n_values [1] times, etc., up to the n_keys-th
variable, which cycles through its n_values [n_keys � 1] categories
n_values [0] � n_values [1] � 	 � n_values [n_keys � 2] times.

IMSLS_TABLE_USER, int n_values[], float values[], float table[]
(Output)
Storage for arrays n_values, values, and table is provided by the
user. If the length of table is not known in advance, the upper bound
for this length can be taken to be the product of the number of distinct
values taken by all of the classification variables (since table includes
the empty cells).

IMSLS_LIST_CELLS, int *n_cells, float **list_cells,
float **table_unbalanced (Output)
Number of nonempty cells is returned by n_cells. Argument
list_cells is an internally allocated array of size
n_cells � n_keys containing, for each row, a list of the levels of
n_keys corresponding classification variables that describe a cell.

Argument table_unbalanced is the address of a pointer to an array of
length n_cells containing the frequency for each cell.

IMSLS_LIST_CELLS_USER, int *n_cells, float list_cells[],
float table_unbalanced[] (Output)
Storage for arrays list_cells and table_unbalanced is provided
by the user. See IMSLS_LIST_CELLS.

IMSLS_N, int *n_cells, int **n (Output)
The integer n_cells returns the number of groups of different
observations. A group contains observations (rows) in x that are equal
with respect to the method of comparison.

Argument n is the address of the pointer to an internally allocated array
of length n_cells containing the number of observations (rows) in each
group.

The first n [0] rows of the sorted x are group number 1. The next
n [1]rows of the sorted x are group number 2, etc. The last
n [n_cells � 1] rows of the sorted x are group number n_cells.

IMSLS_N_USER, int *n_cells, int n[] (Output)
Storage for array n_cells is provided by the user. If the value of

Chapter 1: Basic Statistics sort_data � 31

n_cells is not known, n_observations can be used as an upper
bound for the length of n. See IMSLS_N.

Description
Function imsls_f_sort_data can perform both a key sort and/or tabulation of
frequencies into a multi-way frequency table.

Sorting

Function imsls_f_sort_data sorts the rows of real matrix x using a particular
row in x as the keys. The sort is algebraic with the first key as the most
significant, the second key as the next most significant, etc. When x is sorted in
ascending order, the resulting sorted array is such that the following is true:

 For i = 0, 1, 	, n_observations � 2,
x [i] [indices_keys [0]] � x [i + 1] [indices_keys [0]]

 For k = 1, 	, n_keys � 1, if
x [i] [indices_keys [j]] = x [i + 1] [indices_keys [j]] for
j = 0, 1, 	, k � 1, then
x [i] [indices_keys [k]] = x [i + 1] [indices_keys [k]]

The observations also can be sorted in descending order.

The rows of x containing the missing value code NaN in at least one of the
specified columns are considered as an additional group. These rows are moved
to the end of the sorted x.

The sorting algorithm is based on a quicksort method given by Singleton (1969)
with modifications by Griffen and Redish (1970) and Petro (1970).

Frequency Tabulation

Function imsls_f_sort_data determines the distinct values in multivariate
data and computes frequencies for the data. This function accepts the data in the
matrix x, but performs computations only for the variables (columns) in the first
n_keys columns of x (Exception: see optional argument
IMSLS_INDICES_KEYS). In general, the variables for which frequencies should
be computed are discrete; they should take on a relatively small number of
different values. Variables that are continuous can be grouped first. The
imsls_f_table_oneway function can be used to group variables and determine
the frequencies of groups.

When IMSLS_TABLE is specified, imsls_f_sort_data fills the vector values
with the unique values of the variables and tallies the number of unique values of
each variable in the vector table. Each combination of one value from each
variable forms a cell in a multi-way table. The frequencies of these cells are

32 � sort_data IMSL C/Stat/Library

entered in table so that the first variable cycles through its values exactly once,
and the last variable cycles through its values most rapidly. Some cells cannot
correspond to any observations in the data; in other words, “missing cells” are
included in table and have a value of 0.

When IMSLS_LIST_CELLS is specified, the frequency of each cell is entered in
table_unbalanced so that the first variable cycles through its values exactly
once and the last variable cycles through its values most rapidly. All cells have a
frequency of at least 1, i.e., there is no “missing cell.” The array list_cells can
be considered “parallel” to table_unbalanced because row i of list_cells
is the set of n_keys values that describes the cell for which row i of
table_unbalanced contains the corresponding frequency.

Examples

Example 1
The rows of a 10 � 3 matrix x are sorted in ascending order using Columns 0 and
1 as the keys. There are two missing values (NaNs) in the keys. The observations
containing these values are moved to the end of the sorted array.

#include <imsls.h>
#define N_OBSERVATIONS 10
#define N_VARIABLES 3
main()
{
 int n_keys=2;
 float x[N_OBSERVATIONS][N_VARIABLES] = {1.0, 1.0, 1.0,
 2.0, 1.0, 2.0,
 1.0, 1.0, 3.0,
 1.0, 1.0, 4.0,
 2.0, 2.0, 5.0,
 1.0, 2.0, 6.0,
 1.0, 2.0, 7.0,
 1.0, 1.0, 8.0,
 2.0, 2.0, 9.0,
 1.0, 1.0, 9.0};
 x[4][1]=imsls_f_machine(6);
 x[6][0]=imsls_f_machine(6);
 imsls_f_sort_data (N_OBSERVATIONS, N_VARIABLES, x, n_keys, 0);
 imsls_f_write_matrix("sorted x", N_OBSERVATIONS, N_VARIABLES,
 (float *)x, 0);
 }

Output
 sorted x
 1 2 3
 1 1 1 1
 2 1 1 9
 3 1 1 3
 4 1 1 4
 5 1 1 8
 6 1 2 6

Chapter 1: Basic Statistics sort_data � 33

 7 2 1 2
 8 2 2 9
 9 2 7
10 2 5

Example 2
This example uses the same data as the previous example. The permutation of the
rows is output in the array permutation.

#include <imsls.h>
#define N_OBSERVATIONS 10
#define N_VARIABLES 3
MAIN()
{
 int n_keys=2;
 int n_cells;
 int *n;
 int *permutation;
 float x[N_OBSERVATIONS][N_VARIABLES]={1.0, 1.0, 1.0,
 2.0, 1.0, 2.0,
 1.0, 1.0, 3.0,
 1.0, 1.0, 4.0,
 2.0, 2.0, 5.0,
 1.0, 2.0, 6.0,
 1.0, 2.0, 7.0,
 1.0, 1.0, 8.0,
 2.0. 2.0, 9.0,
 1.0, 1.0, 9.0};
 x[4][1]=imsls_f_machine(6);
 x[6][0]=imsls_f_machine(6);
 imsls_f_sort_data (N_OBSERVATIONS, N_VARIABLES,
 (float *)x, n_keys,
 IMSLS_PASSIVE,
 IMSLS_PERMUTATION, &permutation,
 IMSLS_N, &n_cells, &n, 0};
 imsls_f_write_matrix("unchanged x ", N_OBSERVATIONS, N_VARIABLES,
 (float *)x, 0);
 imsls_i_write_matrix("permutation", 1, N_OBSERVATIONS, permutation,
 0);
 imsls_i_write_matrix("n", 1, n_cells, n, 0);
 }

Output
 unchanged x
 1 2 3
 1 1 1 1
 2 2 1 2
 3 1 1 3
 4 1 1 4
 5 2 5
 6 1 2 6
 7 2 7
 8 1 1 8
 9 2 2 9
10 1 1 9

 permutation

34 � sort_data IMSL C/Stat/Library

 1 2 3 4 5 6 7 8 9 10
 0 9 2 3 7 5 1 8 6 4

 n
 1 2 3 4
 5 1 1 1

Example 3
The table of frequencies for a data matrix of size 30 � 2 is output in the array
table.

#include <imsls.h>
main()
{
 int n_observations=30;
 int n_variables=2;
 int n_keys=2;
 int *n_values;
 int n_rows, n_columns;
 float *values;
 float *table;
 float x[] = {0.5, 1.5,
 1.5, 3.5,
 0.5, 3.5,
 1.5, 2.5,
 1.5, 3.5,
 1.5, 4.5,
 0.5, 1.5,
 1.5, 3.5,
 3.5, 6.5,
 2.5, 3.5,
 2.5, 4.5,
 3.5, 6.5,
 1.5, 2.5,
 2.5, 4.5,
 0.5, 3.5,
 1.5, 2.5,
 1.5, 3.5,
 0.5, 3.5,
 0.5, 1.5,
 0.5, 2.5,
 2.5, 5.5,
 1.5, 2.5,
 1.5, 3.5,
 1.5, 4.5,
 4.5, 5.5,
 2.5, 4.5,
 0.5, 3.5,
 1.5, 2.5,
 0.5, 2.5,
 2.5, 5.5};

 imsls_f_sort_data (n_observations, n_variables, x, n_keys,
 IMSLS_PASSIVE,
 IMSLS_TABLE, &n_values, &values, &table,
 0);
 imsls_f_write_matrix("unchanged x", n_observations, n_variables,

Chapter 1: Basic Statistics sort_data � 35

 x, 0);
 n_rows = n_values[0];
 n_columns = n_values[1];
 imsls_f_write_matrix("row values", 1, n_rows, values, 0);
 imsls_f_write_matrix("column values", 1, n_columns, &values[n_rows],
 0);
 imsls_f_write_matrix("table", n_rows, n_columns, table, 0);
 }

Output
 unchanged x
 1 2
 1 0.5 1.5
 2 1.5 3.5
 3 0.5 3.5
 4 1.5 2.5
 5 1.5 3.5
 6 1.5 4.5
 7 0.5 1.5
 8 1.5 3.5
 9 3.5 6.5
10 2.5 3.5
11 2.5 4.5
12 3.5 6.5
13 1.5 2.5
14 2.5 4.5
15 0.5 3.5
16 1.5 2.5
17 1.5 3.5
18 0.5 3.5
19 0.5 1.5
20 0.5 2.5
21 2.5 5.5
22 1.5 2.5
23 1.5 3.5
24 1.5 4.5
25 4.5 5.5
26 2.5 4.5
27 0.5 3.5
28 1.5 2.5
29 0.5 2.5
30 2.5 5.5

 row values
 1 2 3 4 5
 0.5 1.5 2.5 3.5 4.5

 column values
 1 2 3 4 5 6
 1.5 2.5 3.5 4.5 5.5 6.5

 table
 1 2 3 4 5 6
1 3 2 4 0 0 0
2 0 5 5 2 0 0
3 0 0 1 3 2 0
4 0 0 0 0 0 2
5 0 0 0 0 1 0

36 � ranks IMSL C/Stat/Library

ranks
Computes the ranks, normal scores, or exponential scores for a vector of
observations.

Synopsis
#include <imsls.h>
float *imsls_f_ranks (int n_observations, float x[], ..., 0)

The type double function is imsls_d_ranks.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations containing the observations to be
ranked.

Return Value
A pointer to a vector of length n_observations containing the rank (or
optionally, a transformation of the rank) of each observation.

Synopsis with Optional Arguments
#include <imsl.h>
float* imsls_f_ranks (int n_observations, float x[],

IMSLS_AVERAGE_TIE, or
IMSLS_HIGHEST, or
IMSLS_LOWEST, or
IMSLS_RANDOM_SPLIT,
IMSLS_FUZZ, float fuzz_value,
IMSLS_RANKS, or
IMSLS_BLOM_SCORES, or
IMSLS_TUKEY_SCORES, or
IMSLS_VAN_DER_WAERDEN_SCORES, or
IMSLS_EXPECTED_NORMAL_SCORES, or
IMSLS_SAVAGE_SCORES,
IMSLS_RETURN_USER, float ranks[],
0)

Optional Arguments
IMSLS_AVERAGE_TIE, or

IMSLS_HIGHEST, or

Chapter 1: Basic Statistics ranks � 37

IMSLS_LOWEST, or

IMSLS_RANDOM_SPLIT
Exactly one of these optional arguments can be used to change the
method used to assign a score to tied observations.

Argument Method
IMSLS_AVERAGE_TIE average of the scores of the tied

observations (default)
IMSLS_HIGHEST highest score in the group of ties
IMSLS_LOWEST lowest score in the group of ties
IMSLS_RANDOM_SPLIT tied observations are randomly split

using a random number generator

IMSLS_FUZZ, float fuzz_value (Input)
Value used to determine when two items are tied. If abs(x [i] � x [j]) is
less than or equal to fuzz_value, then x[i] and x[j] are said to be
tied.
Default: fuzz_value = 0.0

IMSLS_RANKS, or

IMSLS_BLOM_SCORES, or

IMSLS_TUKEY_SCORES, or

IMSLS_VAN_DER_WAERDEN_SCORES, or

IMSLS_EXPECTED_NORMAL_SCORES, or

IMSLS_SAVAGE_SCORES
Exactly one of these optional arguments can be used to specify the type
of values returned.

Argument Result
IMSLS_RANKS ranks (default)
IMSLS_BLOM_SCORES Blom version of normal scores
IMSLS_TUKEY_SCORES Tukey version of normal scores
IMSLS_VAN_DER_WAERDEN_SCORES Van der Waerden version of normal

scores
IMSLS_EXPECTED_NORMAL_SCORES expected value of normal order

statistics (for tied observations, the
average of the expected normal
scores)

IMSLS_SAVAGE_SCORES Savage scores (the expected value of
exponential order statistics)

IMSLS_RETURN_USER, float ranks[] (Output)
If specified, the ranks are returned in the user-supplied array ranks.

Description

Ties

In data without ties, the output values are the ordinary ranks (or a transformation
of the ranks) of the data in x. If x[i] has the smallest value among the values in
x and there is no other element in x with this value, then ranks [i] = 1. If both
x[i] and x[j] have the same smallest value, the output value depends on the
option used to break ties.

Argument Result
IMSLS_AVERAGE_TIE ranks[i] = ranks[j] = 1.5

IMSLS_HIGHEST ranks[i] = ranks[j] = 2.0

IMSLS_LOWEST ranks[i] = ranks[j] = 1.0

IMSLS_RANDOM_SPLIT ranks[i] = 1.0 and ranks[j] = 2.0

or, randomly,
ranks[i] = 2.0 and ranks[j] = 1.0

When the ties are resolved randomly, function imsls_f_random_uniform
(Chapter 12) is used to generate random numbers. Different results may occur
from different executions of the program unless the “seed” of the random number
generator is set explicitly by use of the function imsls_f_random_seed_set
(Chapter 12).

Scores

As an option, normal and other functions of the ranks can be returned. Normal
scores can be defined as the expected values, or approximations to the expected
values, of order statistics from a normal distribution. The simplest approximations
are obtained by evaluating the inverse cumulative normal distribution function,
function imsls_f_normal_inverse_cdf (Chapter 11), at the ranks scaled into
the open interval (0, 1). In the Blom version (see Blom 1958), the scaling
transformation for the rank ri (1 � ri � n, where n is the sample size,
n_observations) is (ri � 3/8)/(n + 1/4). The Blom normal score corresponding
to the observation with rank ri is

�
�

�

�

F
HG

I
KJ

1 3 8
1 4

r
n
i /

/

where ��·� is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation. That is, if
x [i] equals x [j] (within fuzz_value) and their value is the k-th smallest in the
data set, the Blom normal scores are determined for ranks of k and k + 1. Then,

38 � ranks IMSL C/Stat/Library

these normal scores are averaged or selected in the manner specified. (Whether
the transformations are made first or ties are resolved first makes no difference
except when IMSLS_AVERAGE_TIE is specified.)

In the Tukey version (see Tukey 1962), the scaling transformation for the rank
ri is (ri � 1/3)/(n + 1/3). The Tukey normal score corresponding to the
observation with rank ri is as follows:

�
�

�

�

F
HG

I
KJ

1 1 3
1 3

r
n
i /

/

Ties are handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling
transformation for the rank ri is ri/(n + 1). The Van der Waerden normal score
corresponding to the observation with rank ri is as follows:

�
�

�

F
HG
I
KJ

1

1
r

n
i

Ties are handled in the same way as for the Blom normal scores.

When option IMSLS_EXPECTED_NORMAL_SCORES is used, the output values are
the expected values of the normal order statistics from a sample of size
n_observations. If the value in x[i] is the k-th smallest, the value output in
ranks [i] is E(zk), where E(·) is the expectation operator and zk is the k-th order
statistic in a sample of size n_observations from a standard normal
distribution. Ties are handled in the same way as for the Blom normal scores.

Savage scores are the expected values of the exponential order statistics from a
sample of size n_observations. These values are called Savage scores because
of their use in a test discussed by Savage 1956 (see also Lehmann 1975). If the
value in x[i] is the k-th smallest, the value output in ranks [i] is E(yk), where
yk is the k-th order statistic in a sample of size n_observations from a standard
exponential distribution. The expected value of the k-th order statistic from an
exponential sample of size n (n_observations) is as follows:

1 1
1

1
1n n n k

�

�

� �

� �

�

Ties are handled in the same way as for the Blom normal scores.

Examples

Example 1
The data for this example, from Hinkley (1977), contains 30 observations. Note
that the fourth and sixth observations are tied and that the third and twentieth
observations are tied.

Chapter 1: Basic Statistics ranks � 39

40 � ranks IMSL C/Stat/Library

#include <imsls.h>

#define N_OBSERVATIONS 30

main()
{
 float *ranks;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};

 ranks = imsls_f_ranks(N_OBSERVATIONS, x, 0);
 imsls_f_write_matrix("Ranks", 1, N_OBSERVATIONS, ranks, 0);
}

Output
 Ranks
 1 2 3 4 5 6
 5.0 18.0 6.5 11.5 21.0 11.5

 7 8 9 10 11 12
 2.0 15.0 29.0 24.0 27.0 28.0

 13 14 15 16 17 18
 16.0 23.0 3.0 17.0 13.0 1.0

 19 20 21 22 23 24
 4.0 6.5 26.0 19.0 10.0 14.0

 25 26 27 28 29 30
 30.0 25.0 9.0 20.0 8.0 22.0

Example 2
This example uses all the score options with the same data set, which contains
some ties. Ties are handled in several different ways in this example.

#include <imsls.h>

#define N_OBSERVATIONS 30

void main()
{
 float fuzz_value=0.0, score[4][N_OBSERVATIONS], *ranks;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
 char *row_labels[] = {"Blom", "Tukey", "Van der Waerden",
 "Expected Value"};

 /* Blom scores using largest ranks */
 /* for ties */
 imsls_f_ranks(N_OBSERVATIONS, x,
 IMSLS_HIGHEST,
 IMSLS_BLOM_SCORES,
 IMSLS_RETURN_USER, &score[0][0],

Chapter 1: Basic Statistics ranks � 41

 0);
 /* Tukey normal scores using smallest */
 /* ranks for ties */
 imsls_f_ranks(N_OBSERVATIONS, x,
 IMSLS_LOWEST,
 IMSLS_TUKEY_SCORES,
 IMSLS_RETURN_USER, &score[1][0],
 0);
 /* Van der Waerden scores using */
 /* randomly resolved ties */
 imsls_random_seed_set(123457);
 imsls_f_ranks(N_OBSERVATIONS, x,
 IMSLS_RANDOM_SPLIT,
 IMSLS_VAN_DER_WAERDEN_SCORES,
 IMSLS_RETURN_USER, &score[2][0],
 0);
 /* Expected value of normal order */
 /* statistics using averaging to */
 /* break ties */
 imsls_f_ranks(N_OBSERVATIONS, x,
 IMSLS_EXPECTED_NORMAL_SCORES,
 IMSLS_RETURN_USER, &score[3][0],
 0);
 imsls_f_write_matrix("Normal Order Statistics", 4, N_OBSERVATIONS,
 (float *)score,
 IMSLS_ROW_LABELS, row_labels,
 IMSLS_WRITE_FORMAT, "%9.3f",
 0);
 /* Savage scores using averaging */
 /* to break ties */
 ranks = imsls_f_ranks(N_OBSERVATIONS, x,
 IMSLS_SAVAGE_SCORES,
 0);
 imsls_f_write_matrix("Expected values of exponential order "
 "statistics", 1,
 N_OBSERVATIONS, ranks,
 0);
}

Output
 Normal Order Statistics
 1 2 3 4 5
Blom -1.024 0.209 -0.776 -0.294 0.473
Tukey -1.020 0.208 -0.890 -0.381 0.471
Van der Waerden -0.989 0.204 -0.753 -0.287 0.460
Expected Value -1.026 0.209 -0.836 -0.338 0.473

 6 7 8 9 10
Blom -0.294 -1.610 -0.041 1.610 0.776
Tukey -0.381 -1.599 -0.041 1.599 0.773
Van der Waerden -0.372 -1.518 -0.040 1.518 0.753
Expected Value -0.338 -1.616 -0.041 1.616 0.777

 11 12 13 14 15
Blom 1.176 1.361 0.041 0.668 -1.361
Tukey 1.171 1.354 0.041 0.666 -1.354
Van der Waerden 1.131 1.300 0.040 0.649 -1.300
Expected Value 1.179 1.365 0.041 0.669 -1.365

42 � ranks IMSL C/Stat/Library

 16 17 18 19 20
Blom 0.125 -0.209 -2.040 -1.176 -0.776
Tukey 0.124 -0.208 -2.015 -1.171 -0.890
Van der Waerden 0.122 -0.204 -1.849 -1.131 -0.865
Expected Value 0.125 -0.209 -2.043 -1.179 -0.836

 21 22 23 24 25
Blom 1.024 0.294 -0.473 -0.125 2.040
Tukey 1.020 0.293 -0.471 -0.124 2.015
Van der Waerden 0.989 0.287 -0.460 -0.122 1.849
Expected Value 1.026 0.294 -0.473 -0.125 2.043

 26 27 28 29 30
Blom 0.893 -0.568 0.382 -0.668 0.568
Tukey 0.890 -0.566 0.381 -0.666 0.566
Van der Waerden 0.865 -0.552 0.372 -0.649 0.552
Expected Value 0.894 -0.568 0.382 -0.669 0.568

 Expected values of exponential order statistics
 1 2 3 4 5 6
 0.179 0.892 0.240 0.474 1.166 0.474

 7 8 9 10 11 12
 0.068 0.677 2.995 1.545 2.162 2.495

 13 14 15 16 17 18
 0.743 1.402 0.104 0.815 0.555 0.033

 19 20 21 22 23 24
 0.141 0.240 1.912 0.975 0.397 0.614

 25 26 27 28 29 30
 3.995 1.712 0.350 1.066 0.304 1.277

Chapter 2: Regression Routines � 43

Chapter 2: Regression

Routines
2.1 Multivariate Linear Regression—Model Fitting

Generate regressors for a general
linear model ..regressors_for_glm 56
Fit a multivariate linear regression model regression 64

2.2 Multivariate Linear Regression—Statistical
Inference and Diagnostics
Produce summary statistics for
a regression model .. regression_summary 77
Compute predicted values,
confidence intervals, and diagnosticsregression_prediction 85
Construction of a completely
testable hypothesis ... hypothesis_partial 96
Sums of cross products for a
multivariate hypothesis.. hypothesis_scph 101
Tests for the multivariate linear hypothesis............. hypothesis_test 106

2.3 Variable Selection
All best regressions... regression_selection 112
Stepwise regression.. regression_stepwise 123

2.4 Polynomial and Nonlinear Regression
Fit a polynomial regression modelpoly_regression 132
Compute predicted values, confidence intervals,
and diagnostics ..poly_prediction 140
Fit a nonlinear regression model.................... nonlinear_regression 149
Fit a nonlinear regression model using
Powell's algorithm .. nonlinear_optimization 159

2.5 Alternatives to Least Squares Regression
LAV, Lpnorm, and LMV criteria regression.........Lnorm_regression 168

44 � Usage Notes IMSL C/Stat/Library

Usage Notes
The regression models in this chapter include the simple and multiple linear
regression models, the multivariate general linear model, the polynomial model,
and the nonlinear regression model. Functions for fitting regression models,
computing summary statistics from a fitted regression, computing diagnostics,
and computing confidence intervals for individual cases are provided. This
chapter also provides methods for building a model from a set of candidate
variables.

Simple and Multiple Linear Regression
The simple linear regression model is

yi = �0 + �1xi + �i i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the
dependent variable, the xi’s are the settings of the independent (explanatory)
variable, �0 and �1 are the intercept and slope parameters (respectively) and the
�i’s are independently distributed normal errors, each with mean 0 and variance
�2.

The multiple linear regression model is

yi = �0 + �1xi1 + �2xi2 � ... � �kxik � �i i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the
dependent variable; the xi1’s, xi2’s, ..., xik’s are the settings of the k independent
(explanatory) variables; �0, �1, ..., �k are the regression coefficients; and the �i’s
are independently distributed normal errors, each with mean 0 and variance �2.

Function imsls_f_regression (page 64) fits both the simple and multiple
linear regression models using a fast Given’s transformation and includes an
option for excluding the intercept �0. The responses are input in array y, and the
independent variables are input in array x, where the individual cases correspond
to the rows and the variables correspond to the columns.

After the model has been fitted using imsls_f_regression, function
imsls_f_regression_summary computes summary statistics and
imsls_f_regression_prediction computes predicted values, confidence
intervals, and case statistics for the fitted model. The information about the fit is
communicated from imsls_f_regression to imsls_f_regression_summary
(page 77) and imsls_f_regression_prediction (page 85) by passing an
argument of structure type Imsls_f_regression.

Chapter 2: Regression Usage Notes � 45

n

No Intercept Model

Several functions provide the option for excluding the intercept from a model. In
most practical applications, the intercept should be included in the model. For
functions that use the sums of squares and crossproducts matrix as input, the no-
intercept case can be handled by using the raw sums of squares and crossproducts
matrix as input in place of the corrected sums of squares and crossproducts. The
raw sums of squares and crossproducts matrix can be computed as
(x1, x2, ..., xk, y)T (x1, x2, ..., xk, y).

Variable Selection

Variable selection can be performed by imsls_f_regression_selection
(page 112), which computes all best-subset regressions, or by
imsls_f_regression_stepwise (page 123), which computes stepwise
regression. The method used by imsls_f_regression_selection is
generally preferred over that used by imsls_f_regression_stepwise
because imsls_f_regression_selection implicitly examines all possible
models in the search for a model that optimizes some criterion while stepwise
does not examine all possible models. However, the computer time and memory
requirements for imsls_f_regression_selection can be much greater than
that for imsls_f_regression_stepwise when the number of candidate
variables is large.

Polynomial Model

The polynomial model is
2

0 1 2 ... 1, 2, ...,k
i i i k i iy x x x i� � � � �� � � � � � �

where the observed values of the yi’s constitute the responses or values of the
dependent variable; the xi’s are the settings of the independent (explanatory)
variable; �0, �1, ..., �k are the regression coefficients; and the �i’s are
independently distributed normal errors each with mean 0 and variance �2.

Function imsls_f_poly_regression (page 132) fits a polynomial regression
model with the option of determining the degree of the model and also produces
summary information. Function imsls_f_poly_prediction (page 140)
computes predicted values, confidence intervals, and case statistics for the model
fit by imsls_f_poly_regression.

The information about the fit is communicated from imsls_f_poly_regression
to imsls_f_poly_prediction by passing an argument of structure type
Imsls_f_poly_regression.

Specification of X for the General Linear Model

Variables used in the general linear model are either continuous or classification
variables. Typically, multiple regression models use continuous variables,
whereas analysis of variance models use classification variables. Although the
notation used to specify analysis of variance models and multiple regression

46 � Usage Notes IMSL C/Stat/Library

models may look quite different, the models are essentially the same. The term
“general linear model” emphasizes that a common notational scheme is used for
specifying a model that may contain both continuous and classification variables.

A general linear model is specified by its effects (sources of variation). An effect
is referred to in this text as a single variable or a product of variables. (The term
“effect” is often used in a narrower sense, referring only to a single regression
coefficient.) In particular, an “effect” is composed of one of the following:

1. a single continuous variable

2. a single classification variable

3. several different classification variables

4. several continuous variables, some of which may be the same

5. continuous variables, some of which may be the same, and classification
variables, which must be distinct

Effects of the first type are common in multiple regression models. Effects of the
second type appear as main effects in analysis of variance models. Effects of the
third type appear as interactions in analysis of variance models. Effects of the
fourth type appear in polynomial models and response surface models as powers
and crossproducts of some basic variables. Effects of the fifth type appear in one-
way analysis of covariance models as regression coefficients that indicate lack of
parallelism of a regression function across the groups.

The analysis of a general linear model occurs in two stages. The first stage calls
function imsls_f_regressors_for_glm to specify all regressors except the
intercept. The second stage calls imsls_f_regression, at which point the
model will be specified as either having (default) or not having an intercept.

For this discussion, define a variable INTCEP as follows:

Option INTCEP Action

IMSLS_NO_INTERCEPT

IMSLS_INTERCEPT (default)

0

1

An intercept is not in the model.

An intercept is in the model.

The remaining variables (n_continuous, n_class, x_class_columns,
n_effects, n_var_effects, and indices_effects) are defined for function
imsls_f_regressors_for_glm. All these variables have defaults except for
n_continuous and n_class, both of which must be specified.
(See the documentation for imsls_f_regressors_for_glm on page 56 for a
discussion of the defaults.) The meaning of each of these arguments is as follows:

n_continuous (Input)
Number of continuous variables.

n_class (Input)
Number of classification variables.

Chapter 2: Regression Usage Notes � 47

x_class_columns (Input)
Index vector of length n_class containing the column numbers of
x that are the classification variables.

n_effects (Input)
Number of effects (sources of variation) in the model, excluding error.

n_var_effects (Input)
Vector of length n_effects containing the number of variables
associated with each effect in the model.

indices_effects (Input)
Index vector of length n_var_effects(0) + n_var_effects(1) +
... + n_var_effects (n_effects – 1). The first n_var_effects(0)
elements give the column numbers of x for each variable in the first
effect; the next n_var_effects(1) elements give the column numbers
for each variable in the second effect; and finally, the last
n_var_effects (n_effects – 1) elements give the column numbers
for each variable in the last effect.

Suppose the data matrix has as its first four columns two continuous variables in
Columns 0 and 1 and two classification variables in Columns 2 and 3. The data
might appear as follows:

Column 0 Column 1 Column 2 Column 3

11.23 1.23 1.0 5.0

12.12 2.34 1.0 4.0

12.34 1.23 1.0 4.0

4.34 2.21 1.0 5.0

5.67 4.31 2.0 4.0

4.12 5.34 2.0 1.0

4.89 9.31 2.0 1.0

9.12 3.71 2.0 1.0

Each distinct value of a classification variable determines a level. The
classification variable in Column 2 has two levels. The classification variable in
Column 3 has three levels. (Integer values are recommended, but not required, for
values of the classification variables. The values of the classification variables
corresponding to the same level must be identical.) Some examples of regression
functions and their specifications are as follows:

48 � Usage Notes IMSL C/Stat/Library

 INTCEP n_class x_class_columns

�0 + �1x1 1 0

2
0 1 1 2x x� � �� � 1 1 0

� + �i 1 1 2

� + �i + �j + �ij 1 2 2, 3

�ij 0 2 2, 3

�0 + �1x1 + �2x2 + �3x1x2 1 0

� + �i + �x1i + �ix1i 1 1 2

 n_effects n_var_effects Indices_effects

�0 + �1x1 1 1 0

2
0 1 1 2x x� � �� � 1 2 1, 2 0, 0, 0

� + �i 1 1 2

� + �i + �j + �ij 3 1, 1, 2 2, 3, 2, 3

�ij 1 2 2, 3

�0 + �1x1 + �2x2 + �
3x1x2

3 1, 1, 2 0, 1, 0, 1

� + �i + �x1i + �ix1i 3 1, 1, 2 2, 0, 0, 2

Functions for Fitting the Model

Function imsls_f_regression (page 64) fits a multivariate general linear
model, where regressors for the general linear model have been generated using
function imsls_f_regressors_for_glm.

Linear Dependence and the R Matrix

Linear dependence of the regressors frequently arises in regression models—
sometimes by design and sometimes by accident. The functions in this chapter are
designed to handle linear dependence of the regressors; i.e., the

Chapter 2: Regression Usage Notes � 49

n � p matrix X (the matrix of regressors) in the general linear model can have
rank less than p. Often, the models are referred to as non-full rank models.

As discussed in Searle (1971, Chapter 5), be careful to correctly use the results of
the fitted non-full rank regression model for estimation and hypothesis testing. In
the non-full rank case, not all linear combinations of the regression coefficients
can be estimated. Those linear combinations that can be estimated are called
“estimable functions.” If the functions are used to attempt to estimate linear
combinations that cannot be estimated, error messages are issued. A good general
discussion of estimable functions is given by Searle (1971, pp. 180–188).

The check used by functions in this chapter for linear dependence is sequential.
The j-th regressor is declared linearly dependent on the preceding j 	 1
regressors if

� �
2

1,2, , 1...1 j jR
�

�

is less than or equal to tolerance. Here,

� �1,2,..., 1j jR
�

is the multiple correlation coefficient of the j-th regressor with the first j 	 1
regressors. When a function declares the j-th regressor to be linearly dependent
on the first j 	 1, the j-th regression coefficient is set to 0. Essentially, this
removes the j-th regressor from the model.

The reason a sequential check is used is that practitioners frequently include the
preferred variables to remain in the model first. Also, the sequential check is
based on many of the computations already performed as this does not degrade
the overall efficiency of the functions. There is no perfect test for linear
dependence when finite precision arithmetic is used. The optional argument
IMSLS_TOLERANCE allows the user some control over the check for linear
dependence. If a model is full rank, input tolerance = 0.0. However,
tolerance should be input as approximately 100 times the machine epsilon. The
machine epsilon is imsls_f_machine(4) in single precision and
imsls_d_machine(4) in double precision. (See functions imsls_f_machine
and imsls_d_machine in Chapter 14.)

Functions performing least squares are based on QR decomposition of X or on a
Cholesky factorization RTR of XTX. Maindonald (1984, Chapters 1	5) discusses
these methods extensively. The R matrix used by the regression function is a
p � p upper-triangular matrix, i.e., all elements below the diagonal are 0. The
signs of the diagonal elements of R are used as indicators of linearly dependent
regressors and as indicators of parameter restrictions imposed by fitting a
restricted model. The rows of R can be partitioned into three classes by the sign
of the corresponding diagonal element:

1. A positive diagonal element means the row corresponds to data.

50 � Usage Notes IMSL C/Stat/Library

2. A negative diagonal element means the row corresponds to a linearly
independent restriction imposed on the regression parameters by AB = Z
in a restricted model.

3. A zero diagonal element means a linear dependence of the regressors
was declared. The regression coefficients in the corresponding row of B̂
are set to 0. This represents an arbitrary restriction that is imposed to
obtain a solution for the regression coefficients. The elements of the
corresponding row of R also are set to 0.

Nonlinear Regression Model
The nonlinear regression model is

yi = f(xi;
) + �i i = 1, 2, �, n

where the observed values of the yi’s constitute the responses or values of the
dependent variable, the xi’s are the known vectors of values of the independent
(explanatory) variables, f is a known function of an unknown regression
parameter vector
, and the �i’s are independently distributed normal errors each
with mean 0 and variance �2.

Function imsls_f_nonlinear_regression (page 149) performs the least-
squares fit to the data for this model.

Weighted Least Squares

Functions throughout the chapter generally allow weights to be assigned to the
observations. The vector weights is used throughout to specify the weighting for
each row of X.

Computations that relate to statistical inference—e.g., t tests, F tests, and
confidence intervals—are based on the multiple regression model except that the
variance of �i is assumed to equal �2 times the reciprocal of the corresponding
weight.

If a single row of the data matrix corresponds to ni observations, the vector
frequencies can be used to specify the frequency for each row of X. Degrees of
freedom for error are affected by frequencies but are unaffected by weights.

Summary Statistics

Function imsls_f_regression_summary can be used to compute and print
statistics related to a regression for each of the q dependent variables fitted by
imsls_f_regression (page 64). The summary statistics include the model
analysis of variance table, sequential sums of squares and F-statistics, coefficient
estimates, estimated standard errors, t-statistics, variance inflation factors, and
estimated variance-covariance matrix of the estimated regression coefficients.
Function imsls_f_poly_regression (page 132) includes most of the same
functionality for polynomial regressions.

Chapter 2: Regression Usage Notes � 51

The summary statistics are computed under the model y = X� + �, where y is the
n � 1 vector of responses, X is the n � p matrix of regressors with rank (X) = r, �
is the p � 1 vector of regression coefficients, and � is the n � 1 vector of errors
whose elements are independently normally distributed with mean 0 and variance
�2�wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the
weights), most of the computed summary statistics are output in the following
variables:

anova_table
One-dimensional array usually of length 15. In
imsls_f_regression_stepwise, anova_table is of length 13
because the last two elements of the array cannot be computed from the
input. The array contains statistics related to the analysis of variance.
The sources of variation examined are the regression, error, and total.
The first 10 elements of anova_table and the notation frequently used
for these is described in the following table (here, AOV replaces
anova_table):

Model Analysis of Variance Table
Source of
Variation

Degrees of
Freedom

Sum of
Squares

Mean Square

F

p-value

Regression DFR = AOV[0] SSR = AOV[3] MSR = AOV[6] AOV[8] AOV[9]

Error DFE = AOV[1] SSE = AOV[4] s2 = AOV[7]

Total DFT = AOV[2] SST = AOV[5]

If the model has an intercept (default), the total sum of squares is the
sum of squares of the deviations of yi from its (weighted) mean y —the
so-called corrected total sum of squares, denoted by the following:

� �
2

1
SST

n

i i
i

w y y
�

� ��

If the model does not have an intercept (IMSLS_NO_INTERCEPT), the
total sum of squares is the sum of squares of yi—the so-called
uncorrected total sum of squares, denoted by the following:

2

1
SST

n

i i
i

w y
�

��

The error sum of squares is given as follows:

� �
2

1

ˆSSE
n

i i i
i

w y y
�

� ��

The error degrees of freedom is defined by DFE = n – r.

52 � Usage Notes IMSL C/Stat/Library

The estimate of �2 is given by s2 = SSE�DFE, which is the error mean
square.

The computed F statistic for the null hypothesis,
H0:�1 = �2 = ... = �k = 0, versus the alternative that at least one
coefficient is nonzero is given by F = MSR�s2. The p-value associated
with the test is the probability of an F larger than that computed under
the assumption of the model and the null hypothesis. A small p-value
(less than 0.05) is customarily used to indicate there is sufficient
evidence from the data to reject the null hypothesis.

The remaining five elements in anova_table frequently are displayed
together with the actual analysis of variance table. The quantities
R-squared (R2 = anova_table[10]) and adjusted R-squared

� �� �2 11aR � anova_table

are expressed as a percentage and are defined as follows:

R2 = 100(SSR�SST) = 100(1 – SSE�SST)
2

2 100max 0,1
SST/DFTa

sR
� �

� �� �
� �

The square root of s2(s = anova_table[12]) is frequently referred to as
the estimated standard deviation of the model error.

The overall mean of the responses y is output in anova_table[13].

The coefficient of variation (CV = anova_table[14]) is expressed as a
percentage and defined by CV = 100s/ y .

coef_t_tests
Two-dimensional matrix containing the regression coefficient vector �̂
as one column and associated statistics (estimated standard error, t
statistic and p-value) in the remaining columns.

coef_covariances
Estimated variance-covariance matrix of the estimated regression
coefficients.

Tests for Lack-of-Fit
Tests for lack-of-fit are computed for the polynomial regression by the function
imsls_f_poly_regression (page 132). The output array ssq_lof contains
the lack-of-fit F tests for each degree polynomial 1, 2, ..., k, that is fit to the data.
These tests are used to indicate the degree of the polynomial required to fit the
data well.

Chapter 2: Regression Usage Notes � 53

Diagnostics for Individual Cases
Diagnostics for individual cases (observations) are computed by two functions in
the regression chapter: imsls_f_regression_prediction for linear and
nonlinear regressions and imsls_f_poly_prediction for polynomial
regressions.

Statistics computed include predicted values, confidence intervals, and
diagnostics for detecting outliers and cases that greatly influence the fitted
regression.

The diagnostics are computed under the model y = X� + �, where y is the n � 1
vector of responses, X is the n � p matrix of regressors with rank (X) = r, � is the
p � 1 vector of regression coefficients, and � is the n � 1 vector of errors whose
elements are independently normally distributed with mean 0 and variance �2�wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the
weights), the following five diagnostics are computed:

1. leverage

2. standardized residual

3. jackknife residual

4. Cook’s distance

5. DFFITS

The definition of these terms is given in the discussion that follows:

Let xi be a column vector containing the elements of the i-th row of X. A case can
be unusual either because of xi or because of the response yi. The leverage
hi is a measure of uniqueness of the xi. The leverage is defined by

� �[]T T
i i ih x X WX x w

�

� i

where W = diag(w1, w2, �, wn) and (XTWX)- denotes a generalized inverse of
XTWX. The average value of the hi’s is r�n. Regression functions declare
xi unusual if hi > 2r�n. Hoaglin and Welsch (1978) call a data point highly
influential (i.e., a leverage point) when this occurs.

Let ei denote the residual

ˆi iy y�

for the i-th case. The estimated variance of ei is (1 – hi)s2�wi, where s2 is the
residual mean square from the fitted regression. The i-th standardized residual
(also called the internally studentized residual) is by definition

� �2 1
i

i i
i

w
r e

s h
�

�

and ri follows an approximate standard normal distribution in large samples.

54 � Usage Notes IMSL C/Stat/Library

�

The i-th jackknife residual or deleted residual involves the difference between
yi and its predicted value, based on the data set in which the i-th case is deleted.
This difference equals ei�(1 	 hi). The jackknife residual is obtained by
standardizing this difference. The residual mean square for the regression in
which the i-th case is deleted is as follows:

� � �2 2
2 / 1

1
i i i

i

n r s w e h
s

n r
� � �

�
� �

The jackknife residual is defined as

� �2 1
i

i i
i i

w
t e

s h
�

�

and ti follows a t distribution with n – r 	 1 degrees of freedom.

Cook’s distance for the i-th case is a measure of how much an individual case
affects the estimated regression coefficients. It is given as follows:

� �

2

22 1
i i i

i
i

w h e
D

rs h
�

�

Weisberg (1985) states that if Di exceeds the 50-th percentile of the F(r, n 	 r)
distribution, it should be considered large. (This value is about 1. This statistic
does not have an F distribution.)

DFFITS, like Cook’s distance, is also a measure of influence. For the i-th case,
DFFITS is computed by the formula below.

� �
22

DFFITS
1

i i
i i

i i

w h
e

s h
�

�

Hoaglin and Welsch (1978) suggest that DFFITS greater than

2 /r n

is large.

Transformations

Transformations of the independent variables are sometimes useful in order to
satisfy the regression model. The inclusion of squares and crossproducts of the
variables

� �2 2
1 2 1 2 1 2, , , ,x x x x x x

is often needed. Logarithms of the independent variables are used also. (See
Draper and Smith 1981, pp. 218	222; Box and Tidwell 1962; Atkinson 1985,
pp. 177	180; Cook and Weisberg 1982, pp. 78	86.)

Chapter 2: Regression Usage Notes � 55

When the responses are described by a nonlinear function of the parameters, a
transformation of the model equation often can be selected so that the
transformed model is linear in the regression parameters. For example, by taking
natural logarithms on both sides of the equation, the exponential model

0 1 1xy e� �
�

�

�

can be transformed to a model that satisfies the linear regression model provided
the �i’s have a log-normal distribution (Draper and Smith, pp. 222	225).

When the responses are nonnormal and their distribution is known, a
transformation of the responses can often be selected so that the transformed
responses closely satisfy the regression model, assumptions. The square-root
transformation for counts with a Poisson distribution and the arc-sine
transformation for binomial proportions are common examples
(Snedecor and Cochran 1967, pp. 325	330; Draper and Smith, pp. 237	239).

Alternatives to Least Squares
The method of least squares has desirable characteristics when the errors are
normally distributed, e.g., a least-squares solution produces maximum likelihood
estimates of the regression parameters. However, when errors are not normally
distributed, least squares may yield poor estimators. Function
imsls_f_lnorm_regression offers three alternatives to least squares
methodology, Least Absolute Value , Lp Norm , and Least Maximum Value.

The least absolute value (LAV, L1) criterion yields the maximum likelihood
estimate when the errors follow a Laplace distribution. Option
IMSLS_METHOD_LAV (page 170) is often used when the errors have a heavy
tailed distribution or when a fit is needed that is resistant to outliers.

A more general approach, minimizing the Lp norm (p 1), is given by option
IMSLS_METHOD_LLP (page 170). Although the routine requires about 30 times
the CPU time for the case p = 1 than would the use of IMSLS_METHOD_LAV, the
generality of IMSLS_METHOD_LLP allows the user to try several choices for
p � 1 by simply changing the input value of p in the calling program. The CPU
time decreases as p gets larger. Generally, choices of p between 1 and 2 are of
interest. However, the Lp norm solution for values of p larger than 2 can also be
computed.

The minimax (LMV, L�, Chebyshev) criterion is used by IMSLS_METHOD_LMV
(page 170). Its estimates are very sensitive to outliers, however, the minimax
estimators are quite efficient if the errors are uniformly distributed.

Missing Values

NaN (Not a Number) is the missing value code used by the regression functions.
Use function imsls_f_machine(6), Chapter 14 (or function
imsls_d_machine(6) with double-precision regression functions) to retrieve
NaN. Any element of the data matrix that is missing must be set to

56 � regressors_for_glm IMSL C/Stat/Library

imsls_f_machine(6) (or imsls_d_machine(6) for double precision). In
fitting regression models, any observation containing NaN for the independent,
dependent, weight, or frequency variables is omitted from the computation of the
regression parameters.

regressors_for_glm
Generates regressors for a general linear model.

Synopsis
#include <imsls.h>
int imsls_f_regressors_for_glm (int n_observations, float x[],

int n_class, int n_continuous, ..., 0)

The type double function is imsls_d_regressors_for_glm.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
An n_observations � (n_class + n_continuous) array containing
the data. The columns must be ordered such that the first n_class
columns contain the class variables and the next n_continuous
columns contain the continuous variables. (Exception: see optional
argument IMSLS_X_CLASS_COLUMNS.)

int n_class (Input)
Number of classification variables.

int n_continuous (Input)
Number of continuous variables.

Return Value
An integer (n_regressors) indicating the number of regressors generated.

Synopsis with Optional Arguments
#include <imsls.h>
int imsls_f_regressors_for_glm (int n_observations, float x[],

int n_class, int n_continuous,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_CLASS_COLUMNS, int x_class_columns[],
IMSLS_MODEL_ORDER, int model_order,
IMSLS_INDICES_EFFECTS, int n_effects,
 int n_var_effects[], int indices_effects[],
IMSLS_DUMMY, Imsls_dummy_method dummy_method,

Chapter 2: Regression regressors_for_glm � 57

IMSLS_REGRESSORS, float **regressors,
IMSLS_REGRESSORS_USER, float regressors[],
IMSLS_REGRESSORS_COL_DIM, int regressors_col_dim,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of x.
Default: x_col_dim = n_class + n_continuous

IMSLS_X_CLASS_COLUMNS, int x_class_columns[] (Input)
Index array of length n_class containing the column numbers of x that
are the classification variables. The remaining variables are assumed to
be continuous.
Default: x_class_columns = 0, 1, ..., n_class 	 1

IMSLS_MODEL_ORDER, int model_order (Input)
Order of the model. Model order can be specified as 1 or 2. Use optional
argument IMSLS_INDICES_EFFECTS to specify more complicated
models.
Default: model_order = 1
or

IMSLS_INDICES_EFFECTS, int n_effects, int n_var_effects[],
int indices_effects[] (Input)
Variable n_effects is the number of effects (sources of variation) in
the model. Variable n_var_effects is an array of length n_effects
containing the number of variables associated with each effect in the
model. Argument indices_effects is an index array of length
n_var_effects[0] + n_var_effects[1] + � + n_var_effects
(n_effects 	 1). The first n_var_effects[0] elements give the
column numbers of x for each variable in the first effect. The next
n_var_effects[1] elements give the column numbers for each
variable in the second effect. � The last n_var_effects
[n_effects 	 1] elements give the column numbers for each variable in
the last effect.

IMSLS_DUMMY, Imsls_dummy_method dummy_method (Input)
Dummy variable option. Indicator variables are defined for each class
variable as described in the “Description” section.

 Dummy variables are then generated from the n indicator variables in
one of the following three ways:

dummy_method Method

IMSLS_ALL The n indicator variables are the dummy
variables (default).

58 � regressors_for_glm IMSL C/Stat/Library

dummy_method Method

IMSLS_LEAVE_OUT_LAST The dummies are the first n 	 1 indicator
variables.

IMSLS_SUM_TO_ZERO The n 	 1 dummies are defined in terms of the
indicator variables so that for balanced data,
the usual summation restrictions are imposed
on the regression coefficients.

IMSLS_REGRESSORS, float **regressors (Output)
Address of a pointer to the internally allocated array of size
n_observations � n_regressors containing the regressor variables
generated from x.

IMSLS_REGRESSORS_USER, float regressors[] (Output)
Storage for array regressors is provided by the user. See
IMSLS_REGRESSORS.

IMSLS_REGRESSORS_COL_DIM, int regressors_col_dim (Input)
Column dimension of regressors.
Default: regressors_col_dim = n_regressors

Description
Function imsls_f_regressors_for_glm generates regressors for a general
linear model from a data matrix. The data matrix can contain classification
variables as well as continuous variables. Regressors for effects composed solely
of continuous variables are generated as powers and crossproducts. Consider a
data matrix containing continuous variables as Columns 3 and 4. The effect
indices (3, 3) generate a regressor whose i-th value is the square of the i-th value
in Column 3. The effect indices (3, 4) generates a regressor whose i-th value is
the product of the i-th value in Column 3 with the i-th value in Column 4.

Regressors for an effect (source of variation) composed of a single classification
variable are generated using indicator variables. Let the classification variable A
take on values a1, a2, ..., an. From this classification variable,
imsls_f_regressors_for_glm creates n indicator variables. For
k = 1, 2, ..., n, we have

1 if
0 otherwise

k
k

A a
I

��
� �
�

For each classification variable, another set of variables is created from the
indicator variables. These new variables are called dummy variables. Dummy
variables are generated from the indicator variables in one of three manners:

1. The dummies are the n indicator variables.

2. The dummies are the first n – 1 indicator variables.

Chapter 2: Regression regressors_for_glm � 59

3. The n – 1 dummies are defined in terms of the indicator variables so that
for balanced data, the usual summation restrictions are imposed on the
regression coefficients.

In particular, for dummy_method = IMSLS_ALL, the dummy variables are
Ak = Ik(k = 1, 2, ..., n). For dummy_method = IMSLS_LEAVE_OUT_LAST, the
dummy variables are Ak = Ik(k = 1, 2, ..., n 	 1). For
dummy_method = IMSLS_SUM_TO_ZERO, the dummy variables are
Ak = Ik 	 In(k = 1, 2, ..., n 	 1). The regressors generated for an effect composed
of a single-classification variable are the associated dummy variables.

Let mj be the number of dummies generated for the j-th classification variable.
Suppose there are two classification variables A and B with dummies

11 2, , ..., mA A A

and

21 2, , ..., mB B B

The regressors generated for an effect composed of two classification variables
A and B are

� � �1 2

2

2 1 1 1 2

1 2 1 2

1 1 1 2 1 2 1 2 2

2 1 2

, , ..., , , ...,

(, , ..., , , , ...,

, ..., , , ...,)

m m

m

m m m m m

A B A A A B B B

A B A B A B A B A B

A B A B A B A B

� � �

�

�

More generally, the regressors generated for an effect composed of several
classification variables and several continuous variables are given by the
Kronecker products of variables, where the order of the variables is specified in
indices_effects. Consider a data matrix containing classification variables in
Columns 0 and 1 and continuous variables in Columns 2 and 3. Label these four
columns A, B, X1, and X2. The regressors generated by the effect indices
(0, 1, 2, 2, 3) are A � B � X1X1X2.

Remarks
Let the data matrix x = (A, B, X1), where A and B are classification variables and
X1 is a continuous variable. The model containing the effects A, B, AB, X1,
AX1, BX1, and ABX1 is specified as follows (use optional keyword
IMSLS_INDICES_EFFECTS):

n_class � 2
n_continuous � 1
n_effects � 7

n_var_effects � (1, 1, 2, 1, 2, 2, 3)
indices_effects � (0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2)

60 � regressors_for_glm IMSL C/Stat/Library

For this model, suppose that variable A has two levels, A1 and A2, and that
variable B has three levels, B1, B2, and B3. For each dummy_method option, the
regressors in their order of appearance in regressors are given below.

dummy_method regressors

IMSLS_ALL A1, A2, B1, B2, B3, A1B1, A1B2, A1B3, A2B1, A2B2,
A2B3, X1, A1X1, A2X1, B1X1, B2X1, B3X1, A1B1X1,
A1B2X1, A1B3X1, A2B1X1, A2B2X1, A2B3X1

IMSLS_LEAVE_OUT_LAST A1, B1, B2, A1B1, A1B2, X1, A1X1, B1X1, B2X1,
A1B1X1, A1B2X1

IMSLS_SUM_TO_ZERO A1 	 A2, B1 	 B3, B2 	 B3, (A1 	 A2) (B1 	 B2),
(A1 	 A2) (B2 	 B3), X1, (A1 	 A2) X1,
(B1 	 B3)X1, (B2 	 B3)X1, (A1 	 A2) (B1 	 B2)X1,
(A1 	 A2) (B2 	 B3)X1

Within a group of regressors corresponding to an interaction effect, the indicator
variables composing the regressors vary most rapidly for the last classification
variable, next most rapidly for the next to last classification variable, etc.

By default, imsls_f_regressors_for_glm internally generates values for
n_effects, n_var_effects, and indices_effects, which correspond to a
first order model with NEF = n_continuous + n_class. The variables then are
used to create the regressor variables. The effects are ordered such that the first
effect corresponds to the first column of x, the second effect corresponds to the
second column of x, etc. A second order model corresponding to the columns
(variables) of x is generated if IMSLS_MODEL_ORDER with model_order = 2 is
specified.

There are

NVAR
NEF= + 2 +

2
� �

� � �
� �

n_class n_continuous

effects, where NVAR = n_continuous + n_class. The first NVAR effects
correspond to the columns of x, such that the first effect corresponds to the first
column of x, the second effect corresponds to the second column of x, ..., the
NVAR-th effect corresponds to the NVAR-th column of x (i.e. x[NVAR 	 1]).
The next n_continuous effects correspond to squares of the continuous
variables. The last

� �NVAR
2

effects correspond to the two-variable interactions.

Chapter 2: Regression regressors_for_glm � 61

1

� Let the data matrix x = (A, B, X1), where A and B are classification
variables and X1 is a continuous variable. The effects generated and
order of appearance is

2
1 1 1, , , , , ,A B X X AB AX BX

� Let the data matrix x = (A, X1, X2), where A is a classification variable
and X1 and X2 are continuous variables. The effects generated and order
of appearance is

2 2
1 2 1 2 1 2 1, , , , , , , 2A X X X X AX AX X X

� Let the data matrix x = (X1, A, X2) (see IMSLS_CLASS_COLUMNS),
where A is a classification variable and X1 and X2 are continuous
variables. The effects generated and order of appearance is

2 2
1 2 1 2 1 1 2, , , , , , ,X A X X X X A X X AX 2

Higher-order and more complicated models can be specified using
IMSLS_INDICES_EFFECTS.

Examples

Example 1
In the following example, there are two classification variables, A and B, with two
and three values, respectively. Regressors for a one-way model (the default model
order) are generated using the IMSLS_ALL dummy method (the default dummy
method). The five regressors generated are A1, A2, B1, B2, and B3.

#include <imsls.h>
void main() {
 int n_observations = 6;
 int n_class = 2;
 int n_cont = 0;
 int n_regressors;
 float x[12] = {
 10.0, 5.0,
 20.0, 15.0,
 20.0, 10.0,
 10.0, 10.0,
 10.0, 15.0,
 20.0, 5.0};

 n_regressors = imsls_f_regressors_for_glm (n_observations, x,
 n_class, n_cont, 0);

 printf("Number of regressors = %3d\n", n_regressors);
}

Output

Number of regressors = 5

62 � regressors_for_glm IMSL C/Stat/Library

Example 2
In this example, a two-way analysis of covariance model containing all the
interaction terms is fit. First, imsls_f_regressors_for_glm is called to
produce a matrix of regressors, regressors, from the data x. Then,
regressors is used as the input matrix into imsls_f_regression to produce
the final fit. The regressors, generated using
dummy_method = IMSLS_LEAVE_OUT_LAST, are the model whose mean
function is

� + �i + �j + �ij + �xij + �ixij + �jxij +
ijxij i = 1, 2; j = 1, 2, 3

where �2 = �3 = �21 = �22 = �23 = �2 = �3 =
21 =
22 =
23 = 0.

#include <imsls.h>
void main() {
#define N_OBSERVATIONS 18
 int n_class = 2;
 int n_cont = 1;
 float anova[15], *regressors;
 int n_regressors;
 float x[54] = {
 1.0, 1.0, 1.11,
 1.0, 1.0, 2.22,
 1.0, 1.0, 3.33,
 1.0, 2.0, 1.11,
 1.0, 2.0, 2.22,
 1.0, 2.0, 3.33,
 1.0, 3.0, 1.11,
 1.0, 3.0, 2.22,
 1.0, 3.0, 3.33,
 2.0, 1.0, 1.11,
 2.0, 1.0, 2.22,
 2.0, 1.0, 3.33,
 2.0, 2.0, 1.11,
 2.0, 2.0, 2.22,
 2.0, 2.0, 3.33,
 2.0, 3.0, 1.11,
 2.0, 3.0, 2.22,
 2.0, 3.0, 3.33};
 float y[N_OBSERVATIONS] = {
 1.0, 2.0, 2.0, 4.0, 4.0, 6.0,
 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
 2.0, 3.0, 4.0, 5.0, 6.0, 7.0};
 int class_col[2] = {0,1};
 int n_effects = 7;
 int n_var_effects[7] = {1, 1, 2, 1, 2, 2, 3};
 int indices_effects[12] = {0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2};
 float *coef;
 char *reg_labels[] = {
 " ", "Alpha1", "Beta1", "Beta2", "Gamma11", "Gamma12",
 "Delta", "Zeta1", "Eta1", "Eta2", "Theta11", "Theta12"};
 char *labels[] = {
 "degrees of freedom for the model",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for the model",

Chapter 2: Regression regressors_for_glm � 63

 "sum of squares for error",
 "total (corrected) sum of squares",
 "model mean square", "error mean square",
 "F-statistic", "p-value",
 "R-squared (in percent)","adjusted R-squared (in percent)",
 "est. standard deviation of the model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 n_regressors = imsls_f_regressors_for_glm (N_OBSERVATIONS, x,
 n_class, n_cont,
 IMSLS_X_CLASS_COLUMNS, class_col,
 IMSLS_DUMMY, IMSLS_LEAVE_OUT_LAST,
 IMSLS_INDICES_EFFECTS, n_effects, n_var_effects, indices_effects,
 IMSLS_REGRESSORS, ®ressors,
 0);

 printf("Number of regressors = %3d", n_regressors);

 imsls_f_write_matrix ("regressors", N_OBSERVATIONS, n_regressors,
 regressors,
 IMSLS_COL_LABELS, reg_labels,
 0);

 coef = imsls_f_regression (N_OBSERVATIONS, n_regressors, regressors,
 y,
 IMSLS_ANOVA_TABLE_USER, anova,
 0);

 imsls_f_write_matrix ("* * * Analysis of Variance * * *\n", 15, 1,
 anova,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);

}

Output

Number of regressors = 11
 regressors
 Alpha1 Beta1 Beta2 Gamma11 Gamma12 Delta
 1 1.00 1.00 0.00 1.00 0.00 1.11
 2 1.00 1.00 0.00 1.00 0.00 2.22
 3 1.00 1.00 0.00 1.00 0.00 3.33
 4 1.00 0.00 1.00 0.00 1.00 1.11
 5 1.00 0.00 1.00 0.00 1.00 2.22
 6 1.00 0.00 1.00 0.00 1.00 3.33
 7 1.00 0.00 0.00 0.00 0.00 1.11
 8 1.00 0.00 0.00 0.00 0.00 2.22
 9 1.00 0.00 0.00 0.00 0.00 3.33
10 0.00 1.00 0.00 0.00 0.00 1.11
11 0.00 1.00 0.00 0.00 0.00 2.22
12 0.00 1.00 0.00 0.00 0.00 3.33
13 0.00 0.00 1.00 0.00 0.00 1.11
14 0.00 0.00 1.00 0.00 0.00 2.22
15 0.00 0.00 1.00 0.00 0.00 3.33
16 0.00 0.00 0.00 0.00 0.00 1.11

64 � regression IMSL C/Stat/Library

17 0.00 0.00 0.00 0.00 0.00 2.22
18 0.00 0.00 0.00 0.00 0.00 3.33

 Zeta1 Eta1 Eta2 Theta11 Theta12
 1 1.11 1.11 0.00 1.11 0.00
 2 2.22 2.22 0.00 2.22 0.00
 3 3.33 3.33 0.00 3.33 0.00
 4 1.11 0.00 1.11 0.00 1.11
 5 2.22 0.00 2.22 0.00 2.22
 6 3.33 0.00 3.33 0.00 3.33
 7 1.11 0.00 0.00 0.00 0.00
 8 2.22 0.00 0.00 0.00 0.00
 9 3.33 0.00 0.00 0.00 0.00
10 0.00 1.11 0.00 0.00 0.00
11 0.00 2.22 0.00 0.00 0.00
12 0.00 3.33 0.00 0.00 0.00
13 0.00 0.00 1.11 0.00 0.00
14 0.00 0.00 2.22 0.00 0.00
15 0.00 0.00 3.33 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00

 * * * Analysis of Variance * * *

degrees of freedom for the model 11.0000
degrees of freedom for error 6.0000
total (corrected) degrees of freedom 17.0000
sum of squares for the model 43.9028
sum of squares for error 0.8333
total (corrected) sum of squares 44.7361
model mean square 3.9912
error mean square 0.1389
F-statistic 28.7364
p-value 0.0003
R-squared (in percent) 98.1372
adjusted R-squared (in percent) 94.7221
est. standard deviation of the model error 0.3727
overall mean of y 3.9722
coefficient of variation (in percent) 9.3821

regression
Fits a multivariate linear regression model using least squares.

Synopsis
#include <imsls.h>
float *imsls_f_regression (int n_rows, int n_independent, float x[],

float y[], ..., 0)

The type double function is imsls_d_regression.

Chapter 2: Regression regression � 65

Required Arguments

int n_rows (Input)
Number of rows in x.

int n_independent (Input)
Number of independent (explanatory) variables.

float x[] (Input)
Array of size n_rows � n_independent containing the independent
(explanatory) variables(s). The i-th column of x contains the i-th
independent variable.

float y[] (Input)
Array of size n_rows � n_dependent containing the dependent
(response) variables(s). The i-th column of y contains the i-th dependent
variable. See optional argument IMSLS_N_DEPENDENT to set the value
of n_dependent.

Return Value
If the optional argument IMSLS_NO_INTERCEPT is not used, regression
returns a pointer to an array of length n_dependent � (n_independent + 1)
containing a least-squares solution for the regression coefficients. The estimated
intercept is the initial component of each row, where the i-th row contains the
regression coefficients for the i-th dependent variable.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_regresssion (int n_rows, int n_independent,

float x[], float y[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_Y_COL_DIM, int y_col_dim,
IMSLS_N_DEPENDENT, int n_dependent,
IMSLS_X_INDICES, int indind[], int inddep[], int ifrq,
 int iwt,
IMSLS_IDO, int ido,
IMSLS_ROWS_ADD, or
IMSLS_ROWS_DELETE,
IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,
IMSLS_TOLERANCE, float tolerance,
IMSLS_RANK, int *rank,
IMSLS_COEF_COVARIANCES, float **coef_covariances,
IMSLS_COEF_COVARIANCES_USER, float coef_covariances[],
IMSLS_COV_COL_DIM, int cov_col_dim,
IMSLS_X_MEAN, float **x_mean,
IMSLS_X_MEAN_USER, float x_mean[],
IMSLS_RESIDUAL, float **residual,

66 � regression IMSL C/Stat/Library

IMSLS_RESIDUAL_USER, float residual[],
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_WEIGHTS, float weights[],
IMSLS_REGRESSION_INFO,
 Imsls_f_regression **regression_info,
IMSLS_RETURN_USER, float coefficients[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of x.
Default: x_col_dim = n_independent

IMSLS_Y_COL_DIM, int y_col_dim (Input)
Column dimension of y.
Default: y_col_dim = n_dependent

IMSLS_N_DEPENDENT, int n_dependent (Input)
Number of dependent variables. Input matrix y must be declared of size
n_rows by n_dependent, where column i of y contains the i-th
dependent variable.
Default: n_dependent = 1

IMSLS_X_INDICES, int indind[], int inddep, int ifrq, int iwt (Input)
This argument allows an alternative method for data specification. Data
(independent, dependent, frequencies, and weights) is all stored in the
data matrix x. Argument y, and keywords IMSLS_FREQUENCIES and
IMSLS_WEIGHTS are ignored.

Each of the four arguments contains indices indicating column numbers
of x in which particular types of data are stored. Columns are numbered
0 � x_col_dim 	 1.

Parameter indind contains the indices of the independent variables..

Parameter inddep contains the indices of the dependent variables.

Parameters ifrq and iwt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Set ifrq = 	1 if there
will be no column for frequencies. Set iwt = 	1 if there will be no
column for weights. Weights are rounded to the nearest integer.
Negative weights are not allowed.

Note that required input argument y is not referenced, and can be
declared a vector of length 1.

IMSLS_IDO, int ido (Input)
Processing option.

Chapter 2: Regression regression � 67

ido Action

0 This is the only invocation; all the data are input at once. (Default)

1 This is the first invocation with this data; additional calls will be
made. Initialization and updating for the n_rows observations of x
will be performed.

2 This is an intermediate invocation; updating for the n_rows
observations of x will be performed.

3 This is the final invocation of this function. Updating for the data in
x and wrap-up computations are performed. Workspace is released.
No further call to regression with ido greater than 1 should be
made without first calling regression with ido = 1

Default: ido = 0

IMSLS_ROWS_ADD, or
IMSLS_ROWS_DELETE

By default (or if IMSLS_ROWS_ADD is specified), the observations in x
are added to the discriminant statistics. If IMSLS_ROWS_DELETE is
specified, then the observations are deleted.

If ido = 0, these optional arguments are ignored (data is always added if
there is only one invocation).

IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT

IMSLS_INTERCEPT is the default where the fitted value for observation
i is

0 1 1
ˆ ˆ ˆ... k kx x� � �� � �

where k = n_independent. If IMSLS_NO_INTERCEPT is specified, the intercept
term

� �0�̂

is omitted from the model and the return value from regression is a
pointer to an array of length n_dependent � n_independent.

IMSLS_TOLERANCE, float tolerance (Input)
Tolerance used in determining linear dependence. For regression,
tolerance = 100 � imsls_f_machine(4) is the default choice. For
imsls_d_regression, tolerance = 100 � imsls_d_machine(4) is
the default. (See imsls_f_machine Chapter 14.)

IMSLS_RANK, int *rank (Output)
Rank of the fitted model is returned in *rank.

68 � regression IMSL C/Stat/Library

IMSLS_COEF_COVARIANCES, float **coef_covariances (Output)
Address of a pointer to the n_dependent � m � m internally allocated
array containing the estimated variances and covariances of the
estimated regression coefficients. Here, m is the number of regression
coefficients in the model. If IMSLS_NO_INTERCEPT is specified,
n = n_independent; otherwise, m = n_independent + 1.

The first m � m elements contain the matrix for the first dependent
variable, the next m � m elements contain the matrix for the next
dependent variable, ... and so on.

IMSLS_COEF_COVARIANCES_USER, float coef_covariances[] (Output)
Storage for arrays coef_covariances is provided by the user. See
IMSLS_COEF_COVARIANCES.

IMSLS_COV_COL_DIM, int cov_col_dim (Input)
Column dimension of array coef_covariances.
Default: cov_col_dim = m, where m is the number of regression
coefficients in the model

IMSLS_X_MEAN, float **x_mean (Output)
Address of a pointer to the internally allocated array containing the
estimated means of the independent variables.

IMSLS_X_MEAN_USER, float x_mean[] (Output)
Storage for array x_mean is provided by the user.
See IMSLS_X_MEAN.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to the internally allocated array of size n_rows by
n_dependent containing the residuals. Residuals may not be requested
if ido > 0.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user.
See IMSLS_RESIDUAL.

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the internally allocated array of size
15 � n_dependent containing the analysis of variance table for each
dependent variable. The i-th column corresponds to the analysis for the
i-th dependent variable.

 The analysis of variance statistics are given as follows:

Element Analysis of Variance Statistics

0 degrees of freedom for the model

1 degrees of freedom for error

Chapter 2: Regression regression � 69

Element Analysis of Variance Statistics

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

The anova statistics may not be requested if ido > 0.

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_rows containing the frequency for each observation.
Default: frequencies[] = 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_rows containing the weight for each observation.
Default: weights[] = 1

IMSLS_REGRESSION_INFO, Imsls_f_regression **regression_info
(Output)
Address of the pointer to an internally allocated structure of type
Imsls_f_regression containing information about the regression fit. This
structure is required as input for functions
imsls_f_regression_prediction and
imsls_f_regression_summary.

70 � regression IMSL C/Stat/Library

IMSLS_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is
stored in array coefficients provided by the user. If
IMSLS_NO_INTERCEPT is specified, the array requires
n_dependent � n units of memory, where n = n_independent;
otherwise, n = n_independent + 1.

Description
Function imsls_f_regression fits a multivariate multiple linear regression
model with or without an intercept. The multiple linear regression model is

yi = �0 + �1xi1 + �2xi2 + � � �kxik + �i i = 1, 2, �, n

where the observed values of the yi’s are the responses or values of the dependent
variable; the xi1’s, xi2’s, �, xik’s are the settings of the k (input in
n_independent) independent variables; �0, �1, �, �k are the regression
coefficients whose estimated values are to be output by imsls_f_regression;
and the �i’s are independently distributed normal errors each with mean 0 and
variance s2. Here, n is the sum of the frequencies for all nonmissing observations,
i.e.,

1

0
i

i
n f

�

�

� �
�� �

� �
�

n_rows

where fi is equal to frequencies[i] if optional argument IMSLS_FREQUENCIES
is specified and equal to 1.0 otherwise. Note that by default, �0 is included in the
model.

More generally, imsls_f_regression fits a multivariate regression model. See
the chapter introduction for a description of the multivariate model.

Function imsls_f_regression computes estimates of the regression
coefficients by minimizing the sum of squares of the deviations of the observed
response yi from the fitted response

ˆiy

for the n observations. This minimum sum of squares (the error sum of squares) is
output as one of the analysis of variance statistics if IMSLS_ANOVA_TABLE (or
IMSLS_ANOVA_TABLE_USER) is specified and is computed as follows:

� �
2

1
ˆ

n

i i i
i

SSE w y y
�

� ��

Another analysis of variance statistic is the total sum of squares. By default, the
total sum of squares is the sum of squares of the deviations of yi from its mean

y

the so-called corrected total sum of squares. This statistic is computed as follows:

Chapter 2: Regression regression � 71

� �
2

1
i i

n

i
SST w y y

�

� ��

When IMSLS_NO_INTERCEPT is specified, the total sum of squares is the sum of
squares of yi, the so-called uncorrected total sum of squares. This is computed as
follows:

2

1
SST

n

i i
i

w y
�

��

See Draper and Smith (1981) for a good general treatment of the multiple linear
regression model, its analysis, and many examples.

In order to compute a least-squares solution, imsls_f_regression performs an
orthogonal reduction of the matrix of regressors to upper-triangular form. The
reduction is based on one pass through the rows of the augmented matrix (x, y)
using fast Givens transformations. (See Golub and Van Loan 1983, pp. 156–162;
Gentleman 1974.) This method has the advantage that the loss of accuracy
resulting from forming the crossproduct matrix used in the normal equations is
avoided.

By default, the current means of the dependent and independent variables are
used to internally center the data for improved accuracy. Let xi be a column
vector containing the j-th row of data for the independent variables. Let xi
represent the mean vector for the independent variables given the data for rows 1,
2, �, i. The current mean vector is defined as follows:

1

1

i

j j j
j

i i

j j
j

w f x
x

w f

�

�

�

�

�

where the wj’s and the fj’s are the weights and frequencies. The i-th row of data
has

ix

subtracted from it and is multiplied by

1

i
i i

i

a
w f

a
�

where

1

i

i j
j

a w
�

�� jf

72 � regression IMSL C/Stat/Library

Although a crossproduct matrix is not computed, the validity of this centering
operation can be seen from the following formula for the sum of squares and
crossproducts matrix:

� �� � � �� �
1 2 1

n n
T Ti

i i i n i n i i i i i i
i i i

a
w f x x x x w f x x x x

a
� � �

� � � � �� �

An orthogonal reduction on the centered matrix is computed. When the final
computations are performed, the intercept estimate and the first row and column
of the estimated covariance matrix of the estimated coefficients are updated (if
IMSLS_COEF_COVARIANCES or IMSLS_COEF_COVARIANCES_USER is
specified) to reflect the statistics for the original (uncentered) data. This means
that the estimate of the intercept is for the uncentered data.

As part of the final computations, imsls_f_regression checks for linearly
dependent regressors. In particular, linear dependence of the regressors is
declared if any of the following three conditions are satisfied:

� A regressor equals 0.

� Two or more regressors are constant.

2
1,2,..., 11 i iR
� �

�

is less than or equal to tolerance. Here,

1,2,..., 1i iR
� �

is the multiple correlation coefficient of the i-th independent variable
with the first i – 1 independent variables. If no intercept is in the model,
the multiple correlation coefficient is computed without adjusting for the
mean.

On completion of the final computations, if the i-th regressor is declared to be
linearly dependent upon the previous i 	 1 regressors, the i-th coefficient estimate
and all elements in the i-th row and i-th column of the estimated variance-
covariance matrix of the estimated coefficients (if IMSLS_COEF_COVARIANCES
or IMSLS_COEF_COVARIANCES_USER is specified) are set to 0. Finally, if a
linear dependence is declared, an informational (error) message, code
IMSLS_RANK_DEFICIENT, is issued indicating the model is not full rank.

Examples

Example 1
A regression model

yi = �0 + �1xi1 + �2xi2 + �3xi3 + �i i = 1, 2, �, 9

is fitted to data taken from Maindonald (1984, pp. 203–204).

Chapter 2: Regression regression � 73

#include <imsls.h>

#define INTERCEPT 1
#define N_INDEPENDENT 3
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_OBSERVATIONS 9

main()
{
 float *coefficients;
 float x[][N_INDEPENDENT] = {7.0, 5.0, 6.0,
 2.0,-1.0, 6.0,
 7.0, 3.0, 5.0,
 -3.0, 1.0, 4.0,
 2.0,-1.0, 0.0,
 2.0, 1.0, 7.0,
 -3.0,-1.0, 3.0,
 2.0, 1.0, 1.0,
 2.0, 1.0, 4.0};
 float y[] = {7.0,-5.0, 6.0, 5.0, 5.0, -2.0, 0.0, 8.0, 3.0};

 coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y, 0);
 imsls_f_write_matrix("Least-Squares Coefficients", 1, N_COEFFICIENTS,
 coefficients,
 IMSLS_COL_NUMBER_ZERO,
 0);
}

Output

 Least-Squares Coefficients
 0 1 2 3
 7.733 -0.200 2.333 -1.667

Example 2

A weighted least-squares fit is computed using the model

yi = �0 + �1xi1 + �2xi2 + �i i = 1, 2, �, 4

and weights 1�i2 discussed by Maindonald (1984, pp. 67	68).

In the example, IMSLS_WEIGHTS is specified. The minimum sum of squares for
error in terms of the original untransformed regressors and responses for this
weighted regression is

� �
4

2

=1

ˆSSE= i i i
i

w y y��

where wi = 1/i2, represented in the C code as array w.

#include <imsls.h>
#include <math.h>

#define N_INDEPENDENT 2
#define N_COEFFICIENTS N_INDEPENDENT + 1

74 � regression IMSL C/Stat/Library

#define N_OBSERVATIONS 4

main()
{
 int i;
 float *coefficients, w[N_OBSERVATIONS], anova_table[15],
 power;
 float x[][N_INDEPENDENT] = {
 -2.0, 0.0,
 -1.0, 2.0,
 2.0, 5.0,
 7.0, 3.0};
 float y[] = {-3.0, 1.0, 2.0, 6.0};
 char *anova_row_labels[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total (uncorrected) degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total (uncorrected) sum of squares",
 "regression mean square",
 "error mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 /* Calculate weights */
 power = 0.0;
 for (i = 0; i < N_OBSERVATIONS; i++) {
 power += 1.0;
 w[i] = 1.0 / (power*power);
 }

 /*Perform analysis */
 coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *) x, y,
 IMSLS_WEIGHTS, w,
 IMSLS_ANOVA_TABLE_USER, anova_table,
 0);

 /* Print results */
 imsls_f_write_matrix("Least Squares Coefficients", 1,
 N_COEFFICIENTS, coefficients, 0);
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_WRITE_FORMAT, "%10.2f",
 0);
}

Output

 Least Squares Coefficients
 1 2 3
 -1.431 0.658 0.748

Chapter 2: Regression regression � 75

 * * * Analysis of Variance * * *

degrees of freedom for regression 2.00
degrees of freedom for error 1.00
total (uncorrected) degrees of freedom 3.00
sum of squares for regression 7.68
sum of squares for error 1.01
total (uncorrected) sum of squares 8.69
regression mean square 3.84
error mean square 1.01
F-statistic 3.79
p-value 0.34
R-squared (in percent) 88.34
adjusted R-squared (in percent) 65.03
est. standard deviation of model error 1.01
overall mean of y -1.51
coefficient of variation (in percent) -66.55

Example 3
A multivariate regression is performed for a data set with two dependent
variables. Also, usage of the keyword IMSLS_X_INDICES is demonstrated. Note
that the required input variable y is not referenced and is declared as a pointer to
a float.

#include <imsls.h>

#define INTERCEPT 1
#define N_INDEPENDENT 3
#define N_DEPENDENT 2
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_OBSERVATIONS 9

main()
{
 float coefficients[N_DEPENDENT*N_COEFFICIENTS];
 float *dummy;
 float scpe[N_DEPENDENT*N_DEPENDENT];
 float anova_table[15*N_DEPENDENT];
 static float x[] = { 7.0, 5.0, 6.0, 7.0, 1.0,
 2.0,-1.0, 6.0, -5.0, 4.0,
 7.0, 3.0, 5.0, 6.0, 10.0,
 -3.0, 1.0, 4.0, 5.0, 5.0,
 2.0,-1.0, 0.0, 5.0, -2.0,
 2.0, 1.0, 7.0, -2.0, 4.0,
 -3.0,-1.0, 3.0, 0.0, -6.0,
 2.0, 1.0, 1.0, 8.0, 2.0,
 2.0, 1.0, 4.0, 3.0, 0.0};
 int ifrq = -1, iwt=-1;
 static int indind[N_INDEPENDENT] = {0, 1, 2};
 static int inddep[N_DEPENDENT] = {3, 4};
 char *fmt = "%10.4f";
 char *anova_row_labels[] = {
 "d.f. regression",
 "d.f. error",

76 � regression IMSL C/Stat/Library

 "d.f. total (uncorrected)",
 "ssr",
 "sse",
 "sst (uncorrected)",
 "msr",
 "mse", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adj. R-squared (in percent)",
 "est. s.t.d. of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *) x, dummy,
 IMSLS_X_COL_DIM, N_INDEPENDENT+N_DEPENDENT,
 IMSLS_N_DEPENDENT, N_DEPENDENT,
 IMSLS_X_INDICES, indind, inddep, ifrq, iwt,
 IMSLS_SCPE_USER, scpe,
 IMSLS_ANOVA_TABLE_USER, anova_table,
 IMSLS_RETURN_USER, coefficients,
 0);

 imsls_f_write_matrix("Least Squares Coefficients", N_DEPENDENT,
 N_COEFFICIENTS, coefficients,
 IMSLS_COL_NUMBER_ZERO, 0);

 imsls_f_write_matrix("SCPE", N_DEPENDENT, N_DEPENDENT, scpe,
 IMSLS_WRITE_FORMAT, "%10.4f", 0);

 imsls_f_write_matrix("* * * Analysis of Variance * * *\n",
 15, N_DEPENDENT,
 anova_table,
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_WRITE_FORMAT, "%10.2f",
 0);

}

Output

 Least Squares Coefficients
 0 1 2 3
1 7.733 -0.200 2.333 -1.667
2 -1.633 0.400 0.167 0.667

 SCPE
 1 2
1 4.0000 20.0000
2 20.0000 110.0000

 * * * Analysis of Variance * * *

 1 2
d.f. regression 3.00 3.00
d.f. error 5.00 5.00
d.f. total (uncorre 8.00 8.00
 cted)
ssr 152.00 56.00
sse 4.00 110.00

Chapter 2: Regression regression_summary � 77

sst (uncorrected) 156.00 166.00
msr 50.67 18.67
mse 0.80 22.00
F-statistic 63.33 0.85
p-value 0.00 0.52
R-squared (in 97.44 33.73
 percent)
adj. R-squared 95.90 0.00
 (in percent)
est. s.t.d. of 0.89 4.69
 model error
overall mean of y 3.00 2.00
coefficient of 29.81 234.52
 variation (in
 percent)

Warning Errors
IMSLS_RANK_DEFICIENT The model is not full rank. There is not a

unique least-squares solution.

Fatal Errors
IMSLS_BAD_IDO_6 “ido” = #. Initial allocations must be

performed by making a call to function
regression with “ido” = 1.

IMSLS_BAD_IDO_7 “ido” = #. A new analysis may not begin
until the previous analysis is terminated by
a call to function regression with “ido” = 3.

regression_summary
Produces summary statistics for a regression model given the information from
the fit.

Synopsis

#include <imsls.h>
void imsls_f_regression_summary

(Imsls_f_regression *regression_info, ..., 0)

The type double function is imsls_d_regression_summary.

Required Argument

Imsls_f_regression *regression_info (Input)
Pointer to a structure of type Imsls_f_regression containing information
about the regression fit. See imsls_f_regression.

78 � regression_summary IMSL C/Stat/Library

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_regression_summary

(Imsls_f_regression *regression_info,
IMSLS_INDEX_REGRESSION, int idep,
IMSLS_COEF_T_TESTS, float **coef_t_tests
IMSLS_COEF_T_TESTS_USER, float coef_t_tests[],
IMSLS_COEF_COL_DIM, int coef_col_dim,
IMSLS_COEF_VIF, float **coef_vif,
IMSLS_COEF_VIF_USER, float coef_vif[],
IMSLS_COEF_COVARIANCES, float **coef_covariances,
IMSLS_COEF_COVARIANCES_USER, float coef_covariances[],
IMSLS_COEF_COV_COL_DIM, int coef_cov_col_dim,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
0)

Optional Arguments
IMSLS_INDEX_REGRESSION, int idep (Input)

Given a multivariate regression fit, this option allows the user to specify
for which regression summary statistics will be computed.
Default: idep = 0

IMSLS_COEF_T_TESTS, float **coef_t_tests (Output)
Address of a pointer to the npar � 4 array containing statistics relating
to the regression coefficients, where npar is equal to the number of
parameters in the model.

 Each row (for each dependent variable) corresponds to a coefficient in
the model, where npar is the number of parameters in the model. Row
i + intcep corresponds to the i-th independent variable, where intcep is
equal to 1 if an intercept is in the model and 0 otherwise, for
i = 0, 1, 2, �, npar – 1.

Chapter 2: Regression regression_summary � 79

The statistics in the columns are as follows:
Column Description

0 coefficient estimate

1 estimated standard error of the coefficient estimate

2 t-statistic for the test that the coefficient is 0

3 p-value for the two-sided t test

IMSLS_COEF_T_TESTS_USER, float coef_t_tests[] (Output)
Storage for array coef_t_tests is provided by the user. See
IMSLS_COEF_T_TESTS.

IMSLS_COEF_COL_DIM, int coef_col_dim (Input)
Column dimension of coef_t_tests.
Default: coef_col_dim = 4

IMSLS_COEF_VIF, float **coef_vif (Output)
Address of a pointer to an internally allocated array of length npar
containing the variance inflation factor, where npar is the number of
parameters. The i + intcep-th column corresponds to the i-th independent
variable, where i = 0, 1, 2, �, npar – 1, and intcep is equal to 1 if an
intercept is in the model and 0 otherwise.

The square of the multiple correlation coefficient for the i-th regressor
after all others can be obtained from coef_vif by

1.01.0
[]i

�

coef_vif

If there is no intercept, or there is an intercept and j = 0, the multiple
correlation coefficient is not adjusted for the mean.

IMSLS_COEF_VIF_USER, float coef_vif[] (Output)
Storage for array coef_t_tests is provided by the user. See
IMSLS_COEF_VIF.

IMSLS_COEF_COVARIANCES, float **coef_covariances (Output)
An npar by npar (where npar is equal to the number of parameters in the
model) array that is the estimated variance-covariance matrix of the
estimated regression coefficients when R is nonsingular and is from an
unrestricted regression fit. See “Remarks” on page 82 for an explanation
of coef_covariances when R is singular and is from a restricted
regression fit.

IMSLS_COEF_COVARIANCES_USER, float coef_covariances[] (Output)
Storage for coef_covariances is provided by the user. See
IMSLS_COEF_COVARIANCES.

80 � regression_summary IMSL C/Stat/Library

IMSLS_COEF_COV_COL_DIM, int coef_cov_col_dim (Input)
Column dimension of coef_covariances.
Default: coef_cov_col_dim = the number of parameters in the model

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the array of size 15 containing the analysis of
variance table.

Row Analysis of Variance Statistic

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2(in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

If the model has an intercept, the regression and total are corrected for
the mean; otherwise, the regression and total are not corrected for the
mean, and anova_table[13] and anova_table[14] are set to NaN.

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

Chapter 2: Regression regression_summary � 81

Description
Function imsls_f_regression_summary computes summary statistics from a
fitted general linear model. The model is y = X� + �, where y is the n � 1 vector
of responses, X is the n � p matrix of regressors, � is the p � 1 vector of
regression coefficients, and � is the n � 1 vector of errors whose elements are
each independently distributed with mean 0 and variance �2. Function
regression can be used to compute the fit of the model. Next,
imsls_f_regression_summary uses the results of this fit to compute
summary statistics, including analysis of variance, sequential sum of squares,
t tests, and an estimated variance-covariance matrix of the estimated regression
coefficients.

Some generalizations of the general linear model are allowed. If the i-th element
of � has variance of

2

iw
�

and the weights wi are used in the fit of the model,
imsls_f_regression_summary produces summary statistics from the
weighted least-squares fit. More generally, if the variance-covariance matrix of �
is �2V, imsls_f_regression_summary can be used to produce summary
statistics from the generalized least-squares fit. Function regression can be
used to perform a generalized least-squares fit, by regressing y* on X* where
y* = (T-1)Ty, X* = (T-1)TX and T satisfies TTT = V.
The sequential sum of squares for the i-th regression parameter is given by

� �
2ˆ
i

R�

The regression sum of squares is given by the sum of the sequential sums of
squares. If an intercept is in the model, the regression sum of squares is adjusted
for the mean, i.e.,

� �
2

0
ˆR�

is not included in the sum.
The estimate of �2 is s2 (stored in anova_table[7]) that is computed as
SSE/DFE.
If R is nonsingular, the estimated variance-covariance matrix of

�̂

(stored in coef_covariances) is computed by s2R-1(R-1)T.
If R is singular, corresponding to rank(X) < p, a generalized inverse is used. For a
matrix G to be a gi (i = 1, 2, 3, or 4) inverse of a matrix A, G must satisfy
conditions j (for j i) for the Moore-Penrose inverse but generally must fail

82 � regression_summary IMSL C/Stat/Library

conditions k (for k > i). The four conditions for G to be a Moore-Penrose inverse
of A are as follows:

1. AGA = A
2. GAG = G
3. AG is symmetric
4. GA is symmetric

In the case where R is singular, the method for obtaining coef_covariances
follows the discussion of Maindonald (1984, pp. 101–103). Let Z be the diagonal
matrix with diagonal elements defined by the following:

1 if 0
0 if 0

ii
ii

ii

r
z

r
��

� �
��

Let G be the solution to RG = Z obtained by setting the i-th ({i : rii = 0}) row of G
to 0. Argument coef_covariances is set to s2GGT. (G is a g3 inverse of R,
represented by,

3gR

the result

3 3
Tg gR R

is a symmetric g2 inverse of RTR = XTX. See Sallas and Lionti 1988.)

Note that argument coef_covariances can be used only to get variances and
covariances of estimable functions of the regression coefficients, i.e.,
nonestimable functions (linear combinations of the regression coefficients not in
the space spanned by the nonzero rows of R) must not be used. See, for example,
Maindonald (1984, pp. 166–168) for a discussion of estimable functions.

The estimated standard errors of the estimated regression coefficients (stored in
Column 1 of coef_t_tests) are computed as square roots of the corresponding
diagonal entries in coef_covariances.

For the case where an intercept is in the model, put R equal to the matrix R with
the first row and column deleted. Generally, the variance inflation factor (VIF)
for the i-th regression coefficient is computed as the product of the i-th diagonal
element of RTR and the i-th diagonal element of its computed inverse. If an
intercept is in the model, the VIF for those coefficients not corresponding to the
intercept uses the diagonal elements of TR R (see Maindonald 1984, p. 40).

Remarks
When R is nonsingular and comes from an unrestricted regression fit,
coef_covariances is the estimated variance-covariance matrix of the
estimated regression coefficients, and coef_covariances = (SSE/DFE) (RTR).
Otherwise, variances and covariances of estimable functions of the regression
coefficients can be obtained using coef_covariances, and

Chapter 2: Regression regression_summary � 83

coef_covariances = (SSE/DFE) (GDGT). Here, D is the diagonal matrix with
diagonal elements equal to 0 if the corresponding rows of R are restrictions and
with diagonal elements equal to 1 otherwise. Also, G is a particular generalized
inverse of R.

Example
#include <imsls.h>

main()
{
#define INTERCEPT 1
#define N_INDEPENDENT 4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT 1

 Imsls_f_regression *regression_info;
 float *anova_table, *coef_t_tests, *coef_vif,
 *coefficients, *coef_covariances;
 float x[][N_INDEPENDENT] = {
 7.0, 26.0, 6.0, 60.0,
 1.0, 29.0, 15.0, 52.0,
 11.0, 56.0, 8.0, 20.0,
 11.0, 31.0, 8.0, 47.0,
 7.0, 52.0, 6.0, 33.0,
 11.0, 55.0, 9.0, 22.0,
 3.0, 71.0, 17.0, 6.0,
 1.0, 31.0, 22.0, 44.0,
 2.0, 54.0, 18.0, 22.0,
 21.0, 47.0, 4.0, 26.0,
 1.0, 40.0, 23.0, 34.0,
 11.0, 66.0, 9.0, 12.0,
 10.0, 68.0, 8.0, 12.0};
 float y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,
 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
 char *anova_row_labels[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total (uncorrected) degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total (uncorrected) sum of squares",
 "regression mean square",
 "error mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 /* Fit the regression model */
 coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y,
 IMSLS_REGRESSION_INFO, ®ression_info,
 0);

84 � regression_summary IMSL C/Stat/Library

 /* Generate summary statistics */
 imsls_f_regression_summary (regression_info,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_COEF_T_TESTS, &coef_t_tests,
 IMSLS_COEF_VIF, &coef_vif,
 IMSLS_COEF_COVARIANCES, &coef_covariances,
 0);

 /* Print results */
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_WRITE_FORMAT, "%10.2f", 0);

 imsls_f_write_matrix("* * * Inference on Coefficients * * *\n",
 N_COEFFICIENTS, 4, coef_t_tests,
 IMSLS_WRITE_FORMAT, "%10.2f", 0);

 imsls_f_write_matrix("* * * Variance Inflation Factors * * *\n",
 N_COEFFICIENTS, 1, coef_vif,
 IMSLS_WRITE_FORMAT, "%10.2f", 0);

 imsls_f_write_matrix("* * * Variance-Covariance Matrix * * *\n",
 N_COEFFICIENTS, N_COEFFICIENTS,
 coef_covariances,
 IMSLS_WRITE_FORMAT, "%10.2f", 0);
}

Output

 * * * Analysis of Variance * * *
degrees of freedom for regression 4.00
degrees of freedom for error 8.00
total (uncorrected) degrees of freedom 12.00
sum of squares for regression 2667.90
sum of squares for error 47.86
total (uncorrected) sum of squares 2715.76
regression mean square 666.97
error mean square 5.98
F-statistic 111.48
p-value 0.00
R-squared (in percent) 98.24
adjusted R-squared (in percent) 97.36
est. standard deviation of model error 2.45
overall mean of y 95.42
coefficient of variation (in percent) 2.56

 * * * Inference on Coefficients * * *

 1 2 3 4
1 62.41 70.07 0.89 0.40
2 1.55 0.74 2.08 0.07
3 0.51 0.72 0.70 0.50
4 0.10 0.75 0.14 0.90
5 -0.14 0.71 -0.20 0.84

* * * Variance Inflation Factors * * *

Chapter 2: Regression regression_prediction � 85

 1 10668.53
 2 38.50
 3 254.42
 4 46.87
 5 282.51

 * * * Variance-Covariance Matrix * * *

 1 2 3 4 5
1 4909.95 -50.51 -50.60 -51.66 -49.60
2 -50.51 0.55 0.51 0.55 0.51
3 -50.60 0.51 0.52 0.53 0.51
4 -51.66 0.55 0.53 0.57 0.52
5 -49.60 0.51 0.51 0.52 0.50

regression_prediction
Computes predicted values, confidence intervals, and diagnostics after fitting a
regression model.

Synopsis

#include <imsls.h>
float *imsls_f_regression_prediction

(Imsls_f_regression *regression_info, int n_predict, float x[],
..., 0)

The type double function is imsls_d_regression_prediction.

Required Argument

Imsls_f_regression *regression_info (Input)
Pointer to a structure of type Imsls_f_regression containing information
about the regression fit. See imsls_f_regression (page 64).

int n_predict (Input)
Number of rows in x.

float x[] (Input)
Array of size n_predict by the number of independent variables
containing the combinations of independent variables in each row for
which calculations are to be performed.

Return Value
Pointer to an internally allocated array of length n_predict containing the
predicted values.

Synopsis with Optional Arguments
#include <imsls.h>

86 � regression_prediction IMSL C/Stat/Library

float *imsls_f_regression_prediction
(Imsls_f_regression *regression_info, int n_predict, float x[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_Y_COL_DIM, int y_col_dim,
IMSLS_INDEX_REGRESSION, int idep,
IMSLS_X_INDICES, int indind[], int inddep[], int ifrq,
 int iwt,
IMSLS_WEIGHTS, float weights[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_SCHEFFE_CI, float **lower_limit,
 float **upper_limit,
IMSLS_SCHEFFE_CI_USER, float lower_limit[],
 float upper_limit[],
IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit,
 float **upper_limit,
IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],
 float upper_limit[],
IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit,
 float **upper_limit,
IMSLS_POINTWISE_CI_NEW_SAMPLE_USER,
 float lower_limit[], float upper_limit[],
IMSLS_LEVERAGE, float **leverage,
IMSLS_LEVERAGE_USER, float leverage[],
IMSLS_RETURN_USER, float y_hat[],
IMSLS_Y, float y[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_STANDARDIZED_RESIDUAL,
 float **standardized_residual,
IMSLS_STANDARDIZED_RESIDUAL_USER,
 float standardized_residual[],
IMSLS_DELETED_RESIDUAL, float **deleted_residual,
IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[],
IMSLS_COOKSD, float **cooksd,
IMSLS_COOKSD_USER, float cooksd[],
IMSLS_DFFITS, float **dffits,
IMSLS_DFFITS_USER, float dffits[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Number of columns in x.
Default: x_col_dim is equal to the number of independent variables,
which is input from the structure regression_info

Chapter 2: Regression regression_prediction � 87

IMSLS_Y_COL_DIM, int y_col_dim (Input)
Number of columns in y.
Default: y_col_dim = 1

IMSLS_INDEX_REGRESSION, int idep (Input)
Given a multivariate regression fit, this option allows the user to specify
for which regression statistics will be computed.
Default: idep = 0

IMSLS_X_INDICES, int indind[], int inddep, int ifrq, int iwt (Input)
This argument allows an alternative method for data specification. Data
(independent, dependent, frequencies, and weights) is all stored in the
data matrix x. Argument y, and keyword IMSLS_WEIGHTS are ignored.

Each of the four arguments contains indices indicating column numbers
of x in which particular types of data are stored. Columns are numbered
0, �, x_col_dim 	 1.

Parameter indind contains the indices of the independent variables.

Parameter inddep contains the indices of the dependent variables. If
there is to be no dependent variable, this must be indicated by setting the
first element of the vector to 	1.

Parameters ifrq and iwt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Set ifrq = 	1 if there
will be no column for frequencies. Set iwt = 	1 if there will be no
column for weights. Weights are rounded to the nearest integer.
Negative weights are not allowed.

Note that frequencies are not referenced by function
regression_prediction, and is included here only for the sake of
keyword consistency.

Finally, note that IMSLS_X_INDICES and IMSLS_Y are mutually
exclusive keywords, and may not be specified in the same call to
regression_prediction.

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_predict containing the weight for each row of x.
The computed prediction interval uses SSE/(DFE*weights[i]) for the
estimated variance of a future response.
Default: weights[] = 1

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for both two-sided interval estimates on the mean and
for two-sided prediction intervals, in percent. Argument confidence
must be in the range [0.0, 100.0). For one-sided intervals with
confidence level onecl, where 50.0 onecl < 100.0, set
confidence = 100.0 	 2.0* (100.0 	 onecl).
Default: confidence = 95.0

88 � regression_prediction IMSL C/Stat/Library

IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit
(Output)
Array lower_limit is the address of a pointer to an internally allocated
array of length n_predict containing the lower confidence limits of
Scheffé confidence intervals corresponding to the rows of x. Array
upper_limit is the address of a pointer to an internally allocated array
of length n_predict containing the upper confidence limits of Scheffé
confidence intervals corresponding to the rows of x.

IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[]
(Output)
Storage for arrays lower_limit and upper_limit is provided by the
user. See IMSLS_SCHEFFE_CI.

IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit,
float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated
array of length n_predict containing the lower-confidence limits of the
confidence intervals for two-sided interval estimates of the means,
corresponding to the rows of x. Array upper_limit is the address of a
pointer to an internally allocated array of length n_predict containing
the upper-confidence limits of the confidence intervals for two-sided
interval estimates of the means, corresponding to the rows of x.

IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],
float upper_limit[] (Output)
Storage for arrays lower_limit and upper_limit is provided by the
user. See IMSLS_POINTWISE_CI_POP_MEAN.

IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit,
float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated
array of length n_predict containing the lower-confidence limits of the
confidence intervals for two-sided prediction intervals, corresponding to
the rows of x. Array upper_limit is the address of a pointer to an
internally allocated array of length n_predict containing the upper-
confidence limits of the confidence intervals for two-sided prediction
intervals, corresponding to the rows of x.

IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[],
float upper_limit[] (Output)
Storage for arrays lower_limit and upper_limit is provided by the
user. See IMSLS_POINTWISE_CI_NEW_SAMPLE.

IMSLS_LEVERAGE, float **leverage (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the leverages.

IMSLS_LEVERAGE_USER, float leverage[] (Output)
Storage for array leverage is provided by the user. See
IMSLS_LEVERAGE.

Chapter 2: Regression regression_prediction � 89

IMSLS_RETURN_USER, float y_hat[] (Output)
Storage for array y_hat is provided by the user. The length n_predict
array contains the predicted values.

IMSLS_Y, float y[] (Input)
Array of length n_predict containing the observed responses.

Note: IMSLS_Y (or IMSLS_X_INDICES) must be specified if any of the
following optional arguments are specified.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the residuals.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See
IMSLS_RESIDUAL.

IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual
(Output)
Address of a pointer to an internally allocated array of length
n_predict containing the standardized residuals.

IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[]
(Output)
Storage for array standardized_residual is provided by the user.
See IMSLS_STANDARDIZED_RESIDUAL.

IMSLS_DELETED_RESIDUAL, float **deleted_residual (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the deleted residuals.

IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[] (Output)
Storage for array deleted_residual is provided by the user. See
IMSLS_DELETED_RESIDUAL.

IMSLS_COOKSD, float **cooksd (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the Cook’s D statistics.

IMSLS_COOKSD_USER, float cooksd[] (Output)
Storage for array cooksd is provided by the user. See IMSLS_COOKSD.

IMSLS_DFFITS, float **dffits (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the DFFITS statistics.

IMSLS_DFFITS_USER, float dffits[] (Output)
Storage for array dffits is provided by the user. See IMSLS_DFFITS.

Description
The general linear model used by function imsls_f_regression_prediction is

90 � regression_prediction IMSL C/Stat/Library

y = X� + �

where y is the n � 1 vector of responses, X is the n � p matrix of regressors,
� is the p � 1 vector of regression coefficients, and � is the n � 1 vector of errors
whose elements are independently normally distributed with mean 0 and the
variance below.

2

iw
�

From a general linear model fit using the wi’s as the weights, function
imsls_f_regression_prediction computes confidence intervals and
statistics for the individual cases that constitute the data set. Let xi be a column
vector containing elements of the i-th row of X. Let W = diag (w1, w2, �, wn).
The leverage is defined as

� �� �T T
i i ih x X WX x

�

� iw

Put D = diag (d1, d2, �, dn) with dj = 1 if the j-th diagonal element of R is
positive and 0 otherwise. The leverage is computed as hi = (aTDa) wi where
a is a solution to RTa = xi. The estimated variance of

ˆˆ T
iy x B�

is given by the following:
2

i

i

h s
w

where

2 SSE
DFE

s �

The computation of the remainder of the case statistics follow easily from their
definitions. See case diagnostics (page 53).

Informational errors can occur if the input matrix x is not consistent with the
information from the fit (contained in regression_info), or if excess rounding
has occurred. The warning error IMSLS_NONESTIMABLE arises when x contains a
row not in the space spanned by the rows of R. An examination of the model that
was fitted and the x for which diagnostics are to be computed is required in order
to ensure that only linear combinations of the regression coefficients that can be
estimated from the fitted model are specified in x. For further details, see the
discussion of estimable functions given in Maindonald (1984, pp. 166	168) and
Searle (1971, pp. 180	188).

Often predicted values and confidence intervals are desired for combinations of
settings of the independent variables not used in computing the regression fit.
This can be accomplished by defining a new data matrix. Since the information
about the model fit is input in regression_info, it is not necessary to send in

Chapter 2: Regression regression_prediction � 91

the data set used for the original calculation of the fit, i.e., only variable
combinations for which predictions are desired need be entered in x.

Examples

Example 1
#include <imsls.h>

main()
{
#define INTERCEPT 1
#define N_INDEPENDENT 4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT 1

 float *y_hat, *coefficients;
 Imsls_f_regression *regression_info;
 float x[][N_INDEPENDENT] = {
 7.0, 26.0, 6.0, 60.0,
 1.0, 29.0, 15.0, 52.0,
 11.0, 56.0, 8.0, 20.0,
 11.0, 31.0, 8.0, 47.0,
 7.0, 52.0, 6.0, 33.0,
 11.0, 55.0, 9.0, 22.0,
 3.0, 71.0, 17.0, 6.0,
 1.0, 31.0, 22.0, 44.0,
 2.0, 54.0, 18.0, 22.0,
 21.0, 47.0, 4.0, 26.0,
 1.0, 40.0, 23.0, 34.0,
 11.0, 66.0, 9.0, 12.0,
 10.0, 68.0, 8.0, 12.0};
 float y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,
 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

 /* Fit the regression model */
 coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y,
 IMSLS_REGRESSION_INFO, ®ression_info,
 0);

 /* Generate case statistics */
 y_hat = imsls_f_regression_prediction(regression_info,
 N_OBSERVATIONS, (float*)x, 0);

 /* Print results */
 imsls_f_write_matrix("Predicted Responses", 1, N_OBSERVATIONS,
 y_hat, 0);
}

Output

 Predicted Responses
 1 2 3 4 5 6
 78.5 72.8 106.0 89.3 95.6 105.3

 7 8 9 10 11 12

92 � regression_prediction IMSL C/Stat/Library

 104.1 75.7 91.7 115.6 81.8 112.3

 13
 111.7

Example 2
#include <imsls.h>

main()
{
#define INTERCEPT 1
#define N_INDEPENDENT 4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT 1

 float *y_hat, *leverage, *residual, *standardized_residual,
 *deleted_residual, *dffits, *cooksd, *mean_lower_limit,
 *mean_upper_limit, *new_sample_lower_limit,
 *new_sample_upper_limit, *scheffe_lower_limit,
 *scheffe_upper_limit, *coefficients;
 Imsls_f_regression *regression_info;
 float x[][N_INDEPENDENT] = {
 7.0, 26.0, 6.0, 60.0,
 1.0, 29.0, 15.0, 52.0,
 11.0, 56.0, 8.0, 20.0,
 11.0, 31.0, 8.0, 47.0,
 7.0, 52.0, 6.0, 33.0,
 11.0, 55.0, 9.0, 22.0,
 3.0, 71.0, 17.0, 6.0,
 1.0, 31.0, 22.0, 44.0,
 2.0, 54.0, 18.0, 22.0,
 21.0, 47.0, 4.0, 26.0,
 1.0, 40.0, 23.0, 34.0,
 11.0, 66.0, 9.0, 12.0,
 10.0, 68.0, 8.0, 12.0};
 float y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,
 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

 /* Fit the regression model */
 coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y,
 IMSLS_REGRESSION_INFO, ®ression_info,
 0);

 /* Generate the case statistics */
 y_hat = imsls_f_regression_prediction(regression_info,
 N_OBSERVATIONS, (float*)x,
 IMSLS_Y, y,
 IMSLS_LEVERAGE, &leverage,
 IMSLS_RESIDUAL, &residual,
 IMSLS_STANDARDIZED_RESIDUAL, &standardized_residual,
 IMSLS_DELETED_RESIDUAL, &deleted_residual,
 IMSLS_COOKSD, &cooksd,
 IMSLS_DFFITS, &dffits,
 IMSLS_POINTWISE_CI_POP_MEAN, &mean_lower_limit,
 &mean_upper_limit,

Chapter 2: Regression regression_prediction � 93

 IMSLS_POINTWISE_CI_NEW_SAMPLE, &new_sample_lower_limit,
 &new_sample_upper_limit,
 IMSLS_SCHEFFE_CI, &scheffe_lower_limit,
 &scheffe_upper_limit,
 0);

 /* Print results */
 imsls_f_write_matrix("Predicted Responses", 1, N_OBSERVATIONS,
 y_hat, 0);
 imsls_f_write_matrix("Residuals", 1, N_OBSERVATIONS, residual, 0);
 imsls_f_write_matrix("Standardized Residuals", 1, N_OBSERVATIONS,
 standardized_residual, 0);
 imsls_f_write_matrix("Leverages", 1, N_OBSERVATIONS, leverage, 0);
 imsls_f_write_matrix("Deleted Residuals", 1, N_OBSERVATIONS,
 deleted_residual, 0);
 imsls_f_write_matrix("Cooks D", 1, N_OBSERVATIONS, cooksd, 0);
 imsls_f_write_matrix("DFFITS", 1, N_OBSERVATIONS, dffits, 0);
 imsls_f_write_matrix("Scheffe Lower Limit", 1, N_OBSERVATIONS,
 scheffe_lower_limit, 0);
 imsls_f_write_matrix("Scheffe Upper Limit", 1, N_OBSERVATIONS,
 scheffe_upper_limit, 0);
 imsls_f_write_matrix("Population Mean Lower Limit", 1,
 N_OBSERVATIONS, mean_lower_limit, 0);
 imsls_f_write_matrix("Population Mean Upper Limit", 1,
 N_OBSERVATIONS, mean_upper_limit, 0);
 imsls_f_write_matrix("New Sample Lower Limit", 1, N_OBSERVATIONS,
 new_sample_lower_limit, 0);
 imsls_f_write_matrix("New Sample Upper Limit", 1, N_OBSERVATIONS,
 new_sample_upper_limit, 0);
}

Output

 Predicted Responses
 1 2 3 4 5 6
 78.5 72.8 106.0 89.3 95.6 105.3

 7 8 9 10 11 12
 104.1 75.7 91.7 115.6 81.8 112.3

 13
 111.7

 Residuals
 1 2 3 4 5 6
 0.005 1.511 -1.671 -1.727 0.251 3.925

 7 8 9 10 11 12
 -1.449 -3.175 1.378 0.282 1.991 0.973

 13
 -2.294

 Standardized Residuals
 1 2 3 4 5 6
 0.003 0.757 -1.050 -0.841 0.128 1.715

 7 8 9 10 11 12
 -0.744 -1.688 0.671 0.210 1.074 0.463

94 � regression_prediction IMSL C/Stat/Library

 13
 -1.124

 Leverages
 1 2 3 4 5 6
 0.5503 0.3332 0.5769 0.2952 0.3576 0.1242

 7 8 9 10 11 12
 0.3671 0.4085 0.2943 0.7004 0.4255 0.2630

 13
 0.3037

 Deleted Residuals
 1 2 3 4 5 6
 0.003 0.735 -1.058 -0.824 0.120 2.017

 7 8 9 10 11 12
 -0.722 -1.967 0.646 0.197 1.086 0.439

 13
 -1.146

 Cooks D
 1 2 3 4 5 6
 0.0000 0.0572 0.3009 0.0593 0.0018 0.0834

 7 8 9 10 11 12
 0.0643 0.3935 0.0375 0.0207 0.1708 0.0153

 13
 0.1102

 DFFITS
 1 2 3 4 5 6
 0.003 0.519 -1.236 -0.533 0.089 0.759

 7 8 9 10 11 12
 -0.550 -1.635 0.417 0.302 0.935 0.262

 13
 -0.757
 Scheffe Lower Limit
 1 2 3 4 5 6
 70.7 66.7 98.0 83.6 89.4 101.6

 7 8 9 10 11 12
 97.8 69.0 86.0 106.8 75.0 106.9

 13
 105.9

 Scheffe Upper Limit
 1 2 3 4 5 6
 86.3 78.9 113.9 95.0 101.9 109.0

 7 8 9 10 11 12
 110.5 82.4 97.4 124.4 88.7 117.7

Chapter 2: Regression regression_prediction � 95

 13
 117.5

 Population Mean Lower Limit
 1 2 3 4 5 6
 74.3 69.5 101.7 86.3 92.3 103.3

 7 8 9 10 11 12
 100.7 72.1 88.7 110.9 78.1 109.4

 13
 108.6

 Population Mean Upper Limit
 1 2 3 4 5 6
 82.7 76.0 110.3 92.4 99.0 107.3

 7 8 9 10 11 12
 107.6 79.3 94.8 120.3 85.5 115.2

 13
 114.8

 New Sample Lower Limit
 1 2 3 4 5 6
 71.5 66.3 98.9 82.9 89.1 99.3

 7 8 9 10 11 12
 97.6 69.0 85.3 108.3 75.1 106.0

 13
 105.3

 New Sample Upper Limit
 1 2 3 4 5 6
 85.5 79.3 113.1 95.7 102.2 111.3

 7 8 9 10 11 12
 110.7 82.4 98.1 123.0 88.5 118.7

 13
 118.1

Warning Errors
IMSLS_NONESTIMABLE Within the preset tolerance, the

linear combination of regression
coefficients is nonestimable.

IMSLS_LEVERAGE_GT_1 A leverage (= #) much greater than
1.0 is computed. It is set to 1.0.

IMSLS_DEL_MSE_LT_0 A deleted residual mean square
(= #) much less than 0 is
computed. It is set to 0.

96 � hypothesis_partial IMSL C/Stat/Library

Fatal Errors
IMSLS_NONNEG_WEIGHT_REQUEST_2 The weight for row # was #.

Weights must be nonnegative.

hypothesis_partial
Constructs an equivalent completely testable multivariate general linear
hypothesis H�U = G from a partially testable hypothesis Hp�U = Gp.

Synopsis

#include <imsls.h>

int imsls_f_hypothesis_partial
(Imsls_f_regression *regression_info, int nhp, float hp[], ...,
0)

The type double function is imsls_d_hypothesis_partial.

Required Argument

Imsls_f_regression *regression_info (Input)
Pointer to a structure of type Imsls_f_regression containing information
about the regression fit. See function imsls_f_regression (page 64).

int nhp (Input)
Number of rows in the hypothesis matrix, hp.

float hp[] (Input)
The Hp array of size nhp by n_coefficients with each row corresponding
to a row in the hypothesis and containing the constants that specify a
linear combination of the regression coefficients. Here, n_coefficients is
the number of coefficients in the fitted regression model.

Return Value
Number of rows in the completely testable hypothesis, nh. This value is also the
degrees of freedom for the hypothesis. The value nh classifies the hypothesis
Hp�U = Gp as nontestable (nh = 0), partially testable (0 < nh < rank_hp) or
completely testable (0 < nh = rank_hp), where rank_hp is the rank of Hp (see
keyword IMSLS_RANK_HP).

Synopsis with Optional Arguments
#include <imsls.h>
int imsls_f_hypothesis_partial

(Imsls_f_regression *regression_info, int nhp, float hp[],
IMSLS_GP, float gp[],
IMSLS_U, int nu, float u[],

Chapter 2: Regression hypothesis_partial � 97

IMSLS_RANK_HP, int rank_hp
IMSLS_H_MATRIX, float **h,
IMSLS_H_MATRIX_USER, float h[],
IMSLS_G, float **g,
IMSLS_G_USER, float g[],
0)

Optional Arguments
IMSLS_GP, float gp[] (Input)

Array of size nhp by nu containing the Gp matrix, the null hypothesis
values. By default, each value of Gp is equal to 0.

IMSLS_U, int nu, float u[] (Input)
Argument nu is the number of linear combinations of the dependent
variables to be considered. The value nu must be greater than 0 and less
than or equal to n_dependent.

Argument u contains the n_dependent by nu U matrix for the test
HpBU = Gp. This argument is not referenced by
imsls_f_hypothesis_partial and is included only for consistency
with functions imsls_f_hypothesis_scph and
imsls_f_hypothesis_test. A dummy array of length 1 may be
substituted for this argument.

Default: nu = n_dependent and u is the identity matrix.

IMSLS_RANK_HP, int*rank_hp (Output)
Rank of Hp.

IMSLS_H_MATRIX, float **h (Output)
Address of a pointer to the internally allocated array of size nhp by
n_parameters containing the H matrix. Each row of h corresponds to a
row in the completely testable hypothesis and contains the constants that
specify an estimable linear combination of the regression coefficients.

IMSLS_H_MATRIX_USER, float h[] (Output)
Storage for array h is provided by the user. See IMSLS_H.

IMSLS_G, float **g (Output)
Address of a pointer to the internally allocated array of size nph ny
n_dependent containing the G matrix. The elements of g contain the
null hypothesis values for the completely testable hypothesis.

IMSLS_G_USER, float g[] (Output)
Storage for array g is provided by the user. See IMSLS_G.

Description
Once a general linear model y = X� + � is fitted, particular hypothesis tests are
frequently of interest. If the matrix of regressors X is not full rank (as evidenced
by the fact that some diagonal elements of the R matrix output from the fit are

98 � hypothesis_partial IMSL C/Stat/Library

equal to zero), methods that use the results of the fitted model to compute the
hypothesis sum of squares (see function imsls_f_hypothesis_scph,
page 101) require specification in the hypothesis of only linear combinations of
the regression parameters that are estimable. A linear combination of regression
parameters cT� is estimable if there exists some vector a such that cT = aTX, i.e.,
cT is in the space spanned by the rows of X. For a further discussion of estimable
functions, see Maindonald (1984, pp. 166	168) and Searle (1971, pp. 180	188).
Function imsls_f_hypothesis_partial is only useful in the case of non-full
rank regression models, i.e., when the problem of estimability arises.

Peixoto (1986) noted that the customary definition of testable hypothesis in the
context of a general linear hypothesis test H� = g is overly restrictive. He
extended the notion of a testable hypothesis (a hypothesis composed of estimable
functions of the regression parameters) to include partially testable and
completely testable hypothesis. A hypothesis H� = g is partially testable if the
intersection of the row space H (denoted by �(H)) and the row space of
X (�(X)) is not essentially empty and is a proper subset of �(H), i.e.,
{0} � �(H) � �(X) � �(H). A hypothesis H� = g is completely testable if
{0} � �(H) � �(H) � �(X). Peixoto also demonstrated a method for converting
a partially testable hypothesis to one that is completely testable so that the usual
method for obtaining sums of squares for the hypothesis from the results of the
fitted model can be used. The method replaces Hp in the partially testable
hypothesis Hp� = gp by a matrix H whose rows are a basis for the intersection of
the row space of Hp and the row space of X. A corresponding conversion of the
null hypothesis values from gp to g is also made. A sum of squares for the
completely testable hypothesis can then be computed (see function
imsls_f_hypothesis_scph, page 101). The sum of squares that is computed
for the hypothesis H� = g equals the difference in the error sums of squares from
two fitted models—the restricted model with the partially testable hypothesis
Hp� = gp and the unrestricted model.

For the general case of the multivariate model Y = X� + � with possible linear
equality restrictions on the regression parameters,
imsls_f_hypothesis_partial converts the partially testable hypothesis
Hp� = gp to a completely testable hypothesis H�U = G. For the case of the linear
model with linear equality restrictions, the definitions of the estimable functions,
nontestable hypothesis, partially testable hypothesis, and completely testable
hypothesis are similar to those previously given for the unrestricted model with
the exception that �(X) is replaced by �(R) where R is the upper triangular
matrix based on the linear equality restrictions. The nonzero rows of R form a
basis for the rowspace of the matrix (XT, AT)T. The rows of H form an
orthonormal basis for the intersection of two subspaces—the subspace spanned
by the rows of Hp and the subspace spanned by the rows of R. The algorithm used
for computing the intersection of these two subspaces is based on an algorithm for
computing angles between linear subspaces due to Björk and Golub (1973). (See
also Golub and Van Loan 1983, pp. 429	430). The method is closely related to a
canonical correlation analysis discussed by Kennedy and Gentle (1980, pp. 561	

565). The algorithm is as follows:

Chapter 2: Regression hypothesis_partial � 99

1. Compute a QR factorization of
T
PH

 with column permutations so that

1 1 1
T T
PH Q R P�

Here, P1 is the associated permutation matrix that is also an orthogonal
matrix. Determine the rank of Hp as the number of nonzero diagonal
elements of R1, for example n1. Partition Q1 = (Q11, Q12) so that Q11 is
the first n1 column of Q1. Set rank_hp = n.

2. Compute a QR factorization of the transpose of the R matrix (input
through regression_info) with column permuations so that

2 2 2
T TR Q R P�

Determine the rank of R from the number of nonzero diagonal elements
of R, for example n2. Partition Q2 = (Q21, Q22) so that Q21 is the first n2
columns of Q2.

3. Form

11 21
TA Q Q�

4. Compute the singular values of A

� �1 21 2 min ,... n n� � �� � �

and the left singular vectors W of the singular value decomposition of A
so that

� �� �1 21 min ,diag ,...T
n nW AV � ��

If �1 < 1, then the dimension of the intersection of the two subspaces is
s = 0. Otherwise, assume the dimension of the intersection to be
s if �s = 1 > �s+1. Set nh = s.

5. Let W1 be the first s columns of W. Set H = (Q1W1)T.

6. Assume R11 to be a nhp by nhp matrix related to R1 as follows: If
nhp < n_parameters, R11 equals the first nhp rows of R1. Otherwise,
R11 contains R1 in its first n_parameters rows and zeros in the remaining
rows. Compute a solution Z to the linear system

11 1
T T

pR Z P G�

If this linear system is delcared inconsistent, an error message with error
code equal to 2 is issued.

7. Partition

100 � hypothesis_partial IMSL C/Stat/Library

� �1 2,T T TZ Z Z�

so that Z1 is the first n1 rows of Z. Set

1 1
TG W Z�

The degrees of freedom (nh) classify the hypothesis Hp�U =Gp as
nontestable (nh = 0), partially testable (0 < nh < rank_hp), or
completely testable (0 < nh = rank_hp).

For further details concerning the algorithm, see Sallas and Lionti (1988).

Example
A one-way analysis-of-variance model discussed by Peixoto (1986) is fitted to
data. The model is

yii = � + �i + �ii (i, j) = (1, 1) (2, 1) (2, 2)

The model is fitted using function imsls_f_regression (page 64). The
partially testable hypothesis

1

2

5
0 3:H �

�

�

�

is converted to a completely testable hypothesis.

#include <imsls.h>
#define N_ROWS 3
#define N_INDEPENDENT 1
#define N_DEPENDENT 1
#define N_PARAMETERS 3
#define NHP 2

main() {
 Imsls_f_regression *info;
 int n_class = 1;
 int n_continuous = 0;
 int nh, nreg, rank_hp;
 float *coefficients, *x, *g, *h;
 static float z[N_ROWS*N_INDEPENDENT] = { 1, 2, 2 };
 static float y[] = {17.3, 24.1, 26.3};
 static float gp[] = {5, 3};
 static float hp[NHP*N_PARAMETERS] = {0, 1, 0,
 0, 0, 1};

 nreg = imsls_f_regressors_for_glm(N_ROWS, z,
 n_class, n_continuous,
 IMSLS_REGRESSORS, &x, 0);

 coefficients = imsls_f_regression(N_ROWS, nreg, x, y,
 IMSLS_N_DEPENDENT, N_DEPENDENT,
 IMSLS_REGRESSION_INFO, &info,
 0);

 nh = imsls_f_hypothesis_partial(info, NHP, hp,
 IMSLS_GP, gp,

Chapter 2: Regression hypothesis_scph � 101

 IMSLS_H_MATRIX, &h,
 IMSLS_G, &g,
 IMSLS_RANK_HP, &rank_hp, 0);

 if (nh == 0) {
 printf("Nontestable Hypothesis\n");
 } else if (nh < rank_hp) {
 printf("Partially Testable Hypothesis\n");
 } else {
 printf("Completely Testable Hypothesis\n");
 }

 imsls_f_write_matrix("H Matrix", nh, N_PARAMETERS, h, 0);

 imsls_f_write_matrix("G", nh, N_DEPENDENT, g, 0);

 free(coefficients);
 free(info);
 free(x);
 free(h);
 free(g);
}

Output

Partially Testable Hypothesis

 H Matrix
 1 2 3
 0.0000 0.7071 -0.7071

 G
 1.414

Warning Errors
IMSLS_HYP_NOT_CONSISTENT The hypothesis is inconsistent within the

computed tolerance.

hypothesis_scph
Computes the matrix of sums of squares and crossproducts for the multivariate
general linear hypothesis H�U = G given the regression fit.

Synopsis

#include <imsls.h>
float *imsls_f_hypothesis_scph

(Imsls_f_regression *regression_info, int nh, float h[],
float *dfh, ..., 0)

The type double function is imsls_d_hypothesis_scph.

102 � hypothesis_scph IMSL C/Stat/Library

Required Argument

Imsls_f_regression *regression_info (Input)
Pointer to a structure of type Imsls_f_regression containing information
about the regression fit. See function imsls_f_regression (page 64).

int nh (Input)
Number of rows in the hypothesis matrix, h.

float h[] (Input)
The H array of size nh by n_coefficients with each row corresponding to
a row in the hypothesis and containing the constants that specify a linear
combination of the regression coefficients. Here, n_coefficients is the
number of coefficients in the fitted regression model.

float *dfh (Output)
Degrees of freedom for the sums of squares and crossproducts matrix.
This is equal to the rank of input matrix h.

Return Value
Array of size nu by nu containing the sums of squares and crossproducts
attributable to the hypothesis.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_regression_scph

(Imsls_f_regression *regression_info, int nh, float h[],
float *dfh,
IMSLS_G, float g[],
IMSLS_U, int nu, float u[],
IMSLS_RETURN_USER, scph[],
0)

Optional Arguments
IMSLS_G, float g[] (Input)

Array of size nh by nu containing the G matrix, the null hypothesis
values. By default, each value of G is equal to 0.

IMSLS_U, int nu, float u[] (Input)
Argument nu is the number of linear combinations of the dependent
variables to be considered. The value nu must be greater than 0 and less
than or equal to n_dependent.

Argument u contains the n_dependent by nu U matrix for the test
Hp�U = Gp.

Default: nu = n_dependent and u is the identity matrix

Chapter 2: Regression hypothesis_scph � 103

IMSLS_RETURN_USER, float scph[] (Output)
If specified, the sums of squares and crossproducts matrix is stored in
array scph provided by the user, where scph is of size nu by nu.

Description
Function imsls_f_hypothesis_scph computes the matrix of sums of squares
and crossproducts for the general linear hypothesis H�U = G for the multivariate
general linear model Y = X� + �.

The rows of H must be linear combinations of the rows of R, i.e., H� = G must be
completely testable. If the hypothesis is not completely testable, function
imsls_f_hypothesis_partial (page 96) can be used to construct an
equivalent completely testable hypothesis.

Computations are based on an algorithm discussed by Kennedy and Gentle (1980,
p. 317) that is extended by Sallas and Lionti (1988) for mulitvariate non-full rank
models with possible linear equality restrictions. The algorithm is as follows:

1. Form W H . ˆU G�� �

2. Find C as the solution of RTC = HT. If the equations are declared
inconsistent within a computed tolerance, a warning error message is
issued that the hypothesis is not completely testable.

3. For all rows of R corresponding to restrictions, i.e., containing negative
diagonal elements from a restricted least-squares fit, zero out the
corresponding rows of C, i.e., from DC.

4. Decompose DC using Householder transformations and column pivoting
to yield a square, upper triangular matrix T with diagonal elements of
nonincreasing magnitude and permutation matrix P such that

0
T

DCP Q
� �

� � �
� �

where Q is an orthogonal matrix.

5. Determine the rank of T, say r. If t11 = 0, then r = 0. Otherwise, the rank
of T is r if

| trr | > | t11 | � � | tr + 1, r + 1 |

where � = 10.0 � imsls_f_machine(4)
(10.0 � imsls_d_machine(4) for the double-precision version).

Then, zero out all rows of T below r. Set the degrees of freedom for the
hypothesis, dfh, to r.

6. Find V as a solution to TTV = PTW. If the equations are inconsistent, a
warning error message is issued that the hypothesis is inconsistent within
a computed tolerance, i.e., the linear system

H�U = G

104 � hypothesis_scph IMSL C/Stat/Library

A� = Z

does not have a solution for �.

Form VTV, which is the required matrix of sum of squares and
crossproducts, scph.

In general, the two warning errors described above are serious user
errors that require the user to correct the hypothesis before any
meaningful sums of squares from this function can be computed.
However, in some cases, the user may know the hypothesis is consistent
and completely testable, but the checks in
imsls_f_hypothesis_scph are too tight. For this reason,
imsls_f_hypothesis_scph continues with the calculations.

Function imsls_f_hypothesis_scph gives a matrix of sums of
squares and crossproducts that could also be obtained from separate
fittings of the two models:

Y¹ = X�¹ + �¹ (1)

A�¹ = Z¹

H�¹ = G

and

Y¹ = X�¹ + �¹ (2)

A�¹ = Z¹

where Y¹ = YU, �¹ = �U, �¹ = �U, and Z¹ = ZU. The error sum of
squares and crossproducts matrix for (1) minus that for (2) is the matrix
sum of squares and crossproducts output in scph. Note that this
approach avoids the question of testability.

Example
The data for this example are from Maindonald (1984, pp. 203	204). A
multivariate regression model containing two dependent variables and three
independent variables is fit using function imsls_f_regression and the results
stored in the structure info. The sum of squares and crossproducts matrix, scph,
is then computed by calling imsls_f_hypothesis_scph for the test that the
third independent variable is in the model (determined by the specification of h).
The degrees of freedom for scph also is computed.

#include <imsls.h>
main()
{
 Imsls_f_regression *info;
 float *coefficients, *scph;
 float dfh;
 float x[] = { 7.0, 5.0, 6.0,
 2.0,-1.0, 6.0,

Chapter 2: Regression hypothesis_scph � 105

 7.0, 3.0, 5.0,
 -3.0, 1.0, 4.0,
 2.0,-1.0, 0.0,
 2.0, 1.0, 7.0,
 -3.0,-1.0, 3.0,
 2.0, 1.0, 1.0,
 2.0, 1.0, 4.0 };
 float y[] = { 7.0, 1.0,
 -5.0, 4.0,
 6.0, 10.0,
 5.0, 5.0,
 5.0, -2.0,
 -2.0, 4.0,
 0.0, -6.0,
 8.0, 2.0,
 3.0, 0.0 };
 int n_observations = 9;
 int n_independent = 3;
 int n_dependent = 2;
 int nh = 1;
 float h[] = { 0, 0, 0, 1 };

 coefficients = imsls_f_regression(n_observations, n_independent,
 x, y,
 IMSLS_N_DEPENDENT, n_dependent,
 IMSLS_REGRESSION_INFO, &info,
 0);

 scph = imsls_f_hypothesis_scph(info, nh, h, &dfh, 0);

 printf("Degrees of Freedom Hypothesis = %4.0f\n", dfh);

 imsls_f_write_matrix("Sum of Squares and Crossproducts",
 n_dependent, n_dependent, scph,
 IMSLS_NO_COL_LABELS, IMSLS_NO_ROW_LABELS,
 0);

}

Output

Degrees of Freedom Hypothesis = 1

Sum of Squares and Crossproducts
 100 -40
 -40 16

Warning Errors
IMSLS_HYP_NOT_TESTABLE The hypothesis is not completely testable

within the computed tolerance. Each row of
“h” must be a linear combination of the
rows of “r”.

IMSLS_HYP_NOT_CONSISTENT The hypothesis is inconsistent within the
computed tolerance.

106 � hypothesis_test IMSL C/Stat/Library

hypothesis_test
Performs tests for a multivariate general linear hypothesis H�U = G given the
hypothesis sums of squares and crossproducts matrix SH.

Synopsis

#include <imsls.h>

float imsls_f_hypothesis_test (Imsls_f_regression *regression_info,
float dfh, float *scph, ..., 0)

The type double function is imsls_d_hypothesis_test.

Required Argument

Imsls_f_regression *regression_info (Input)
Pointer to a structure of type Imsls_f_regression containing information
about the regression fit. See function imsls_f_regression.

float dfh (Input)
Degrees of freedom for the sums of squares and crossproducts matrix.

float *scph (Input)
Array of size nu by nu containing SH, the sums of squares and
crossproducts attributable to the hypothesis.

Return Value
The p-value corresponding to Wilks’ lambda test.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_hypothesis_test (Imsls_f_regression *regression_info,

float dfh, float *scph,
IMSLS_U, int nu, float u[],
IMSLS_WILK_LAMBDA, float *value, float *p_value,
IMSLS_ROY_MAX_ROOT, float *value, float *p_value,
IMSLS_HOTELLING_TRACE, float *value, float *p_value,
IMSLS_PILLAI_TRACE, float *value, float *p_value,
0)

Optional Arguments
IMSLS_U, int nu, float u[] (Input)

Argument nu is the number of linear combinations of the dependent
variables to be considered. The value nu must be greater than 0 and less
than or equal to n_dependent. Argument u contains the n_dependent by
nu U matrix for the test Hp�U = Gp.
Default: nu = n_dependent and u is the identity matrix

Chapter 2: Regression hypothesis_test � 107

e

IMSLS_WILK_LAMBDA, float *value, float *p_value (Output)
Wilk’s lamda and p-value.

IMSLS_ROY_MAX_ROOT, float *value, float *p_value (Output)
Roy’s maximum root criterion and p-value.

IMSLS_HOTELLING_TRACE, float *value, float *p_value (Output)
Hotelling’s trace and p-value.

IMSLS_PILLAI_TRACE, float *value, float *p_value (Output)
Pillai’s trace and p-value.

Description
Function imsls_f_hypothesis_test computes test statistics and p-values for
the general linear hypothesis H�U = G for the multivariate general linear model.

The hypothesis sum of squares and crossproducts matrix input in scph is

� � � � � �ˆ ˆT
T

HS H U G C DC H U G� �
�

� � �

where C is a solution to RTC = H and where D is a diagonal matrix with diagonal
elements

1 if 0
0 otherwis

ii
ii

r
d

��
� �
�

See the section “Linear Dependence and the R Matrix” in the introduction
(page 48).

The error sum of squares and crossproducts matrix for the model Y = X� + � is

� � � �ˆ ˆT
Y X Y X� �� �

which is input in regression_info. The error sum of squares and
crossproducts matrix for the hypothesis H�U = G computed by
imsls_f_hypothesis_test is

� � � �ˆ ˆT
T

ES U Y X Y X U� �� � �

Let p equal the order of the matrices SE and SH, i.e.,

NU if NU 0
NDEP otherwise

p
�� �

� � �
� �

Let q (stored in dfh) be the degrees of freedom for the hypothesis. Let v (input in
regression_info) be the degrees of freedom for error. Function
imsls_f_hypothesis_test computed three test statistics based on
eigenvalues �i (i = 1, 2, �, p) of the generalized eigenvalue problem SHx = �SEx.
These test statistics are as follows:

108 � hypothesis_test IMSL C/Stat/Library

Wilk’s lambda

� �

� � 1

det 1
det 1

p
E

iH E

S
S S �

�

� � �
� �

�
i

The associated p-value is based on an approximation discussed by Rao (1973,
p. 556). The statistic

1/

1/

/ 2 11 s

s

ms pqF
pq

� � ��
�

�

has an approximate F distribution with pq and ms 	 pq � 2 + 1 numerator and
denominator degrees of freedom, respectively, where

2 2

2 2

1 if 1

4 otherwise
5

p q

s p q
p q

� ��
�

� � �
� � ��

or 1

and

� �1
2

p q
m �

� �

� �

The F test is exact if min (p, q) 2 (Kshirsagar, 1972, Theorem 4, p. 299	300).

Roy’s maximum root

c = max �i over all i

where c is output as value. The p-value is based on the approximation

q sF c
s

� � �

�

where s = max (p, q) has an approximate F distribution with s and � + q 	 s
numerator and denominator degrees of freedom, respectively. The F test is exact
if s = 1; the p-value is also exact. In general, the value output in p_value is
lower bound on the actual p-value.

Hotelling’s trace

� �1

1

tr
p

i
i

U HE �
�

�

� ��

U is output as value. The p-value is based on the approximation of McKeon
(1974) that supersedes the approximation of Hughes and Saw (1972). McKeon’s
approximation is also discussed by Seber (1984, p. 39). For

� ��
� ��

�
�

24
1 1

3

pqb
q p

p p
� �

� �

�
� �

� � � �

� � �

Chapter 2: Regression hypothesis_test � 109

the p-value is based on the result that

� �

� �

1
2

b p
F U

b pq
� � �

�

�

has an approximate F distribution with pq and b degrees of freedom. The test is
exact if min (p, q) = 1. For � p + 1, the approximation is not valid, and
p_value is set to NaN.

These three test statistics are valid when SE is positive definite. A necessary
condition for SE to be positive definite is � � p. If SE is not positive definite, a
warning error message is issued, and both value and p_value are set to NaN.

Because the requirement � � p can be a serious drawback,
imsls_f_hypothesis_test computes a fourth test statistic based on
eigenvalues
i (i = 1, 2, �, p) of the generalized eigenvalue problem
SHw =
(SH + SE) w. This test statistic requires a less restrictive assumption—
SH + SE is positive definite. A necessary condition for SH + SE to be positive
definite is � + q � p. If SE is positive definite, imsls_f_hypothesis_test
avoids the computation of the generalized eigenvalue problem from scratch. In
this case, the eigenvalues
i are obtained from �i by

1
i

i
i

�
�

�
�

�

The fourth test statistic is as follows:

Pillai’s trace

� �
1

1

tr
p

H H E i
i

V S S S �
�

�

� �� � �
� � �

V is output as value. The p-value is based on an approximation discussed by
Pillai (1985). The statistic

2 1
2 1

n s VF
m s s V
� �

�

� � �

has an approximate F distribution with s(2m + s + 1) and s(2n + s + 1) numerator
and denominator degrees of freedom, respectively, where

s = min (p, q)

m = ½(|p 	 q| 	1)

n = ½(� 	 p 	 1)

The F test is exact if min (p, q) = 1.

110 � hypothesis_test IMSL C/Stat/Library

Examples

Example 1
The data for this example are from Maindonald (1984, p. 203	204). A
multivariate regression model containing two dependent variables and three
independent variables is fit using function imsls_f_regression and the results
stored in the structure regression_info. The sum of squares and crossproducts
matrix, scph, is then computed with a call to imsls_f_hypothesis_scph for
the test that the third independent variable is in the model (determined by
specification of h). Finally, function imsls_f_hypothesis_test is called to
compute the p-value for the test statistic (Wilk’s lambda).

#include <imsls.h>
main()
{
 Imsls_f_regression *info;
 float *coefficients, *scph;
 float dfh, p_value;
 float x[] = { 7.0, 5.0, 6.0,
 2.0,-1.0, 6.0,
 7.0, 3.0, 5.0,
 -3.0, 1.0, 4.0,
 2.0,-1.0, 0.0,
 2.0, 1.0, 7.0,
 -3.0,-1.0, 3.0,
 2.0, 1.0, 1.0,
 2.0, 1.0, 4.0 };
 float y[] = { 7.0, 1.0,
 -5.0, 4.0,
 6.0, 10.0,
 5.0, 5.0,
 5.0, -2.0,
 -2.0, 4.0,
 0.0, -6.0,
 8.0, 2.0,
 3.0, 0.0 };
 int n_observations = 9;
 int n_independent = 3;
 int n_dependent = 2;
 int nh = 1;
 float h[] = { 0, 0, 0, 1 };

 coefficients = imsls_f_regression(n_observations, n_independent,
 x, y,
 IMSLS_N_DEPENDENT, n_dependent,
 IMSLS_REGRESSION_INFO, &info,
 0);

 scph = imsls_f_hypothesis_scph(info, nh, h, &dfh, 0);

 p_value = imsls_f_hypothesis_test(info, dfh, scph, 0);

 printf("P-value = %10.6f\n", p_value);

}

Chapter 2: Regression hypothesis_test � 111

Output

P-value = 0.000010

Example 2
This example is the same as the first example, but more statistics are computed.
Also, the U matrix, u, is explicitly specified as the identity matrix (which is the
same default configuration of U).

#include <imsls.h>
main()
{
 Imsls_f_regression *info;
 float *coefficients, *scph;
 float dfh, p_value;
 float x[] = { 7.0, 5.0, 6.0,
 2.0,-1.0, 6.0,
 7.0, 3.0, 5.0,
 -3.0, 1.0, 4.0,
 2.0,-1.0, 0.0,
 2.0, 1.0, 7.0,
 -3.0,-1.0, 3.0,
 2.0, 1.0, 1.0,
 2.0, 1.0, 4.0 };
 float y[] = { 7.0, 1.0,
 -5.0, 4.0,
 6.0, 10.0,
 5.0, 5.0,
 5.0, -2.0,
 -2.0, 4.0,
 0.0, -6.0,
 8.0, 2.0,
 3.0, 0.0 };
 int n_observations = 9;
 int n_independent = 3;
 int n_dependent = 2;
 int nh = 1;
 float h[] = { 0, 0, 0, 1 };
 int nu = 2;
 float u[4]={1, 0, 0, 1};
 float v1, v2, v3, v4, p1, p2, p3, p4;

 coefficients = imsls_f_regression(n_observations, n_independent,
 x, y,
 IMSLS_N_DEPENDENT, n_dependent,
 IMSLS_REGRESSION_INFO, &info,
 0);

 scph = imsls_f_hypothesis_scph(info, nh, h, &dfh, 0);

 p_value = imsls_f_hypothesis_test(info, dfh, scph,
 IMSLS_U, nu, u,
 IMSLS_WILK_LAMBDA, &v1, &p1,
 IMSLS_ROY_MAX_ROOT, &v2, &p2,
 IMSLS_HOTELLING_TRACE, &v3, &p3,
 IMSLS_PILLAI_TRACE, &v4, &p4,
 0);

112 � regression_selection IMSL C/Stat/Library

 printf("Wilk value = %10.6f p-value = %10.6f\n", v1, p1);
 printf("Roy value = %10.6f p-value = %10.6f\n", v2, p2);
 printf("Hotelling value = %10.6f p-value = %10.6f\n", v3, p3);
 printf("Pillai value = %10.6f p-value = %10.6f\n", v4, p4);
}

Output

Wilk value = 0.003149 p-value = 0.000010
Roy value = 316.600861 p-value = 0.000010
Hotelling value = 316.600861 p-value = 0.000010
Pillai value = 0.996851 p-value = 0.000010

Warning Errors
IMSLS_SINGULAR_1 “u”*“scpe”*“u” is singular. Only Pillai’s

trace can be computed. Other statistics are
set to NaN.

Fatal Errors
IMSLS_NO_STAT_1 “scpe” + “scph” is singular. No tests can be

computed.

IMSLS_NO_STAT_2 No statistics can be computed. Iterations for
eigenvalues for the generalized eigenvalue
problem “scph”*x =
(lambda)*(“scph”+“scpe”)*x failed to
converge.

IMSLS_NO_STAT_3 No statistics can be computed. Iterations
for eigenvalues for the generalized
eigenvalue problem “scph”
x = (lambda)(“scph”+“u”*“scpe”*“u”)*x
failed to converge.

IMSLS_SINGULAR_2 “u”*“scpe”*“u” + “scph” is singular. No
tests can be computed.

IMSLS_SINGULAR_TRI_MATRIX The input triangular matrix is singular. The
index of the first zero diagonal element is
equal to #.

regression_selection
Selects the best multiple linear regression models.

Synopsis
#include <imsls.h>

Chapter 2: Regression regression_selection � 113

void imsls_f_regression_selection (int n_rows, int n_candidate,
float x[], float y[], ..., 0)

The type double function is imsls_d_regression_selection.

Required Arguments

int n_rows (Input)
Number of observations or rows in x and y.

int n_candidate (Input)
Number of candidate variables (independent variables) or columns in x.
n_candidate must be greater than 2.

float x[] (Input)
Array of size n_rows � n_candidate containing the data for the
candidate variables.

float y[] (Input)
Array of length n_rows containing the responses for the dependent
variable.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_regression_selection (int n_rows, int n_candidate,

float x[], float y[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_PRINT, or
IMSLS_NO_PRINT,
IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_R_SQUARED, int max_subset_size, or
IMSLS_ADJ_R_SQUARED, or
IMSLS_MALLOWS_CP,
IMSLS_MAX_N_BEST, int max_n_best,
IMSLS_MAX_N_GOOD_SAVED, int max_n_good_saved,
IMSLS_CRITERIONS, int **index_criterions,
 float **criterions,
IMSLS_CRITERIONS_USER, int index_criterions[],
 float criterions[],
IMSLS_INDEPENDENT_VARIABLES, int **index_variables,
 int **independent_variables,
IMSLS_INDEPENDENT_VARIABLES_USER,
 int index_variables[],
 int independent_variables[],
IMSLS_COEF_STATISTICS, int **index_coefficients,
 float **coefficients,
IMSLS_COEF_STATISTICS_USER, int index_coefficients[],
 float coefficients[],

114 � regression_selection IMSL C/Stat/Library

IMSLS_INPUT_COV, int n_observations, float cov[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

The column dimension of x.
Default: x_col_dim = n_candidate

IMSLS_PRINT
Printing is performed. This is the default.
or

IMSLS_NO_PRINT
Printing is not performed.

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_rows containing the weight for each row of x.
Default: weights[] = 1

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_rows containing the frequency for each row of x.
Default: frequencies[] = 1

IMSLS_R_SQUARED, int max_subset_size (Input)
The R2 criterion is used, where subset sizes
1, 2, ..., max_subset_size are examined.
This option is the default with max_subset_size = n_candidate.
or

IMSLS_ADJ_R_SQUARED
The adjusted R2 criterion is used, where subset sizes
1, 2, ..., n_candidate are examined.
or

IMSLS_MALLOWS_CP
Mallows Cp criterion is used, where subset sizes
1, 2, ..., n_candidate are examined.

IMSLS_MAX_N_BEST, int max_n_best (Input)
Number of best regressions to be found. If the R2 criterions are selected,
the max_n_best best regressions for each subset size examined are
found. If the adjusted R2 or Mallows Cp criterion is selected, the
max_n_best overall regressions are found.
Default: max_n_best = 1

IMSLS_MAX_N_GOOD_SAVED, int max_n_good_saved (Input)
Maximum number of good regressions of each subset size to be saved in
finding the best regressions. Argument max_n_good_saved must be
greater than or equal to max_n_best. Normally, max_n_good_saved
should be less than or equal to 10. It doesn't ever need to be larger than
the maximum number of subsets for any subset size. Computing time

Chapter 2: Regression regression_selection � 115

required is inversely related to max_n_good_saved.
Default: max_n_good_saved = 10

IMSLS_CRITERIONS, int **index_criterions, float **criterions
(Output)
Argument index_criterions is the address of a pointer to the
internally allocated array of length nsize + 1(where nsize is equal to
max_subset_size if optional argument IMSLS_R_SQUARED is
specified; otherwise, nsize is equal to n_candidate) containing the
locations in criterions of the first element for each subset size. For
I = 0, 1, ..., nsize 	1, element numbers index_criterions[I],
index_criterions[I] + 1, ..., index_criterions[I + 1] 	 1 of
criterions correspond to the (I + 1)-st subset size. Argument
criterions is the address of a pointer to the internally allocated array
of length max (index_criterions [nsize] 	 1 , n_candidate)
containing in its first index_criterions [nsize] 	 1 elements the
criterion values for each subset considered, in increasing subset size
order.

IMSLS_CRITERIONS_USER, int index_criterions[],
float criterions[] (Output)
Storage for arrays index_criterions and criterions is provided
by the user. An upper bound on the length of criterions is
max(max_n_good_saved � nsize, n_candidate). See
IMSLS_CRITERIONS.

IMSLS_INDEPENDENT_VARIABLES, int **index_variables,
int **independent_variables (Output)
Argument index_variables is the address of a pointer to the
internally allocated array of length nsize + 1 (where nsize is equal to
max_subset_size if optional argument IMSLS_R_SQUARED is
specified; otherwise, nsize is equal to n_candidate) containing the
locations in independent_variables of the first element for each
subset size. For I = 0, 1, ..., nsize 	 1, element numbers
index_variables[I], index_variables[I] + 1, ...,
index_variables[I + 1] 	 1 of independent_variables
correspond to the (I+1)-st subset size. Argument
independent_variables is the address of a pointer to the internally
allocated array of length index_variables [nsize] 	 1 containing the
variable numbers for each subset considered and in the same order as in
criterions.

IMSLS_INDEPENDENT_VARIABLES_USER, int index_variables[],
int independent_variables[] (Output)
Storage for arrays index_variables and independent_variables
is provided by the user. An upper bound for the length of
independent_variables is as follows:

116 � regression_selection IMSL C/Stat/Library

(1
2

nsize nsize� � �max_n_good_saved)

where nsize is equal to max_subset_size.

See IMSLS_INDEPENDENT_VARIABLES.

IMSLS_COEF_STATISTICS, int **index_coefficients,
float **coefficients (Output)
Argument index_coefficients is the address of a pointer to the
internally allocated array of length ntbest + 1 containing the locations in
coefficients or the first row for each of the best regressions. Here,
ntbest is the total number of best regression found and is equal
to max_subset_size � max_n_best if IMSLS_R_SQUARED is
specified, equal to max_n_best if either IMSLS_MALLOWS_CP
or IMSLS_ADJ_R_SQUARED is specified, and equal to
max_n_best � n_candidate, otherwise. For I = 0, 1, ..., ntbest 	 1,
rows index_coefficients[I], index_coefficients[I] + 1, ...,
index_coefficients[I + 1] – 1 of coefficients correspond to the
(I + 1)-st regression. Argument coefficients is the address of a
pointer to the internally allocated array of size (index_coefficients
[ntbest] 	 1) � 5 containing statistics relating to the regression
coefficients of the best models. Each row corresponds to a coefficient
for a particular regression. The regressions are in order of increasing
subset size. Within each subset size, the regressions are ordered so that
the better regressions appear first. The statistic in the columns are as
follows (inferences are conditional on the selected model):

Column Description

0 variable number

1 coefficient estimate

2 estimated standard error of the estimate

3 t-statistic for the test that the coefficient is 0

4 p-value for the two-sided t test

IMSLS_COEF_STATISTICS_USER, int index_coefficients[],
float coefficients[] (Output)
Storage for arrays index_coefficients and coefficients is
provided by the user. See IMSLS_COEF_STATISTICS.

IMSLS_INPUT_COV, int n_observations, float cov[] (Input)
Argument n_observations is the number of observations associated
with array cov. Argument cov is an (n_candidate + 1) by
(n_candidate + 1) array containing a variance-covariance or sum of
squares and crossproducts matrix, in which the last column must
correspond to the dependent variable. Array cov can be computed using
imsls_f_covariances. Arguments x and y, and optional arguments

Chapter 2: Regression regression_selection � 117

frequencies and weights are not accessed when this option is
specified. Normally, imsls_f_regression_selection computes
cov from the input data matrices x and y. However, there may be cases
when the user will wish to calculate the covariance matrix and
manipulate it before calling imsls_f_regression_selection. See
the description section below for a discussion of such cases.

Description
Function imsls_f_regression_selection finds the best subset regressions
for a regression problem with n_candidate independent variables. Typically,
the intercept is forced into all models and is not a candidate variable. In this case,
a sum of squares and crossproducts matrix for the independent and dependent
variables corrected for the mean is computed internally. There may be cases when
it is convenient for the user to calculate the matrix; see the description of optional
argument IMSLS_INPUT_COV.

“Best” is defined, on option, by one of the following three criteria:

� R2 (in percent)

2 SSE
100 (1)

SST
pR � �

� 2
aR (adjusted R2 in percent)

2 SSE1100 1 ()
SST

p
a

nR
n p

� ��
� �� �

�� �

Note that maximizing the criterion is equivalent to minimizing the
residual mean square:

� �

SSE p

n p�

� Mallows’ Cp statistic

2

SSE
2p

pC p
s

� �

n_candidate

n�

Here, n is equal to the sum of the frequencies (or n_rows if
IMSLS_FREQUENCIES is not specified) and SST is the total sum of squares.
SSEp is the error sum of squares in a model containing p regression parameters
including �0 (or p 	 1 of the n_candidate candidate variables). Variable

2sn_candidate

is the error mean square from the model with all n_candidate variables in the
model. Hocking (1972) and Draper and Smith (1981, pp. 296	302) discuss these
criteria.

118 � regression_selection IMSL C/Stat/Library

Function imsls_f_regression_selection is based on the algorithm of
Furnival and Wilson (1974). This algorithm finds max_n_good_saved candidate
regressions for each possible subset size. These regressions are used to identify a
set of best regressions. In large problems, many regressions are not computed.
They may be rejected without computation based on results for other subsets; this
yields an efficient technique for considering all possible regressions.

There are cases when the user may want to input the variance-covariance matrix
rather than allow the function imsls_f_regression_selection to calculate
it. This can be accomplished using optional argument IMSLS_INPUT_COV. Three
situations in which the user may want to do this are as follows:

1. The intercept is not in the model. A raw (uncorrected) sum of squares
and crossproducts matrix for the independent and dependent variables is
required. Argument n_observations must be set to 1 greater than the
number of observations. Form ATA, where A = [A, Y], to compute the
raw sum of squares and crossproducts matrix.

2. An intercept is a candidate variable. A raw (uncorrected) sum of squares
and crossproducts matrix for the constant regressor (= 1.0), independent,
and dependent variables is required for cov. In this case, cov contains
one additional row and column corresponding to the constant regressor.
This row/column contains the sum of squares and crossproducts of the
constant regressor with the independent and dependent variables. The
remaining elements in cov are the same as in the previous case.
Argument n_observations must be set to 1 greater than the number of
observations.

3. There are m variables to be forced into the models. A sum of squares
and crossproducts matrix adjusted for the m variables is required
(calculated by regressing the candidate variables on the variables to be
forced into the model). Argument n_observations must be set to m
less than the number of observations.

Programming Notes
Function imsls_f_regression_selection can save considerable CPU time
over explicitly computing all possible regressions. However, the function has
some limitations that can cause unexpected results for users who are unaware of
the limitations of the software.

1. For n_candidate + 1 > 	log2 (�), where � is imsls_f_machine(4)
(imsls_d_machine(4) for double precision; see Chapter 14), some
results can be incorrect. This limitation arises because the possible
models indicated (the model numbers 1, 2, ..., 2n_candidate) are stored
as floating-point values; for sufficiently large n_candidate, the model
numbers cannot be stored exactly. On many computers, this means
imsls_f_regression_selection (for n_candidate > 24) and
imsls_d_regression_selection (for n_candidate > 49) can
produce incorrect results.

Chapter 2: Regression regression_selection � 119

2. Function imsls_f_regression_selection eliminates some subsets
of candidate variables by obtaining lower bounds on the error sum of
squares from fitting larger models. First, the full model containing all
n_candidate is fit sequentially using a forward stepwise procedure in
which one variable enters the model at a time, and criterion values and
model numbers for all the candidate variables that can enter at each step
are stored. If linearly dependent variables are removed from the full
model, error IMSLS_VARIABLES_DELETED is issued. If this error is
issued, some submodels that contain variables removed from the full
model because of linear dependency can be overlooked if they have not
already been identified during the initial forward stepwise procedure. If
error IMSLS_VARIABLES_DELETED is issued and you want the
variables that were removed from the full model to be considered in
smaller models, you can rerun the program with a set of linearly
independent variables.

Examples

Example 1
This example uses a data set from Draper and Smith (1981, pp. 629	630).
Function imsls_f_regression_selection is invoked to find the best
regression for each subset size using the R2 criterion. By default, the function
prints the results.

#include <imsls.h>
#define N_OBSERVATIONS 13
#define N_CANDIDATE 4
main()
{
 float x[N_OBSERVATIONS][N_CANDIDATE] =
 {7., 26., 6., 60.,
 1., 29., 15., 52.,
 11., 56., 8., 20.,
 11., 31., 8., 47.,
 7., 52., 6., 33.,
 11., 55., 9., 22.,
 3., 71., 17., 6.,
 1., 31., 22., 44.,
 2., 54., 18., 22.,
 21., 47., 4., 26.,
 1., 40., 23., 34.,
 11., 66., 9., 12.,
 10., 68., 8., 12.};
 float y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9,
 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

 imsls_f_regression_selection(N_OBSERVATIONS, N_CANDIDATE, x, y, 0);
}

Output

 Regressions with 1 variable(s) (R-squared)

120 � regression_selection IMSL C/Stat/Library

 Criterion Variables
 67.5 4
 66.6 2
 53.4 1
 28.6 3

 Regressions with 2 variable(s) (R-squared)

 Criterion Variables
 97.9 1 2
 97.2 1 4
 93.5 3 4
 68 2 4
 54.8 1 3

 Regressions with 3 variable(s) (R-squared)

 Criterion Variables
 98.2 1 2 4
 98.2 1 2 3
 98.1 1 3 4
 97.3 2 3 4

 Regressions with 4 variable(s) (R-squared)

 Criterion Variables
 98.2 1 2 3 4

 Best Regression with 1 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value
 4 -0.7382 0.1546 -4.775 0.0006

 Best Regression with 2 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value
 1 1.468 0.1213 12.10 0.0000
 2 0.662 0.0459 14.44 0.0000

 Best Regression with 3 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value
 1 1.452 0.1170 12.41 0.0000
 2 0.416 0.1856 2.24 0.0517
 4 -0.237 0.1733 -1.36 0.2054

 Best Regression with 4 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value
 1 1.551 0.7448 2.083 0.0708
 2 0.510 0.7238 0.705 0.5009
 3 0.102 0.7547 0.135 0.8959
 4 -0.144 0.7091 -0.203 0.8441

Chapter 2: Regression regression_selection � 121

Example 2
This example uses the same data set as the first example, but Mallow’s Cp
statistic is used as the criterion rather than R2. Note that when Mallow’s Cp
statistic (or adjusted R2) is specified, the variable max_n_best indicates the total
number of “best” regressions (rather than indicating the number of best
regressions per subset size, as in the case of the R2 criterion). In this example, the
three best regressions are found to be (1, 2), (1, 2, 4), and (1, 2, 3).

#include <imsls.h>
#define N_OBSERVATIONS 13
#define N_CANDIDATE 4
main()
{
 float x[N_OBSERVATIONS][N_CANDIDATE] =
 {7., 26., 6., 60.,
 1., 29., 15., 52.,
 11., 56., 8., 20.,
 11., 31., 8., 47.,
 7., 52., 6., 33.,
 11., 55., 9., 22.,
 3., 71., 17., 6.,
 1., 31., 22., 44.,
 2., 54., 18., 22.,
 21., 47., 4., 26.,
 1., 40., 23., 34.,
 11., 66., 9., 12.,
 10., 68., 8., 12.};
 float y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9,
 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
 int max_n_best = 3;

 imsls_f_regression_selection(N_OBSERVATIONS, N_CANDIDATE,
 (float *) x, y,
 IMSLS_MALLOWS_CP,
 IMSLS_MAX_N_BEST, max_n_best,
 0);
}

Output

1

 Regressions with 1 variable(s) (Mallows CP)
 Criterion Variables
 139 4
 142 2
 203 1
 315 3

 Regressions with 2 variable(s) (Mallows CP)

 Criterion Variables
 2.68 1 2
 5.5 1 4

122 � regression_selection IMSL C/Stat/Library

 22.4 3 4
 138 2 4
 198 1 3

 Regressions with 3 variable(s) (Mallows CP)

 Criterion Variables
 3.02 1 2 4
 3.04 1 2 3
 3.5 1 3 4
 7.34 2 3 4

 Regressions with 4 variable(s) (Mallows CP)

 Criterion Variables
 5 1 2 3 4
1

 Best Regression with 2 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value
 1 1.468 0.1213 12.10 0.0000
 2 0.662 0.0459 14.44 0.0000

 Best Regression with 3 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value
 1 1.452 0.1170 12.41 0.0000
 2 0.416 0.1856 2.24 0.0517
 4 -0.237 0.1733 -1.36 0.2054

 2nd Best Regression with 3 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value
 1 1.696 0.2046 8.29 0.0000
 2 0.657 0.0442 14.85 0.0000
 3 0.250 0.1847 1.35 0.2089

Warning Errors
IMSLS_VARIABLES_DELETED At least one variable is deleted from the full

model because the variance-covariance
matrix “cov” is singular.

Fatal Errors
IMSLS_NO_VARIABLES No variables can enter any model.

Chapter 2: Regression regression_stepwise � 123

regression_stepwise
Builds multiple linear regression models using forward selection, backward
selection, or stepwise selection.

Synopsis
#include <imsls.h>
void imsls_f_regression_stepwise (int n_rows, int n_candidate,

float x[], float y[], ..., 0)

The type double function is imsls_d_regression_stepwise.

Required Arguments

int n_rows (Input)
Number of rows in x and the number of elements in y.

int n_candidate (Input)
Number of candidate variables (independent variables) or columns in x.

float x[] (Input)
Array of size n_rows � n_candidate containing the data for the
candidate variables.

float y[] (Input)
Array of length n_rows containing the responses for the dependent
variable.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_regression_stepwise (int n_rows, int n_candidate,

float x[], float y[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_FIRST_STEP, or
IMSLS_INTERMEDIATE_STEP, or
IMSLS_LAST_STEP, or
IMSLS_ALL_STEPS,
IMSLS_N_STEPS, int n_steps,
IMSLS_FORWARD, or
IMSLS_BACKWARD, or
IMSLS_STEPWISE,
IMSLS_P_VALUE_IN, float p_value_in,
IMSLS_P_VALUE_OUT, float p_value_out,
IMSLS_TOLERANCE, float tolerance,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],

124 � regression_stepwise IMSL C/Stat/Library

IMSLS_COEF_T_TESTS, float **coef_t_tests,
IMSLS_COEF_T_TESTS_USER, float coef_t_tests[],
IMSLS_COEF_VIF, float **coef_vif,
IMSLS_COEF_VIF_USER, float coef_vif[],
IMSLS_LEVEL, int level[],
IMSLS_FORCE, int n_force,
IMSLS_IEND, int *iend,
IMSLS_SWEPT_USER, int swept[],
IMSLS_HISTORY_USER, float history[],
IMSLS_COV_SWEPT_USER, float *covs
IMSLS_INPUT_COV, int n_observations, float *cov,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of x.
Default: x_col_dim = n_candidate

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_rows containing the weight for each row of x.
Default: weights[] = 1

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_rows containing the frequency for each row of x.
Default: frequencies[] = 1

IMSLS_FIRST_STEP, or
IMSLS_INTERMEDIATE_STEP, or
IMSLS_LAST_STEP, or
IMSLS_ALL_STEPS

One or none of these options can be specified. If none of these is
specified, the action defaults to IMSLS_ALL_STEPS.

Argument Action

IMSLS_FIRST_STEP This is the first invocation; additional
calls will be made. Initialization and
stepping is performed.

IMSLS_INTERMEDIATE_STEP This is an intermediate invocation.
Stepping is performed.

IMSLS_LAST_STEP This is the final invocation. Stepping
and wrap-up computations are
performed.

IMSLS_ALL_STEPS This is the only invocation.
Initialization, stepping, and wrap-up
computations are performed.

Chapter 2: Regression regression_stepwise � 125

IMSLS_N_STEPS, int n_steps (Input)
For nonnegative n_steps, n_steps steps are taken. If n_steps = 	1,
stepping continues until completion.

IMSLS_FORWARD, or
IMSLS_BACKWARD, or
IMSLS_STEPWISE

One or none of these options can be specified. If none is specified, the
action defaults to IMSLS_BACKWARD.

Keyword Action

IMSLS_FORWARD An attempt is made to add a variable to the model. A
variable is added if its p-value is less than
p_value_in. During initialization, only the forced
variables enter the model.

IMSLS_BACKWARD An attempt is made to remove a variable from the
model. A variable is removed if its p-value exceeds
p_value_out. During initialization, all candidate
independent variables enter the model.

IMSLS_STEPWISE A backward step is attempted. If a variable is not
removed, a forward step is attempted. This is a
stepwise step. Only the forced variables enter the
model during initialization.

IMSLS_P_VALUE_IN, float p_value_in (Input)
Largest p-value for variables entering the model. Variables with p-values
less than p_value_in may enter the model.
Default: p_value_in = 0.05

IMSLS_P_VALUE_OUT, float p_value_out (Input)
Smallest p-value for removing variables. Variables with p_values
greater than p_value_out may leave the model. Argument
p_value_out must be greater than or equal to p_value_in. A
common choice for p_value_out is 2*p_value_in.
Default: p_value_out = 0.10

IMSLS_TOLERANCE, float tolerance (Input)
Tolerance used in determining linear dependence.
Default: tolerance = 100*eps, where eps = imsls_f_machine(4) for
single precision and eps = imsls_d_machine(4) for double precision

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the internally allocated array containing the
analysis of variance table. The analysis of variance statistics are as
follows:

126 � regression_stepwise IMSL C/Stat/Library

Element Analysis of Variance Statistic

0 degrees of freedom for regression

1 degrees of freedom for error

2 total degrees of freedom

3 sum of squares for regression

4 sum of squares for error

5 total sum of squares

6 regression mean square

7 error mean square

8 F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

IMSLS_COEF_T_TESTS, float **coef_t_tests (Output)
Address to a pointer to the internally allocated array containing statistics
relating to the regression coefficient for the final model in this
invocationing. The rows correspond to the n_candidate independent
variables. The rows are in the same order as the variables in x (or, if
IMSLS_INPUT_COV is specified, the rows are in the same order as the
variables in cov). Each row corresponding to a variable not in the model
contains statistics for a model which includes the variables of the final
model and the variable corresponding to the row in question.

Column Description

0 coefficient estimate

1 estimated standard error of the coefficient
estimate

2 t-statistic for the test that the coefficient is 0

3 p-value for the two-sided t test

Chapter 2: Regression regression_stepwise � 127

IMSLS_COEF_T_TESTS_USER, float coef_t_tests[] (Output)
Storage for array coef_t_tests is provided by the user. See
IMSLS_COEF_T_TESTS.

IMSLS_COEF_VIF, float **coef_vif (Output)
Address to a pointer to the internally allocated array containing variance
inflation factors for the final model in this invocation. The elements
correspond to the n_candidate dependent variables. The elements are
in the same order as the variables in x (or, if IMSLS_INPUT_COV is
specified, the elements are in the same order as the variables in cov).
Each element corresponding to a variable not in the model contains
statistics for a model which includes the variables of the final model and
the variables corresponding to the element in question.

The square of the multiple correlation coefficient for the I-th regressor
after all others can be obtained from coef_vif[I] by the following
formula:

1.01.0
VIF

�

IMSLS_COEF_VIF_USER, float coef_vif[] (Output)
Storage for array coef_vif is provided by the user. See
IMSLS_COEF_VIF.

IMSLS_LEVEL, int level[] (Input)
Array of length n_candidate + 1 containing levels of priority for
variables entering and leaving the regression. Each variable is assigned a
positive value which indicates its level of entry into the model. A
variable can enter the model only after all variables with smaller nonzero
levels of entry have entered. Similarly, a variable can only leave the
model after all variables with higher levels of entry have left. Variables
with the same level of entry compete for entry (deletion) at each step.
Argument level[I] = 0 means the I-th variable is never to enter the
model. Argument level[I] = 	1 means the I-th variable is the
dependent variable. Argument level[n_candidate] must correspond
to the dependent variable, except when IMSLS_INPUT_COV is specified.
Default: 1, 1, ..., 1, 	1 where 	1 corresponds to level[n_candidate]

IMSLS_FORCE, int n_force (Input)
Variable with levels 1, 2, ..., n_force are forced into the model as
independent variables. See IMSLS_LEVEL.

IMSLS_IEND, int *iend (Output)
Variable which indicates whether additional steps are possible.

128 � regression_stepwise IMSL C/Stat/Library

iend Meaning

0 Additional steps may be possible.

1 No additional steps are possible.

IMSLS_SWEPT_USER, int swept[] (Output)
A user-allocated array of length n_candidate + 1 with information to
indicate the independent variables in the model. Argument
swept[n_candidate] usually corresponds to the dependent variable.
See IMSLS_LEVEL.

swept[i] Status of i-th Variable

	1 Variable i is not in model.

1 Variable i is in model.

IMSLS_HISTORY_USER, float history[] (Output)
User-allocated array of length n_candidate + 1 containing the recent
history of the independent variables. Element history[n_candidate]
usually corresponds to the dependent variable. See IMSLS_LEVEL.

history[i] Status of i-th Variable

0.0 Variable has never been added to model.

0.5 Variable was added into the model during
initialization.

k > 0.0 Variable was added to the model during the k-th
step.

k < 0.0 Variable was deleted from model during the k-th
step.

IMSLS_COV_SWEPT_USER, float *covs (Output)
User-allocated array of length
(n_candidate + 1) � (n_candidate + 1) that results after cov has
been swept on the columns corresponding to the variables in the model.
The estimated variance-covariance matrix of the estimated regression
coefficients in the final model can be obtained by extracting the rows
and columns of covs corresponding to the independent variables in the
final model and multiplying the elements of this matrix by
anova_table[7].

IMSLS_INPUT_COV, int n_observations float *cov (Input)
An (n_candidate + 1) by (n_candidate + 1) array containing a

Chapter 2: Regression regression_stepwise � 129

variance-covariance or sum of squares and crossproducts matrix, in
which the last column must correspond to the dependent variable.
Argument n_observations is an integer specifying the number of
observations associated with cov. Argument cov can be computed using
imsls_f_covariances. Arguments x, y, weights, and
frequencies are not accessed when this option is specified.

By default, imsls_regression_stepwise computes cov from the
input data matrices x and y.

Description
Function imsls_f_regression_stepwise builds a multiple linear regression
model using forward selection, backward selection, or forward stepwise (with a
backward glance) selection. Function imsls_f_regression_stepwise is
designed so the user can monitor, and perhaps change, the variables added
(deleted) to (from) the model after each step. In this case, multiple calls to
imsls_f_regression_stepwise (using optional arguments
IMSLS_FIRST_STEP, IMSLS_INTERMEDIATE_STEP, ..., IMSLS_LAST_STEP)
are made. Alternatively, imsls_f_regression_stepwise can be invoked
once (default, or specify optional argument IMSLS_ALL_STEPS) in order to
perform the stepping until a final model is selected.

Levels of priority can be assigned to the candidate independent variables (use
optional argument IMSLS_LEVEL). All variables with a priority level of 1 must
enter the model before variables with a priority level of 2. Similarly, variables
with a level of 2 must enter before variables with a level of 3, etc. Variables also
can be forced into the model (see optional argument IMSLS_FORCE). Note that
specifying optional argument IMSLS_FORCE without also specifying optional
argument IMSLS_LEVEL will result in all variables being forced into the model.

Typically, the intercept is forced into all models and is not a candidate variable.
In this case, a sum-of-squares and crossproducts matrix for the independent and
dependent variables corrected for the mean is required. Other possibilities are as
follows:

1. The intercept is not in the model. A raw (uncorrected) sum-of-squares
and crossproducts matrix for the independent and dependent variables is
required as input in cov (see optional argument IMSLS_INPUT_COV).
Argument n_observations must be set to one greater than the number
of observations.

2. An intercept is a candidate variable. A raw (uncorrected) sum-of-squares
and crossproducts matrix for the constant regressor (=1), independent
and dependent variables are required for cov. In this case, cov contains
one additional row and column corresponding to the constant regressor.
This row/column contains the sum-of-squares and crossproducts of the
constant regressor with the independent and dependent variables. The
remaining elements in cov are the same as in the previous case.

130 � regression_stepwise IMSL C/Stat/Library

Argument n_observations must be set to one greater than the number
of observations.

The stepwise regression algorithm is due to Efroymson (1960). Function
imsls_f_regression_stepwise uses sweeps of the covariance matrix (input
in cov, if optional argument IMSLS_INPUT_COV is specified, or generated
internally by default) to move variables in and out of the model (Hemmerle 1967,
Chapter 3). The SWEEP operator discussed in Goodnight (1979) is used. A
description of the stepwise algorithm is also given by Kennedy and Gentle (1980,
pp. 335	340). The advantage of stepwise model building over all possible
regression (see function imsls_f_regression_selection, page 112) is that
it is less demanding computationally when the number of candidate independent
variables is very large. However, there is no guarantee that the model selected
will be the best model (highest R2) for any subset size of independent variables.

Example
This example uses a data set from Draper and Smith (1981, pp. 629	630).
Backwards stepping is performed by default.

#include <imsls.h>
#define N_OBSERVATIONS 13
#define N_CANDIDATE 4
main()
{
 char *labels[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total sum of squares",
 "regression mean square",
 "error mean square",
 "F-statistic",
 "p-value",
 "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of within error"
 };
 char *c_labels[] = {
 "variable",
 "estimate",
 "s.e.",
 "t",
 "prob > t"
 };
 float *aov, *tt;
 float x[N_OBSERVATIONS][N_CANDIDATE] =
 {7., 26., 6., 60.,
 1., 29., 15., 52.,
 11., 56., 8., 20.,
 11., 31., 8., 47.,
 7., 52., 6., 33.,
 11., 55., 9., 22.,
 3., 71., 17., 6.,

Chapter 2: Regression regression_stepwise � 131

 1., 31., 22., 44.,
 2., 54., 18., 22.,
 21., 47., 4., 26.,
 1., 40., 23., 34.,
 11., 66., 9., 12.,
 10., 68., 8., 12.};
 float y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9,
 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

 imsls_f_regression_stepwise(N_OBSERVATIONS, N_CANDIDATE, x, y,
 IMSLS_ANOVA_TABLE, &aov,
 IMSLS_COEF_T_TESTS, &tt,
 0);

 imsls_f_write_matrix("* * * Analysis of Variance * * *\n",
 13, 1, aov,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%9.2f",
 0);

 imsls_f_write_matrix("* * * Inference on Coefficients * * *\n",
 4, 4, tt,
 IMSLS_COL_LABELS, c_labels,
 IMSLS_WRITE_FORMAT, "%9.2f",
 0);

 return;
}

Output

 * * * Analysis of Variance * * *

degrees of freedom for regression 2.00
degrees of freedom for error 10.00
total degrees of freedom 12.00
sum of squares for regression 2657.86
sum of squares for error 57.90
total sum of squares 2715.76
regression mean square 1328.93
error mean square 5.79
F-statistic 229.50
p-value 0.00
R-squared (in percent) 97.87
adjusted R-squared (in percent) 97.44
est. standard deviation of within error 2.41

 * * * Inference on Coefficients * * *

variable estimate s.e. t prob > t
 1 1.47 0.12 12.10 0.00
 2 0.66 0.05 14.44 0.00
 3 0.25 0.18 1.35 0.21
 4 -0.24 0.17 -1.36 0.21

132 � poly_regression IMSL C/Stat/Library

Warning Errors
IMSLS_LINEAR_DEPENDENCE_1 Based on “tolerance” = #, there are linear

dependencies among the variables to be
forced.

Fatal Errors
IMSLS_NO_VARIABLES_ENTERED No variables entered the model. All

elements of “anova_table” are set to NaN.

poly_regression
Performs a polynomial least-squares regression.

Synopsis
#include <imsls.h>
float *imsls_f_poly_regression (int n_observations, float x[],

float y[], int degree, ..., 0)

The type double function is imsls_d_poly_regression.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations containing the independent variable.

float y[] (Input)
Array of length n_observations containing the dependent variable.

int degree (Input)
Degree of the polynomial.

Return Value
A pointer to the array of size degree + 1 containing the coefficients of the fitted
polynomial. If a fit cannot be computed, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_poly_regression (int n_observations, float x[],

float y[], int degree,
IMSLS_WEIGHTS, float weights[],
IMSLS_SSQ_POLY, float **ssq_poly,
IMSLS_SSQ_POLY_USER, float ssq_poly[],
IMSLS_SSQ_POLY_COL_DIM, int ssq_poly_col_dim,

Chapter 2: Regression poly_regression � 133

IMSLS_SSQ_LOF, float **ssq_lof,
IMSLS_SSQ_LOF_USER, float ssq_lof[],
IMSLS_SSQ_LOF_COL_DIM, int ssq_lof_col_dim,
IMSLS_X_MEAN, float *x_mean,
IMSLS_X_VARIANCE, float *x_variance,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_DF_PURE_ERROR, int *df_pure_error,
IMSLS_SSQ_PURE_ERROR, float *ssq_pure_error,
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_POLY_REGRESSION_INFO,
 Imsls_f_poly_regression **poly_info,
IMSLS_RETURN_USER, float coefficients[],
0)

Optional Arguments
IMSLS_WEIGHTS, float weights[] (Input)

Array with n_observations components containing the array of
weights for the observation.
Default: weights[] = 1

IMSLS_SSQ_POLY, float **ssq_poly (Output)
Address of a pointer to the internally allocated array containing the
sequential sums of squares and other statistics. Row i corresponds to
xi, i = 0, ..., degree 	 1, and the columns are described as follows:

Column Description

0 degrees of freedom

1 sums of squares

2 F-statistic

3 p-value

IMSLS_SSQ_POLY_USER, float ssq_poly[] (Output)
Storage for array ssq_poly is provided by the user. See
IMSLS_SSQ_POLY.

IMSLS_SSQ_POLY_COL_DIM, int ssq_poly_col_dim (Input)
Column dimension of ssq_poly.
Default: ssq_poly_col_dim = 4

IMSLS_SSQ_LOF, float **ssq_lof (Output)
Address of a pointer to the internally allocated array containing the lack-
of-fit statistics. Row i corresponds to xi, i = 0, ..., degree 	 1, and the
columns are described in the following table:

134 � poly_regression IMSL C/Stat/Library

Column Description

0 degrees of freedom

1 lack-of-fit sums of squares

2 F-statistic for testing lack-of-fit for a
polynomial model of degree i

3 p-value for the test

IMSLS_SSQ_LOF_USER, float ssq_lof[] (Output)
Storage for array ssq_lof is provided by the user. See
IMSLS_SSQ_LOF.

IMSLS_SSQ_LOF_COL_DIM, int ssq_lof_col_dim (Input)
Column dimension of ssq_lof.
Default: ssq_lof_col_dim = 4

IMSLS_X_MEAN, float *x_mean (Output)
Mean of x.

IMSLS_X_VARIANCE, float *x_variance (Output)
Variance of x.

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the array containing the analysis of variance
table.

Column Description

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

Chapter 2: Regression poly_regression � 135

Column Description

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

IMSLS_DF_PURE_ERROR, int *df_pure_error (Output)
If specified, the degrees of freedom for pure error are returned in
df_pure_error.

IMSLS_SSQ_PURE_ERROR, float *ssq_pure_error (Output)
If specified, the sums of squares for pure error are returned in
ssq_pure_error.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to the array containing the residuals.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See
IMSLS_RESIDUAL.

IMSLS_POLY_REGRESSION_INFO, Imsls_f_poly_regression **poly_info
(Output)
Address of a pointer to an internally allocated structure containing the
information about the polynomial fit required as input for IMSL function
imsls_f_poly_prediction.

IMSLS_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is
stored in array coefficients of size degree + 1 provided by the user.

Description
Function imsls_f_poly_regression computes estimates of the regression
coefficients in a polynomial (curvilinear) regression model. In addition to the
computation of the fit, imsls_f_poly_regression computes some summary
statistics. Sequential sums of squares attributable to each power of the
independent variable (stored in ssq_poly) are computed. These are useful in

136 � poly_regression IMSL C/Stat/Library

assessing the importance of the higher order powers in the fit. Draper and Smith
(1981, pp. 101	102) and Neter and Wasserman (1974, pp. 278	287) discuss the
interpretation of the sequential sums of squares. The statistic R2 is the percentage
of the sum of squares of y about its mean explained by the polynomial curve.
Specifically,

� �

� �

2
2

2

ˆ
100%i i

i i

w y y
R

w y y

�

�

�

�

�

where

ˆiy

is the fitted y value at xi and y is the mean of y. This statistic is useful in
assessing the overall fit of the curve to the data. R2 must be between 0 and 100
percent, inclusive. R2 = 100 percent indicates a perfect fit to the data.

Estimates of the regression coefficients in a polynomial model are computed
using orthogonal polynomials as the regressor variables. This reparameterization
of the polynomial model in terms of orthogonal polynomials has the advantage
that the loss of accuracy resulting from forming powers of the x-values is avoided.
All results are returned to the user for the original model (power form).

Function imsls_f_poly_regression is based on the algorithm of Forsythe
(1957). A modification to Forsythe’s algorithm suggested by Shampine (1975) is
used for computing the polynomial coefficients. A discussion of Forsythe’s
algorithm and Shampine’s modification appears in Kennedy and Gentle (1980,
pp. 342	347).

Examples

Example 1
A polynomial model is fitted to data discussed by Neter and Wasserman
(1974, pp. 279	285). The data set contains the response variable y measuring
coffee sales (in hundred gallons) and the number of self-service coffee dispensers.
Responses for 14 similar cafeterias are in the data set. A graph of the results is
also given.

#include <imsls.h>

#define DEGREE 2
#define NOBS 14

main()
{
 float *coefficients;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};

 coefficients = imsls_f_poly_regression (NOBS, x, y, DEGREE, 0);

Chapter 2: Regression poly_regression � 137

 imsls_f_write_matrix("Least-Squares Polynomial Coefficients",
 DEGREE + 1, 1, coefficients,
 IMSLS_ROW_NUMBER_ZERO,
 0);
}

Output

Least-Squares Polynomial Coefficients
 0 503.3
 1 78.9
 2 -4.0

Figure 2-1 A Polynomial Fit

Example 2
This example is a continuation of the initial example. Here, many optional
arguments are used.

#include <stdio.h>
#include <imsls.h>

#define DEGREE 2
#define NOBS 14

void main()
{
 int iset = 1, dfpe;
 float *coefficients, *anova_table, sspe, *ssqpoly, *ssqlof;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
 char *coef_rlab[2];
 char *coef_clab[] = {" ", "intercept", "linear",
 "quadratic"};
 char *stat_clab[] = {" ", "Degrees of\nFreedom",
 "Sum of\nSquares",

138 � poly_regression IMSL C/Stat/Library

 "\nF-Statistic", "\np-value"};
 char *anova_rlab[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "regression mean square",
 "error mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 coefficients = imsls_f_poly_regression(NOBS, x, y, DEGREE,
 IMSLS_SSQ_POLY, &ssqpoly,
 IMSLS_SSQ_LOF, &ssqlof,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_DF_PURE_ERROR, &dfpe,
 IMSLS_SSQ_PURE_ERROR, &sspe,
 0);
 imsls_write_options(-1, &iset);
 imsls_f_write_matrix("Least Squares Polynomial Coefficients",
 1, DEGREE + 1,
 coefficients,
 IMSLS_COL_LABELS, coef_clab,
 0);
 coef_rlab[0] = coef_clab[2];
 coef_rlab[1] = coef_clab[3];
 imsls_f_write_matrix("Sequential Statistics", DEGREE, 4, ssqpoly,
 IMSLS_COL_LABELS, stat_clab,
 IMSLS_ROW_LABELS, coef_rlab,
 IMSLS_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
 0);
 imsls_f_write_matrix("Lack-of-Fit Statistics", DEGREE, 4, ssqlof,
 IMSLS_COL_LABELS, stat_clab,
 IMSLS_ROW_LABELS, coef_rlab,
 IMSLS_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
 0);
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, anova_rlab,
 IMSLS_WRITE_FORMAT, "%9.2f",
 0);
}

Output

 Least Squares Polynomial Coefficients
 intercept linear quadratic
 503.3 78.9 -4.0

 Sequential Statistics
 Degrees of Sum of
 Freedom Squares F-Statistic p-value
 linear 1.0 220644.2 3415.8 0.0000

Chapter 2: Regression poly_regression � 139

 quadratic 1.0 4387.7 67.9 0.0000

 Lack-of-Fit Statistics
 Degrees of Sum of
 Freedom Squares F-Statistic p-value
 linear 5.0 4793.7 22.0 0.0004
 quadratic 4.0 405.9 2.3 0.1548

 * * * Analysis of Variance * * *

 degrees of freedom for regression 2.00
 degrees of freedom for error 11.00
 total (corrected) degrees of freedom 13.00
 sum of squares for regression 225031.94
 sum of squares for error 710.55
 total (corrected) sum of squares 225742.48
 regression mean square 112515.97
 error mean square 64.60
 F-statistic 1741.86
 p-value 0.00
 R-squared (in percent) 99.69
 adjusted R-squared (in percent) 99.63
 est. standard deviation of model error 8.04
 overall mean of y 710.99
 coefficient of variation (in percent) 1.13

Warning Errors
IMSLS_CONSTANT_YVALUES The y values are constant. A zero-

order polynomial is fit. High order
coefficients are set to zero.

IMSLS_FEW_DISTINCT_XVALUES There are too few distinct x values
to fit the desired degree
polynomial. High order
coefficients are set to zero.

IMSLS_PERFECT_FIT A perfect fit was obtained with a
polynomial of degree less than
degree. High order coefficients
are set to zero.

Fatal Errors
IMSLS_NONNEG_WEIGHT_REQUEST_2 All weights must be nonnegative.

IMSLS_ALL_OBSERVATIONS_MISSING Each (x, y) point contains NaN.
There are no valid data.

IMSLS_CONSTANT_XVALUES The x values are constant.

140 � poly_prediction IMSL C/Stat/Library

poly_prediction
Computes predicted values, confidence intervals, and diagnostics after fitting a
polynomial regression model.

Synopsis
#include <imsls.h>
float *imsls_f_poly_prediction (Imsls_f_poly_regression *poly_info,

int n_predict, float x[], ..., 0)

The type double function is imsls_d_poly_prediction.

Required Arguments

Imsls_f_poly_regression *poly_info (Input)
Pointer to a structure of type Imsls_f_poly_regression. See function
imsls_f_poly_regression (page 132).

int n_predict (Input)
Length of array x.

float x[] (Input)
Array of length n_predict containing the values of the independent
variable for which calculations are to be performed.

Return Value
A pointer to an internally allocated array of length n_predict containing the
predicted values.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_poly_prediction (Imsls_f_poly_regression *poly_info,

int n_predict, float x[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_WEIGHTS, float weights[],
IMSLS_SCHEFFE_CI, float **lower_limit,
 float **upper_limit,
IMSLS_SCHEFFE_CI_USER, float lower_limit[],
 float upper_limit[],
IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit,
 float **upper_limit,
IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],
 float upper_limit[],
IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit,
 float **upper_limit,
IMSLS_POINTWISE_CI_NEW_SAMPLE_USER,
 float lower_limit[],

Chapter 2: Regression poly_prediction � 141

 float upper_limit[],
IMSLS_LEVERAGE, float **leverage,
IMSLS_LEVERAGE_USER, float leverage[],
IMSLS_RETURN_USER, float y_hat[],
IMSLS_Y, float y[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_STANDARDIZED_RESIDUAL,
 float **standardized_residual,
IMSLS_STANDARDIZED_RESIDUAL_USER,
 float standardized_residual[],
IMSLS_DELETED_RESIDUAL, float **deleted_residual,
IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[],
IMSLS_COOKSD, float **cooksd,
IMSLS_COOKSD_USER, float cooksd[],
IMSLS_DFFITS, float **dffits,
IMSLS_DFFITS_USER, float dffits[],
0)

Optional Arguments
IMSLS_CONFIDENCE, float confidence (Input)

Confidence level for both two-sided interval estimates on the mean and
for two-sided prediction intervals in percent. Argument confidence
must be in the range [0.0, 100.0). For one-sided intervals with
confidence level onecl, where 50.0 onecl < 100.0, set
confidence = 100.0 – 2.0 * (100.0 	 onecl).
Default: confidence = 95.0

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_predict containing the weight for each row of x.
The computed prediction interval uses SSE/(DFE*weights[i]) for the
estimated variance of a future response.
Default: weights[] = 1

IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit
(Output)
Array lower_limit is the address of a pointer to an internally allocated
array of length n_predict containing the lower confidence limits of
Scheffé confidence intervals corresponding to the rows of x. Array
upper_limit is the address of a pointer to an internally allocated array
of length n_predict containing the upper confidence limits of Scheffé
confidence intervals corresponding to the rows of x.

IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[]
(Output)
Storage for arrays lower_limit and upper_limit is provided by the user.
See IMSLS_SCHEFFE_CI.

142 � poly_prediction IMSL C/Stat/Library

IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit,
float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated
array of length n_predict containing the lower confidence limits of the
confidence intervals for two-sided interval estimates of the means,
corresponding to the rows of x. Array upper_limit is the address of
a pointer to an internally allocated array of length n_predict
containing the upper confidence limits of the confidence intervals for
two-sided interval estimates of the means, corresponding to the rows
of x.

IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],
float upper_limit[] (Output)
Storage for arrays lower_limit and upper_limit is provided by the
user. See IMSLS_POINTWISE_CI_POP_MEAN.

IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit,
float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated
array of length n_predict containing the lower confidence limits of the
confidence intervals for two-sided prediction intervals, corresponding to
the rows of x. Array upper_limit is the address of a pointer to an
internally allocated array of length n_predict containing the upper
confidence limits of the confidence intervals for two-sided prediction
intervals, corresponding to the rows of x.

IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[],
float upper_limit[] (Output)
Storage for arrays lower_limit and upper_limit is provided by the
user. See IMSLS_POINTWISE_CI_NEW_SAMPLE.

IMSLS_LEVERAGE, float **leverage (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the leverages.

IMSLS_LEVERAGE_USER, float leverage[] (Output)
Storage for array leverage is provided by the user. See
IMSLS_LEVERAGE.

IMSLS_RETURN_USER, float y_hat[] (Output)
Storage for array y_hat is provided by the user. The length n_predict
array contains the predicted values.

IMSLS_Y float y[] (Input)
Array of length n_predict containing the observed responses.

Note: IMSLS_Y must be specified if any of the following optional arguments are
specified.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the residuals.

Chapter 2: Regression poly_prediction � 143

n

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See
IMSLS_RESIDUAL.

IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual
(Output)
Address of a pointer to an internally allocated array of length
n_predict containing the standardized residuals.

IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[]
(Output)
Storage for array standardized_residual is provided by the user.
See IMSLS_STANDARDIZED_RESIDUAL.

IMSLS_DELETED_RESIDUAL, float **deleted_residual (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the deleted residuals.

IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[] (Output)
Storage for array deleted_residual is provided by the user. See
IMSLS_DELETED_RESIDUAL.

IMSLS_COOKSD, float **cooksd (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the Cook’s D statistics.

IMSLS_COOKSD_USER, float cooksd[] (Output)
Storage for array cooksd is provided by the user. See IMSLS_COOKSD.

IMSLS_DFFITS, float **dffits (Output)
Address of a pointer to an internally allocated array of length
n_predict containing the DFFITS statistics.

IMSLS_DFFITS_USER, float dffits[] (Output)
Storage for array dffits is provided by the user. See IMSLS_DFFITS.

Description
Function imsls_f_poly_prediction assumes a polynomial model

0 1 ..., 1, 2, ...,k
i i k i iy x x i� � � �� � � � �

where the observed values of the yi’s constitute the response, the xi’s are the
settings of the independent variable, the �j’s are the regression coefficients and
the �i’s are the errors that are independently distributed normal with mean 0 and
the following variance:

2

iw
�

Given the results of a polynomial regression, fitted using orthogonal polynomials
and weights wi, function imsls_f_poly_prediction produces predicted

144 � poly_prediction IMSL C/Stat/Library

values, residuals, confidence intervals, prediction intervals, and diagnostics for
outliers and in influential cases.

Often, a predicted value and confidence interval are desired for a setting of the
independent variable not used in computing the regression fit. This is
accomplished by simply using a different x matrix when calling
imsls_f_poly_prediction than was used for the fit (function
imsls_f_poly_regression). See Example 1on page 136.

Results from function imsls_f_poly_regression, which produces the fit
using orthogonal polynomials, are used for input by the structure poly_info.
The fitted model from imsls_f_poly_regression is

� � � � � �0 0 1 1ˆ ˆ ˆ ˆ...i i i k ky p z p z p z� � �� � � � i

where the zi’s are settings of the independent variable x scaled to the interval
[2, 2] and the pj (z)’s are the orthogonal polynomials. The XTX matrix for this
model is a diagonal matrix with elements dj. The case statistics are easily
computed from this model and are equal to those from the original polynomial
model with �j’s as the regression coefficients.

The leverage is computed as follows:

� �1 2

0

k

i i j j i
j

h w d p z�

�

� �

The estimated variance of

ˆiy

is given by the following:
2

i

i

h s
w

The computation of the remainder of the case statistics follows easily from the
definitions. See “Diagnostics for Individual Cases” (page 53) for the definition of
the case diagnostics.

Often, predicted values and confidence intervals are desired for combinations of
settings of the independent variables not used in computing the regression fit.
This can be accomplished by defining a new data matrix. Since the information
about the model fit is input in poly_info, it is not necessary to send in the data
set used for the original calculation of the fit, i.e., only variable combinations for
which predictions are desired need be entered in x.

Examples

Example 1
A polynomial model is fit to the data discussed by Neter and Wasserman
(1974, pp. 279–285). The data set contains the response variable y measuring

Chapter 2: Regression poly_prediction � 145

coffee sales (in hundred gallons) and the number of self-service dispensers.
Responses for 14 similar cafeterias are in the data set.

#include <imsls.h>

main()
{
 Imsls_f_poly_regression *poly_info;
 float *y_hat, *coefficients;
 int n_observations = 14;
 int degree = 2;
 int n_predict = 8;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
 float x2[] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0};

 /* Generate the polynomial regression fit*/
 coefficients = imsls_f_poly_regression (n_observations, x, y,
 degree, IMSLS_POLY_REGRESSION_INFO, &poly_info, 0);

 /* Compute predicted values */
 y_hat = imsls_f_poly_prediction(poly_info, n_predict, x2, 0);

 /* Print predicted values */
 imsls_f_write_matrix("Predicted Values", 1, n_predict, y_hat, 0);

 free(coefficients);
 free(y_hat);
 return;
}

Output

 Predicted Values
 1 2 3 4 5 6
 503.3 578.3 645.4 704.4 755.6 798.8

 7 8
 834.1 861.4

Example 2
Predicted values, confidence intervals, and diagnostics are computed for the data
set described in the first example.

#include <imsls.h>

main()
{
#define N_PREDICT 14
 Imsls_f_poly_regression *poly_info;
 float *coefficients, y_hat[N_PREDICT],
 lower_ci[N_PREDICT], upper_ci[N_PREDICT],
 lower_pi[N_PREDICT], upper_pi[N_PREDICT],
 s_residual[N_PREDICT], d_residual[N_PREDICT],
 leverage[N_PREDICT], cooksd[N_PREDICT],

146 � poly_prediction IMSL C/Stat/Library

 dffits[N_PREDICT], lower_scheffe[N_PREDICT],
 upper_scheffe[N_PREDICT];
 int n_observations = N_PREDICT;
 int degree = 2;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};

 /* Generate the polynomial regression fit*/
 coefficients = imsls_f_poly_regression (n_observations, x, y,
 degree, IMSLS_POLY_REGRESSION_INFO, &poly_info, 0);

 /* Compute predicted values and case statistics */
 imsls_f_poly_prediction(poly_info, N_PREDICT, x,
 IMSLS_RETURN_USER, y_hat,
 IMSLS_POINTWISE_CI_POP_MEAN_USER, lower_ci, upper_ci,
 IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, lower_pi, upper_pi,
 IMSLS_Y, y,
 IMSLS_STANDARDIZED_RESIDUAL_USER, s_residual,
 IMSLS_DELETED_RESIDUAL_USER, d_residual,
 IMSLS_LEVERAGE_USER, leverage,
 IMSLS_COOKSD_USER, cooksd,
 IMSLS_DFFITS_USER, dffits,
 IMSLS_SCHEFFE_CI_USER, lower_scheffe, upper_scheffe,
 0);

 /* Print results */
 imsls_f_write_matrix("Predicted Values", 1, N_PREDICT, y_hat, 0);
 imsls_f_write_matrix("Lower Scheffe CI", 1, N_PREDICT,
 lower_scheffe, 0);
 imsls_f_write_matrix("Upper Scheffe CI", 1, N_PREDICT,
 upper_scheffe, 0);
 imsls_f_write_matrix("Lower CI", 1, N_PREDICT, lower_ci, 0);
 imsls_f_write_matrix("Upper CI", 1, N_PREDICT, upper_ci, 0);
 imsls_f_write_matrix("Lower PI", 1, N_PREDICT, lower_pi, 0);
 imsls_f_write_matrix("Upper PI", 1, N_PREDICT, upper_pi, 0);
 imsls_f_write_matrix("Standardized Residual", 1, N_PREDICT,
 s_residual, 0);
 imsls_f_write_matrix("Deleted Residual", 1, N_PREDICT,
 d_residual, 0);
 imsls_f_write_matrix("Leverage", 1, N_PREDICT, leverage, 0);
 imsls_f_write_matrix("Cooks Distance", 1, N_PREDICT, cooksd, 0);
 imsls_f_write_matrix("DFFITS", 1, N_PREDICT, dffits, 0);

 free(coefficients);
 return;

}

Output

 Predicted Values
 1 2 3 4 5 6
 503.3 503.3 578.3 578.3 645.4 645.4

 7 8 9 10 11 12
 755.6 755.6 798.8 798.8 834.1 834.1

Chapter 2: Regression poly_prediction � 147

 13 14
 861.4 861.4

 Lower Scheffe CI
 1 2 3 4 5 6
 489.8 489.8 569.5 569.5 636.5 636.5

 7 8 9 10 11 12
 745.7 745.7 790.2 790.2 825.5 825.5

 13 14
 847.7 847.7

 Upper Scheffe CI
 1 2 3 4 5 6
 516.9 516.9 587.1 587.1 654.2 654.2

 7 8 9 10 11 12
 765.5 765.5 807.4 807.4 842.7 842.7

 13 14
 875.1 875.1

 Lower CI
 1 2 3 4 5 6
 492.8 492.8 571.5 571.5 638.4 638.4

 7 8 9 10 11 12
 747.9 747.9 792.1 792.1 827.4 827.4

 13 14
 850.7 850.7
 Upper CI
 1 2 3 4 5 6
 513.9 513.9 585.2 585.2 652.3 652.3

 7 8 9 10 11 12
 763.3 763.3 805.5 805.5 840.8 840.8

 13 14
 872.1 872.1

 Lower PI
 1 2 3 4 5 6
 482.8 482.8 559.3 559.3 626.4 626.4

 7 8 9 10 11 12
 736.3 736.3 779.9 779.9 815.2 815.2

 13 14
 840.8 840.8

 Upper PI
 1 2 3 4 5 6
 523.9 523.9 597.3 597.3 664.3 664.3

 7 8 9 10 11 12
 774.9 774.9 817.7 817.7 853.0 853.0

148 � poly_prediction IMSL C/Stat/Library

 13 14
 882.1 882.1

 Standardized Residual
 1 2 3 4 5 6
 0.737 -0.766 -1.366 -0.137 0.859 1.575

 7 8 9 10 11 12
 -0.041 0.456 -1.507 -0.902 0.982 -0.308

 13 14
 -1.051 1.557

 Deleted Residual
 1 2 3 4 5 6
 0.720 -0.751 -1.429 -0.131 0.848 1.707

 7 8 9 10 11 12
 -0.039 0.439 -1.613 -0.894 0.980 -0.295

 13 14
 -1.056 1.681

 Leverage
 1 2 3 4 5 6
 0.3554 0.3554 0.1507 0.1507 0.1535 0.1535

 7 8 9 10 11 12
 0.1897 0.1897 0.1429 0.1429 0.1429 0.1429

 13 14
 0.3650 0.3650

 Cooks Distance
 1 2 3 4 5 6
 0.0997 0.1080 0.1104 0.0011 0.0446 0.1500

 7 8 9 10 11 12
 0.0001 0.0162 0.1262 0.0452 0.0536 0.0053

 13 14
 0.2116 0.4644

 DFFITS
 1 2 3 4 5 6
 0.535 -0.558 -0.602 -0.055 0.361 0.727

 7 8 9 10 11 12
 -0.019 0.212 -0.659 -0.365 0.400 -0.120

 13 14
 -0.801 1.274

Warning Errors
IMSLS_LEVERAGE_GT_1 A leverage (= #) much greater than one is

computed. It is set to 1.0.

Chapter 2: Regression nonlinear_regression � 149

IMSLS_DEL_MSE_LT_0 A deleted residual mean square (= #) much
less than zero is computed. It is set to zero.

Fatal Errors
IMSLS_NEG_WEIGHT “weights[#]” = #. Weights must be

nonnegative.

nonlinear_regression
Fits a multivarite nonlinear regression model.

Synopsis
#include <imsls.h>
float *imsls_f_nonlinear_regression (float fcn(),

int n_parameters, int n_observations, int n_independent,
float x[], float y[], ..., 0)

The type double function is imsls_d_nonlinear_regression.

Required Arguments

float fcn (int n_independent, float xi[], int n_parameters,
float theta[])
User-supplied function to evaluate the function that defines the nonlinear
regression problem where xi is an array of length n_independent at
which point the function is evaluated and theta is an array of length
n_parameters containing the current values of the regression
coefficients. Function fcn returns a predicted value at the point xi. In
the following, f(xi;
), or just fi, denotes the value of this function at the
point xi, for a given value of
. (Both xi and
 are arrays.)

int n_parameters (Input)
Number of parameters to be estimated.

int n_observations (Input)
Number of observations.

int n_independent (Input)
Number of independent variables.

float x[] (Input)
Array of size n_observations by n_independent containing the
matrix of independent (explanatory) variables.

float y[] (Input)
Array of length n_observations containing the dependent (response)
variable.

150 � nonlinear_regression IMSL C/Stat/Library

Return Value
A pointer to an array of length n_parameters containing a solution, � for the
nonlinear regression coefficients. To release this space, use free. If no solution
can be computed, then NULL is returned.

ˆ

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_nonlinear_regression (float fcn(),

int n_parameters, int n_observations, int n_independent,
float x[], float y[],
IMSLS_THETA_GUESS, float theta_guess[],
IMSLS_JACOBIAN, void jacobian(),
IMSLS_THETA_SCALE, float theta_scale[],
IMSLS_GRADIENT_EPS, float gradient_eps,
IMSLS_STEP_EPS, float step_eps,
IMSLS_SSE_REL_EPS, float sse_rel_eps,
IMSLS_SSE_ABS_EPS, float sse_abs_eps,
IMSLS_MAX_STEP, float max_step,
IMSLS_INITIAL_TRUST_REGION, float trust_region,
IMSLS_GOOD_DIGIT, int ndigit,
IMSLS_MAX_ITERATIONS, int max_itn,
IMSLS_MAX_SSE_EVALUATIONS, int max_sse_eval,
IMSLS_MAX_JACOBIAN_EVALUATIONS, int max_jacobian,
IMSLS_TOLERANCE, float tolerance,
IMSLS_PREDICTED, float **predicted,
IMSLS_PREDICTED_USER, float predicted[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_R, float **r,
IMSLS_R_USER, float r[],
IMSLS_R_COL_DIM, int r_col_dim,
IMSLS_R_RANK, int *rank,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_DF, int *df,
IMSLS_SSE, float *sse,
IMSLS_RETURN_USER, float theta_hat[],
IMSLS_FCN_W_DATA, void fcn(),void *data,
IMSLS_JACOBIAN_W_DATA, void jacobian(),void *data,
0)

Optional Arguments
IMSLS_THETA_GUESS, float theta_guess[] (Input)

Array with n_parameters components containing an initial guess.
Default: theta_guess[] = 0

Chapter 2: Regression nonlinear_regression � 151

IMSLS_JACOBIAN, void jacobian (int n_independent, float xi[],
int n_parameters, float theta[], float fjac[]) (Input/Output)
User-supplied function to compute the i-th row of the Jacobian, where
the n_independent data values corresponding to the i-th row are input
in xi. Argument theta is an array of length n_parameters containing
the regression coefficients for which the Jacobian is evaluated, fjac is
the computed n_parameters row of the Jacobian for observation i at
theta. Note that each derivative �f(xi)/�
j should be returned in fjac
[j 	 1] for j = 1, 2, ..., n_parameters.

IMSLS_THETA_SCALE, float theta_scale[] (Input)
Array with n_parameters components containing the scaling array for

. Array theta_scale is used mainly in scaling the gradient and the
distance between two points. See keywords IMSLS_GRADIENT_EPS and
IMSLS_STEP_EPS for more detail.
Default: theta_scale[] = 1

IMSLS_GRADIENT_EPS, float gradient_eps (Input)
Scaled gradient tolerance. The j-th component of the scaled gradient at

is calculated as

� �

� �
2

2

max , 1/
1
2

j j jg t

F

�

�

�

where g = �F(
), t = theta_scale, and

� � � �� �
22

12
;n

i ii
F y f� �

�

� �� x

The value F(
) is the sum of the squared residuals, SSE, at the point
.
Default:

��grad_tol

(3
� in double, where � is the machine precision)

IMSLS_STEP_EPS, float step_eps (Input)
Scaled step tolerance. The j-th component of the scaled step from points

 and
� is computed as

� �max ,1/
j j

j jt

� �

�

��

where t = theta_scale
Default: step_eps = �2/3,where � is the machine precision

IMSLS_SSE_REL_EPS, float sse_rel_eps (Input)
Relative SSE function tolerance.
Default: sse_rel_eps = max(10-10, �2/3), max(10-20, �2/3) in double,
where � is the machine precision

152 � nonlinear_regression IMSL C/Stat/Library

IMSLS_SSE_ABS_EPS, float sse_abs_eps (Input)
Absolute SSE function tolerance.
Default: sse_abs_eps = max(10-20,�2), max(10-40, �2) in double,
where � is the machine precision

IMSLS_MAX_STEP, float max_step (Input)
Maximum allowable step size.
Default: max_step = 1000 max (�1, �2), where �1 = (tT
0)1/2, �2 = ||t||2,
t = theta_scale, and
0 = theta_guess

IMSLS_INITIAL_TRUST_REGION, float trust_region (Input)
Size of initial trust region radius. The default is based on the initial
scaled Cauchy step.

IMSLS_GOOD_DIGIT, int ndigit (Input)
Number of good digits in the function.
Default: machine dependent

IMSLS_MAX_ITERATIONS, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 100

IMSLS_MAX_SSE_EVALUATIONS, int max_sse_eval (Input)
Maximum number of SSE function evaluations.
Default: max_sse_eval = 400

IMSLS_MAX_JACOBIAN_EVALUATIONS, int max_jacobian (Input)
Maximum number of Jacobian evaluations.
Default: max_jacobian = 400

IMSLS_TOLERANCE, float tolerance (Input)
False convergence tolerance.
Default: tolerance = 100* eps, where eps = imsls_f_machine(4) if
single precision and eps = imsls_d_machine(4) if double precision

IMSLS_PREDICTED, float **predicted (Output)
Address of a pointer to a real internally allocated array of length
n_observations containing the predicted values at the approximate
solution.

IMSLS_PREDICTED_USER, float predicted[] (Output)
Storage for array predicted is provided by the user. See
IMSLS_PREDICTED.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to a real internally allocated array of length
n_observations containing the residuals at the approximate solution.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See
IMSLS_RESIDUAL.

Chapter 2: Regression nonlinear_regression � 153

IMSLS_R, float **r (Output)
Address of a pointer to an internally allocated array of size
n_parameters � n_parameters containing the R matrix from a QR
decomposition of the Jacobian.

IMSLS_R_USER, float r[] (Output)
Storage for array r is provided by the user. See IMSLS_R.

IMSLS_R_COL_DIM, int r_col_dim (Input)
Column dimension of array r.
Default: r_col_dim = n_parameters

IMSLS_R_RANK, int *rank (Output)
Rank of r. Argument rank less than n_parameters may indicate the
model is overparameterized.

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.
Default: x_col_dim = n_independent

IMSLS_DF, int *df (Output)
Degrees of freedom.

IMSLS_SSE, float *sse (Output)
Residual sum of squares.

IMSLS_RETURN_USER, float theta_hat[] (Output)
User-allocated array of length n_parameters containing the estimated
regression coefficients.

IMSLS_FCN_W_DATA, float fcn (int n_independent, float xi[], int
n_parameters, float theta[]), void *data, (Input)
User-supplied function to evaluate the function that defines the nonlinear
regression problem, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-
supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

IMSLS_JACOBIAN_W_DATA, void jacobian (int n_independent, float
xi[], int n_parameters, float theta[], float fjac[]), void
*data, (Input)
User-supplied function to compute the i-th row of the Jacobian, which
also accepts a pointer to data that is supplied by the user. data is a
pointer to the data to be passed to the user-supplied function. See the
Introduction, Passing Data to User-Supplied Functions at the beginning
of this manual for more details.

Description
Function imsls_f_nonlinear_regression fits a nonlinear regression model
using least squares. The nonlinear regression model is

yi = f(xi;
� � �i i � 1� 2, ..., n

154 � nonlinear_regression IMSL C/Stat/Library

where the observed values of the yi’s constitute the responses or values of the
dependent variable, the known xi’s are the vectors of the values of the
independent (explanatory) variables,
 is the vector of p regression parameters,
and the �i’s are independently distributed normal errors with mean 0 and variance
�2. For this model, a least-squares estimate of
 is also a maximum likelihood
estimate of
.

The residuals for the model are as follows:

ei(
) = yi – f(xi;
� i = 1, 2, ..., n

A value of
 that minimizes

� �
2

1

n
ii

e �
�

� �� ��

is a least-squares estimate of
. Function imsls_f_nonlinear_regression is
designed so that the values of the function f(xi;
� are computed one at a time by a
user-supplied function.

Function imsls_f_nonlinear_regression is based on MINPACK routines
LMDIF and LMDER by Moré et al. (1980) that use a modified Levenberg-
Marquardt method to generate a sequence of approximations to a minimum point.
Let

ĉ�

be the current estimate of
. A new estimate is given by

ĉ cs� �

where sc is a solution to the following:

ˆ ˆ ˆ(() ()) () ()T T
c c c c cJ J I s J e� � ĉ� � �� �

Here

ˆ()cJ �

is the Jacobian evaluated at

ĉ�

The algorithm uses a “trust region” approach with a step bound of �c. A solution
of the equations is first obtained for

�c = 0. If ||sc||2 < �c

this update is accepted; otherwise, �c is set to a positive value and another
solution is obtained. The method is discussed by Levenberg (1944), Marquardt
(1963), and Dennis and Schnabel (1983, pp. 129	147, 218	338).

If a user-supplied function is specified in IMSLS_JACOBIAN, the Jacobian is
computed analytically; otherwise, forward finite differences are used to estimate
the Jacobian numerically. In the latter case, especially if type float is used, the

Chapter 2: Regression nonlinear_regression � 155

estimate of the Jacobian may be so poor that the algorithm terminates at a
noncritical point. In such instances, the user should either supply a Jacobian
function, use type double, or do both.

Programming Notes
Nonlinear regression allows substantial flexibility over linear regression because
the user can specify the functional form of the model. This added flexibility can
cause unexpected convergence problems for users that are unaware of the
limitations of the software. Also, in many cases, there are possible remedies that
may not be immediately obvious. The following is a list of possible convergence
problems and some remedies. There is not a one-to-one correspondence between
the problems and the remedies. Remedies for some problems also may be relevant
for the other problems.

1. A local minimum is found. Try a different starting value. Good starting
values often can be obtained by fitting simpler models. For example, for
a nonlinear function

� � 2
1; xf x e�� ��

good starting values can be obtained from the estimated linear regression
coefficients

0�̂

and

1̂�

from a simple linear regression of ln y on ln x. The starting values for the
nonlinear regression in this case would be

0
ˆ

1 2
ˆ and e�

� �� � 1�

If an approximate linear model is not clear, then simplify the model by
reducing the number of nonlinear regression parameters. For example,
some nonlinear parameters for which good starting values are known
could be set to these values in order to simplify the model for computing
starting values for the remaining parameters.

2. The estimate of
 is incorrectly returned as the same or very close to the
initial estimate. This occurs often because of poor scaling of the
problem, which might result in the residual sum of squares being either
very large or very small relative to the precision of the computer. The
optional arguments allow control of the scaling.

3. The model is discontinuous as a function of
. (The function f(x;
� can
be a discontinuous function of x.)

4. Overflow occurs during the computations. Make sure the user-supplied
functions do not overflow at some value of
.

156 � nonlinear_regression IMSL C/Stat/Library

5. The estimate of
 is going to infinity. A parameterization of the problem
in terms of reciprocals may help.

6. Some components of
 are outside known bounds. This can sometimes
be handled by making a function that produces artificially large residuals
outside of the bounds (even though this introduces a discontinuity in the
model function).

Examples

Example 1
In this example (Draper and Smith 1981, p. 518), the following nonlinear model
is fit:

� � � �80.49 XY e �
� �

� �

� � � � �

#include <math.h>
#include <imsls.h>

float fcn(int, float[], int, float[]);

void main ()
{
#define N_OBSERVATIONS 4
 int n_independent = 1;
 int n_parameters = 2;
 float *theta_hat;
 float x[N_OBSERVATIONS][1] = {10.0, 20.0, 30.0, 40.0};
 float y[N_OBSERVATIONS] = {0.48, 0.42, 0.40, 0.39};

 /* Nonlinear regression */
 theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters,
 N_OBSERVATIONS, n_independent, (float *)x, y, 0);

 /* Print estimates */
 imsls_f_write_matrix("estimated coefficients", 1, n_parameters,
 theta_hat, 0);

} /* End of main */

float fcn(int n_independent, float x[], int n_parameters, float theta[])
{
 return (theta[0] + (0.49 - theta[0])*exp(theta[1]*(x[0] - 8)));
} /* End of fcn */

Output

estimated coefficients
 1 2
 0.3807 -0.0794

Chapter 2: Regression nonlinear_regression � 157

Example 2
Consider the nonlinear regression model and data set discussed by Neter et al.
(1983, pp. 475	478):

2
1

ix
i iy e�� �� �

There are two parameters and one independent variable. The data set considered
consists of 15 observations.

#include <math.h>
#include <imsls.h>

float fcn(int, float[], int, float[]);
void jacobian(int, float[], int, float[], float[]);

void main()
{
#define N_OBSERVATIONS 15
 int n_independent=1;
 int n_parameters= 2;
 float *theta_hat, *r, *y_hat;
 float grad_eps = 1.0e-3;
 float theta_guess[2] = {60.0, -0.03};
 float y[N_OBSERVATIONS] = {
 54.0, 50.0, 45.0, 37.0, 35.0,
 25.0, 20.0, 16.0, 18.0, 13.0,
 8.0, 11.0, 8.0, 4.0, 6.0 };
 float x[N_OBSERVATIONS] = {
 2.0, 5.0, 7.0, 10.0, 14.0,
 19.0, 26.0, 31.0, 34.0, 38.0,
 45.0, 52.0, 53.0, 60.0, 65.0 };
 char *fmt="%12.5e";

 /* Nonlinear regression */
 theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters,
 N_OBSERVATIONS, n_independent, x, y,
 IMSLS_THETA_GUESS, theta_guess,
 IMSLS_GRADIENT_EPS, grad_eps,
 IMSLS_R, &r,
 IMSLS_PREDICTED, &y_hat,
 IMSLS_JACOBIAN, jacobian,
 0);

 /* Print results */
 imsls_f_write_matrix("Estimated coefficients", 1, n_parameters,
 theta_hat, 0);

 imsls_f_write_matrix("Predicted values", 1, N_OBSERVATIONS,
 y_hat, 0);

 imsls_f_write_matrix("R matrix", n_parameters, n_parameters,
 r, IMSLS_WRITE_FORMAT, "%10.2f", 0);

} /* End of main */

float fcn(int n_independent, float x[], int n_parameters, float theta[])

158 � nonlinear_regression IMSL C/Stat/Library

{
 return (theta[0]*exp(x[0]*theta[1]));
} /* End of fcn */

void jacobian(int n_independent, float x[], int n_parameters,
 float theta[], float fjac[])
{
 fjac[0] = exp(theta[1]*x[0]);
 fjac[1] = theta[0]*x[0]*exp(theta[1]*x[0]);
}
 /* End of jacobian */

Output

Estimated coefficients
 1 2
 58.61 -0.04

 Predicted values
 1 2 3 4 5 6
 54.15 48.08 44.42 39.45 33.67 27.62

 7 8 9 10 11 12
 20.94 17.18 15.26 13.02 9.87 7.48

 13 14 15
 7.19 5.45 4.47

 R matrix
 1 2
1 1.87 1139.93
2 0.00 1139.80

Informational Errors
IMSLS_STEP_TOLERANCE Scaled step tolerance satisfied.

The current point may be an
approximate local solution, but it
is also possible that the algorithm
is making very slow progress and
is not near a solution or that
“step_eps” is too big.

Warning Errors
IMSLS_LITTLE_FCN_CHANGE Both the actual and predicted

relative reductions in the function
are less than or equal to the
relative function tolerance.

IMSLS_TOO_MANY_ITN Maximum number of iterations
exceeded.

IMSLS_TOO_MANY_FCN_EVAL Maximum number of function
evaluations exceeded.

Chapter 2: Regression nonlinear_optimization � 159

IMSLS_TOO_MANY_JACOBIAN_EVAL Maximum number of Jacobian
evaluations exceeded.

IMSLS_UNBOUNDED Five consecutive steps have been
taken with the maximum step
length.

IMSLS_FALSE_CONVERGENCE The iterates appear to be
converging to a noncritical point.

nonlinear_optimization
Fits data to a nonlinear model (possibly with linear constraints) using the
successive quadratic programming algorithm (applied to the sum of squared
errors, sse = !(yi 	 f(xi;
�)2) and either a finite difference gradient or a user-
supplied gradient.

Synopsis

#include <imsls.h>
float *imsls_f_nonlinear_optimization (float fcn(),

int n_parameters, int n_observations, int n_independent,
float x[], float y[], ..., 0)

The type double function is imsls_d_nonlinear_optimization.

Required Arguments

float fcn (int n_independent, float xi[], int n_parameters,
float theta[])
User-supplied function to evaluate the function that defines the nonlinear
regression problem where xi is an array of length n_independent at
which point the function is evaluated and theta is an array of length
n_parameters containing the current values of the regression
coefficients. Function fcn returns a predicted value at the point xi. In
the following, f(xi;
�, or just fi, denotes the value of this function at the
point xi, for a given value of
. (Both xi and
 are arrays.)

int n_parameters (Input)
Number of parameters to be estimated.

int n_observations (Input)
Number of observations.

int n_independent (Input)
Number of independent variables.

float *x (Input)
Array of size n_observations by n_independent containing the
matrix of independent (explanatory) variables.

160 � nonlinear_optimization IMSL C/Stat/Library

float y[] (Input)
Array of length n_observations containing the dependent (response)
variable.

Return Value
A pointer to an array of length n_parameters containing a solution, � for the
nonlinear regression coefficients. To release this space, use free. If no solution
can be computed, then NULL is returned.

ˆ

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_nonlinear_optimization (float fcn(),

int n_parameters, int n_observations, int
n_independent, float x[], float y[],
IMSLS_THETA_GUESS, float theta_guess[],
IMSLS_JACOBIAN, void jacobian(),
IMSLS_SIMPLE_LOWER_BOUNDS, float theta_lb[],
IMSLS_SIMPLE_UPPER_BOUNDS, float theta_ub[],
IMSLS_LINEAR_CONSTRAINTS, int n_constraints,
 int n_equality, float a[], float b[],
IMSLS_FREQUENCIES, float frequencies,
IMSLS_WEIGHTS, float weights,
IMSLS_ACC, float acc,
IMSLS_MAX_SSE_EVALUATIONS, int *max_sse_eval,
IMSLS_PRINT_LEVEL, int print_level,
IMSLS_STOP_INFO, int *stop_info,
IMSLS_ACTIVE_CONSTRAINTS_INFO, int *n_active,
 int **indices_active, float **multiplier,
IMSLS_ACTIVE_CONSTRAINTS_INFO_USER, int *n_active,
 int indices_active[], float multiplier[],
IMSLS_PREDICTED, float **predicted,
IMSLS_PREDICTED_USER, float predicted[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_SSE, float *sse,
IMSLS_RETURN_USER, float theta_hat[],
IMSLS_FCN_W_DATA, float fcn(), void *data,
IMSLS_JACOBIAN_W_DATA, float jacobian(), void *data,
0)

Optional Arguments
IMSLS_THETA_GUESS, float theta_guess[] (Input)

Array with n_parameters components containing an initial guess.
Default: theta_guess[] = 0

IMSLS_JACOBIAN, void jacobian (int n_independent, float xi[],
int n_parameters, float theta[], float fjac[]) (Input/Output)
User-supplied function to compute the i-th row of the Jacobian, where
the n_independent data values corresponding to the i-th row are input
in xi. Argument theta is an array of length n_parameters containing
the regression coefficients for which the Jacobian is evaluated, fjac is

Chapter 2: Regression nonlinear_optimization � 161

the computed n_parameters row of the Jacobian for observation i at
theta. Note that each derivative f(xi)�
 should be returned in
fjac[j-1] for i = 1, 2, ..., n_parameters. Further note that in order to
maintain consistency with the other nonlinear solver,
nonlinear_regression, the Jacobian values must be specified
as the negative of the calculated derivatives.

IMSLS_SIMPLE_LOWER_BOUNDS, float theta_lb[] (Input)
Vector of length n_parameters containing the lower bounds on the
parameters; choose a very large negative value if a component should be
unbounded below or set theta_lb[i] = theta_ub[i] to freeze the
i-th variable.
Default: All parameters are bounded below by -106.

IMSLS_SIMPLE_UPPER_BOUNDS, float theta_ub[] (Input)
Vector of length n_parameters containing the upper bounds on the
parameters; choose a very large value if a component should be
unbounded above or set theta_lb[i] = theta_ub[i] to freeze the
i-th variable.
Default: All parameters are bounded above by 106.

IMSLS_LINEAR_CONSTRAINTS, int n_constraints, int n_equality,
float a[], float b[] (Input)
Argument n_constraints is the total number of linear constraints
(excluding simple bounds). Argument n_equality is the number of
these constraints which are equality constraints; the remaining
n_constraints 	 n_equality constraints are inequality constraints.
Argument a is a n_constraints by n_parameters array containing
the equality constraint gradients in the first n_equality rows, followed
by the inequality constraint gradients. Argument b is a vector of length
n_constraints containing the right-hand sides of the linear
constraints.
Specifically, the constraints on
 are:
ai1
1 + ... + aij
j = bi for i = 1, n_equality and j = 1,
n_parameter, and
ak1
1 + ... + akj
j bk for k = n_equality + 1, n_constraints and
j = 1, n_parameter.
Default: There are no default linear constraints.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency for each
observation.
Default: frequencies[] = 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_observations containing the weight for each
observation.
Default: weights[] = 1

162 � nonlinear_optimization IMSL C/Stat/Library

IMSLS_ACC, float acc (Input)
The nonnegative tolerance on the first order conditions at the calculated
solution.

IMSLS_MAX_SSE_EVALUATIONS, int *max_sse_eval (Input/Output)
On input max_sse_eval is the maximum number of sse evaluations
allowed. On output, max_sse_eval contains the actual number of sse
evaluations needed.
Default: max_sse_eval = 400

IMSLS_PRINT_LEVEL, int print_level (Input)
Argument print_level specifies the frequency of printing during
execution. If print_level = 0, there is no printing. Otherwise, after
ensuring feasibility, information is printed every print_level
iterations and whenever an internal tolerance (called tol) is reduced. The
printing provides the values of theta and the sse and gradient at the
value of theta. If print_level is negative, this information is
augmented by the current values of indices_active, multiplier,
and reskt, where reskt is the Kuhn-Tucker residual vector at theta.

IMSLS_STOP_INFO, int *stop_info (Output)
Argument stop_info will have one of the following integer values to
indicate the reason for leaving the routine:

stop_info Reason for leaving routine

1
 is feasible, and the condition that depends on acc is
satisfied.

2
 is feasible, and rounding errors are preventing further
progress.

3
 is feasible, but sse fails to decrease although a decrease
is predicted by the current gradient vector.

4 The calculation cannot begin because a contains fewer
than n_constraints constraints or because the lower
bound on a variable is greater than the upper bound.

5 The equality constraints are inconsistent. These
constraints include any components of � that are frozen
by setting theta_lb[i] equal to theta_ub[i].

ˆ

6 The equality constraints and the bound on the variables
are found to be inconsistent.

7 There is no possible
 that satisfies all of the constraints.

Chapter 2: Regression nonlinear_optimization � 163

stop_info Reason for leaving routine

8 Maximum number of sse evaluations (max_sse_eval)
is exceeded.

9
 is determined by the equality constraints.

IMSLS_ACTIVE_CONSTRAINTS_INFO, int *n_active,
int **indices_active, float **multiplier (Output)
Argument n_active returns the final number of active constraints.
Argument indices_active is the address of a pointer to an internally
allocated integer array of length n_active containing the indices of the
final active constraints. Argument multiplier is the address of a
pointer to an internally allocated real array of length n_active
containing the Lagrange multiplier estimates of the final active
constraints.

IMSLS_ACTIVE_CONSTRAINTS_INFO_USER, int *n_active,
int indices_active[], float multiplier[] (Output)
Storage for arrays indices_active and multiplier are provided by
the user. The maximum length needed for these arrays is
n_constraints. See IMSLS_ACTIVE_CONSTRAINTS_INFO.

IMSLS_PREDICTED, float **predicted (Output)
Address of a pointer to a real internally allocated array of length
n_observations containing the predicted values at the approximate
solution.

IMSLS_PREDICTED_USER, float predicted[] (Output)
Storage for array predicted is provided by the user. See
IMSLS_PREDICTED.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to a real internally allocated array of length
n_observations containing the residuals at the approximate solution.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See
IMSLS_RESIDUAL.

IMSLS_SSE, float *sse (Output)
Residual sum of squares.

IMSLS_RETURN_USER, float theta_hat[] (Output)
User-allocated array of length n_parameters containing the estimated
regression coefficients.

IMSLS_FCN_W_DATA, float fcn (int n_independent, float xi[], int
n_parameters, float theta[]), void *data, (Input)
User-supplied function to evaluate the function that defines the nonlinear
regression problem, which also accepts a pointer to data that is supplied

164 � nonlinear_optimization IMSL C/Stat/Library

by the user. data is a pointer to the data to be passed to the user-
supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

IMSLS_JACOBIAN_W_DATA, void jacobian (int n_independent, float
xi[], int n_parameters, float theta[], float fjac[]), void
*data, (Input)
User-supplied function to compute the i-th row of the Jacobian, which
also accepts a pointer to data that is supplied by the user. data is a
pointer to the data to be passed to the user-supplied function. See the
Introduction, Passing Data to User-Supplied Functions at the beginning
of this manual for more details.

Description
Function imsls_f_nonlinear_optimization is based on M.J.D. Powell’s
TOLMIN, which solves linearly constrained optimization problems, i.e.,
problems of the form min f(
),
 " �, subject to

A1
 = b1

A2
 b2

I

u

given the vectors b1, b2,
I, and
u and the matrices A1 and A2.

The algorithm starts by checking the equality constaints for inconsistency and
redundancy. If the equality constraints are consistent, the method will revise
0,
the initial guess provided by the user, to satisfy

A1
 = b1

Next,
0 is adjusted to satisfy the simple bounds and inequality constraints. This
is done by solving a sequence of quadratic programming subproblems to
minimize the sum of the constraint or bound violations.

Now, for each iteration with a feasible
k, let Jk be the set of indices of inequality
constraints that have small residuals. Here, the simple bounds are treated as
inequality constraints. Let Ik be the set of indices of active constraints. The
following quadratic programming problem

� � � �
1min
2

k T k T kf d f d B d� �� � �

subject to

ajd = 0 j " Ik

ajd 0 j " Jk

is solved to get (dk, �k) where aj is a row vector representing either a constraint in
A1 or A2 or a bound constraint on
. In the latter case, the aj = ei for the bound
constraint
i (
u)i and aj = 	ei for the constraint
i (
l)i. Here, ei is a vector

Chapter 2: Regression nonlinear_optimization � 165

i

with a 1 as the i-th component, and zeroes elsewhere. �k are the Lagrange
multipliers, and Bk is a positive definite approximation to the second derivative
�2 f(
k).

After the search direction dk is obtained, a line search is performed to locate a
better point. The new point
k+1 =
k + �kdk has to satisfy the conditions

f (
k + �kdk) f (
k) + 0.1�k (dk)T� f (
k)

and

(dk)T� f (
k + �kdk) � 0.7 (dk)T� f (
k)

The main idea in forming the set Jk is that, if any of the inequality constraints
restricts the step-length �k, then its index is not in Jk. Therefore, small steps are
likely to be avoided.

Finally, the second derivative approximation, Bk, is updated by the BFGS
formula, if the condition

(dk)T� f (
k + �kdk) 	 � f (
k) > 0

holds. Let
k #
k+1, and start another iteration.

The iteration repeats until the stopping criterion

||� f (
k) 	 Ak�k||2 $

is satisfied; here, $ is a user-supplied tolerance. For more details, see Powell
(1988, 1989).

Since a finite-difference method is used to estimate the gradient for some single
precision calculations, an inaccurate estimate of the gradient may cause the
algorithm to terminate at a noncritical point. In such cases, high precision
arithmetic is recommended. Also, whenever the exact gradient can be
easily provided, the gradient should be passed to
imsls_f_nonlinear_optimization using the optional argument
IMSLS_JACOBIAN.

Examples

Example 1
In this example, a data set is fitted to the nonlinear model function

� �0sini iy x� �� �

#include <imsls.h>
#include <math.h>

float fcn(int n_independent, float x[], int n_parameters, float theta[]);

main()
{

166 � nonlinear_optimization IMSL C/Stat/Library

�

 int n_parameters = 1;
 int n_observations = 11;
 int n_independent = 1;
 float *theta_hat;
 float x[11] = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
 0.7, 0.8, 0.9, 1.0};
 float y[15] = {0.05, 0.21, 0.67, 0.72, 0.98, 0.94,
 1.00, 0.73, 0.44, 0.36, 0.02};

 theta_hat =
 imsls_f_nonlinear_optimization(fcn, n_parameters,
 n_observations, n_independent, x, y,
 0);

 imsls_f_write_matrix("Theta Hat", 1, n_parameters, theta_hat, 0);

 free(theta_hat);
}

float fcn(int n_independent, float x[], int n_parameters, float theta[])
{
 return sin(theta[0]*x[0]);
}

Output

 Theta Hat

 3.161

Example 2

Draper and Smith (1981, p. 475) state a problem due to Smith and Dubey. [H.
Smith and S. D. Dubey (1964), "Some reliability problems in the chemical
industry", Industrial Quality Control, 21 (2), 1964, pp. 64	70] A certain product
must have 50% available chlorine at the time of manufacture. When it reaches the
customer 8 weeks later, the level of available chlorine has dropped to 49%. It was
known that the level should stabilize at about 30%. To predict how long the
chemical would last at the customer site, samples were analyzed at different
times. It was postulated that the following nonlinear model should fit the data.

� � � �8
0 0.49 ix

i iy e �
� �

� �

� � � �

Since the chlorine level will stabilize at about 30%, the initial guess for theta1 is
0.30. Using the last data point (x = 42, y = 0.39) and
0 = 0.30 and the above
nonlinear equation, an estimate for
1of 0.02 is obtained.

Chapter 2: Regression nonlinear_optimization � 167

The constraints that
0 � = 0 and
1 � = 0 are also imposed. These are equivalent
to requiring that the level of available chlorine always be positive and never
increase with time.

The Jacobian of the nonlinear model equation is also used.

#include <imsls.h>
#include <math.h>

float fcn(int n_independent, float x[], int n_parameters, float theta[]);
void jacobian(int n_independent, float x[], int n_parameters,
 float theta[],
float fjac[]);
main()
{
 int n_parameters = 2;
 int n_observations = 44;
 int n_independent = 1;
 float *theta_hat;
 float x[44] = {
 8.0, 8.0, 10.0, 10.0, 10.0, 10.0, 12.0, 12.0, 12.0,
 12.0, 14.0, 14.0, 14.0, 16.0, 16.0, 16.0, 18.0, 18.0, 20.0,
 20.0, 20.0, 22.0, 22.0, 22.0, 24.0, 24.0, 24.0, 26.0, 26.0,
 26.0, 28.0, 28.0, 30.0, 30.0, 30.0, 32.0, 32.0, 34.0, 36.0,
 36.0, 38.0, 38.0, 40.0, 42.0};
 float y[44] = {
 .49, .49, .48, .47, .48, .47, .46, .46, .45, .43, .45,
 .43, .43, .44, .43, .43, .46, .45, .42, .42, .43, .41, .41,
 .4, .42, .4, .4, .41, .4, .41, .41, .4, .4, .4, .38, .41,
 .4, .4, .41, .38, .4, .4, .39, .39};
 float guess[2] = {0.30, 0.02};
 float xlb[2] = {0.0, 0.0};
 float sse;

 theta_hat =
 imsls_f_nonlinear_optimization(fcn, n_parameters, n_observations,
 n_independent, x, y,
 IMSLS_THETA_GUESS, guess,
 IMSLS_SIMPLE_LOWER_BOUNDS, xlb,
 IMSLS_JACOBIAN, jacobian,
 IMSLS_SSE, &sse,
 0);
 imsls_f_write_matrix("Theta Hat", 1, 2, theta_hat, 0);
 free(theta_hat);
}

float fcn(int n_independent, float x[], int n_parameters, float theta[])
{
 return theta[0] + (0.49-theta[0])*exp(-theta[1]*(x[0]-8.0));
}

void jacobian(int n_independent, float x[], int n_parameters,
 float theta[],
float fjac[])

168 � Lnorm_regression IMSL C/Stat/Library

{
 fjac[0] = -1.0 + exp(-theta[1]*(x[0]-8.0));
 fjac[1] = (0.49-theta[0])*(x[0]-8.0) * exp(-theta[1]*(x[0]-8.0));
}

Output

 Theta Hat

 1 2

 0.3901 0.1016

Fatal Errors
IMSLS_BAD_CONSTRAINTS_1 The equality constraints are

inconsistent.

IMSLS_BAD_CONSTRAINTS_2 The equality constraints and the
bounds on the variables are found
to be inconsistent.

IMSLS_BAD_CONSTRAINTS_3 No vector “theta” satisfies all of
the constraints. Specifically, the
current active constraints prevent
any change in “theta” that reduces
the sum of constraint violations.

IMSLS_BAD_CONSTRAINTS_4 The variables are determined by
the equality constraints.

IMSLS_TOO_MANY_ITERATIONS_1 Number of function evaluations
exceeded “maxfcn” = #.

Lnorm_regression
Fits a multiple linear regression model using criteria other than least squares.
Namely, imsls_f_Lnorm_regression allows the user to choose Least
Absolute Value (L�), Least Lp norm (Lp), or Least Maximum Value (Minimax
or L�) method of multiple linear regression.

Synopsis
#include <imsls.h>
float *imsls_f_Lnorm_regression (int n_rows, int n_independent,

float x[], float y[], ..., 0)

The type double function is imsls_d_Lnorm_regression.

Chapter 2: Regression Lnorm_regression � 169

Required Arguments

int n_rows (Input)
Number of rows in x.

int n_independent (Input)
Number of independent (explanatory) variables.

float x[] (Input)
Array of size n_rows � n_independent containing the independent
(explanatory) variables(s). The i-th column of x contains the i-th
independent variable.

float y[] (Input)
Array of size n_rows containing the dependent (response) variable.

Return Value
imsls_f_Lnorm_regression returns a pointer to an array of length
n_independent + 1 containing a least absolute value solution for the regression
coefficients. The estimated intercept is the initial component of the array, where
the i-th component contains the regression coefficients for the i-th dependent
variable. If the optional argument IMSLS_NO_INTERCEPT is used then the (i-1)-
st component contains the regression coefficients for the i-th dependent variable.
imsls_f_Lnorm_regression returns the Lp norm or least maximum value
solution for the regression coefficients when appropriately specified in the
optional argument list.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_Lnorm__regression(int n_rows, int n_independent,
 float x[], float y[],

 IMSLS_METHOD_LAV,

 IMSLS_METHOD_LLP, float p,
 IMSLS_METHOD_LMV,

 IMSLS_X_COL_DIM, int x_col_dim,
 IMSLS_INTERCEPT,

 IMSLS_NO_INTERCEPT,

 IMSLS_RANK, int *rank,
 IMSLS_ITERATIONS, int *iterations,
 IMSLS_N_ROWS_MISSING, int *n_rows_missing,
 IMSLS_TOLERANCE, float tolerence,

 IMSLS_SEA, float *sum_lav_error,

 IMSLS_MAX_RESIDUAL, float *max_residual,

 IMSLS_R, float **R_matrix,

 IMSLS_R_USER, float R_matrix[],

170 � Lnorm_regression IMSL C/Stat/Library

 IMSLS_DEGREES_OF_FREEDOM, float df_error,
 IMSLS_RESIDUALS, float **residual,

 IMSLS_RESIDUALS_USER, float residual[],

 IMSLS_SCALE, float *square_of_scale,

 IMSLS_RESIDUALS_LP_NORM, float *Lp_norm_residual,

 IMSLS_EPS, float epsilon,

 IMSLS_WEIGHTS, float weights[],

 IMSLS_FREQUENCIES, float frequencies[],

 IMSLS_RETURN_USER, float coefficients[],
 0)

Optional Arguments
IMSLS_METHOD_LAV, or

IMSLS_METHOD_LLP, float p, (Input) or

IMSLS_METHOD_LMV,
By default (or if IMSLS_METHOD_LAV is specified) the function fits a
multiple linear regression model using the least absolute values criterion.

IMSLS_METHOD_LLP requires the argument p, for , and fits a multiple linear
regression model using the Lp norm criterion.

1p �

IMSLS_METHOD_LMV fits a multiple linear regression model using the minimax
criterion.

IMSLS_WEIGHTS, float weights[], (Input)
Array of size n_rows containing the weights for the independent
(explanatory) variable.

IMSLS_FREQUENCIES, float frequencies[], (Input)
Array of size n_rows containing the frequencies for the independent
(explanatory) variable.

IMSLS_X_COL_DIM, int x_col_dim, (Input)
Leading dimension of x exactly as specified in the dimension statement
in the calling program.

IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,

IMSLS_INTERCEPT is the default where the fitted value for
observation i is

0 1 1
ˆ ˆ ˆ... k kx x� � �� � �

 where k = n_independent. If IMSLS_NO_INTERCEPT is specified, the
intercept term

� �0�̂

Chapter 2: Regression Lnorm_regression � 171

 is omitted from the model and the return value from regression is a
pointer to an array of length n_independent.

IMSLS_RANK, int *rank, (Output)
Rank of the fitted model is returned in *rank.

IMSLS_ITERATIONS, int *iterations, (Output)
Number of iterations performed.

IMSLS_N_ROWS_MISSING, int *n_rows_missing, (Output)
Number of rows of data containing NaN (not a number) for the
dependent or independent variables. If a row of data contains NaN for
any of these variables, that row is excluded from the computations.

IMSLS_RETURN_USER, float coefficients[] (Output)
Storage for array coefficients is provided by the user.
See Return Value.

If IMSLS_METHOD_LAV is specified:
IMSLS_SEA, float sum_lav_error, (Output)

Sum of the absolute value of the errors.

If IMSLS_METHOD_LMV is specified:
IMSLS_MAX_RESIDUAL, float max_residual, (Output)

Magnitude of the largest residual.

If IMSLS_METHOD_LLP is specified:
IMSLS_TOLERANCE, float tolerence, (Input)

Tolerance used in determining linear dependence.
tolerence = 100 * imsls_f_machine(4) is the default.
For more details see Chapter 14, “Utilities” function
imsls_f_machine.

IMSLS_R, float **R_matrix, (Output)
Upper triangular matrix of dimension (number of coeffieciencts
by number of coeffecients) containing the R matrix from a QR
decomposition of the matrix of regressors.

IMSLS_R_USER, float R_matrix[], (Output)
Storage for array R_matrix is provided by the user. See IMSLS_R..

IMSLS_DEGREES_OF_FREEDOM, float df_error, (Output)
Sum of the frequencies minus *rank. In least squares fit (p =2)
df_error is called the degrees of freedom of error.

IMSLS_RESIDUALS, float **residual, (Output)
Address of a pointer to an array (of length equal to the number of
observations) containing the residuals.

IMSLS_RESIDUALS_USER, float residual[], (Output)
Storage for array residual is provided by the user.
See IMSLS_RESIDUALS.

172 � Lnorm_regression IMSL C/Stat/Library

IMSLS_SCALE, float *square_of_scale, (Output)
Square of the scale constant used in an Lp analysis. An estimated
asymptotic variance-covariance matrix of the regression coefficients is
square_of_scale * (RTR)-1.

 IMSLS_RESIDUALS_LP_NORM, float *Lp_norm_residual, (Output)
Lp norm of the residuals.

 IMSLS_EPS, float epsilon, (Input)
Convergence criterion. If the maximum relative difference in residuals
from the k-th to (k+1)-st iterations is less than epsilon, convergence
is declared. epsilon = 100 * machine(4) is the default.

Description

Least Absolute Value Criterion
Function imsls_f_Lnorm_regression computes estimates of the regression
coefficients in a multiple linear regression model. For optional argument
IMSLS_LAV (default), the criterion satisfied is the minimization of the sum of the
absolute values of the deviations of the observed response yi from the fitted
response

ˆiy

for a set on n observations. Under this criterion, known as the L� or LAV (least
absolute value) criterion, the regression coefficient estimates minimize

1

0

ˆ
n

i i
i

y y
�

�

��

The estimation problem can be posed as a linear programming problem. The
special nature of the problem, however, allows for considerable gains in
efficiency by the modification of the usual simplex algorithm for linear
programming. These modifications are described in detail by Barrodale and
Roberts (1973, 1974).

In many cases, the algorithm can be made faster by computing a least-squares
solution prior to the invocation of IMSLS_LAV. This is particularly useful when a
least-squares solution has already been computed. The procedure is as follows:

1. Fit the model using least squares and compute the residuals from
this fit.

2. Fit the residuals from Step 1 on the regressor variables in the model
using IMSLS_LAV.

3 Add the two estimated regression coefficient vectors from Steps 1
and 2. The result is an L� solution.

When multiple solutions exist for a given problem, option IMSLS_LAV may yield
different estimates of the regression coefficients on different computers, however,
the sum of the absolute values of the residuals should be the same (within

Chapter 2: Regression Lnorm_regression � 173

rounding differences). The informational error indicating nonunique solutions
may result from rounding accumulation. Conversely, because of rounding the
error may fail to result even when the problem does have multiple solutions.

Lp Norm Criterion
Optional argument IMSLS_LLP computes estimates of the regression coefficients
in a multiple linear regression model y = X� + � under the criterion of minimizing
the Lp norm of the deviations for i = 0, �, n-1 of the observed response yi from
the fitted response

ˆiy

for a set on n observations and for p � 1. For the case when IMSLS_WEIGHTS
AND IMSLS_FREQUENCIES are not supplied, the estimated regression
coefficient vector,

�̂

(output in coefficients []) minimizes the Lp norm

1/1

0

ˆ
pn

P
i i

i
y y

�

�

� �
�� �

� �
�

The choice p = 1 yields the maximum likelihood estimate for � when the errors
have a Laplace distribution. The choice p = 2 is best for errors that are normally
distributed. Sposito (1989, pages 36	40) discusses other reasonable alternatives
for p based on the sample kurtosis of the errors.

Weights are useful if the errors in the model have known unequal variances
2
i�

In this case, the weights should be taken as
21/i iw ��

Frequencies are useful if there are repetitions of some observations in the data set.
If a single row of data corresponds to ni observations, set the frequency fi = ni.
In general, IMSLS_LLP minimizes the Lp norm

� �
1/1

0

ˆ
pn p

i i i i
i

f w y y
�

�

� �
�� �

� �
�

The asymptotic variance-covariance matrix of the estimated regression
coefficients is given by

2ˆasy.var() ()T 1R R� � �

�

174 � Lnorm_regression IMSL C/Stat/Library

i

where R is from the QR decomposition of the matrix of regressors (output in
R-Matrix)ere an estimate of �� is output in square_of_scale.

In the discussion that follows, we will first present the algorithm with frequencies
and weights all taken to be one. Later, we will present the modifications to handle
frequencies and weights different from one.

Option call IMSLS_LLP uses Newton’s method with a line search for p > 1.25
and, for p 1.25, uses a modification due to Ekblom (1973, 1987) in which a
series of perturbed problems are solved in order to guarantee convergence and
increase the convergence rate. The cutoff value of 1.25 as well as some of the
other implementation details given in the remaining discussion were investigated
by Sallas (1990) for their effect on CPU times.

In each case, for the first iteration a least-squares solution for the regression
coefficients is computed using routine imsls_f_regression (page 64). If
p = 2, the computations are finished. Otherwise, the residuals from the k-th
iteration,

() ()ˆk k
i ie y y� �

are used to compute the gradient and Hessian for the Newton step for the
(k + 1)-st iteration for minimizing the p-th power of the Lp norm. (The exponent
1/p in the Lp norm can be omitted during the iterations.)

For subsequent iterations, we first discuss the p > 1.25 case. For p > 1.25, the
gradient and Hessian at the (k + 1)-st iteration depend upon

� �
1(1) () ()sign

pk k
i i i

kz e e
�

�

�

and
2(1) () pk k

i iv e
�

�

�

In the case 1.25 < p < 2 and
� � � �10,k k
i ie v �

�

and the Hessian are undefined; and we follow the recommendation of Merle and
Spath (1974). Specifically, we modify the definition of

(1)k
iv �

to the following:

� �

� �

2

(1)
2

if 2 and

otherwise

kp
i

k
i pk

i

p e
v

e

� �
�

�

�

� � �
�

� �
�
�

where $ equals 100 * imsls_f_machine(4) (or 100.0 * imsls_d_machine(4)
for the double precision version) times the square root of the residual mean
square from the least-squares fit. (See routines imsls_f_machine and

Chapter 2: Regression Lnorm_regression � 175

imsls_d_machine which are documented in the section “Machine-Dependent
Constants” in Reference Material.)

Let V�k��� be a diagonal matrix with diagonal entries
(1)k
iv �

and let z�k��� be a vector with elements
(1)k
iz �

In order to compute the step on the (k + 1)-st iteration, the R from the QR
decomposition of

[V�k���]���X

 is computed using fast Givens transformations. Let

R�k���

 denote the upper triangular matrix from the QR decomposition. The linear
system

 [R(k+1)]TR(k+1)d(k+1)= XT z(k+1)

is solved for

d�k���

where R�k��� is from the QR decomposition of V�k���]1/2X . The step taken on the
(k + 1)-st iteration is

(1) () (1) (1)1ˆ ˆ
1

k k k d
p

� � �
� �

� �

�

k�

The first attempted step on the (k + 1)-st iteration is with ��k��� = 1. If all of the
� �k
ie

are nonzero, this is exactly the Newton step. See Kennedy and Gentle (1980,
pages 528	529) for further discussion.

If the first attempted step does not lead to a decrease of at least one-tenth of the
predicted decrease in the p-th power of the Lp norm of the residuals, a
backtracking linesearch procedure is used. The backtracking procedure uses a
one-dimensional quadratic model to estimate the backtrack constant p. The value
of p is constrained to be no less that 0.1. An approximate upper bound for p is
0.5. If after 10 successive backtrack attempts, ��k� = p1p2� p10 does not produce
a step with a sufficient decrease, then imsls_f_Lnorm_regression issues a
message with error code 5. For further details on the backtrack line-search
procedure, see Dennis and Schnabel (1983, pages 126	127).

Convergence is declared when the maximum relative change in the residuals from
one iteration to the next is less than or equal to epsilon. The relative change

176 � Lnorm_regression IMSL C/Stat/Library

(1)k
i�

�

in the i-th residual from iteration k to iteration k + 1 is computed as follows:
(1) ()

(1)
(1) () () (1)

0 if

/ max(e , ,) otherwise

k k
i ik

i k k k k
i i i i

e e

e e e s
�

�

�

� �

� � ��
� �

���

0

2

k
i

where s is the square root of the residual mean square from the least-squares fit on
the first iteration.

For the case 1 p 1.25, we describe the modifications to the previous
procedure that incorporate Ekblom’s (1973) results. A sequence of perturbed
problems are solved with a successively smaller perturbation constant c. On the
first iteration, the least-squares problem is solved. This corresponds to an infinite
c. For the second problem, c is taken equal to s, the square root of the residual
mean square from the least-squares fit. Then, for the (j + 1)-st problem, the value
of c is computed from the previous value of c according to

5 4
1 /10 p

j jc c �

�
�

Each problem is stated as
1

2 2 /

0

()
n

p
i

i

Minimize e c
�

�

��

For each problem, the gradient and Hessian on the (k + 1)-st iteration depend
upon

(1) () ()k k
i iz e r�

�

and
() 2

(1) ()
() 2 2

(2)()
1

()

k
k ki

i ik
i

p e
v r

e c
�

� ��
� �� �

�� 	

where
(2) / 2() () 2 2()

pk k
i ir e c

�

� �� �� �

The linear system [R�k���]TR�k���d�k���= XTz�k��� is solved for d�k��� where R�k���
is from the QR decomposition of [V �k���]���X. The step taken on the
(k + 1)-st iteration is

(1) () (1) (1)ˆ ˆk k k d� � �� �

� �
k�

where the first attempted step is with ��k��� = 1. If necessary, the backtracking
line-search procedure discussed earlier is used.

Convergence for each problem is relaxed somewhat by using a convergence
epsilon equal to max(epsilon, 10�j) where j = 1, 2, 3, � indexes the problems
(j = 0 corresponds to the least-squares problem).

Chapter 2: Regression Lnorm_regression � 177

After the convergence of a problem for a particular c, Ekblom’s (1987)
extrapolation technique is used to compute the initial estimate of � for the new
problem. Let R�k�,

�() , kk
i iv e �

and c be from the last iteration of the last problem. Let
()

() 2 2

(2)
()

k
i

i k
i

p v
t

e c
�

�

�

and let t be the vector with elements ti. The initial estimate of � for the new
problem with perturbation constant 0.01c is

(0) ()ˆ ˆ k cd� �� � �

where %c = (0.01c 	 c) = 	0.99c, and where d is the solution of the linear system
[R�k�]�R�k�d = XTt.

Convergence of the sequence of problems is declared when the maximum relative
difference in residuals from the solution of successive problems is less than
epsilon.

The preceding discussion was limited to the case for which weights[i] = 1 and
frequencies[i] = 1, i.e., the weights and frequencies are all taken equal to
one. The necessary modifications to the preceding algorithm to handle weights
and frequencies not all equal to one are as follows:

1. Replace
� � � � by k k
i ie w ie

in the definitions of
(1) (1) (1), ,k k k
i i iz v �

� � �

and ti.

2. Replace
� � � � � � � �1 1 1(1) (1) by , by , and by k k kk k
i i i i i i i i i i i

1k
iz f w z v f w v t f w t� � �� � �

These replacements have the same effect as multiplying the i-th row of X and y by

iw

and repeating the row fi times except for the fact that the residuals returned by
imsls_f_Lnorm_regression are in terms of the original y and X.

Finally, R and an estimate of �� are computed. Actually, R is recomputed because
on output it corresponds to the R from the initial QR decomposition for least
squares. The formula for the estimate of �� depends on p.

For p = 1, the estimator for �� is given by (McKean and Schrader 1987)

178 � Lnorm_regression IMSL C/Stat/Library

2

(DFE 1) ()2

0.975

DFE()ˆ
2

k ke e
z

�
� �

� ��
� � �
� �� �

� �

with

0.975
DFE DFE

2 4
kk z�

� �

where z0.975�is the 97.5 percentile of the standard normal distribution, and where

() (1, 2,...,)m DFEm� ��

are the ordered residuals where rank zero residuals are excluded. Note that
1

=0 ranki
n
iDFE f�

� ��

For p = 2, the estimator of �� is the customary least-squares estimator given by
1 2
02

1
0 rank

ˆ()n
i i i i i

n
i i

SSE

DFE

f w y y
s

f

�

�

�

�

�

� �

�

�
�

For 1 < p < 2 and for p > 2, the estimator for �2 is given by (Gonin and Money
1989)

2 22
2

2

ˆ
(1)

p
p

p

m

p m
�

�

� �
� ��� �

with

1
1
0

ˆ()
rn

i i i i i
r n

i i

f w y y
m

f
�

�

�

�

�

�
�

Least Minimum Value Criterion (minimax)
Optional call IMSLS_LMV computes estimates of the regression coefficients in a
multiple linear regression model. The criterion satisfied is the minimization of the
maximum deviation of the observed response yi from the fitted response for a
set on n observations. Under this criterion, known as the minimax or LMV (least
maximum value) criterion, the regression coefficient estimates minimize

ˆiy

0 1
ˆi ii n

max y y
� � �

�

The estimation problem can be posed as a linear programming problem. A dual
simplex algorithm is appropriate, however, the special nature of the problem
allows for considerable gains in efficiency by modification of the dual simplex
iterations so as to move more rapidly toward the optimal solution. The
modifications are described in detail by Barrodale and Phillips (1975).

Chapter 2: Regression Lnorm_regression � 179

When multiple solutions exist for a given problem, IMSLS_LMV may yield
different estimates of the regression coefficients on different computers, however,
the largest residual in absolute value should have the same absolute value (within
rounding differences). The informational error indicating nonunique solutions
may result from rounding accumulation. Conversely, because of rounding, the
error may fail to result even when the problem does have multiple solutions.

Example 1
A straight line fit to a data set is computed under the LAV criterion.

#include <imsls.h>
#include <stdio.h>
void main()
{
 float xx[] = {1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0};
 float yy[] = {1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0};
 float sea;
 int irank, iter, nrmiss;

 float *coefficients = NULL;

 coefficients = imsls_f_Lnorm_regression(8, 1, xx, yy,
 IMSLS_SEA, &sea,
 IMSLS_RANK, &irank,
 IMSLS_ITERATIONS, &iter,
 IMSLS_N_ROWS_MISSING, &nrmiss,0);

 printf("B = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]);
 printf("Rank of Regressors Matrix = %3d\n", irank);
 printf("Sum Absolute Value of Error = %8.4f\n", sea);
 printf("Number of Iterations = %3d\n", iter);
 printf("Number of Rows Missing = %3d\n", nrmiss);

}

Output
B = 0.50 0.50
Rank of Regressors Matrix = 2
Sum Absolute Value of Error = 6.00000
Number of Iterations = 2
Number of Rows Missing = 0

180 � Lnorm_regression IMSL C/Stat/Library

Figure 2-2 Least Squares and Least Absolute Value Fitted Lines

Example 2
Different straight line fits to a data set are computed under the criterion of
minimizing the Lp norm by using p equal to 1, 1.5, 2.0 and 2.5.

#include <imsls.h>
#include <stdio.h>
void main()
{
 float xx[] = {1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0};
 float yy[] = {1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0};
 float p, tolerance, convergence_eps, square_of_scale, df_error,&
 Lp_norm_residual;
 float R_matrix[4], residuals[8];
 int i, irank, iter, nrmiss;

 int n_row=2;
 int n_col=2;

 float *coefficients = NULL;

 tolerance = 100*imsls_f_machine(4);
 convergence_eps = 0.001;
 p = 1.0;
 for(i=0; i<4; i++)
 {
 coefficients = imsls_f_Lnorm_regression(8, 1, xx, yy,
 IMSLS_METHOD_LLP, p,

IMSLS_EPS, convergence_eps,
 IMSLS_RANK, &irank,

IMSLS_ITERATIONS, &iter,
IMSLS_N_ROWS_MISSING, &nrmiss,

 IMSLS_R_USER, R_matrix,
 IMSLS_DEGREES_OF_FREEDOM, &df_error,
 IMSLS_RESIDUALS_USER, residuals,
 IMSLS_SCALE, &square_of_scale,
 IMSLS_RESIDUALS_LP_NORM, &Lp_norm_residual,

Chapter 2: Regression Lnorm_regression � 181

0);
printf("Coefficients = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]);
printf("Residuals = %6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\n\n",
 residuals[0], residuals[1], residuals[2], residuals[3],
 residuals[4], residuals[5], residuals[6], residuals[7]);
printf("P = %5.3f\n", p);
printf("Lp norm of the residuals = %5.3f\n", Lp_norm_residual);
printf("Rank of Regressors Matrix = %3d\n", irank);

 printf("Degrees of Freedom Error = %5.3f\n", df_error);
 printf("Number of Iterations = %3d\n", iter);
 printf("Number of Missing Values = %3d\n", nrmiss);
 printf("Square of Scale Constant = %5.3f\n", square_of_scale);

 imsls_f_write_matrix("R Matrix\n", n_row, n_col, R_matrix, 0);
 printf("---\n\n");
 p += 0.5;
 }

}

Output

 Coefficients 0.50 0.50
 Residuals 0.00 2.50 -1.50 0.50 -0.50 0.50 -0.50 0.00

 p 1.00
 Lp norm of the residuals 6.00
 Rank of the matrix of regressors 2
 Degrees of freedom error 6.00
 Number of iterations 8
 Number of missing values 0
 Square of the scale constant 6.25

 R matrix
 1 2
 1 2.828 8.485
 2 0.000 3.464

 --

 Coefficients 0.39 0.55

 Residuals 0.06 2.39 -1.50 0.50 -0.55 0.45 -0.61 -0.16
 p 1.50
 Lp norm of the residuals 3.71
 Rank of the matrix of regressors 2
 Degrees of freedom error 6.00
 Number of iterations 6
 Number of missing values 0
 Square of the scale constant 1.06

 R matrix
 1 2
 1 2.828 8.485
 2 0.000 3.464

 --

182 � Lnorm_regression IMSL C/Stat/Library

 Coefficients -0.12 0.75
 Residuals 0.38 2.12 -1.38 0.62 -0.62 0.38 -0.88 -0.62

 p 2.00
 Lp norm of the residuals 2.94
 Rank of the matrix of regressors 2
 Degrees of freedom error 6.00
 Number of iterations 1
 Number of missing values 0
 Square of the scale constant 1.44

 R matrix
 1 2
 1 2.828 8.485
 2 0.000 3.464

 --

 Coefficients -0.44 0.87
 Residuals 0.57 1.96 -1.30 0.70 -0.67 0.33 -1.04 -0.91
 p 2.50
 Lp norm of the residuals 2.54
 Rank of the matrix of regressors 2
 Degrees of freedom error 6.00
 Number of iterations 4
 Number of missing values 0
 Square of the scale constant 0.79

 R matrix
 1 2
 1 2.828 8.485
 2 0.000 3.464

Chapter 2: Regression Lnorm_regression � 183

Figure 2-3 Various Lp Fitted Lines

Example 3
A straight line fit to a data set is computed under the LMV criterion.

#include <imsls.h>
#include <stdio.h>
void main()
{
 float xx[] = {0.0, 1.0, 2.0, 3.0, 4.0, 4.0, 5.0};
 float yy[] = {0.0, 2.5, 2.5, 4.5, 4.5, 6.0, 5.0};
 float max_residual;
 int irank, iter, nrmiss;

 float *coefficients = NULL;

 coefficients = imsls_f_Lnorm_regression(7, 1, xx, yy,
 IMSLS_METHOD_LMV,
 IMSLS_MAX_RESIDUAL, &max_residual,
 IMSLS_RANK, &irank,
 IMSLS_ITERATIONS, &iter,
 IMSLS_N_ROWS_MISSING, &nrmiss,
 0);
 printf("B = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]);
 printf("Rank of Regressors Matrix = %3d\n", irank);
 printf("Magnitude of Largest Residual = %8.4f\n", max_residual);

184 � Lnorm_regression IMSL C/Stat/Library

 printf("Number of Iterations = %3d\n", iter);
 printf("Number of Rows Missing = %3d\n", nrmiss);

}

Output
 B = 1.00 1.00
 Rank of Regressors Matrix = 2
 Magnitude of Largest Residual = 1.00000
 Number of Iterations = 3
 Number of Rows Missing = 0

Figure 2-4 Least Squares and Least Maximum Value Fitted Lines

Chapter 3: Correlation and Covariance Routines � 185

Chapter 3: Correlation and
Covariance

Routines
 Variances, Covariances, and Correlations

Variance-covariance or correlation matrixcovariances 185
Partial correlations and covariancespartial_covariances 193
Pooled covariance matrix.................................pooled_covariances 198
Robust estimate of covariance matrix...............robust_covariances 204

Usage Notes
This chapter is concerned with measures of correlation for bivariate data as
follows:
� The usual multivariate measures of correlation and covariance for continuous

random variables are produced by routine imsls_f_covariances.

� For data grouped by some auxiliary variable, routine
imsls_f_pooled_covariances can be used to compute the pooled
covariance matrix along with the means for each group.

� Partial correlations or covariances are computed by
imsls_f_partial_correlations.

� Function imsls_f_robust_covariances computes robust M-estimates
of the mean and covariance matrix from a matrix of observations.

covariances
Computes the sample variance-covariance or correlation matrix.

Synopsis

#include <imsls.h>

186 � covariances IMSL C/Stat/Library

float *imsls_f_covariances (int n_rows, int n_variables, float x[],
..., 0)

The type double function is imsls_d_covariances.

Required Arguments

int n_rows (Input)
Number of rows in x.

int n_variables (Input)
Number of variables.

float x[] (Input)
Array of size n_rows � n_variables containing the data.

Return Value
If no optional arguments are used, imsls_f_covariances returns a pointer to
an n_variables � n_variables array containing the sample variance-
covariance matrix of the observations. The rows and columns of this array
correspond to the columns of x.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_covariances (int n_rows, int n_variables, float x[],

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_MISSING_VALUE_METHOD, int missing_value_method,
IMSLS_INCIDENCE_MATRIX, int **incidence_matrix,
IMSLS_INCIDENCE_MATRIX_USER, int incidence_matrix[],
IMSLS_N_OBSERVATIONS, int *n_observations,
IMSLS_VARIANCE_COVARIANCE_MATRIX, or
IMSLS_CORRECTED_SSCP_MATRIX, or
IMSLS_CORRELATION_MATRIX, or
IMSLS_STDEV_CORRELATION_MATRIX,
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_COVARIANCE_COL_DIM, int covariance_col_dim,
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_WEIGHTS, float weights[],
IMSLS_SUM_WEIGHTS, float *sumwt,
IMSLS_N_ROWS_MISSING, int *nrmiss,
IMSLS_RETURN_USER, float covariance[],
0)

Chapter 3: Correlation and Covariance covariances � 187

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of array x.
Default: x_col_dim = n_variables

IMSLS_MISSING_VALUE_METHOD, int missing_value_method (Input)
Method used to exclude missing values in x from the computations,
where NaN is interpreted as the missing value code. See function
imsls_f_machine/imsls_d_machine (Chapter 14). The methods are
as follows:

missing_value_method Action
0 The exclusion is listwise. (The entire row of x is

excluded if any of the values of the row is equal
to the missing value code.)

1 Raw crossproducts are computed from all valid
pairs and means, and variances are computed
from all valid data on the individual variables.
Corrected crossproducts, covariances, and
correlations are computed using these
quantities.

2 Raw crossproducts, means, and variances are
computed as in the case of
missing_value_method = 1. However, cor-
rected crossproducts and covariances are
computed only from the valid pairs of data.
Correlations are computed using these
covariances and the variances from all valid
data.

3 Raw crossproducts, means, variances, and
covariances are computed as in the case of
missing_value_method = 2. Correlations are
computed using these covariances, but the vari-
ances used are computed from the valid pairs of
data.

IMSLS_INCIDENCE_MATRIX, int **incidence_matrix (Output)
Address of a pointer to an internally allocated array containing the
incidence matrix. If missing_value_method is 0,
incidence_matrix is 1 � 1 and contains the number of valid
observations; otherwise, incidence_matrix is
n_variables � n_variables and contains the number of pairs of
valid observations used in calculating the crossproducts for covariance.

188 � covariances IMSL C/Stat/Library

IMSLS_INCIDENCE_MATRIX_USER, int incidence_matrix[] (Output)
Storage for array incidence_matrix is provided by the user. See
IMSLS_INCIDENCE_MATRIX.

IMSLS_N_OBSERVATIONS, int *n_observations (Output)
Sum of the frequencies. If missing_value_method is 0, observations
with missing values are not included in n_observations; otherwise,
all observations are included except for observations with missing values
for the weight or the frequency.

IMSLS_VARIANCE_COVARIANCE_MATRIX, or
IMSLS_CORRECTED_SSCP_MATRIX, or
IMSLS_CORRELATION_MATRIX, or
IMSLS_STDEV_CORRELATION_MATRIX

Exactly one of these options can be used to specify the type of matrix to
be computed.

Keyword Type of Matrix
IMSLS_VARIANCE_COVARIANCE_MATRIX variance-covariance matrix (default)
IMSLS_CORRECTED_SSCP_MATRIX corrected sums of squares and crossproducts matrix
IMSLS_CORRELATION_MATRIX correlation matrix
IMSLS_STDEV_CORRELATION_MATRIX correlation matrix except for the diagonal elements

which are the standard deviations

IMSLS_MEANS, float **means (Output)
Address of a pointer to the internally allocated array containing the
means of the variables in x. The components of the array correspond to
the columns of x.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_COVARIANCE_COL_DIM, int covariance_col_dim (Input)
Column dimension of array covariance if IMSLS_RETURN_USER is
specified; otherwise, the column dimension of the return value.
Default: covariance_col_dim = n_variables

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency for each
observation.
Default: frequencies [] = 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_observations containing the weight for each
observation.
Default: weights [] = 1

IMSLS_SUM_WEIGHTS, float *sum_wt (Output)
Sum of the weights of all observations. If missing_value_method is
equal to 0, observations with missing values are not included in sum_wt.

Chapter 3: Correlation and Covariance covariances � 189

Otherwise, all observations are included except for observations with
mssing values for the weight or the frequency.

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Total number of observations that contain any missing values (NaN).

IMSLS_RETURN_USER, float covariance[] (Output)
If specified, the output is stored in the array covariance of size
n_variables � n_variables provided by the user.

Description
Function imsls_f_covariances computes estimates of correlations,
covariances, or sums of squares and crossproducts for a data matrix x. Weights
and frequencies are allowed but not required.

The means, (corrected) sums of squares, and (corrected) sums of crossproducts
are computed using the method of provisional means. Let xki denote the mean
based on i observations for the k-th variable, fi denote the frequency of the i-th
observation, wi denote the weight of the i-th observations, and cjki denote the sum
of crossproducts (or sum of squares if j = k) based on i observations. Then the
method of provisional means finds new means and sums of crossproducts as
shown in the example below.

The means and crossproducts are initialized as follows:

xk0 = 0.0 for k = 1, �, p

cjk0 = 0.0 for j, k = 1, �, p

where p denotes the number of variables. Letting xk,i+1 denote the k-th variable of
observation i + 1, each new observation leads to the following updates for xki and
cjki using the update constant ri+1:

� �

� �� �� �

1 1
1 1

1

, 1 , 1 1

, 1 1 1 , 1 , 1 11

i i
i i

l l
l

k i ki k i ki i

jk i jki i i j i ji k i ki i

f w
r

f w

x x x x r

c c f w x x x x r

� �

� �

�

� � �

� � � � �

�

� � �

� � � � �

�

�

The default value for weights and frequencies is 1. Means and variances are
computed based on the valid data for each variable or, if required, based on all
the valid data for each pair of variables.

Usage Notes
Function imsls_f_covariances defines a sample mean by

190 � covariances IMSL C/Stat/Library

1

1

r

n

i i ki
i

k n

i i
i

f w x
x

f w

�

�

�

�

�

where n is the number of observations.

The following formula defines the sample covariance, sjk, between variables j and
k:

� �� �
1

1
1

n

i i ji j ki k
i

jk n

i
i

f w x x x x
s

f

�

�

� �

�

�

�

�

The sample correlation between variables j and k, rjk, is defined as follows:

jk
jk

jj kk

s
r

s s
�

Examples

Example 1
This example illustrates the use of imsls_f_covariances for the first 50
observations in the Fisher iris data (Fisher 1936). Note that the first variable is
constant over the first 50 observations.

#include <imsls.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 50

main()
{
 float *covariances, *means;
 float x[] = {
 1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
 1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
 1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
 1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
 1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
 1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
 1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
 1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
 1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
 1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
 1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
 1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
 1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
 1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
 1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
 1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,

Chapter 3: Correlation and Covariance covariances � 191

 1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
 1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
 1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
 1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
 1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
 1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
 1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
 1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
 1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};

 /* Perform analysis */
 covariances = imsls_f_covariances (N_OBSERVATIONS,
 N_VARIABLES, x, 0);

 /* Print results */
 imsls_f_write_matrix ("The default case: variances/covariances",
 N_VARIABLES, N_VARIABLES, covariances,
 IMSLS_PRINT_UPPER, 0);
}

Output

 The default case: variances/covariances
 1 2 3 4 5
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.1242 0.0992 0.0164 0.0103
3 0.1437 0.0117 0.0093
4 0.0302 0.0061
5 0.0111

Example 2
This example, which uses the first 50 observations in the Fisher iris data,
illustrates the use of optional arguments.

#include <imsls.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 50

main()
{
 char *title;
 float *means, *correlations;
 float x[] = {
 1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
 1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
 1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
 1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
 1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
 1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
 1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
 1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
 1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
 1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
 1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
 1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
 1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,

192 � covariances IMSL C/Stat/Library

 1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
 1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
 1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
 1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
 1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
 1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
 1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
 1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
 1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
 1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
 1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
 1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};

 /* Perform analysis */
 correlations = imsls_f_covariances (N_OBSERVATIONS,
 N_VARIABLES-1, x+1,
 IMSLS_STDEV_CORRELATION_MATRIX,
 IMSLS_X_COL_DIM, N_VARIABLES,
 IMSLS_MEANS, &means,
 0);

 /* Print results */
 imsls_f_write_matrix ("Means\n", 1, N_VARIABLES-1, means, 0);
 title = "Correlations with Standard Deviations on the Diagonal\n";
 imsls_f_write_matrix (title, N_VARIABLES-1, N_VARIABLES-1,
 correlations, IMSLS_PRINT_UPPER, 0);
}

Output

 Means

 1 2 3 4
 5.006 3.428 1.462 0.246

Correlations with Standard Deviations on the Diagonal

 1 2 3 4
 1 0.3525 0.7425 0.2672 0.2781
 2 0.3791 0.1777 0.2328
 3 0.1737 0.3316
 4 0.1054

Warning Errors
IMSLS_CONSTANT_VARIABLE Correlations are requested, but the

observations on one or more
variables are constant. The
corresponding correlations are set
to NaN.

IMSLS_INSUFFICIENT_DATA Variances and covariances are
requested, but fewer than two valid
observations are present for a
variable. The pertinent statistics
are set to NaN.

Chapter 3: Correlation and Covariance partial_covariances � 193

IMSLS_ZERO_SUM_OF_WEIGHTS_2 The sum of the weights is zero.
The means, variances, and
covariances are set to NaN.

IMSLS_ZERO_SUM_OF_WEIGHTS_3 The sum of the weights is zero.
The means and correlations are set
to NaN.

IMSLS_TOO_FEW_VALID_OBS_CORREL Correlations are requested, but
fewer than two valid observations
are present for a variable. The
pertinent correlation coefficients
are set to NaN.

partial_covariances
Computes partial covariances or partial correlations from the covariance or
correlation matrix.

Synopsis

#include <imsls.h>

float *imsls_f_partial_covariances (int n_independent,
int n_dependent, float x, ..., 0)

The type double function is imsls_d_partial_covariances.

Required Argument

int n_independent (Input)
Number of “independent” variables to be used in the partial
covariances/correlations. The partial covariances/correlations are the
covariances/correlations between the dependent variables after removing
the linear effect of the independent variables.

int n_dependent (Input)
Number of variables for which partial covariances/correlations are
desired (the number of “dependent” variables).

float x (Input)
The n � n covariance or correlation matrix, where
n = n_independent + n_dependent. The rows/columns must be
ordered such that the first n_independent rows/columns contain the
independent variables, and the last n_dependent row/columns contain
the dependent variables. Matrix x must always be square symmetric.

194 � partial_covariances IMSL C/Stat/Library

Return Value
Matrix of size n_dependent by n_dependent containing the partial
covariances (the default) or partial correlations (use keyword
IMSLS_PARTIAL_CORR).

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_partial_covariances (int n_independent,

int n_dependent, float x[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_INDICES, int indices[],
IMSLS_PARTIAL_COV, or
IMSLS_PARTIAL_CORR,
IMSLS_TEST, int df, int *df_out, float **p_values,
IMSLS_TEST_USER, int df, int *df_out, float p_values[],
IMSLS_RETURN_USER, float c[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Row/Column dimension of x.
Default: x_col_dim = n_independent + n_dependent.

IMSLS_X_INDICES, int indices[] (Input)
An array of length x_col_dim containing values indicating the status of
the variable as in the following table:

indices[i] Variable is...
�1 not used in analysis
0 dependent variable
1 independent variable

By default, the first n_independent elements of indices are equal to
1, and the last n_dependent elements are equal to 0.

IMSLS_PARTIAL_COV, or
IMSLS_PARTIAL_CORR,

By default, and if IMSLS_PARTIAL_COV is specified, partial
covariances are calculated. Partial correlations are calculated if
IMSLS_PARTIAL_CORR is specified.

IMSLS_TEST, int df, int *df_out, float **p_values
(Input, Output, Output)
Argument df is an input integer indicating the number of degrees of
freedom associated with input matrix x. If the number of degrees of

Chapter 3: Correlation and Covariance partial_covariances � 195

freedom in x varies from element to element, then a conservative choice
for df is the minimum degrees of freedom for all elements in x.

Argument df_out contains the number of degrees of freedom in the test
that the partial covariances/correlations are zero. This value will usually
be df � n_independent, but will be greater than this value if the
independent variables are computationally linearly related.

Argument p_values is the address of a pointer to an internally
allocated array of size n_dependent by n_dependent containing the
p-values for testing the null hypothesis that the associated partial
covariance/correlation is zero. It is assumed that the observations from
which x was computed flows a multivariate normal distribution and that
each element in x has df degrees of freedom.

IMSLS_TEST_USER, int df, int *df_out, float p_values[]
(Input, Output, Output)
Storage for array p_values is provided by the user. See IMSLS_TEST
above.

IMSLS_RETURN_USER, float c[] (Output)
If specified, c returns the partial covariances/correlations. Storage for
array c is provided by the user.

Description
Function imsls_f_partial_covariances computed partial covariances or
partial correlations from an input covariance or correlation matrix. If the
“independent” variables (the linear “effect” of the independent variables is
removed in computing the partial covariances/correlations) are linearly related to
one another, imsls_f_partial_covariances detects the linearity and
eliminates one or more of the independent variables from the list of independent
variables. The number of variables eliminated, if any, can be determined from
argument df_out.

Given a covariance or correlation matrix � partitioned as

11 12

21 22

� �� �
� �
� �� �

function imsls_f_partial_covariances computed the partial covariances
(of the standardized variables if � is a correlation matrix) as

1
22 /1 22 21 11 12

�

� � � �� � �

If partial correlations are desired, these are computed as

� � � �
1/ 2 1/ 2

22 /1 22 /1 22 /1 22 /1P diag diag
� �

� � � �� � � �� � � �

where diag denotes the matrix containing the diagonal of its argument along its
diagonal with zeros off the diagonal. If �11 is singular, then as many variables as

196 � partial_covariances IMSL C/Stat/Library

required are deleted from �11 (and �12) in order to eliminate the linear
dependencies. The computations then proceed as above.

The p-value for a partial covariance tests the null hypothesis H0: �ij|1 = 0, where
�ij|1 is the (i, j) element in matrix �22|1. The p-value for a partial correlation tests
the null hypothesis H0: �ij|1 = 0, where �ij|1 is the (i, j) element in matrix P22|1. The
p-values are returned in p_values. If the degrees of freedom for x, df, is not
known, the resulting p-values may be useful for comparison, but they should not
by used as an approximation to the actual probabilities.

Examples

Example 1
The following example computes partial covariances, scaled from a nine-variable
correlation matrix originally given by Emmett (1949). The first three rows and
columns contain the independent variables and the final six rows and columns
contain the dependent variables.

#include <imsls.h>
#include <math.h>

main()
{
 float *pcov;
 float x[9][9] = {
 6.300, 3.050, 1.933, 3.365, 1.317, 2.293, 2.586, 1.242, 4.363,
 3.050, 5.400, 2.170, 3.346, 1.473, 2.303, 2.274, 0.750, 4.077,
 1.933, 2.170, 3.800, 1.970, 0.798, 1.062, 1.576, 0.487, 2.673,
 3.365, 3.346, 1.970, 8.100, 2.983, 4.828, 2.255, 0.925, 3.910,
 1.317, 1.473, 0.798, 2.983, 2.300, 2.209, 1.039, 0.258, 1.687,
 2.293, 2.303, 1.062, 4.828, 2.209, 4.600, 1.427, 0.768, 2.754,
 2.586, 2.274, 1.576, 2.255, 1.039, 1.427, 3.200, 0.785, 3.309,
 1.242, 0.750, 0.487, 0.925, 0.258, 0.768, 0.785, 1.300, 1.458,
 4.363, 4.077, 2.673, 3.910, 1.687, 2.754, 3.309, 1.458, 7.400};

 pcov = imsls_f_partial_covariances(3, 6, x, 0);

 imsls_f_write_matrix("Partial Covariances", 6, 6, pcov, 0);

 free(pcov);
 return;
}

Output

 Partial Covariances
 1 2 3 4 5 6
1 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 5.495 1.895 3.084
5 0.000 0.000 0.000 1.895 1.841 1.476
6 0.000 0.000 0.000 3.084 1.476 3.403

Chapter 3: Correlation and Covariance partial_covariances � 197

Example 2

The following example computes partial correlations from a 9 variable
correlation matrix originally given by Emmett (1949). The partial correlations
between the remaining variables, after adjusting for variables 1, 3 and 9, are
computed. Note in the output that the row and column labels are numbers, not
variable numbers. The corresponding variable numbers would be 2, 4, 5, 6, 7
and 8, respectively.

#include <imsls.h>

main()
{
 float *pcorr, *pval;
 int df;
 float x[9][9] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
 0.395, 0.479, 1.0, .355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};
 int indices[9] = {1, 0, 1, 0, 0, 0, 0, 0, 1};

 pcorr = imsls_f_partial_covariances(3, 6, &x[0][0],
 IMSLS_PARTIAL_CORR,
 IMSLS_X_INDICES, indices,
 IMSLS_TEST, 30, &df, &pval,
 0);

 printf ("The degrees of freedom are %d\n\n", df);
 imsls_f_write_matrix("Partial Correlations", 6, 6, pcorr, 0);
 imsls_f_write_matrix("P-Values", 6, 6, pval, 0);

 free(pcorr);
 free(pval);
 return;
}

Output

The degrees of freedom are 27

 Partial Correlations
 1 2 3 4 5 6
1 1.000 0.224 0.194 0.211 0.125 -0.061
2 0.224 1.000 0.605 0.720 0.092 0.025
3 0.194 0.605 1.000 0.598 0.123 -0.077
4 0.211 0.720 0.598 1.000 0.035 0.086
5 0.125 0.092 0.123 0.035 1.000 0.062
6 -0.061 0.025 -0.077 0.086 0.062 1.000

 P-Values
 1 2 3 4 5 6

198 � pooled_covariances IMSL C/Stat/Library

1 0.0000 0.2525 0.3232 0.2801 0.5249 0.7576
2 0.2525 0.0000 0.0006 0.0000 0.6417 0.9000
3 0.3232 0.0006 0.0000 0.0007 0.5328 0.6982
4 0.2801 0.0000 0.0007 0.0000 0.8602 0.6650
5 0.5249 0.6417 0.5328 0.8602 0.0000 0.7532
6 0.7576 0.9000 0.6982 0.6650 0.7532 0.0000

Warning Errors
IMSLS_NO_HYP_TESTS The input matrix “x” has # degrees of freedom,

and the rank of the dependent variables is #.
There are not enough degrees of freedom for
hypothesis testing. The elements of “p_values”
are set to NaN (not a number).

Fatal Errors
IMSLS_INVALID_MATRIX_1 The input matrix “x” is incorrectly specified. A

computed correlation is greater than 1 for
variables # and #.

IMSLS_INVALID_PARTIAL A computed partial correlation for variables #
and # is greater than 1. The input matrix “x” is
not positive semi-definite.

pooled_covariances
Compute a pooled variance-covariance from the observations.

Synopsis

#include <imsls.h>
float *imsls_f_pooled_covariances (int n_rows, int n_variables,

float *x, int n_groups, ..., 0)

The type double function is imsls_d_pooled_covariances.

Required Argument

int n_rows (Input)
Number of rows observations) in the input matrix x.

int n_variables (Input)
Number of variables to be used in computing the covariance matrix.

float *x (Input)
A n_rows � n_variables + 1 matrix containing the data. The first
n_variables columns correspond to the variables, and the last column
(column n_variables must contain the group numbers).

Chapter 3: Correlation and Covariance pooled_covariances � 199

int n_groups (Input)
Number of groups in the data.

Return Value
Matrix of size n_variables by n_variables containing the matrix of
covariances.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_pooled_covariances (int n_rows, int n_variables,
float x[], int n_groups,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,
IMSLS_IDO, int ido,
IMSLS_ROWS_ADD,
IMSLS_ROWS_DELETE,
IMSLS_GROUP_COUNTS, int **gcounts,
IMSLS_GROUP_COUNTS_USER, int gcounts[],
IMSLS_SUM_WEIGHTS, float **sum_weights,
IMSLS_SUM_WEIGHTS_USER, float sum_weights[],
IMSLS_MEANS_USER, float means[],
IMSLS_U, float **u,
IMSLS_U_USER, float u[],
IMSLS_N_ROWS_MISSING, int *nrmiss,
IMSLS_RETURN_USER, float c[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Default: x_col_dim = n_variables + 1

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt (Input)
Each of the four arguments contains indices indicating column numbers
of x in which particular types of data are stored. Columns are numbered
0 ... x_col_dim � 1.

Parameter igrp contains the index for the column of x in which the
group numbers are stored.

Parameter ind contains the indices of the variables to be used in the
analysis.

Parameters ifrq and iwt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Set ifrq = �1 if there
will be no column for frequencies. Set iwt = �1 if there will be no
column for weights. Weights are rounded to the nearest integer.
Negative weights are not allowed.

200 � pooled_covariances IMSL C/Stat/Library

Defaults: igrp = n_variables,
ind[] = 0, 1, �, n_variables � 1, ifrq = �1, and iwt = �1

IMSLS_IDO, int ido (Input)
Processing option.

ido Action
0 This is the only invocation; all the data are input at once.

(Default)
1 This is the first invocation with this data; additional calls

will be made. Initialization and updating for the n_rows
observations of x will be performed.

2 This is an intermediate invocation; updating for the n_rows
observations of x will be performed.

3 All statistics are updated for the n_rows observations. The
covariance matrix computed.

Default: ido = 0

IMSLS_ROWS_ADD, or
IMSLS_ROWS_DELETE

By default (or if IMSLS_ROWS_ADD is specified), the observations in x
are added into the analysis. If IMSLS_ROWS_DELETE is specified, the
observations are deleted from the analysis. If ido = 0, these optional
arguments are ignored (data is always added if there is only one
invocation).

IMSLS_GROUP_COUNTS, int **gcounts (Output)
Address of a pointer to an integer array of length n_groups containing
the number of observations in each group. Array gcounts is updated
when ido is equal to 0, 1, or 2.

IMSLS_GROUP_COUNTS_USER, int gcounts[] (Output)
Storage for integer array gcounts is provided by the user. See
IMSLS_GROUP_COUNTS.

IMSLS_SUM_WEIGHTS, float **sum_weights (Output)
Address of a pointer to an array of length n_groups containing the sum
of the weights times the frequencies in the groups.

IMSLS_SUM_WEIGHTS_USER, float sum_weights[] (Output)
Storage for array sum_weights is provided by the user. See
IMSLS_SUM_WEIGHTS.

IMSLS_MEANS, float **means (Output)
Address of a pointer to an array of size n_groups � n_variables. The
i-th row of means contains the group i variable means.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

Chapter 3: Correlation and Covariance pooled_covariances � 201

j ijx

IMSLS_U, float **u (Output)
Address of a pointer to an array of size n_variables �
n_variables containing the lower matrix U, the lower triangular for
the pooled sample cross-products matrix. U is computed from the
pooled sample covariance matrix, S (See the “Description” section
below), as S = UTU.

IMSLS_U_USER, float u[] (Output)”
Storage for array u is provided by the user. See IMSLS_U.

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Number of rows of data encountered in calls to
imsls_f_pooled_covariances containing missing values (NaN) for
any of the variables used.

IMSLS_RETURN_USER, float c[] (Output)
If specified, c returns the covariance matrix. Storage for array c is
provided by the user.

Description
Function imsls_f_pooled_covariances computes the pooled variance-
covariance matrix from a matrix of observations. The within-groups means are
also computed. Listwise deletion of missing values is assumed so that all
observations used are complete; in any row of x, if any element of the observation
is missing, the row is not used. Function imsls_f_pooled_covariances
should be used whenever the user suspects that the data has been sampled from
populations with different means but identical variance-covariance matrices. If
these assumptions cannot be made, a different variance-covariance matrix should
be estimated within each group.

By default, all observations are processed in one call to
imsls_f_pooled_covariances. The computations are the same as if
imsls_f_pooled_covariances were consecutively called with ido equal to
1, 2, and 3. For brevity, the following discusses the computations with ido > 0.

When ido = 1 variables are initialized, workspace is allocated and input variables
are checked for errrors.

If n_rows � 	 (for any value of ido), the group observation totals, Ti, for
i = 1, �, g, where g is the number of groups, are updated for the n_rows
observations in x. The group totals are computed as:

i ij i
j

T w f��

where wij is the observation weight, xij is the j-th observation in the i-th group,
and fij is the observation frequency.

Modified Givens rotations are used in computed the Cholesky decomposition of
the pooled sums of squares and crossproducts matrix. (Golub and Van Loan
1983).

202 � pooled_covariances IMSL C/Stat/Library

The group means and the pooled sample covariance matrix S are computed from
the intermediate results when ido = 3. These quantities are defined by

i
i

i i
j

T
x

w f�
�

�

� � � �
,

1 T

ij ij ij i ij ii
i jij

ij

S w f x x x
f g � �

� �

�

�
�

x�

Examples

Example 1
The following example computes a pooled variance-covariance matrix. The last
column of the data set is the group indicator.

#include <stdio.h>
#include <stdlib.h>
#include <imsls.h>

main() {
 int nobs = 6;
 int nvar = 2;
 int n_groups = 2;
 float *cov;
 static float x[6][3] = {
 2.2, 5.6, 1,
 3.4, 2.3, 1,
 1.2, 7.8, 1,
 3.2, 2.1, 2,
 4.1, 1.6, 2,
 3.7, 2.2, 2};

 cov = imsls_f_pooled_covariances(nobs, nvar, &x[0][0], n_groups, 0);

 imsls_f_write_matrix("Pooled Covariance Matrix", nvar, nvar, cov, 0);
 free(cov);
}

Output

Pooled Covariance Matrix
 1 2
1 0.708 -1.575
2 -1.575 3.883

Example 2
The following example computes a pooled variance-covariance matrix for the
Fisher iris data. To illustrate the use of the ido argument, multiple calls to
imsls_f_pooled_covariances are made.

Chapter 3: Correlation and Covariance pooled_covariances � 203

The first column of data is the group indicator, requiring either a permuation of
the matrix or the use of the IMSLS_X_INDICES optional keyword. This exampe
chooses the keyword method.

#include <stdio.h>
#include <stdlib.h>
#include <imsls.h>

main() {
 int nobs = 150;
 int nvar = 4;
 int n_groups = 3;
 int igrp = 0;
 static int ind[4] = {1, 2, 3, 4};
 int ifrq = -1;
 int iwt = -1;
 float *x, cov[16];
 float *means;
 int i;

 /* Retrieve the Fisher iris data set */
 x = imsls_f_data_sets(3, 0);

 /* Initialize */
 imsls_f_pooled_covariances(0, nvar, x, n_groups,
 IMSLS_IDO, 1,
 IMSLS_RETURN_USER, cov,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);

 /* Add 10 rows at a time */
 for (i=0;i<15;i++) {
 imsls_f_pooled_covariances(10, nvar, (x+i*50), n_groups,
 IMSLS_IDO, 2,
 IMSLS_RETURN_USER, cov,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);
 }

 /* Calculate cov and free internal workspace */
 imsls_f_pooled_covariances(0, nvar, x, n_groups,
 IMSLS_IDO, 3,
 IMSLS_RETURN_USER, cov,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt,
 IMSLS_MEANS, &means, 0);

 imsls_f_write_matrix("Pooled Covariance Matrix", nvar, nvar, cov, 0);
 imsls_f_write_matrix("Means", n_groups, nvar, means, 0);

 free(means);
 free(x);
}

Output

 Pooled Covariance Matrix
 1 2 3 4
1 0.2650 0.0927 0.1675 0.0384
2 0.0927 0.1154 0.0552 0.0327

204 � robust_covariances IMSL C/Stat/Library

3 0.1675 0.0552 0.1852 0.0427
4 0.0384 0.0327 0.0427 0.0419

 Means
 1 2 3 4
1 5.006 3.428 1.462 0.246
2 5.936 2.770 4.260 1.326
3 6.588 2.974 5.552 2.026

Warning Errors
IMSLS_OBSERVATION_IGNORED In call #, row # of the matrix “x” has group

number = #. The group number must be
between 1 and #, the number of groups.
This observation will be ignored.

Fatal Errors
IMSLS_BAD_IDO_4 “ido” = #. Initial allocations must be

performed by making a call to
pooled_covariances with “ido” = 1.

IMSLS_BAD_IDO_5 “ido” = #. A new analysis may not begin
until the previous analysis is terminated by
a call to imsls_f_pooled_covariances
with “ido” equal to 3.

robust_covariances
Computes a robust estimate of a covariance matrix and mean vector.

Synopsis

#include <imsls.h>

float *imsls_f_robust_covariances (int n_rows, int n_variables,
float *x, int n_groups, ..., 0)

The type double function is imsls_d_robust_covariances.

Required Argument

int n_rows (Input)
Number of rows observations) in the input matrix x.

int n_variables (Input)
Number of variables to be used in computing the covariance matrix.

float *x (Input)
A n_rows by n_variables + 1 matrix containing the data. The first

Chapter 3: Correlation and Covariance robust_covariances � 205

n_variables columns correspond to the variables, and the last column
(column n_variables) must contain the group numbers.

int n_groups (Input)
Number of groups in the data.

Return Value
Matrix of size n_variables by n_variables containing the matrix of
covariances.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_robust_covariances (int n_rows, int n_variables,
float x[], int n_groups,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,
IMSLS_INITIAL_EST_MEAN,
IMSLS_INITIAL_EST_MEDIAN
IMSLS_INITIAL_EST_INPUT, float input_means[],
 float input_cov[],
IMSLS_ESTIMATION_METHOD, int method,
IMSLS_PERCENTAGE, float percentage,
IMSLS_MAX_ITERATIONS, int maxit,
IMSLS_TOLERANCE, float tolerance,
IMSLS_MINIMAX_WEIGHTS, float *a, float *b, float *c,
IMSLS_GROUP_COUNTS, int **gcounts,
IMSLS_GROUP_COUNTS_USER, int gcounts[],
IMSLS_SUM_WEIGHTS, float **sum_weights,
IMSLS_SUM_WEIGHTS_USER, float sum_weights[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_U, float **u,
IMSLS_U_USER, float u[],
IMSLS_BETA, float *beta,
IMSLS_N_ROWS_MISSING, int *nrmiss,
IMSLS_RETURN_USER, float c[],
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Row/Column dimension of x.
Default: x_col_dim = n_variables + 1

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt (Input)
Each of the four arguments contains indices indicating column numbers

206 � robust_covariances IMSL C/Stat/Library

of x in which particular types of data are stored. Columns are numbered
0 � x_col_dim � 1.

Parameter igrp contains the index for the column of x in which the
group numbers are stored.

Parameter ind contains the indices of the variables to be used in the
analysis.

Parameters ifrq and iwt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Set ifrq = �1 if there
will be no column for frequencies. Set iwt = �1 if there will be no
column for weights. Weights are rounded to the nearest integer.
Negative weights are not allowed.

Defaults: igrp = n_variables,
ind [] = 0, 1, �, n_variables � 1, ifrq = �1, and iwt = �1

IMSLS_INITIAL_EST_MEAN, or
IMSLS_INITIAL_EST_MEDIAN, or
IMSLS_INITIAL_EST_INPUT, float *input_mean, float *input_cov

(Input)
If IMSLS_INITIAL_EST_MEAN is specified, initial estimates are
obtained as the usual estimate of a mean vector and of a covariance
matrix.

If IMSLS_INITIAL_EST_MEDIAN is specified, initial estimates are
based upon the median and interquartile range are used.

If IMSLS_INITIAL_EST_INPUT is specified, the initial estimates are
specified in arrays input_mean and input_cov. Argument
input_mean is an array of size n_groups by n_variables, and
input_cov is an array of size n_variables by n_variables.

Default: IMSLS_INITIAL_EST_MEAN

IMSLS_ESTIMATION_METHOD, int method (Input)
Option parameter giving the algorithm to be used in computing the
estimates.

method Method Used
0 Huber’s conjugate-gradient algorithm is used.
1 Stahel’s algorithm is used.

Chapter 3: Correlation and Covariance robust_covariances � 207

IMSLS_PERCENTAGE, float percentage (Input)
Percentage of gross errors expected in the data. Argument percentage
must be in the range 0.0 to 100.0 and contains the percentage of outliers
expected in the data. If the percentage of gross errors expected in the
data is not known, a reasonable strategy is to choose a value of
percentage that is such that larger values do not result in significant
changes in the estimates.
Default: percentage = 5.0

IMSLS_MAX_ITERATIONS, int maxit (Input)
Maximum number of iterations.
Default: maxit = 30

IMSLS_TOLERANCE, float tolerance (Input)
Convergence criterion. When the maximum absolute change in a
location or covariance estimate is less than tolerance, convergence is
assumed.
Default: tolerance = 10-4

IMSLS_MINIMAX_WEIGHTS, float *a, float *b, float *c (Output)
Arguments a, b, and c contain the values for the parameters of the
weighting function. See the “Description” section.

IMSLS_GROUP_COUNTS, int **gcounts (Output)
Address of a pointer to an integer array of length n_groups containing
the number of observations in each group.

IMSLS_GROUP_COUNTS_USER, int gcounts[] (Output)
Storage for integer array gcounts is provided by the user. See
IMSLS_GROUP_COUNTS.

IMSLS_SUM_WEIGHTS, float **sum_weights (Output)
Address of a pointer to an array of length n_groups containing the sum
of the weights times the frequencies in the groups.

IMSLS_SUM_WEIGHTS_USER, float sum_weights[](Output)
Storage for array sum_weights is provided by the user. See
IMSLS_SUM_WEIGHTS.

IMSLS_MEANS, float **means (Output)
Address of a pointer to an array of size n_groups by n_variables.
The i-th row of means contains the group i variable means.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_U, float **u (Output)
Address of a pointer to an array of size n_variables by n_variables
containing the lower matrix U, the lower triangular for the robust sample
cross-products matrix. U is computed from the robust sample covariance
matrix, S (See the “Description” section), as S = UTU.

208 � robust_covariances IMSL C/Stat/Library

IMSLS_U_USER, float u[] (Output)
Storage for array u is provided by the user. See IMSLS_U.

IMSLS_BETA, float *beta (Output)
Argument beta contains the constant used to ensure that the estimated
covariance matrix has unbiased expectation (for a given mean vector) for
a multivariate normal density.

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Number of rows of data encountered in calls to robust_covariances
containing missing values (NaN) for any of the variables used.

IMSLS_RETURN_USER, float c[] (Output)
If specified, c returns the covariance matrix. Storage for array c is
provided by the user.

Description
Function imsls_f_robust_covariances computes robust M-estimates of the
mean and covariance matrix from a matrix of observations. A pooled estimate of
the covariance matrix is computed when multiple groups are present in the input
data. M-estimate weights are obtained using the “minimax” weights of Huber
(1981, pp. 231-235), with percentage expected gross errors. Huber’s (1981)
weighting equations are given by:

� �

� �

2

2

2

2

1

min 1,

a r a
r

u r a r b
b r b
r

cw r
r

�
��

��
� ��
�
� �
��

	

� � �

 �

�

User specified observation weights and frequencies may be given for each row in
x. Listwise deletion of missing values is assumed so that all observations used are
“complete”.

Let f (x;
i, �) denote the density of an observation p-vector x in population
(group) i with mean vector
i, for i = 1, �, �. Let the covariance matrix � be such
that � = RTR. If

y = R-T (x �
i)

then

� � � �
1/ 2 ; ,T

i ig y f R y � �� � � �

It is assumed that g(y) is a spherically symmetric density in p-dimensions.

In imsls_f_robust_covariances, � and
i are estimated as the solutions

Chapter 3: Correlation and Covariance robust_covariances � 209

� �ˆ ˆ, i��

of the estimation equations

� �
1

1 0
in

ig ij ij ij
j

f w w r y
n

�

��

and

� �
1 1

1 0
in

T
ij ij ij ij ij p

i j

f w u r y y I
n

�

�
� �

� �� �� ���

where i indexes the � groups, ni, is the number of observations in group i, fij is the
frequency for the j-th observation in group i, wij is the observation weight
specified in column iwt of x, Ip is a p � p identity matrix,

T
ij ij ijr y y�

w(r) and u(r) are the weighting functions, and where � is a constant computed by
the program to make the expected weighted Mahalanobis distance (yTy) equal the
expected Mahalanobis distance from a multivariate normal distribution (see
Marazzi 1985). The constant � is described more fully below.

Function imsls_f_robust_covariances uses one of two algorithms for
solving the estimation equations. The first algorithm is discussed in detail in
Huber (1981) and is a variant of the conjugate gradient method. The second
algorithm is due to Stahel (1981) and is discussed in detail by Marazzi (1985). In
both algorithms, correction vectors Tki for the group i means and correction
matrix Wk = Ip + Uk for the Cholesky factorization of � are found such that the
updated mean vectors are given by

, 1 ,ˆ ˆi k i k kiT� �
�
� �

and the updated matrix R is given as

1
ˆ ˆ

k k kR W R
�
�

where k is the iteration number and

ˆ T
k k kR R� �

When all elements of Uk and Tki are less than = tolerance, convergence is
assumed.

Three methods for obtaining estimates are allowed. In the first method, the
sample weighted estimate of � is computed. In the second method, estimates
based upon the median and the interquartile range are used. Finally, in the last
method, the user inputs initial estimates.

Function imsls_f_robust_covariances computes estimates based on the
“minimax” weights discussed above. The constant � is chosen such that E

210 � robust_covariances IMSL C/Stat/Library

(u(r)r2) = �� where the expectation is with respect to a standard p-variate
multivariate normal distribution. This yields estimates with the correct
expectation for the multivariate normal distribution (for given mean vector). The
expectation is computed via integration of estimated spline function. 200 knots
are used on an equally apaced grid from 0.0 to the 99.999 percentile of

2
p�

distribution. An error estimate is computed based upon 100 of these knots. If the
estimated relative error is greater than 0.0001, a warning message is issued. If � is
not computed accurately (i.e., if the warning message is issued), the computed
esimates are still optimal, but the scale of the estimated covariance matrix may
need to be multiplied by a constant in order for

�̂

to have the correct multivariate normal covariance expectation.

Examples

Example 1
The following example computes a robust variance-covariance matrix. The last
column of the data set is the group indicator.

#include <imsls.h>
#include <stdlib.h>
main()
{
 int nobs = 6;
 int nvar = 2;
 int n_groups = 2;
 float *cov;
 float x[18] = {
 2.2, 5.6, 1,
 3.4, 2.3, 1,
 1.2, 7.8, 1,
 3.2, 2.1, 2,
 4.1, 1.6, 2,
 3.7, 2.2, 2};

 cov = imsls_f_robust_covariances(nobs, nvar, x, n_groups, 0);

 imsls_f_write_matrix("Robust Covariance Matrix", nvar, nvar, cov,
 IMSLS_COL_NUMBER_ZERO,
 IMSLS_ROW_NUMBER_ZERO, 0);

 free(cov);
}

Output

Robust Covariance Matrix
 0 1
0 0.522 -1.160

Chapter 3: Correlation and Covariance robust_covariances � 211

1 -1.160 2.862

Example 2
The following example computes estimates of the pooled covariance matrix for
the Fisher’s iris data. For comparison, the estimates are first computed via
function imsls_f_pooled_covariances. Function
imsls_f_robust_covariances with percentage = 2.0 is then used to
compute the robust estimates. As can be seen from the output, the resulting
estimates are quite similar.

Next, three observations are made into outliers, and again, estimates are
computed using functions imsls_f_pooled_covariances and
imsls_f_robust_covariances. When outliers are present, the estimates of
imsls_f_pooled_covariances are adversely affected, while the estimates
produced by imsls_f_robust_covariances are close the estimates produced
when no outliers are present.

include <imsls.h>
#include <stdlib.h>
main()
{
 int nobs = 150;
 int nvar = 4;
 int n_groups = 3;
 float percentage = 2.0;
 int igrp = 0;
 int ifrq = -1;
 int iwt = -1;
 int ind[4] = {1, 2, 3, 4};
 float *x, cov[16], rbcov[16];

 x = imsls_f_data_sets(3, 0);

 imsls_f_pooled_covariances(nobs, nvar, x, n_groups,
 IMSLS_RETURN_USER, cov,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);

 imsls_f_write_matrix("Pooled Covariance with No Outliers", nvar, nvar,
 cov,
 IMSLS_COL_NUMBER_ZERO,
 IMSLS_ROW_NUMBER_ZERO,
 IMSLS_PRINT_UPPER, 0);

 imsls_f_robust_covariances(nobs, nvar, x, n_groups,
 IMSLS_RETURN_USER, rbcov,
 IMSLS_PERCENTAGE, percentage,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);

 imsls_f_write_matrix("Robust Covariance with No Outliers", nvar, nvar,
 rbcov,
 IMSLS_COL_NUMBER_ZERO,
 IMSLS_ROW_NUMBER_ZERO,
 IMSLS_PRINT_UPPER, 0);

 /* Add Outliers */

212 � robust_covariances IMSL C/Stat/Library

 x[1] = 100.0;
 x[19] = 100.0;
 x[497] = -100.0;

 imsls_f_pooled_covariances(nobs, nvar, x, n_groups,
 IMSLS_RETURN_USER, cov,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);

 imsls_f_write_matrix("Pooled Covariance with Outliers", nvar, nvar,
 cov,
 IMSLS_COL_NUMBER_ZERO,
 IMSLS_ROW_NUMBER_ZERO,
 IMSLS_PRINT_UPPER, 0);

 imsls_f_robust_covariances(nobs, nvar, x, n_groups,
 IMSLS_RETURN_USER, rbcov,
 IMSLS_PERCENTAGE, percentage,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);

 imsls_f_write_matrix("Robust Covariance with Outliers", nvar, nvar,
 rbcov,
 IMSLS_COL_NUMBER_ZERO,
 IMSLS_ROW_NUMBER_ZERO,
 IMSLS_PRINT_UPPER, 0);

 free(x);
}

Output

 Pooled Covariance with No Outliers
 0 1 2 3
0 0.2650 0.0927 0.1675 0.0384
1 0.1154 0.0552 0.0327
2 0.1852 0.0427
3 0.0419

 Robust Covariance with No Outliers
 0 1 2 3
0 0.2474 0.0872 0.1535 0.0360
1 0.1073 0.0538 0.0322
2 0.1705 0.0412
3 0.0401

 Pooled Covariance with Outliers
 0 1 2 3
0 60.43 0.30 0.13 -1.56
1 70.53 0.17 -0.17
2 0.19 0.07
3 66.38

 Robust Covariance with Outliers
 0 1 2 3
0 0.2555 0.0876 0.1553 0.0359
1 0.1127 0.0545 0.0322
2 0.1723 0.0412

Chapter 3: Correlation and Covariance robust_covariances � 213

3 0.0424

Warning Errors
IMSLS_NO_CONVERGE_MAX_ITER Failure to converge within “maxit”

= # iterations for at least one of the
“nroot” = # roots.

Fatal Errors
IMSLS_BAD_GROUP_2 The group number for observation

is equal to #. It must be greater
than or equal to one and less than
or equal to #, the number of
groups.

214 � robust_covariances IMSL C/Stat/Library

Chapter 4: Analysis of Variance and Designed Experiments Routines � 215

Chapter 4: Analysis of Variance and
Designed Experiments

Routines
4.1 General Analysis of Variance

One-way analysis of varianceanova_oneway 230
Analysis of variance for fixed effects,
balanced factorial designs anova_factorial 239
Nested random effects analysis of variance anova_nested 247
Analysis of variance for balanced fixed,
random, or mixed modelsanova_balanced 256

4.2 Designed Experiments
Analysis of balanced and unbalanced completely
randomized factorial experiments................................ crd_factorial 267
Analysis of balanced and unbalanced randomized
complete block factorial experiments......................... rcbd_factorial 279

Analysis of latin-square experiments latin_square 288

Analysis of balanced and partially-balanced data from
lattice experiments ..lattice 297

Analysis of split-plot experiments.......................................split_plot 316

Analysis of split-split-plot experiments split_split_plot 329

Analysis of strip-plot experiments strip_plot 345

Analysis of strip-split-plot experiments...................... strip_split_plot 355

4.3 Utilities
Bartlett’s and Levene’s tests of the homogeneity
of variance assumption in analysis of variance........... homogeneity 378

Multiple comparisons of meansmultiple_comparisons 385

Yates’ method for estimating missing observations in
designed experiments... yates 390

216 � Usage Notes IMSL C/Stat/Library

Usage Notes
The functions in this chapter cover a wide variety of commonly used
experimental designs. They can be categorized, not only based upon the
underlying experimental design that generated the user’s data, but also on whether
they provide support for missing values, factorial treatment structure, blocking
and replication of the entire experiment, or multiple locations.

Typically, responses are stored in the input vector y. For a few functions, such as
imsls_f_anova_oneway (page 230)and imsls_f_anova_factorial
(page 239), the full set of model subscripts is not needed to identify each
response. They assume the usual pattern, which requires that the last model
subscript change most rapidly, followed by the model subscript next in line, and
so forth, with the first subscript changing at the slowest rate. This pattern is
referred to as lexicographical ordering.

However, for most of the functions in this chapter, one or more arrays are used to
describe the experimental conditions associated with each value in the response
input vector y. The function imsls_f_split_plot (page 316), for example,
requires three additional input arrays: split, whole and rep. They are used to
identify the split-plot, whole-plot and replicate number associated with each value
in y.

Many of the functions described in this chapter permit users to enter missing data
values using NaN (Not a Number) as the missing value code. Use function
imsls_f_machine (or function imsls_d_machine with the double-precision)
to retrieve NaN. Any element of y that is missing must be set to
imsls_f_machine(6) or imsls_d_machine(6) (for double precision). See
imsls_f_machine in Chapter 14, “Utilities” for a description. Functions
imsls_f_anova_factorial (page 239), imsls_f_anova_nested
(page 247)and imsls_f_anova_balanced (page 256) require complete,
balanced data, and do not accept missing values.

As a diagnostic tool for validating model assumptions, some functions in this
chapter perform a test for lack of fit when replicates are available in each cell of
the experimental design..

Completely Randomized Experiments
Completely randomized experiments are analyzed using some variation of the
one-way analysis of variance (Anova). A completely randomized design (CRD)
is the simplest and most common example of a statistically designed experiment.
Researchers using a CRD are interested in comparing the average effect of two or
more treatments. In agriculture, treatments might be different plant varieties or
fertilizers. In industry, treatments might be different product designs, different
manufacturing plants, different methods for delivering the product, etc. In
business, different business processes, such as different shipping methods or
alternate approaches to a product repair process, might be considered treatments.
Regardless of the area, the one thing they have in common is that random errors

Chapter 4: Analysis of Variance and Designed Experiments Usage Notes � 217

in the observations cause variations in differences between treatment
observations, making it difficult to confirm the effectiveness of one treatment to
another.

If observations on these treatments are completely independent then the design is
referred to as a completely randomized design or CRD. The IMSL C Numerical
Library has two routines for analysis of data from CRD:
imsls_f_anova_oneway (page 230) and imsls_f_crd_factorial
(page 267).

Both functions allow users to specify observations with missing values, have
unequal group sizes, and output treatment means and standard deviations. The
primary difference between the functions is that:
1. imsls_f_anova_oneway (page 230) conducts multiple comparisons of

treatment functions; whereas imsls_f_crd_factorial (page 267)
requires users to make a call to imsls_f_multiple_comparisons
(page 385) to compare treatment means.

2. imsls_f_crd_factorial (page 267) can analyze treatments with a
factorial treatment structure; whereas imsls_f_anova_oneway (page 230)
does not analyze factorial structures.

3. imsls_f_crd_factorial (page 267) can analyze data from CRD
experiments that are replicated across several blocks or locations. This can
happen when the same experiment is repeated at different times or different
locations.

Factorial Experiments
In some cases, treatments are identified by a combination of experimental factors.
For example, in an octane study comparing several different gasolines, each
gasoline could be developed using a combination of two additives, denoted below
in Table 1, as Additive A and Additive B:

Treatment Additive A Additive B

1 No No

2 Yes No

3 No Yes

4 Yes Yes

Table 1 - A 2x2 Factorial Experiment

This is referred to as a 2x2 or 22 factorial experiment. There are 4 treatments
involved in this study. One contains no additives, i.e. Treatment 1. Treatment 2
and 3 contain only one of the additives and treatment 4 contains both. A one-way
anova, such as found in anova_oneway can analyze these data as 4 different
treatments. Three functions, imsls_f_crd_factorial (page 267),
imsls_f_rcbd_factorial (page 279) and imsls_f_anova_factorial

218 � Usage Notes IMSL C/Stat/Library

(page 239) will analyze these data exploiting the factorial treatment structure.
These functions allow users to answer structural questions about the treatments
such as:
1. Are the average effects of the additives statistically significant? This is

referred to as the factor main effects.
2. Is there an interaction effect between the additives. That is, is the

effectiveness of an additive independent of the other?

Both imsls_f_crd_factorial (page 267) and imsls_f_rcbd_factorial
(page 279) support analysis of a factorial experiment with missing values and
multiple locations. The function imsls_f_anova_factorial (page 239) does
not support analysis of experiments with missing values or experiments replicated
over multiple locations. The main difference, as the names imply, between
imsls_f_crd_factorial and imsls_f_rcbd_factorial is that
imsls_f_crd_factorial assumes that treatments were completely
randomized to experimental units. The imsls_f_rcbd_factorial routine
assumes that treatments are blocked.

Blocking
Blocking is an important technique for reducing the impact of experimental error
on the ability of the researcher to evaluate treatment differences. Usually this
experimental error is caused by differences in location (spatial differences),
differences in time (temporal differences) or differences in experimental units.
Researchers refer to these as blocking factors. They are identifiable causes
known to cause variation in observations between experimental units.

There are several functions that specifically support blocking in an experiment:
imsls_f_rcbd_factorial (page 279), imsls_f_lattice (page 297), and
imsls_f_latin_square (page 288). The first two functions,
imsls_f_rcbd_factorial and imsls_f_lattice, support blocking on one
factor.

A requirement of RCBD experiments is that every block must contain
observations on every treatment. However, when the number of treatments (t) is
greater than the block size (), it is impossible to have every block contain
observations on every treatment.

b

In this case, when , an incomplete block design must be used instead of a
RCBD. Lattice designs are a type of incomplete block design in which the
number of treatments is equal to the square of an integer such as 9, 16, 25,
etc. Lattice designs were originally described by Yates (1936). The function
imsls_f_lattice (page 297) supports analysis of data from lattice
experiments.

t b�

t �

Besides the requirement that , another characteristic of lattice experiments
is that blocks be grouped into replicates, where each replicate contains one
observation for every treatment. This forces the number of blocks in each
replicate to be equal to the number of observations per block. That is, the number

2t k�

Chapter 4: Analysis of Variance and Designed Experiments Usage Notes � 219

of blocks per replicate and the number of observations per block are both equal to
k t�

n_

.

In addition, the number of replicate groups in Lattice experiments is always less
than or equal to . If it is equal to then the design is referred to as a
Balanced Lattice. If it is less than then the design is referred to as a
Partially Balanced Lattice. Tables of these experiments and their analysis are
tabulated in Cochran & Cox (1950).

1k � 1k �

1k �

Consider, for example, a 3x3 balanced-lattice, i.e., k=3 and t=9. Notice that the
number of replicates is . And the number of blocks per replicate and
block size are both k . The total number of blocks is equal to

. For a balanced-lattice,

1 4r k� � �

3
(1) 1r k� � �

�

sb � location �

(1)b r k k� � � � (1)t t� � � 4 3 1� � 2k� � .

Replicate I Replicate II
Block 1 (T1, T2, T3) Block 4 (T1, T4, T7)
Block 2 (T4, T5, T6) Block 5 (T2, T5, T8)
Block 3 (T7, T8, T9) Block 6 (T3, T6, T9)

Replicate III Replicate IV
Block 7 (T1, T5, T9) Block 10 (T1, T6, T8)
Block 8 (T2, T6, T7) Block 11 (T2, T4, T9)
Block 9 (T3, T4, T8) Block 12 (T3, T5, T7)

Table 2 - A 3x3 Balanced-Lattice for Nine Treatments in Four Replicates.

The Anova table for a balanced-lattice experiment, takes the form shared with
other balanced incomplete block experiments. In these experiments, the error
term is divided into two components: the Inter-Block Error and the Intra-Block
Error. For single and multiple locations, the general format of the Anova tables
for Lattice experiments is illustrated in Table 3 and Table 4.

Source DF Sum of Squares Mean Squares

 REPLICATES 1t � SSR MSR

 TREATMENTS(unadj) 1t � SST MST

TREATMENTS(adj) 1t � SSTa MSTa

BLOCKS(adj) (1)r k� � SSBa MSBa

INTRA-BLOCK ERROR (1)(1)k r k k� � � � SSE MSE

TOTAL 1r t� � SSTot

Table 3 – The Anova Table for a Lattice Experiment at One Location

220 � Usage Notes IMSL C/Stat/Library

Source DF Sum of
Squares

Mean
Squares

LOCATIONS 1p � SSL MSL

REPLICATES WITHIN
LOCATIONS

� �1p r � SSR MSR

TREATMENTS(unadj) 1t � SST MST

TREATMENTS(adj) 1t � SSTa MSTa

BLOCKS(adj) (1)p r k� � SSB MSB

INTRA-BLOCK ERROR � �(1) 1p k r k k� � � � SSE MSE

TOTAL 1p r t� � � SSTot

Table 4 – The Anova Table for a Lattice Experiment at Multiple Locations

Latin Square designs are very popular in cases where:
1. two blocking factors are involved
2. the two blocking factors do not interact with treatments, and
3. the number of blocks for each factor is equal to the number of treatments.

Consider an octane study involving 4 test vehicles tested in 4 bays with 4 test
gasolines. This is a natural arrangement for a Latin square experiment. In this
case there are 4 treatments, and two blocking factors, test vehicle and bay, each
with 4 levels. The Latin Square for this example would look like the following
arrangement.

 Test Vehicle

 1 2 3 4

1 A C B D

2 D B A C

3 C A D B

Test

Bay

4 B D C A
Table 5. A Latin Square Design for t=4 Treatments

As illustrated above in Table 5, the letters A-D are used to denote the four test
gasolines, or treatments. The assignment of each treatment to a particular test
vehicle and test bay is described in Table 5. Gasoline A, for example, is tested in
the following four vehicle/bay combinations: (1/1), (2/3), (3/2), and (4/4).

Chapter 4: Analysis of Variance and Designed Experiments Usage Notes � 221

Notice that each treatment appears exactly once in every row and column. This
balance, together with the assumed absence of interactions between treatments
and the two blocking factors is characteristic of a Latin Square.

The corresponding Anova table for these data contains information on the
blocking factors as well as treatment differences. Notice that the F-test for one of
the two blocking factors, test vehicle, is statistically significant
(p = 0.048); whereas the other, test bay, is not statistically significant (p=0.321).

Some researchers might use this as a basis to remove test bay as a blocking factor.
In that case, the design can then be analyzed as a RCBD experiment since every
treatment is repeated once and only once in every block, i.e., test vehicle.

Source Degrees

of
Freedom

Sum of
Squares

Mean Squares F-Test p-Value

Test Vehicle 3 1.5825 0.5275 4.83 0.048

Test Bay 3 0.0472 0.157 1.44 0.321

Gasoline 3 4.247 1.416 12.97 0.005

Error 6 0.655 0.109

Total 15 6.9575

Table 6 - Latin Square Anova Table for Octane Experiment

Multiple Locations
It is common for a researcher to repeat an experiment and then conduct an
analysis of the data. In agricultural experiments, for example, it is common to
repeat an experiment at several different farms. In other cases, a researcher may
want to repeat an experiment at a specified frequency, such as week, month or
year. If these repeated experiments are independent of one another then we can
treat them as multiple locations.

Several of the functions in this chapter allow for multiple locations:
imsls_f_crd_factorial (page 267), imsls_f_rcbd_factorial (page 279),
imsls_f_lattice (page 297), imsls_f_latin_square (page 288),
imsls_f_split_plot (page 316), imsls_f_split_split_plot (page 329),
imsls_f_strip_plot (page 345), strip_split_plot (page 355). All of these
functions allow for analysis of experiments replicated at multiple locations. By default
they all treat locations as a random factor. Function imsls_f_split_plot
also allows users to declare locations as a fixed effect.

222 � Usage Notes IMSL C/Stat/Library

Split-Plot Designs – Nesting and Restricted
Randomization
Originally, split-plot designs were developed for testing agricultural treatments,
such as varieties of wheat, different fertilizers or different insecticides. In these
original experiments, growing areas were divided into plots. The major treatment
factor, such as wheat variety, was randomly assigned to these plots. However, in
addition to testing wheat varieties, they wanted to test another treatment factor
such as fertilizer. This could have been done using a CRD or RCBD design. If a
CRD design was used then treatment combinations would need to be randomly
assigned to plots, such as shown below in Table 7.

CRD

W3F2 W1F3 W4F1 W2F1
W2F3 W1F1 W1F3 W1F2
W2F2 W3F1 W2F1 W4F2
W3F2 W1F1 W2F3 W1F2
W4F1 W3F2 W3F2 W4F3
W4F3 W3F1 W2F2 W4F2

Table 7 – Completely Randomized Experiments –Both Factors Randomized

In the CRD illustration above, any plot could have any combination of wheat
variety (W1, W2, W3 or W4) and fertilizer (F1, F2 or F3). There is no restriction
on randomization in a CRD. Any of the treatments can appear in
any of the 24 plots.

4 3 12t � � �

If a RCBD were used, all t=12 treatment combinations would need to be arranged
in blocks similar to what is described in Table 8, which places one restriction on
randomization.

RCBD

W3F3 W1F3 W4F1 W4F3
W2F3 W1F1 W3F2 W1F2

BLOCK 1

W2F2 W3F1 W2F1 W4F2
W3F2 W1F1 W2F3 W1F2
W4F1 W1F3 W3F2 W4F3

BLOCK 2

W2F1 W3F1 W2F2 W4F2
Table 8 – Randomized Complete Block Experiments –

Both Factors Randomized Within a Block

The RCBD arrangement is basically a replicated CRD design with a
randomization restriction that treatments are divided into two groups of replicates
which are assigned to a block of land. Randomization of treatments only occurs
within each block.

Chapter 4: Analysis of Variance and Designed Experiments Usage Notes � 223

At first glance, a split-plot experiment could be mistaken for a RCBD experiment
since it is also blocked. The split-plot arrangement with only one replicate for
this experiment is illustrated below in Table 9. Notice that it appears as if levels
of the fertilizer factor (F1, F2, and F3) are nested within wheat variety (W1, W2,
W3 and W4), however that is not the case. Varieties were actually randomly
assigned to one of four rows in the field. After randomizing wheat varieties,
fertilizer was randomized within wheat variety.

Split-Plot Design

Block 1 W2 W2F1 W2F3 W2F2
W1 W1F3 W1F1 W1F2
W4 W4F1 W4F3 W4F2

W3 W3F2 W3F1 W3F3
Block 2 W3 W3F2 W3F1 W3F3

W1 W1F3 W1F1 W1F2
W4 W4F1 W4F3 W4F2
W2 W2F1 W2F3 W2F2

Table 9 – A Split-Plot Experiment for Wheat (W) and Fertilizer (F)

The essential distinction between split-plot experiments and completely
randomized or randomized complete block experiments is the presence of a
second factor that is blocked, or nested, within each level of the first factor. This
second factor is referred to as the split-plot factor, and the first is referred to as
the whole-plot factor.

Both factors are randomized, but with a restriction on randomization of the
second factor, the split-plot factor. Whole plots (wheat variety) are randomly
assigned, without restriction to plots, or rows in this example. However, the
randomization of split-plots (fertilizer) is restricted. It is restricted to random
assignment within whole-plots.

Strip-Plot Designs
Strip-plot experiments look similar to split-plot experiments. In fact they are
easily confused, resulting in incorrect statistical analyses. The essential
distinction between strip-plot and split-plot experiments is the application of the
second factor. In a split-plot experiment, levels of the second factor are nested
within the whole-plot factor (see Table 11). In strip-plot experiments, the whole-
plot factor is completely crossed with the second factor (see Table 10).

This occurs, for example, when an agricultural field is used as a block and the
levels of the whole-plot factor are applied in vertical strips across the entire field.
Levels of the second factor are assigned to horizontal strips across the same
block.

224 � Usage Notes IMSL C/Stat/Library

 Whole-Plot Factor
 A2 A1 A4 A3

B3 A2B3 A1B3 A4B3 A3B3
B1 A2B1 A1B1 A4B1 A3B1

Strip
Plot B2 A2B2 A1B2 A4B2 A3B2

Table 10 – Strip-Plot Experiments – Strip-Plots Completely Crossed

Whole Plot Factor
A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B3
A2B3 A1B1 A4B3 A3B1
A2B2 A1B2 A4B2 A3B2

Table 11 – Split-Plot Experiments – Split-Plots Nested within Strip-Plots

As described in the previous section, in a split-plot experiment the second
experimental factor, referred to as the split-plot factor, is nested within the first
factor, referred to as the whole-plot factor.

Consider, for example, the semiconductor experiment described in Figure 1,
“Split-Plot Randomization” below. The wafers from each plater, the whole-plot
factor, are divided into equal size groups and then randomly assigned to an
etcher, the split-plot factor. Wafers from different platers are etched separately
from those that went through another plating machine. Randomization occurred
within each level of the whole-plot factor, i.e., plater.

Graphically, as shown below, this arrangement appears similar to a tree or
hierarchical structure.

Chapter 4: Analysis of Variance and Designed Experiments Usage Notes � 225

Wafer Lots

Randomization to Plating Machines

Plater 1 Plater 2 Plater 3 Plater 4

Randomization Randomization Randomization Randomization

E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3

Figure 1 - Split-Plot Randomization

Notice that although there are only 3 etchers, 12 different runs are made using
these etchers. The wafers randomly assigned to the first plater and first etcher are
processed separately from the wafers assigned to other plating machines.

In a strip-plot experiment, the second randomization of the wafers to etchers
occurs differently, see Figure 2, “Strip-Plot Semiconductor Experiment.” Instead
of randomizing the wafers from each plater to the three etchers and then running
them separately from the wafers from another plater, the wafers from each plater
are divided into three groups and then each randomly assigned to one of the three
etchers. However, the wafers from all four plating machines assigned to the same
etcher are run together.

226 � Usage Notes IMSL C/Stat/Library

Wafer Lots

Randomization to Plating Machines

Plater 1 Plater 2 Plater 3 Plater 4

Randomization to Etchers

Etcher 1 Etcher 1 Etcher 1

Figure 2 - Strip-Plot Semiconductor Experiment

Strip-plot experiments can be analyzed using imsls_f_strip_plot (page 345).
Function imsls_f_strip_plot returns a strip-plot Anova table with the
following general structure:

Source DF SS MS F-Test p-Value
Blocks 1 0.0005 0.0005 0.955 0.431

Whole-Plots: Plating
Machines 2 0.0139 0.0070 64.39

0.015

Whole-Plot Error 2 0.0002 0.0001 0.194 0.838

Strip-Plots: Etchers 1 0.0033 0.0033 100.0 0.060

Strip-Plot Error 1 <0.0001 <0.0001 0.060 0.830

Whole-Plot x Strip-Plot 2 0.0033 0.0017 2.970 0.251

Whole-Plot x Strip-Plot Error 2 0.0011 0.0006

Total 11 0.0225

Table 12 - Strip-Plot Anova Table for Semiconductor Experiment

Chapter 4: Analysis of Variance and Designed Experiments Usage Notes � 227

Split-Split Plot and Strip-Split Plot Experiments
There are hundreds of other designs used in research and industry. The designs
mentioned above are some of the most common. Other frequently used designs
include variations of the split and strip-plot designs:

�� Split-Split-Plot Experiments, and

�� Strip-Split Plot Experiments.

The essential distinction between split-plot and split-split-plot experiments is the
presence of a third factor that is blocked, or nested, within each level of the
whole-plot and split-plot factors. This third factor is referred to as the sub-plot,
factor. A split-plot experiment, see Table 12, has only two factors, denoted by A
and B. The second factor is nested within the first factor. Randomization of the
second factor, the split-plot factor, occurs within each level of the first factor.

Whole Plot Factor

A2 A1 A4 A3
A2B1 A1B3 A4B1 A3B2
A2B3 A1B1 A4B3 A3B1
A2B2 A1B2 A4B2 A3B3

Table 13 - Split-Plot Experiment – Split-Plot B Nested
within Whole-Plot A

On the other hand, a split-split plot experiment has three factors, illustrated in
Table 14 by A, B and C. The second factor is nested within the first factor, and
the third factor is nested within the second.

Whole Plot Factor A

A2 A1 A4 A3
A2B3C2
A2B3C1

A1B2C1
A1B2C2

A4B1C2
A4B1C1

A3B3C2
A3B3C1

A2B1C1
A2B1C2

A1B1C1
A1B1C2

A4B3C2
A4B3C1

A3B2C2
A3B2C1

A2B2C2
A2B2C1

A1B3C1
A1B3C2

A4B2C1
A4B2C2

A3B1C2
A3B1C1

Table 14 – Split-Split Plot Experiment – Sub-Plot Factor C Nested Within
Split-Plot Factor B, Nested Within Whole-Plot Factor A

Contrast the split-split plot experiment to the same experiment run using a strip-
split plot design (see Table 15). In a strip-split plot experiment factor B is
applied in strip across factor A; whereas, in a split-split plot experiment, factor B
is randomly assigned to each level of factor A. In a strip-split plot experiment,
the level of factor B is constant across a row; whereas in a split-split plot
experiment, the levels of factor B change as you go across a row, reflecting the

228 � Usage Notes IMSL C/Stat/Library

fact that for split-plot experiments, factor B is randomized within each level of
factor A.

 Factor A Strip Plots
 A2 A1 A4 A3

B3 A2B3C2
A2B3C1

A1B3C1
A1B3C2

A4B3C2
A4B3C1

A3B3C2
A3B3C1

B1 A2B1C1
A2B1C2

A1B1C1
A1B1C2

A4B1C2
A4B1C1

A3B1C2
A3B1C1

Factor B

Strip
Plots B2 A2B2C2

A2B2C1
A1B2C1
A1B2C2

A4B2C1
A4B2C2

A3B2C2
A3B2C1

Table 15 – Strip-Split Plot Experiment, Split-Plots Nested Within
Strip-Plot Factors A and B

In some studies, split-split-plot or strip-split-plot experiments are replicated at
several locations. Functions imsls_f_split_split_plot (page 329) and
imsls_f_strip_split_plot (page 355) can analyze these, even when the
number of blocks or replicates at each location is different.

Validating Key Assumptions in Anova
The key output in the analysis of designed experiments is the F-tests in the Anova
table for that experiment. The validity of these tests relies upon several key
assumptions:
1. observational errors are independent of one another,
2. observational errors are Normally distributed, and
3. the variance of observational errors is homogeneous across treatments.

These are referred to as the independence, Normality and homogeneity of
variance assumptions. All of these assumptions are evaluated by examining the
properties of the residuals, which are estimates of the observational error for each
observation. Residuals are calculated by taking the difference between each
observed value in the series and its corresponding estimate. In most cases, the
residual is the difference between the observed value and the mean for that
treatment.

The independence assumption can be examined by evaluating the magnitude of
the correlations among the residuals sorted in the order they were collected. The
IMSL function imsls_f_autocorrelation (see Chapter 8, “Times Series and
Forecasting”). can be used to obtain these correlations. The autocorrelations, to
a maximum lag of about 20, can be examined to identify any that are statistically
significant.

Residuals should be independent of one another, which implies that all
autocorrelations with a lag of 1 or higher should be statistically equivalent to

Chapter 4: Analysis of Variance and Designed Experiments Usage Notes � 229

zero. If a statistically significant autocorrelation is found, leading a researcher to
conclude that an autocorrelation is not equal to zero, then this would provide
sufficient evidence to conclude that the observational errors are not independent
of one another.

The second major assumption for analysis of variance is the Normality
assumption. In the IMSL C Numerical Library, the function
imsls_f_normality_test (see Chapter 7, “Tests of Goodness of Fit”)can be
used to determine whether the residuals are not Normally distributed. A small
p-value from this test provides sufficient evidence to conclude that the
observational errors are not Normally distributed.

The last assumption, homogeneity of variance, is evaluated by comparing
treatment standard errors. This is equivalent to testing whether

 , where � is the standard deviation of the observational error
for the ith treatment. This test can be conducted using imsls_f_homogeneity
(page 378). To conduct this test, the residuals, and their corresponding treatment
identifiers are passed into imsls_f_homogeneity. It calculates the
p-values for both Bartlett’s and Levene’s tests for equal variance. If a p-value is
below the stated significance level, a researcher would conclude that the within
treatment variances are not homogeneous.

1 2 t� � �� � �� i

Missing Observations
Missing observations create problems with the interpretation and calculation of
F-tests for designed experiments. The approach taken in the functions described
in this chapter is to estimate missing values using the Yates method and then to
compute the Anova table using these estimates.

Essentially the Yates method, implemented in imsls_f_yates (page 390),
replaces missing observations with the values that minimize the error sum of
squares in the Anova table. The Anova table is calculated using these estimates,
with one modification. The total degrees of freedom and the error degrees of
freedom are both reduced by the number of missing observations.

For simple cases, in which only one observation is missing, formulas have been
developed for most designs. See Steel and Torrie (1960) and Cochran and Cox
(1957) for a description of these formulas. However for more than one missing
observation, a multivariate optimization is conducted to simultaneously estimate
the missing values. For the simple case with only one missing value, this
approach produces estimates identical to the published formulas for a single
missing value.

A potential issue arises when the Anova table contains more than one form of
error, such as split-plot and strip-plot designs. In every case, missing values are
estimated by minimizing the last error term in the table.

230 � anova_oneway IMSL C/Stat/Library

anova_oneway
Analyzes a one-way classification model.

Synopsis
#include <imsls.h>
float imsls_f_anova_oneway (int n_groups, int n[], float y[], ..., 0)

The type double function is imsls_d_anova_oneway

Required Arguments

int n_groups (Input)
Number of groups.

int n[] (Input)
Array of length n_groups containing the number of responses for each
group.

float y[] (Input)
Array of length n [0] + n [1] + � + n [n_group � 1] containing the
responses for each group.

Return Value
The p-value for the F-statistic.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_anova_oneway (int n_groups, int n[], float y[],

IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_GROUP_MEANS, float **means,
IMSLS_GROUP_MEANS_USER, float means[],
IMSLS_GROUP_STD_DEVS, float **std_devs,
IMSLS_GROUP_STD_DEVS_USER, float std_devs[],
IMSLS_GROUP_COUNTS, int **counts,
IMSLS_GROUP_COUNTS_USER, int counts[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_TUKEY, float **ci_diff_means, or
IMSLS_DUNN_SIDAK, float **ci_diff_means, or
IMSLS_BONFERRONI, float **ci_diff_means, or
IMSLS_SCHEFFE, float **ci_diff_means, or
IMSLS_ONE_AT_A_TIME, float **ci_diff_means,
IMSLS_TUKEY_USER, float ci_diff_means[], or
IMSLS_DUNN_SIDAK_USER, float ci_diff_means[], or
IMSLS_BONFERRONI_USER, float ci_diff_means[], or
IMSLS_SCHEFFE_USER, float ci_diff_means[], or

Chapter 4: Analysis of Variance and Designed Experiments anova_oneway � 231

IMSLS_ONE_AT_A_TIME_USER, float ci_diff_means[],
0)

Optional Arguments
IMSLS_ANOVA_TABLE, float **anova_table (Output)

Address of a pointer to an internally allocated array of size 15 containing
the analysis of variance table. The analysis of variance statistics are as
follows:

Element Analysis of Variance Statistics
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square
8 overall F-statistic
9 p-value

10 R2 (in percent)
11 adjusted R2 (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

IMSLS_GROUP_MEANS, float **means (Output)
Address of a pointer to an internally allocated array of length n_groups
containing the group means.

IMSLS_GROUP_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See
IMSLS_GROUP_MEANS.

IMSLS_GROUP_STD_DEVS, float **std_devs (Output)
Address of a pointer to an internally allocated array of length n_groups
containing the group standard deviations.

232 � anova_oneway IMSL C/Stat/Library

IMSLS_GROUP_STD_DEVS_USER, float std_devs[] (Output)
Storage for array std_devs is provided by the user. See
IMSLS_STD_DEVS.

IMSLS_GROUP_COUNTS, int **counts (Output)
Address of a pointer to an internally allocated array of length n_groups
containing the number of nonmissing observations for the groups.

IMSLS_GROUP_COUNTS_USER, int counts[] (Output)
Storage for array counts is provided by the user. See IMSLS_COUNTS.

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for the simultaneous interval estimation.
If IMSLS_TUKEY is specified, confidence must be in the range
[90.0, 99.0). Otherwise, confidence is in the range [0.0, 100.0).
Default: confidence = 95.0

IMSLS_TUKEY, float **ci_diff_means (Output), or
IMSLS_DUNN_SIDAK, float **ci_diff_means (Output), or
IMSLS_BONFERRONI, float **ci_diff_means (Output), or
IMSLS_SCHEFFE, float **ci_diff_means (Output), or
IMSLS_ONE_AT_A_TIME, float **ci_diff_means (Output)

Function imsls_f_anova_oneway computes the confidence intervals
on all pairwise differences of means using any one of six methods:
Tukey, Tukey-Kramer, Dunn-Šidák, Bonferroni, Scheffé, or Fisher’s
LSD (One-at-a-Time). If IMSLS_TUKEY is specified, the Tukey
confidence intervals are calculated if the group sizes are equal;
otherwise, the Tukey-Kramer confidence intervals are calculated.

On return, ci_diff_means contains the address of a pointer to a

� �2 5�ngroups

internally allocated array containing the statistics relating to the
difference of means.

Column Description
0 group number for the i-th mean
1 group number for the j-th mean
2 difference of means (i-th mean) � (j-th mean)
3 lower confidence limit for the difference
4 upper confidence limit for the difference

IMSLS_TUKEY_USER, float ci_diff_means[] (Output), or
IMSLS_DUNN_SIDAK_USER, float ci_diff_means[] (Output), or
IMSLS_BONFERRONI_USER, float ci_diff_means[] (Output), or
IMSLS_SCHEFFE_USER, float ci_diff_means[] (Output), or
IMSLS_ONE_AT_A_TIME_USER, float ci_diff_means[] (Output)

Storage for array ci_diff_means is provided by the user.

Chapter 4: Analysis of Variance and Designed Experiments anova_oneway � 233

Description
Function imsls_f_anova_oneway performs an analysis of variance of
responses from a oneway classification design. The model is

yij = �i + �ij i = 1, 2, �, k; j = 1, 2, �, ni

where the observed value yij constitutes the j-th response in the i-th group,
�i denotes the population mean for the i-th group, and the �ij arguments are errors
that are identically and independently distributed normal with mean 0 and
variance �2. Function imsls_f_anova_oneway requires the yij observed
responses as input into a single vector y with responses in each group occupying
contiguous locations. The analysis of variance table is computed along with the
group sample means and standard deviations. A discussion of formulas and
interpretations for the one-way analysis of variance problem appears in most
elementary statistics texts, e.g., Snedecor and Cochran (1967, Chapter 10).

Function imsls_f_anova_oneway computes simultaneous confidence intervals
on all

� �1
2

k k
k�

�

�

pairwise comparisons of k means �1 �2, �, �k in the one-way analysis of variance
model. Any of several methods can be chosen. A good review of these methods is
given by Stoline (1981). The methods are also discussed in many elementary
statistics texts, e.g., Kirk (1982, pp. 114�127).

Let s2 be the estimated variance of a single observation. Let v be the degrees of
freedom associated with s2. Let

1
100.0

� � �

confidence

The methods are summarized as follows:

Tukey method: The Tukey method gives the narrowest simultaneous confidence
intervals for all pairwise differences of means �i � �j in balanced
(n1 = n2 = � = nk = n) one-way designs. The method is exact and uses the
Studentized range distribution. The formula for the difference �i � �j is given by

2
1 ; , sk vi j n

y y q
��

� �

where q1-a;k,v is the (1 � �) 100 percentage point of the Studentized range
distribution with parameters k and v.

Tukey-Kramer method: The Tukey-Kramer method is an approximate
extension of the Tukey method for the unbalanced case. (The method simplifies
to the Tukey method for the balanced case.) The method always produces
confidence intervals narrower than the Dunn-Šidák and Bonferroni methods.
Hayter (1984) proved that the method is conservative, i.e., the method guarantees
a confidence coverage of at least (1 � �) 100. Hayter’s proof gave further support

234 � anova_oneway IMSL C/Stat/Library

to earlier recommendations for its use (Stoline 1981). (Methods that are currently
better are restricted to special cases and only offer improvement in severely
unbalanced cases; see, for example, Spurrier and Isham 1985.) The formula for
the difference �i � �j is given by the following:

2 2
1 ; ,

2 2i j

s si j v k
n n

y y q
�� �

� �

Dunn-Šidák method: The Dunn-Šidák method is a conservative method. The
method gives wider intervals than the Tukey-Kramer method. (For large v and
small � and k, the difference is only slight.) The method is slightly better than the
Bonferroni method and is based on an improved Bonferroni (multiplicative)
inequality (Miller 1980, pp. 101, 254�255). The method uses the t distribution
(see function imsls_f_t_inverse_cdf, Chapter 11, “Probability Distribution
Functions and Inverses. The formula for the difference �i � �j is given by

� �
2 2

1/1 1 1 ;
2 2

k

i j

i j s sv
n n

y y t
�

�

� � �

� �

where tf ;v is the 100f percentage point of the t distribution with 	 degrees of
freedom.

Bonferroni method: The Bonferroni method is a conservative method based on
the Bonferroni (additive) inequality (Miller, p. 8). The method uses the t
distribution. The formula for the difference �i � �j is given by the following:

2 2
1 ;

2 i j

i j s sv
n nk

y y t
�

�
� �

� �

Scheffé method: The Scheffé method is an overly conservative method for
simultaneous confidence intervals on pairwise difference of means. The method is
applicable for simultaneous confidence intervals on all contrasts, i.e., all linear
combinations

1

k

i i
i

c �
�

�

where the following is true:

1
0

k

i
i

c
�

��

This method can be recommended here only if a large number of confidence
intervals on contrasts in addition to the pairwise differences of means are to be
constructed. The method uses the F distribution (see function
imsls_f_F_inverse_cdf, Chapter 11, “Probabilty and Distribution Functions
and Inverses”). The formula for the difference �i � �j is given by

� �
2 2

1 ; 1,1 (i j k v
i j

)s sy y k F
n n�� �

� � � �

Chapter 4: Analysis of Variance and Designed Experiments anova_oneway � 235

where F1-a;(k-1),v is the (1 � �) 100 percentage point of the F distribution with
k � 1 and 	 degrees of freedom.

One-at-a-Time t method (Fisher’s LSD): The One-at-a-Time t method is
appropriate for constructing a single confidence interval. The confidence
percentage input is appropriate for one interval at a time. The method has been
used widely in conjunction with the overall test of the null hypothesis
�1 = �2 = � = �k by the use of the F statistic. Fisher’s LSD (least significant
difference) test is a two-stage test that proceeds to make pairwise comparisons of
means only if the overall F test is significant. Milliken and Johnson (1984, p. 31)
recommend LSD comparisons after a significant F only if the number of
comparisons is small and the comparisons were planned prior to the analysis. If
many unplanned comparisons are made, they recommend Scheffé’s method. If the
F test is insignificant, a few planned comparisons for differences in means can
still be performed by using either Tukey, Tukey-Kramer, Dunn-Šidák,or
Bonferroni methods. Because the F test is insignificant, Scheffé’s method does
not yield any significant differences. The formula for the difference �i � �j is
given by the following:

2 2
1 ;

2 i j

i j s sv
n n

y y t
�

� �

� �

Examples

Example 1
This example computes a one-way analysis of variance for data discussed by
Searle (1971, Table 5.1, pp. 165�179). The responses are plant weights for six
plants of three different types—three normal, two off-types, and one aberrant.
The responses are given by type of plant in the following table:

Normal Off-Type Aberrant
101 84 32

105 88
94

#include <imsls.h>
main()
{
 int n_groups=3;
 int n[] = {3, 2, 1};
 float y[] = {101.0, 105.0, 94.0, 84.0, 88.0, 32.0};
 float p_value;
 p_value = imsls_f_anova_oneway (n_groups, n, y, 0);
 printf ("p-value = %6.4f", p_value);
 }

236 � anova_oneway IMSL C/Stat/Library

Output
p-value = 0.002

Example 2
The data used in this example is the same as that used in the initial example.
Here, the anova_table is printed.

#include <imsls.h>
main()
{
 int n_groups=3;
 int n[] = {3, 2, 1};
 float y[] = {101.0, 105.0, 94.0, 84.0, 88.0, 32.0};
 float p_value;
 float *anova_table;
 char *labels[] = {
 "degrees of freedom for among groups",
 "degrees of freedom for within groups",
 "total (corrected) degrees of freedom",
 "sum of squares for among groups",
 "sum of squares for within groups",
 "total (corrected) sum of squares",
 "among mean square",
 "within mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of within error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 /* Perform analysis */
 p_value = imsls_f_anova_oneway (n_groups, n, y,
 IMSLS_ANOVA_TABLE, &anova_table,
 0);
 /* Print results */
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%9.2f",
 0);
}

Output
 * * * Analysis of Variance * * *
degrees of freedom for among groups 2.00
degrees of freedom for within groups 3.00
total (corrected) degrees of freedom 5.00
sum of squares for among groups 3480.00
sum of squares for within groups 70.00
total (corrected) sum of squares 3550.00
among mean square 1740.00
within mean square 23.33
F-statistic 74.57
p-value 0.00
R-squared (in percent) 98.03
adjusted R-squared (in percent) 96.71

Chapter 4: Analysis of Variance and Designed Experiments anova_oneway � 237

est. standard deviation of within error 4.83
overall mean of y 84.00
coefficient of variation (in percent) 5.75

Example 3
Simultaneous confidence intervals are generated for the following measurements
of cold-cranking power for five models of automobile batteries. Nelson (1989,
pp. 232�241) provided the data and approach.

Model 1 Model 2 Model 3 Model 4 Model 5
41 42 27 48 28
43 43 26 45 32
42 46 28 51 37
46 38 27 46 25

The Tukey method is chosen for the analysis of pairwise comparisons, with a
confidence level of 99 percent. The means and their confidence limits are output.

#include <imsls.h>

void main()
{

 int n_groups = 5;
 int n[] = {4, 4, 4, 4, 4};
 int permute[] = {2, 3, 4, 0, 1};
 float y[] = {41.0, 43.0, 42.0, 46.0, 42.0,
 43.0, 46.0, 38.0, 27.0, 26.0,
 28.0, 27.0, 48.0, 45.0, 51.0,
 46.0, 28.0, 32.0, 37.0, 25.0};
 float *anova_table, *ci_diff_means, tmp_diff_means[50];
 float confidence = 99.0;
 char *labels[] = {
 "degrees of freedom for among groups",
 "degrees of freedom for within groups",
 "total (corrected) degrees of freedom",
 "sum of squares for among groups",
 "sum of squares for within groups",
 "total (corrected) sum of squares",
 "among mean square",
 "within mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of within error",
 "overall mean of y",
 "coefficient of variation (in percent)"};
 char *mean_row_labels[] = {
 "first and second",
 "first and third",
 "first and fourth",
 "first and fifth",
 "second and third",
 "second and fourth",
 "second and fifth",

238 � anova_oneway IMSL C/Stat/Library

 "third and fourth",
 "third and fifth",
 "fourth and fifth"};
 char *mean_col_labels[] = {
 "Means",
 "Difference of means",
 "Lower limit",
 "Upper limit"};
 /* Perform analysis */

 imsls_f_anova_oneway(n_groups, n, y,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_CONFIDENCE, confidence,
 IMSLS_TUKEY, &ci_diff_means,
 0);
 /* Print anova_table */
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15,
 1, anova_table,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%9.2f",
 0);
 /* Permute ci_diff_means for printing */
 imsls_f_permute_matrix(10, 5, ci_diff_means, permute,
 IMSLS_PERMUTE_COLUMNS,
 IMSLS_RETURN_USER, tmp_diff_means,
 0);
 /* Print ci_diff_means */
 imsls_f_write_matrix("* * * Differences in Means * * *\n", 10,
 3, tmp_diff_means,
 IMSLS_A_COL_DIM, 5,
 IMSLS_ROW_LABELS, mean_row_labels,
 IMSLS_COL_LABELS, mean_col_labels,
 IMSLS_WRITE_FORMAT, "%9.2f",
 0);
}

Output
 * * * Analysis of Variance * * *

degrees of freedom for among groups 4.00
degrees of freedom for within groups 15.00
total (corrected) degrees of freedom 19.00
sum of squares for among groups 1242.20
sum of squares for within groups 150.75
total (corrected) sum of squares 1392.95
among mean square 310.55
within mean square 10.05
F-statistic 30.90
p-value 0.00
R-squared (in percent) 89.18
adjusted R-squared (in percent) 86.29
est. standard deviation of within error 3.17
overall mean of y 38.05
coefficient of variation (in percent) 8.33

 * * * Differences in Means * * *

Means Difference Lower limit Upper limit

Chapter 4: Analysis of Variance and Designed Experiments anova_factorial � 239

 of means
first and second 0.75 -8.05 9.55
first and third 16.00 7.20 24.80
first and fourth -4.50 -13.30 4.30
first and fifth 12.50 3.70 21.30
second and third 15.25 6.45 24.05
second and fourth -5.25 -14.05 3.55
second and fifth 11.75 2.95 20.55
third and fourth -20.50 -29.30 -11.70
third and fifth -3.50 -12.30 5.30
fourth and fifth 17.00 8.20 25.80

anova_factorial
Analyzes a balanced factorial design with fixed effects.

Synopsis
#include <imsls.h>
float imsls_f_anova_factorial (int n_subscripts, int n_levels,

float y[], ..., 0)

The type double function is imsls_d_anova_factorial

Required Arguments

int n_subscripts (Input)
Number of subscripts. Number of factors in the model + 1 (for the error
term).

int n_levels (Input)
Array of length n_subscripts containing the number of levels for each
of the factors for the first n_subscripts � 1 elements. n_levels
[n_subscripts � 1] is the number of observations per cell.

float y[] (Input)
Array of length n_levels [0]*n_levels [1]* � *n_levels
[n_subscripts � 1] containing the responses. Argument y must not
contain NaN for any of its elements, i.e., missing values are not allowed.

Return Value
The p-value for the overall F test.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_anova_factorial (int n_subscripts, int n_levels,

float y[],
IMSLS_MODEL_ORDER, int model_order,
IMSLS_PURE_ERROR, or
IMSLS_POOL_INTERACTIONS,

240 � anova_factorial IMSL C/Stat/Library

IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_TEST_EFFECTS, float **test_effects,
IMSLS_TEST_EFFECTS_USER, float test_effects[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
0)

Optional Arguments
IMSLS_MODEL_ORDER, int model_order (Input)

Number of factors to be included in the highest-way interaction in the
model. Argument model_order must be in the interval
[1, n_subscripts � 1]. For example, a model_order of 1 indicates
that a main effect model will be analyzed, and a model_order of 2
indicates that two-way interactions will be included in the model.
Default: model_order = n_subscripts � 1

IMSLS_PURE_ERROR, or
IMSLS_POOL_INTERACTIONS (Input)

IMSLS_PURE_ERROR, the default option, indicates factor
n_subscripts is error. Its main effect and all its interaction effects are
pooled into the error with the other (model_order + 1)-way and higher-
way interactions. IMSLS_POOL_INTERACTIONS indicates factor
n_subscripts is not error. Only (model_order + 1)-way and higher-
way interactions are included in the error.

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to an internally allocated array of size 15 containing
the analysis of variance table. The analysis of variance statistics are
given as follows:

Element Analysis of Variance Statistics
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square
8 overall F-statistic
9 p-value

10 R2 (in percent)

Chapter 4: Analysis of Variance and Designed Experiments anova_factorial � 241

Element Analysis of Variance Statistics
11 adjusted R2 (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

IMSLS_TEST_EFFECTS, float **test_effects (Output)
Address of a pointer to an NEF
 4 internally allocated array containing a
matrix containing statistics relating to the sums of squares for the effects
in the model. Here,

� � � � � �1 2 min (,| |)NEF n n n
n� � � � model_order�

where n is given by n_subscripts if IMSLS_POOL_INTERACTIONS is
specified; otherwise, n_subscripts � 1.

Suppose the factors are A, B, C, and error. With model_order = 3,
rows 0 through NEF � 1 would correspond to A, B, C, AB, AC, BC, and
ABC, respectively. The columns of test_effects are as follows:

Column Description
0 degrees of freedom
1 sum of squares
2 F-statistic
3 p-value

IMSLS_TEST_EFFECTS_USER, float test_effects[] (Output)
Storage for array test_effects is provided by the user. See
IMSLS_TEST_EFFECTS.

IMSLS_MEANS, float **means (Output)
Address of a pointer to an internally allocated array of length
(n_levels [0] + 1)
 (n_levels [1] + 1)
 �

(n_levels[n � 1] + 1) containing the subgroup means.

See argument IMSLS_TEST_EFFECTS for a definition of n. If the factors
are A, B, C, and error, the ordering of the means is grand mean, A
means, B means, C means, AB means, AC means, BC means, and ABC
means.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

242 � anova_factorial IMSL C/Stat/Library

k

�

Description
Function imsls_f_anova_factorial performs an analysis for an n-way
classification design with balanced data. For balanced data, there must be an
equal number of responses in each cell of the n-way layout. The effects are
assumed to be fixed effects. The model is an extension of the two-way model to
include n factors. The interactions (two-way, three-way, up to n-way) can be
included in the model, or some of the higher-way interactions can be pooled into
error. The argument model_order specifies the number of factors to be included
in the highest-way interaction. For example, if three-way and higher-way
interactions are to be pooled into error, set model_order = 2. (By default,
model_order = n_subscripts � 1 with the last subscript being the error
subscript.) Argument IMSLS_PURE_ERROR indicates there are repeated responses
within the n-way cell; IMSLS_POOL_INTERACTIONS_INTO_ERROR indicates
otherwise.

Function imsls_f_anova_factorial requires the responses as input into a
single vector y in lexicographical order, so that the response subscript associated
with the first factor varies least rapidly, followed by the subscript associated with
the second factor, and so forth. Hemmerle (1967, Chapter 5) discusses the
computational method.

Examples

Example 1
A two-way analysis of variance is performed with balanced data discussed by
Snedecor and Cochran (1967, Table 12.5.1, p. 347). The responses are the weight
gains (in grams) of rats that were fed diets varying in the source (A) and level (B)
of protein. The model is

1, 2; 1, 2, 3; 1, 2, ...,10ijk i j ij ijky i j� � �� �� � � � � � � �

where
2 3 2 3

1 1 1 1
0; 0; 0 for 1, 2, 3; and 0i j ij ij

i j i j
j� � � �

� � � �

� � � �� � � �

for i = 1, 2. The first responses in each cell in the two-way layout are given in the
following table:

Chapter 4: Analysis of Variance and Designed Experiments anova_factorial � 243

 Protein Source (A)
Protein Level (B) Beef Cereal Pork
High 73, 102, 118, 104,

81, 107, 100, 87,
117, 111

98, 74, 56, 111,
95, 88, 82, 77, 86,
92

94, 79, 96, 98,
102, 102, 108, 91,
120, 105

Low 90, 76, 90, 64, 86,
51, 72, 90, 95, 78

107, 95, 97, 80,
98, 74, 74, 67, 89,
58

49, 82, 73, 86, 81,
97, 106, 70, 61,
82

#include <imsls.h>

void main ()
{
 int n_subscripts= 3;
 int n_levels[3] = {3,2,10};
 float p_value;
 float y[60] = {
 73.0, 102.0, 118.0, 104.0, 81.0,
 107.0, 100.0, 87.0, 117.0, 111.0,
 90.0, 76.0, 90.0, 64.0, 86.0,
 51.0, 72.0, 90.0, 95.0, 78.0,
 98.0, 74.0, 56.0, 111.0, 95.0,
 88.0, 82.0, 77.0, 86.0, 92.0,
 107.0, 95.0, 97.0, 80.0, 98.0,
 74.0, 74.0, 67.0, 89.0, 58.0,
 94.0, 79.0, 96.0, 98.0, 102.0,
 102.0, 108.0, 91.0, 120.0, 105.0,
 49.0, 82.0, 73.0, 86.0, 81.0,
 97.0, 106.0, 70.0, 61.0, 82.0};

 p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y, 0);

 printf("P-value = %10.6f",p_value);
}

Output
P-value = 0.00229

Example 2
In this example, the same model and data is fit as in the initial example, but
optional arguments are used for a more complete analysis.

#include <imsls.h>

void main ()
{
 int n_subscripts= 3;
 int n_levels[3] = {3,2,10};
 float p_value;
 float *test_effects, *means, *anova_table;
 float y[60] = {
 73.0, 102.0, 118.0, 104.0, 81.0,

244 � anova_factorial IMSL C/Stat/Library

 107.0, 100.0, 87.0, 117.0, 111.0,
 90.0, 76.0, 90.0, 64.0, 86.0,
 51.0, 72.0, 90.0, 95.0, 78.0,
 98.0, 74.0, 56.0, 111.0, 95.0,
 88.0, 82.0, 77.0, 86.0, 92.0,
 107.0, 95.0, 97.0, 80.0, 98.0,
 74.0, 74.0, 67.0, 89.0, 58.0,
 94.0, 79.0, 96.0, 98.0, 102.0,
 102.0, 108.0, 91.0, 120.0, 105.0,
 49.0, 82.0, 73.0, 86.0, 81.0,
 97.0, 106.0, 70.0, 61.0, 82.0};
 char *labels[] = {
 "degrees of freedom for the model",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for the model",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "model mean square", "error mean square",
 "F-statistic", "p-value",
 "R-squared (in percent)","Adjusted R-squared (in percent)",
 "est. standard deviation of the model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 char *test_row_labels[] = {"A", "B", "A*B"};
 char *test_col_labels[] = {
 "Source", "DF", "Sum of\nSquares",
 "Mean\nSquare", "Prob. of\nLarger F"};

 char *mean_row_labels[] = {
 "grand mean",
 "A1", "A2", "A3",
 "B1", "B2",
 "A1*B1", "A1*B2", "A2*B1", "A2*B2", "A3*B1", "A3*B2"};
 /* Perform analysis */
 p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_TEST_EFFECTS, &test_effects,
 IMSLS_MEANS, &means,
 0);

 printf("P-value = %10.6f",p_value);
 /* Print results */
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);

 imsls_f_write_matrix("* * * Variation Due to the Model * * *", 3, 4,
 test_effects,
 IMSLS_ROW_LABELS, test_row_labels,
 IMSLS_COL_LABELS, test_col_labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);

 imsls_f_write_matrix("* * * Subgroup Means * * *", 12, 1,
 means,

Chapter 4: Analysis of Variance and Designed Experiments anova_factorial � 245

 IMSLS_ROW_LABELS, mean_row_labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);
}

Output
P-value = 0.002299

 * * * Analysis of Variance * * *

degrees of freedom for the model 5.0000
degrees of freedom for error 54.0000
total (corrected) degrees of freedom 59.0000
sum of squares for the model 4612.9346
sum of squares for error 11585.9990
total (corrected) sum of squares 16198.9336
model mean square 922.5869
error mean square 214.5555
F-statistic 4.3000
p-value 0.0023
R-squared (in percent) 28.4768
Adjusted R-squared (in percent) 21.8543
est. standard deviation of the model error 14.6477
overall mean of y 87.8667
coefficient of variation (in percent) 16.6704

 * * * Variation Due to the Model * * *
Source DF Sum of Mean Prob. of
 Squares Square Larger F
A 2.0000 266.5330 0.6211 0.5411
B 1.0000 3168.2678 14.7667 0.0003
A*B 2.0000 1178.1337 2.7455 0.0732

* * * Subgroup Means * * *
 grand mean 87.8667
 A1 89.6000
 A2 84.9000
 A3 89.1000
 B1 95.1333
 B2 80.6000
 A1*B1 100.0000
 A1*B2 79.2000
 A2*B1 85.9000
 A2*B2 83.9000
 A3*B1 99.5000
 A3*B2 78.7000

Example 3
This example performs a three-way analysis of variance using data discussed by
John (1971, pp. 91�92). The responses are weights (in grams) of roots of carrots
grown with varying amounts of applied nitrogen (A), potassium (B), and
phosphorus (C). Each cell of the three-way layout has one response. Note that the

246 � anova_factorial IMSL C/Stat/Library

ABC interactions sum of squares, which is 186, is given incorrectly by John
(1971, Table 5.2.) The three-way layout is given in the following table:

 A0 A1 A2

 B0 B1 B2 B0 B1 B2 B0 B1 B2

C0 88.76 91.41 97.85 94.83 100.4
9

99.75 99.90 100.2
3

104.51

C1 87.45 98.27 95.85 84.57 97.20 112.30 92.98 107.7
7

110.94

C2 86.01 104.2
0

90.09 81.06 120.8
0

108.77 94.72 118.3
9

102.87

#include <imsls.h>

void main ()
{
 int n_subscripts= 3;
 int n_levels[3] = {3,3,3};
 float p_value;
 float *test_effects, *anova_table;
 float y[27] = {
 88.76, 87.45, 86.01, 91.41, 98.27, 104.2, 97.85, 95.85,
 90.09, 94.83, 84.57, 81.06, 100.49, 97.2, 120.8, 99.75,
 112.3, 108.77, 99.9, 92.98, 94.72, 100.23, 107.77, 118.39,
 104.51, 110.94, 102.87};
 char *labels[] = {
 "degrees of freedom for the model",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for the model",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "model mean square", "error mean square",
 "F-statistic", "p-value",
 "R-squared (in percent)","Adjusted R-squared (in percent)",
 "est. standard deviation of the model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 char *test_row_labels[] = {"A", "B", "C", "A*B", "A*C", "B*C"};
 char *test_col_labels[] = {
 "Source", "DF", "Sum of\nSquares",
 "Mean\nSquare", "Prob. of\nLarger F"};
 /* Perform analysis */
 p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_TEST_EFFECTS, &test_effects,
 IMSLS_POOL_INTERACTIONS,
 0);
 /* Print results */
 printf("P-value = %10.6f",p_value);

 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, labels,

Chapter 4: Analysis of Variance and Designed Experiments anova_nested � 247

 IMSLS_WRITE_FORMAT, "%11.4f",
 0);

 imsls_f_write_matrix("* * * Variation Due to the Model * * *", 6, 4,
 test_effects,
 IMSLS_ROW_LABELS, test_row_labels,
 IMSLS_COL_LABELS, test_col_labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);

}

Output
P-value = 0.008299

 * * * Analysis of Variance * * *

degrees of freedom for the model 18.0000
degrees of freedom for error 8.0000
total (corrected) degrees of freedom 26.0000
sum of squares for the model 2395.7290
sum of squares for error 185.7763
total (corrected) sum of squares 2581.5054
model mean square 133.0961
error mean square 23.2220
F-statistic 5.7315
p-value 0.0083
R-squared (in percent) 92.8036
Adjusted R-squared (in percent) 76.6116
est. standard deviation of the model error 4.8189
overall mean of y 98.9619
coefficient of variation (in percent) 4.8695

 * * * Variation Due to the Model * * *
Source DF Sum of Mean Prob. of
 Squares Square Larger F
A 2.0000 488.3678 10.5152 0.0058
B 2.0000 1090.6559 23.4832 0.0004
C 2.0000 49.1484 1.0582 0.3911
A*B 4.0000 142.5856 1.5350 0.2804
A*C 4.0000 32.3474 0.3482 0.8383
B*C 4.0000 592.6240 6.3800 0.0131

anova_nested
Analyzes a completely nested random model with possibly unequal numbers in
the subgroups.

Synopsis
#include <imsls.h>
float *imsls_f_anova_nested (int n_factors, int equal_option, int

n_levels[], float y[], ..., 0)

The type double function is imsls_d_anova_nested.

248 � anova_nested IMSL C/Stat/Library

Required Arguments

int n_factors (Input)
Number of factors (number of subscripts) in the model, including error.

int equal_option (Input)
Equal numbers option.

equal_option Description

0 Unequal numbers in the subgroups

1 Equal numbers in the subgroups

int n_levels[] (Input)
Array with the number of levels.

 If equal_option = 1, n_levels is of length n_factors and contains
the number of levels for each of the factors. In this case, the following
additional variables are referred to in the description of anova_nested:

Variable Description

LNL n_levels[0] + n_levels[0] * n_levels[1] +
... + n_levels[0] * n_levels[1] * ... *
n_levels[n_factors – 2]

LNLNF n_levels[0] * n_levels[1] * ...*
 n_levels[n_factors – 2]

NOBS The number of observations. NOBS equals n_levels[0] *
n_levels[1] * ... * n_levels[n_factors-1].

If equal_option = 0, n_levels contains the number of levels of each factor at
each level of the factor in which it is nested. In this case, the following additional
variables are referred to in the description of anova_nested:

Variable Description

LNL Length of n_levels.

LNLNF Length of the subvector of n_levels for the last factor.

NOBS Number of observations. NOBS equals the sum of the last
LNLNF elements of n_levels.

For example, a random one-way model with two groups, five responses in the
first group and ten in the second group, would have LNL= 3, LNLNF= 2,
NOBS = 15, n_levels[0] = 2, n_levels[1] = 5, and
n_levels[2] = 10.

float y[] (Input)
Array of length NOBS containing the responses. The elements of Y are
ordered lexicographically, i.e., the last model subscript changes most

Chapter 4: Analysis of Variance and Designed Experiments anova_nested � 249

rapidly, the next to last model subscript changes the next most rapidly,
and so forth, with the first subscript changing the slowest.

Return Value
The p-value for the F-statistic, anova_table[9].

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_anova_nested (int n_factors, int equal_option, int

n_levels[], float y[],
 IMSLS_ANOVA_TABLE, float **anova_table,
 IMSLS_ANOVA_TABLE_USER, float anova_table[]

IMSLS_CONFIDENCE, float confidence,
IMSLS_VARIANCE_COMPONENTS, float **variance_components,
IMSLS_VARIANCE_COMPONENTS_USER, float
variance_components[],
IMSLS_EMS, float **expect_mean_sq,
IMSLS_EMS_USER, float expect_mean_sq[],
IMSLS_Y_MEANS, float **y_means,
IMSLS_Y_MEANS_USER, float y_means[],
 0)

Optional Arguments
IMSLS_ANOVA_TABLE, float **anova_table, (Output)

Address of a pointer to an internally allocated array of size 15
containing the analysis of variance table. The analysis of variance
statistics are as follows:

Element Analysis of Variance Statistics

0 Degrees of freedom for the model

1 Degrees of freedom for error

2 Total (corrected) degrees of freedom

3 Sum of squares for the model

4 Sum of squares for error

5 Total (corrected) sum of squares

6 Model mean square

7 Error mean square

8 Overall F-statistic

9 p-value

10 R2 (in percent)

250 � anova_nested IMSL C/Stat/Library

11 Adjusted R2 (in percent)

12 Estimate of the standard deviation

13 Overall mean of y

14 Coefficient of variation (in percent)

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user.
See IMSLS_ANOVA_TABLE.

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for two-sided interval estimates on the variance
components, in percent. confidence percent confidence intervals are
computed, hence, confidence must be in the interval
[0.0, 100.0). confidence often will be 90.0, 95.0,
or 99.0. For one-sided intervals with confidence level ONECL,
ONECL in the interval [50.0, 100.0), set
confidence = 100.0 - 2.0 * (100.0 - ONECL).
Default: confidence = 95.0

IMSLS_VARIANCE_COMPONENTS, float **variance_components, (Output)
Address to a pointer to an internally allocated array.
variance_components is an n_factors by 9 matrix containing
statistics relating to the particular variance components in the model.
Rows of variance_components correspond to the n_factors
factors. Columns of variance_components are as follows:

Column Description

 1 Degrees of freedom

 2 Sum of squares

 3 Mean squares

 4 F -statistic

 5 p-value for F test

 6 Variance component estimate

 7 Percent of variance of variance explained by variance component

 8 Lower endpoint for a confidence interval on the variance
component

 9 Upper endpoint for a confidence interval on the variance
 component

A test for the error variance equal to zero cannot be performed.
variance_components(n_factors, 4) and
variance_components(n_factors, 5) are set to NaN (not a number).

Chapter 4: Analysis of Variance and Designed Experiments anova_nested � 251

IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[]
(Output) Storage for array variance_components is provided by the
user. See IMSLS_VARIANCE_COMPONENTS.

IMSLS_EMS, float **expect_mean_sq, (Output)
Address to a pointer to an internally allocated array of length
with expected mean square coefficients.

IMSLS_EMS_USER, float expect_mean_sq[], (Output)
Storage for array expect_mean_sq is provided by the user.
See IMSLS_EMS.

IMSLS_Y_MEANS, float **y_means (Output)
Address to a pointer to an internally allocated array containing the
subgroup means.

Equal options Length of y means

0 1 + n_levels[0] + n_levels[1] + … n_levels[
(LNL - LNLNF)-1] (See the description of argument n_levels
for definitions of LNL and LNLNF.)

1 1 + n_levels[0] + n_levels[0] * n_levels[1]
+ … + n_levels[0]* n_levels[1] * … * n_levels
[n_factors – 2]

If the factors are labeled A, B, C, and error, the ordering of the means is grand
mean, A means, AB means, and then ABC means.

IMSLS_Y_MEANS_USER, float y_means[], Storage for array y_means
is provided by the user. See IMSLS_Y_MEANS

Description
Routine imsls_f_anova_nested analyzes a nested random model with equal
or unequal numbers in the subgroups. The analysis includes an analysis of
variance table and computation of subgroup means and variance component
estimates. Anderson and Bancroft (1952, pages 325�330) discuss the
methodology. The analysis of variance method is used for estimating the variance
components. This method solves a linear system in which the mean squares are
set to the expected mean squares. A problem that Hocking (1985, pages
324�330) discusses is that this method can yield negative variance component
estimates. Hocking suggests a diagnostic procedure for locating the cause of a
negative estimate. It may be necessary to reexamine the assumptions of the
model.

Example 1
An analysis of a three-factor nested random model with equal numbers in the
subgroups is performed using data discussed by Snedecor and Cochran (1967,
Table 10.16.1, pages 285�288). The responses are calcium concentrations
(in percent, dry basis) as measured in the leaves of turnip greens. Four plants are

252 � anova_nested IMSL C/Stat/Library

taken at random, then three leaves are randomly selected from each plant.
Finally, from each selected leaf two samples are taken to determine calcium
concentration. The model is

yijk = � + �i + �ij + eijk i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2

where yijk is the calcium concentration for the k-th sample of the j-th leaf of the
i-th plant, the �i’s are the plant effects and are taken to be independently
distributed

2(0,)N �

the �ij’s are leaf effects each independently distributed
2(0,)N
�

�

and the �ijk’s are errors each independently distributed N(0, ��). The effects are
all assumed to be independently distributed. The data are given in the following
table:

Plant Leaf Samples

1 1
2
3

3.28
3.52
2.88

3.09
3.48
2.80

2 1
2
3

2.46
1.87
2.19

2.44
1.92
2.19

3 1
2
3

2.77
3.74
2.55

2.66
3.44
2.55

4 1
2
3

3.78
4.07
3.31

3.87
4.12
3.31

#include <imsls.h>
#include <stdio.h>
#define Mfloat float
void main()
{
 Mfloat pvalue, *aov, *varc, *ymeans, *ems;

Mfloat y[] = {3.28, 3.09, 3.52, 3.48, 2.88, 2.80, 2.46, 2.44, 1.87,
 1.92, 2.19, 2.19, 2.77, 2.66, 3.74, 3.44, 2.55, 2.55, 3.78,
 3.87, 4.07, 4.12, 3.31, 3.31};

int n_levels[] = {4, 3, 2};

Chapter 4: Analysis of Variance and Designed Experiments anova_nested � 253

 char *aov_labels[] = {
 "degrees of freedom for model",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for model",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "model mean square",
 "error mean square",
 "F-statistic",
 "p-value",
 "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of within error",
 "overall mean of y",
 "coefficient of variation (in percent)"};
 char *ems_labels[] = {
 "Effect A and Error",
 "Effect A and Effect B",
 "Effect A and Effect A",
 "Effect B and Error",
 "Effect B and Effect B",
 "Error and Error"};
 char *means_labels[] = {
 "Grand mean",
 " A means 1",
 " A means 2",
 " A means 3",
 " A means 4",
 "AB means 1 1",
 "AB means 1 2",
 "AB means 1 3",
 "AB means 2 1",
 "AB means 2 2",
 "AB means 2 3",
 "AB means 3 1",
 "AB means 3 2",
 "AB means 3 3",
 "AB means 4 1",
 "AB means 4 2",
 "AB means 4 3"};
 char *components_labels[] = {
 "degrees of freedom for A",
 "sum of squares for A",
 "mean square of A",
 "F-statistic for A",
 "p-value for A",
 "Estimate of A",
 "Percent Variation Explained by A",
 "95% Confidence Interval Lower Limit for A",
 "95% Confidence Interval Upper Limit for A",
 "degrees of freedom for B",
 "sum of squares for B",
 "mean square of B",
 "F-statistic for B",
 "p-value for B",
 "Estimate of B",
 "Percent Variation Explained by B",
 "95% Confidence Interval Lower Limit for B",

254 � anova_nested IMSL C/Stat/Library

 "95% Confidence Interval Upper Limit for B",
 "degrees of freedom for Error",
 "sum of squares for Error",
 "mean square of Error",
 "F-statistic for Error",
 "p-value for Error",
 "Estimate of Error",
 "Percent Explained by Error",
 "95% Confidence Interval Lower Limit for Error",
 "95% Confidence Interval Upper Limit for Error"};

pvalue = imsls_f_anova_nested(3, 1, n_levels, y,
 IMSLS_ANOVA_TABLE, &aov,
 IMSLS_Y_MEANS, &ymeans,
 IMSLS_VARIANCE_COMPONENTS, &varc,
 IMSLS_EMS, &ems,
 0);

 printf("pvalue = %f\n", pvalue);
 imsls_f_write_matrix("* * * Analysis of Variance * * *", 15, 1, aov,
 IMSLS_ROW_LABELS, aov_labels,
 IMSLS_WRITE_FORMAT, "%10.5f",
 0);

imsls_f_write_matrix("* * * Expected Mean Square Coefficients * * *"
6, 1, ems,

 IMSLS_ROW_LABELS, ems_labels,
 IMSLS_WRITE_FORMAT, "%6.2f",
 0);

imsls_f_write_matrix("* * * Means * * *", 17, 1, ymeans,
 IMSLS_ROW_LABELS, means_labels,
 IMSLS_WRITE_FORMAT, "%6.2f",
 0);

imsls_f_write_matrix("* * Analysis of Variance / Variance Components * *",
27, 1, varc,

 IMSLS_ROW_LABELS, components_labels,
 IMSLS_WRITE_FORMAT, "%10.5f",
 0);
}

Output
pvalue = 0.079854

* * * Analysis of Variance * * *
degrees of freedom for model 11.00000
degrees of freedom for error 12.00000
total (corrected) degrees of freedom 23.00000
sum of squares for model 10.19054
sum of squares for error 0.07985
total (corrected) sum of squares 10.27040
model mean square 0.92641
error mean square 0.00665
F-statistic 139.21599
p-value 0.00000
R-squared (in percent) 99.22248
adjusted R-squared (in percent) 98.50976
est. standard deviation of within error 0.08158
overall mean of y 3.01208
coefficient of variation (in percent) 2.70826

Chapter 4: Analysis of Variance and Designed Experiments anova_nested � 255

 * * * Expected Mean Square Coefficients * * *
Effect A and Error 1.00
Effect A and Effect B 2.00
Effect A and Effect A 6.00
Effect B and Error 1.00
Effect B and Effect B 2.00
Error and Error 1.00

 * * * Means * * *
Grand mean 3.01
A means 1 3.17
A means 2 2.18
A means 3 2.95
A means 4 3.74
AB means 1 1 3.18
AB means 1 2 3.50
AB means 1 3 2.84
AB means 2 1 2.45
AB means 2 2 1.89
AB means 2 3 2.19
AB means 3 1 2.72
AB means 3 2 3.59
AB means 3 3 2.55
AB means 4 1 3.82
AB means 4 2 4.10
AB means 4 3 3.31

 * * Analysis of Variance / Variance Components * *
degrees of freedom for A 3.00000
sum of squares for A 7.56034
mean square of A 2.52011
F-statistic for A 7.66516
p-value for A 0.00973
Estimate of A 0.36522
Percent Variation Explained by A 68.53015
95% Confidence Interval Lower Limit for A 0.03955
95% Confidence Interval Upper Limit for A 5.78674
degrees of freedom for B 8.00000
sum of squares for B 2.63020
mean square of B 0.32878
F-statistic for B 49.40642
p-value for B 0.00000
Estimate of B 0.16106
Percent Variation Explained by B 30.22121
95% Confidence Interval Lower Limit for B 0.06967
95% Confidence Interval Upper Limit for B 0.60042
degrees of freedom for Error 12.00000
sum of squares for Error 0.07985
mean square of Error 0.00665
F-statistic for Error ***********
p-value for Error ***********
Estimate of Error 0.00665
Percent Explained by Error 1.24864
95% Confidence Interval Lower Limit for Error 0.00342
95% Confidence Interval Upper Limit for Error 0.01813

256 � anova_balanced IMSL C/Stat/Library

anova_balanced
Analyzes a balanced complete experimental design for a fixed, random, or mixed
model.

Synopsis
#include <imsls.h>
float *imsls_f_anova_balanced (int n_factors, int n_levels[], float

y[], int n_random, int index_random_factor[], int
n_model_effects, int n_factors_per_effect[], int
index_factor_per_effect[], ..., 0)

The type double function is imsls_d_anova_balanced.

Required Arguments

int n_factors (Input)
Number of factors (number of subscripts) in the model, including error.

 int n_levels[] (Input)
Array of length n_factors containing the number of levels for each of
the factors.

float y[] (Input)
Array of length n_levels[0] * n_levels[1] *. . .*
n_levels[n_factors-1] containing the responses. y[] must not
contain NaN (not a number) for any of its elements, i.e., missing values
are not allowed.

int n_random (Input)
For positive n_random, |n_random| is the number of random factors.
For negative n_random, |n_random| is the number of random
effects (sources of variation).

 int index_random_factor[] (Input)
Index array of length |n_random| containing either the factor numbers
to be considered random (for n_random positive) or containing the
effect numbers to be considered random (for n_random negative). If
n_random = 0, index_random_factor is not referenced.

 int n_model_effects (Input)
Number of effects (sources of variation) due to the model excluding the
overall mean and error.

int n_factors_per_effect[] (Input)
Array of length n_model_effects containing the number of factors
associated with each effect in the model.

int index_factor_per_effect[] (Input)
Index vector of length n_factors_per_efffect[0] +

Chapter 4: Analysis of Variance and Designed Experiments anova_balanced � 257

n_factors_per_effect[1] + . . . +
n_factors_per_effect[n_model_effects-1]. The first
n_factors_per_effect[0] elements give the factor numbers in the
first effect. The next n_factors_per_effect[1] elements give the
factor numbers in the second effect. The last n_factors_per_effect
[n_model_effects-1] elements give the factor numbers in the last
effect. Main effects must appear before their interactions. In general, an
effect E cannot appear after an effect
F if all of the indices for E appear also in F.

Return Value
The p-value for the F-statistic.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_anova_balanced (int n_factors, int n_levels[], float

y[], int n_random, int index_random_factor[], int
n_model_effects, int n_factors_per_effect[], int
index_factor_per_effect[],

 IMSLS_ANOVA_TABLE, float **anova_table,
 IMSLS_ANOVA_TABLE_USER, float anova_table[]

IMSLS_MODEL, int model,
IMSLS_CONFIDENCE, float confidence,
IMSLS_VARIANCE_COMPONENTS, float **variance_components,
IMSLS_VARIANCE_COMPONENTS_USER, float
variance_components[],

 IMSLS_EMS, float **ems,
IMSLS_EMS_USER, float ems[],
IMSLS_Y_MEANS, float **y_means,
IMSLS_Y_MEANS_USER, float y_means[],
0)

Optional Arguments
IMSLS_ANOVA_TABLE, float **anova_table, (Output)

Address of a pointer to an internally allocated array of size 15 containing
the analysis of variance table. The analysis of variance statistics are as
follows:

Element Analysis of Variance Statistics

0 Degrees of freedom for the model

1 Degrees of freedom for error

2 Total (corrected) degrees of freedom

3 Sum of squares for the model

258 � anova_balanced IMSL C/Stat/Library

4 Sum of squares for error

5 Total (corrected) sum of squares

6 Model mean square

7 Error mean square

8 Overall F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of Y

14 coefficient of variation (in percent)

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user.
See IMSLS_ANOVA_TABLE.

IMSLS_MODEL, int model, (Input)
Model Option

MODEL Meaning

0 Searle model

1 Scheffe model

For the Scheffe model, effects corresponding to interactions of fixed and random
factors have their sum over the subscripts corresponding to fixed factors equal to
zero. Also, the variance of a random interaction effect involving some fixed
factors has a multiplier for the associated variance component that involves the
number of levels in the fixed factors. The Searle model has no summation
restrictions on the random interaction effects and has a multiplier of one for each
variance component. The default is model = 0.

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for two-sided interval estimates on the variance
components, in percent. confidence percent confidence intervals are
computed, hence, confidence must be in the interval [0.0,
100.0). confidence often will be 90.0, 95.0, or 99.0.
For one-sided intervals with confidence level �, �
in the interval [50.0, 100.0),
set confidence = 100.0 - 2.0 * 100.0 - �).
Default: confidence = 95.0

Chapter 4: Analysis of Variance and Designed Experiments anova_balanced � 259

IMSLS_VARIANCE_COMPONENTS, float **variance_components, (Output)
Address of a pointer to an array, variance_components.
variance_components is an (n_model_effects + 1) by 9 array
containing statistics relating to the particular variance components or
effects in the model and the error. Rows of variance_components
correspond to the n_model_effects effects plus error.

Element Description

 1 Degrees of freedom

 2 Sum of squares

 3 Mean squares

 4 F -statistic

 5 p-value for F test

 6 Variance component estimate

 7 Percent of variance of y explained by random effect

 8 Lower endpoint for a confidence interval on the variance component

 9 Upper endpoint for a confidence interval on the variance
 component

Elements 6 through 9 contain NaN (not a number) if the effect is fixed, i.e., if
there is no variance component to be estimated. If the variance component
estimate is negative, columns 8 and 9 contain NaN.

IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[]
(Output)
Storage for array variance_components is provided by the user.
See IMSLS_VARIANCE_COMPONENTS.

IMSLS_EMS, float **ems, (Output)
Address of a pointer to an internally allocated array of length
(n_model_effects + 1) * (n_model_effects + 2)/2
containing expected mean square coefficients. Suppose the effects are
A, B, and AB. The ordering of the coefficients in ems is as follows:

 Error AB B A

A ems[0] ems[1] ems[2
]

ems[2

B ems[4] ems[5] ems[6
]

260 � anova_balanced IMSL C/Stat/Library

 Error AB B A

AB ems[7] ems[8]

Error ems[9]

IMSLS_EMS_USER, float ems[] (Output)
Storage for ems is provided by the user.
See IMSLS_EMS.

IMSLS_Y_MEANS, float **y_means (Output)
Address of a pointer to an internally allocated array of length
(n_levels(0) + 1) * (n_levels (1) + 1) * . . . *
(n_levels (n-1) + 1) containing the subgroup means. Suppose the factors
are A, B, and C. The ordering of the means is grand mean, A means, B
means, C means, AB means, AC means, BC means, and ABC means.

IMSLS_Y_MEANS_USER, float y_means (Output)
Storage for y_means is provided by the user.
See IMSLS_Y_MEANS.

Description
Function imsls_f_anova_balanced analyzes a balanced complete
experimental design for a fixed, random, or mixed model. The analysis includes
an analysis of variance table, and computation of subgroup means and variance
component estimates. A choice of two parameterizations of the variance
components for the model can be made.

Scheffé (1959, pages 274�289) discusses the parameterization for model = 1.
For example, consider the following model equation with fixed factor A and
random factor B:

yijk = � + �i + bj + cij + eijk i = 1, 2, �, a; j = 1, 2, �, b; k = 1, 2, �, n

The fixed effects �i’s are subject to the restriction

1 0a
i i�
�

� �

the bj’s are random effects identically and independently distributed
2(0,)BN �

cij are interaction effects each distributed

21(0,)AB
aN

a
�

�

and are subject to the restrictions

Chapter 4: Analysis of Variance and Designed Experiments anova_balanced � 261

b1 0 for 1, 2, ...,a
i ijc j
�

� � �

and the eijk’s are errors identically and independently distributed N(0, ��). In
general, interactions of fixed and random factors have sums over subscripts
corresponding to fixed factors equal to zero. Also in general, the variance of a
random interaction effect is the associated variance component times a product of
ratios for each fixed factor in the random interaction term. Each ratio depends on
the number of levels in the fixed factor. In the earlier example, the random
interaction AB has the ratio (a �1)/a as a multiplier of

2
AB�

and

2 21var()ijk B AB
ay

a
� �

�

� � �
2

�

In a three-way crossed classification model, an ABC interaction effect with A
fixed, B random, and C fixed would have variance

2(1)(1)
ABC

a c
ac

�

� �

Searle (1971, pages 400�401) discusses the parameterization for model = 0. This
parameterization does not have the summation restrictions on the effects
corresponding to interactions of fixed and random factors. Also, the variance of
each random interaction term is the associated variance component, i.e., without
the multiplier. This parameterization is also used with unbalanced data, which is
one reason for its popularity with balanced data also. In the earlier example,

� � 2 2var ijk B ABy � � �� � �� �
2

Searle (1971, pages 400�404) compares these two parameterizations. Hocking
(1973) considers these different parameterizations and concludes they are
equivalent because they yield the same variance-covariance structure for the
responses. Differences in covariances for individual terms, differences in
expected mean square coefficients and differences in F tests are just a
consequence of the definition of the individual terms in the model and are not
caused by any fundamental differences in the models. For the earlier two-way
model, Hocking states that the relations between the two parameterizations of the
variance components are

2 2 2

2 2

1
B B A

AB AB

a� � �

� �

� �

�

� �

�

B

B

where
2 2and B A� �� �

262 � anova_balanced IMSL C/Stat/Library

are the variance components in the parameterization with model = 0.

The computations for degrees of freedom and sums of squares are the same
regardless of the option specified by model. imsls_f_anova_balanced first
computes degrees of freedom and sum of squares for a full factorial design.
Degrees of freedom for effects in the factorial design that are missing from the
specified model are pooled into the model effect containing the fewest subscripts
but still containing the factorial effect. If no such model effect exists, the factorial
effect is pooled into error. If more than one such effect exists, a terminal error
message is issued indicating a misspecified model.

The analysis of variance method is used for estimating the variance components.
This method solves a linear system in which the mean squares are set to the
expected mean squares. A problem that Hocking (1985, pages 324�330)
discusses is that this method can yield a negative variance component estimate.
Hocking suggests a diagnostic procedure for locating the cause of the negative
estimate. It may be necessary to re-examine the assumptions of the model.

The percentage of variation explained by each random effect is computed
(output in variance_components element 7) as the variance of the associated
random effect divided by the variance of y. The two parameterizations can lead to
different values because of the different definitions of the individual terms in the
model. For example, the percentage associated with the AB interaction term in the
earlier two-way mixed model is computed for model = 1 using the formula

2

2 2

1

% variation(AB|Model=1)
1

AB

B AB

a
a

a
a

�

� �

�

�

�
� �

2
�

while for the parameterization model = 0, the percentage is computed using the
formula

2

2 2% variation(AB|Model=0) AB

B AB

�

� � �

�

� �

�

� �
2

In each case, the variance components are replaced by their estimates (stored in
variance_components element 6).

Confidence intervals on the variance components are computed using the method
discussed by Graybill (1976, Theorem 15.3.5, page 624, and Note 4, page 620).

Example 1
An analysis of a generalized randomized block design is performed using data
discussed by Kirk (1982, Table 6.10-1, pages 293�297). The model is

yijk = � + �i + bj + cij + eijk i = 1, 2, 3, 4; j = 1, 2, 3, 4; k = 1, 2

where yijk is the response for the k-th experimental unit in block j with treatment
i; the �i’s are the treatment effects and are subject to the restriction

Chapter 4: Analysis of Variance and Designed Experiments anova_balanced � 263

2
1 0i i�
�

� �

the bj’s are block effects identically and independently distributed
2(0,)BN �

cij are interaction effects each distributed
23

4(0,)ABN �

and are subject to the restrictions
4

1 0 for 1, 2, 3, 4i ijc j
�

� � �

and the eijk’s are errors, identically and independently distributed N(0, ��). The
interaction effects are assumed to be distributed independently of the errors.

The data are given in the following table:

 Block
Treatment 1 2 3 4

1 3, 6 3, 1 2, 2 3, 2

2 4, 5 4, 2 3, 4 3, 3

3 7, 8 7, 5 6, 5 6, 6

4 7, 8 9, 10 10, 9 8, 11

#include <imsls.h>
#include <stdio.h>

void main()
{
 float pvalue = -99.;
 int n_levels[] = {4, 4, 2};
 int indrf[] = {2, 3};
 int nfef[] = {1, 1, 2};
 int indef[] = {1, 2, 1, 2};
 float y[] = {3.0, 6.0, 3.0, 1.0, 2.0, 2.0, 3.0, 2.0, 4.0, 5.0, 4.0,
 2.0, 3.0, 4.0, 3.0, 3.0, 7.0, 8.0, 7.0, 5.0, 6.0, 5.0,
 6.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 9.0, 8.0, 11.0};
 float *aov=NULL, *y_means, *variance_components, *ems;

 char *aov_labels[] = {
 "degrees of freedom for model",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for model",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "model mean square",
 "error mean square",
 "F-statistic",

264 � anova_balanced IMSL C/Stat/Library

 "p-value",
 "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of within error",
 "overall mean of y",
 "coefficient of variation (in percent)"};
 char *ems_labels[] = {
 "Effect A and Error",
 "Effect A and Effect AB",
 "Effect A and Effect B",
 "Effect A and Effect A",
 "Effect B and Error",
 "Effect B and Effect AB",
 "Effect B and Effect B",
 "Effect AB and Error",
 "Effect AB and Effect AB",
 "Error and Error"};
 char *means_labels[] = {
 "Grand mean",
 " A means 1",
 " A means 2",
 " A means 3",
 " A means 4",
 " B means 1",
 " B means 2",
 " B means 3",
 " B means 4",
 "AB means 1 1",
 "AB means 1 2",
 "AB means 1 3",
 "AB means 1 4",
 "AB means 2 1",
 "AB means 2 2",
 "AB means 2 3",
 "AB means 2 4",
 "AB means 3 1",
 "AB means 3 2",
 "AB means 3 3",
 "AB means 3 4",
 "AB means 4 1",
 "AB means 4 2",
 "AB means 4 3",
 "AB means 4 4",};
 char *components_labels[] = {
 "degrees of freedom for A",
 "sum of squares for A",
 "mean square of A",
 "F-statistic for A",
 "p-value for A",
 "Estimate of A",
 "Percent Variation Explained by A",

 "95% Confidence Interval Lower Limit for A",
 "95% Confidence Interval Upper Limit for A",
 "degrees of freedom for B",
 "sum of squares for B",
 "mean square of B",
 "F-statistic for B",
 "p-value for B",

 "Estimate of B",

Chapter 4: Analysis of Variance and Designed Experiments anova_balanced � 265

 "Percent Variation Explained by B",
 "95% Confidence Interval Lower Limit for B",
 "95% Confidence Interval Upper Limit for B",
 "degrees of freedom for AB",

 "sum of squares for AB",
 "mean square of AB",
 "F-statistic for AB",
 "p-value for AB",

 "Estimate of AB",
 "Percent Variation Explained by AB",
 "95% Confidence Interval Lower Limit for AB",
 "95% Confidence Interval Upper Limit for AB",
 "degrees of freedom for Error",

 "sum of squares for Error",
 "mean square of Error",

 "F-statistic for Error",
 "p-value for Error",

 "Estimate of Error",
 "Percent Explained by Error",
 "95% Confidence Interval Lower Limit for Error",
 "95% Confidence Interval Upper Limit for Error"};

pvalue = imsls_f_anova_balanced(3, n_levels, y, 2, indrf, 3, nfef, indef,
 IMSLS_MODEL, 1,
 IMSLS_EMS, &ems,
 IMSLS_VARIANCE_COMPONENTS, &variance_components,
 IMSLS_Y_MEANS, &y_means,
 IMSLS_ANOVA_TABLE, &aov,
 0);

printf("p value of F statistic = %f\n", pvalue);
imsls_f_write_matrix("* * * Analysis of Variance * * *", 15, 1, aov,
 IMSLS_ROW_LABELS, aov_labels,
 IMSLS_WRITE_FORMAT, "%10.5f",
 0);
imsls_f_write_matrix("* * * Expected Mean Square Coefficients * * *",

 10, 1, ems,
 IMSLS_ROW_LABELS, ems_labels,
 IMSLS_WRITE_FORMAT, "%6.2f",
 0);
imsls_f_write_matrix("* * Analysis of Variance / Variance Components * *",

 36, 1,
variance_components,

 IMSLS_ROW_LABELS, components_labels,
 IMSLS_WRITE_FORMAT, "%10.5f",
 0);
imsls_f_write_matrix("means", 25, 1, y_means,
 IMSLS_ROW_LABELS, means_labels,
 IMSLS_WRITE_FORMAT, "%6.2f",
 0);

}

Output
 p value of F statistic = 0.000005

 * * * Analysis of Variance * * *

 degrees of freedom for model 15.00000
 degrees of freedom for error 16.00000

266 � anova_balanced IMSL C/Stat/Library

 total (corrected) degrees of freedom 31.00000
 sum of squares for model 216.50000
 sum of squares for error 19.00000
 total (corrected) sum of squares 235.50000
 model mean square 14.43333
 error mean square 1.18750
 F-statistic 12.15439
 p-value 0.00000
 R-squared (in percent) 91.93206
 adjusted R-squared (in percent) 84.36836
 est. standard deviation of within error 1.08972

 overall mean of y 5.37500
 coefficient of variation (in percent) 20.27395

 * * * Expected Mean Square Coefficients * * *

Effect A and Error 1.00
Effect A and Effect AB 2.00
Effect A and Effect B 0.00
Effect A and Effect A 8.00
Effect B and Error 1.00
Effect B and Effect AB 0.00
Effect B and Effect B 8.00
Effect AB and Error 1.00
Effect AB and Effect AB 2.00
Error and Error 1.00

 * * Analysis of Variance / Variance Components * *
 degrees of freedom for A 3.00000
 sum of squares for A 194.50000
 mean square of A 64.83334
 F-statistic for A 32.87324
 p-value for A 0.00004
 Estimate of A
 Percent Variation Explained by A
 95% Confidence Interval Lower Limit for A
 95% Confidence Interval Upper Limit for A
 degrees of freedom for B 3.00000
 sum of squares for B 4.25000
 mean square of B 1.41667
 F-statistic for B 1.19298
 p-value for B 0.34396
 Estimate of B 0.02865
 Percent Variation Explained by B 1.89655
 95% Confidence Interval Lower Limit for B 0.00000
 95% Confidence Interval Upper Limit for B 2.31682
 degrees of freedom for AB 9.00000
 sum of squares for AB 17.75000
 mean square of AB 1.97222
 F-statistic for AB 1.66082
 p-value for AB 0.18016
 Estimate of AB 0.39236
 Percent Variation Explained by AB 19.48276
 95% Confidence Interval Lower Limit for AB 0.00000
 95% Confidence Interval Upper Limit for AB 2.75803
 degrees of freedom for Error 16.00000
 sum of squares for Error 19.00000
 mean square of Error 1.18750
 F-statistic for Error
 p-value for Error

Chapter 4: Analysis of Variance and Designed Experiments crd_factorial � 267

 Estimate of Error 1.18750
 Percent Explained by Error 78.62069
 95% Confidence Interval Lower Limit for Error 0.65868
 95% Confidence Interval Upper Limit for Error 2.75057

 means
 Grand mean 5.38
 A means 1 2.75
 A means 2 3.50
 A means 3 6.25
 A means 4 9.00
 B means 1 6.00
 B means 2 5.13
 B means 3 5.13
 B means 4 5.25
 AB means 1 1 4.50
 AB means 1 2 2.00
 AB means 1 3 2.00
 AB means 1 4 2.50
 AB means 2 1 4.50
 AB means 2 2 3.00
 AB means 2 3 3.50
 AB means 2 4 3.00
 AB means 3 1 7.50
 AB means 3 2 6.00
 AB means 3 3 5.50
 AB means 3 4 6.00
 AB means 4 1 7.50
 AB means 4 2 9.50
 AB means 4 3 9.50
 AB means 4 4 9.50

crd_factorial
Analyzes data from balanced and unbalanced completely randomized
experiments. Funtion crd_factorial does permit a factorial treatment
structure. However, unlike anova_factorial, function crd_factorial
allows for missing data, unequal replication and one or more locations.

Synopsis
#include <imsls.h>

float * imsls_f_crd_factorial (int n_obs, int n_locations,
int n_factors, int n_levels[], int model[], float y[],…, 0)

The type double function is imsls_d_crd_factorial.

Required Arguments

int n_obs (Input)
Number of missing and non-missing experimental observations.

268 � crd_factorial IMSL C/Stat/Library

int n_locations (Input)
Number of locations. n_locations must be one or greater.

int n_factors (Input)
Number of factors in the model.

int n_levels[] (Input)
Array of length n_factors+1. The n_levels[0] through
n_levels[n_factors-1] contain the number of levels for each factor.
The last element, n_levels[n_factors], contains the number of
replicates for each treatment combination within a location.

int model[] (Input)
A n_obs by (n_factors+1) array identifying the location and factor
levels associated with each observation in y. The first column must
contain the location identifier and the remaining columns the factor level
identifiers in the same order used in n_levels. If n_locations = 1,
the first column is still required, but its contents are ignored.

float y[] (Input)
An aray of length n_obs containing the experimental observations and
any missing values. Missing values are indicated by placing a NaN (not
a number) in y. The NaN value can be set using either the function
imsls_f_machine(6) or imsls_d_machine(6), depending upon
whether single or double precision is being used, respectively.

Return Value
A pointer to the memory location of a two dimensional, n_anova by 6 array
containing the ANOVA table, where:

1

m
a

ii
� � �

�

� �
� �
� �

n_factors
n_anova ,

where

2 if 1
3 if 1 and treatments are not replicated
4 if 1 and treatments are replicated at each location

a
�

� �

�

�
�
�
��

n_locations

n_locations

n_locations

Each row in this array contains values for one of the effects in the ANOVA table.
The first value in each row, anova_tablei,0 = anova_table[i*6], is the source
identifier which identifies the type of effect associated with values in that row.
The remaining values in a row contain the ANOVA table values using the
following convention:

Chapter 4: Analysis of Variance and Designed Experiments crd_factorial � 269

J anova_tablei,j = anova_table[i*6+j]

0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

The values for the mean squares, F-statistic and p-value are set to NaN
for the residual and corrected total effects.

The Source Identifiers in the first column of anova_tablei,j are the
only negative values in anova_table. The absolute value of the source
identifier is equal to the order of the effect in that row. Main effects, for
example, have a source identifier of –1. Two-way interactions use a
source identifier of –2, and so on.

Source
Identifier

ANOVA Source

-1 Main Efects †

-2 Two-Way Interactions ‡

-3 Three-Way Interactions ‡

. .

. .

. .
-n_factors (n_factors)-way Interactions ‡

-n_factors-1 Effects Error Term

-n_factors-2 Residual �

-n_factors-3 Corrected Total

270 � crd_factorial IMSL C/Stat/Library

Notes: By default, model_order = n_factors when treatments are replicated,
or n_locations >1. However, if treatments are not replicated and
n_locations =1, model_order = n_factors -1.

† The number of main effects is equal to n_factors+1 if n_locations >1,
and n_factors if n_locations =1. The first row of values,
anova_table[0] through anova_table[5] contain the location effect if
n_locations >1. If n_locations=1, then these values are the effects for
factor 1.

� The residual term is only provided when treatments are replicated, i.e.,
n_levels[n_factors]>1.

‡ The number of interaction effects for the nth-way interactions is equal to

� �
� �
� �

n_factors

n_way
 .

The order of these terms is in ascending order by treatment subscript. The
interactions for factor 1 appear first, followed by factor 2, factor 3, and so on.

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_crd_factorial (int n_obs, int n_locations,

int n_factors, int n_levels[], int model[], float y[],
IMSLS_RETURN_USER, float anova_table[]
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_FACTOR_MEANS, float **factor_means,
IMSLS_FACTOR_MEANS_USER, float factor_means[],
IMSLS_FACTOR_STD_ERRORS, float **factor_std_err,
IMSLS_FACTOR_STD_ERRORS_USER,
 float factor_std_err[],
IMSLS_TWO_WAY_MEANS,
 float **two_way_means,
IMSLS_TWO_WAY_MEANS_USER,
 float two_way_means[],
IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err,
IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_TREATMENT_STD_ERROR, float **treatment_std_err,
IMSLS_TREATMENT_STD_ERROR_USER,
 float treatment_std_err[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 0)

Chapter 4: Analysis of Variance and Designed Experiments crd_factorial � 271

Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined n_anova by 6 array for the anova_table.
IMSLS_N_MISSING, int *n_missing (Output)

 Number of missing values, if any, found in y. Missing values are
denoted with a NaN (Not a Number) value.

IMSLS_CV, float *cv (Output)
 Coefficient of Variation computed by:

100 MS
CV residual�

�

grand_mean

IMSLS_GRAND_MEAN, float *grand_mean (Output)

 Mean of all the data across every location.

IMSLS_FACTOR_MEANS, float **factor_means (Output)
 Address of a pointer to an internally allocated array of length
n_levels[0]+n_levels[1]+…+n_levels[n_factors-1]
containing the factor means.

IMSLS_FACTOR_MEANS_USER, float factor_means[] (Output)
Storage for the array factor_means, provided by the user.

IMSLS_FACTOR_STD_ERRORS, float **factor_std_err (Output)
Address of a pointer to an internally allocated n_factors by 2 array
containing factor standard errors and their associated degrees of
freedom. The first column contains the standard errors for comparing
two factor means and the second its associated degrees of freedom.

IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[] (Output)
Storage for the array factor_std_err, provided by the user.

IMSLS_TWO_WAY_MEANS, float **two_way_means (Output)
Address of a pointer to an internally allocated one-dimensional array
containing the two-way means for all two by two combinations of the
factors. The total length of this array when n_factors > 1 is equal to:

1

0 1

where -2[] [],
f f

i j i
i j f

�

� � �

� ��� n_levels n_levels n_factors

 If n_factors = 1, NULL is returned. If n_factors>1, the means
would first be produced for all combinations of the first two factors
followed by all combinations of the remaining factors using the subscript
order suggested by the above formula. For example, if the experiment is
a 2x2x2 factorial, the 12 two-way means would appear in the following
order: A1B1, A1B2, A2B1, A2B2, A1C1, A1C2, A2C1, A2C2, B1C1, B1C2,
B2C1, and B2C2.

272 � crd_factorial IMSL C/Stat/Library

�

IMSLS_TWO_WAY_MEANS_USER, float two_way_means[] (Output)
Storage for the array two_way_means, provided by the user.

IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err (Output)
Address of a pointer to an internally allocated n_two_way by 2 array
containing factor standard errors and their associated degrees of
freedom., where

�

� �
� �
� �

n_factors
n_two_way

2

 The first column contains the standard errors for comparing two 2-way
interaction means and the second its associated degrees of freedom. The
ordering of the rows in this array is similar to that used in
IMSLS TWO_WAY_MEANS. For example if n_factors=4, then
n_two_way =6 with the order AB, AC, AD, BC, BD, CD.

IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[] (Output)
Storage for the array two_way_std_err, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size

[0] [1] [1]� � �n_levels n_levels n_levels n_factors�

 containing the treatment means. The order of the means is organized in
ascending order by the value of the factor identifier. For example, if the
experiment is a 2x2x2 factorial, the 8 means would appear in the
following order: A1B1C1, A1B1C2, A1B2C1, A1B1C2, A2B1C1, A2B1C2,
A2B2C1, and A2B2C2.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_TREATMENT_STD_ERROR, float **treatment_std_err (Output)
The array of length 2 containing standard error for comparing treatments
based upon the average number of replicates per treatment and its
associated degrees of freedom.

IMSLS_TREATMENT_STD_ERROR_USER, float treatment_std_err[] (Output)
Storage for the array treatment_std_err, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array
containing the labels for each of the n_anova rows of the returned
ANOVA table. The label for the i-th row of the ANOVA table can be
printed with printf("%s", anova_row_labels[i]);

The memory associated with anova_row_labels can be freed with a
single call to free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the anova_row_labels, provided by the user. The amount

Chapter 4: Analysis of Variance and Designed Experiments crd_factorial � 273

of space required will vary depending upon the number of factors and
n_anova. An upperbound on the required memory is
char *anova_row_labels[n_anova* 60].

Description
The function imsls_f_crd_factorial analyzes factorial experiments
replicated in different locations. Unequal replication for each treatment and
missing observations are allowed. All factors are regarded as fixed effects in the
analysis. However, if multiple locations appear in the data, i.e.,
n_locations > 1, then all effects involving locations are treated as random
effects.

If n_locations = 1, then the residual mean square is used as the error mean
square in calculating the F-tests for all other effects. That is

MS

MS
effectF

residual
� , when n_locations = 1.

 If n_locations > 1 then the error mean squares for all factor F-tests is the
pooled location interaction. For example, if n_factors = 2 then the error sum
of squares, degrees of freedom and mean squares are calculated by:

SS
df

SS SS SS SS

df df df df

MS error
error

error B LocationsA Locations A B Locations

error B LocationsA Locations A B Locations

error

� � �
�� �

� � �
�� �

�

�

�

Example
The following example is based upon data from a 3x2x2 completely randomized
design conducted at one location. For demonstration purposes, observation 9 is
set to missing.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "imsls.h"

void ex_crd_doc(){

 int n_obs = 12;

 int n_locations = 1;

 int n_factors = 3;

 int n_levels[4] ={3, 2, 2, 1};

 int page_width = 132;

 /* model information */

 int model[]={

 1, 1, 1, 1,

274 � crd_factorial IMSL C/Stat/Library

 1, 1, 1, 2,

 1, 1, 2, 1,

 1, 1, 2, 2,

 1, 2, 1, 1,

 1, 2, 1, 2,

 1, 2, 2, 1,

 1, 2, 2, 2,

 1, 3, 1, 1,

 1, 3, 1, 2,

 1, 3, 2, 1,

 1, 3, 2, 2

 };

 /* response data */

 float y[] ={

 4.42725419998168950,

 2.12795543670654300,

 2.55254390835762020,

 1.21479606628417970,

 2.47588264942169190,

 5.01306104660034180,

 4.73502767086029050,

 4.58392113447189330,

 5.01421167794615030,

 4.11972457170486450,

 6.51671624183654790,

 4.73365202546119690

 };

 int model_order;

 int i, j, k, l, m, n_missing, i2, j2;

 int n_factor_levels=0, n_treatments=1;

 int n_two_way_means=0, n_two_way_std_err=0;

 int n_two_way_interactions=0;

 int n_subscripts, n_anova_table=2;

 float cv, grand_mean;

 float *anova_table;

 float *two_way_means, *two_way_std_err;

 float *treatment_means, *treatment_std_err;

 float *factor_means;

 float *factor_std_err;

 float aNaN = imsls_f_machine(6);

 char **anova_row_labels;

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ ",

Chapter 4: Analysis of Variance and Designed Experiments crd_factorial � 275

 "Mean \nsquares", "\nF-Test", "\np-Value"};

 /*

 * Compute the length of some of the output arrays.

 */

 model_order = n_factors-1;

 for (i=0; i < n_factors; i++){

 n_factor_levels = n_factor_levels + n_levels[i];

 n_treatments = n_treatments*n_levels[i];

 for (j=i+1; j < n_factors; j++){

 n_two_way_interactions++;

 }

 }

 n_two_way_std_err = n_two_way_interactions;

 for (i=0; i < n_factors-1; i++){

 for (j=i+1; j < n_factors; j++){

 n_two_way_means = n_two_way_means + n_levels[i]*n_levels[j];

 }

 }

 n_subscripts = n_factors;

 n_anova_table = 2;

 for (i=1; i <= model_order; i++){

 n_anova_table += (int)imsls_f_binomial_coefficient(n_subscripts, i);

 }

 /* Set observation 9 to missing. */

 y[8] = aNaN;

 anova_table = imsls_f_crd_factorial(n_obs, n_locations, n_factors,

 n_levels, model, y,

 IMSLS_N_MISSING, &n_missing,

 IMSLS_CV, &cv,

 IMSLS_GRAND_MEAN, &grand_mean,

 IMSLS_FACTOR_MEANS, &factor_means,

 IMSLS_FACTOR_STD_ERRORS,
 &factor_std_err,

 IMSLS_TWO_WAY_MEANS, &two_way_means,

 IMSLS_TWO_WAY_STD_ERRORS,
 &two_way_std_err,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_TREATMENT_STD_ERROR,
&treatment_std_err,

 IMSLS_ANOVA_ROW_LABELS,
&anova_row_labels,

 0) ;

 /* Output results. */

276 � crd_factorial IMSL C/Stat/Library

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /* Print ANOVA table. */

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 n_anova_table, 6, anova_table,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.3f%8.3f%8.3f%8.3f",

 IMSLS_ROW_LABELS, anova_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 printf("\n\nNumber of Missing Values Estimated: %d", n_missing);

 printf("\nGrand Mean: %7.3f", grand_mean);

 printf("\nCoefficient of Variation: %7.3f", cv);

 m=0;

 /* Print Factor Means. */

 printf("\n\nFactor Means\n");

 for(i=0; i < n_factors; i++){

 printf(" Factor %d: ", i+1);

 for(j=0; j < n_levels[i]; j++){

 printf(" %f ", factor_means[m]);

 m++;

 }

 k = (int)factor_std_err[2*i+1];

 printf("\n std. err.(df): %f(%d) \n",

 factor_std_err[2*i], k);

 }

 /* Print Two-Way Means. */

 printf("\n\nTwo-Way Means");

 m = 0;

 l=0;

 for(i=0; i < n_factors-1; i++){

 for(j=i+1; j < n_factors; j++){

 printf("\n Factor %d by Factor %d: \n", i+1, j+1);

 for(i2=0; i2 < n_levels[i]; i2++){

 for(j2=0; j2 < n_levels[j]; j2++){

 printf(" %f ",two_way_means[m]);

 m++;

 }

 printf("\n");

 }

 k = (int)two_way_std_err[l+1];

 printf(" std. err.(df): = %f(%d) \n", two_way_std_err[l], k);

 l+=2;

Chapter 4: Analysis of Variance and Designed Experiments crd_factorial � 277

 }

 }

 /* Print Treatment Means. */

 printf("\n\nTreatment Means\n");

 m = 0;

 for(i=0; i < n_levels[0]; i++){

 for(j=0; j < n_levels[1]; j++){

 for(k=0; k < n_levels[2]; k++){

 printf(" Treatment[%d][%d][%d] Mean: %f \n",

 i+1, j+1, k+1, treatment_means[m]);

 m++;

 }

 }

 }

 k = (int)treatment_std_err[1];

 printf("\n Treatment Std. Err (df) %f(%d) \n",

 treatment_std_err[0], k);

}

Output

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F-Test p-Value

[1] -1 2 13.060 6.530 7.843 0.245

[2] -1 1 0.107 0.107 0.129 0.780

[3] -1 1 1.301 1.301 1.563 0.429

[1]x[2] -2 2 3.768 1.884 2.263 0.425

[1]x[3] -2 2 5.253 2.626 3.154 0.370

[2]x[3] -2 1 0.560 0.560 0.672 0.563

Residual -4 1 1.665 1.665

Total -5 10 25.715

Number of Missing Values Estimated: 1

Grand Mean: 3.961

Coefficient of Variation: 32.574

Factor Means

 Factor 1: 2.580637 4.201973 5.101885

278 � crd_factorial IMSL C/Stat/Library

 std. err.(df): 0.912459(1)

 Factor 2: 3.866888 4.056109

 std. err.(df): 0.745020(1)

 Factor 3: 4.290812 3.632185

 std. err.(df): 0.745020(1)

Two-Way Means

 Factor 1 by Factor 2:

 3.277605 1.883670

 3.744472 4.659474

 4.578587 5.625184

 std. err.(df): = 1.290412(1)

 Factor 1 by Factor 3:

 3.489899 1.671376

 3.605455 4.798491

 5.777082 4.426688

 std. err.(df): = 1.290412(1)

 Factor 2 by Factor 3:

 3.980195 3.753580

 4.601429 3.510790

 std. err.(df): = 1.053617(1)

Treatment Means

 Treatment[1][1][1] Mean: 4.427254

 Treatment[1][1][2] Mean: 2.127955

 Treatment[1][2][1] Mean: 2.552544

 Treatment[1][2][2] Mean: 1.214796

 Treatment[2][1][1] Mean: 2.475883

 Treatment[2][1][2] Mean: 5.013061

 Treatment[2][2][1] Mean: 4.735028

 Treatment[2][2][2] Mean: 4.583921

 Treatment[3][1][1] Mean: 5.037448

 Treatment[3][1][2] Mean: 4.119725

 Treatment[3][2][1] Mean: 6.516716

 Treatment[3][2][2] Mean: 4.733652

 Treatment Std. Err (df) 1.824919(1)

Chapter 4: Analysis of Variance and Designed Experiments rcbd_factorial � 279

rcbd_factorial
Analyzes data from balanced and unbalanced randomized complete-block
experiments. Unlike anova_factorial, function rcbd_factorial allows for
missing data, unequal replication and one or more locations.

Synopsis
#include <imsls.h>
float * imsls_f_rcbd_factorial (int n_obs, int n_locations, int

n_factors, int n_levels[],int model[], float y[],…, 0)

The type double function is imsls_d_rcbd_factorial.

Required Arguments
int n_obs (Input)

Number of missing and non-missing experimental observations.

int n_locations (Input)
Number of locations. n_locations must be one or greater.

int n_factors (Input)
Number of factors in the model.

int n_levels[] (Input)
Array of length n_factors+1. The n_levels[0] through
n_levels[n_factors-1] contain the number of levels for each
factor. The last element, n_levels[n_factors], contains the number
of blocks at a location. There must be at least two blocks and two levels
for each factor, i.e., n_levels[i] >2 for i=0, 1, …, n_factors.

int model[] (Input)
A n_obs by (n_factors+2) array identifying the location, block and
factor levels associated with each observation in y. The first column
must contain the location identifier and the second column must contain
the block identifier for the observation associated with that row. The
remaining columns, columns 3 through n_factors+2, should contain
the factor level identifiers in the same order used in n_levels. If
n_locations =1, the first column is still required, but its contents are
ignored.

float y[] (Input)
An array of length n_obs containing the experimental observations and
any missing values. Missing values are indicated by placing a NaN (not
a number) in y. The NaN value can be set using either the function
imsls_f_machine(6) or imsls_d_machine(6), depending upon
whether single or double precision is being used, respectively.

280 � rcbd_factorial IMSL C/Stat/Library

Return Value
A pointer to the memory location of a two dimensional, n_anova by 6 array
containing the ANOVA table, where:

1

m

i
a

i
�

� �
� � � �

� �
�

n_factors
n_anova ,

3 if 1
5 if 1

a �
� 	

n_locations =

n_locations >
,

and m= model_order = n_factors –1.

Each row in this array contains values for one of the effects in the ANOVA table.
The first value in each row, anova_tablei,0 = anova_table[i*6], is the
source identifier which identifies the type of effect associated with values in that
row. The remaining values in a row contain the ANOVA table values using the
following convention:

j anova_table

i,j
= anova_table[i*6+j]

0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

The values for the mean squares, F-statistic and p-value are set to NaN for the
residual and corrected total effects.

The Source Identifiers in the first column of anova_tablei,j are the only
negative values in anova_table[]. The absolute value of the source identifier is
equal to the order of the effect in that row. Main effects, for example, have a
source identifier of –1. Two-way interactions use a source identifier of –2, –3 and
so on.

Source

Identifier

ANOVA Source
-1 Main Effects †

-2 Two-Way Interactions ‡

-3 Three-Way Interactions ‡

. .

. .

Chapter 4: Analysis of Variance and Designed Experiments rcbd_factorial � 281

Source
Identifier

ANOVA Source

. .

-n_factors (n_factors)-way Interactions ‡

-n_factors-1 Error Term for Factors and
Interactions

-n_factors-2 Residual *

-n_factors-3 Corrected Total

Notes: The Effects Error Term is equal to the Residual effect if
n_locations = 1.

† The number of main effects is equal to n_factors+2 if
n_locations > 1, and n_factors +1 if n_locations = 1. The first two
rows, anova_table[0] through anova_table[10] are used to represent the
location and block effects if n_locations > 1. If n_locations=1, then
anova_table[0] through anova_table[5]contain the block effects.

‡ The number of interaction effects for the nth-way interactions is equal to

� �
� �
� �

n_factors

n_way
 .

The order of these terms is in ascending order by treatment subscript. The
interactions for factor 1 appear first, followed by factor 2, factor 3, and so on.

* The residual term is only produced when there is replication within blocks.

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_rcbd_factorial (int n_obs, int n_locations,

int n_factors, int n_levels[], int model[],float y[],
IMSLS_RETURN_USER, float anova_table[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_FACTOR_MEANS, float **factor_means,
IMSLS_FACTOR_MEANS_USER, float factor_means[],
IMSLS_FACTOR_STD_ERRORS, float **factor_std_err,
IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[],
IMSLS_TWO_WAY_MEANS, float **two_way_means,
IMSLS_TWO_WAY_MEANS_USER, float two_way_means[],
IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err,
IMSLS_TWO_WAY_STD_ERRORS_USER,
 float two_way_std_err[],

282 � rcbd_factorial IMSL C/Stat/Library

IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_TREATMENT_STD_ERROR, *float treatment_std_err,
IMSLS_TREATMENT_STD_ERROR_USER,
 float treatment_std_err[]
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
0)

Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined n_anova by 6 array for the anova_table.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are
denoted with a NaN (Not a Number) value.

IMSLS_CV, float *cv (Output)
Coefficient of Variation computed by:

100 MSresidualCV
�

�

grand_mean
.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_FACTOR_MEANS, float **factor_means (Output)
Address of a pointer to an internally allocated array of length
n_levels[0]+n_levels[1]+…+n_levels[n_factors-1]
containing the factor means.

IMSLS_FACTOR_MEANS_USER, float factor_means[] (Output)
Storage for the array factor_means, provided by the user.

IMSLS_FACTOR_STD_ERRORS, float **factor_std_err (Output)
Address of a pointer to an internally allocated n_factors by 2 array
containing factor standard errors and their associated degrees of
freedom. The first column contains the standard errors for comparing
two factor means and the second its associated degrees of freedom

IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[] (Output)
Storage for the array factor_std_err, provided by the user.

IMSLS_TWO_WAY_MEANS, float **two_way_means (Output)
Address of a pointer to an internally allocated one-dimensional array
containing the two-way means for all two by two combinations of the
factors. The total length of this array when n_factors >1 is equal to:

Chapter 4: Analysis of Variance and Designed Experiments rcbd_factorial � 283

�

1

0 1

[] []
f f

i j i
i j

�

� � �

��� n_levels n_levels ,

 where

2f � �n_factors

 If n_factors = 1, NULL is returned. If n_factors>1, the means
would first be produced for all combinations of the first two factors
followed by all combinations of the remaining factors using the subscript
order suggested by the above formula. For example, if the experiment is
a 2x2x2 factorial, the 12 two-way means would appear in the following
order: A1B1, A1B2, A2B1, A2B2, A1C1, A1C2, A2C1, A2C2, B1C1, B1C2,
B2C1, and B2C2.

IMSLS_TWO_WAY_MEANS_USER, float two_way_means[] (Output)
Storage for the array two_way_means, provided by the user.

IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err (Output)
Address of a pointer to an internally allocated n_two_way by 2 array
containing factor standard errors and their associated degrees of
freedom., where

� �
� �
� �

n_factors
n_two_way =

2

 The first column contains the standard errors for comparing two 2-way
interaction means and the second its associated degrees of freedom. The
ordering of the rows in this array is similar to that used in
IMSLS_TWO_WAY_MEANS. For example if n_factors=4, then
n_two_way = 6 with the order AB, AC, AD, BC, BD, CD.

IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[] (Output)
Storage for the array two_way_std_err, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size

[0] [1] [1]� � �n_levels n_levels n_levels n_factors�

 containing the treatment means. The order of the means is organized in
ascending order by the value of the factor identifier. For example, if the
experiment is a 2x2x2 factorial, the 8 means would appear in the following
order: A1B1C1, A1B1C2, A1B2C1, A1B1C2, A2B1C1, A2B1C2, A2B2C1, and
A2B2C2.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_TREATMENT_STD_ERROR, float *treatment_std_err (Output)
The array of length 2 containing standard error for comparing treatments

284 � rcbd_factorial IMSL C/Stat/Library

based upon the average number of replicates per treatment and its
associated degrees of freedom.

IMSLS_TREATMENT_STD_ERROR_USER, float treatment_std_err[] (Output)
Storage for the array treatment_std_err, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array
containing the labels for each of the n_anova rows of the returned
ANOVA table. The label for the ith row of the ANOVA table can be
printed with printf("%s", anova_row_labels[i]).

 The memory associated with anova_row_labels can be freed with a
single call to free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The
amount of space required will vary depending upon the number of factors
and n_anova. An upperbound on the required memory is
char *anova_row_labels[100*(n_anova+1)].

Description
The function imsls_f_rcbd_factorial is capable of analyzing randomized
complete block factorial experiments replicated in different locations. Missing
observations are estimated using the Yates method. Locations, if used, and
blocks are treated as random factors. All treatment factors are regarded as fixed
effects in the analysis. If n_locations > 1, then blocks are treated as nested
within locations and the number of blocks used at each location must be the same.

If n_locations = 1, then the residual mean square is used as the error mean
square in calculating the F-tests for all other effects. That is

effect
effect

residual

MS
F

MS
� , when n_locations = 1.

In this case, the residual mean square is calculating by pooling all interactions
between treatments and blocks. For example, if treatments are formed from two
factors, A and B, then

residual A Blocks B Blocks A B Blocks

residual A Blocks B Blocks A B Blocks

residual
residual

residual

SS SS SS SS
df df df df

SSMS
df

� � � �

� � � �

� � �

� � �

�

When n_locations = 1, then is also used to calculate the standard
errors between means. For example, in a two factor experiment:

residualMS

Chapter 4: Analysis of Variance and Designed Experiments rcbd_factorial � 285

Std Err(A)

Std Err(B)

Std Err(A B)

2

2

2

residual

A

residual

B

residual

A B

MS
N

MS
N

MS
N

�

�

�

� �

�

�

�

,

where

AN , BN and A BN
�

are the number of observations for each level of the effects A, B and their
interaction, respectively.

 If n_locations > 1, then the error mean square is used as the denominator of
the F-test for effects:

effect
effect

error

MS
F

MS
� .

The error mean square in this calculation is obtained by pooling all interactions
between each factor and locations. For example n_locations > 1 and
n_factors=2 then:

error A Locations B Locations A B Locations

error A Locations B Locations A B Locations

error
error

error

SS SS SS SS
df df df df

SSMS
df

� � � �

� � � �

� � �

� � �

�

In this case, n_locations > 1, the standard errors for means are calculated
using

 instead of error residualMS MS

The F-test for differences between locations is calculated using the mean squares
for blocks within locations:

()

locations
locations

blocks location

MSF
MS

�

286 � rcbd_factorial IMSL C/Stat/Library

Example
This example is based upon data from an agricultural trial conducted by DOW
Agrosciences. This is a three factor, 3x2x2, experiment replicated in two blocks
at one location. For illustration, two observations are set to NaN to simulate
missing observations.

#include <stdio.h>

#include <math.h>

#include "imsls.h"

void main(){

 int n_obs = 24;

 int n_locations = 1;

 int n_factors = 3;

 int n_levels[4] ={3, 2, 2, 2};

 int model[]={

 1, 1, 1, 1, 1,

 1, 2, 1, 1, 1,

 1, 1, 1, 1, 2,

 1, 2, 1, 1, 2,

 1, 1, 1, 2, 1,

 1, 2, 1, 2, 1,

 1, 1, 1, 2, 2,

 1, 2, 1, 2, 2,

 1, 1, 2, 1, 1,

 1, 2, 2, 1, 1,

 1, 1, 2, 1, 2,

 1, 2, 2, 1, 2,

 1, 1, 2, 2, 1,

 1, 2, 2, 2, 1,

 1, 1, 2, 2, 2,

 1, 2, 2, 2, 2,

 1, 1, 3, 1, 1,

 1, 2, 3, 1, 1,

 1, 1, 3, 1, 2,

 1, 2, 3, 1, 2,

 1, 1, 3, 2, 1,

 1, 2, 3, 2, 1,

 1, 1, 3, 2, 2,

 1, 2, 3, 2, 2

 };

 float y[] ={

 4.42725419998168950, 2.98526261840015650,

 2.12795543670654300, 4.36357164382934570,

Chapter 4: Analysis of Variance and Designed Experiments rcbd_factorial � 287

 2.55254390835762020, 2.78596709668636320,

 1.21479606628417970, 2.68143519759178160,

 2.47588264942169190, 4.69543695449829100,

 5.01306104660034180, 3.01919978857040410,

 4.73502767086029050, 0.00000000000000000,

 0.00000000000000000, 5.05780076980590820,

 5.01421167794615030, 3.61517095565795900,

 4.11972457170486450, 4.71947982907295230,

 6.51671624183654790, 4.22036057710647580,

 4.73365202546119690, 4.68545144796371460

 };

 int page_width = 132;

 int model_order;

 int i, n_subscripts, n_anova_table;

 char **aov_labels;

 char *col_labels[] = {" ", "ID", "df", "SS",

 "MS", "F-Test", "P-Value"};

 float *anova_table;

 /* Compute number of rows in the anova table. */

 model_order = n_subscripts = n_factors;

 n_anova_table = 3;

 for (i=1; i <= model_order; i++){

 n_anova_table += imsls_d_binomial_coefficient(n_subscripts, i);

 }

 /* Set missing observations. */

 y[13] = imsls_d_machine(6);

 y[14] = imsls_d_machine(6);

 anova_table = imsls_f_rcbd_factorial(n_obs, n_locations, n_factors,

 n_levels, model, y,

 IMSLS_ANOVA_ROW_LABELS, &aov_labels,

 0) ;

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /*

 * Print ANOVA table.

 */

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 10, 6, anova_table,

 IMSLS_ROW_LABELS, aov_labels,

 IMSLS_COL_LABELS, col_labels,

288 � latin_square IMSL C/Stat/Library

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

 0);

}

Output

 *** ANALYSIS OF VARIANCE TABLE ***

 ID df SS MS F-Test P-Value

Blocks -1 1 0.01 0.01

[1] -1 2 14.73 7.37 5.15 0.032

[2] -1 1 0.24 0.24 0.17 0.692

[3] -1 1 0.15 0.15 0.10 0.756

[1]x[2] -2 2 5.79 2.89 2.02 0.188

[1]x[3] -2 2 1.02 0.51 0.36 0.709

[2]x[3] -2 1 0.20 0.20 0.14 0.719

[1]x[2]x[3] -3 2 0.13 0.07 0.05 0.956

Error -4 9 12.88 1.43

Total -6 21 35.15

latin_square
Analyzes data from latin-square experiments. Function latin_square also
analyzes latin-square experiments replicated at several locations.

Synopsis
#include <imsls.h>
float * imsls_f_latin_square (int n, int n_locations,

int n_treatments, int row[], int col[], int treatment[],
 float y[], …, 0)

The type double function is imsls_d_latin_square.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations.
imsls_f_latin_square verifies that:

2n � �n_locations n_treatments

hint n_locations (Input)
Number of locations. n_locations must be one or greater. If
n_locations>1 then the optional array locations[] must be
included as input to imsls_f_latin_square.

Chapter 4: Analysis of Variance and Designed Experiments latin_square � 289

int n_treatments (Input)
Number of treatments. n_treatments must be greater than one. In
addition the number of rows and columns must be equal to
n_treatments.

int row[] (Input)
An array of length n containing the row identifiers for each observation
in y. Each row must be assigned values from 1 to n_treatments.
imsls_f_latin_square verifies that the number of unique factor A
identifiers is equal to n_treatments.

int col[] (Input)
An array of length n containing the column identifiers for each
observation in y. Each column must be assigned values from 1 to
n_treatments. imsls_f_latin_square verifies that the number of
unique column identifiers is equal to n_treatments.

int treatment[] (Input)
An array of length n containing the treatment identifiers for each
observation in y. Each treatment must be assigned values from 1 to
n_treatments. imsls_f_latin_square verifies that the number of
unique treatment identifiers is equal to n_treatments.

float y[] (Input)
An array of length n containing the experimental observations and any
missing values. Missing values cannot be omitted. They are indicated
by placing a NaN (not a number) in y. The NaN value can be set using
either the function imsls_f_machine(6) or imsls_d_machine((6),
depending upon whether single or double precision is being used,
respectively. The location, row, column, and treatment number for each
observation in y are identified by the corresponding values in the
arguments locations, row, col, and treatment.

Return Value
Address of a pointer to the memory location of a two dimensional, 7 by 6 array
containing the ANOVA table. Each row in this array contains values for one of
the effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], identifies the source for the effect
associated with values in that row. The remaining values in a row contain the
ANOVA table values using the following convention:

J anova_table
i,j

= anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

290 � latin_square IMSL C/Stat/Library

J anova_table
i,j

= anova_table[i*6+j]
4 F-statistic

5 p-value for this F-statistic

The Source Identifiers in the first column of anova_tablei,j are the only
negative values in anova_table[]. Assignments of identifiers to ANOVA
sources use the following coding:

Source
Identifier

ANOVA Source

-1 LOCATIONS †

-2 ROWS

-3 COLUMNS

-4 TREATMENTS

-5 LOCATIONS × TREATMENTS †

-6 ERROR WITHIN LOCATIONS

-7 CORRECTED TOTAL

Notes: † If n_locations=1 rows involving location are set to missing (NaN).

Synopsis with Optional Arguments
#include <imsl.h>
float * imsls_f_latin_square (int n, int n_locations, int n_treatments,

int row[], int col[], int treatment[], float y[],
IMSLS_RETURN_USER, float anova_table[],
IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER,
 float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],

 0)

Chapter 4: Analysis of Variance and Designed Experiments latin_square � 291

Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined array of length 42 for storage of the 7 by 6 anova table
described as the return argument for this routine. For a detailed
description of the format for this table, see the previous description of
the return arguments for imsls_f_latin_square.

IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location identifiers for each
observation in y. Unique integers must be assigned to each location in
the study. This argument is required when n_locations>1.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are
denoted with a NaN (Not a Number) value.

IMSLS_CV, float *cv (Output)
The coefficient of variation computed by using the within location
standard deviation.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size
n_treatments containing the treatment means.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
 Address of a pointer to an internally allocated array of length 2
containing the standard error and associated degrees of freedom for
comparing two treatment means. std_err[0] contains the standard
error and its degrees of freedom are returned in std_err[1].

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
 Address of a pointer to an internally allocated 3-dimensional array of
size n_locations by 7 by 6 containing the anova tables associated
with each location. For each location, the 7 by 6 dimensional array
corresponds to the anova table for that location. For example,
location_anova_table[(i-1)×42+(j-1)×6 + (k-1)] contains the
value in the kth column and jth row of the anova-table for the ith
location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
 Storage for the array location_anova_table, provided by the user.

292 � latin_square IMSL C/Stat/Library

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array
containing the labels for each of the n_anova rows of the returned
ANOVA table. The label for the ith row of the ANOVA table can be
printed with printf("%s", anova_row_labels[i]).

The memory associated with anova_row_labels can be freed with a
single call to free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The
amount of space required will vary depending upon the number of
factors and n_anova. An upperbound on the required memory is
char *anova_row_labels[600].

Description
The function imsls_f_latin_square analyzes latin-square experiments,
possibly replicated at multiple locations. Latin-square experiments block
treatments using two factors: rows and columns. The number of levels
associated with rows and columns must equal the number of treatments.
Treatments are blocked by rows and columns in a balanced arrangement to ensure
that every row contain one replicate of every treatment. The same balance is
required for every column, see Table 1. Notice that the four treatments, T1, T2,
T3, and T4, appear exactly once in every column and every row.

 Columns

 C1 C2 C3 C4

R1 T1 T2 T3 T4

R2 T2 T3 T4 T1

R3 T3 T4 T1 T2

Rows

R4 T4 T1 T2 T3

 Table 1 – A Latin-Square Experiment with Four Treatments

A necessary assumption in Latin-Square experiments is that there are no
interactions between treatments and the row and column blocking factors. For
data collected at a single location, the Anova table for a Latin-Square experiment
is usually organized into five rows, see Table 2.

Chapter 4: Analysis of Variance and Designed Experiments latin_square � 293

SOURCE DF Sum of Squares Mean
Squares

ROWS 1t �
SSR= 2

. ..
1

()
t

i
i

t y y
�

��
MSR

COLUMNS 1t �
SSC= 2

. ..
1

()
t

j
j

t y y
�

��
MSC

TREATMENTS 1t �
SST= 2

..
1
()

t

k
k

y
�

��t y
MST

ERROR (1)(2)t t� �

SSE=SSTot-SSR-SSC-
SST

MSE

TOTAL 2 1t �
SSTot= � �

2

..
1 1

t t

ij
i j

y y
� �

���

Table 2 – The ANOVA Table for a Latin-Square Experiment at one Location

The statistical model used to represent data is from a single location:

() () ()ij k i j k ij ij ky � � � � �� � � � � ,

where

()ij ky is the observation for the kth treatment in the ith row and jth column of the
Latin Square, and,� is the effect associated with the kth treatment. and ()k ij i�

j� are the ith row and jth column effects, respectively, and � is the noise
associated with this observation.

()ij k

If multiple locations are involved, imsls_f_latin_square assumes that
treatments are crossed with locations, but that row and column effects are nested
within locations, see Table 3. The statistical model used to represent these data
is:

() () () () () ()lij k l i l j l k ij lk ij lij ky � � � � � �� �� � � � � � � ,

where

()k ij�

is the effect associated with the kth treatment, and

()lk ij��

is the interaction effect between location l and treatment k.

294 � latin_square IMSL C/Stat/Library

SOURCE DF Sum of Squares Mean
Squares

LOCATIONS 1r �
SSL= 2 2

.. ...
1

()
r

l
l

t y y
�

��
MSL

ROWS (1)r t �
SSR= 2

. ..
1 1

()
r t

li l
l i

y
� �

���t y
MSR

COLUMNS (1)r t �
SSC= 2

. ..
1 1

()
r t

l j l
l j

y
� �

���t y
MSC

TREATMENTS 1t �
SST= 2

...
1
()

t

k
k

r t y y
�

� ��
MST

LOCATIONS X
TREATMENTS

(1)(1r t� �) SSLT by difference MSLT

ERROR (1)[(1) 1t r t� � �]
 SSE=

1

r

l
l

SSE
�

�
MSE

TOTAL 2 1r t� �
SSTot= � �

2

..
1 1 1

r t t

lij
l i j

y y
� � �

����

Table 3 – The ANOVA Table for a Latin-Square Experiment at Multiple Locations

Example
This example uses 4 treatments organized into a latin square. This example also
uses the function l_print_LSD(), which is defined in the first example for
imsls_f_lattice() (page 297).

#include <stdio.h>

#include <math.h>

#include "imsls.h"

void l_print_LSD(int n1, int* equalMeans, float *means);

void main()

{

 char **anova_row_labels;

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ ",

 "Mean \nsquares", "\nF-Test", "\np-Value"};

Chapter 4: Analysis of Variance and Designed Experiments latin_square � 295

 float alpha = 0.05;

 int i, l, page_width = 132;

 int n = 16; /* Total number of observations */

 int n_locations = 1; /* Number of locations */

 int n_treatments = 4; /* Number of rows, columns and treatments */

 int n_aov_rows = 7; /* Number of rows in the latin-square anova table */

 int col[]={1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4};

 int row[]={3, 2, 4, 1, 1, 4, 2, 3, 2, 3, 1, 4, 4, 1, 3, 2};

 int treatment[]={1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};

 float y[]={

 1.167, 1.185, 1.655, 1.345, 1.64, 1.29, 1.665, 1.29,

 1.475, 0.71, 1.425, 0.66, 1.565, 1.29, 1.4, 1.18};

 float grand_mean;

 float cv;

 float *aov;

 float *treatment_means;

 float *std_err;

 int df;

 int *equal_means;

 printf("\n\n*** Experimental Design ***");

 printf("\n===============================");

 printf("\n| COL | 1 | 2 | 3 | 4 |");

 printf("\n===============================");

 printf("\n|ROW 1 | 2 | 4 | 3 | 1 |");

 printf("\n===============================");

 printf("\n|ROW 2 | 3 | 1 | 2 | 4 |");

 printf("\n===============================");

 printf("\n|ROW 3 | 1 | 3 | 4 | 2 |");

 printf("\n===============================");

 printf("\n|ROW 4 | 4 | 2 | 1 | 3 |");

 printf("\n===============================");

 aov = imsls_f_latin_square(n, n_locations, n_treatments, row, col,

 treatment, y,

 IMSLS_GRAND_MEAN, &grand_mean,

 IMSLS_CV, &cv,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_STD_ERRORS, &std_err,

296 � latin_square IMSL C/Stat/Library

 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,

 0);

 /* Output results. */

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /* Print ANOVA table. */

 imsls_f_write_matrix("\n *** ANALYSIS OF VARIANCE TABLE ***",

 7, 6, aov,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.3f%8.3f%8.3f%8.3f",

 IMSLS_ROW_LABELS, anova_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 printf("\n\nGrand Mean: %7.3f", grand_mean);

 printf("\n\nCoefficient of Variation: %7.3f\n\n", cv);

 l = 0;

 printf("Treatment Means: \n");

 for (i=0; i < n_treatments; i++){

 printf("treatment[%2d] %7.4f \n", i+1,
treatment_means[l++]);

 }

 df = (int)std_err[1];

 printf("\n\nStandard Error for Comparing Two Treatment Means: %f \n(df=%d)\n",

 std_err[0], df);

 equal_means = imsls_f_multiple_comparisons(n_treatments, treatment_means, df,

 std_err[0]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_print_LSD(n_treatments, equal_means, treatment_means);

}

Output

*** Experimental Design ***

===============================

| COL | 1 | 2 | 3 | 4 |

===============================

|ROW 1 | 2 | 4 | 3 | 1 |

===============================

|ROW 2 | 3 | 1 | 2 | 4 |

===============================

|ROW 3 | 1 | 3 | 4 | 2 |

Chapter 4: Analysis of Variance and Designed Experiments lattice � 297

===============================

|ROW 4 | 4 | 2 | 1 | 3 |

===============================

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F-Test p-Value

Locations -1

Rows within Locations -2 3 0.185 0.062 2.064 0.207

Columns within Locations .. -3 3 0.589 0.196 6.579 0.025

Treatments -4 3 0.352 0.117 3.927 0.073

Locations x Treatments -5

Error within Locations -6 6 0.179 0.030

Corrected Total -7 15 1.305

Grand Mean: 1.309

Coefficient of Variation: 13.204

Treatment Means:

treatment[1] 1.3380

treatment[2] 1.4712

treatment[3] 1.0675

treatment[4] 1.3587

Standard Error for Comparing Two Treatment Means: 0.122202

(df=6)

[group] Mean LSD Grouping

 [3] 1.067500 *

 [1] 1.338000 * *

 [4] 1.358750 * *

 [2] 1.471250 *

lattice
Analyzes balanced and partially-balanced lattice experiments. In these
experiments, a requirement is that the number of treatments be equal to the square
of an integer, such as 9, 16, or 25 treatments. Function lattice also analyzes
repetitions of lattice experiments.

298 � lattice IMSL C/Stat/Library

Synopsis
#include <imsls.h>
float * imsls_f_lattice (int n, int n_locations, int n_reps,

int n_blocks, int n_treatments, int rep[], int block[],
int treatment[], float y[],…, 0)

The type double function is imsls_d_lattice.

Required Arguments

int n (Input)
Number of missing and non-missing experimental observations.
imsls_f_balanced_lattice verifies that:

wheren = n_locations×t×r

andt r� �n_treatments n_reps .

int n_locations (Input)
Number of locations or repetitions of the lattice experiments.
n_locations must be one or greater. If n_locations>1 then the
optional arguments IMSLS_LOCATIONS must be included as input to
imsls_f_lattice.

int n_reps (Input)
Number of replicates per location. Each replicate should consist of

t = n_treatments organized into k blocks. t�

int n_blocks (Input)
Number of blocks per location. For every location, n_blocks must be

equal to n_blocks= r·k, where r = n_reps and .k t�

int n_treatments (Input)
Number of treatments t = n_treatments must be equal to k2.

int rep[] (Input)
An array of length n containing the replicate identifiers for each
observation in y. For a balanced-lattice, the number of replicate
identifiers must be equal to n_reps=(k+1). For a partially-balanced
lattice, the number of replicate identifiers depends upon whether the
design is a simple lattice, triple lattice, etc. imsls_f_lattice verifies
that the number of unique replicate identifiers is equal to n_reps. If
multiple locations or repetitions of the experiment is conducted, i.e.,
n_locations>1, then the replicate and block numbers contained in
rep and block must agree between repetitions.

int block[] (Input)
An array of length n containing the block identifiers for each
observation in y. imsls_f_lattice verifies that the number of unique
block identifiers is equal to n_blocks. If multiple locations or

Chapter 4: Analysis of Variance and Designed Experiments lattice � 299

repetitions of the experiment is conducted, i.e., n_locations>1, then
block numbers must agree between repetitions. That is, the ith block in
every location or repetition must contain the same treatments.

int treatment[] (Input)
An array of length n containing the treatment identifiers for each
observation in y. Each treatment must be assigned values from 1 to
n_treatments. imsls_f_lattice verifies that the number of unique
treatment identifiers is equal to n_treatments.

float y[] (Input)
An array of length n containing the experimental observations and any
missing values. Missing values cannot be omitted. They are indicated
by placing a NaN (not a number) in y. The NaN value can be set using
either the function imsls_f_machine(6) or imsls_d_machine(6),
depending upon whether single or double precision is being used,
respectively. The location, replicate, block, and treatment number for
each observation in y are identified by the corresponding values in the
arguments locations, rep, block, and treatment.

Return Value
Address of a pointer to the memory location of a two dimensional, 7 by 6 array
containing the ANOVA table. Each row in this array contains values for one of
the effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], identifies the source for the effect
associated with values in that row. The remaining values in a row contain the
ANOVA table values using the following convention:

J anova_table

i,j
= anova_table[i*6+j]

0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

The Source Identifiers in the first column of anova_tablei,j are the only
negative values in anova_table[]. Assignments of identifiers to ANOVA
sources use the following coding:

300 � lattice IMSL C/Stat/Library

Source Identifier ANOVA Source
-1 LOCATIONS †

-2 REPLICATES

-3 TREATMENTS(unadjusted)

-4 TREATMENTS(adjusted)

-5 BLOCKS(adjusted)

-6 INTRA-BLOCK ERROR

-7 CORRECTED TOTAL

Notes: † If n_locations=1, all entries in this row are set to missing (NaN).

Synopsis with Optional Arguments
#include <imsl.h>
float * imsls_f_lattice(int n, int n_locations, int n_reps,

int n_blocks, int n_treatments, int rep[], int block[],
int treatment[], float y[],
IMSLS_RETURN_USER, float anova_table[]
IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER,
 float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],

 0)

Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined array of length 42 for storage of the 7 by 6 anova table
described as the return argument for imsls_f_lattice. For a detailed
description of the format for this table, see the previous description of
the return arguments for imsls_d_lattice.

IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location or repetition identifiers for
each observation in y. Unique integers must be assigned to each
location in the study. This argument is required when n_locations>1.

Chapter 4: Analysis of Variance and Designed Experiments lattice � 301

IMSLS_N_MISSING, int *n_missing (Output)
 Number of missing values, if any, found in y. Missing values are
denoted with a NaN (Not a Number) value.

IMSLS_CV, float *cv (Output)
 The coefficient of variation computed by using the location standard
deviation.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
 The overall adjusted mean averaged over every location.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size
n_treatments containing the adjusted treatment means.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
 Address of a pointer to an internally allocated array of length 4
containing the standard error and associated degrees of freedom for
comparing two treatment means. std_err[0] contains the standard
error for comparing two treatments that appear in the same block at least
once. std_err[1] contains the standard error for comparing two
treatments that never appear in the same block together. std_err[2]
contains the standard error for comparing, on average, two treatments
from the experiment averaged over cases in which the treatments do or
do not appear in the same block. Finally, std_err[3] contains the
degrees of freedom associated with each of these standard errors, i.e.,
std_err[3]= degrees of freedom for intra-block error.

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
Address of a pointer to an internally allocated 3-dimensional array of
size n_locations by 7 by 6 containing the anova tables associated
with each location or repetition of the lattice experiment. For each
location, the 7 by 6 dimensional array corresponds to the anova table for
that location.
For example, location_anova_table[(i-1)×42+(j-1)×6 + (k-1)]
contains the value in the kth column and jth row of the anova-table for
the ith location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for the array location_anova_table, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array
containing the labels for each of the n_anova rows of the returned
ANOVA table. The label for the ith row of the ANOVA table can be
printed with printf("%s", anova_row_labels[i]);

302 � lattice IMSL C/Stat/Library

The memory associated with anova_row_labels can be freed with a
single call to free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The
amount of space required will vary depending upon the number of
factors and n_anova. An upperbound on the required memory is
char *anova_row_labels[600];

Description
The function imsls_f_lattice analyzes both balanced and partially-balanced
lattice experiments, possibly repeated at multiple locations. These designs were
originally described by Yates (1936). A defining characteristic of these classes of
lattice experiments is that the number of treatments is always the square of an
integer, such as t=9, 16, 25, etc. where t is equal to the number of treatments.

Another characteristic of lattice experiments is that blocks are organized into
replicates, where each replicate contains one observation for each treatment. This
requires the number of blocks in each replicate to be equal to the number of
observations per block. That is, the number of blocks per replicate and the
number of observations per block are both equal to k t� .

For balanced lattice experiments the number of replicates is always . For
partially-balanced lattice experiments, the number of replicates is less than .
Tables of balanced-lattice experiments are tabulated in Cochran & Cox (1950) for
t=9, 16, 25, 49, 64 and 81.

1k �

1k �

The analysis of balanced and partially-balanced experiments is detailed in
Cochran & Cox (1950) and Kuehl (2000).

Consider, for example, a 3x3 balanced-lattice, i.e., k=3 and t=9. Notice that the
number of replicates is 4 and the number of blocks per replicate is equal to 3.
The total number of blocks is equal to

(1)r k� � � �n_blocks= n_locations 1 .

For a balanced-lattice,

(1) (1) 4 3 1b r k k k t t� � � � � � � � � � � �n_blocks 2 .

Chapter 4: Analysis of Variance and Designed Experiments lattice � 303

Replicate I Replicate II
Block 1 (T1, T2, T3) Block 4 (T1, T4,

T7)

Block 2 (T4, T5, T6) Block 5 (T2, T5,
T8)

Block 3 (T7, T8, T9) Block 6 (T3, T6,
T9)

Replicate III Replicate IV

Block 7 (T1, T5, T9) Block 10 (T1, T6,
T8)

Block 8 (T2, T6, T7) Block 11 (T2, T4,
T9)

Block 9 (T3, T4, T8) Block 12 (T3, T5,
T7)

Table 1. A 3x3 Balanced-Lattice for 9 Treatments in Four Replicates.

The analysis of variance for data from a balanced-lattice experiment, takes the
form familiar to other balanced incomplete block experiments. In these
experiments, the error term is divided into two components: the Inter-Block
Error and the Intra-Block Error. For single and multiple locations, the general
format of the anova tables is illustrated in the Tables 2 and 3.

SOURCE DF Sum of

Squares
Mean
Squares

REPLICATES 1r � SSR MSR

TREATMENTS(unadj) 1t � SST MST

TREATMENTS(adj) 1t � SSTa MSTa

BLOCKS(adj) (1r k� �) SSBa MSBa

INTRA-BLOCK
ERROR

(1)(1k r k k� � � �) SSI MSI

TOTAL 1r t� �
Table 2 – The ANOVA Table for a Lattice Experiment at one Location

304 � lattice IMSL C/Stat/Library

SOURCE DF Sum of

Squares
Mean
Squares

LOCATIONS 1p � SSL MSL

REPLICATES WITHIN
LOCATIONS

(1p r �) SSR MSR

TREATMENTS(unadj) 1t � SST MST

TREATMENTS(adj) 1t � SSTa MSTa

BLOCKS(adj) (1)p r k� � SSB MSB

INTRA-BLOCK ERROR (1)(1)p k r k k� � � � � SSI MSI

TOTAL 1p r t� � �
Table 3 – The ANOVA Table for a Lattice Experiment at Multiple Locations

Example 1
This example is a lattice design for 16 treatments conducted at one location. A
lattice design with t=k2=16 treatments is a balanced lattice design with r= k+1=5
replicates and r·k=5(4)=20 blocks.

#include <stdlib.h>

#include <math.h>

#include "imsls.h"

void l_print_LSD(int n1, int* equalMeans, float *means);

void main()

{

 char **anova_row_labels = NULL;

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ ",

 "Mean \nsquares", "\nF-Test", "\np-Value"};

 float alpha = 0.05;

 int i, l, page_width = 132;

 int n = 80; /* Total number of observations */

 int n_locations = 1; /* Number of locations */

 int n_treatments =16; /* Number of treatments */

 int n_reps = 5; /* Number of replicates */

 int n_blocks =20; /* Total number of blocks */

 int n_aov_rows = 7; /* Number of rows in the anova table */

 int rep[]={

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

Chapter 4: Analysis of Variance and Designed Experiments lattice � 305

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5

 };

 int block[]={

 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,

 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,

 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12,

 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16,

 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20

 };

 int treatment[]={

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

 1, 5, 9, 13, 10, 2, 14, 6, 7, 15, 3, 11, 16, 8, 12, 4,

 1, 6, 11, 16, 5, 2, 15, 12, 9, 14, 3, 8, 13, 10, 7, 4,

 1, 14, 7, 12, 13, 2, 11, 8, 5, 10, 3, 16, 9, 6, 15, 4,

 1, 10, 15, 8, 9, 2, 7, 16, 13, 6, 3, 12, 5, 14, 11, 4

 };

 float y[] ={

 147, 152, 167, 150, 127, 155, 162, 172,

 147, 100, 192, 177, 155, 195, 192, 205,

 140, 165, 182, 152, 97, 155, 192, 142,

 155, 182, 192, 192, 182, 207, 232, 162,

 155, 132, 177, 152, 182, 130, 177, 165,

 137, 185, 152, 152, 185, 122, 182, 192,

 220, 202, 175, 205, 205, 152, 180, 187,

 165, 150, 200, 160, 155, 177, 185, 172,

 147, 112, 177, 147, 180, 205, 190, 167,

 172, 212, 197, 192, 177, 220, 205, 225

 };

 float grand_mean;

 float cv;

 float *aov;

 float *treatment_means;

 float *std_err;

 int *equal_means;

 int df;

306 � lattice IMSL C/Stat/Library

 aov = imsls_f_lattice(n, n_locations, n_reps, n_blocks,

 n_treatments, rep, block, treatment, y,

 IMSLS_GRAND_MEAN, &grand_mean,

 IMSLS_CV, &cv,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_STD_ERRORS, &std_err,

 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,

 0);

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /* Print the ANOVA table. */

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 7, 6, aov,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

 IMSLS_ROW_LABELS, anova_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 printf("\n\nAdjusted Grand Mean: %7.3f", grand_mean);

 printf("\n\nCoefficient of Variation: %7.3f\n\n", cv);

 l = 0;

 printf("Adjusted Treatment Means: \n");

 for (i=0; i < n_treatments; i++){

 printf("treatment[%2d] %7.4f \n", i+1,
 treatment_means[l++]);

 }

 df = (int)std_err[3];

 printf("\nStandard Error for Comparing Two Adjusted Treatment Means: %f \n(df=%d)\n",

 std_err[2], df);

 equal_means = imsls_f_multiple_comparisons(n_treatments, treatment_means, df,

 std_err[2]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_print_LSD(n_treatments, equal_means, treatment_means);

}

/*

 * Function to display means comparison.

 */

void l_print_LSD(int n, int *equalMeans, float *means){

 float x=0.0;

 int i, j, k;

Chapter 4: Analysis of Variance and Designed Experiments lattice � 307

 int iSwitch;

 int *idx;

 idx = (int *) malloc(n * sizeof (int));

 for (k=0; k < n; k++) {

 idx[k] =k+1;

 }

 /* Sort means in ascending order*/

 iSwitch=1;

 while (iSwitch != 0){

 iSwitch = 0;

 for (i = 0; i < n-1; i++){

 if (means[i] > means[i+1]){

 iSwitch = 1;

 x = means[i];

 means[i] = means[i+1];

 means[i+1] = x;

 j = idx[i];

 idx[i] = idx[i+1];

 idx[i+1] = j;

 }

 }

 }

 printf("[group] \t Mean \t\tLSD Grouping \n");

 for (i=0; i < n; i++){

 printf(" [%d] \t\t%f", idx[i], means[i]);

 for (j=1; j < i+1; j++){

 if(equalMeans[j-1] >= i+2-j){

 printf("\t *");

 }else{

 if(equalMeans[j-1]>0) printf("\t");

 }

 }

 if (i < n-1 && equalMeans[i]>0) printf("\t *");

 printf("\n");

 }

 free(idx);

 idx = NULL;

 return;

}

308 � lattice IMSL C/Stat/Library

Output

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F-Test p-Value

Locations -1

Replicates -2 4 6524.38 1631.10

Treatments (unadjusted) ... -3 15 27297.13 1819.81 4.12 0.000

Treatments (adjusted) -4 15 21271.29 1418.09 4.21 0.000

Blocks (adjusted) -5 15 11339.28 755.95

Intra-Block Error -6 45 15173.09 337.18

Corrected Total -7 79 60333.88

Adjusted Grand Mean: 171.450

Coefficient of Variation: 10.710

Adjusted Treatment Means:

treatment[1] 166.4533

treatment[2] 160.7527

treatment[3] 183.6289

treatment[4] 175.6298

treatment[5] 162.6806

treatment[6] 167.6717

treatment[7] 168.3821

treatment[8] 176.5731

treatment[9] 162.6928

treatment[10] 118.5197

treatment[11] 189.0615

treatment[12] 190.4607

treatment[13] 169.4514

treatment[14] 197.0827

treatment[15] 185.3560

treatment[16] 168.8029

Standard Error for Comparing Two Adjusted Treatment Means: 13.221801

(df=45)

[group] Mean LSD Grouping

 [10] 118.519737

Chapter 4: Analysis of Variance and Designed Experiments lattice � 309

 [2] 160.752731 *

 [5] 162.680649 * *

 [9] 162.692841 * *

 [1] 166.453323 * * *

 [6] 167.671661 * * *

 [7] 168.382111 * * *

 [16] 168.802887 * * *

 [13] 169.451370 * * *

 [4] 175.629776 * * * *

 [8] 176.573090 * * * *

 [3] 183.628906 * * * *

 [15] 185.355988 * * * *

 [11] 189.061508 * * *

 [12] 190.460724 * *

 [14] 197.082703 *

Example 2
This example consists of a 5 × 5 partially-balanced lattice repeated twice. In this
case, the number of replicates is not k+1 = 6, it is only n_reps = 2. Each lattice
consists of total of 50 observations which is repeated twice. The first observation
in this experiment is missing.

#include <stdlib.h>

#include <math.h>

#include "imsls.h"

void l_print_LSD(int n1, int* equalMeans, float *means);

void main()

{

 char **anova_row_labels = NULL;

 char **loc_row_labels = NULL;

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ ",

 "Mean \nsquares", "\nF-Test", "\np-Value"};

 float alpha = 0.05;

 int i, l, page_width = 132;

 int n = 100; /* Total number of observations */

 int n_locations = 2; /* Number of locations */

 int n_treatments =25; /* Number of treatments */

 int n_reps = 2; /* Number of replicates/location */

 int n_blocks =10; /* Total number of blocks/location */

 int n_aov_rows = 7; /* Number of rows in the anova table */

310 � lattice IMSL C/Stat/Library

 int rep[]={

 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2,

 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2

 };

 int block[]={

 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2,

 3, 3, 3, 3, 3,

 4, 4, 4, 4, 4,

 5, 5, 5, 5, 5,

 6, 6, 6, 6, 6,

 7, 7, 7, 7, 7,

 8, 8, 8, 8, 8,

 9, 9, 9, 9, 9,

 10, 10, 10, 10, 10,

 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2,

 3, 3, 3, 3, 3,

 4, 4, 4, 4, 4,

 5, 5, 5, 5, 5,

 6, 6, 6, 6, 6,

 7, 7, 7, 7, 7,

 8, 8, 8, 8, 8,

 9, 9, 9, 9, 9,

Chapter 4: Analysis of Variance and Designed Experiments lattice � 311

 10, 10, 10, 10, 10

 };

 int treatment[]={

 1, 2, 3, 4, 5,

 6, 7, 8, 9, 10,

 11, 12, 13, 14, 15,

 16, 17, 18, 19, 20,

 21, 22, 23, 24, 25,

 1, 6, 11, 16, 21,

 2, 7, 12, 17, 22,

 3, 8, 13, 18, 23,

 4, 9, 14, 19, 24,

 5, 10, 15, 20, 25,

 1, 2, 3, 4, 5,

 6, 7, 8, 9, 10,

 11, 12, 13, 14, 15,

 16, 17, 18, 19, 20,

 21, 22, 23, 24, 25,

 1, 6, 11, 16, 21,

 2, 7, 12, 17, 22,

 3, 8, 13, 18, 23,

 4, 9, 14, 19, 24,

 5, 10, 15, 20, 25

 };

 int location[]={

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

 };

 float y[] ={

 6, 7, 5, 8, 6,

 16, 12, 12, 13, 8,

 17, 7, 7, 9, 14,

 18, 16, 13, 13, 14,

312 � lattice IMSL C/Stat/Library

 14, 15, 11, 14, 14,

 24, 13, 24, 11, 8,

 21, 11, 14, 11, 23,

 16, 4, 12, 12, 12,

 17, 10, 30, 9, 23,

 15, 15, 22, 16, 19,

 13, 26, 9, 13, 11,

 15, 18, 22, 11, 15,

 19, 10, 10, 10, 16,

 21, 16, 17, 4, 17,

 15, 12, 13, 20, 8,

 16, 7, 20, 13, 21,

 15, 10, 11, 7, 14,

 7, 11, 15, 15, 16,

 19, 14, 20, 6, 16,

 17, 18, 20, 15, 14

 };

 float grand_mean;

 float cv;

 float *aov;

 float *location_anova_table;

 float *loc_anova_table;

 float *treatment_means;

 float *std_err;

 int df;

 int n_missing;

 int *equal_means;

 /* Set first observation to missing. */

 y[0] = imsls_f_machine(6);

 aov = imsls_f_lattice(n, n_locations, n_reps, n_blocks,

 n_treatments, rep, block, treatment, y,

 IMSLS_LOCATIONS, location,

 IMSLS_GRAND_MEAN, &grand_mean,

 IMSLS_CV, &cv,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_STD_ERRORS, &std_err,

 IMSLS_LOCATION_ANOVA_TABLE, &location_anova_table,

 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,

 IMSLS_N_MISSING, &n_missing,

 0);

Chapter 4: Analysis of Variance and Designed Experiments lattice � 313

 /* Output results. */

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /* Print the ANOVA table. */

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 7, 6, aov,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

 IMSLS_ROW_LABELS, anova_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 /* Print the location ANOVA tables. */

 for (i=0; i < n_locations; i++){

 printf("\n\n\t\t\t\tLOCATION %d", i+1);

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 7, 6, &(location_anova_table[i*42]),

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

 IMSLS_ROW_LABELS, anova_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 }

 printf("\n\nAdjusted Grand Mean: %7.3f", grand_mean);

 printf("\n\nCoefficient of Variation: %7.3f\n\n", cv);

 l = 0;

 printf("Adjusted Treatment Means: \n");

 for (i=0; i < n_treatments; i++){

 printf("treatment[%2d] %7.4f \n", i+1,
treatment_means[l++]);

 }

 df = std_err[3];

 printf("\nStandard Error for Comparing Two Adjusted Treatment Means: %f \n(df=%d)\n",

 std_err[2], df);

 equal_means = imsls_f_multiple_comparisons(n_treatments, treatment_means, df,

 std_err[2]/sqrt(2),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_print_LSD(n_treatments, equal_means, treatment_means);

 printf("\n\nNumber of missing observations: %d\n", n_missing);

}

314 � lattice IMSL C/Stat/Library

Output

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F-Test p-Value

Locations -1 1 12.19 12.19 0.25 0.622

Replicates within Locations -2 2 203.99 101.99 7.44 0.001

Treatments (unadjusted) ... -3 24 795.46 33.14 0.02 1.000

Treatments (adjusted) -4 24 951.20 39.63 2.89 0.006

Blocks (adjusted) -5 16 770.50 48.16 3.51 0.000

Intra-Block Error -6 55 753.81 13.71

Corrected Total -7 98 2535.95

 LOCATION 1

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F-Test p-Value

Locations -1

Replicates within Locations -2 1 203.67 203.67

Treatments (unadjusted) ... -3 24 567.13 23.63 0.78 0.721

Treatments (adjusted) -4 24 661.08 27.54 2.04 0.078

Blocks (adjusted) -5 8 490.51 61.31

Intra-Block Error -6 15 202.93 13.53

Corrected Total -7 48 1464.24

 LOCATION 2

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F-Test p-Value

Locations -1

Replicates within Locations -2 1 0.32 0.32

Treatments (unadjusted) ... -3 24 622.52 25.94 1.43 0.196

Treatments (adjusted) -4 24 707.51 29.48 2.83 0.018

Blocks (adjusted) -5 8 269.76 33.72

Intra-Block Error -6 16 166.92 10.43

Corrected Total -7 49 1059.52

Adjusted Grand Mean: 14.011

Chapter 4: Analysis of Variance and Designed Experiments lattice � 315

Coefficient of Variation: 26.423

Adjusted Treatment Means:

treatment[1] 17.1507

treatment[2] 19.2200

treatment[3] 11.1261

treatment[4] 14.6230

treatment[5] 12.6543

treatment[6] 11.8133

treatment[7] 11.9045

treatment[8] 11.3106

treatment[9] 9.5576

treatment[10] 11.5889

treatment[11] 22.1321

treatment[12] 12.7233

treatment[13] 13.1293

treatment[14] 17.8763

treatment[15] 18.6576

treatment[16] 14.6568

treatment[17] 11.4980

treatment[18] 13.1540

treatment[19] 5.4010

treatment[20] 12.9323

treatment[21] 15.4108

treatment[22] 17.0020

treatment[23] 13.9081

treatment[24] 17.6550

treatment[25] 13.1864

Standard Error for Comparing Two Adjusted Treatment Means: 4.617277

(df=55)

[group] Mean LSD Grouping

 [19] 5.400988 *

 [9] 9.557555 * *

 [3] 11.126063 * * *

 [8] 11.310598 * * *

 [17] 11.497972 * * *

 [10] 11.588868 * * *

 [6] 11.813338 * * *

 [7] 11.904538 * * *

 [5] 12.654334 * * *

 [12] 12.723251 * * *

316 � split_plot IMSL C/Stat/Library

 [20] 12.932302 * * * *

 [13] 13.129311 * * * *

 [18] 13.154031 * * * *

 [25] 13.186358 * * * *

 [23] 13.908089 * * * *

 [4] 14.623020 * * * *

 [16] 14.656771 * * *

 [21] 15.410829 * * *

 [22] 17.002029 * * *

 [1] 17.150679 * * *

 [24] 17.655045 * * *

 [14] 17.876268 * * *

 [15] 18.657581 * * *

 [2] 19.220003 * *

 [11] 22.132051 *

Number of missing observations: 1

split_plot
Analyzes a wide variety of split-plot experiments with fixed, mixed or random
factors. The whole-plots can be assigned to experimental units using either a
completely randomized or randomized complete block design. Function
split_plot also analyzes split-plot experiments replicated at several locations.

Synopsis
#include <imsls.h>
float * imsls_f_split_plot (int n, int n_locations, int n_whole,

 int n_split, int rep[], int whole[], int split[], float y[],…, 0)

The type double function is imsls_d_split_plot.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations.
imsls_f_split_plot verifies that:

 � �
1

n i
i

� �

�

� n_wholen_splitn_blocks
n_locations

�

int n_locations (Input)
Number of locations. n_locations must be one or greater. If
n_locations>1, then the optional array locations[] must be
included as input to imsls_f_split_plot.

Chapter 4: Analysis of Variance and Designed Experiments split_plot � 317

int n_whole (Input)
Number of levels associated with the whole-plot factor. n_whole must
be greater than one.

int n_split (Input)
Number of levels associated with the split-plot factor. n_split must be
greater than one.

int rep[] (Input)
 An array of length n containing the block, or replicate, identifiers for

each observation in y. Locations can have different numbers of blocks
or replicates. Each block or replicate at a single location must be
assigned a different identifier, but different locations can have the same
assignments.

int whole[] (Input)
An array of length n containing the whole-plot identifiers for each
observation in y. Each level of the whole-plot factor must be assigned a
different integer. imsls_f_split_plot verifies that the number of
unique whole-plot identifiers is equal to n_whole.

int split[] (Input)
 An array of length n containing the split-plot identifiers for each

observation in y. Each level of the split-plot factor must be assigned a
different integer. imsls_f_split_plot verifies that the number of
unique split-plot identifiers is equal to n_split.

float y[] (Input)
An array of length n containing the experimental observations and any
missing values. Missing values cannot be omitted. They are indicated
by placing a NaN (not a number) in y. The NaN value can be set using
either the function imsls_f_machine(6) or imsls_d_machine(6),
depending upon whether single or double precision is being used,
respectively. At a single location, only one missing value per whole-plot
is allowed. The location, whole-plot and split-plot for each observation
in y are identified by the corresponding values in the arguments
locations, whole and split.

Return Value
Address of a pointer to the memory location of a two dimensional, 11 by 6 array
containing the ANOVA table. Each row in this array contains values for one of
the effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], identifies the source for the effect
associated with values in that row. The remaining values in a row contain the
ANOVA table values using the following convention:

318 � split_plot IMSL C/Stat/Library

j anova_tablei,j = anova_table[I*6+j]

0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

The Source Identifiers in the first column of anova_tablei,j are the only
negative values in anova_table[]. Assignments of identifiers to ANOVA
sources use the following coding:

Source

Identifier

ANOVA Source
-1 LOCATION†
-2 BLOCK WITHIN LOCATION‡
-3 WHOLE-PLOT
-4 LOCATION × WHOLE-PLOT†
-5 WHOLE-PLOT ERROR
-6 SPLIT-PLOT
-7 LOCATION × SPLIT-PLOT†
-8 WHOLE-PLOT × SPLIT-PLOT
-9 LOCATION × WHOLE-PLOT × SPLIT-PLOT†

-10 SPLIT-PLOT ERROR�
-11 CORRECTED TOTAL

Notes: † If n_locations=1 sources involving location are set to missing
(NaN).

‡ If IMSLS_CRD is set, entries for block within location are set to missing, and
 its sum of squares and degrees of freedom are pooled into the whole-plot error.

� Split-plot error component calculation varies depending upon the settings for
IMSLS_RCBD, IMSLS_LOC_FIXED, IMSLS_WHOLE_FIXED,
IMSLS_SPLIT_FIXED, and upon whether n_locations=1. See the
“Description” section below for details.

Synopsis with Optional Arguments
#include <imsl.h>
float * imsls_f_split_plot (int n, int n_locations, int n_whole,

int n_split, int rep[], int whole[], int split[], float y[],

Chapter 4: Analysis of Variance and Designed Experiments split_plot � 319

IMSLS_RETURN_USER, float anova_table[]
IMSLS_LOCATIONS, int locations[],
IMSLS_LOC_RANDOM or IMSLS_LOC_FIXED,
IMSLS_RCBD or IMSLS_CRD,
IMSLS_WHOLE_FIXED or IMSLS_WHOLE_RANDOM,
IMSLS_SPLIT_FIXED or IMSLS_SPLIT_RANDOM,
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float **cv,
IMSLS_CV_USER, float cv[],
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means,
IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[],
IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means,
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_N_BLOCKS int **n_blocks,
IMSLS_N_BLOCKS_USER, int n_blocks[],
IMSLS_BLOCK_SS float **block_ss,
IMSLS_BLOCK_SS_USER, float block_ss[],
IMSLS_WHOLE_PLOT_SS float **whole_plot_ss,
IMSLS_WHOLE_PLOT_SS_USER, float whole_plot_ss[],
IMSLS_SPLIT_PLOT_SS float **split_plot_ss,
IMSLS_SPLIT_PLOT_SS_USER, float split_plot_ss[],
IMSLS_WHOLEXSPLIT_PLOT_SS float **wholexsplit_plot_ss,
IMSLS_WHOLEXSPLIT_PLOT_SS_USER,
 float wholexsplit_plot_ss[],
IMSLS_WHOLE_PLOT_ERROR_SS float **whole_plot_error_ss,
IMSLS_WHOLE_PLOT_ERROR_SS_USER,
 float whole_plot_error_ss[],
IMSLS_SPLIT_PLOT_ERROR_SS float **split_plot_error_ss,
IMSLS_SPLIT_PLOT_ERROR_SS_USER,
 float split_plot_error_ss[],
IMSLS_TOTAL_SS float **total_ss,
IMSLS_TOTAL_SS_USER, float total_ss[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],

 0)

Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined array of length 66 for storage of the 11 by 6 Anova table
described as the return argument for imsls_f_split_plot. For a
detailed description of the format for this table, see the previous
description of the return arguments for imsls_f_split_plot.

320 � split_plot IMSL C/Stat/Library

IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location identifiers for each
observation in y. Unique integers must be assigned to each location in
the study. This argument is required when n_locations>1.

IMSLS_LOC_FIXED or IMSLS_LOC_RANDOM (Input)
 A characteristic controlling whether the location factor is treated as a

fixed or random effect, when n_locations>1. IMSLS_LOC_FIXED
and IMSLS_LOC_RANDOM imply that the factor is a fixed effect or
random effect, respectively.
Default: IMSLS_LOC_RANDOM

IMSLS_RCBD or IMSLS_CRD (Input)
Whole-plot randomization characteristic: IMSLS_RCBD implies that
whole-plots are assigned to whole-plot experimental units using a
randomized complete block design. IMSLS_CRD implies that whole-
plots are completely randomized to whole-plot experimental units.
Default: IMSLS_RCBD

IMSLS_WHOLE_FIXED or IMSLS_WHOLE_RANDOM (Input)
Whole-plot characteristic. IMSLS_WHOLE_FIXED implies that the
whole-plot factor is a fixed effect, and IMSLS_WHOLE_RANDOM implies
that it is a random effect.
Default: IMSLS_WHOLE_FIXED

IMSLS_SPLIT_FIXED or IMSLS_SPLIT_RANDOM (Input)
Split-plot characteristic. IMSLS_SPLIT_FIXED implies that the split-
plot factor is a fixed effect, and IMSLS_SPLIT_RANDOM implies that it is
a random effect.
Default: IMSLS_SPLIT_FIXED.

IMSLS_N_MISSING, int *n_missing (Output)
 Number of missing values, if any, found in y. Missing values are
denoted with a NaN (Not a Number) value.

IMSLS_CV, float **cv (Output)
Address of a pointer to an internally allocated array of length 2
containing the whole-plot and split-plot coefficients of variation. cv[0]
contains the whole-plot C.V., and cv[1] contains the split-plot C.V.

IMSLS_CV_USER, float cv[] (Output)
Storage for the array cv, provided by the user.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means (Output)
Address of a pointer to an internally allocated array of length n_whole
containing the whole-plot means.

IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[] (Output)
Storage for the array whole_plot_means, provided by the user.

Chapter 4: Analysis of Variance and Designed Experiments split_plot � 321

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output)
Address of a pointer to an internally allocated array of length n_split
containing the split-plot means.

IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output)
Storage for the array split_plot_means, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size
(n_whole * n_split) containing the treatment means. For

i > 0 and j > 0, treatment_meansi,j = treatment_means[(i-1)*n_split+j-1]

contains the mean of the observations, averaged over all locations, blocks
and replicates, for the jth split-plot within the ith whole-plot.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
 Address of a pointer to an internally allocated array of length 10
containing five standard errors and their associated degrees of freedom.

Element
Standard Error for

Comparisons
Between Two

Degrees of
Freedom

std_err[0] Whole-Plot Means std_err[5]

std_err[1] Split-Plot Means std_err[6]

std_err[2] Split-Plots within same
Whole-Plot

std_err[7]

std_err[3] Whole-Plots within same
Split-Plot

std_err[8]

std_err[4] Treatment Means
(same whole-plot, split-
plot and sub-plot)

std_err[9]

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_N_BLOCKS, int **n_blocks (Output)
 Address of a pointer to an internally allocated array of length
n_locations containing the number of blocks, or replicates, at each
location.

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output)
Storage for the array n_blocks, provided by the user.

322 � split_plot IMSL C/Stat/Library

IMSLS_BLOCK_SS, float **block_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of
size n_locations by 2 containing the sum of squares for blocks and
their associated degrees of freedom for each location.

IMSLS_BLOCK_SS_USER, float block_ss[] (Output)
Storage for the array block_ss, provided by the user. Address of a
pointer to an internally allocated 2-dimensional array of size
n_locations by 2 containing the sum of squares for blocks and their
associated degrees of freedom for each location.

IMSLS_WHOLE_PLOT_SS, float **whole_plot_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of
size n_locations by 2 containing the sum of squares for whole-plots
and their associated degrees of freedom for each location.

IMSLS_WHOLE_PLOT_SS_USER, float whole_plot_ss[] (Output)
Storage for the array whole_plot_ss, provided by the user.

IMSLS_SPLIT_PLOT_SS, float **split_plot_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of
size n_locations by 2 containing the sum of squares for split-plots
and their associated degrees of freedom for each location.

IMSLS_SPLIT_PLOT_SS_USER, float split_plot_ss[] (Output)
Storage for the array split_plot_ss, provided by the user.

IMSLS_WHOLEXSPLIT_PLOT_SS, float **wholexsplit_plot_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of
size n_locations by 2 containing the sum of squares for whole-plot
by split-plot interaction and their associated degrees of freedom for each
location.

IMSLS_WHOLEXSPLIT_PLOT_SS_USER, float wholexsplit_plot_ss[]
(Output)
Storage for the array wholexsplit_plot_ss, provided by the user.

IMSLS_WHOLE_PLOT_ERROR_SS, float **whole_plot_error_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of
size n_locations by 2 containing the sum of squares for whole-plots
and their associated degrees of freedom for each location.

IMSLS_WHOLE_PLOT_ERROR_SS_USER, float whole_plot_error_ss[]
(Output)
Storage for the array whole_plot_error_ss, provided by the user.

IMSLS_SPLIT_PLOT_ERROR_SS, float **split_plot_error_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of
size n_locations by 2 containing the sum of squares for split-plots
and their associated degrees of freedom for each location.

Chapter 4: Analysis of Variance and Designed Experiments split_plot � 323

IMSLS_SPLIT_PLOT_ERROR_SS_USER, float split_plot_error_ss[]
(Output)
Storage for the array split_plot_error_ss, provided by the user.

IMSLS_TOTAL_SS, float **total_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of
size n_locations by 2 containing the corrected total sum of squares
and their associated degrees of freedom for each location.

IMSLS_TOTAL_SS_USER, float total_ss[] (Output)
Storage for the array total_ss, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array
containing the labels for each of the n_anova rows of the returned
ANOVA table. The label for the i-th row of the ANOVA table can be
printed with printf("%s", anova_row_labels[i]);

 The memory associated with anova_row_labels can be freed with a
single call to free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The
amount of space required will vary depending upon the number of
factors and n_anova. An upperbound on the required memory is
char *anova_row_labels[600].

Description
Function imsls_f_split_plot is capable of analyzing a wide variety of split-
plot experiments. Whole-plot and split-plot factors can each be designated as
either fixed or random, allowing for experiments with fixed, random or mixed
treatment effects. By default, imsls_f_split_plot assumes that all treatment
factors are fixed effects, i.e. IMSLS_WHOLE_FIXED and IMSLS_SPLIT_FIXED
are default settings. Whole-plot or split-plot factors can each be declared as
random effects by setting the optional input arguments IMSLS_WHOLE_RANDOM
and IMSLS_SPLIT_RANDOM, respectively.

Split-plot experimental designs can also vary in the assignment of the whole-plot
factor to its experimental units. In some cases, this assignment is completely
random. For example, in a drug study the experimental unit might be the subject
receiving a treatment. The whole-plot factor, possibly different treatments, could
be assigned in one of two ways. Each subject could receive only one treatment or
each could receive all treatments over an appropriate period of time. If each
subject received only a single randomly selected treatment, then this design
constitutes a completely randomized design for the whole-plot factor, and the
optional input argument IMSLS_CRD must be set.

On the other hand, if each subject receives every treatment in random order, then
the subject is a blocking factor, and this sampling scheme constitutes a
randomized complete block design. In this case, it is necessary to assume that

324 � split_plot IMSL C/Stat/Library

there are no carry-over effects from one treatment to another. This sampling
scheme is the default setting, i.e. IMSLS_RCBD is the default setting.

A similar randomization choice occurs in agricultural field trials. A trial designed
to test different fertilizers and different seed lots can be conducted in one of two
ways. The whole-plot factor, fertilizer, can be applied to different fields, or each
can be applied to sub-divisions of these fields. In either case, a field is the whole-
plot experimental unit. In the first case in which only a single randomly selected
fertilizer is applied to a single field, the whole-plot factor is not blocked and this
scheme is called as a completely randomized design, and the optional input
argument IMSLS_CRD must be set. However, if fertilizers are applied to sub-
plots within a field, then the whole-plot factor is blocked within fields and this
assignment is referred to as a randomized complete block design. By default, this
routine assumes that levels of the whole-plot factor are randomly assigned within
blocks, i.e. IMSLS_RCBD is the default setting for randomizing whole-plots.

The essential distinction between split-plot experiments and completely
randomized or randomized complete block experiments is the presence of a
second factor that is blocked, or nested, within each level of the whole-plot factor.
This second factor is referred to as the split-plot factor, see Figure 1. If levels of
this factor were completely randomized, then two or more treatments with the
same split-plot level could be assigned to the same whole-plot level, see Figure 2.

Whole Plot Factor

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Figure 1 – Split-Plot Experiments – Split-Plot B Nested within Whole-Plot A

CRD

A3B2 A1B3 A4B1 A4B3

A2B3 A1B1 A3B2 A1B2

A2B2 A3B1 A2B1 A4B2

Figure 2 – Completely Randomized Experiments – Both Factors Randomized

In some studies, a split-plot experiment is replicated at several locations.
Function imsls_f_split_plot can also analyze split-plot experiments
replicated at multiple locations, even when the number of blocks or replicates at

Chapter 4: Analysis of Variance and Designed Experiments split_plot � 325

each location are different. If only a single replicate or block is used at each
location, then location should be treated as a blocking factor, with n_locations
set equal to one. If n_locations=1, it is assumed that the experiment was
conducted at a single location with more than one block or replicate at that
location. In this case, the four entries associated with location in the Anova table
will contain missing values.

However, if n_locations>1, it is assumed the experiment was repeated at
multiple locations, with replication or blocking occurring at each location.
Although the number of blocks, or replicates, at each location can be different,
the number of levels for whole-plot and split-plot factors, n_whole and
n_split, must be the same at each location. The location associated with y[i]
is specified in location[i], which is a required input argument when
n_locations>1.

By default, locations are assumed to be random effects. However, they can be
specified as fixed effects by setting the optional argument IMSLS_LOC_FIXED.
This setting changes the calculations of the F-tests for whole-plot and split-plot
factors. If locations are assumed to be fixed effects, then the whole-plot and split-
plot errors at each location are pooled to form the whole-plot and split-plot errors.
This can dramatically increase the degrees of freedom associated with the F-test
for the treatment factors, resulting in smaller p-values. However, pooling the
error terms from different locations requires experimenters to assume that the
errors at each location are approximately the same. This should be verified using
a test for homogeneity of variance, such as Bartlett’s or Levene’s test.

On the other hand, if locations are assumed to be random effects, then tests
involving whole-plots use the interaction between whole-plots and locations as
the error term for testing whether there are statistically significant differences
among whole-plot factor levels. However, this assumes that the interaction of
whole-plots and locations is not statistically significant. A test of this assumption
uses the pooled whole-plot error. If the interaction between whole-plots and
locations is statistically significant, then the nature of that interaction should be
explored since it impacts the interpretation of the significance of the whole-plot
treatment factor.

Similarly, when locations are assumed to be random effects, tests involving split-
plots do not use the split-plot errors pooled across locations. Instead, the error
term for split plots is the interaction between locations and split-plots. The split-
plot by whole-plot interaction is tested against the location by split-plot by whole-
plot interaction.

Suppose, for example, that a researcher wanted to conduct an agricultural
experiment comparing the effectiveness of 4 fertilizers with 4 seed lots. One
replicate of the experiment is conducted at each of the 3 farms. That is, only a
single field at each location is assigned to this experiment.

The field at each farm is divided into 4 whole-plots and the fertilizers are
randomly assigned to each of the 4 whole-plots. Each whole-plot is then further

326 � split_plot IMSL C/Stat/Library

divided into 4 split-plots, and the seed lots are randomly assigned to these split-
plots.

In this case, each farm is a blocking factor, fertilizers are whole-plots and seed
lots are split-plots. The input array rep would contain integers from 1 to the
number of farms.

However, if each farm allocated more than a single field for this study, then each
farm would be treated as a different location with n_locations set equal to the
number of farms, and fields would be treated as blocking factor. The array rep
would contain integers from 1 to the number fields used in a farm, and
locations[] would contain integers from 1 to the number of farms.

In summary this routine can analyze 3x2x2x2=24 different experimental
situations, depending upon the settings of:

1. Locations (none, fixed or random): specified by setting n_locations,
locations[] and IMSLS_LOC_FIXED or IMSLS_LOC_RANDOM.

2. Whole-plot sampling (CRD or RCBD): specified by setting IMSLS_CRD or
IMSLS_RCBD.

3. Whole-plot effect (fixed or random): specified by setting either
IMSLS_WHOLE_FIXED or IMSLS_WHOLE_RANDOM.

4. Split-plot effect (fixed or random): specified by setting either
IMSLS_SPLIT_FIXED or IMSLS_SPLIT_RANDOM.

The default condition depends upon the value for n_locations. If
n_locations>1, locations are assumed to be a random effect. Assignment of
experimental units to whole-plots is assumed to use a RCBD design and both
whole-plots and split-plots are assumed to be fixed effects.

Example
This example uses data from a split-plot design consisting of 2 whole-plots and 4
split-plots.

#include <stdlib.h>

#include <math.h>

#include "imsls.h"

void main()

{

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",

 "Mean\nsquares", "\nF", "\np-value"};

 int i, page_width = 132;

 int n = 24; /* Total number of observations */

 int n_locations = 1; /* Number of locations */

Chapter 4: Analysis of Variance and Designed Experiments split_plot � 327

 int n_whole = 2; /* Number of Whole-plots within a location */

 int n_split = 4; /* Number of Split-plots within a location,
Whole_plot */

 int rep[]={

 1, 1, 1, 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2, 2, 2, 2,

 3, 3, 3, 3, 3, 3, 3, 3};

 int whole[]={

 1, 1, 1, 1, 2, 2, 2, 2,

 1, 1, 1, 1, 2, 2, 2, 2,

 1, 1, 1, 1, 2, 2, 2, 2};

 int split[]={

 1, 2, 3, 4, 1, 2, 3, 4,

 1, 2, 3, 4, 1, 2, 3, 4,

 1, 2, 3, 4, 1, 2, 3, 4};

 float y[] ={

 30.0, 40.0, 38.9, 38.2,

 41.8, 52.2, 54.8, 58.2,

 20.5, 26.9, 21.4, 25.1,

 26.4, 36.7, 28.9, 35.9,

 21.0, 25.4, 24.0, 23.3,

 34.4, 41.0, 33.0, 34.9};

 float grand_mean;

 float *aov;

 float *treatment_means;

 float *whole_plot_means;

 float *split_plot_means;

 int *equal_means;

 char **aov_row_labels;

 aov = imsls_f_split_plot(n, n_locations, n_whole, n_split,

 rep, whole, split, y,

 IMSLS_GRAND_MEAN, &grand_mean,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_WHOLE_PLOT_MEANS, &whole_plot_means,

 IMSLS_SPLIT_PLOT_MEANS, &split_plot_means,

 IMSLS_ANOVA_ROW_LABELS, &aov_row_labels,

 0);

 /* Output results. */

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /* Print ANOVA table, without first column. */

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

328 � split_plot IMSL C/Stat/Library

 11, 6, aov,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

 IMSLS_ROW_LABELS, aov_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 /* Print the various means. */

 printf("\n\nGrand mean: %f\n", grand_mean);

 imsls_f_write_matrix("Treatment Means", n_whole, n_split,

 treatment_means, 0);

 imsls_f_write_matrix("Whole-plot Means", n_whole, 1,

 whole_plot_means, 0);

 imsls_f_write_matrix("Split-plot Means", n_split, 1,

 split_plot_means, 0);

}

Output

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F p-value

Location -1

Block Within Location -2 2 1310.28 655.14 30.82 0.031

Whole-Plot -3 1 858.01 858.01 40.37 0.024

Location x Whole-Plot -4

Whole-Plot Error -5 2 42.51 21.26 2.03 0.173

Split-Plot -6 3 227.73 75.91 7.26 0.005

Location x Split-Plot -7

Whole-Plot x Split-Plot -8 3 13.40 4.47 0.43 0.737

Location x Whole-Plot x -9

 Split-Plot

Split-Plot Error -10 12 125.39 10.45

Corrected Total -11 23 2577.33

Grand mean: 33.870834

 Treatment Means

 1 2 3 4

1 23.83 30.77 28.10 28.87

2 34.20 43.30 38.90 43.00

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot � 329

Whole-plot Means

 1 27.89

 2 39.85

Split-plot Means

 1 29.02

 2 37.03

 3 33.50

 4 35.93

split_split_plot
Analyzes data from split-split-plot experiments. The whole-plots can be assigned
to experimental units using either a completely randomized or randomized
complete block design. Function split_split_plot also analyzes split-split-
plot experiments replicated at several locations.

Synopsis
#include <imsls.h>
float * imsls_f_split_split_plot (int n, int n_locations, int

n_whole, int n_split, int n_sub, int rep[], int whole[], int
split[], int sub[], float y[],…, 0)

The type double function is imsls_d_split_split_plot.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations.
imsls_f_split_split_plot verifies that:

1

()i
i

n
�

� �
n_locations

n_whole×n_split×n_sub×n_blocks

 where n_blocki is equal to the number of blocks or replicates at the ith
location.

int n_locations (Input)
Number of locations. n_locations must be one or greater. If
n_locations>1 then the optional array locations[] must be
included as input. See optional argument IMSLS_LOCATIONS.

330 � split_split_plot IMSL C/Stat/Library

int n_whole (Input)
Number of levels associated with the whole-plot factor. n_whole must
be greater than one.

int n_split (Input)
Number of levels associated with the split-plot factor. n_split must be
greater than one.

int n_sub (Input)
Number of levels associated with the sub-plot factor. n_sub must be
greater than one.

int rep[] (Input)
An array of length n containing the block, or replicate, identifiers for
each observation in y. Different locations can have different numbers of
blocks or replicates. Each block or replicate at a single location must be
assigned a different identifier, but different locations can have the same
assignments.

int whole[] (Input)
An array of length n containing the whole-plot identifiers for each
observation in y. Each level of the whole-plot factor must be assigned a
different integer. imsls_f_split_split_plot verifies that the
number of unique whole-plot identifiers is equal to n_whole.

int split[] (Input)
An array of length n containing the split-plot identifiers for each
observation in y. Each level of the split-plot factor must be assigned a
different integer. imsls_f_split_split_plot verifies that the
number of unique split-plot identifiers is equal to n_split.

int sub[] (Input)
An array of length n containing the sub-plot identifiers for each
observation in y. Each level of the sub-plot factor must be assigned a
different integer. imsls_f_split_split_plot verifies that the
number of unique sub-plot identifiers is equal to n_sub.

float y[] (Input)
An array of length n containing the experimental observations and any
missing values. Missing values cannot be omitted. They are included by
placing a NaN (not a number) in y. The NaN value can be set using
either the function imsls_f_machine(6) or imsls_d_machine(6),
depending upon whether single or double precision is being used,
respectively. At a single location, only one missing value per whole-plot
is allowed. The location, whole-plot, split-plot and sub-plot for each
observation in y are identified by the corresponding values in the
arguments locations, whole, split and sub.

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot � 331

Return Value
Address of a pointer to the memory location of a two dimensional, 20 by 6 array
containing the ANOVA table. Each row in this array contains values for one of
the effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], identifies the source for the effect
associated with values in that row. The remaining values in a row contain the
ANOVA table values using the following convention:

J anova_table

i,j
= anova_table[i*6+j]

0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

The Source Identifiers in the first column of anova_tablei,j are the only
negative values in anova_table[]. Assignments of identifiers to ANOVA
sources use the following coding:

Source

Identifier

ANOVA Source
-1 LOCATION†
-2 BLOCK WITHIN LOCATION‡
-3 WHOLE-PLOT
-4 LOCATION × WHOLE-PLOT†
-5 WHOLE-PLOT ERROR
-6 SPLIT-PLOT
-7 LOCATION × SPLIT-PLOT†
-8 WHOLE-PLOT × SPLIT-PLOT
-9 LOCATION × WHOLE-PLOT × SPLIT-PLOT†
-10 SPLIT-PLOT ERROR�
-11 CORRECTED TOTAL
-12 LOCATION × SUB-PLOT†
-13 WHOLE-PLOT × SUB-PLOT
-14 LOCATION × WHOLE-PLOT × SUB-PLOT†
-15 SPLIT-PLOT × SUB-PLOT
-16 LOCATION × SPLIT-PLOT × SUB-PLOT†
-17 WHOLE-PLOT × SPLIT-PLOT × SUB-PLOT
-18 LOCATION × WHOLE-PLOT × SPLIT-PLOT × SUBPLOT†

332 � split_split_plot IMSL C/Stat/Library

Source
Identifier

ANOVA Source

-19 SUB-PLOT ERROR
-20 CORRECTED TOTAL

Notes: † If n_locations=1 sources involving location are set to missing
(NaN).

‡ If IMSLS_CRD is set, entries for blocks within location are set to missing, and
 its sum of squares and degrees of freedom are pooled into the whole-plot error.

* Split-plot error component calculation varies depending upon n_locations.
See description below for details.

Synopsis with Optional Arguments
#include <imsl.h>
float * imsls_f_split_split_plot (int n, int n_locations, int

n_whole, int n_split, int n_sub, int rep[], int whole[],
 int split[],int sub[], float y[],
IMSLS_RETURN_USER, float anova_table[],
IMSLS_LOCATIONS, int locations[],
IMSLS_RCBD or IMSLS_CRD,
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float **cv,
IMSLS_CV_USER, float cv[],
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means,
IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[],
IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means,
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[],
IMSLS_SUB_PLOT_MEANS, float **sub_plot_means,
IMSLS_SUB_PLOT_MEANS_USER, float sub_plot_means[],
IMSLS_WHOLE_SPLIT_PLOT_MEANS,
 float **whole_split_plot_means,
IMSLS_WHOLE_SPLIT_PLOT_MEANS_USER,
 float whole_split_plot_means[],
IMSLS_WHOLE_SUB_PLOT_MEANS, float
**whole_sub_plot_means,
IMSLS_WHOLE_SUB_PLOT_MEANS_USER
 float whole_sub_plot_means[],
IMSLS_SPLIT_SUB_PLOT_MEANS, float **split_sub_plot_means,
IMSLS_SPLIT_SUB_PLOT_MEANS_USER,
 float split_sub_plot_means[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_N_BLOCKS int **n_blocks,

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot � 333

IMSLS_N_BLOCKS_USER, int n_blocks[],
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER,
 float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],

 0)

Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined array of length 120 for storage of the 20 by 6 anova table
described as the return argument for imsls_f_split_split_plot.
For a detailed description of the format for this table, see the previous
description of the return value for imsls_f_split_split_plot.

IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location identifiers for each
observation in y. Unique integers must be assigned to each location in
the study. This argument is required when n_locations>1.

IMSLS_RCBD or IMSLS_CRD (Input)
Whole-plot randomization characteristic: IMSLS_RCBD implies that
whole-plots are assigned to whole-plot experimental units using a
randomized complete block design. IMSLS_CRD implies that whole-
plots are completely randomized to whole-plot experimental units.
Default: IMSLS_RCBD

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are
denoted with a NaN (Not a Number) value.

IMSLS_CV, float **cv (Output)
Address of a pointer to an internally allocated array of length 3
containing the whole-plot, split-plot and sub-plot coefficients of
variation. cv[0] contains the whole-plot C.V., cv[1] contains the split-
plot C.V., and cv[2] contains the sub-plot C.V.

IMSLS_CV_USER, float cv[] (Output)
Storage for the array cv, provided by the user.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means (Output)
 Address of a pointer to an internally allocated array of length n_whole
containing the whole-plot means.

IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[] (Output)
Storage for the array whole_plot_means, provided by the user.

334 � split_split_plot IMSL C/Stat/Library

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output)
Address of a pointer to an internally allocated array of length n_split
containing the split-plot means.

IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output)
Storage for the array split_plot_means, provided by the user.

IMSLS_SUB_PLOT_MEANS, float **sub_plot_means (Output)
 Address of a pointer to an internally allocated array of length n_sub
containing the sub-plot means.

IMSLS_SUB_PLOT_MEANS_USER, float sub_plot_means[] (Output)
Storage for the array sub_plot_means, provided by the user.

IMSLS_WHOLE_SPLIT_PLOT_MEANS, float **whole_split_plot_means
(Output)
 Address of a pointer to an internally allocated 2-dimensional array of
size n_whole by n_split containing the whole-plot by split-plot
means.

IMSLS_WHOLE_SPLIT_PLOT_MEANS_USER, float
whole_split_plot_means[] (Output)
Storage for the array whole_split_plot_means, provided by the
user.

IMSLS_WHOLE_SUB_PLOT_MEANS, float **whole_sub_plot_means (Output)
Address of a pointer to an internally allocated 2-dimensional array of
size n_whole by n_sub containing the whole-plot by sub-plot means.

IMSLS_WHOLE_SUB_PLOT_MEANS_USER, float whole_sub_plot_means[]
(Output)
Storage for the array whole_sub_plot_means, provided by the user.

IMSLS_SPLIT_SUB_PLOT_MEANS, float **split_sub_plot_means (Output)
 Address of a pointer to an internally allocated 2-dimensional array of
size n_split by n_sub containing the split-plot by sub-plot means.

IMSLS_SPLIT_SUB_PLOT_MEANS_USER, float split_sub_plot_means[]
(Output)
Storage for the array split_sub_plot_means, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size
(n_whole*n_split*n_sub) containing the treatment means.
For i > 0, j > 0 and k > 0, treatment_meansi,j,k = treatment_means
[(i-1)*n_split*n_sub+(j-1)*n_sub + k-1] contains the mean of the
observations, averaged over all locations, blocks and replicates, for the
kth sub-plot within the jth split-plot within the ith whole-plot.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot � 335

IMSLS_STD_ERRORS, float **std_err (Output)
 Address of a pointer to an internally allocated array of length 8
containing five standard errors and their associated degrees of freedom.
The standard errors are in the first five elements and their associated
degrees of freedom are reported in std_err[4] through std_err[7].

Element
Standard Error for

Comparisons Between Two
Degrees of

Freedom
std_err[0] Whole-Plot Means std_err[4]

std_err[1] Split-Plot Means std_err[5]

std_err[2] Sub-Plot Means std_err[6]

std_err[3] Treatment Means (same whole-plot, split-
plot and sub-plot)

std_err[7]

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_N_BLOCKS, int **n_blocks (Output)
Address of a pointer to an internally allocated array of length
n_locations containing the number of blocks, or replicates, at each
location.

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output)
Storage for the array n_blocks, provided by the user.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
 Address of a pointer to an internally allocated 3-dimensional array of
size n_locations by 20 by 6 containing the anova tables associated
with each location. For each location, the 20 by 6 dimensional array
corresponds to the anova table for that location. For example,
location_anova_table[(i-1)*120+(j-1)*6 + (k-1)] contains the value
in the kth column and jth row of the returned anova-table for the ith
location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for the array location_anova_table, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array
containing the labels for each of the n_anova rows of the returned
ANOVA table. The label for the ith row of the ANOVA table can be
printed with

 printf("%s", anova_row_labels[i]);

 The memory associated with anova_row_labels can be freed with a
single call to free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The

336 � split_split_plot IMSL C/Stat/Library

amount of space required will vary depending upon the number of
factors and n_anova. An upperbound on the required memory is
char *anova_row_labels[600].

Description
Function imsls_f_split_split_plot is capable of analyzing a wide variety
of split-split-plot experiments.

Split-split-plot experimental designs can vary in the assignment of whole-plot
factors to experimental units. In some cases, this assignment is completely
random. For example, in a drug study the experimental unit might be the subject
receiving a treatment. The whole-plot factor, possibly different treatments, could
be assigned in one of two ways. Each subject could receive only one treatment or
each could receive all treatments over an appropriate period of time. If each
subject received only a single randomly selected treatment, then this design
constitutes a completely randomized design for the whole-plot factor, and the
optional input argument IMSLS_CRD must be set.

On the other hand, if each subject receives every treatment in random order, then
the subject is a blocking factor, and this sampling scheme constitutes a
randomized complete block design. In this case, it is necessary to assume that
there are no carry-over effects from one treatment to another. This sampling
scheme is the default setting, i.e. IMSLS_RCBD is the default setting.

This randomization choice occurs often in agricultural field trials. A trial
designed to test different fertilizers and different seed lots can be conducted in
one of two ways. The whole-plot factor, fertilizer, can be applied to different
fields, or each can be applied to sub-divisions of these fields. In either case, a
field, or a sub-division of a field, is the whole-plot experimental unit. In the first
case, in which only one randomly selected fertilizer is applied to each field, the
whole-plot factor is not blocked and this scheme is called as a completely
randomized design, and the optional input argument IMSLS_CRD must be set.
However, if fertilizers are applied to sub-divisions within a field, then the whole-
plot factor is blocked within fields and this assignment is referred to as a
randomized complete block design. By default, imsls_f_split_split_plot
assumes that levels of the whole-plot factor are randomly assigned within blocks,
i.e. IMSLS_RCBD is the default setting for randomizing whole-plots.

The essential distinction between split-plot and split-split-plot experiments is the
presence of a third factor that is blocked, or nested, within each level of the
whole-plot and split-plot factors. This third factor is referred to as the sub-plot
factor.

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot � 337

Whole Plot Factor
A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Figure 1 – Split-Plot Experiment – Split-Plot B Nested within Whole-Plot A

Whole Plot Factor A
A2 A1 A4 A3

A2B3C2
A2B3C1

A1B2C1
A1B2C2

A4B1C2
A4B1C1

A3B3C2
A3B3C1

A2B1C1
A2B1C2

A1B1C1
A1B1C2

A4B3C2
A4B3C1

A3B2C2
A3B2C1

A2B2C2
A2B2C1

A1B3C1
A1B3C2

A4B2C1
A4B2C2

A3B1C2
A3B1C1

Figure 2 – Split-Split Plot Experiment – Sub-Plot Factor C Nested Within Split-Plot Factor B, Nested
Within Whole-Plot Factor A

Contrast the split-split plot experiment to the same experiment run using a strip-
split plot design, see Figure 3. In a strip-split plot experiment factor B is applied
in strip across factor A; whereas, in a split-split plot experiment, factor B is
randomly assigned to each level of factor A. In a strip-split plot experiment, the
level of factor B is constant across a row; whereas in a split-split plot experiment,
the levels of factor B change as you go across a row, reflecting the fact that factor
B is randomized within each level of factor A.

 Factor A Strip Plots
 A2 A1 A4 A3

Factor
B

Strip

Plots

B3 A2B3C2
A2B3C1

A1B3C1
A1B3C2

A4B3C2
A4B3C1

A3B3C2
A3B3C1

 B1 A2B1C1
A2B1C2

A1B1C1
A1B1C2

A4B1C2
A4B1C1

A3B1C2
A3B1C1

 B2 A2B2C2
A2B2C1

A1B2C1
A1B2C2

A4B2C1
A4B2C2

A3B2C2
A3B2C1

Figure 3 – Strip-Split Plot Experiment - Split-Plots Nested Within Strip-Plot Factors A and B

338 � split_split_plot IMSL C/Stat/Library

In some studies, a split-split-plot experiment is replicated at several locations.
Function imsls_f_split_split_plot can analyze these, even when the
number of blocks or replicates at each location is different. If only a single
replicate or block is used at each location, then location should be treated as a
blocking factor, with n_locations set equal to one. If n_locations=1, it is
assumed that the experiment was conducted at a single location with more than
one block or replicate at that location. In this case, all entries in the anova table
associated with location will contain missing values.

However, if n_locations>1, it is assumed the experiment was repeated at
multiple locations, with replication or blocking occurring at each location.
Although the number of blocks, or replicates, at each location can be different,
the number of levels for whole-plot and split-plot factors, n_whole and
n_split, must be the same at each location. The locations associated with each
of the observations in y are specified in the argument locations[], which is a
required input argument when n_locations>1.

By default, locations are assumed to be random effects. Tests involving whole-
plots use the interaction between whole-plots and locations as the error term for
testing whether there are statistically significant differences among whole-plot
factor levels. This assumes that the interaction of whole-plots and locations is not
statistically significant. A test of this assumption uses the pooled whole-plot
error. If the interaction between location and whole-plots, split-plots or sub-plot
is statistically significant, then the nature of that interaction should be explored
since it impacts the interpretation of the significance of the treatment factors.

When n_locations >1 are assumed to be random effects, tests involving split-
plots do not use the split-plot errors pooled across locations. Instead, the error
term for split plots is the interaction between locations and split-plots. The split-
plot by whole-plot interaction is tested against the location by split-plot by whole-
plot interaction.

Suppose, for example, that a researcher wanted to conduct an agricultural
experiment comparing the effectiveness of 4 fertilizers with 3 rates of application
and 2 seed lots. One replicate of the experiment is conducted at each of the 3
farms. That is, only a single field at each location is assigned to this experiment.

Each field is divided into 4 whole-plots and the fertilizers are randomly assigned
to each of the 4 whole-plots. Each whole-plot is then further sub-divided into 3
split-plots which are each randomly assigned one of the three fertilizer application
rates. Finally, each of these sub-divisions assigned a particular fertilizer and
application rate is sub-divided into 2 plots and randomly assigned one of the two
seed lots.

In this case, each farm is a blocking factor, fertilizers are whole-plots and
fertilizer application rate are split plots, and seed lots are sub-plots. The input
array rep would contain integers from 1 to the number of farms, with
n_whole=4, n_split=3 and n_sub=2.

However, if each farm allocated more than a single field for this study, then each
farm would be treated as a different location with n_locations set equal to the

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot � 339

number of farms, and fields might be treated as blocking factor. The array rep
would contain integers from 1 to the number fields used in a farm, and
locations[] would contain integers from 1 to the number of farms.

In summary imsls_f_split_split_plot can analyze 3x2=6 different
experimental situations, depending upon the settings of:
1. Locations (none, fixed or random): specified by setting n_locations,

locations[] and IMSLS_LOC_FIXED or IMSLS_LOC_RANDOM.
2. Whole-plot sampling (CRD or RCBD): specified by setting IMSLS_CRD or

IMSLS_RCBD.

The default condition depends upon the value for n_locations. If
n_locations>1, locations are assumed to be a random effect. Assignment of
experimental units to whole-plots is assumed to use a RCBD design and whole-
plots, split-plots and sub-plots are all assumed to be fixed effects.

Example
This example uses data from a split-split plot design consisting of 2 whole-plots,
2-split-plots and 2 sub-plots.

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include "imsls.h"

void main()

{

 char **anova_row_labels = NULL;

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",

 "Mean\nsquares", "\nF", "\np-value"};

 int i, j, k, l, page_width = 132;

 int n = 24; /* Total number of observations */

 int n_locations = 1;/* Number of locations */

 int n_whole = 2; /* Number of Whole-plots within a location */

 int n_split = 2; /* Number of Split-plots within a location, Whole_plot */

 int n_sub = 2;

 int rep[]={

 1, 1, 1, 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2, 2, 2, 2,

 3, 3, 3, 3, 3, 3, 3, 3};

 int whole[]={

 1, 1, 1, 1, 2, 2, 2, 2,

 1, 1, 1, 1, 2, 2, 2, 2,

340 � split_split_plot IMSL C/Stat/Library

 1, 1, 1, 1, 2, 2, 2, 2};

 int split[]={

 1, 1, 2, 2, 1, 1, 2, 2,

 1, 1, 2, 2, 1, 1, 2, 2,

 1, 1, 2, 2, 1, 1, 2, 2};

 int sub[]={

 1, 2, 1, 2, 1, 2, 1, 2,

 1, 2, 1, 2, 1, 2, 1, 2,

 1, 2, 1, 2, 1, 2, 1, 2};

 float y[] ={

 30.0, 40.0, 38.9, 38.2,

 41.8, 52.2, 54.8, 58.2,

 20.5, 26.9, 21.4, 25.1,

 26.4, 36.7, 28.9, 35.9,

 21.0, 25.4, 24.0, 23.3,

 34.4, 41.0, 33.0, 34.9};

 float grand_mean;

 float *cv;

 float *aov;

 float *treatment_means;

 float *whole_plot_means;

 float *split_plot_means;

 float *sub_plot_means;

 float *std_err;

 int *equal_means;

 aov = imsls_f_split_split_plot(n, n_locations, n_whole, n_split, n_sub,

 rep, whole, split, sub, y,

 IMSLS_GRAND_MEAN, &grand_mean,

 IMSLS_CV, &cv,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_WHOLE_PLOT_MEANS, &whole_plot_means,

 IMSLS_SPLIT_PLOT_MEANS, &split_plot_means,

 IMSLS_SUB_PLOT_MEANS, &sub_plot_means,

 IMSLS_STD_ERRORS, &std_err,

 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,

 0);

 /* Output results. */

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /* Print ANOVA table. */

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot � 341

 20, 6, aov,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

 IMSLS_ROW_LABELS, anova_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 printf("\n\nGrand mean: %7.3f\n", grand_mean);

 printf("Coefficient of Variation ****\n");

 printf(" Whole-Plot: %7.3f\n", cv[0]);

 printf(" Split-Plot: %7.3f\n", cv[1]);

 printf(" Sub-Plot : %7.3f\n", cv[2]);

 l = 0;

 /*

 * Treatment Means

 */

 printf("\n\n***");

 printf("\nTreatment Means: \n");

 for (i=0; i < n_whole; i++){

 for(j=0; j < n_split; j++){

 for(k=0; k < n_sub; k++){

 printf(" treatment[%d][%d][%d] %f \n", i, j, k,

 treatment_means[l++]);

 }

 }

 }

 printf("\n Standard Error for Comparing Two Treatment Means: %f \n (df=%f)\n",

 std_err[3], std_err[7]);

 equal_means = imsls_f_multiple_comparisons(n_whole*n_split*n_sub,

 treatment_means, std_err[7],

 std_err[3]/sqrt(2),

 IMSLS_LSD,

 IMSLS_ALPHA, .05,

 0);

 printf("\n LSD for Treatment Means (alpha=0.05)");

 imsls_i_write_matrix(" Size of Groups of Means", 1, n_whole*n_split*n_sub-1,

 equal_means, 0);

 /*

 * Whole-plot Means

 */

 printf("\n\n***");

 imsls_f_write_matrix("Whole-plot Means", n_whole, 1,

 whole_plot_means, 0);

 printf("\nStandard Error for Comparing Two Whole-Plot Means: %f \n(df=%f)\n",

342 � split_split_plot IMSL C/Stat/Library

 std_err[0], std_err[4]);

 equal_means = imsls_f_multiple_comparisons(n_whole, whole_plot_means,

 std_err[4], std_err[0]/sqrt(2),

 IMSLS_LSD,

 IMSLS_ALPHA, .05,

 0);

 printf("\nLSD for Whole-Plot Means (alpha=0.05) \n");

 imsls_i_write_matrix("Size of Groups of Means", 1, n_whole-1,

 equal_means, 0);

 /*

 * Split-plot Means

 */

 printf("\n\n***");

 imsls_f_write_matrix("Split-plot Means", n_split, 1,

 split_plot_means, 0);

 printf("\nStandard Error for Comparing Two Split-Plot Means: %f \n(df=%f)\n",

 std_err[1], std_err[5]);

 equal_means = imsls_f_multiple_comparisons(n_split, split_plot_means,

 std_err[5], std_err[1]/sqrt(2),

 IMSLS_LSD,

 IMSLS_ALPHA, .05,

 0);

 printf("\nLSD for Split-Plot Means (alpha=0.05) \n");

 imsls_i_write_matrix("Size of Groups of Means", 1, n_split-1,

 equal_means, 0);

 /*

 * Sub-plot Means

 */

 printf("\n\n***");

 imsls_f_write_matrix("Sub-plot Means", n_sub, 1,

 sub_plot_means, 0);

 printf("\nStandard Error for Comparing Two Sub-Plot Means: %f \n(df=%f)\n",

 std_err[2], std_err[6]);

 equal_means = imsls_f_multiple_comparisons(n_sub, sub_plot_means,

 std_err[6], std_err[2]/sqrt(2),

 IMSLS_LSD,

 IMSLS_ALPHA, .05,

 0);

 printf("\nLSD for Sub-Plot Means (alpha=0.05) \n");

 imsls_i_write_matrix(": Size of Groups of Means", 1, n_sub-1,

 equal_means, 0);

}

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot � 343

Output

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F p-value

Location -1

Block Within Location -2 2 1310.28 655.14 30.82 0.031

Whole-Plot -3 1 858.01 858.01 40.37 0.024

Location x Whole-Plot -4

Whole-Plot Error -5 2 42.51 21.26 0.86 0.490

Split-Plot -6 1 17.17 17.17 0.69 0.452

Location x Split-Plot -7

Whole-Plot x Split-Plot -8 1 1.55 1.55 0.06 0.815

Location x Whole-Plot x -9

 Split-Plot

Split-Plot Error -10 4 99.32 24.83 7.62 0.008

Sub-Plot -11 1 163.80 163.80 50.27 0.000

Location x Sub-Plot -12

Whole-Plot x Sub-Plot -13 1 11.34 11.34 3.48 0.099

Location x Whole-Plot x Sub-Plot -14

Split-plot x Sub-Plot -15 1 46.76 46.76 14.35 0.005

Location x Split-Plot x Sub-Plot -16

Whole_plot x Split-Plot -17 1 0.51 0.51 0.16 0.703

 x Sub-Plot

Location x Whole-Plot x -18

 Split-Plot x Sub-Plot

Sub-Plot Error -19 8 26.07 3.26

Corrected Total -20 23 2577.33

Grand mean: 33.871

Coefficient of Variation ****

 Whole-Plot: 13.612

 Split-Plot: 14.712

 Sub-Plot : 5.329

Treatment Means:

 treatment[0][0][0] 23.833334

344 � split_split_plot IMSL C/Stat/Library

 treatment[0][0][1] 30.766668

 treatment[0][1][0] 28.100000

 treatment[0][1][1] 28.866669

 treatment[1][0][0] 34.200001

 treatment[1][0][1] 43.299999

 treatment[1][1][0] 38.899998

 treatment[1][1][1] 43.000000

 Standard Error for Comparing Two Treatment Means: 1.473846

 (df=8.000000)

 LSD for Treatment Means (alpha=0.05)

 Size of Groups of Means

 1 2 3 4 5 6 7

 0 3 0 0 0 0 2

Whole-plot Means

 1 27.89

 2 39.85

Standard Error for Comparing Two Whole-Plot Means: 2.661792

(df=2.000000)

LSD for Whole-Plot Means (alpha=0.05)

Size of Groups of Means

 0

Split-plot Means

 1 33.03

 2 34.72

Standard Error for Comparing Two Split-Plot Means: 2.876944

(df=4.000000)

LSD for Split-Plot Means (alpha=0.05)

Size of Groups of Means

 2

Chapter 4: Analysis of Variance and Designed Experiments strip_plot � 345

Sub-plot Means

1 31.26

2 36.48

Standard Error for Comparing Two Sub-Plot Means: 1.473846

(df=8.000000)

LSD for Sub-Plot Means (alpha=0.05)

: Size of Groups of Means

 0

strip_plot
Analyzes data from strip-plot experiments. Function strip_plot also analyzes
strip-plot experiments replicated at several locations.

Synopsis
#include <imsls.h>
float * imsls_f_strip_plot (int n, int n_locations, int n_strip_a,

int n_strip_b, int block[], int strip_a[], int strip_b[],
float y[],…, 0)

The type double function is imsls_d_strip_plot.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations.
imsls_f_strip_plot verifies that:

1

()i
i

n
�

� �� �
n_locations

n_strip_a n_strip n_blocks

int n_locations (Input)
Number of locations. n_locations must be one or greater. If
n_locations>1 then the optional array locations[] must be
included as input to imsls_f_strip_plot. See optional argument
IMSLS_LOCATIONS.

int n_strip_a (Input)
Number of levels associated with the strip factor A. n_strip_a must
be greater than one.

346 � strip_plot IMSL C/Stat/Library

int n_strip_b (Input)
Number of levels associated with the strip factor B. n_strip_b must
be greater than one.

int block[] (Input)
 An array of length n containing the block identifiers for each

observation in y. Locations can have different numbers of blocks. Each
block at a single location must be assigned a different identifier, but
different locations can have the same assignments.

int strip_a[] (Input)
An array of length n containing the factor A strip-plot identifiers for
each observation in y. Each level of this factor must be assigned a
different integer. This routine verifies that the number of unique factor
A strip-plot identifiers is equal to n_strip_a.

int strip_b[] (Input)
An array of length n containing the factor B strip-plot identifiers for
each observation in y. Each level of this factor must be assigned a
different integer. This routine verifies that the number of unique factor
B strip-plot identifiers is equal to n_strip_b.

float y[] (Input)
An array of length n containing the experimental observations and any
missing values. Missing values cannot be omitted. They are indicated
by placing a NaN (not a number) in y. The NaN value can be set using
either the function imsls_f_machine(6) or imsls_d_machine(6),
depending upon whether single or double precision is being used,
respectively. The location, strip-plot A, and strip-plot B for each
observation in y are identified by the corresponding values in the
arguments locations, strip_a, and strip_b.

Return Value
Address of a pointer to the memory location of a two dimensional, 12 by 6 array
containing the ANOVA table. Each row in this array contains values for one of
the effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], identifies the source for the effect
associated with values in that row. The remaining values in a row contain the
ANOVA table values using the following convention:

j anova_table

i,j
= anova_table[i*6+j]

0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

Chapter 4: Analysis of Variance and Designed Experiments strip_plot � 347

j anova_table
i,j

= anova_table[i*6+j]

4 F-statistic

5 p-value for this F-statistic

The Source Identifiers in the first column of anova_tablei,j are the only
negative values in anova_table. Assignments of identifiers to ANOVA sources
use the following coding:

Source

Identifier
ANOVA Source

-1 LOCATION†
-2 BLOCK WITHIN LOCATION
-3 STRIP-PLOT A
-4 LOCATION × STRIP-PLOT A†
-5 STRIP-PLOT A ERROR
-6 STRIP-PLOT B
-7 LOCATION × STRIP-PLOT B†
-8 STRIP-PLOT B ERROR
-9 STRIP-PLOT A × STRIP-PLOT B
-10 LOCATION × STRIP-PLOT A × STRIP-PLOT B †
-11 STRIP-PLOT A × STRIP-PLOT B ERROR
-12 CORRECTED TOTAL

Notes: † If n_locations=1 sources involving location are set to missing
(NaN).

Synopsis with Optional Arguments
#include <imsl.h>
float * imsls_f_strip_plot (int n, int n_locations, int n_strip_a, int

n_strip_b, int block[], int strip_a[], int strip_b[], float y[],
IMSLS_RETURN_USER, float anova_table[],
IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float **cv,
IMSLS_CV_USER, float cv[],
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means,
IMSLS_STRIP_PLOT_A_MEANS_USER,
 float strip_plot_a_means[],
IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means,
IMSLS_STRIP_PLOT_B_MEANS_USER,
 float strip_plot_b_means[],
IMSLS_TREATMENT_MEANS, float **treatment_means,

348 � strip_plot IMSL C/Stat/Library

IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_N_BLOCKS int **n_blocks,
IMSLS_N_BLOCKS_USER, int n_blocks[],
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER,
 float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],

 0)

Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined array of length 72 for storage of the 12 by 6 ANOVA table
described as the return argument for imsls_f_strip_plot. For a
detailed description of the format for this table, see the previous
description of the return arguments for imsls_f_strip_plot.

IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location identifiers for each
observation in y. Unique integers must be assigned to each location in
the study. This argument is required when n_locations>1.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are
denoted with a NaN (Not a Number) value.

IMSLS_CV, float **cv (Output)
Address of a pointer to an internally allocated array of length 3
containing the whole-plot, split-plot and sub-plot coefficients of
variation. cv[0] contains the whole-plot C.V., cv[1] contains the
split-plot C.V., and cv[2] contains the sub-plot C.V.

IMSLS_CV_USER, float cv[] (Output)
Storage for the array cv, provided by the user.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means (Output)
Address of a pointer to an internally allocated array of length
n_strip_a containing the factor A strip-plot means.

IMSLS_STRIP_PLOT_A_MEANS_USER, float strip_plot_a_means []
(Output)
Storage for the array strip_plot_a_means, provided by the user.

IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means (Output)
Address of a pointer to an internally allocated array of length
n_strip_b containing the factor B strip-plot means.

Chapter 4: Analysis of Variance and Designed Experiments strip_plot � 349

IMSLS_STRIP_PLOT_B_MEANS_USER, float strip_plot_b_means []
(Output)
Storage for the array strip_plot_b_means, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size
(n_split_a×n_split_b) containing the treatment means.
For i > 0 and j > 0, treatment_meansi,j = treatment_means
[(i-1)×n_split_a +(j-1)] contains the mean of the observations,
averaged over all locations, blocks and replicates, for the ith level of the
factor A strip-plot and the jth level of the factor B strip-plot.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
Address of a pointer to an internally allocated array of length 10
containing five standard errors and their associated degrees of freedom.
The standard errors are in the first five elements and their associated
degrees of freedom are reported in std_err[5] through std_err[9].

 Element Standard Error for
Comparisons Between Two

Degrees of
Freedom

std_err[0] Factor A Strip-Plot Means std_err[5]

std_err[1] Factor B Strip-Plot Means std_err[6]

std_err[2] Factor A Strip-Plot Means at the
same level of Factor B

std_err[7]

std_err[3] Factor B Strip-Plot Means at the
same level of Factor A

std_err[8]

std_err[4] Treatment Means (same strip-
plot A and strip-plot B)

std_err[9]

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_N_BLOCKS, int **n_blocks (Output)
Address of a pointer to an internally allocated array of length
n_locations containing the number of blocks, or replicates, at each
location.

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output)
Storage for the array n_blocks, provided by the user.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
Address of a pointer to an internally allocated 3-dimensional array of
size n_locations by 12 by 6 containing the Anova tables associated
with each location. For each location, the 12 by 6 dimensional array

350 � strip_plot IMSL C/Stat/Library

corresponds to the Anova table for that location. For example,
location_anova_table[(i-1)×72+(j-1)×6 + (k-1)] contains the value in
the kth column and jth row of the returned Anova table for the ith
location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for the array location_anova_table, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array
containing the labels for each of the n_anova rows of the returned
ANOVA table. The label for the ith row of the ANOVA table can be
printed with

printf("%s", anova_row_labels[i]);

The memory associated with anova_row_labels can be freed with a
single call to free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The
amount of space required will vary depending upon the number of
factors and n_anova. An upperbound on the required memory is
char *anova_row_labels[600].

Description
Function imsls_f_strip_plot is capable of analyzing a wide variety of strip-
plot experiments.

The essential distinction between strip-plot and split-plot experiments is the
application of factor B. In a split-plot experiment, levels of Factor B are nested
within Factor A, see Figure 2. In strip-plot experiments, Factors A and B are
completely crossed, see Figure 1. This occurs, for example, when an agricultural
field is used as a block and the levels of factor A are applied in vertical strips
across the entire field. Levels of factor B are assigned to horizontal strips across
the same block.

 Strip Plot Factor A

 A2 A1 A4 A3

B3 A2B3 A1B3 A4B3 A3B3

B1 A2B1 A1B1 A4B1 A3B1

Strip

Plot

Factor B
B2 A2B2 A1B2 A4B2 A3B2

Figure 1 – Strip-Plot Experiments – Strip-Plots Completely Crossed

Chapter 4: Analysis of Variance and Designed Experiments strip_plot � 351

Whole Factor Plot

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Figure 2 – Split-Plot Experiments – Split-Plot B Nested within Strip-Plot A

In some studies, a strip-plot experiment is replicated at several locations.
imsls_f_strip_plot can analyze strip-plot experiments replicated at multiple
locations, even when the number of blocks or replicates at each location are
different. If only a single replicate or block is used at each location, then location
should be treated as a blocking factor, with n_locations set equal to one. If
n_locations=1, it is assumed that the experiment was conducted at a single
location with more than one block or replicate at that location. In this case, the
four entries associated with location in the ANOVA table will contain missing
values.

However, if n_locations>1, it is assumed the experiment was repeated at
multiple locations, with blocking occurring at each location. Although the
number of blocks at each location can be different, the number of levels for the
factor A and B strip-plots must be the same at each location. The locations
associated with each of the observations in y are specified in the argument
locations[], which is a required input argument when n_locations>1.

Locations are assumed to be random effects, then tests involving factor A strip-
plots use the interaction between factor A strip-plots and locations as the error
term for testing whether there are statistically significant differences among the
levels of factor A. However, this assumes that the interaction of factor A and
locations is not statistically significant. A test of this assumption is included in
the ANOVA table. If the interaction between factor A strip-plots and locations is
statistically significant, then the nature of that interaction should be explored
since it impacts the interpretation of the significance of the factor A.

Similarly, when locations are assumed to be random effects, tests involving factor
B do not use the strip-plot B errors pooled across locations. Instead, the error
term for factor B is the interaction between locations and factor B.

Example
This example uses data from a strip-plot design with two levels for the first strip
and four for the last strip.

#include <stdlib.h>

#include <math.h>

#include "imsls.h"

352 � strip_plot IMSL C/Stat/Library

void main()

{

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",

 "Mean\nsquares", "\nF", "\np-value"};

 char **anova_row_labels = NULL;

 int i, j, k, l, page_width = 132;

 int n = 24; /* Total number of observations */

 int n_locations = 1; /* Number of locations */

 int n_strip_a = 2; /* Number of factor A strip-plots within a location */

 int n_strip_b = 4; /* Number of factor B strip-plots within a location */

 int block[]={

 1, 1, 1, 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2, 2, 2, 2,

 3, 3, 3, 3, 3, 3, 3, 3};

 int strip_a[]={

 1, 1, 1, 1, 2, 2, 2, 2,

 1, 1, 1, 1, 2, 2, 2, 2,

 1, 1, 1, 1, 2, 2, 2, 2};

 int strip_b[]={

 1, 2, 3, 4, 1, 2, 3, 4,

 1, 2, 3, 4, 1, 2, 3, 4,

 1, 2, 3, 4, 1, 2, 3, 4};

 float y[] ={

 30.0, 40.0, 38.9, 38.2,

 41.8, 52.2, 54.8, 58.2,

 20.5, 26.9, 21.4, 25.1,

 26.4, 36.7, 28.9, 35.9,

 21.0, 25.4, 24.0, 23.3,

 34.4, 41.0, 33.0, 34.9};

 float grand_mean=0;

 float *cv;

 float *aov;

 float *treatment_means;

 float *strip_plot_a_means;

 float *strip_plot_b_means;

 float *std_err;

 int n_missing;

 int *equal_means;

 aov = imsls_f_strip_plot(n, n_locations, n_strip_a, n_strip_b,

 block, strip_a, strip_b, y,

 IMSLS_GRAND_MEAN, &grand_mean,

Chapter 4: Analysis of Variance and Designed Experiments strip_plot � 353

 IMSLS_CV, &cv,

 IMSLS_N_MISSING, &n_missing,

 IMSLS_STRIP_PLOT_A_MEANS, &strip_plot_a_means,

 IMSLS_STRIP_PLOT_B_MEANS, &strip_plot_b_means,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_STD_ERRORS, &std_err,

 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,

 0);

 /* Output results. */

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /* Print ANOVA table. */

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 12, 6, aov,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

 IMSLS_ROW_LABELS, anova_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 printf("\nGrand mean: %f\n", grand_mean);

 /* Print treatment means */

 imsls_f_write_matrix("Treatment Means", n_strip_a, n_strip_b,

 treatment_means, 0);

 printf("\n\nStandard Error for Comparing Two Treatment Means: \n");

 printf(" Same Level of Factor B %f (df=%f)\n",

 std_err[2], std_err[7]);

 printf(" Same Level of Factor A %f (df=%f)\n",

 std_err[3], std_err[8]);

 printf(" Different Factor A and B Levels %f (df=%f)\n\n\n\n",

 std_err[4], std_err[9]);

 /* Print factor A means */

 imsls_f_write_matrix("Factor A Means", n_strip_a, 1,

 strip_plot_a_means, 0);

 printf("\nStandard Error for Comparing Two Factor A Means: \n %f (df=%f)\n",

 std_err[0], std_err[5]);

 equal_means = imsls_f_multiple_comparisons(n_strip_a, strip_plot_a_means,
std_err[5],

 std_err[0]/sqrt(2),

 IMSLS_LSD,

 IMSLS_ALPHA, .05,

 0);

 /* Print multiple comparison results */

354 � strip_plot IMSL C/Stat/Library

 imsls_i_write_matrix("LSD Comparison : Size of Groups of Means", 1, n_strip_a-1,

 equal_means, 0);

 /* Print factor B means */

 imsls_f_write_matrix("\n\nFactor B Means", n_strip_b, 1,

 strip_plot_b_means, 0);

 printf("\nStandard Error for Comparing Two Factor B Means: \n %f (df=%f)\n",

 std_err[1], std_err[6]);

 equal_means = imsls_f_multiple_comparisons(n_strip_b, strip_plot_b_means,
std_err[6],

 std_err[1]/sqrt(2),

 IMSLS_LSD,

 IMSLS_ALPHA, .05,

 0);

 /* Multiple comparison results */

 imsls_i_write_matrix("LSD Comparison : Size of Groups of Means",

 1, n_strip_b-1, equal_means, 0);

}

Output

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F p-value

Location -1

Block Within Location -2 2 1310.28 655.14 19.89 0.009

Strip-Plot A -3 1 858.01 858.01 40.37 0.024

Location x Strip-Plot A -4

Strip-Plot A Error -5 2 42.51 21.26 4.62 0.061

Strip-Plot B -6 3 227.73 75.91 4.66 0.052

Location x Strip-Plot B -7

Strip-Plot B Error -8 6 97.76 16.29 3.54 0.075

Strip-Plot A x Strip-Plot B -9 3 13.40 4.47 0.97 0.466

Location x Strip-Plot A -10

 x Strip-Plot B

Strip-Plot A x Strip-Plot B Error -11 6 27.63 4.60

Corrected Total -12 23 2577.33

Grand mean: 33.870834

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot � 355

 Treatment Means

 1 2 3 4

1 23.83 30.77 28.10 28.87

2 34.20 43.30 38.90 43.00

Standard Error for Comparing Two Treatment Means:

 Same Level of Factor B 2.417643 (df=4.772558)

 Same Level of Factor A 2.639322 (df=9.140633)

 Different Factor A and B Levels 3.121075 (df=8.405353)

Factor A Means

1 27.89

2 39.85

Standard Error for Comparing Two Factor A Means:

 1.882171 (df=2.000000)

LSD Comparison : Size of Groups of Means

 0

Factor B Means

1 29.02

2 37.03

3 33.50

4 35.93

Standard Error for Comparing Two Factor B Means:

 2.330465 (df=6.000000)

LSD Comparison : Size of Groups of Means

 1 2 3

 2 3 0

strip_split_plot
Analyzes data from strip-split-plot experiments. Function strip_split_plot
also analyzes strip-split-plot experiments replicated at several locations.

Synopsis
#include <imsls.h>

356 � strip_split_plot IMSL C/Stat/Library

float * imsls_f_strip_split_plot (int n, int n_locations, int
n_strip_a, int n_strip_b, int n_split, int block[], int
strip_a[], int strip_b[], int split[], float y[],…, 0)

The type double function is imsls_d_strip_split_plot.

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations.
imsls_f_strip_split_plot verifies that:

1

()i
i

n
�

� �
n_locations

n_strip_a×n_strip_b×n_split×n_block

 where n_blocksi is the number of blocks at location i.
int n_locations (Input)

Number of locations. n_locations must be one or greater. If
n_locations>1 then the optional array locations[] must be
included as input to imsls_f_strip_split_plot.

int n_strip_a (Input)
Number of levels associated with the strip-plot A factor. n_strip_a
must be greater than one.

int n_strip_b (Input)
Number of levels associated with the strip-plots B factor. n_strip_b
must be greater than one.

int n_split (Input)
Number of levels associated with the split factor. n_split must be
greater than one.

int block[] (Input)
An array of length n containing the block identifiers for each observation
in y. Locations can have different numbers of blocks. Each block at a
single location must be assigned a different identifier, but different
locations can have the same assignments.

int strip_a[] (Input)
An array of length n containing the strip-plot A level identifiers for each
observation in y. Each level of this factor must be assigned a different
integer. imsls_f_strip_split_plot verifies that the number of
unique strip-plot identifiers is equal to n_strip_a.

int strip_b[] (Input)
An array of length n containing the strip-plot B identifiers for each
observation in y. Each level of this factor must be assigned a different
integer. imsls_f_strip_split_plot verifies that the number of
unique strip-plot identifiers is equal to n_strip_b.

int split[] (Input)
An array of length n containing the split-plot level identifiers for each

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot � 357

observation in y. Each level of this factor must be assigned a different
integer. imsls_f_strip_split_plot verifies that the number of
unique split-plot identifiers is equal to n_split.

float y[] (Input)
An array of length n containing the experimental observations and any
missing values. Missing values cannot be omitted. They are indicated
by placing a NaN (not a number) in y. The NaN value can be set using
either the function imsls_f_machine(6) or imsls_d_machine(6),
depending upon whether single or double precision is being used,
respectively. The location, strip-plot A, strip-plot B and split-plot for
each observation in y are identified by the corresponding values in the
argument’s locations, strip_a, strip_b, and split.

Return Value
Address of a pointer to the memory location of a two dimensional, 22 by 6 array
containing the ANOVA table. Each row in this array contains values for one of
the effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], identifies the source for the effect
associated with values in that row. The remaining values in a row contain the
ANOVA table values using the following convention:

J anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

The Source Identifiers in the first column of anova_tablei,j are the only
negative values in anova_table[]. Assignments of identifiers to ANOVA
sources use the following coding:

Source
Identifier

ANOVA Source

-1 LOCATION†

-2 BLOCKs WITHIN LOCATION

-3 STRIP-PLOT A

-4 LOCATION × STRIP-PLOT A †

-5 STRIP-PLOT A ERROR

358 � strip_split_plot IMSL C/Stat/Library

Source
Identifier

ANOVA Source

-6 SPLIT-PLOT

-7 SPLIT-PLOT × STRIP-PLOT A

-8 LOCATION × SPLIT-PLOT †

-9 SPLIT-PLOT ERROR

-10 LOCATION × SPLIT-PLOT × STRIP-PLOT A †

-11 STRIP-PLOT B

-12 LOCATION × STRIP-PLOT B †

-13 STRIP_PLOT B ERROR

-14 STRIP-PLOT A × STRIP-PLOT B

-15 LOCATION × STRIP-PLOT A × STRIP-PLOT B

-16 STRIP-PLOT A × STRIP-PLOT B ERROR

-17 SPLIT-PLOT × STRIP-PLOT B

-18 STRIP-PLOT A × STRIP-PLOT B × SPLIT-PLOT

-19 LOCATION × SPLIT-PLOT × STRIP-PLOT B †

-20 LOCATION × STRIP-PLOT A × STRIP-PLOT B × SPLIT-
PLOT †

-21 STRIP-PLOT A × STRIP-PLOT B × SPLIT-PLOT ERROR

-22 CORRECTED TOTAL

Notes: † If n_locations=1 sources involving location are set to missing
(NaN).

Synopsis with Optional Arugments
#include <imsl.h>
float * imsls_f_strip_split_plot (int n, int n_locations,

 int n_strip_a, int n_strip_b, int n_split, int block[],
int strip_a[], int strip_b[],int split[], float y[],
IMSLS_RETURN_USER, float anova_table[]
IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float **cv,
IMSLS_CV_USER, float cv[],
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means,
IMSLS_STRIP_PLOT_A_MEANS_USER,
 float strip_plot_a_means[],

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot � 359

IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means,
IMSLS_STRIP_PLOT_B_MEANS_USER,
 float strip_plot_b_means[],
IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means,
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[],
IMSLS_STRIP_PLOT_AB_MEANS, float **strip_plot_ab_means,
IMSLS_STRIP_PLOT_AB_MEANS_USER,
 float strip_plot_ab_means[],
IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS,
 float **strip_plot_a_split_plot_means,
IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS_USER,
 float strip_plot_a_split_plot_means[],
IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS,
 float **strip_plot_b_split_plot_means,
IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS_USER,
 float strip_plot_b_split_plot_means[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_N_BLOCKS int **n_blocks,
IMSLS_N_BLOCKS_USER, int n_blocks[],
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER,
 float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
0)

Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined array of length 132 for storage of the 22 by 6 anova table
described as the return argument for imsls_f_strip_split_plot.
For a detailed description of the format for this table, see the previous
description of the return arguments for imsls_f_strip_split_plot.

IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location identifiers for each
observation in y. Unique integers must be assigned to each location in
the study. This argument is required when n_locations>1.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are
denoted with a NaN (Not a Number) value.

IMSLS_CV, float **cv (Output)
 Address of a pointer to an internally allocated array of length 3
containing the strip-plots and split-plot coefficients of variation. cv[0]

360 � strip_split_plot IMSL C/Stat/Library

contains the strip-plot A C.V., cv[1] contains the strip-plot B C.V., and
cv[2] contains the split-plot C.V.

IMSLS_CV_USER, float cv[] (Output)
Storage for the array cv, provided by the user.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means (Output)
Address of a pointer to an internally allocated array of length
n_strip_a containing the factor A strip-plot means.

IMSLS_STRIP_PLOT_A_MEANS_USER, float strip_plot_a_means[] (Output)
Storage for the array strip_plot_a_means, provided by the user.

IMSLS_STRIP_PLOT_B_MEANS, float **split_plot_b_means (Output)

 Address of a pointer to an internally allocated array of length n_split_b
containing the strip-plot B means.

IMSLS_STRIP_PLOT_B_MEANS_USER, float strip_plot_b_means[] (Output)
Storage for the array split_plot_b_means, provided by the user.

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output)
 Address of a pointer to an internally allocated array of length n_split
containing the strip-plot B means.

IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output)
Storage for the array split_plot_means, provided by the user.

IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS, float
**strip_plot_a_split_plot_means (Output)
 Address of a pointer to an internally allocated 2-dimensional array of
size n_strip_a by n_split containing the means for all combinations
of the factor A strip-plot and split-plots.

IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS_USER, float
strip_plot_a_split_plot_means [] (Output)
Storage for the array strip_a_split_plot_means, provided by the
user.

IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS, float
**split_plot_b_split_plot_means (Output)
Address of a pointer to an internally allocated 2-dimensional array of
size n_split_b by n_split containing the means for all combinations
of strip-plot B and split-plots.

IMSLS_STRIP_B_PLOT_SPLIT_PLOT_MEANS_USER, float
strip_plot_b_split_plot_means[] (Output)
Storage for the array strip_b_split_plot_means, provided by the
user.

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot � 361

IMSLS_STRIP_PLOT_AB_MEANS, float **strip_plot_ab_means (Output)
 Address of a pointer to an internally allocated 2-dimensional array of
size n_strip_a by n_strip_b containing the means for all
combinations of strip-plots.

IMSLS_STRIP_PLOT_AB_MEANS_USER, float strip_plot_ab_means[]
(Output)
Storage for the array strip_plot_ab_means, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size
(n_strip_a*n_strip_b*n_split) containing the treatment means.
For i > 0 and j> 0, treatment_meansi, j = treatment_means
[(i-1)*n_split +(j-1)] contains the mean of the observations, averaged
over all locations, blocks and replicates, for the ith level of the strip-plot
and the jth level of the split-plot.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
 Address of a pointer to an internally allocated array of length 20
containing ten standard errors and their associated degrees of freedom.
The standard errors are in the first 10 elements and their associated
degrees of freedom are reported in std_err[10] through std_err[19].

Element
Standard Error for

Comparisons Between Two
Degrees of

Freedom
std_err[0] Strip-Plot A Means std_err[10]

std_err[1] Strip-Plot B Means std_err[11]

std_err[2] Split-Plot Means std_err[12]

std_err[3] Strip-Plot A Means at the same level of
split-plots

std_err[13]

std_err[4] Strip-Plot A Means at the same level of
strip-plot B

std_err[14]

std_err[5] Strip-Plot B Means at the same level of
split-plots

std_err[15]

std_err[6] Strip-Plot B Means at the same level of
strip-plot A

std_err[16]

std_err[7] Split-Plot Means at the same level of split-
plot A

std_err[17]

std_err[8] Split-Plot Means at the same level of strip-
plot B

std_err[18]

std_err[9] Treatment Means (same strip-plot A, strip-
plot B and split-plot)

std_err[19]

362 � strip_split_plot IMSL C/Stat/Library

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The
amount of space required will vary depending upon the number of
factors and n_anova. An upperbound on the required memory is
char *anova_row_labels[800].

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_N_BLOCKS, int **n_blocks (Output)
 Address of a pointer to an internally allocated array of length
n_locations containing the number of blocks, or replicates, at each
location. This value must be greater than one, n_blocks > 1.

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output)
User provided storage for the array n_blocks.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
Address of a pointer to an internally allocated 3-dimensional array of
size n_locations by 22 by 6 containing the anova tables associated
with each location. For each location, the 22 by 6 dimensional array
corresponds to the anova table for that location. For example,
location_anova_table[(i-1)*132+(j-1)*6 +(k-1)] contains
the value in the kth column and jth row of the returned anova-table for
the ith location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
User provided storage for the array location_anova_table.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array
containing the labels for each of the n_anova rows of the returned
ANOVA table. The label for the ith row of the ANOVA table can be
printed with

printf("%s", anova_row_labels[i]);

The memory associated with anova_row_labels can be freed with a
single call to free(anova_row_labels).

Description
Function imsls_f_strip_split_plot is capable of analyzing a wide variety
of strip-split plot experiments, also referred to as strip-strip plot experiments. By
default, imsls_f_strip_split_plot assumes that both strip-plot factors, and
split-plots are fixed effects, and the location effects, if any, are random effects.
The nature of randomization used in an experiment determines analysis of the
data. Two popular forms of randomization in strip-plot and split-plot
experiments are illustrated in the following two figures. In both experiments, the
strip-plot factor, factor A, has 4 levels that are randomly assigned to a block or
field in four strips.

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot � 363

 Factor A Strip-Plots
 A2 A1 A4 A3

B3 A2B3 A1B3 A4B3 A3B3

B1 A2B1 A1B1 A4B1 A3B1

Factor B

Strip Plots

B2 A2B2 A1B2 A4B2 A3B2

Figure 1 – Strip-Plot Experiment - Strip-Plots Completely Crossed

In the strip-plot experiment, factor B, has 3 levels that are randomly assigned as
strips across each of the four levels of factor A. In this case, factors A and B are
completely crossed. The randomization applied to factor B is independent of the
application of the strip-plots, factor A.

Contrast this to the randomization depicted in Figure 2. In this split-plot
experiment, the levels of factor B are nested within each level of factor A whole-
plots. Factor B is randomized independently within each level of factor A.
Unlike the strip-plot experiment, in the split-plot experiment different levels of
factor B appear in the same row.

Whole-Plot Factor

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Figure 2 – Split-Plot Experiment – Factor B Split-Plots Nested within Factor A Whole-Plots

A strip-split plot experiment is a strip-plot experiment with a third factor
randomized within each level of strip-plot factor A, see Figure 3. The third
factor, referred to as the split-plot factor, is randomly assigned to experimental
units within each level of strip-plot factor A, see Figure 3.
imsls_f_strip_split_plot analyzes strip-split plot experiments consisting
of two strip-plot factors and one split-plot factor nested within strip-plot factors
A and B.

364 � strip_split_plot IMSL C/Stat/Library

 Factor A Strip Plots
 A2 A1 A4 A3

B3 A2B3C2
A2B3C1

A1B3C1
A1B3C2

A4B3C2
A4B3C1

A3B3C2
A3B3C1

B1 A2B1C1
A2B1C2

A1B1C1
A1B1C2

A4B1C2
A4B1C1

A3B1C2
A3B1C1

Factor
B

Strip

Plots B2 A2B2C2
A2B2C1

A1B2C1
A1B2C2

A4B2C1
A4B2C2

A3B2C2
A3B2C1

Figure 3 – Strip-Split Plot Experiment - Split-Plots Nested Within Strip-Plot Factors A

Strip-split plot experiments are closely related to split-split plot experiments, see
Figure 4. The main difference between the two is that in strip-split plot
experiments, the order of the levels for factor B are not applied randomly across
factor A. Each level of factor B is constant across any row. In this example, the
entire first row is assigned to the third level of factor B. In the equivalent split-
split plot experiment, the levels of factor B are not constant across any row. The
levels are randomized within each level of factor A.

Whole Plot Factor A

A2 A1 A4 A3
A2B3C2
A2B3C1

A1B2C1
A1B2C2

A4B1C2
A4B1C1

A3B3C2
A3B3C1

A2B1C1
A2B1C2

A1B1C1
A1B1C2

A4B3C2
A4B3C1

A3B2C2
A3B2C1

A2B2C2
A2B2C1

A1B3C1
A1B3C2

A4B2C1
A4B2C2

A3B1C2
A3B1C1

Figure 4 – Split-Split Plot Experiment – Sub-Plot Factor C Nested Within Split-Plot Factor B,
Nested Within Whole-Plot Factor A

In some studies, a strip-split-plot experiment is replicated at several locations.
Function imsls_f_strip_split_plot can analyze strip-split plot experiments
replicated at multiple locations, even when the number of blocks or replicates at
each location might be different different. If only a single replicate or block is
used at each location, then location should be treated as a blocking factor, with
n_locations=1. If n_locations=1, it is assumed that either the experiment
was conducted at multiple locations, each with a single block, or at a single
location with more than one block or replicate at that location. When
n_locations=1, all entries associated with location in the anova table will
contain missing values.

However, if n_locations>1, it is assumed the experiment was repeated at
multiple locations, with blocking occurring at each location. Although the

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot � 365

number of blocks at each location can be different, the number of levels for the
strip-plot and split-plot factors strip-plots must be the same at each location. The
locations associated with each of the observations in y are specified in the
argument locations[], which is a required input argument when
n_locations>1.

By default, locations are assumed to be random effects. Tests involving strip-
plots use the interaction between strip-plots and locations as the error term for
testing whether there are statistically significant differences among strip-plots.
However, this assumes that the interaction of strip-plots and locations is not
statistically significant. A test of this assumption is included in the anova table.
If any interactions between locations and strip-plot or split-plot factors are
statistically significant, then the nature of these interactions should be explored
since this impacts the interpretation of the significance of the treatment factors.

Similarly, when locations are assumed to be random effects, tests involving split-
plots do not use the split-plot errors pooled across locations. Instead, the error
term for split-plots is the interaction between locations and split-plots.

Suppose, for example, that a researcher wanted to conduct an agricultural
experiment comparing the effectiveness of 4 fertilizers with 3 seed lots and 3
rates of application. One replicate of the experiment is conducted at each of the 3
farms. That is, only a single field at each location is assigned to this experiment.

Each field is divided into 4 vertical strips and 3 horizontal strips. The vertical
strips are randomly assigned to fertilizers and the rows are randomly assigned to
application rates. Fertilizers and application rates represent strip-plot factors A
and B respectively. Seed lots are randomly assigned to three sub-divisions within
each combination of strip-plots.

 Fertilizer Strip Plots

 F2 F1 F4 F3

R3 F2R3S1
F2R3S2
F2R3S3

F1R3S3
F1R3S2
F1R3S1

F4R3S3
F4R3S2
F4R3S1

F3R3S2
F3R3S1
F3R3S3

R2 F2R1S3
F2R1S1
F2R1S2

F1R1S2
F1R1S3
F1R1S1

F4R1S3
F4R1S1
F4R1S2

F3R1S1
F3R1S2
F3R1S3

Application

Rate

Strip

Plot

R1 F2R2S1
F2R2S2
F2R2S3

F1R2S1
F1R2S3
F1R2S2

F4R2S2
F4R2S3
F4R2S1

F3R2S3
F3R2S1
F3R2S2

Figure 4 – Strip-Split Plot Experiment – Fertilizer Strip-Plots, Application Rate Strip-Plots,
and Seed Lot Split-Plots

366 � strip_split_plot IMSL C/Stat/Library

In this case, each farm is a blocking factor, fertilizers are factor A strip-plots,
fertilizer application rates are factor B strip-plots, and seed lots are split-plots.
The input array rep would contain integers from 1 to the number of farms.

In summary, imsls_f_strip_split_plot can analyze 2x2x2x2=16 different
experimental situations, depending upon the settings of:

Example
The experiment was conducted using a 2 x 2 strip_split plot arrangement with
each of the four plots divided into 2 sub-divisions that were randomly assigned
one of two split-plot levels. This was replicated 3 times producing an experiment
with n = 2x2x2x3 = 24 observations.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "imsls.h"

void l_printLSD(int n1, int *equalMeans, float *means);

void l_printLSD2Table(int n1, int n2, int* equalMeans, float *means);

void l_printLSD3Table(int n1, int n2, int n3, int* equalMeans, float *means);

void main()

{

 char **anova_row_labels;

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",

 "Mean\nsquares", "\nF", "\np-value"};

 int i, j, k, l, page_width = 132;

 int n = 24; /* Total number of observations */

 int n_locations = 1; /* Number of locations */

 int n_strip_a = 2; /* Number of Factor A strip-plots within a location */

 int n_strip_b = 2; /* Number of Factor B strip-plots within a location */

 int n_split = 2; /* Number of split-plots within each Factor A strip-plot */

 int block[]={

 1, 1, 1, 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2, 2, 2, 2,

 3, 3, 3, 3, 3, 3, 3, 3};

 int strip_a[]={

 1, 1, 1, 1, 2, 2, 2, 2,

 1, 1, 1, 1, 2, 2, 2, 2,

 1, 1, 1, 1, 2, 2, 2, 2};

 int strip_b[]={

 1, 1, 2, 2, 1, 1, 2, 2,

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot � 367

 1, 1, 2, 2, 1, 1, 2, 2,

 1, 1, 2, 2, 1, 1, 2, 2};

 int split[]={

 1, 2, 1, 2, 1, 2, 1, 2,

 1, 2, 1, 2, 1, 2, 1, 2,

 1, 2, 1, 2, 1, 2, 1, 2};

 float y[] ={

 30.0, 40.0, 38.9, 38.2,

 41.8, 52.2, 54.8, 58.2,

 20.5, 26.9, 21.4, 25.1,

 26.4, 36.7, 28.9, 35.9,

 21.0, 25.4, 24.0, 23.3,

 34.4, 41.0, 33.0, 34.9};

 float alpha = 0.05;

 float grand_mean = 0;

 float *cv;

 float *aov;

 float *treatment_means;

 float *strip_plot_a_means;

 float *strip_plot_b_means;

 float *split_plot_means;

 float *strip_a_split_plot_means;

 float *strip_b_split_plot_means;

 float *strip_plot_ab_means;

 float *std_err;

 int *equal_means;

 aov = imsls_f_strip_split_plot(n, n_locations, n_strip_a, n_strip_b, n_split,

 block, strip_a, strip_b, split, y,

 IMSLS_GRAND_MEAN, &grand_mean,

 IMSLS_CV, &cv,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_STRIP_PLOT_A_MEANS, &strip_plot_a_means,

 IMSLS_STRIP_PLOT_B_MEANS, &strip_plot_b_means,

 IMSLS_SPLIT_PLOT_MEANS, &split_plot_means,

 IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS,
&strip_a_split_plot_means,

 IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS,
&strip_b_split_plot_means,

 IMSLS_STRIP_PLOT_AB_MEANS, &strip_plot_ab_means,

 IMSLS_STD_ERRORS, &std_err,

 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,

 0);

368 � strip_split_plot IMSL C/Stat/Library

 /* Output results. */

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /* Print ANOVA table, without first column. */

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 22, 6, aov,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

 IMSLS_ROW_LABELS, anova_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 /*

 * Print the various means.

 */

 printf("\nGrand mean: %f\n\n", grand_mean);

 printf("Coefficient of Variation\n");

 printf(" Strip-Plot A: %9.4f\n", cv[0]);

 printf(" Strip-Plot B: %9.4f\n", cv[1]);

 printf(" Split-Plot: %9.4f\n\n", cv[2]);

 l = 0;

 /*

 * Print the Treatment Means.

 */

 printf("\n\n***");

 printf("\nTreatment Means\n");

 for (i=0; i < n_strip_a; i++){

 for(j=0; j < n_strip_b; j++){

 for(k=0; k < n_split; k++){

 printf("treatment[%d][%d][%d] %9.4f \n",

 i+1, j+1, k+1, treatment_means[l++]);

 }

 }

 }

 printf("\nStandard Error for Comparing Two Treatment Means: %f \n(df=%f)\n",

 std_err[9], std_err[19]);

 equal_means = imsls_f_multiple_comparisons(n_strip_a*n_strip_b*n_split,

 treatment_means, std_err[19],

 std_err[9]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_printLSD3Table(n_strip_a, n_strip_b, n_split, equal_means, treatment_means);

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot � 369

 /*

 * Print the Strip-plot A Means.

 */

 printf("\n\n***");

 imsls_f_write_matrix("Strip-plot A Means", n_strip_a, 1,

 strip_plot_a_means, 0);

 printf("\nStandard Error for Comparing Two Strip-Plot A Means: %f
\n(df=%f)\n",

 std_err[0], std_err[10]);

 equal_means = imsls_f_multiple_comparisons(n_strip_a, strip_plot_a_means,

 std_err[10], std_err[0]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_printLSD(n_strip_a, equal_means, strip_plot_a_means);

 /*

 * Print Strip-plot B Means.

 */

 printf("\n\n***");

 imsls_f_write_matrix("Strip-plot B Means", n_strip_b, 1,

 strip_plot_b_means, 0);

 printf("\nStandard Error for Comparing Two Strip-Plot B Means: %f \n(df=%f)\n",

 std_err[1], std_err[11]);

 equal_means = imsls_f_multiple_comparisons(n_strip_b, strip_plot_b_means,

 std_err[11], std_err[1]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_printLSD(n_strip_b, equal_means, strip_plot_b_means);

 /*

 * Print the Split-plot Means.

 */

 printf("\n\n***");

 imsls_f_write_matrix("Split-plot Means", n_split, 1,

 split_plot_means, 0);

 printf("\nStandard Error for Comparing Two Split-Plot Means: %f \n(df=%f)\n",

 std_err[2], std_err[12]);

 equal_means = imsls_f_multiple_comparisons(n_split, split_plot_means,

 std_err[12], std_err[2]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

370 � strip_split_plot IMSL C/Stat/Library

 l_printLSD(n_split, equal_means, split_plot_means);

 /*

 * Print the Strip-plot A by Split-plot Means.

 */

 printf("\n\n***");

 imsls_f_write_matrix("Strip-plot A by Split-plot Means", n_strip_a, n_split,

 strip_a_split_plot_means, 0);

 printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n",

 std_err[3], std_err[13]);

 equal_means = imsls_f_multiple_comparisons(n_strip_a*n_split,

 strip_a_split_plot_means,

 std_err[13],

 std_err[3]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_printLSD2Table(n_strip_a, n_split, equal_means, strip_a_split_plot_means);

 /*

 * Print the Strip-plot A by Strip-plot B Means.

 */

 printf("\n\n***");

 imsls_f_write_matrix("Strip-plot A by Strip-plot B Means", n_strip_a,

 n_strip_b, strip_plot_ab_means, 0);

 printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n",

 std_err[4], std_err[14]);

 equal_means = imsls_f_multiple_comparisons(n_strip_a*n_strip_b,

 strip_plot_ab_means, std_err[14],

 std_err[4]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_printLSD2Table(n_strip_a, n_strip_b, equal_means, strip_plot_ab_means);

 /*

 * Print the Strip-Plot B by Split-Plot Means.

 */

 printf("\n\n***");

 imsls_f_write_matrix("Strip-Plot B by Split-Plot Means", n_strip_b, n_split,

 strip_b_split_plot_means, 0);

 printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n",

 std_err[5], std_err[15]);

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot � 371

 equal_means = imsls_f_multiple_comparisons(n_strip_b*n_split,

 strip_b_split_plot_means,

 std_err[15], std_err[5]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_printLSD2Table(n_strip_b, n_split, equal_means, strip_b_split_plot_means);

}

/*

 * Local functions to output results of means comparisons.

 */

void l_printLSD(int n, int *equalMeans, float *means){

 float x=0.0;

 int i, j, k;

 int iSwitch;

 int *idx;

 idx = (int *) malloc(n * sizeof (int));

 for (k=0; k < n; k++) {

 idx[k] =k+1;

 }

 /* Sort means in ascending order*/

 iSwitch=1;

 while (iSwitch != 0){

 iSwitch = 0;

 for (i = 0; i < n-1; i++){

 if (means[i] > means[i+1]){

 iSwitch = 1;

 x = means[i];

 means[i] = means[i+1];

 means[i+1] = x;

 j = idx[i];

 idx[i] = idx[i+1];

 idx[i+1] = j;

 }

 }

 }

 printf("[group] \t Mean \t\tLSD Grouping \n");

 for (i=0; i < n; i++){

 printf(" [%d] \t\t%f", idx[i], means[i]);

372 � strip_split_plot IMSL C/Stat/Library

 for (j=1; j < i+1; j++){

 if(equalMeans[j-1] >= i+2-j){

 printf("\t *");

 }else{

 if(equalMeans[j-1]>=0) printf("\t");

 }

 }

 if (i < n-1 && equalMeans[i]>0) printf("\t *");

 printf("\n");

 }

 free(idx);

 return;

}

void l_printLSD2Table(int n1, int n2, int *equalMeans, float *means){

 float x=0.0;

 int i, j, k, n;

 int iSwitch;

 int *idx;

 n = n1*n2;

 idx = (int *) malloc(2*n * sizeof (int));

 i = 1;

 j = 1;

 for (k=0; k < n; k++) {

 idx[2*k] = i;

 idx[2*k+1] = j++;

 if (j > n2){

 j = 1;

 i++;

 }

 }

 /* sort means in ascending order*/

 iSwitch=1;

 while (iSwitch != 0){

 iSwitch = 0;

 for (i = 0; i < n-1; i++){

 if (means[i] > means[i+1]){

 iSwitch = 1;

 x = means[i];

 means[i] = means[i+1];

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot � 373

 means[i+1] = x;

 j = idx[2*i];

 idx[2*i] = idx[2*(i+1)];

 idx[2*(i+1)] = j;

 j = idx[2*i+1];

 idx[2*i+1] = idx[2*(i+1)+1];

 idx[2*(i+1)+1] = j;

 }

 }

 }

 printf("[A][B] \tMean \t\tLSD Grouping \n");

 for (i=0; i < n; i++){

 printf("[%d][%d] \t%f", idx[2*i], idx[2*i+1],means[i]);

 for (j=1; j < i+1; j++){

 if(equalMeans[j-1] >= i+2-j){

 printf("\t*");

 }else{

 if(equalMeans[j-1]>0) printf("\t");

 }

 }

 if (i < n-1 && equalMeans[i]>0) printf("\t*");

 printf("\n");

 }

 free(idx);

 idx = NULL;

 return;

}

void l_printLSD3Table(int n1, int n2, int n3, int *equalMeans, float *means){

 float x=0.0;

 int i, j, k, m, n;

 int iSwitch;

 int *idx;

 n = n1*n2*n3;

 idx = (int *) malloc(3*n * sizeof (int));

 i = 1;

 j = 1;

 k = 1;

 for (m=0; m < n; m++) {

 idx[3*m] = i;

 idx[3*m+1] = j;

374 � strip_split_plot IMSL C/Stat/Library

 idx[3*m+2] = k++;

 if (k > n3){

 k = 1;

 j++;

 if (j > n2){

 j = 1;

 i++;

 }

 }

 }

 /* sort means in ascending order*/

 iSwitch=1;

 while (iSwitch != 0){

 iSwitch = 0;

 for (i = 0; i < n-1; i++){

 if (means[i] > means[i+1]){

 iSwitch = 1;

 x = means[i];

 means[i] = means[i+1];

 means[i+1] = x;

 j = idx[3*i];

 idx[3*i] = idx[3*(i+1)];

 idx[3*(i+1)] = j;

 j = idx[3*i+1];

 idx[3*i+1] = idx[3*(i+1)+1];

 idx[3*(i+1)+1] = j;

 j = idx[3*i+2];

 idx[3*i+2] = idx[3*(i+1)+2];

 idx[3*(i+1)+2] = j;

 }

 }

 }

 printf("[A][B][Split] \t Mean \t\t LSD Grouping \n");

 for (i=0; i < n; i++){

 printf("[%d][%d] [%d] \t%f", idx[3*i], idx[3*i+1], idx[3*i+2],
means[i]);

 for (j=1; j < i+1; j++){

 if(equalMeans[j-1] >= i+2-j){

 printf("\t*");

 }else{

 if(equalMeans[j-1]>0) printf("\t");

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot � 375

 }

 }

 if (i < n-1 && equalMeans[i]>0) printf("\t*");

 printf("\n");

 }

 free(idx);

 return;

}

Output

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F p-value

Location -1

Blocks -2 2 1310.28 655.14 14.53 0.061

Strip-Plot A -3 1 858.01 858.01 40.37 0.024

Location x A -4

Strip-Plot A Error -5 2 42.51 21.26 1.48 0.385

Split-Plot -6 1 163.80 163.80 41.22 0.003

Split-Plot x A -7 1 11.34 11.34 2.85 0.166

Location x Split-Plot -8

Split-Plot Error -9 4 15.90 3.97 1.56 0.338

Location x Split-Plot x A ... -10

Strip-Plot B -11 1 17.17 17.17 0.47 0.565

Location x B -12

Strip-Plot B Error -13 2 73.51 36.75 2.85 0.260

A x B -14 1 1.55 1.55 0.12 0.762

Location x A x B -15

A x B Error -16 2 25.82 12.91 5.08 0.080

Split-Plot x B -17 1 46.76 46.76 18.39 0.013

Split-Plot x A x B -18 1 0.51 0.51 0.20 0.677

Location x Split-Plot x B ... -19

Location x Split-Plot x A x B -20

Split-Plot x A x B Error -21 4 10.17 2.54

Corrected Total -22 23 2577.33

Grand mean: 33.870834

Coefficient of Variation

376 � strip_split_plot IMSL C/Stat/Library

 Strip-Plot A: 13.6116

 Strip-Plot B: 17.8986

 Split-Plot: 5.8854

Treatment Means

treatment[1][1][1] 23.8333

treatment[1][1][2] 30.7667

treatment[1][2][1] 28.1000

treatment[1][2][2] 28.8667

treatment[2][1][1] 34.2000

treatment[2][1][2] 43.3000

treatment[2][2][1] 38.9000

treatment[2][2][2] 43.0000

Standard Error for Comparing Two Treatment Means: 1.302029

(df=4.000000)

[A][B][Split] Mean LSD Grouping

[1][1] [1] 23.833334

[1][2] [1] 28.100000 *

[1][2] [2] 28.866669 *

[1][1] [2] 30.766668 * *

[2][1] [1] 34.200001 *

[2][2] [1] 38.899998

[2][2] [2] 43.000000 *

[2][1] [2] 43.299999 *

Strip-plot A Means

 1 27.89

 2 39.85

Standard Error for Comparing Two Strip-Plot A Means: 1.882171

(df=2.000000)

[group] Mean LSD Grouping

 [1] 27.891665

 [2] 39.849998

Strip-plot B Means

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot � 377

 1 33.03

 2 34.72

Standard Error for Comparing Two Strip-Plot B Means: 2.474972

(df=2.000000)

[group] Mean LSD Grouping

 [1] 33.025002 *

 [2] 34.716667 *

Split-plot Means

 1 31.26

 2 36.48

Standard Error for Comparing Two Split-Plot Means: 0.813813

(df=4.000000)

[group] Mean LSD Grouping

 [1] 31.258331

 [2] 36.483334

Strip-plot A by Split-plot Means

 1 2

 1 25.97 29.82

 2 36.55 43.15

Standard Error for Comparing Two Means: 1.150906

(df=4.000000)

[A][B] Mean LSD Grouping

[1][1] 25.966667

[1][2] 29.816668

[2][1] 36.549999

[2][2] 43.149998

Strip-plot A by Strip-plot B Means

 1 2

 1 27.30 28.48

 2 38.75 40.95

378 � homogeneity IMSL C/Stat/Library

[1][1] 27.299997 *

Standard Error for Comparing Two Means: 2.074280

(df=2.000000)

[A][B] Mean LSD Grouping

[1][2] 28.483335 *

[2][1] 38.750000 *

[2][2] 40.949997 *

Strip-Plot B by Split-Plot Means

 1 2

 1 29.02 37.03

 2 33.50 35.93

Standard Error for Comparing Two Means: 0.920673

(df=4.000000)

[A][B] Mean LSD Grouping

[1][1] 29.016668

[2][1] 33.500000 *

[2][2] 35.933334 * *

[1][2] 37.033333 *

homogeneity
Conducts Bartlett’s and Levene’s tests of the homogeneity of variance assumption
in analysis of variance.

Synopsis
#include <imsls.h>
float * imsls_f_homogeneity (int n, int n_treatment, int treatment[],

float y[],…, 0)

The type double is imsls_d_homogeneity.

Required Arguments
int n (Input)

Number of experimental observations.

int n_treatment (Input)
Number of treatments. n_treatment must be greater than one.

int treatment[] (Input)
An array of length n containing the treatment identifiers for each
observation in y. Each level of the treatment must be assigned a

Chapter 4: Analysis of Variance and Designed Experiments homogeneity � 379

different integer. imsls_f_homogeneity verifies that the number of
unique treatment identifiers is equal to n_treatment.

float y[] (Input)
An array of length n containing the experimental observations and any
missing values. Missing values can be included in this array, although
they are ignored in the analysis. They are indicated by placing a NaN
(not a number) in y. The NaN value can be set using either the function
imsls_f_machine(6) or imsls_d_machine(6), depending upon
whether single or double precision is being used, respectively.

Return Value
Address of a pointer to the memory location of an array of length 2 containing the
p-values for Bartletts and Levene’s tests.

Synopsis with Optional Arugments
#include <imsl.h>

float * imsls_f_homogeneity (int n, int n_treatment,
int n_treatment[], float y[],
IMSLS_RETURN_USER, float p_value[]
IMSLS_LEVENES_MEAN or IMSLS_LEVENES_MEDIAN,
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_RESIDUALS, float **residuals,
IMSLS_RESIDUALS_USER, float residuals[],
IMSLS_STUDENTIZED_RESIDUALS,
 float **studentized_residuals,
IMSLS_STUDENTIZED_RESIDUALS_USER,
 float studentized_residuals[],
IMSLS_STD_DEVS, float **std_devs,
IMSLS_STD_DEVS_USER, float std_devs[],
IMSLS_BARTLETTS, float *bartletts,
IMSLS_LEVENES, float *levenes,
0)

Optional Arguments
IMSLS_RETURN_USER, float p_value[] (Output)

User defined array of length 2 for storage of the p-values from Bartlett’s
and Levene’s tests for homogeneity of variance. The first value returned
contains the p-value for Bartlett’s test and the second value contains the
p-value for Levene’s test.

380 � homogeneity IMSL C/Stat/Library

IMSLS_LEVENES_MEAN or IMSLS_LEVENES_MEDIAN (Input)
Calculates Levene’s test using either the treatment means or medians.
IMSLS_LEVENES_MEAN indicates that Levene’s test is calculated using
the mean, and IMSLS_LEVENES_MEDIAN indicates that it is calculated
using the median.
 Default: IMSLS_LEVENES_MEAN

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are
denoted with a NaN (Not a Number) value in y. In these analyses, any
missing values are ignored.

IMSLS_CV, float *cv (Output)
The coefficient of variation computed using the grand mean and pooled
within treatment standard deviation.

IMSLS_GRAND_MEAN, float grand_mean (Output)
Mean of all the data across every location.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size
n_treatment containing the treatment means.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_RESIDUALS, float **residuals (Output)
Address of a pointer to an internally allocated array of length n
containing the residuals for non-missing observations. The ordering of
the values in this array corresponds to the ordering of values in y and
identified by the values in treatments.

IMSLS_RESIDUALS_USER, float residuals[] (Output)
Storage for the array residuals, provided by the user.

IMSLS_STUDENTIZED_RESIDUALS, float **studentized_residuals
(Output)
Address of a pointer to an internally allocated array of length n
containing the studentized residuals for non-missing observations. The
ordering of the values in this array corresponds to the ordering of values
in y and identified by the values in treatments.

IMSLS_STUDENTIZED_RESIDUALS_USER, float studentized_residuals[]
(Output)
Storage for the array studentized_residuals, provided by the user.

IMSLS_STD_DEVS, float **std_devs (Output)
Address of a pointer to an internally allocated array of length
n_treatment containing the treatment standard deviations.

IMSLS_STD_DEVS_USER, float std_devs[] (Output)
Storage for the array std_devs, provided by the user.

Chapter 4: Analysis of Variance and Designed Experiments homogeneity � 381

IMSLS_BARTLETTS, float *bartletts (Output)
Test statistic for Bartlett’s test.

IMSLS_LEVENES, float *levenes (Output)
Test statistic for Levene’s test.

Description
Traditional analysis of variance assumes that variances within treatments are
equal. This is referred to as homogeneity of variance. The function
imsls_f_homogeneity conducts both the Bartlett’s and Levene’s tests for this
assumption:

: 1 2oH t� � �� � ��

 versus

:Ha i j� ��

for at least one pair (i�j), where t=n_treatments.

Bartlett’s test, Bartlett (1937), uses the test statistic:

2 M
C� �

where

2

2 2 2 1

1

1

(1)
ln() ln(), ,

(1)

1 1 11
3(1)

t

i it
i

p i i i p t
i

i
i

i

n S
M N S n S N n S

n

C
t n N

�

�

�

�

� � � � �

�

� �
� � �� �

� 	

�
� �

�

�

and is the variance of the non-missing observations in the ith treatment. 2
iS in

2
pS is referred to as the pooled variance, and it is also known as the error mean

squares from a 1-way analysis of variance.

If the usual assumptions associated with the analysis of variance are valid, then
Bartlett’s test statistic is a chi-squared random variable with degrees of freedom
equal to t-1.

The original Levene’s test, Levene (1960) and Snedecor & Cochran (1967), uses
a different test statistic, F0, equal to:

382 � homogeneity IMSL C/Stat/Library

� �

� �

2
. ..

1
0

2

.
1 1

/(1)

/()
i

t

i i
i

nt

ij i
i j

n z z t
F

z z N

�

� �

� �

�

� �

�

�� t
,

where

.| |ij ij iz x x� � ,

ijx is the jth observation from the ith treatment and .ix is the mean for the ith
treatment. Conover, Johnson, and Johnson (1981) compared over 50 similar tests
for homogeneity and concluded that one of the best tests was Levene’s test when
the treatment mean, .ix is replaced with the treatment median, .ix� . This version
of Levene’s test can be requested by setting IMSLS_LEVENES_MEDIAN. In either
case, Levene’s test statistic is treated as a F random variable with numerator
degrees of freedom equal to (t-1) and denominator degrees of freedom (N-t).

The residual for the jth observation within the ith treatment, e , returned from
IMSLS_RESIDUALS is unstandarized, i.e.

ij

ij ij i� �e x . For investigating
problems of homogeneity of variance, the studentized residuals returned by
IMSLS_STUDENTIZED_RESIDUALS are recommended since they are standarzied
by the standard deviation of the residual. The formula for calculating the
studentized residual is:

x

2 1(1)
i

ij
ij

p n

e
e

S
�

�

� ,

where the coefficient of variation, returned from IMSLS_CV, is also calculated
using the pooled variance and the grand mean .. ij

i j
x x��� :

2100

..

S p
CV

x
�

�

Example
This example applies Bartlett’s and Levene’s test to verify the homogeneity
assumption for a one-way analysis of variance. There are eight treatments, each
with 3 replicates for a total of 24 observations. The estimated treatment standard
deviations range from 5.35 to 13.17.

In this case, Bartlett's test is not statistically significant for a stated significance
level of .05; whereas Levene's test is significant with p = 0.006.

#include "imsls.h"

Chapter 4: Analysis of Variance and Designed Experiments homogeneity � 383

void ex_homog_b()

{

 int i, page_width = 132;

 int n = 24;

 int n_treatment = 8;

 int treatment[]={

 1, 2, 3, 4, 5, 6, 7, 8,

 1, 2, 3, 4, 5, 6, 7, 8,

 1, 2, 3, 4, 5, 6, 7, 8};

 float y[] ={

 30.0, 40.0, 38.9, 38.2,

 41.8, 52.2, 54.8, 58.2,

 20.5, 26.9, 21.4, 25.1,

 26.4, 36.7, 28.9, 35.9,

 21.0, 25.4, 24.0, 23.3,

 34.4, 41.0, 33.0, 34.9};

 float bartletts;

 float levenes;

 float grand_mean;

 float cv;

 float *treatment_means=NULL;

 float *residuals=NULL;

 float *studentized_residuals=NULL;

 float *std_devs=NULL;

 int n_missing = 0;

 float *p;

 p = imsls_f_homogeneity(n, n_treatment, treatment, y,

 IMSLS_BARTLETTS, &bartletts,

 IMSLS_LEVENES, &levenes,

 IMSLS_LEVENES_MEDIAN,

 IMSLS_N_MISSING, &n_missing,

 IMSLS_GRAND_MEAN, &grand_mean,

 IMSLS_CV, &cv,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_STD_DEVS, &std_devs,

 0);

 printf("\n\n\n *** Bartlett\'s Test ***\n\n");

 printf("Bartlett\'s p-value = %10.3f\n", p[0]);

 printf("Bartlett\'s test statistic = %10.3f\n", bartletts);

384 � homogeneity IMSL C/Stat/Library

 printf("Levene\'s test statistic = %10.3f\n", levenes);

 printf("\n\n\n *** Levene\'s Test ***\n\n");

 printf("Levene\'s p-value = %10.3f\n", p[1]);

 imsls_f_write_matrix("Treatment means", n_treatment, 1, treatment_means, 0);

 imsls_f_write_matrix("Treatment std devs", n_treatment, 1, std_devs, 0);

 printf("\ngrand_mean = %10.3f\n", grand_mean);

 printf("cv = %10.3f\n", cv);

 printf("n_missing = %d\n", n_missing);

}

Output

 *** Bartlett's Test ***

Bartlett's p-value = 0.056

Bartlett's test statistic = 2.257

 *** Levene's Test ***

Levene's p-value = 0.006

Levene's test statistic = 0.135

Treatment means

1 23.83

2 30.77

3 28.10

4 28.87

5 34.20

6 43.30

7 38.90

8 43.00

Treatment std devs

 1 5.35

 2 8.03

 3 9.44

Chapter 4: Analysis of Variance and Designed Experiments multiple_comparisons � 385

 4 8.13

 5 7.70

 6 8.00

 7 13.92

 8 13.17

grand_mean = 33.871

cv = 28.378

n_missing = 0

multiple_comparisons
Performs multiple comparisons of means using one of Student-Newman-Keuls,
LSD, Bonferroni, Tukey’s, or Duncan’s MRT procedures.

Synopsis
#include <imsls.h>
int *imsls_f_multiple_comparisons (int n_groups, float means[],

int df, float std_error, ..., 0)

The type double function is imsls_d_multiple_comparisons.

Required Arguments

int n_groups (Input)
Number of groups i.e., means, being compared.

float means[] (Input)
Array of length n_groups containing the means.

int df (Input)
Degrees of freedom associated with std_error.

float std_error (Input)
Effective estimated standard error of a mean. In fixed effects models,
std_error equals the estimated standard error of a mean. For example,
in a one-way model

2s
n

�std_error

where s2 is the estimate of �2 and n is the number of responses in a
sample mean. In models with random components, use

2
sedif

�std_error

386 � multiple_comparisons IMSL C/Stat/Library

where sedif is the estimated standard error of the difference of two
means.

Return Value
Pointer to the array of length n_groups � 1 indicating the size of the groups of
means declared to be equal. Value equal_means [I] = J indicates the I-th
smallest mean and the next J � 1 larger means are declared equal. Value
equal_means [I] = 0 indicates no group of means starts with the I-th smallest
mean.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_multiple_comparisons (int n_groups, float means [],

int df, float std_error,
IMSLS_ALPHA, float alpha,
IMSLS_SNK, or
IMSLS_LSD, or
IMSLS_TUKEY, or
IMSLS_BONFERRONI,
IMSLS_RETURN_USER, int *equal_means,
0)

Optional Arguments
IMSLS_ALPHA, float alpha (Input)

Significance level of test. Argument alpha must be in the interval
[0.01, 0.10].
Default: alpha = 0.01

IMSLS_RETURN_USER, int *equal_means (Output)
If specified, equal_means is an array of length n_groups � 1 specified
by the user. On return, equal_means contains the size of the groups of
means declared to be equal. Value equal_means [I] = J indicates the
ith smallest mean and the next J � 1 larger means are declared equal.
Value equal_means [I] = 0 indicates no group of means starts with the
ith smallest mean.

IMSLS_SNK, or

IMSLS_LSD, or

IMSLS_TUKEY, or

IMSLS_BONFERRONI, or

Chapter 4: Analysis of Variance and Designed Experiments multiple_comparisons � 387

Argument Method

IMSLS_SNK Student-Newman-Keuls (default)

IMSLS_LSD Least significant difference

IMSLS_TUKEY Tukey’s w-procedure, also called the
honestly significant difference procedure.

IMSLS_BONFERRONI Bonferroni t statistic

Description
Function imsls_f_multiple_comparisons performs a multiple comparison
analysis of means using one of Student-Newman-Keuls, LSD, Bonferroni, or
Tukey’s procedures. The null hypothesis is equality of all possible ordered
subsets of a set of means. The methods are discussed in many elementary
statistics texts, e.g., Kirk (1982, pp. 123–125).

The output consists of an array of n_groups –1 integers that describe grouping
of means that are considered not statistically significantly different.

For example, if n_groups=4 and the returned array is equal to {0, 2, 2} then we
conclude that:

1. The smallest mean is significantly different from the others,

2. The second and third smallest means are not significantly different from
one another,

3. The second and fourth means are significantly different

4. The third and fourth means are not significantly different from one
another.

These relationships can be depicted graphically as three groups of means:

Smallest

Mean
Group

1
Group

2
Group

3

1 x

2 x

3 x x

4 x

388 � multiple_comparisons IMSL C/Stat/Library

Examples

Example 1
A multiple-comparisons analysis is performed using data discussed by Kirk
(1982, pp. 123�125). The results show that there are three groups of means with
three separate sets of values: (36.7, 40.3, 43.4), (40.3, 43.4, 47.2), and (43.4,
47.2, 48.7).

In this case, the ordered means are {36.7, 40.3, 43.4, 47.2, 48.7} corresponding
to treatments {1, 5, 3, 4, 2}. Since the output table is:

� �
� �
� �

1 2 3 4

3 3 3 0
,

we can say that within each of these three groups, means are not significantly
different from one another.

Treatment

Mean Group

1
Group

2
Group

3

1 36.7 x

5 40.3 x x

3 43.4 x x x

4 47.2 x x

2 48.7 x

#include <imsls.h>

void main ()
{
 int n_groups = 5;
 int df = 45;
 float std_error = 1.6970563;
 float means[5] = {36.7, 48.7, 43.4, 47.2, 40.3};
 int *equal_means;
 /* Perform multiple comparisons tests */
 equal_means = imsls_f_multiple_comparisons(n_groups, means, df,
 std_error, 0);
 /* Print results */
 imsls_i_write_matrix("Size of Groups of Means", 1, n_groups-1,
 equal_means, 0);

}

Chapter 4: Analysis of Variance and Designed Experiments multiple_comparisons � 389

Output
Size of Groups of Means
 1 2 3 4
 3 3 3 0

Example 2
This example uses the same data as the previous example but also uses additional
methods by specifying optional arguments.

Example 2 uses the same data as Example 1: Ordered treatment means
correspond to treatment order {1,5,3,4,2}.

The table produced for Bonferroni is:

� �
� �
� �

1 2 3 4

3 4 0 0

Thus, these are two groups of similar means.

Treatment

Mean Group

1
Group

2

1 36.7 x

5 40.3 x x

3 43.4 x x

4 47.2 x

2 48.7 x

#include <imsls.h>
void main()
{

 float std_error = 1.6970563;

 /* Bonferroni */

 int n_groups = 5;
 int df = 45;

 float means[5] = {36.7, 48.7, 43.4, 47.2, 40.3};
 int equal_means[4];

 /* Student-Newman-Keuls */
 imsls_f_multiple_comparisons(n_groups, means, df, std_error,
 IMSLS_RETURN_USER, equal_means, 0);
 imsls_i_write_matrix("SNK ", 1, n_groups-1, equal_means, 0);

 imsls_f_multiple_comparisons(n_groups, means, df, std_error,
 IMSLS_BONFERRONI,
 IMSLS_RETURN_USER, equal_means,
 0);
 imsls_i_write_matrix("Bonferonni ", 1, n_groups-1, equal_means, 0);

390 � yates IMSL C/Stat/Library

 IMSLS_RETURN_USER, equal_means,

1 2 3 4

 /* Least Significant Difference */
 imsls_f_multiple_comparisons(n_groups, means, df, std_error,
 IMSLS_LSD,

 0);
 imsls_i_write_matrix("LSD ", 1, n_groups-1, equal_means, 0);

 /* Tukey's */
 imsls_f_multiple_comparisons(n_groups, means, df, std_error,
 IMSLS_TUKEY,
 IMSLS_RETURN_USER, equal_means,
 0);
 imsls_i_write_matrix("Tukey ", 1, n_groups-1, equal_means, 0);

}

Output
SNK
1 2 3 4
3 3 3 0

Bonferonni

3 4 0 0

LSD
1 2 3 4
2 2 3 0

Tukey
1 2 3 4
3 3 3 0

yates
Estimates missing observations in designed experiments using Yate’s method.

Synopsis
#include <imsls.h>

int imsls_f_yates(int n, int n_independent, float x[],…, 0)

The type double function is imsls_d_yates.

Required Arguments
int n (Input)

Number of observations.

int n_independent (Input)
Number of independent variables.

Chapter 4: Analysis of Variance and Designed Experiments yates � 391

float x[] (Input/Output)
A n by (n_independent+1) 2-dimensional array containing the
experimental observations and missing values. The first
n_independent columns contain values for the independent variables
and the last column contains the corresponding observations for the
dependent variable or response. The columns assigned to the
independent variables should not contain any missing values. Missing
values are included in this array by placing a NaN (not a number) in the
last column of x. The NaN value can be set using either the function
imsls_f_machine(6) or imsls_d_machine(6), depending upon
whether single or double precision is being used, respectively. Upon
successful completion, missing values are replaced with estimates
calculated using Yates’ method.

Return Value
The number of missing values replaced with estimates using the Yates procedure.
A negative return value indicates that the routine was unable to successfully
estimate all missing values. Typically this occurs when all of the observations for
a particular treatment combination are missing. In this case, Yate’s missing value
method does not produce a unique set of missing value estimates.

Synopsis with Optional Arugments
#include <imsls.h>

int imsls_f_yates (int n, int n_independent, float x[],
IMSLS_DESIGN, int design,
IMSLS_INITIAL_ESTIMATES, int n_missing,
 float initial_estimates[],
IMSLS_GET_SS, float get_ss (int n, int n_independent,
 int n_levels[], float dataMatrix[]),
IMSLS_GRAD_TOL, float grad_tol,
IMSLS_STEP_TOL, float step_tol,
IMSLS_MAX_ITN, int **itmax,
IMSLS_MISSING_INDEX, int **missing_index[],
IMSLS_MISSING_INDEX_USER, int missing_index[],
IMSLS_ERROR_SS, float *error_ss,
0)

Optional Arguments
IMSLS_RETURN_USER, int n_missing (Output)

The number of missing values replaced with Yate’s estimates. A
negative return value indicates that the routine was unable to
successfully estimate all missing values.

IMSLS_DESIGN, int design (Input)
An integer indicating whether a custom or standard design is being used.

392 � yates IMSL C/Stat/Library

The association of values for this variable and standard designs is
described in the following table:

Design Description

0

CRD – Completely Randomized Design. The input matrix, x,
is assumed to have only two columns. The first is used to
contain integers identifying the treatments. The second
column should contain corresponding observations for the
dependent variable. In this case, n_independent=1. Default
value when n_independent=1.

1

RCBD – Randomized Complete Block Design. The input
matrix is assumed to have only three columns. The first is
used to contain the treatment identifiers and the second the
block identifiers. The last column contains the corresponding
observations for the dependent variable. In this case,
n_independent=2. This is the default value when
n_independent=2.

2

Another design. In this case, the function get_ss is a
required input. The design matrix is passed to that
routine. Initial values for missing observations are set
to the grand mean of the data, unless initial values are
specified using IMSLS_INITIAL_ESTIMATES.

 Default: design=0 or design=1, depending upon whether
n_independent=1 or 2 respectively. If n_independent>2, then
design must be set to 2, and get_ss must be provided as input to
imsls_f_yates.

IMSLS_INITIAL_ESTIMATES, int n_missing,
float initial_estimates[] (Input)
Initial estimates for the missing values. Argument n_missing is the
number of missing values. Argument initial_estimates is an array
of length n_missing containing the initial estimates.
Default: For design=0 and design=1, the initial estimates are
calculated using the Yates formula for those designs. For design=2, the
mean of the non-missing observations is used as the initial estimate for
all missing values.

IMSLS_MAX_ITN, int itmax (Input)
Maximum number of iterations in the optimization routine for finding
the missing value estimates that minimize the error sum of squares in the
analysis of variance.
Default: itmax = 500.

IMSLS_GET_SS, float get_ss(int n, int n_independent, int n_levels[],
float dataMatrix[]) (Input/Output)
A user-supplied function that returns the error sum of squares calculated

Chapter 4: Analysis of Variance and Designed Experiments yates � 393

2/3

using the n by (n_independent+1) matrix dataMatrix.
imsls_f_yates calculates the error sum of squares assuming that
dataMatrix contains no missing observations. In general,
dataMatrix should be equal to the input matrix x with missing values
replaced by estimates. imsls_f_yates is required input when
design=2. The array n_levels should be of length n_independent
and contain the number of levels associated with each of the first
n_independent columns in the dataMatrix and x arrays.

IMSLS_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance used to determine whether the difference
between the error sum of squares is small enough to stop the search for
missing value estimates.

 Default: grad_tol = , where is the machine precision. 2/3ε ε

IMSLS_STEP_TOL, float step_tol (Input)
Scaled step tolerance used to determine whether the difference between
missing value estimates is small enough to stop the search for missing
value estimates.
Default: step_tol = ε , where is the machine precision. ε

IMSLS_MISSING_INDEX, int *missing_index (Output)
An array of length n_missing containing the indices for the missing
values in x. The number of missing values, n_missing, is the return
value of imsls_f_yates.

IMSLS_MISSING_INDEX_USER, int missing_index[] (Output)
Storage for the array missing_index, provided by the user.

IMSLS_ERROR_SS, float *errr_ss (Output)
The value of the error sum of squares calculated using the missing value
estimates. If design=2 then this is equal to the value returned from
get_ss using the Yates missing value estimates.

Description
Several functions for analysis of variance require balanced experimental data, i.e.
data containing no missing values within a block and an equal number of
replicates for each treatment. If the number of missing observations in an
experiment is smaller than the Yates method as described in Yates (1933) and
Steel and Torrie (1960), can be used to estimate the missing values. Once the
missing values are replaced with these estimates, the data can be passed to an
analysis of variance that requires balanced data.

The basic principle behind the Yates method for estimating missing observations
is to replace the missing values with values that minimize the error sum of squares
in the analysis of variance. Since the error sum of squares depends upon the
underlying model for the analysis of variance, the Yates formulas for estimating
missing values vary from anova to anova.

394 � yates IMSL C/Stat/Library

Consider, for example, the model underlying experiments conducted using a
completely randomized design. If is the Ith observation for the ith treatment
then the error sum of squares for a CRD is calculated using the following
formula:

ijy

� �
2

. .
1 1

is the th treatment mean.
t r

ij i i
i j

iSSE y y where y
� �

� ���

If an observation is missing then SSE is minimized by replacing that missing
observation with the estimate

ijy

.ˆij ix y� .

For a randomized complete block design (RCBD), the calculation for estimating a
single missing observation can be derived from the RCBD error sum of squares:

� �
2

. . ..
1 1

t r

ij i j
i j

SSE y y y y
� �

� � � ���

If only a single observation, , is missing from the jth block and ith treatment,
the estimate for this missing observation can be derived by solving the equation:

ijy

. .ˆij i j ..x y y y� � � .

The solution is referred to as the Yates formula for a RCBD:

. .ˆ
(1)(1)

j i
ij

t y r y y
x

r t
� � � �

�

� �

.. , where

r=n_blocks, t=n_treatments, yi=total of all non-missing observations from
the ith treatment, =total of all non-missing observations from the jth block,
and y=total of all non-missing observations.

. jy

If more than one observation is missing, imsls_f_yates minimization
procedure is used to estimate missing values. For a CRD, all missing
observations are set equal to their corresponding treatment means calculated
using the non-missing observations. That is, .ˆij ix y� .

For RCBD designs with more than one missing value, Yate’s formula for
estimating a single missing observation is used to obtain initial estimates for all
missing values. These are passed to a function minimization routine to obtain the
values that minimize SSE.

For other designs, specify design=2 and IMSLS_GET_SS. The function get_ss
is used to obtain the Yates missing value estimates by selecting the estimates that
minimize sum of squares returned by get_ss. When called, get_ss calculates
the error sum of squares at each iteration assuming that the data matrix it receives
is balanced and contains no missing values.

Chapter 4: Analysis of Variance and Designed Experiments yates � 395

Example
Missing values can occur in any experiment. Estimating missing values via the
Yates method is usually done by minimizing the error sum of squares for that
experiment. If only a single observation is missing and there is an analytical
formula for calculating the error sum of squares then a formula for estimating the
missing value is fairly easily derived. Consider for example a split-plot
experiment with a single missing value.

Suppose, for example, that ijkx , the observation for the ith whole-plot, jth split
plot and kth block is missing. Then the estimate for a single missing observation
in the ith whole plot is equal to:

.

(1)(1)
ij ir W s x x

Y
r s

� � � �

�

� �

.. , where

 = number of blocks, r s = number of split-plots, W = total of all non-missing
values in same block as the missing observation, .ijx = total of the non-missing
observations across blocks of observations from ith whole-plot factor level and
the jth split-plot level, and ..ix = the total of all observations, across split-plots
and blocks of the non-missing observations for the ith whole plot.

If more than a single observation is missing, then an iterative solution is required
to obtain missing value estimates that minimize the error sum of squares.

Function imsls_f_yates simplifies this procedure. Consider, for example, a
split-plot experiment conducted at a single location using fixed-effects whole and
split plots. If there are no missing values, then the error sum of squares can be
calculated from a 3-way analysis of variance using whole-plot, split-plot and
blocks as the 3 factors. For balanced data without missing values, the errors sum
of squares would be equal to the sum of the 3-way interaction between these
factors and the split-plot by block interaction.

Calculating the error sum of squares using this 3-way analysis of variance is
achieved using the anova_factorial routine.

float get_ss(int n, int n_independent, int *n_levels, float *x)
{
/* This routine assumes that the first three columns of dataMatrix */
/* contain the whole-plot,split-plot and block identifiers in that */
/* order. The last column of this matrix, the fourth column, must */
/* contain the observations from the experiment. It is assumed that */
/* dataMatrix is balanced and does not contain any missing */

 /* observations. */

 int i;

396 � yates IMSL C/Stat/Library

 float errorSS, pValue;
 float *test_effects = NULL;
 float *anova_table = NULL;
 float responses[24];
 /* Copy responses from the last column of x into a 1-D array */
 /* as expected by imsls_f_anova_factorial. */

 for (i=0;i<n;i++) {
 responses[i] = x[i*(n_independent+1)+n_independent];
 }
 /* Compute the error sum of squares. */
 pValue = imsls_f_anova_factorial(n_independent, n_levels, responses,
 IMSLS_TEST_EFFECTS, &test_effects,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_POOL_INTERACTIONS, 0);
 errorSS = anova_table[4] + test_effects[21];

 /* Free memory returned by imsls_f_anova_factorial. */
 if (test_effects != NULL) free(test_effects);
 if (anova_table != NULL) free(anova_table);
 return errorSS;
}

The above function is passed to the imsls_f_yates as an argument, together
with a matrix containing the data for the split-plot experiment. For this example,
the following data matrix obtained from an agricultural experiment will be used.
In this experiment, 4 whole plots were randomly assigned to two 2 blocks.
Whole-plots were subdivided into 2 split-plots. The whole-plot factor consisted
of 4 different seed lots, and the split-plot factor consisted of 2 seed protectants.
The data matrix of this example is a n=24 by 4 matrix with two missing
observations.

Chapter 4: Analysis of Variance and Designed Experiments yates � 397

1 1 1
1 2 1 53.8
1 3 1 49.5
1 1 2 41.6
1 2 2
1 3 2 53.8
2 1 1 53.3
2 2 1 57.6
2 3 1 59.8
2 1 2 69.6
2 2 2 69.6
2 3 2 65.8
3 1 1 62.3
3 2 1 63.4
3 3 1 64.5
3 1 2 58.5
3 2 2 50.4
3 3 2 46.1
4 1 1 75.4
4 2 1 70.3
4 3 1 68.8
4 1 2 65.6
4 2 2 67.3
4 3 2 65.3

NaN

NaN

X

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �
�
�
�
�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �� ��

The following program uses these data with imsls_f_yates to replace the two
missing values with Yates estimates.

#include <stdlib.h>
#include "imsls.h"

float get_ss(int n, int n_independent, int *n_levels, float *x);

#define N 24

398 � yates IMSL C/Stat/Library

#define N_INDEPENDENT 3

void main()
{
 char *col_labels[] = {" ", "Whole", "Split", "Block", " "};
 int i;
 int n = N;
 int n_independent = N_INDEPENDENT;
 int whole[N]={1,1,1,1,1,1,
 2,2,2,2,2,2,
 3,3,3,3,3,3,
 4,4,4,4,4,4};
 int split[N]={1,2,3,1,2,3,
 1,2,3,1,2,3,
 1,2,3,1,2,3,
 1,2,3,1,2,3};
 int block[N]={1,1,1,2,2,2,
 1,1,1,2,2,2,
 1,1,1,2,2,2,
 1,1,1,2,2,2};
 float y[N] ={0.0, 53.8, 49.5, 41.6, 0.0, 53.8,
 53.3, 57.6, 59.8, 69.6, 69.6, 65.8,
 62.3, 63.4, 64.5, 58.5, 50.4, 46.1,
 75.4, 70.3, 68.8, 65.6, 67.3, 65.3};

 float x[N][N_INDEPENDENT+1];
 float error_ss;
 int *missing_idx;
 int n_missing;

 /* Set the first and fifth observations to missing values. */
 y[0] = imsls_f_machine(6);
 y[4] = imsls_f_machine(6);

 /* Fill the array x with the classification variables and observations. */
 for (i=0;i<n; i++) {
 x[i][0] = (float)whole[i];
 x[i][1] = (float)split[i];
 x[i][2] = (float)block[i];
 x[i][3] = y[i];
 }
 /* Sort the data since imsls_f_anova_factorial expects sorted data. */
 imsls_f_sort_data(n, n_independent+1, (float*)x, 3, 0);

 n_missing = imsls_f_yates(n, n_independent, (float *)&(x[0][0]),
 IMSLS_DESIGN, 2,
 IMSLS_GET_SS, get_ss,

Chapter 4: Analysis of Variance and Designed Experiments yates � 399

 IMSLS_ERROR_SS, &error_ss,
 IMSLS_MISSING_INDEX, &missing_idx,
 0);
 printf("Returned error sum of squares = %f\n\n", error_ss);
 printf("Missing values replaced: %d\n", n_missing);
 printf("Whole Split Block Estimate\n");
 for (i=0;i<n_missing;i++) {
 printf("%3d %3d %3d %7.3f\n",
 (int)x[missing_idx[i]][0],
 (int)x[missing_idx[i]][1],
 (int)x[missing_idx[i]][2],
 x[missing_idx[i]][n_independent]);
 }
 imsls_f_write_matrix("Sorted x, with estimates", n, n_independent+1,
 (float*)x,
 IMSLS_WRITE_FORMAT, "%-4.0f%-4.0f%-4.0f%5.2f",
 IMSLS_COL_LABELS, col_labels,
 IMSLS_NO_ROW_LABELS, 0);

}

float get_ss(int n, int n_independent, int *n_levels, float *x)
{
 int i;
 float errorSS, pValue;
 float *test_effects = NULL;
 float *anova_table = NULL;
 float responses[24];
 /*
 * Copy responses from the last column of x into a 1-D array
 * as expected by imsls_f_anova_factorial.
 */
 for (i=0;i<n;i++) {
 responses[i] = x[i*(n_independent+1)+n_independent];
 }
 /*
 * Compute the error sum of squares.
 */
 pValue = imsls_f_anova_factorial(n_independent, n_levels, responses,
 IMSLS_TEST_EFFECTS, &test_effects,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_POOL_INTERACTIONS, 0);
 errorSS = anova_table[4] + test_effects[21];

 /* Free memory returned by imsls_f_anova_factorial. */
 if (test_effects != NULL) free(test_effects);
 if (anova_table != NULL) free(anova_table);

400 � yates IMSL C/Stat/Library

 return errorSS;
}

After running this code to replace missing values with Yates estimates, it would be followed by a
call to the split-plot analysis of variance:

float *aov_table, y[24];
int expunit[24], whole[24], split[24];
for(int i=0; i < 24; i++){whole[i] = x[i]; split[i] = x[i+24];
 expunit[i]= x[i+48]; y[i] = x[i+72];}
float aov_table = imsls_f_split_plot (24, 1, 4, 3, expunit, whole,
 split, y[], 0);

Output

Returned error sum of squares = 95.620010

Missing values replaced: 2
Whole Split Block Estimate
 1 1 1 37.300
 1 2 2 58.100

 Sorted x, with estimates
 Whole Split Block
 1 1 1 37.30
 1 1 2 41.60
 1 2 1 53.80
 1 2 2 58.10
 1 3 1 49.50
 1 3 2 53.80
 2 1 1 53.30
 2 1 2 69.60
 2 2 1 57.60
 2 2 2 69.60
 2 3 1 59.80
 2 3 2 65.80
 3 1 1 62.30
 3 1 2 58.50
 3 2 1 63.40
 3 2 2 50.40
 3 3 1 64.50
 3 3 2 46.10
 4 1 1 75.40
 4 1 2 65.60
 4 2 1 70.30

Chapter 4: Analysis of Variance and Designed Experiments yates � 401

 4 3 2 65.30

 4 2 2 67.30
 4 3 1 68.80

402 � yates IMSL C/Stat/Library

Chapter 5: Categorical and Discrete Data Analysis Routines � 403

Chapter 5: Categorical and Discrete
Data Analysis

Routines
5.1 Statistics in the Two-Way Contingency Table

Two-way contingency table analysis contingency_table 404
Exact probabilities in an r � c table;
total enumeration .. exact_enumeration 417
Exact probabilities in an r � c tableexact_network 419

5.2 Generalized Categorical Models
Generalized linear modelscategorical_glm 425

Usage Notes
Routine imsls_f_contingency_table (page 404) computes many statistics of
interest in a two-way table. Statistics computed by this routine includes the usual
chi-squared statistics, measures of association, Kappa, and many others. Exact
probabilities for two-way tables can be computed by
imsls_f_exact_enumeration (page 417), but this routine uses the total
enumeration algorithm and, thus, often uses orders of magnitude more computer
time than imsls_f_exact_network (page 419), which computes the same
probabilities by use of the network algorithm (but can still be quite expensive).

The routine imsls_f_categorical_glm (page 425) in the second section is
concerned with generalized linear models (see McCullagh and Nelder 1983) in
discrete data. This routine can be used to compute estimates and associated
statistics in probit, logistic, minimum extreme value, Poisson, negative binomial
(with known number of successes), and logarithmic models. Classification
variables as well as weights, frequencies and additive constants may be used so
that general linear models can be fit. Residuals, a measure of influence, the
coefficient estimates, and other statistics are returned for each model fit. When
infinite parameter estimates are required, extended maximum likelihood
estimation may be used. Log-linear models can be fit in
imsls_f_categorical_glm through the use of Poisson regression models.

404 � contingency_table IMSL C/Stat/Library

Results from Poisson regression models involving structural and sampling zeros
will be identical to the results obtained from the log-linear model routines but will
be fit by a quasi-Newton algorithm rather than through iterative proportional
fitting.

contingency_table
Performs a chi-squared analysis of a two-way contingency table.

Synopsis

#include <imsls.h>

float imsls_f_contingency_table (int n_rows, int n_columns,
float table[], ..., 0)

The type double function is imsls_d_contingency_table.

Required Arguments

int n_rows (Input)
Number of rows in the table.

int n_columns (Input)
Number of columns in the table.

float table[] (Input)
Array of length n_rows � n_columns containing the observed counts in
the contingency table.

Return Value
Pearson chi-squared p-value for independence of rows and columns.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_contingency_table (int n_rows, int n_columns,

float table[],
IMSLS_CHI_SQUARED, int *df, float *chi_squared,
 float *p_value,
IMSLS_LRT, int *df, float *g_squared, float *p_value,
IMSLS_EXPECTED, float **expected,
IMSLS_EXPECTED_USER, float expected[],
IMSLS_CONTRIBUTIONS, float **chi_squared_contributions,
IMSLS_CONTRIBUTIONS_USER,
 float chi_squared_contributions[],
IMSLS_CHI_SQUARED_STATS, float **chi_squared_stats,
IMSLS_CHI_SQUARED_STATS_USER,
 float chi_squared_stats[],

Chapter 5: Categorical and Discrete Data Analysis contingency_table � 405

IMSLS_STATISTICS, float **statistics,
IMSLS_STATISTICS_USER, float statistics[],
0)

Optional Arguments
IMSLS_CHI_SQUARED, int *df, float *chi_squared, float *p_value

(Output)
Argument df is the degrees of freedom for the chi-squared tests
associated with the table, chi_squared is the Pearson chi-squared test
statistic, and argument p_value is the probability of a larger Pearson
chi-squared.

IMSLS_LRT, int *df, float *g_squared, float *p_value (Output)
Argument df is the degrees of freedom for the chi-squared tests
associated with the table, argument g_squared is the likelihood ratio
G2 (chi-squared), and argument p_value is the probability of a larger
G2.

IMSLS_EXPECTED, float **expected (Output)
Address of a pointer to the internally allocated array of size
(n_rows + 1) � (n_columns + 1) containing the expected values of
each cell in the table, under the null hypothesis, in the first n_rows rows
and n_columns columns. The marginal totals are in the last row and
column.

IMSLS_EXPECTED_USER, float expected[] (Output)
Storage for array expected is provided by the user. See
IMSLS_EXPECTED.

IMSLS_CONTRIBUTIONS, float **chi_squared_contributions (Output)
Address of a pointer to an internally allocated array of size
(n_rows + 1) � (n_columns + 1) containing the contributions to chi-
squared for each cell in the table in the first n_rows rows and
n_columns columns. The last row and column contain the total
contribution to chi-squared for that row or column.

IMSLS_CONTRIBUTIONS_USER, float chi_squared_contributions[]
(Output)
Storage for array chi_squared_contributions is provided by the
user. See IMSLS_CONTRIBUTIONS.

IMSLS_CHI_SQUARED_STATS, float **chi_squared_stats (Output)
Address of a pointer to an internally allocated array of length 5
containing chi-squared statistics associated with this contingency table.
The last three elements are based on Pearson’s chi-square statistic (see
IMSLS_CHI_SQUARED).

406 � contingency_table IMSL C/Stat/Library

 The chi-squared statistics are given as follows:

Element Chi-squared Statistics
0 exact mean
1 exact standard deviation
2 Phi
3 contingency coefficient
4 Cramer’s V

IMSLS_CHI_SQUARED_STATS_USER, float chi_squared_stats[] (Output)
Storage for array chi_squared_stat is provided by the user. See
IMSLS_CHI_SQUARED_STATS.

IMSLS_STATISTICS, float **statistics (Output)
Address of a pointer to an internally allocated array of size 23 � 5
containing statistics associated with this table. Each row corresponds to
a statistic.

Row Statistic
0 Gamma
1 Kendall’s �b
2 Stuart’s �c
3 Somers’ D for rows (given columns)
4 Somers’ D for columns (given rows)
5 product moment correlation
6 Spearman rank correlation
7 Goodman and Kruskal � for rows (given columns)
8 Goodman and Kruskal � for columns (given rows)
9 uncertainty coefficient U (symmetric)

10 uncertainty Ur | c (rows)
11 uncertainty Uc | r (columns)
12 optimal prediction � (symmetric)
13 optimal prediction �r | c (rows)
14 optimal prediction �c | r (columns)
15 optimal prediction �r | c (rows)
16 optimal prediction �c | r (columns)
17 test for linear trend in row probabilities if n_rows = 2

If n_rows is not 2, a test for linear trend in column
probabilities if n_columns = 2.

18 Kruskal-Wallis test for no row effect

Chapter 5: Categorical and Discrete Data Analysis contingency_table � 407

Row Statistic
19 Kruskal-Wallis test for no column effect

20 kappa (square tables only)
21 McNemar test of symmetry (square tables only)
22 McNemar one degree of freedom test of symmetry

(square tables only)

If a statistic cannot be computed, or if some value is not relevant for the
computed statistic, the entry is NaN (Not a Number). The columns are as
follows:

Column Value
0 estimated statistic

1 standard error for any parameter value

2 standard error under the null hypothesis

3 t value for testing the null hypothesis

4 p-value of the test in column 3

In the McNemar tests, column 0 contains the statistic, column 1 contains
the chi-squared degrees of freedom, column 3 contains the exact p-value
(1 degree of freedom only), and column 4 contains the chi-squared
asymptotic p-value. The Kruskal-Wallis test is the same except no exact
p-value is computed.

IMSLS_STATISTICS_USER, float statistics[] (Output)
Storage for array statistics provided by the user. See
IMSLS_STATISTICS.

Description
Function imsls_f_contingency_table computes statistics associated with an
r � c (n_rows � n_columns) contingency table. The function computes the chi-
squared test of independence, expected values, contributions to chi-squared, row
and column marginal totals, some measures of association, correlation,
prediction, uncertainty, the McNemar test for symmetry, a test for linear trend, the
odds and the log odds ratio, and the kappa statistic (if the appropriate optional
arguments are selected).

Notation

Let xij denote the observed cell frequency in the ij cell of the table and n denote
the total count in the table. Let pij = pi•pj• denote the predicted cell probabilities
under the null hypothesis of independence, where pi• and pj• are the row and
column marginal relative frequencies. Next, compute the expected cell counts as
eij = npij.

408 � contingency_table IMSL C/Stat/Library

Also required in the following are auv and buv for u, v = 1, �, n. Let (rs, cs)
denote the row and column response of observation s. Then, auv = 1, 0, or �1,
depending on whether ru < rv, ru = rv, or ru > rv, respectively. The buv are
similarly defined in terms of the cs variables.

Chi-squared Statistic

For each cell in the table, the contribution to �2 is given as (xij � eij)2/eij. The
Pearson chi-squared statistic (denoted �2) is computed as the sum of the cell
contributions to chi-squared. It has (r � 1) (c � 1) degrees of freedom and tests
the null hypothesis of independence, i.e., H0:pij = pi•pj•. The null hypothesis is
rejected if the computed value of �2 is too large.

The maximum likelihood equivalent of �2, G2 is computed as follows:

� �2

,

2 ln /ij ij ij
i j

G x x n� � � p

G2 is asymptotically equivalent to �2 and tests the same hypothesis with the same
degrees of freedom.

Measures Related to Chi-squared (Phi, Contingency Coefficient, and
Cramer’s V)

There are three measures related to chi-squared that do not depend on sample
size:

� �

� �� �

2

2 2

2

phi, = /

contingency coefficient, = /

Cramer's , / min ,

n

P n

V V n r c

� �

� �

�

�

�

Since these statistics do not depend on sample size and are large when the
hypothesis of independence is rejected, they can be thought of as measures of
association and can be compared across tables with different sized samples.
While both P and V have a range between 0.0 and 1.0, the upper bound of P is
actually somewhat less than 1.0 for any given table (see Kendall and Stuart 1979,
p. 587). The significance of all three statistics is the same as that of the
�2 statistic, chi_squared.

The distribution of the �2 statistic in finite samples approximates a chi-squared
distribution. To compute the exact mean and standard deviation of the �2 statistic,
Haldane (1939) uses the multinomial distribution with fixed table marginals. The
exact mean and standard deviation generally differ little from the mean and
standard deviation of the associated chi-squared distribution.

Standard Errors and p-values for Some Measures of Association

In Columns 1 through 4 of statistics, estimated standard errors and asymptotic
p-values are reported. Estimates of the standard errors are computed in two ways.

Chapter 5: Categorical and Discrete Data Analysis contingency_table � 409

The first estimate, in Column 1 of the array statistics, is asymptotically valid
for any value of the statistic. The second estimate, in Column 2 of the array, is
only correct under the null hypothesis of no association. The z-scores in Column
3 of statistics are computed using this second estimate of the standard errors. The
p-values in Column 4 are computed from this z-score. See Brown and Benedetti
(1977) for a discussion and formulas for the standard errors in Column 2.

Measures of Association for Ranked Rows and Columns

The measures of association, �, P, and V, do not require any ordering of the row
and column categories. Function imsls_f_contingency_table also computes
several measures of association for tables in which the rows and column
categories correspond to ranked observations. Two of these tests, the product-
moment correlation and the Spearman correlation, are correlation coefficients
computed using assigned scores for the row and column categories. The cell
indices are used for the product-moment correlation, while the average of the tied
ranks of the row and column marginals is used for the Spearman rank correlation.
Other scores are possible.

Gamma, Kendall’s �b, Stuart’s �c, and Somers’ D are measures of association that
are computed like a correlation coefficient in the numerator. In all these
measures, the numerator is computed as the “covariance” between the
auv variables and buv variables defined above, i.e., as follows:

uv uv
u v

a b��

Recall that auv and buv can take values �1, 0, or 1. Since the product auvbuv = 1
only if auv and buv are both 1 or are both �1, it is easy to show that this
‘‘covariance’’ is twice the total number of agreements minus the number of
disagreements, where a disagreement occurs when auvbuv = �1.

Kendall’s �b is computed as the correlation between the auv variables and the
buv variables (see Kendall and Stuart 1979, p. 593). In a rectangular table
(r � c), Kendall’s �b cannot be 1.0 (if all marginal totals are positive). For this
reason, Stuart suggested a modification to the denominator of � in which the
denominator becomes the largest possible value of the “covariance.” This
maximizing value is approximately n2m/(m � 1), where m = min (r, c). Stuart’s �c
uses this approximate value in its denominator. For large n, �c 	 m�b/(m � 1).

Gamma can be motivated in a slightly different manner. Because the “covariance”
of the auv variables and the buv variables can be thought of as twice the number of
agreements minus the disagreements, 2(A � D), where A is the number of
agreements and D is the number of disagreements, Gamma is motivated as the
probability of agreement minus the probability of disagreement, given that either
agreement or disagreement occurred. This is shown as
 = (A � D)/(A + D).

Two definitions of Somers’ D are possible, one for rows and a second for
columns. Somers’ D for rows can be thought of as the regression coefficient for
predicting auv from buv. Moreover, Somer’s D for rows is the probability of

410 � contingency_table IMSL C/Stat/Library

agreement minus the probability of disagreement, given that the column variable,
buv, is not 0. Somers’ D for columns is defined in a similar manner.

A discussion of all of the measures of association in this section can be found in
Kendall and Stuart (1979, p. 592).

Measures of Prediction and Uncertainty

Optimal Prediction Coefficients: The measures in this section do not require
any ordering of the row or column variables. They are based entirely upon
probabilities. Most are discussed in Bishop et al. (1975, p. 385).

Consider predicting (or classifying) the column for a given row in the table.
Under the null hypothesis of independence, choose the column with the highest
column marginal probability for all rows. In this case, the probability of
misclassification for any row is 1 minus this marginal probability. If
independence is not assumed within each row, choose the column with the highest
row conditional probability. The probability of misclassification for the row
becomes 1 minus this conditional probability.

Define the optimal prediction coefficient �c | r for predicting columns from rows
as the proportion of the probability of misclassification that is eliminated because
the random variables are not independent. It is estimated by

� �

|

1 (1

1

m i
i

c r
m

)mp p

p
�

�

�

� � �

�

�

�

where m is the index of the maximum estimated probability in the row (pim) or
row margin (p·m). A similar coefficient is defined for predicting the rows from the
columns. The symmetric version of the optimal prediction � is obtained by
summing the numerators and denominators of �r | c and �c | r, then dividing.
Standard errors for these coefficients are given in Bishop et al. (1975, p. 388).

A problem with the optimal prediction coefficients � is that they vary with the
marginal probabilities. One way to correct this is to use row conditional
probabilities. The optimal prediction �* coefficients are defined as the
corresponding � coefficients in which first the row (or column) marginals are
adjusted to the same number of observations. This yields

| |

|
|

max max ()

max ()

j j i j j i
i i

c r
j j i

i

p p

R p
�

�

�

�

�

� �

�

where i indexes the rows, j indexes the columns, and pj|i is the (estimated)
probability of column j given row i.

|r c�
�

is similarly defined.

Chapter 5: Categorical and Discrete Data Analysis contingency_table � 411

Goodman and Kruskal �: A second kind of prediction measure attempts to
explain the proportion of the explained variation of the row (column) measure
given the column (row) measure. Define the total variation in the rows as follows:

� �2/ 2 () / 2i
i

n x
�

� � n

Note that this is 1/(2n) times the sums of squares of the auv variables.

With this definition of variation, the Goodman and Kruskal � coefficient for rows
is computed as the reduction of the total variation for rows accounted for by the
columns, divided by the total variation for the rows. To compute the reduction in
the total variation of the rows accounted for by the columns, note that the total
variation for the rows within column j is defined as follows:

� �2/ 2 () / 2j j ij i
i

q x x x
� �

� � �

The total variation for rows within columns is the sum of the qj variables.
Consistent with the usual methods in the analysis of variance, the reduction in the
total variation is given as the difference between the total variation for rows and
the total variation for rows within the columns.

Goodman and Kruskal’s � for columns is similarly defined. See Bishop et al.
(1975, p. 391) for the standard errors.

Uncertainty Coefficients: The uncertainty coefficient for rows is the increase in
the log-likelihood that is achieved by the most general model over the
independence model, divided by the marginal log-likelihood for the rows. This is
given by the following equation:

� �

� �
,

|

log /

log /

ij i j ij
i j

r c
i i

i

x x x nx
U

x x n

� �

� �

�

�

�

The uncertainty coefficient for columns is similarly defined. The symmetric
uncertainty coefficient contains the same numerator as Ur | c and Uc | r but
averages the denominators of these two statistics. Standard errors for U are given
in Brown (1983).

Kruskal-Wallis: The Kruskal-Wallis statistic for rows is a one-way analysis-of-
variance-type test that assumes the column variable is monotonically ordered. It
tests the null hypothesis that no row populations are identical, using average ranks
for the column variable. The Kruskal-Wallis statistic for columns is similarly
defined. Conover (1980) discusses the Kruskal-Wallis test.

Test for Linear Trend: When there are two rows, it is possible to test for a
linear trend in the row probabilities if it is assumed that the column variable is
monotonically ordered. In this test, the probabilities for row 1 are predicted by
the column index using weighted simple linear regression. This slope is given by

412 � contingency_table IMSL C/Stat/Library

� �� �

� �

1 1

2

/ /
ˆ

j j j
j

j
j

x x x x n j j

x j j
�

� � �

�

� �

�

�

�

�

where

/j
j

j x j n
�

��

is the average column index. An asymptotic test that the slope is 0 may then be
obtained (in large samples) as the usual regression test of zero slope.

In two-column data, a similar test for a linear trend in the column probabilities is
computed. This test assumes that the rows are monotonically ordered.

Kappa: Kappa is a measure of agreement computed on square tables only. In the
kappa statistic, the rows and columns correspond to the responses of two judges.
The judges agree along the diagonal and disagree off the diagonal. Let

0 /ii
i

p x n��

denote the probability that the two judges agree, and let

/c ii
i

p e n��

denote the expected probability of agreement under the independence model.
Kappa is then given by (p0 � pc)/(1 � pc).

McNemar Tests: The McNemar test is a test of symmetry in a square
contingency table. In other words, it is a test of the null hypothesis H0:�ij = �ji.
The multiple degrees-of-freedom version of the McNemar test with r (r � 1)/2
degrees of freedom is computed as follows:

� �
� �

2

ij ji

i j ij ji

x x

x x�

�

�

�

The single degree-of-freedom test assumes that the differences, xij � xji, are all in
one direction. The single degree-of-freedom test will be more powerful than the
multiple degrees-of-freedom test when this is the case. The test statistic is given
as follows:

� �

� �

2

ij ji
i j

ij ji
i j

x x

x x
�

�

� �
�� �

� �

�

�

�

The exact probability can be computed by the binomial distribution.

Chapter 5: Categorical and Discrete Data Analysis contingency_table � 413

Examples

Example 1
The following example is taken from Kendall and Stuart (1979) and involves the
distance vision in the right and left eyes. Output contains only the p-value.

#include <imsls.h>

void main()
{
 int n_rows = 4;
 int n_columns = 4;
 float table[4][4] = {821, 112, 85, 35,
 116, 494, 145, 27,
 72, 151, 583, 87,
 43, 34, 106, 331};
 float p_value;

 p_value = imsls_f_contingency_table(n_rows, n_columns,
 &table[0][0], 0);
 printf ("P-value = %10.6f.\n", p_value);

}

Output

P-value = 0.000000.

Example 2
The following example, which illustrates the use of Kappa and McNemar tests,
uses the same distance vision data as the previous example. The available
statistics are output using optional arguments.

#include <imsls.h>

void main()
{
 int n_rows = 4;
 int n_columns = 4;
 int df1, df2;
 float table[16] = {821.0, 112.0, 85.0, 35.0,
 116.0, 494.0, 145.0, 27.0,
 72.0, 151.0, 583.0, 87.0,
 43.0, 34.0, 106.0, 331.0};
 float p_value1, p_value2, chi_squared, g_squared;
 float *expected, *chi_squared_contributions;
 float *chi_squared_stats, *statistics;
 char *labels[] = {
 "Exact mean",
 "Exact standard deviation",
 "Phi",
 "P",
 "Cramer’s V"};
 char *stat_row_labels[] = {"Gamma", "Tau B", "Tau C",
 "D-Row", "D-Column", "Correlation", "Spearman",

414 � contingency_table IMSL C/Stat/Library

 "GK tau rows", "GK tau cols.", "U - sym.", "U - rows",
 "U - cols.", "Lambda-sym.", "Lambda-row", "Lambda-col.",
 "l-star-rows", "l-star-col.", "Lin. trend",
 "Kruskal row", "Kruskal col.", "Kappa", "McNemar",
 "McNemar df=1"};
 char *stat_col_labels[] = {"","statistic", "standard error",
 "std. error under Ho", "t-value testing Ho",
 "p-value"};

 imsls_f_contingency_table (n_rows, n_columns, table,
 IMSLS_CHI_SQUARED, &df1, &chi_squared, &p_value1,
 IMSLS_LRT, &df2, &g_squared, &p_value2,
 IMSLS_EXPECTED, &expected,
 IMSLS_CONTRIBUTIONS,
 &chi_squared_contributions,
 IMSLS_CHI_SQUARED_STATS, &chi_squared_stats,
 IMSLS_STATISTICS, &statistics,
 0);

 printf("Pearson chi-squared statistic %11.4f\n", chi_squared);
 printf("p-value for Pearson chi-squared %11.4f\n", p_value1);
 printf("degrees of freedom %11d\n", df1);
 printf("G-squared statistic %11.4f\n", g_squared);
 printf("p-value for G-squared %11.4f\n", p_value2);
 printf("degrees of freedom %11d\n", df2);

 imsls_f_write_matrix("* * * Table Values * * *\n", 4, 4,
 table,
 IMSLS_WRITE_FORMAT, "%11.1f",
 0);

 imsls_f_write_matrix("* * * Expected Values * * *\n", 5, 5,
 expected,
 IMSLS_WRITE_FORMAT, "%11.2f",
 0);
 imsls_f_write_matrix("* * * Contributions to Chi-squared* * *\n",
 5, 5,
 chi_squared_contributions,
 IMSLS_WRITE_FORMAT, "%11.2f",
 0);
 imsls_f_write_matrix("* * * Chi-square Statistics * * *\n",
 5, 1,
 chi_squared_stats,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);
 imsls_f_write_matrix("* * * Table Statistics * * *\n",
 23, 5,
 statistics,
 IMSLS_ROW_LABELS, stat_row_labels,
 IMSLS_COL_LABELS, stat_col_labels,
 IMSLS_WRITE_FORMAT, "%9.4f",
 0);
}

Chapter 5: Categorical and Discrete Data Analysis contingency_table � 415

Output

Pearson chi-squared statistic 3304.3682
p-value for Pearson chi-squared 0.0000
degrees of freedom 9
G-squared statistic 2781.0188
p-value for G-squared 0.0000
degrees of freedom 9

 * * * Table Values * * *

 1 2 3 4
1 821.0 112.0 85.0 35.0
2 116.0 494.0 145.0 27.0
3 72.0 151.0 583.0 87.0
4 43.0 34.0 106.0 331.0

 * * * Expected Values * * *

 1 2 3 4 5
1 341.69 256.92 298.49 155.90 1053.00
2 253.75 190.80 221.67 115.78 782.00
3 289.77 217.88 253.14 132.21 893.00
4 166.79 125.41 145.70 76.10 514.00
5 1052.00 791.00 919.00 480.00 3242.00

 * * * Contributions to Chi-squared* * *

 1 2 3 4 5
1 672.36 81.74 152.70 93.76 1000.56
2 74.78 481.84 26.52 68.08 651.21
3 163.66 20.53 429.85 15.46 629.50
4 91.87 66.63 10.82 853.78 1023.10
5 1002.68 650.73 619.88 1031.08 3304.37

 * * * Chi-square Statistics * * *

Exact mean 9.0028
Exact standard deviation 4.2402
Phi 1.0096
P 0.7105
Cramer’s V 0.5829

 * * * Table Statistics * * *

 statistic standard error std. error t-value testing
 under Ho Ho
Gamma 0.7757 0.0123 0.0149 52.1897
Tau B 0.6429 0.0122 0.0123 52.1897
Tau C 0.6293 0.0121 52.1897
D-Row 0.6418 0.0122 0.0123 52.1897
D-Column 0.6439 0.0122 0.0123 52.1897
Correlation 0.6926 0.0128 0.0172 40.2669
Spearman 0.6939 0.0127 0.0127 54.6614
GK tau rows 0.3420 0.0123
GK tau cols. 0.3430 0.0122
U - sym. 0.3171 0.0110
U - rows 0.3178 0.0110
U - cols. 0.3164 0.0110

416 � contingency_table IMSL C/Stat/Library

Lambda-sym. 0.5373 0.0124
Lambda-row 0.5374 0.0126
Lambda-col. 0.5372 0.0126
l-star-rows 0.5506 0.0136
l-star-col. 0.5636 0.0127
Lin. trend
Kruskal row 1561.4861 3.0000
Kruskal col. 1563.0300 3.0000
Kappa 0.5744 0.0111 0.0106 54.3583
McNemar 4.7625 6.0000
McNemar df=1 0.9487 1.0000 0.3459

 p-value
Gamma 0.0000
Tau B 0.0000
Tau C 0.0000
D-Row 0.0000
D-Column 0.0000
Correlation 0.0000
Spearman 0.0000
GK tau rows
GK tau cols.
U - sym.
U - rows
U - cols.
Lambda-sym.
Lambda-row
Lambda-col.
l-star-rows
l-star-col.
Lin. trend
Kruskal row 0.0000
Kruskal col. 0.0000
Kappa 0.0000
McNemar 0.5746
McNemar df=1 0.3301

Warning Errors
IMSLS_DF_GT_30 The degrees of freedom for

“IMSLS_CHI_SQUARED” are
greater than 30. The exact mean,
standard deviation, and the normal
distribution function should be
used.

IMSLS_EXP_VALUES_TOO_SMALL Some expected values are less than
#. Some asymptotic p-values may
not be good.

IMSLS_PERCENT_EXP_VALUES_LT_5 Twenty percent of the expected
values are calculated less than 5.

Chapter 5: Categorical and Discrete Data Analysis exact_enumeration � 417

exact_enumeration
Computes exact probabilities in a two-way contingency table using the total
enumeration method.

Synopsis

#include <imsls.h>

float imsls_f_exact_enumeration (int n_rows, int n_columns,
float table[], ..., 0)

The type double function is imsls_d_exact_enumeration.

Required Arguments

int n_rows (Input)
Number of rows in the table.

int n_columns (Input)
Number of columns in the table.

float table[] (Input)
Array of length n_rows � n_columns containing the observed counts in
the contingency table.

Return Value
The p-value for independence of rows and columns. The p-value represents the
probability of a more extreme table where “extreme” is taken in the Neyman-
Pearson sense. The p-value is “two-sided”.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_exact_enumeration (int n_rows, int n_columns, float

table[],
IMSLS_PROB_TABLE, float *prt,
IMSLS_P_VALUE, float *p_value,
IMSLS_CHECK_NUMERICAL_ERROR, float *check,
0)

Optional Arguments
IMSLS_PROB_TABLE, float *prt (Output)

Probablitity of the observed table occuring, given that the null
hypothesis of independent rows and columns is true.

IMSLS_P_VALUE, float *p_value (Output)
The p-value for independence of rows and columns. The p-value

418 � exact_enumeration IMSL C/Stat/Library

represents the probability of a more extreme table where “extreme” is
taken in the Neyman-Pearson sense. The p-value is “two-sided”.

The p-value is also returned in functional form (see “Return Value”).

A table is more extreme if its probability (for fixed marginals) is less
than or equal to prt.

IMSLS_CHECK_NUMERICAL_ERROR, float *check (Output)
Sum of the probabilities of all tables with the same marginal totals.
Parameter check should have a value of 1.0. Deviation from 1.0
indicates numerical error.

Description
Function imsls_f_exact_enumeration computes exact probabilities for an
r � c contingency table for fixed row and column marginals (a marginal is the
number of counts in a row or column), where r = n_rows and c = n_columns.
Let fij denote the count in row i and column j of a table, and let fi• and f•j denote
the row and column marginals. Under the hypothesis of independence, the
(conditional) probability of the fixed marginals of the observed table is given by

1 1

1 1

! !

! !

r c

i j
i j

f r c

ij
i j

f f
P

f f

� �

� �

��

� �

�

� �

��

where f•• is the total number of counts in the table. Pf corresponds to output
argument prt.

A “more extreme” table X is defined in the probablistic sense as more extreme
than the observed table if the conditional probability computed for table X (for
the same marginal sums) is less than the conditional probability computed for the
observed table. The user should note that this definition can be considered “two-
sided” in the cell counts.

Because imsls_f_exact_enumeration used total enumeration in computing
the probability of a more extreme table, the amount of computer time required
increases very rapidly with the size of the table. Tables with a large total count f••
or a large value of r � c should not be analyzed using
imsls_f_exact_enumeration. In such cases, try using
imsls_f_exact_network.

Example

In this example, the exact conditional probability for the 2 � 2 contingency table

8 12
8 2
� �
� �
� �

is computed.

Chapter 5: Categorical and Discrete Data Analysis exact_network � 419

#include <stdio.h>
#include <imsls.h>

void main()
{
 float p;
 float table[4] = {8, 12,
 8, 2};

 p = imsls_f_exact_enumeration(2, 2, table, 0);
 printf("p-value = %9.4f\n", p);
}

Output

p-value = 0.0577

exact_network
Computes Fisher exact probabilities and a hybrid approximation of the Fisher
exact method for a two-way contingency table using the network algorithm.

Synopsis
#include <imsls.h>
float imsls_f_exact_network (int n_rows, int n_columns,

float table[], ..., 0)
The type double function is imsls_d_exact_network.

Required Arguments

int n_rows (Input)
Number of rows in the table.

int n_columns (Input)
Number of columns in the table.

float table[] (Input)
Array of length n_rows � n_columns containing the observed counts
in the contingency table.

Return Value
The p-value for independence of rows and columns. The p-value represents the
probability of a more extreme table where “extreme” is taken in the Neyman-
Pearson sense. The p-value is “two-sided”.

420 � exact_network IMSL C/Stat/Library

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_exact_network (int n_rows, int n_columns,

float table[],
IMSLS_PROB_TABLE, float *prt,
IMSLS_P_VALUE, float *p_value,
IMSLS_APPROXIMATION_PARAMETERS, float expect,
 float percent, float expected_minimum,
IMSLS_NO_APPROXIMATION,
IMSLS_WORKSPACE, int factor1, int factor2,
 int max_attempts, int *n_attempts,
0)

Optional Arguments
IMSLS_PROB_TABLE, float *prt (Output)

Probability of the observed table occurring given that the null hypothesis
of independent rows and columns is true.

IMSLS_P_VALUE, float *p_value (Output)
The p-value for independence of rows and columns. The p-value
represents the probability of a more extreme table where “extreme” is in
the Neyman-Pearson sense. The p_value is “two-sided”. The p-value is
also returned in functional form (see “Return Value”).

A table is more extreme if its probability (for fixed marginals) is less
than or equal to prt.

IMSLS_APPROXIMATION_PARAMETERS, float expect, float percent,
float expected_minimum. (Input)
Parameter expect is the expected value used in the hybrid
approximation to Fisher’s exact test algorithm for deciding when to use
asymptotic probabilities when computing path lengths. Parameter
percent is the percentage of remaining cells that must have estimated
expected values greater than expect before asymptotic probabilities can
be used in computing path lengths. Parameter expected_minimum is
the minimum cell estimated value allowed for asymptotic chi-squared
probabilities to be used.

Asymptotic probabilities are used in computing path lengths whenever
percent or more of the cells in the table have estimated expected
values of expect or more, with no cell having expected value less than
expected_minimum. See the “Description” section for details.

Defaults: expect = 5.0, percent = 80.0, expected_minimum = 1.0
Note that these defaults correspond to the “Cochran” condition.

IMSLS_NO_APPROXIMATION,
The Fisher exact test is used. Arguments expect, percent, and
expected_minimum are ignored.

Chapter 5: Categorical and Discrete Data Analysis exact_network � 421

IMSLS_WORKSPACE, int factor1, int factor2,
int max_attempts, (Input)
int *n_attempts (Output)
The network algorithm requires a large amount of workspace. Some of
the workspace requirements are well-defined, while most of the
workspace requirements can only be estimated. The estimate is based
primarily on table size.

Function imsls_f_exact_enumeration allocates a default amount of
workspace suitable for small problems. If the algorithm determines that
this initial allocation of workspace is inadaquate, the memory is freed, a
larger amount of memory allocated (twice as much as the previous
allocation), and the network algorithm is re-started. The algorithm
allows for up to max_attempts attempts to complete the algorithm.

Because each attempt requires computer time, it is suggested that
factor1 and factor2 be set to some large numbers (like 1,000 and
30,000) if the problem to be solved is large. It is suggested that
factor2 be 30 times larger than factor1. Although
imsls_f_exact_enumeration will eventually work its way up to a
large enough memory allocation, it is quicker to allocate enough
memory initially.

The known (well-defined) workspace requirements are as follows:
Define f•• = ��fij equal to the sum of all cell frequencies in the observed
table, nt = f•• + 1, mx = max (n_rows, n_columns),
mn = min (n_rows, n_columns),
t1 = max (800 + 7mx, (5 + 2mx) (n_rows + n_columns + 1)), and
t2 = max (400 + mx, + 1, n_rows + n_columns + 1).

The following amount of integer workspace is allocated:
3mx + 2mn + t1.

The following amount of float (or double, if using
imsls_d_exact_network) workspace is allocated: nt + t2.

The remainder of the workspace that is required must be estimated and
allocated based on factor1 and factor2. The amount of integer
workspace allocated is 6n (factor1 + factor2). The amount of real
workspace allocated is n (6factor1 + 2factor2). Variable n is the
index for the attempt, 1 < n max_attempts.

Defaults: factor1 = 100, factor2 = 3000, max_attempts = 10

Description
Function imsls_f_exact_network computes Fisher exact probabilities or a
hybrid algorithm approximation to Fisher exact probabilities for an r � c
contingency table with fixed row and column marginals (a marginal is the number
of counts in a row or column), where r = n_rows and c = n_columns. Let
fij denote the count in row i and column j of a table, and let fi and f•j denote the

422 � exact_network IMSL C/Stat/Library

row and column marginals. Under the hypothesis of independence, the
(conditional) probability of the fixed marginals of the observed table is given by

1 1

1 1

! !

! !

r c

i j
i j

f r c

ij
i j

f f
P

f f

� �

� �

��

� �

�

� �

��

where f•• is the total number of counts in the table. Pf corresponds to output
argument prt.

A “more extreme” table X is defined in the probablistic sense as more extreme
than the observed table if the conditional probability computed for table X (for
the same marginal sums) is less than the conditional probability computed for the
observed table. The user should note that this definition can be considered “two-
sided” in the cell counts.

See Example 1 for a comparison of execution times for the various algorithms.
Note that the Fisher exact probability and the usual asymptotic chi-squared
probability will usually be different. (The network approximation is often 10
times faster than the Fisher exact test, and even faster when compared to the total
enumeration method.)

Examples

Example 1
The following example demonstrates and compares the various methods of
computing the chi-squared p-value with respect to accuracy and execution time.
As seen in the output of this example, the Fisher exact probability and the usual
asymptotic chi-squared probability (generated using function
imsls_f_contingency_table) can be different. Also, note that the network
algorithm with approximation can be up to 10 times faster than the network
algorithm without approximation, and up to 100 times faster than the total
enumeration method.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_rows = 3;
 int n_columns = 5;
 float p;
 float table[15] = {20, 20, 0, 0, 0,
 10, 10, 2, 2, 1,
 20, 20, 0, 0, 0};
 double a, b;

 printf("Asymptotic Chi-Squared p-value\n");
 p = imsls_f_contingency_table(n_rows, n_columns, table, 0);
 printf("p-value = %9.4f\n", p);

Chapter 5: Categorical and Discrete Data Analysis exact_network � 423

 printf("\nNetwork Algorithm with Approximation\n");
 a = imsls_ctime();
 p = imsls_f_exact_network(n_rows, n_columns, table, 0);
 b = imsls_ctime();
 printf("p-value = %9.4f\n", p);
 printf("Execution time = %10.4f\n", b-a);

 printf("\nNetwork Algoritm without Approximation\n");
 a = imsls_ctime();
 p = imsls_f_exact_network(n_rows, n_columns, table,
 IMSLS_NO_APPROXIMATION, 0);
 b = imsls_ctime();
 printf("p-value = %9.4f\n", p);
 printf("Execution time = %10.4f\n", b-a);

 printf("\nTotal Enumeration Method\n");
 a = imsls_ctime();
 p = imsls_f_exact_enumeration(n_rows, n_columns, table, 0);
 b = imsls_ctime();
 printf("p-value = %9.4f\n", p);
 printf("Execution time = %10.4f\n", b-a);

}

Output
Asymptotic Chi-Squared p-value
p-value = 0.0323

Network Algorithm with Approximation
p-value = 0.0601
Execution time = 0.0400

Network Algoritm without Approximation
p-value = 0.0598
Execution time = 0.4300

Total Enumeration Method
p-value = 0.0597
Execution time = 3.1400

Example 2
This document example demonstrates the optional keyword IMSLS_WORKSPACE
and how different workspace settings affect execution time. Setting the workspace
available too low results in poor performance since the algorithm will fail, re-
allocate a larger amount of workspace (a factor of 10 larger) and re-start the
calculations (See Test #3, for which n_attempts is returned with a value of 2).
Setting the workspace available very large will provide no improvement in
performance.

#include <stdio.h>
#include <imsls.h>

void main()
{

424 � exact_network IMSL C/Stat/Library

 int n_rows = 3;
 int n_columns = 5;
 float p;
 float table[15] = {20, 20, 0, 0, 0,
 10, 10, 2, 2, 1,
 20, 20, 0, 0, 0};
 double a, b;
 int i, n_attempts, simulation_size = 10;

 printf("Test #1, factor1 = 1000, factor2 = 30000\n");
 a = imsls_ctime();
 for (i=0; i<simulation_size; i++) {
 p = imsls_f_exact_network(n_rows, n_columns, table,
 IMSLS_NO_APPROXIMATION,
 IMSLS_WORKSPACE, 1000, 30000, 10, &n_attempts, 0);
 }
 b = imsls_ctime();
 printf("n_attempts = %2d\n", n_attempts);
 printf("Execution time = %10.4f\n", b-a);

 printf("\nTest #2, factor1 = 100, factor2 = 3000\n");
 a = imsls_ctime();
 for (i=0; i<simulation_size; i++) {
 p = imsls_f_exact_network(n_rows, n_columns, table,
 IMSLS_NO_APPROXIMATION,
 IMSLS_WORKSPACE, 100, 3000, 10, &n_attempts, 0);
 }
 b = imsls_ctime();
 printf("n_attempts = %2d\n", n_attempts);
 printf("Execution time = %10.4f\n", b-a);

 printf("\nTest #3, factor1 = 10, factor2 = 300\n");
 a = imsls_ctime();
 for (i=0; i<simulation_size; i++) {
 p = imsls_f_exact_network(n_rows, n_columns, table,
 IMSLS_NO_APPROXIMATION,
 IMSLS_WORKSPACE, 10, 300, 10, &n_attempts, 0);
 }
 b = imsls_ctime();
 printf("n_attempts = %2d\n", n_attempts);
 printf("Execution time = %10.4f\n", b-a);
}

Output

Test #1, factor1 = 1000, factor2 = 30000
n_attempts = 1
Execution time = 4.3700

Test #2, factor1 = 100, factor2 = 3000
n_attempts = 1
Execution time = 4.2900

Test #3, factor1 = 10, factor2 = 300
n_attempts = 2
Execution time = 8.3700

Chapter 5: Categorical and Discrete Data Analysis categorical_glm � 425

Warning Errors
IMSLS_HASH_TABLE_ERROR_2 The value “ldkey” = # is too small. “ldkey”

is calculated as
“factor1”*pow(10,”n_attempt”�1) ending
this execution attempt.

IMSLS_HASH_TABLE_ERROR_3 The value “ldstp” = # is too small. “ldstp”
is calculated as
“factor2”*pow(10,”n_attempt”�1) ending
this execution attempt.

Fatal Errors
IMSLS_HASH_TABLE_ERROR_1 The hash table key cannot be computed

because the largest key is larger than the
largest representable integer. The algorithm
cannot proceed.

categorical_glm
Analyzes categorical data using logistic, Probit, Poisson, and other generalized
linear models.

Synopsis
#include <imsls.h>
int imsls_f_categorical_glm (int n_observations, int n_class,

int n_continuous, int model, float x[], ..., 0)
The type double function is imsls_d_categorical_glm.

Required Arguments

int n_observations (Input)
Number of observations.

int n_class (Input)
Number of classification variables.

int n_continuous (Input)
Number of continuous variables.

int model (Input)
Argument model specifies the model used to analyze the data. The six
models are as follows:

426 � categorical_glm IMSL C/Stat/Library

Model Relationship* PDF of Response Variable
0 Exponential Poisson
1 Logistic Negative Binomial
2 Logistic Logarithmic
3 Logistic Binomial
4 Probit Binomial
5 Log-log Binomial

Note that the lower bound of the response variable is 1 for model = 3
and is 0 for all other models. See the “Description” section for more
information about these models.

float x[] (Input)
Array of size n_observations by (n_class + n_continuous) + m
containing data for the independent variables, dependent variable, and
optional parameters.

The columns must be ordered such that the first n_class columns
contain data for the class variables, the next n_continuous columns
contain data for the continuous variables, and the next column contains
the response variable. The final (and optional) m � 1 columns contain
the optional parameters.

Return Value
An integer value indicating the number of estimated coefficients
(n_coefficients) in the model.

Synopsis with Optional Arguments
#include <imsls.h>
int imsls_f_categorical_glm (int n_observations, int n_class,

int n_continuous, int model, float x[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_COL_FREQUENCIES, int ifrq,
IMSLS_X_COL_FIXED_PARAMETER, int ifix,
IMSLS_X_COL_DIST_PARAMETER, int ipar,
IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[],
 int iy,
IMSLS_EPS, float eps,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_INTERCEPT,
IMSLS_NO_INTERCEPT,

*Relationship between the parameter, � or �, and a linear model of the explanatory variables, X �.

Chapter 5: Categorical and Discrete Data Analysis categorical_glm � 427

IMSLS_EFFECTS, int n_effects, int n_var_effects[],
 int indices_effects,
IMSLS_INITIAL_EST_INTERNAL,
IMSLS_INITIAL_EST_INPUT, int n_coef_input,
 float estimates[],
IMSLS_MAX_CLASS, int max_class,
IMSLS_CLASS_INFO, int **n_class_values,
 float **class_values,
IMSLS_CLASS_INFO_USER, int n_class_values[],
 float class_values[],
IMSLS_COEF_STAT, float **coef_statistics,
IMSLS_COEF_STAT_USER, float coef_statistics[],
IMSLS_CRITERION, float *criterion,
IMSLS_COV, float **cov,
IMSLS_COV_USER, float cov[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_CASE_ANALYSIS, float **case_analysis,
IMSLS_CASE_ANALYSIS_USER, float case_analysis[],
IMSLS_LAST_STEP, float **last_step,
IMSLS_LAST_STEP_USER, float last_step[],
IMSLS_OBS_STATUS, int **obs_status,
IMSLS_OBS_STATUS_USER, int obs_status[],
IMSLS_ITERATIONS, int *n, float **iterations,
IMSLS_ITERATIONS_USER, int *n, float iterations[],
IMSLS_N_ROWS_MISSING, int *n_rows_missing,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Column dimension of input array x.
Default: x_col_dim = n_class + n_continuous +1

IMSLS_X_COL_FREQUENCIES, int ifrq (Input)
Column number ifrg of x containing the frequency of response for
each observation.

IMSLS_X_COL_FIXED_PARAMETER, int ifix (Input)
Column number ifix in x containing a fixed parameter for each
observation that is added to the linear response prior to computing the
model parameter. The ‘fixed’ parameter allows one to test hypothesis
about the parameters via the log-likelihoods.

IMSLS_X_COL_DIST_PARAMETER, int ipar (Input)
Column number ipar in x containing the value of the known
distribution parameter for each observation, where x[i][ipar] is the
known distribution parameter associated with the i-th observation. The
meaning of the distributional parameter depends upon model as follows:

428 � categorical_glm IMSL C/Stat/Library

model Parameter Meaning of x [i] [ipar]

0 E ln (E) is a fixed intercept to be included in
the linear predictor (i.e., the offset).

1 S Number of successes required for the
negative binomial distribution.

2 - Not used for this model.
3-5 N Number of trials required for the binomial

distribution.

Default: When model � 2, each observation is assumed to have a
parameter value of 1. When model = 2, this parameter is not referenced.

IMSLS_X_COL_VARAIBLES, int iclass[], int icontinuous[], int iy
(Input)
This keyword allows specification of the variables to be used in the
analysis and overrides the default ordering of variables described for
input argument x. Columns are numbered 0 to x_col_dim_1. To avoid
errors, always specify the keyword IMSLS_X_COL_DIM when using this
keyword.

Argument iclass is an index vector of length n_class containing the
column numbers of x that correspond to classification variables.

Argument icontinuous is an index vector of length n_continuous
containing the column numbers of x that correspond to continuous
variables.

Argument iy indicates the column of x which contains the independent
variable.

IMSLS_EPS, float eps (Input)
Argument eps is the convergence criterion. Convergence is assumed
when the maximum relative change in any coefficient estimate is less
than eps from one iteration to the next or when the relative change in
the log-likelihood, criterion, from one iteration to the next is less than
eps / 100.0.
Default: eps = 0.001

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations. Use max_iterations = 0 to compute the
Hessian, stored in cov, and the Newton step, stored in last_step, at the
initial estimates (The initial estimates must be input. Use keyword
IMSLS_INITIAL_EST_INPUT).
Default: max_iterations = 30

IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,

By default, or if IMSLS_INTERCEPT is specified, the intercept is
automatically included in the model. If IMSLS_NO_INTERCEPT is

Chapter 5: Categorical and Discrete Data Analysis categorical_glm � 429

specified, there is no intercept in the model (unless otherwise provided
for by the user).

IMSLS_EFFECTS, int n_effects, int n_var_effects[],
int indices_effects[] (Input)
Variable n_effects is the number of effects (sources of variation) in
the model. Variable n_var_effects is an array of length n_effects
containing the number of variables associated with each effect in the
model. Argument indices_effects is an index array of length
n_var_effects [0] + n_var_effects [1] + �
+ n_var_effects [n_effects � 1]. The first n_var_effects [0]
elements give the column numbers of x for each variable in the first
effect. The next n_var_effects [1] elements give the column numbers
for each variable in the second effect. The last
n_var_effects [n_effects � 1] elements give the column
numbers for each variable in the last effect.

IMSLS_INITIAL_EST_INTERNAL, or
IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[]

(Input)
By default, or if IMSLS_INIT_INTERNAL is specified, then unweighted
linear regression is used to obtain initial estimates. If
IMSLS_INITIAL_EST_INPUT is specified, then the n_coef_input
elements of estimates contain initial estimates of the parameters
(which requires that the user know the number of coefficients in the
model prior to the call to imsls_f_categorical_glm which can be
obtained by calling imsls_f_regressors_for_glm.

IMSLS_MAX_CLASS, int max_class (Input)
An upper bound on the sum of the number of distinct values taken on by
each classification variable.
Default: max_class = n_observations � n_class

IMSLS_CLASS_INFO, int **n_class_values, float **class_values
(Output)
Argument n_class_values the address of a pointer to the internally
allocated array of length n_class containing the number of values
taken by each classification variable; the i-th classification variable has
n_class_values [i] distinct values. Argument class_values is the
address of a pointer to the internally allocated array of length

� �
1

0i
i

�

�

�
n_class

n_class_values

containing the distinct values of the classification variables in ascending
order. The first n_class_values [0] elements of class_values
contain the values for the first classification variables, the next
n_class_values [1] elements contain the values for the second
classification variable, etc.

430 � categorical_glm IMSL C/Stat/Library

IMSLS_CLASS_INFO_USER, int n_class_values[],
float class_values[] (Output)
Storage for arrays n_class_values and class_values is provided
by the user. See IMSLS_CLASS_INFO.

IMSLS_COEF_STAT, float **coef_statistics (Output)
Address of a pointer to an internally allocated array of size
n_coefficients � 4 containing the parameter estimates and
associated statistics, where n_coefficients can be computed by
calling imsls_regressors_for_glm.

Column Statistic
0 Coefficient Estimate.
1 Estimated standard deviation of the estimated coefficient.
2 Asymptotic normal score for testing that the coefficient is

zero.
3 The p-value associated with the normal score in column

2.

IMSLS_COEF_STAT_USER, float coef_statistics[] (Output)
Storage for array coef_statistics is provided by the user. See
IMSLS_COEF_STAT.

IMSLS_CRITERION, float *criterion (Output)
Optimized criterion. The criterion to be maximized is a constant plus the
log-likelihood.

IMSLS_COV, float **cov (Output)
Address of a pointer to the internally allocated array of size
n_coefficients � n_coefficients containing the estimated
asymptotic covariance matrix of the coefficients. For
max_iterations = 0, this is the Hessian computed at the initial
parameter estimates, where n_coefficients can be computed by
calling imsls_regressors_for_glm.

IMSLS_COV_USER, float cov[] (Ouput)
Storage for array cov is provided by the user. See IMSLS_COV above.

IMSLS_MEANS, float **means (Output)
Address of a pointer to the internally allocated array containing the
means of the design variables. The array is of length n_coefficients
if IMSLS_NO_INTERCEPT is specified, and of length
n_coefficients � 1 otherwise, where n_coefficients can be
computed by calling imsls_regressors_for_glm.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

Chapter 5: Categorical and Discrete Data Analysis categorical_glm � 431

IMSLS_CASE_ANALYSIS, float **case_analysis (Output)
Address of a pointer to the internally allocated array of size
n_observations � 5 containing the case analysis.

Column Statistic
0 Predicted mean for the observation if model = 0. Other-

wise, contains the probability of success on a single trial.
1 The residual.
2 The estimated standard error of the residual.
3 The estimated influence of the observation.
4 The standardized residual.

Case statistics are computed for all observations except where missing
values prevent their computation.

IMSLS_CASE_ANALYSIS_USER, float case_analysis[] (Output)
Storage for array case_analysis is provided by the user. See
IMSLS_CASE_ANALYSIS.

IMSLS_LAST_STEP, float **last_step (Output)
Address of a pointer to the internally allocated array of length
n_coefficients containing the last parameter updates (excluding step
halvings). For max_iterations = 0, last_step contains the inverse
of the Hessian times the gradient vector, all computed at the initial
parameter estimates.

IMSLS_LAST_STEP_USER, float last_step[] (Output)
Storage for array last_step is provided by the user. See
IMSLS_LAST_STEP.

IMSLS_OBS_STATUS, int **obs_status (Output)
Address of a pointer to the internally allocated array of length
n_observations indicating which observations are included in the
extended likelihood.

obs_status [i] Status of observation

0 Observation i is in the likelihood
1 Observation i cannot be in the likelihood

because it contains at least one missing value in
x.

2 Observation i is not in the likelihood. Its
estimated parameter is infinite.

IMSLS_OBS_STATUS_USER, int obs_status[] (Output)
Storage for array obs_status is provided by the user. See
IMSLS_OBS_STATUS.

432 � categorical_glm IMSL C/Stat/Library

IMSLS_N_ROWS_MISSING, int *n_rows_missing (Output)
Number of rows of data that contain missing values in one or more of the
following arrays or columns of x; ipar, iy, ifrq, ifix, iclass,
icontinuous, or indices_effects.

Remarks
1. Dummy variables are generated for the classification variables as follows:

An ascending list of all distinct values of each classification variable is
obtained and stored in class_values. Dummy variables are then
generated for each but the last of these distinct values. Each dummy
variable is zero unless the classification variable equals the list value
corresponding to the dummy variable, in which case the dummy variable is
one. See keyword IMSLS_LEAVE_OUT_LAST for optional argument
IMSLS_DUMMY in routine imsls_f_regressors_for_glm (Chapter 2,
“Regression”).

2. The “product” of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy
variables associated with the classification variable.

3. The “product” of two classification variables yields dummy variables in
the usual manner. Each dummy variable associated with the first
classification variable multiplies each dummy variable associated with
the second classification variable. The resulting dummy variables are
such that the index of the second classification variable varies fastest.

Description
Function imsls_f_categorical_glm uses iteratively reweighted least squares
to compute (extended) maximum likelihood estimates in some generalized linear
models involving categorized data. One of several models, including the probit,
logistic, Poisson, logarithmic, and negative binomial models, may be fit.

Note that each row vector in the data matrix can represent a single observation;
or, through the use of optional argument IMSLS_X_COL_FREQUENCIES, each
row can represent several observations. Also note that classification variables and
their products are easily incorporated into the models via the usual regression-
type specifications.

The models available in imsls_f_categorical_glm are:

Model PDF of the Response
Variable

Parameterization

0 f (y) = (�y exp (��)) / y! � = N � exp (� + �)

1
� � � �

1
11

ySS y
f y y � �

� �� �
� ��� �
� 	

� �

� �

exp
1 exp

� �
�

� �

�

�

� �

Chapter 5: Categorical and Discrete Data Analysis categorical_glm � 433

Model PDF of the Response
Variable

Parameterization

2 f (y) = (1 � �)y / (yln �) � �

� �

exp
1 exp

� �
�

� �

�

�

� �

3
� � � �1 N yyNf y y � �

�� �
	
� �
 �

� �

� �

exp
1 exp

� �
�

� �

�

�

� �

4
� � � �1 N yyNf y y � �

�� �
	
� �
 �

� = � (� + �)

5
� � � �1 N yyNf y y � �

�� �
	
� �
 �

� = 1 � exp (�exp (� + �))

Here, � denotes the cumulative normal distribution, N and S are known distribution
parameters specified for each observation via the optional argument
IMSLS_X_COL_DIST_PARAMETER, and � is an optional fixed parameter of the
linear response,
i, specified for each observation. (If
IMSLS_X_COL_FIXED_PARAMETER is not specified, then � is taken to be 0.) Since
the log-log model (model = 5) probabilities are not symmetric with respect to 0.5,
quantitatively, as well as qualitatively, different models result when the definitions of
“success” and “failure” are interchanged in this distribution. In this model and all
other models involving �, � is taken to be the probability of a“success”.

Computational Details
The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

2. Estimates of the means of the “independent” or design variables are
computed. The frequency or the observation in all but binomial
distribution models is taken from vector frequencies. In binomial
distribution models, the frequency is taken as the product of
n = parameter [i] and frequencies [i]. Means are computed as

i i

i

f x
x

f
�

�
�

3. By default, and when IMSLS_INITIAL_EST_INTERNAL is specified,
initial estimates of the coefficients are obtained (based upon the
observation intervals) as multiple regression estimates relating
transformed observation probabilities to the observation design vector.
For example, in the binomial distribution models, � may be estimated as

� � � �ˆ i i� � y parameter

and, when model = 3, the linear relationship is given by

434 � categorical_glm IMSL C/Stat/Library

�� �� �ˆ ˆln / 1 X� �� �

while if model = 4, �-1 (�) = X�. When computing initial estimates,
standard modifications are made to prevent illegal operations such as
division by zero. Regression estimates are obtained at this point, as well
as later, by use of function imsls_f_regression (Chapter 2,
“Regression”).

4. Newton-Raphson iteration for the maximum likelihood estimates is
implemented via iteratively re-weighted least squares. Let

� �T
ix ��

denote the log of the probability of the i-th observation for coefficients
�. In the least-squares model, the weight of the i-th observation is taken
as the absolute value of the second derivative of

� �T
ix ��

with respect to
T

i ix� ��

(times the frequency of the observation), and the dependent variable is
taken as the first derivative � with respect to
i, divided by the square
root of the weight times the frequency. The Newton step is given by

� � � �1"()T
i i i i ix x x�� ��� � � �� �

�

where all derivatives are evaluated at the current estimate of
 and
�n+1 = � � ��. This step is computed as the estimated regression
coefficients in the least-squares model. Step halving is used when
necessary to ensure a decrease in the criterion.

5. Convergence is assumed when the maximum relative change in any
coefficient update from one iteration to the next is less than eps or when
the relative change in the log-likelihood from one iteration to the next is
less than eps / 100. Convergence is also assumed after maxit iterations
or when step halving leads to a step size of less than 0.0001 with no
increase in the log-likelihood.

6. Residuals are computed according to methods discussed by Pregibon
(1981). Let li (
i) denote the log-likelihood of the i-th observation
evaluated at
i. Then, the standardized residual is computed as

� �

� �

ˆ

ˆ
i i

i

i i

l
r

l

�

�

�
�

�

where

î�

Chapter 5: Categorical and Discrete Data Analysis categorical_glm � 435

is the value of
i when evaluated at the optimal

�̂

The denominator of this expression is used as the “standard error of the
residual” while the numerator is “raw” residual. Following Cook and
Weisberg (1982), the influence of the i-th observation is assumed to be

� � � � � �
1ˆ ˆT

i i i il l l� � �
�

� �� � ˆ

This quantity is a one-step approximation to the change in the estimates
when the i-th observation is deleted. Here, the partial derivatives are
with respect to �.

Programming Notes
1. Indicator (dummy) variables are created for the classification variables

using function imsls_f_regressors_for_glm
(see Chapter 2, “Regression”) using keyword IMSLS_LEAVE_OUT_LAST
as the argument to the IMSLS_DUMMY optional argument.

2. To enhance precision, “centering” of covariates is performed if the
model has an intercept and
n_observations � n_rows_missing > 1. In doing so, the sample
means of the design variables are subracted from each observation prior
to its inclusion in the model. On convergence, the intercept, its variance,
and its covariance with the remaining estimates are transformed to the
uncentered estimate values.

3. Two methods for specifying a binomial distribution model are possible.
In the first method, frequencies contains the frequency of the observation
while y is 0 or 1 depending upon whether the observation is a success or
failure. In this case, N = parameter [i] is always 1. The model is treated
as repeated Bernoulli trials, and interval observations are not possible. A
second method for specifying binomial models is to use y to represent
the number of successes in parameter [i] trials. In this case, frequencies
will usually be 1.

Examples

Example 1
The first example is from Prentice (1976) and involves the mortality of beetles
after five hours exposure to eight different concentrations of carbon disulphide.
The table below lists the number of beetles exposed (N) to each concentration
level of carbon disulphide (x, given as log dosage) and the number of deaths
which result (y). The data is given as follows:

436 � categorical_glm IMSL C/Stat/Library

Log Dosage Number of
Beetles Exposed

Number of Deaths

1.690 59 6

1.724 60 13

1.755 62 18

1.784 56 28

1.811 63 52

1.836 59 53

1.861 62 61

1.883 60 60

The number of deaths at each concentration level are fitted as a binomial response
using logit (model = 3), probit (model = 4), and log-log (model = 5) models.
Note that the log-log model yields a smaller absolute log likelihood (14.81) than
the logit model (18.78) or the probit model (18.23). This is to be expected since
the response curve of the log-log model has an asymmetric appearance, but both
the logit and probit models are symmetric about � = 0.5.

#include <imsls.h>
#include <stdio.h>

main ()

{

 static float x[8][3] = { 1.69, 6, 59,
 1.724, 13, 60,
 1.755, 18, 62,
 1.784, 28, 56,
 1.811, 52, 63,
 1.836, 53, 59,
 1.861, 61, 62,
 1.883, 60, 60};

 float *coef_statistics, criterion;
 int n_obs=8, n_class=0, n_continuous=1;
 int n_coef, model=3, ipar=2;
 char *fmt = "%12.4f";
 static char *clabels[] = {"", "coefficients", "s.e", "z", "p"};

 n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous,
 model, &x[0][0],
 IMSLS_X_COL_DIST_PARAMETER, ipar,
 IMSLS_COEF_STAT, &coef_statistics,
 IMSLS_CRITERION, &criterion, 0);

 imsls_f_write_matrix ("Coefficient statistics for model 3", n_coef, 4,
 coef_statistics,
 IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS,
 clabels,0);

Chapter 5: Categorical and Discrete Data Analysis categorical_glm � 437

 printf ("\nLog likelihood %f \n", criterion);

 model=4;

 n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous,
 model, &x[0][0],
 IMSLS_X_COL_DIST_PARAMETER, ipar,
 IMSLS_COEF_STAT, &coef_statistics,
 IMSLS_CRITERION, &criterion, 0);

 imsls_f_write_matrix ("Coefficient statistics for model 4", n_coef, 4,
 coef_statistics,
 IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS,
 clabels,0);
 printf ("\nLog likelihood %f \n", criterion);

 model=5;

 n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous,
 model, &x[0][0],
 IMSLS_X_COL_DIST_PARAMETER, ipar,
 IMSLS_COEF_STAT, &coef_statistics,
 IMSLS_CRITERION, &criterion, 0);

 imsls_f_write_matrix ("Coefficient statistics for model 5", n_coef, 4,
 coef_statistics,
 IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS,
 clabels,0);
 printf ("\nLog likelihood %f \n", criterion);

}

Output

 Coefficient statistics for model 3
coefficients s.e z p
 -60.7568 5.2093 -11.6632 0.0000
 34.2985 2.9164 11.7607 0.0000

Log likelihood -18.778187

 Coefficient statistics for model 4
coefficients s.e z p
 -34.9441 2.6527 -13.1732 0.0000
 19.7367 1.4852 13.2888 0.0000

Log likelihood -18.232355

 Coefficient statistics for model 5
coefficients s.e z p
 -39.6133 3.2428 -12.2156 0.0000
 22.0685 1.8047 12.2284 0.0000

Log likelihood -14.807850

438 � categorical_glm IMSL C/Stat/Library

Example 2
Consider the use of a loglinear model to analyze survival-time data. Laird and
Oliver (1981) investigate patient survival post heart valve replacement surgery.
Surveilance after surgery of the 109 patients included in the study ranged from 3
to 97 months. All patients were classified by heart valve type (aortic or mitral)
and by age (less than 55 years or at least 55 years). The data could be considered
as a three-way contingency table where patients are classified by valve type, age,
and survival (yes or no). However, it would be inappropriate to analyze this data
using the standard methodology associated with contingency tables; since, this
methodology ignores survival time.

Consider a variable, say exposure time (Eij), that is defined as the sum of the
length of times patients of each cross-classification are at risk. The length of time
for a patient that dies is the number of months from surgery until death and for a
survivor, the length of time is the number of months from surgery until the study
ends or the patient withdraws from the study. Now we can model the effect of
A = age and V = valve type on the expected number of deaths conditional on
exposure time. Thus, for the data (shown in the table below), assume the number
of deaths are independent Poisson random variables with means mij and fit the
following model,

log ij A V
i j

ij

m
u

E
� �

� �
� � �� �� �

� �

where u is the overall mean,
A

i�

is the effect of age, and
V
j�

is the effect of the valve type.

 Heart Valve Type
Age Aortic (0) Mitral (1)

< 55 years (Age = 0) Deaths 4 1
 Exposure 1259 2082
� 55 years (Age = 1) Deaths 7 9
 Exposure 1417 1647

From the coefficient statistics table of the output, note that the risk is estimated to
be e1.22 = 3.39 times higher for older patients in the study. This increase in risk is
significant (p = 0.02). However, the decrease in risk for the mitral valve patients
is estimated to be e-0.33 = 0.72 times that of the aortic valve patients and this risk
is not significant (p = 0.45).

Chapter 5: Categorical and Discrete Data Analysis categorical_glm � 439

#include <imsls.h>

main ()
{
 int nobs = 4;
 int n_class = 2;
 int n_cont = 0;
 int model = 0;
 float x[16] = {
 4, 1259, 0, 0,
 1, 2082, 0, 1,
 7, 1417, 1, 0,
 9, 1647, 1, 1
 };
 int iclass[2] = {2, 3};
 int icont[1] = {-1};
 int n_coef;
 float *coef;

 char *clabels[5] = {"", "coefficient", "std error", "z-statistic", "p-
 value"};
 char *fmt = "%10.6W";

 n_coef = imsls_f_categorical_glm(nobs, n_class, n_cont, model, x,
 IMSLS_COEF_STAT, &coef,
 IMSLS_X_COL_VARIABLES, iclass, icont, 0,
 IMSLS_X_COL_DIST_PARAMETER, 1,
 0);

 imsls_f_write_matrix("Coefficient Statistics", n_coef, 4, coef,
 IMSLS_COL_LABELS, clabels, IMSLS_ROW_NUMBER_ZERO,
 IMSLS_WRITE_FORMAT, fmt, 0);
}

Output

 Coefficient Statistics
 coefficient std error z-statistic p-value
0 -5.4210 0.3921 -13.8246 0.0000
1 -1.2209 0.5138 -2.3763 0.0177
2 0.3299 0.4382 0.7528 0.4517

Warning Errors
IMSLS_TOO_MANY_HALVINGS Too many step halvings. Convergence is

assumed.

IMSLS_TOO_MANY_ITERATIONS Too many iterations. Convergence is
assumed.

440 � categorical_glm IMSL C/Stat/Library

Fatal Errors
IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is specified

and “n_coef_input” = #. The model
specified requires # coefficients.

IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of the
classification variables exceeds
“max_class” = #.

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The number of
distinct values for each classification
variable must be greater than one.

IMSLS_NMAX_EXCEEDED The number of observations to be deleted
has exceeded “lp_max” = #. Rerun with a
different model or increase the workspace.

Chapter 6: Nonparametric Statistics Routines � 441

Chapter 6: Nonparametric Statistics

Routines
6.1 One sample tests - Nonparametric Statistics

Sign test ...sign_test 442
Wilcoxon rank sum testwilcoxon_sign_rank 445
Noehter’s test for cyclical trend.................... noether_cyclical_trend 449
Cox and Stuarts’ sign test for trends in location
and dispersion .. cox_stuart_trends_test 452
Tie statistics ... tie_statistics 458

6.2 Two or more samples
Wilcoxon’s rank sum test................................. wilcoxon_rank_sum 460
Kruskal-Wallis test ...kruskal_wallis_test 465
Friedman’s test .. friedmans_test 467
Cochran's Q test ... cochran_q_test 472
K-sample trends test .. k_trends_test 475

Usage Notes
Much of what is considered nonparametric statistics is included in other chapters.
Topics of possible interest in other chapters are: nonparametric measures of
location and scale (Chapter 1, “Basic Statistics”), nonparametric measures in a
contingency table (Chapter 5, “Categorical and Discrete Data Analysis”),
measures of correlation in a contingency table (Chapter 3, “Correlation and
Covariance”), and tests of goodness of fit and randomness (Chapter 7, “Tests of
Goodness of Fit and Randomness”).

Missing Values

Most routines described in this chapter automatically handle missing values
(NaN, “Not a Number”; see the introduction of this manual).

442 � sign_test IMSL C/Stat/Library

Tied Observations

Many of the routines described in this chapter contain an argument IMSLS_FUZZ
in the input. Observations that are within fuzz of each other in absolute value are
said to be tied. Moreover, in some routines, an observation within fuzz of some
value is said to be equal to that value. In routine
imsls_f_wilcoxon_sign_rank (page 445), for example, such observations
are eliminated from the analysis. If fuzz = 0.0, observations must be identically
equal before they are considered to be tied. Other positive values of fuzz allow
for numerical imprecision or roundoff error.

sign_test
Performs a sign test.

Synopsis
#include <imsls.h>
float imsls_f_sign_test (int n_observations, float x[], ..., 0)

The type double function is imsls_d_sign_test.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations containing the input data.

Return Value
Binomial probability of n_positive_deviations or more positive differences
in n_observations � n_zero_deviation trials. Call this value probability. If
no option is chosen, the null hypothesis is that the median equals 0.0.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_sign_test (int n_observations, float x[],

IMSLS_PERCENTAGE, float percentage,
IMSLS_PERCENTILE, float percentile,
IMSLS_N_POSITIVE_DEVIATIONS,
 int *n_positive_deviations,
IMSLS_N_ZERO_DEVIATIONS, int *n_zero_deviations,
0)

Chapter 6: Nonparametric Statistics sign_test � 443

Optional Arguments
IMSLS_PERCENTAGE, float percentage (Input)

Value in the range (0, 1). Argument percentile is the
100 � percentage percentile of the population.
Default: percentage = 0.5

IMSLS_PERCENTILE, float percentile (Input)
Hypothesized percentile of the population from which x was drawn.
Default: percentile = 0.0

IMSLS_N_POSITIVE_DEVIATIONS, int *n_positive_deviations
(Output)
Number of positive differences x[j � 1] � percentile for
j = 1, 2, �, n_observations.

IMSLS_N_ZERO_DEVIATIONS, int *n_zero_deviations (Output)
Number of zero differences (ties) x[j � 1] � percentile for
j = 1, 2, �, n_observations.

Description
Function imsls_f_sign_test tests hypotheses about the proportion p of a
population that lies below a value q, where p corresponds to argument
percentage and q corresponds to argument percentile. In continuous
distributions, this can be a test that q is the 100 p-th percentile of the population
from which x was obtained. To carry out testing, imsls_f_sign_test tallies
the number of values above q in n_positive_deviations. The binomial
probability of n_positive_deviations or more values above q is then
computed using the proportion p and the sample size n_observations
(adjusted for the missing observations and ties).

Hypothesis testing is performed as follows for the usual null and alternative
hypotheses:

� H0: Pr(x � q) � p (the p-th quantile is at least q)
H1: Pr(x � q) < p
Reject H0 if probability is less than or equal to the significance level

� H0: Pr(x � q) � p (the p-th quantile is at least q)
H1: Pr(x � q) > p
Reject H0 if probability is greater than or equal to 1 minus the significance
level

� H0: Pr (x � q) � p (the p-th quantile is q)
H1: Pr((x � q) < p) or Pr((x � q) > p)
Reject H0 if probability is less than or equal to half the significance level or
greater than or equal to 1 minus half the significance level

444 � sign_test IMSL C/Stat/Library

The assumptions are as follows:

1. They are independent and identically distributed.

2. Measurement scale is at least ordinal; i.e., an ordering less than, greater
than, and equal to exists in the observations.

Many uses for the sign test are possible with various values of p and q. For
example, to perform a matched sample test that the difference of the medians of
y and z is 0.0, let p = 0.5, q = 0.0, and xi = yi � zi in matched observations
y and z. To test that the median difference is c, let q = c.

Examples

Example 1
This example tests the hypothesis that at least 50 percent of a population is
negative. Because 0.18 < 0.95, the null hypothesis at the 5-percent level of
significance is not rejected.

#include <imsls.h>

void main ()
{
 int n_observations = 19;
 float probability;
 float x[19] = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0,
 -25.0, -4.0, 22.0, 2.0, 41.0, 13.0, 8.0, 33.0,
 45.0, -33.0, -45.0, -12.0};

 probability = imsls_f_sign_test(n_observations, x, 0);

 printf("probability = %10.6f\n", probability);
}

Output
probability = 0.179642

Example 2
This example tests the null hypothesis that at least 75 percent of a population is
negative. Because 0.923 < 0.95, the null hypothesis at the 5-percent level of
significance is rejected.

#include <imsls.h>

void main ()
{
 int n_observations = 19;
 int n_positive_deviations, n_zero_deviations;
 float probability;
 float percentage = 0.75;
 float percentile = 0.0;
 float x[19] = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0,
 -25.0, -4.0, 22.0, 2.0, 41.0, 13.0, 8.0, 33.0,

Chapter 6: Nonparametric Statistics wilcoxon_sign_rank � 445

 45.0, -33.0, -45.0, -12.0};

 probability = imsls_f_sign_test(n_observations, x, IMSLS_PERCENTAGE,
 percentage, IMSLS_PERCENTILE, percentile,
 IMSLS_N_POSITIVE_DEVIATIONS, &n_positive_deviations,
 IMSLS_N_ZERO_DEVIATIONS, &n_zero_deviations, 0);

 printf("probability = %10.6f.\n", probability);
 printf("Number of positive deviations is %d.\n",
 n_positive_deviations);
 printf("Number of ties is %d.\n", n_zero_deviations);
}

Output
probability = 0.922543.
Number of positive deviations is 12.
Number of ties is 0.

wilcoxon_sign_rank
Performs a Wilcoxon signed rank test.

Synopsis
#include <imsls.h>
float *imsls_f_wilcoxon_sign_rank (int n_observations,

float x[], ..., 0)

The type double function is imsls_d_wilcoxon_sign_rank.

Required Arguments

int n_observations (Input)
Number of observations in x.

float x[] (Input)
Array of length n_observations containing the data.

Return Value
Pointer to an array of length two containing the values described below.

The asymptotic probability of not exceeding the standardized (to an asymptotic
variance of 1.0) minimum of (W+, W-) using method 1 under the null hypothesis
that the distribution is symmetric about 0.0.

And, the asymptotic probability of not exceeding the standardized (to an
asymptotic variance of 1.0) minimum of (W+, W-) using method 2 under the null
hypothesis that the distribution is symmetric about 0.0.

446 � wilcoxon_sign_rank IMSL C/Stat/Library

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_wilcoxon_sign_rank (int n_observations,

float x[],
 IMSLS_FUZZ, float fuzz,

IMSLS_STAT, float **stat,
IMSLS_STAT_USER, float stat[],
IMSLS_N_MISSING, float *n_missing,
IMSLS_RETURN_USER, float prob[],
0)

Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Nonnegative constant used to determine ties in computing ranks in the
combined samples. A tie is declared when two observations in the
combined sample are within fuzz of each other.
Default value for fuzz is 0.0.

IMSLS_STAT, float **stat (Output)
Address of a pointer to an internally allocated array of length
10 containing the following statistics:

Row Statistics
0 The positive rank sum, W+, using method
1 The absolute value of the negative rank sum, W-, using method 1.
2 The standardized (to anasymptotic variance of 1.0) minimum of

(W+, W-) using method
3 The asymptotic probability of not exceeding stat(2) under the

null hypothesis that the distribution is symmetric about 0.0.
4 The positive rank sum, W+, using method 2.
5 The absolute value of the negative rank sum, W-, using method 2.
6 The standardized (to an asymptotic variance of 1.0) minimum of

(W+, W-) using method 2.
7 The asymptotic probability of not exceeding stat(6) under the

null hypothesis that the distribution is symmetric about 0.0.
8 The number of zero observations.
9 The total number of observations that are tied, and that are not

within fuzz of zero.

Chapter 6: Nonparametric Statistics wilcoxon_sign_rank � 447

IMSLS_STAT_USER, float stat[] (Output)
Storage for array stat is provided by the user.
See IMSLS_STAT.

IMSLS_N_MISSING, float *n_missing, (Output)
Number of missing values in y.

IMSLS_RETURN_USER, float prob[], (Output)
User allocated storage for return values.
See Return Value.

Description
Function imsls_f_wilcoxon_sign_rank performs a Wilcoxon signed rank
test of symmetry about zero. In one sample, this test can be viewed as a test
that the population median is zero. In matched samples, a test that the medians
of the two populations are equal can be computed by first computing difference
scores. These difference scores would then be used as input to
imsls_f_wilcoxon_sign_rank. A general reference for the methods used is
Conover (1980).

Routine imsls_f_wilcoxon_sign_rank computes statistics for two methods
for handling zero and tied observations. In the first method, observations within
fuzz of zero are not counted, and the average rank of tied observations is used.
(Observations within fuzz of each other are said to be tied.) In the second
method, observations within fuzz of zero are randomly assigned a positive or
negative sign, and the ranks of tied observations are randomly permuted.

The W+ and W� statistics are computed as the sums of the ranks of the positive
observations and the sum of the ranks of the negative observations, respectively.
Asymptotic probabilities are computed using standard methods (see, e.g.,
Conover 1980, page 282).

The W+ and W� statistics may be used to test the following hypotheses about the
median, M. In deciding whether to reject the null hypothesis, use the bracketed
statistic if method 2 for handling ties is preferred. Possible null hypotheses and
alternatives are given as follows:
� H� : M � 0 H� : M > 0

Reject if stat[0] [or stat[4]] is too large.
� H� : M � 0 H� : M < 0

Reject if stat[1] [or stat[5]] is too large.
� H� : M = 0 H� : M � 0

Reject if stat[2][or stat[6]] is too small. Alternatively, if an asymptotic
test is desired, reject if 2 * stat[3] [or 2 * stat[7]] is less than the
significance level.

Tabled values of the test statistic can be found in the references. If possible,
tabled values should be used. If the number of nonzero observations is too large,

448 � wilcoxon_sign_rank IMSL C/Stat/Library

then the asymptotic probabilities computed by imsls_f_wilcoxon_sign_rank
can be used.

The assumptions required for the hypothesis tests are as follows:

1. The distribution of each Xi is symmetric.

2. The Xi are mutually independent.

3. All Xi’s have the same median.

4. An ordering of the observations exists (i.e., X� > X� and X� > X� implies
that X� > X�).

If other assumptions are made, related hypotheses that are more (or less)
restrictive can be tested.

Example
This example illustrates the application of the Wilcoxon signed rank test to a
test on a difference of two matched samples (matched pairs) {X1 = 223, 216,
211, 212, 209, 205, 201; and X2 = 208, 205, 202, 207, 206, 204, 203}. A test that
the median difference is 10.0 (rather than 0.0) is performed by subtracting 10.0
from each of the differences prior to calling wilcoxon_sign_rank. As can be
seen from the output, the null hypothesis is rejected. The warning error will
always be printed when the number of observations is 50 or less unless printing is
turned off for warning errors.

#include <imsls.h>

#include <stdio.h>

void main()

{
float *stat=NULL, *result=NULL;
int nobs = 7, nmiss;
float fuzz = .0001;
float x[] = {-25., -21., -19., -15., -13., -11., -8.};
result = imsls_f_wilcoxon_sign_rank(nobs, x,
 IMSLS_N_MISSING, &nmiss,
 IMSLS_FUZZ, fuzz,
 IMSLS_STAT, &stat,
 0);
printf("Statistic\t\t\tMethod 1\tMethod 2\n");
printf("W+\t\t\t\t %3.0f\t\t %3.0f\n", stat[0], stat[4]);
printf("W-\t\t\t\t %3.0f\t\t %3.0f\n", stat[1], stat[5]);
printf("Standardized Minimum\t\t%6.4f\t\t%6.4f\n", stat[2], stat[6]);
printf("p-value\t\t\t\t %6.4f\t\t %6.4f\n\n", stat[3], stat[7]);
printf("Number of zeros\t\t\t%3.0f\n", stat[8]);
printf("Number of ties\t\t\t%3.0f\n", stat[9]);
printf("Number of missing\t\t %d\n", nmiss);

}

Chapter 6: Nonparametric Statistics noether_cyclical_trend � 449

Output

*** WARNING ERROR 4 from imsls_f_wilcoxon_sign_rank. NOBS = 7. The number
*** of observations, NOBS, is less than 50, and exact
*** tables should be referenced for probabilities.

Statistic Method 1 Method 2
W+....................... 0 0
W-....................... 28 28
Standardized Minimum..... -2.3664 -2.3664
p-value.................. 0.0090 0.0090

Number of zeros.......... 0
Number of ties........... 0
Number of missing........ 0

noether_cyclical_trend
Performs the Noether test for cyclical trend.

Synopsis
#include <imsls.h>
float *imsls_f_noether_cyclical_trend (int n_observations,

float x[], ..., 0)

The type double function is imsls_d_noether_cyclical_trend.

Required Arguments

int n_observations (Input)
Number of observations in x. n_observations must be greater than
or equal to 3.

float x[] (Input)
Array of length n_observations containing the data in chronological
order.

Return Value
Array, p, of length 3 containing the probabilities of stat[1] or more, stat[2]
or more, or stat[3] or more monotonic sequences.

If stat[0] is less than 1, p[0] is set to NaN (not a number).

Synopsis with Optional Arguments
#include <imsls.h>

450 � noether_cyclical_trend IMSL C/Stat/Library

float *imsls_f_noether_cyclical_trend ((int n_observations,
float x[],

 IMSLS_FUZZ, float fuzz,
 IMSLS_STAT, int **stat,
 IMSLS_STAT_USER, int stat[],

IMSLS_N_MISSING, int *n_missing,
 IMSLS_RETURN_USER, float p[],
 0)

Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Nonnegative constant used to determine ties in computing ranks in the
combined samples. A tie is declared when two observations in the
combined sample are within fuzz of each other.
Default value for fuzz is 0.0.

IMSLS_STAT, int **stat (Output)
Address of a pointer to an internally allocated array of length 6
containing the following statistics:

Row Statistics
stat[0] The number of consecutive sequences of length three used to detect

cyclical trend when tying middle elements are eliminated from the
sequence, and the next consecutive observation is used.

stat[1] The number of monotonic sequences of length three in the set defined by
stat[0].

stat[2] The number of nonmonotonic sequences where tied threesomes are
counted as nonmonotonic.

stat[3] The number of monotonic sequences where tied threesomes are counted as
monotonic.

stat[4] The number of middle observations eliminated because they were tied in
forming the stat[0] sequences.

stat[5] The number of tied sequences found in forming the stat[2] and
stat[3] sequences. A sequence is called a tied sequence if the middle
element is tied with either of the two other elements.

IMSLS_STAT_USER, int stat[] (Output)
Storage for array stat is provided by the user.
See IMSLS_STAT.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values in X.

Chapter 6: Nonparametric Statistics noether_cyclical_trend � 451

IMSLS_RETURN_USER, float p[] (Input)
User allocated array of length 3 containing the return values.

Description

Routine imsls_f_noether_cyclical_trend performs the Noether test for
cyclical trend (Noether 1956) for a sequence of measurements. In this test, the
observations are first divided into sets of three consecutive observations. Each set
is then inspected, and if the set is monotonically increasing or decreasing, the
count variable is incremented.

The count variables, stat[1], stat[2], and stat[3], differ in the manner in
which ties are handled. A tie can occur in a set (of size three) only if the middle
element is tied with either of the two ending elements. Tied ending elements are
not considered. In stat[1], tied middle observations are eliminated, and a new
set of size 3 is obtained by using the next observation in the sample. In stat[2],
the original set of size three is used, and tied middle observations are counted as
nonmonotonic. In stat[3], tied middle observations are counted as monotonic.

The probabilities of occurrence of the counts are obtained from the binomial
distribution with p = 1/3, where p is the probability that a random sample of size
three from a continuous distribution is monotonic. The binomial sample size is, of
course, the number of sequences of size three found (adjusted for ties).

Hypothesis test:

H� : q = Pr(Xi > Xi - 1 > Xi - 2) + Pr(Xi < Xi - 1 < Xi - 2) � 1/3 H� : q > 1/3
Reject if p[0] (or p[1] or p[2] depending on the method used for handling ties)
is less than the significance level of the test.

Assumption: The observations are independent and are from a continuous
distribution.

Example
A test for cyclical trend in a sequence of 1000 randomly generated observations is
performed. Because of the sample used, there are no ties and all three test
statistics yield the same result.

#include <imsls.h>

#include <stdio.h>

void main()

{

 float *pvalue=NULL;

 int nobs = 1000, nmiss, *stat = NULL;

 float *x = NULL;

 imsls_random_seed_set(123457);

 x = imsls_f_random_uniform(nobs, 0);

452 � cox_stuart_trends_test IMSL C/Stat/Library

 pvalue = imsls_f_noether_cyclical_trend(nobs, x,

 IMSLS_STAT, &stat,

 IMSLS_N_MISSING, &nmiss,

 0);

 imsls_f_write_matrix("P", 0, 2, pvalue, 0);

 imsls_i_write_matrix("STAT", 0, 5, stat, 0);

 printf("\n n missing = %d\n", nmiss);

}

Output
P
 0 1 2
0.6979 0.6979 0.6979
STAT
 0 1 2 3 4 5
333 107 107 107 0 0
n missing = 0

cox_stuart_trends_test
Performs the Cox and Stuart sign test for trends in location and dispersion.

Synopsis
#include <imsls.h>
float *imsls_f_cox_stuart_trends_test (int n_observations,

float x[], ..., 0)

The type double function is imsls_d_ cox_stuart_trends_test.

Required Arguments

int n_observations (Input)
Number of observations in x. n_observations must be greater
than or equal to 3.

float x[] (Input)
Array of length n_observations containing the data in chronological
order.

Return Value

Array, pstat, of length 8 containing the probabilities. The first four elements
of pstat are computed from two groups of observations.

Chapter 6: Nonparametric Statistics cox_stuart_trends_test � 453

I pstat[I]

0 Probability of nstat[0] + nstat[2] or more negative signs
(ties are considered negative).

1 Probability of obtaining nstat[1] or more positive signs (ties are
considered negative).

2 Probability of nstat[0] + nstat[2] or more negative signs (ties are
considered positive).

3 Probability of obtaining nstat[1] or more positive signs (ties are
considered positive).

The last four elements of pstat are computed from three groups of
observations.

4 Probability of nstat[0] + nstat[2] or more negative signs (ties
are considered negative).

5 Probability of obtaining nstat[1] or more positive signs (ties are
considered negative).

6 Probability of nstat[0] + nstat[2] or more negative signs (ties
are considered positive).

7 Probability of obtaining nstat[1] or more positive signs (ties are
considered positive).

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_cox_stuart_trends_test (int n_observations,

float x[],
 IMSLS_DISPERSION, int k, int ids,

IMSLS_FUZZ, float fuzz,
 IMSLS_STAT, int **nstat,
 IMSLS_STAT_USER, int nstat[],

IMSLS_N_MISSING, int *n_missing,
 IMSLS_RETURN_USER, float pstat[],
 0)

Optional Arguments
IMSLS_DISPERSION, int k, int ids, (Input)

If IMSLS_DISPERSION is called, the Cox and Stuart tests for trends in
dispersion are computed. Otherwise, as default, the Cox and Stuart tests
for trends in location are computed. k is the number of consecutive x
elements to be used to measure dispersion.

454 � cox_stuart_trends_test IMSL C/Stat/Library

If ids is zero, the range is used as a measure of dispersion.
Otherwise, the centered sum of squares is used.

IMSLS_FUZZ, float fuzz (Input)
Value used to determine when elements in x are tied.
If |x[i] – x[j]| is less than or equal to fuzz, x[i] and x[j]
are said to be tied. fuzz must be nonnegative. Default value for fuzz is
0.0.

IMSLS_STAT, int **nstat (Output)
Address of a pointer to an internally allocated array of length 8
containing the following statistics:

I nstat[I]
0 Number of negative differences (two groups)

1 Number of positive differences (two groups)

2 Number of zero differences (two groups)

3 Number of differences used to calculate pstat[0]
through pstat[3] (two groups).

4 Number of negative differences (three groups)

5 Number of positive differences (three groups)

6 Number of zero differences (three groups)

7 Number of differences used to calculate pstat
[4] through pstat[7] (three groups).

IMSLS_STAT_USER, int nstat[] (Output)
Storage for array nstat is provided by the user.
See IMSLS_STAT.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values in X.

IMSLS_RETURN_USER, float pstat[] (Input)
User allocated array of length 8 containing the return values.

Description
Function imsls_f_cox_stuart_trends_test tests for trends in dispersion or
location in a sequence of random variables depending upon the call of
IMSLS_DISPERSION. A derivative of the sign test is used
(see Cox and Stuart 1955).

Chapter 6: Nonparametric Statistics cox_stuart_trends_test � 455

Location Test

For the location test (Default) with two groups, the observations are first
divided into two groups with the middle observation thrown out if there are an
odd number of observations. Each observation in group one is then compared
with the observation in group two that has the same lexicographical order. A
count is made of the number of times a group-one observation is less than
(nstat[0]), greater than (nstat[1]), or equal to (nstat[2]), its counterpart in
group two. Two observations are counted as equal if they are within fuzz of one
another.

In the three-group test, the observations are divided into three groups, with the
center group losing observations if the division is not exact. The first and third
groups are then compared as in the two-group case, and the counts are stored in
nstat[4] through nstat[6].

Probabilities in pstat are computed using the binomial distribution with sample
size equal to the number of observations in the first group (nstat[3] or
nstat[7]), and binomial probability p = 0.5.

Dispersion Test

The dispersion tests (when optional argument IMSLS_DISPERSION is called)
proceed exactly as with the tests for location, but using one of two derived
dispersion measures. The input value k is used to define n_observations/k
groups of consecutive observations starting with observation 1. The first k
observations define the first group, the next k observations define the second
group, etc., with the last observations omitted if n_observations is not evenly
divisible by k. A dispersion score is then computed for each group as either the
range (ids = 0), or a multiple of the variance (ids � 0) of the observations in the
group. The dispersion scores form a derived sample. The tests proceed on the
derived sample as above.

Ties

Ties are defined as occurring when a group one observation is within fuzz of its
last group counterpart. Ties imply that the probability distribution of X is not
strictly continuous, which means that Pr(X� > X�) � 0.5 under the null hypothesis
of no trend (and the assumption of independent identically distributed
observations). When ties are present, the computed binomial probabilities are not
exact, and the hypothesis tests will be conservative.

Hypothesis tests

In the following, i indexes an observation from group 1, while j indexes the
corresponding observation in group 2 (two groups) or group 3 (three groups).
� H� : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5

H� : Pr(Xi > Xj) < Pr(Xi < Xj)

456 � cox_stuart_trends_test IMSL C/Stat/Library

Hypothesis of upward trend. Reject if pstat[2] (or pstat[6])is less than
the significance level.

� H� : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5
H� : Pr(Xi > Xj) > Pr(Xi < Xj)
Hypothesis of downward trend. Reject if pstat[1] (or pstat[5]) is less
than the significance level.

� H� : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5
H� : Pr(Xi > Xj) � Pr(Xi < Xj)
Two tailed test. Reject if 2 max(pstat[1], pstat[2]) (or 2
max(pstat[5], pstat[6]) is less than the significance level.

Assumptions

1. The observations are a random sample; i.e., the observations are
independently and identically distributed.

2. The distribution is continuous.

Example
This example illustrates both the location and dispersion tests. The data, which
are taken from Bradley (1968), page 176, give the closing price of AT&T on the
New York stock exchange for 36 days in 1965. Tests for trends in location
(Default), and for trends in dispersion (IMSLS_DISPERSION) are performed.
Trends in location are found.

#include <imsls.h>

#include <stdio.h>

void main()

{

float *pstat=NULL;

int nobs = 36, ids = 0, k = 2, nmiss, *stat = NULL;

float fuzz = 0.001;

float x[] = {9.5, 9.875, 9.25, 9.5, 9.375, 9.0, 8.75, 8.625, 8.0, 8.25,
8.25, 8.375, 8.125, 7.875, 7.5, 7.875, 7.875, 7.75,7.75, 7.75, 8.0, 7.5,
7.5, 7.125, 7.25, 7.25, 7.125, 6.75,6.5, 7.0, 7.0, 6.75, 6.625, 6.625,
7.125, 7.75};

pstat = imsls_f_cox_stuart_trends_test(nobs, x,

 IMSLS_FUZZ, fuzz,

 IMSLS_STAT, &stat,

 IMSLS_N_MISSING, &nmiss,

 0);

imsls_i_write_matrix("nstat", 1, 8, stat, 0);

imsls_f_write_matrix("pstat", 1, 8, pstat,

 IMSLS_WRITE_FORMAT, "%10.5f", 0);

Chapter 6: Nonparametric Statistics cox_stuart_trends_test � 457

printf("n missing = %d\n", nmiss);

 pstat = imsls_f_cox_stuart_trends_test(nobs, x,

 IMSLS_DISPERSION, k, ids,

 IMSLS_FUZZ, fuzz,

 IMSLS_STAT, &stat,

 IMSLS_N_MISSING, &nmiss,

 0);

imsls_i_write_matrix("nstat", 0, 7, stat, 0);

imsls_f_write_matrix("pstat", 0, 7, pstat, 0);

printf("n missing = %d\n", nmiss);

}

Output
*** WARNING Error from imsls_cox_stuart_trends_test. At least one tie is
detected in X.

 NSTAT
0 1 2 3 4 5 6 7
0 17 1 18 0 12 0 12

 PSTAT
 0 1 2 3 4
1.00000 0.00007 1.00000 0.00000 1.00000

 5 6 7
0.00024 1.00000 0.00024

 n missing = 0

*** WARNING Error from imsls_cox_stuart_trends_test. At least one tie is
detected in X.

 NSTAT
0 1 2 3 4 5 6 7
4 3 2 9 4 2 0 6

 PSTAT
 0 1 2 3 4
0.253906 0.910156 0.746094 0.500000 0.343750

 5 6 7
0.890625 0.343750 0.890625

 n missing = 0

458 � tie_statistics IMSL C/Stat/Library

tie_statistics
Compute tie statistics for a sample of observations.

Synopsis
#include <imsls.h>
float *imsls_f_tie_statistics (int n_oservations, float x[], ..., 0)

The type double function is imsls_d_tie_statistics.

Required Arguments

int n_observations (Input)
Number of observations in x.

float x[] (Input)
Array of length n_observations containing the observations.

x must be ordered monotonically increasing with all missing values removed.

Return Value
Array of length 4 containing the tie statistics.

� �

� �� �

� �� �

� �� �

1

1

1

1

ties[0] 1 / 2

ties[1] 1 1 /12

ties[2] 1 2 5

ties[3] 1 2

j j
j

j j j
j

j j j
j

j j j
j

t t

t t t

t t t

t t t

�

�

�

�

�

�

�

�

� �� �� �

� �� � �� �

� � �

� � �

�

�

�

�

where tj is the number of ties in the j-th group (rank) of ties, and 	 is the number
of tie groups in the sample.

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_tie_statistics (int n_oservations, float x[],

IMSLS_FUZZ, float fuzz,
IMSLS_RETURN_USER, float ties[],
0)

Chapter 6: Nonparametric Statistics tie_statistics � 459

Optional Arguments
IMSLS_FUZZ, float fuzz, (Input)

Value used to determine ties.
Observations i and j are tied if the successive differences
x[k + 1] – x[k] between observations i and j, inclusive, are all
less than fuzz. fuzz must be nonnegative. Default: fuzz = 0.0

IMSLS_RETURN_USER, float ties[], (Output)
If specified ties[] returns the tie statistics. Storage for ties[]
is provided by the user. See Return Value.

Description
Function imsls_f_tie_statistics computes tie statistics for a monotonically
increasing sample of observations. “Tie statistics” are statistics that may be used
to correct a continuous distribution theory nonparametric test for tied
observations in the data. Observations i and j are tied if the successive differences
X(k + 1) � X(k), inclusive, are all less than fuzz. Note that if each of the
monotonically increasing observations is equal to its predecessor plus a constant,
if that constant is less than fuzz, then all observations are contained in one tie
group. For example, if fuzz = 0.11, then the following observations are all in one
tie group.
0.0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00

Example
We want to compute tie statistics for a sample of length 7.

#include <imsls.h>

#include <stdio.h>

void main()

{

 float *ties=NULL;

 int nobs = 7;

 float fuzz = .001;

 float x[] = {1.0, 1.0001, 1.0002, 2., 3., 3., 4.};

 ties = imsls_f_tie_statistics(nobs, x,

 IMSLS_FUZZ, fuzz,

 0);

 imsls_f_write_matrix("TIES\n", 0, 3, ties,

 IMSLS_WRITE_FORMAT, "%5.2f",

 0);

 }

460 � wilcoxon_rank_sum IMSL C/Stat/Library

Output
TIES
0 1 2 3
4.00 2.50 84.00 6.00

wilcoxon_rank_sum
Performs a Wilcoxon rank sum test.

Synopsis
#include <imsls.h>
float imsls_f_wilcoxon_rank_sum (int n1_observations, float x1[],

int n2_observations, float x2[], ..., 0)

The type double function is imsls_d_wilcoxon_rank_sum.

Required Arguments

int n1_observations (Input)
Number of observations in the first sample.

float x1[] (Input)
Array of length n1_observations containing the first sample.

int n2_observations (Input)
Number of observations in the second sample.

float x2[] (Input)
Array of length n2_observations containing the second sample.

Return Value
The two-sided p-value for the Wilcoxon rank sum statistic that is computed with
average ranks used in the case of ties.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_wilcoxon_rank_sum (int n1_observations, float x1[],

int n2_observations, float x2[],
IMSLS_FUZZ, float fuzz,
IMSLS_STAT, float **stat,
IMSLS_STAT_USER, float stat[],
0)

Chapter 6: Nonparametric Statistics wilcoxon_rank_sum � 461

Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Nonnegative constant used to determine ties in computing ranks in the
combined samples. A tie is declared when two observations in the
combined sample are within fuzz of each other.
Default: fuzz = 100 � imsls_f_machine(4) � max {
xi1
,
xj2
}

IMSLS_STAT, float **stat (Output)
Address of a pointer to an internally allocated array of length 10
containing the following statistics:

Row Statistics

0 Wilcoxon W statistic (the sum of the ranks of the x
observations) adjusted for ties in such a manner that W is
as small as possible

1 2 � E(W) � W, where E(W) is the expected value of W
2 probability of obtaining a statistic less than or equal to

min{W, 2 � E(W) � W}
3 W statistic adjusted for ties in such a manner that W is as

large as possible
4 2 � E(W) � W, where E(W) is the expected value of W,

adjusted for ties in such a manner that W is as large as
possible

5 probability of obtaining a statistic less than or equal to
min{W, 2 � E(W) � W}, adjusted for ties in such a manner
that W is as large as possible

6 W statistic with average ranks used in case of ties
7 estimated standard error of stat [6] under the null

hypothesis of no difference
8 standard normal score associated with stat [6]
9 two-sided p-value associated with stat[8]

IMSLS_STAT_USER, float stat[] (Output)
Storage for array stat is provided by the user. See IMSLS_STAT.

Description
Function imsls_f_wilcoxon_rank_sum performs the Wilcoxon rank sum test
for identical population distribution functions. The Wilcoxon test is a linear
transformation of the Mann-Whitney U test. If the difference between the two
populations can be attributed solely to a difference in location, then the Wilcoxon
test becomes a test of equality of the population means (or medians) and is the

462 � wilcoxon_rank_sum IMSL C/Stat/Library

nonparametric equivalent of the two-sample t-test. Function
imsls_f_wilcoxon_rank_sum obtains ranks in the combined sample after first
eliminating missing values from the data. The rank sum statistic is then computed
as the sum of the ranks in the x1 sample. Three methods for handling ties are
used. (A tie is counted when two observations are within fuzz of each other.)
Method 1 uses the largest possible rank for tied observations in the smallest
sample, while Method 2 uses the smallest possible rank for these observations.
Thus, the range of possible rank sums is obtained.

Method 3 for handling tied observations between samples uses the average rank
of the tied observations. Asymptotic standard normal scores are computed for the
W score (based on a variance that has been adjusted for ties) when average ranks
are used (see Conover 1980, p. 217), and the probability associated with the two-
sided alternative is computed.

Hypothesis Tests
In each of the following tests, the first line gives the hypothesis (and its
alternative) under the assumptions 1 to 3 below, while the second line gives the
hypothesis when assumption 4 is also true. The rejection region is the same for
both hypotheses and is given in terms of Method 3 for handling ties. Another
output statistic should be used, (stat[0] or stat[3]), if another method for
handling ties is desired.

Test Null Hypothesis Alternative
Hypothesis

Action

1 H0:Pr(x1 < x2) = 0.5 H1:Pr(x1 < x2) � 0.5 Reject if stat [9] is less than the
significance level of the test.
Alternatively,

 H0:E(x1) = E(x2) H1:E(x1) � E(x2) reject the null hypothesis if stat
[6] is too large or too small.

2 H0:Pr(x1 < x2) � 0.5 H1:Pr(x1 < x2) > 0.5 Reject if stat [6] is too small

 H0:E(x1) � E(x2) H1:E(x1) < E(x2)

3 H0:Pr(x1 < x2) � 0.5 H1:Pr(x1 < x2) < 0.5 Reject if stat [6] is too large

 Ho:E(x1) � E(x2)) H1:E(x1) > E(x2)

Assumptions
1. Arguments x1 and x2 contain random samples from their respective

populations.

2. All observations are mutually independent.

3. The measurement scale is at least ordinal (i.e., an ordering less than,
greater than, or equal to exists among the observations).

Chapter 6: Nonparametric Statistics wilcoxon_rank_sum � 463

4. If f(x) and g(y) are the distribution functions of x and y, then
g(y) = f(x + c) for some constant c(i.e., the distribution of y is, at worst, a
translation of the distribution of x).

Tables of critical values of the W statistic are given in the references for small
samples.

Examples

Example 1
The following example is taken from Conover (1980, p. 224). It involves the
mixing time of two mixing machines using a total of 10 batches of a certain kind
of batter, five batches for each machine. The null hypothesis is not rejected at the
5-percent level of significance. The warning error is always printed when one or
more ties are detected, unless printing for warning errors is turned off. See
function imsls_error_options (Chapter 14, “Utilties”).

#include <imsls.h>

void main()
{
 int n1_observations = 5;
 int n2_observations = 5;
 float x1[5] = {7.3, 6.9, 7.2, 7.8, 7.2};
 float x2[5] = {7.4, 6.8, 6.9, 6.7, 7.1};
 float p_value;

 p_value = imsls_f_wilcoxon_rank_sum(n1_observations, x1,
 n2_observations, x2, 0);
 printf("p-value = %11.4f\n", p_value);

}

Output
*** WARNING Error IMSLS_AT_LEAST_ONE_TIE from imsls_f_wilcoxon_rank_sum.
*** At least one tie is detected between the samples.

p-value = 0.1412

Example 2
The following example uses the same data as the previous example. Now, all the
statistics are output in the array stat.

#include <imsls.h>

void main()
{
 int n1_observations = 5;
 int n2_observations = 5;
 float x1[5] = {7.3, 6.9, 7.2, 7.8, 7.2};
 float x2[5] = {7.4, 6.8, 6.9, 6.7, 7.1};
 float *stat;

464 � wilcoxon_rank_sum IMSL C/Stat/Library

 char *labels[10] = {"Wilcoxon W statistic",
 "2*E(W) - W",
 "p-value",
 "Adjusted Wilcoxon statistic",
 "Adjusted 2*E(W) - W",
 "Adjusted p-value",
 "W statistics for averaged ranks............",
 "Standard error of W (averaged ranks)",
 "Standard normal score of W (averaged ranks)",
 "Two-sided p-value of W (averaged ranks"};
 imsls_f_wilcoxon_rank_sum(n1_observations, x1,
 n2_observations, x2,
 IMSLS_STAT, &stat,
 0);
 imsls_f_write_matrix("statistics", 10, 1, stat,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%7.3f",
 0);
}

Output
*** WARNING Error IMSLS_AT_LEAST_ONE_TIE from imsls_f_wilcoxon_rank_sum.
*** At least one tie is detected between the samples.

 statistics
Wilcoxon W statistic 34.000
2*E(W) - W 21.000
p-value 0.110
Adjusted Wilcoxon statistic 35.000
Adjusted 2*E(W) - W 20.000
Adjusted p-value 0.075
W statistics for averaged ranks............ 34.500
Standard error of W (averaged ranks) 4.758
Standard normal score of W (averaged ranks) 1.471
Two-sided p-value of W (averaged ranks 0.141

Warning Errors
IMSLS_NOBSX_NOBSY_TOO_SMALL “n1_observations” = # and

“n2_observations” = #. Both
sample sizes, “n1_observations”
and “n2_observations”, are less
than 25. Significance levels should
be obtained from tabled values.

IMSLS_AT_LEAST_ONE_TIE At least one tie is detected
between the samples.

Fatal Errors
IMSLS_ALL_X_Y_MISSING Each element of “x1” and/or “x2”

is a missing (NaN, Not a Number)
value.

Chapter 6: Nonparametric Statistics kruskal_wallis_test � 465

kruskal_wallis_test
Performs a Kruskal-Wallis test for identical population medians.

Synopsis
#include <imsls.h>
float *imsls_f_kruskal_wallis_test (int n_groups, int ni[],

float y[], ..., 0)

The type double function is imsls_d_kruskal_wallis_test.

Required Arguments

int n_groups (Input)
Number of groups.

int ni[] (Input)
Array of length n_groups containing the number of responses for each
of the n_groups groups.

float y[] (Input)
Array of length ni[0] + ... + ni[n_groups-1] that contains the
responses for each of the n_groups groups. y must be sorted by group,
with the ni[0] observations in group 1 coming first, the ni[1]
observations in group two coming second, and so on.

Return Value
Array of length 4 containing the Kruskal-Wallis statistics.

I stat[I]

 0 Kruskal-Wallis H statistic.

1 Asymptotic probability of a larger H under the null hypothesis of
identical population medians.

2 H corrected for ties.

3 Asymptotic probability of a larger H (corrected for ties) under the null
hypothesis of identical populations

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_kruskal_wallis_test (int n_groups, int ni, float y[],
IMSLS_FUZZ, float fuzz,
IMSLS_RETURN_USER, float stat[],
0)

466 � kruskal_wallis_test IMSL C/Stat/Library

Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Constant used to determine ties in y. If (after sorting)
|y[i] – y[i + 1]| is less than or equal to fuzz, then a tie
is counted. fuzz must be nonnegative.

IMSLS_RETURN_USER, float stat[] (Output)
User defined array for storage of Kruskal-Wallis statistics.

Description
The function imsls_f_kruskal_wallis_test generalizes the Wilcoxon two-
sample test computed by routine imsls_f_wilcoxon_rank_sum
(page 460) to more than two populations. It computes a test statistic for testing
that the population distribution functions in each of K populations are identical.
Under appropriate assumptions, this is a nonparametric analogue of the one-way
analysis of variance. Since more than two samples are involved, the alternative is
taken as the analogue of the usual analysis of variance alternative, namely that the
populations are not identical.

The calculations proceed as follows: All observations are ranked regardless of the
population to which they belong. Average ranks are used for tied observations
(observations within fuzz of each other). Missing observations (observations
equal to NaN, not a number) are not included in the ranking. Let Ri denote the
sum of the ranks in the i-th population. The test statistic H is defined as:

� �� �
22

2

11
4

1

i

i

K N NR
nS

i
H �

�

� ��

where N is the total of the sample sizes, ni is the number of observations in the
i-th sample, and S� is computed as the (bias corrected) sample variance of the Ri.

The null hypothesis is rejected when stat[3] (or stat[1]) is less than the
significance level of the test. If the null hypothesis is rejected, then the procedures
given in Conover (1980, page 231) may be used for multiple comparisons. The
routine imsls_f_kruskal_wallis_test (page 465) computes asymptotic
probabilities using the chi-squared distribution when the number of groups is 6 or
greater, and a Beta approximation (see Wallace 1959) when the number of groups
is 5 or less. Tables yielding exact probabilities in small samples may be obtained
from Owen (1962).

Example
The following example is taken from Conover (1980, page 231). The data
represents the yields per acre of four different methods for raising corn. Since
H = 25.5, the four methods are clearly different. The warning error is always
printed when the Beta approximation is used, unless printing for warning errors is
turned off.

Chapter 6: Nonparametric Statistics friedmans_test � 467

#include <imsls.h>
void main()
{
 int ngroup = 4, ni[] = {9, 10, 7, 8};

float y[] = {83., 91., 94., 89., 89., 96., 91., 92., 90., 91., 90.,
 81., 83., 84., 83., 88., 91., 89., 84., 101., 100., 91.,
 93., 96., 95., 94., 78., 82., 81., 77., 79., 81., 80.,
 81.};

 float fuzz = .001, stat[4];
 char *rlabel[] = {"H (no ties) =",
 "Prob (no ties) =",
 "H (ties) =",
 "Prob (ties) ="};
 imsls_f_kruskal_wallis_test(ngroup, ni, y,
 IMSLS_FUZZ, fuzz,
 IMSLS_RETURN_USER, stat,
 0);
 imsls_f_write_matrix(" ", 4, 1, stat,
 IMSLS_ROW_LABELS, rlabel,
 0);
}

Output
*** WARNING ERROR from imsls_kruskal_wallis_test. The chi-squared degrees
*** of freedom are less than 5, so the Beta approximation is used.

H (no ties) = 25.46
Prob (no ties) = 0.00
H (ties) = 25.63
Prob (ties) = 0.00

friedmans_test
Performs Friedman’s test for a randomized complete block design.

Synopsis
#include <imsls.h>
float imsls_f_friedmans_test (int n_blocks, int n_treatments,

float y[], ..., 0)

The type double function is imsls_d_friedmans_test.

Required Arguments

int n_blocks (Input)
Number of blocks.

468 � friedmans_test IMSL C/Stat/Library

int n_treatments (Input)
Number of treatments.

float y[] (Input)
Array of size n_blocks * n_treatments containing the
observations. The first n_treatments positions of y[] contain the
observations on treatments 1, 2, …, n_treatments in the first block.
The second n_treatments positions contain the observations in the
second block, etc., and so on.

Return Value
The Chi-squared approximation of the asymptotic p-value for Friedman’s
two-sided test statistic.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_friedmans_test (int n_blocks, int n_treatments,

float y[],
IMSLS_FUZZ, float fuzz,
IMSLS_ALPHA, float alpha,
IMSLS_STAT, float **stat,
IMSLS_STAT_USER, float stat[],
IMSLS_SUM_RANK, int **sum_ranks,

 IMSLS_SUM_RANK_USER, int sum_rank[]
IMSLS_DIFFERENCE, float *difference,

 0)

Optional Arguments
IMSLS_FUZZ, float fuzz (Input)

Constant used to determine ties. In the ordered observations, if
|y[i] –y[i + 1]| is less than or equal to fuzz, then y[i] and
y[i + 1] are said to be tied. Default value is 0.0.

IMSLS_ALPHA, float alpha (Input)
Critical level for multiple comparisons. alpha should be between 0 and
1 exclusive. Default value is 0.05.

 IMSLS_STAT, float **stat (Output)
Address of a pointer to an array of length 6 containing the Friedman
statistics. Probabilities reported are computed under the appropriate null
hypothesis.

I stat(I)
0 Friedman two-sided test statistic.

1 Approximate F value for stat[0].

Chapter 6: Nonparametric Statistics friedmans_test � 469

2 Page test statistic for testing the ordered alternative that the median of
treatment i is less than or equal to the median of treatment i + 1, with
strict inequality holding for some i.

3 Asymptotic p-value for stat[0]. Chi-squared approximation.

4. Asymptotic p-value for stat[1]. F approximation.

5. Asymptotic p-value for stat[2]. Normal approximation.

IMSLS_STAT_USER, float stat[] (Output)
Storage for array stat is provided by the user. See IMSLS_STAT.

IMSLS_SUM_RANK, float **sum_rank, (Output)
Address of a pointer to an array of length n_treatments
containing the sum of the ranks of each treatment.

IMSLS_SUM_RANK_USER, float sum_rank[], (Output)
Storage for array sum_rank is provided by the user.
See IMSLS_SUM_RANK.

IMSLS_DIFFERENCE, float *difference, (Output
Minimum absolute difference in two elements of sum_rank to infer at
the alpha level of significance that the medians of the corresponding
treatments are different.

Description
Function imsls_f_friedmans_test may be used to test the hypothesis of
equality of treatment effects within each block in a randomized block design. No
missing values are allowed. Ties are handled by using the average ranks. The test
statistic is the nonparametric analogue of an analysis of variance F test statistic.

The test proceeds by first ranking the observations within each block. Let A
denote the sum of the squared ranks, i.e., let

� �
2

1 1
Rank

k b

ij
i j

A Y
� �

���

where Rank(Yij) is the rank of the i-th observation within the j-th block, b = NB is
the number of blocks, and k = NT is the number of treatments. Let

2

1

1 k

i
i

B R
b

�

� �

where

� �
1
Rank

b

i i
j

jR Y
�

��

470 � friedmans_test IMSL C/Stat/Library

The Friedman test statistic (stat[0]) is given by:

� � � �� �
� �

22

2

1 1

1 / 4

k bB b k k
T

A bk k

� � �

�

� �

/ 4

that, under the null hypothesis, has an approximate chi-squared distribution with
k � 1 degrees of freedom. The asymptotic probability of obtaining a larger chi-
squared random variable is returned in stat[3].

If the F distribution is used in place of the chi-squared distribution, then the usual
oneway analysis of variance F-statistic computed on the ranks is used. This
statistic, reported in stat[1], is given by

� �

� �

1
1

b T
F

b k T
�

�
� �

and asymptotically follows an F distribution with (k � 1) and (b � 1)(k � 1)
degrees of freedom under the null hypothesis. stat[4] is the asymptotic
probability of obtaining a larger F random variable. (If A = B, stat[0] and
stat[1] are set to machine infinity, and the significance levels are reported as
k!/(k!)b, unless this computation would cause underflow, in which case the
significance levels are reported as zero.) Iman and Davenport (1980) discuss the
relative advantages of the chi-squared and F approximations. In general, the
F approximation is considered best.

The Friedman T statistic is related both to the Kendall coefficient of concordance
and to the Spearman rank correlation coefficient. See Conover (1980) for a
discussion of the relationships.

If, at the � = alpha level of significance, the Friedman test results in rejection of
the null hypothesis, then an asymptotic test that treatments i and j are different is
given by: reject H� if |Ri � Rj| > D, where

� � � ��� ��1 / 2D 2 / 1t b A B b k
��

� � � 1�

R

where t has (b � 1)(k � 1) degrees of freedom. Page’s statistic (stat[2]) is used
to test the same null hypothesis as the Friedman test but is sensitive to a
monotonic increasing alternative. The Page test statistic is given by

1

k

i
i

Q j
�

��

It is largest (and thus most likely to reject) when the Ri are monotonically
increasing.

Chapter 6: Nonparametric Statistics friedmans_test � 471

Assumptions
The assumptions in the Friedman test are as follows:

1. The k-vectors of responses within each of the b blocks are mutually
independent (i.e., the results within one block have no effect on the
results within another block).

2. Within each block, the observations may be ranked.

The hypothesis tested is that each ranking of the random variables within each
block is equally likely. The alternative is that at least one of the treatments tends
to have larger values than one or more of the other treatments. The Friedman test
is a test for the equality of treatment means or medians.

Example
The following example is taken from Bradley (1968), page 127, and tests the
hypothesis that 4 drugs have the same effects upon a person’s visual acuity.
Five subjects were used.

#include <imsls.h>

void main()

{

int n_blocks = 5, n_treatments = 4;

float y[20] = {.39,.55,.33,.41,.21,.28,.19,.16,.73,.69,.64,

 .62,.41,.57,.28,.35,.65,.57,.53,.60};

float fuzz = .001,

alpha = .05;

float pvalue, *sum_rank, stat[6], difference;

pvalue = imsls_f_friedmans_test(n_blocks,

 n_treatments, y,

 IMSLS_SUM_RANK, &sum_rank,

 IMSLS_STAT_USER, stat,

 IMSLS_DIFFERENCE, &difference,

 0);

printf("\np value for Friedman's T = %f\n\n", pvalue);

printf("Friedman's T = %4.2f\n", stat[0]);

printf("Friedman's F = %4.2f\n", stat[1]);

printf("Page Test =%5.2f\n", stat[2]);

printf("Prob Friedman's T = %7.5f\n", stat[3]);

printf("Prob Friedman's F = %7.5f\n", stat[4]);

printf("Prob Page Test = %7.5f\n", stat[5]);

printf("Sum of Ranks = %4.2f %4.2f %4.2 %4.2f\n"

 sum_rank[0], sum_rank[1], sum_rank[2], sum_rank[3]);

printf("difference = %7.5f\n", difference);

472 � cochran_q_test IMSL C/Stat/Library

}

Output
P value for Friedman’s T = 0.040566

Friedman T......... 8.28
Friedman F......... 4.93
Page test.......... 111.00
Prob Friedman T.... 0.04057
Prob Friedman F.... 0.01859
Prob Page test..... 0.98495
Sum of Ranks....... 16.00 17.00 7.00 10.00
D.................. 6.65638

The Friedman null hypothesis is rejected at the � = .05 while the Page null
hypothesis is not. (A Page test with a monotonic decreasing alternative would be
rejected, however.) Using sum_rank and difference, one can conclude that
treatment 3 is different from treatments 1 and 2, and that treatment 4 is different
from treatment 2, all at the � = .05 level of significance.

cochran_q_test
Performs a Cochran Q test for related observations.

Synopsis

#include <imsls.h>

float imsls_f_cochran_q_test (int n_observations, int n_variables,
float *x, ..., 0)

The type double function is imsls_d_cochran_q_test.

Required Arguments

int n_observations (Input)
Number of blocks for each treatment.

int n_variables (Input)
Number of treatments.

float *x (Input)
Array of size n_observations � n_variables containing the matrix
of dichotomized data. There are n_observations readings of zero or
one on each of the n_variables treatments.

Return Value
The p-value, p_value, for the Cochran Q statistic.

Chapter 6: Nonparametric Statistics cochran_q_test � 473

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_cochran_q_test (int n_observations,
int n_variables, float *x,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_Q_STATISTIC, float *q,
0)

Optional Arguments
IMSLS_X_COL_DIM, int x_col_dim (Input)

Number of columns in x.
Default: x_col_dim = n_variables

IMSLS_Q_STATISTIC, float *q (Output)
Cochran’s Q statistic.

Description
Function imsls_f_cochran_q_test computes the Cochran Q test statistic that
may be used to determine whether or not M matched sets of responses differ
significantly among themselves. The data may be thought of as arising out of a
randomized block design in which the outcome variable must be success or
failure, coded as 1.0 and 0.0, respectively. Within each block, a multivariate
vector of 1’s of 0’s is observed. The hypothesis is that the probability of success
within a block does not depend upon the treatment.

Assumptions
1. The blocks are a random sample from the population of all possible

blocks.

2. The outcome of each treatment is dichotomous.

Hypothesis
The hypothesis being tested may be stated in at least two ways.

1. H0 : All treatments have the same effect.
H1 : The treatments do not all have the same effect.

2. Let pij denote the probability of outcome 1.0 in block i, treatment j.
H0:pi1 = pi2 = � = pic for each i.
H1:pij � pik for some i, and some j � k.
where c (equal to n_variables) is the number of treatments.

The null hypothesis is rejected if Cochrans’s Q statistic is too large.

474 � cochran_q_test IMSL C/Stat/Library

Remarks
1. The input data must consist of zeros and ones only. For example, the

data may be pass-fail information on n_variables questions asked of
n_observations people or the test responses of n_observations
individuals to n_variables different conditions.

2. The resulting statistic is distributed approximately as chi-squared with
n_variables � 1 degrees of freedom if n_observations is not too
small. n_observations greater than or equal to 5 � n_variables is a
conservative recommendation.

Example
The following example is taken from Siegal (1956, p. 164). It measures the
responses of 18 women to 3 types of interviews.

#include <imsls.h>
main()
{
 float pq;
 float x[54] = {
 0.0, 0.0, 0.0,
 1.0, 1.0, 0.0,
 0.0, 1.0, 0.0,
 0.0, 0.0, 0.0,
 1.0, 0.0, 0.0,
 1.0, 1.0, 0.0,
 1.0, 1.0, 0.0,
 0.0, 1.0, 0.0,
 1.0, 0.0, 0.0,
 0.0, 0.0, 0.0,
 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0,
 1.0, 1.0, 0.0,
 1.0, 1.0, 0.0,
 1.0, 1.0, 0.0,
 1.0, 1.0, 1.0,
 1.0, 1.0, 0.0,
 1.0, 1.0, 0.0};

 pq = imsls_f_cochran_q_test(18, 3, x, 0);
 printf("pq = %9.5f\n", pq);
 return;

}

Output
pq = 0.00024

Chapter 6: Nonparametric Statistics k_trends_test � 475

Warning Errors
IMSLS_ALL_0_OR_1 “x” consists of either all ones or all zeros.

“q” is set to NaN (not a number). “pq” is set
to 1.0.

Fatal Errors
IMSLS_INVALID_X_VALUES “x[#][#]” = #. “x” must consist of zeros and

ones only.

k_trends_test
Performs a k-sample trends test against ordered alternatives.

Synopsis
#include <imsls.h>
float *imsls_f_ k_trends_test (int n_groups, int ni[], float y[], ...,

0)

The type double function is imsls_d_ k_trends_test.

Required Arguments

int n_groups (Input)
Number of groups. Must be greater than or equal to 3.

int ni[] (Input)
Array of length n_groups containing the number of responses for each
of the n_groups groups.

float y[] (Input)
Array of length ni[0] + ... + ni[n_groups-1] that contains the
responses for each of the n_groups groups. y must be sorted by group,
with the ni[0] observations in group 1 coming first, the ni[1]
observations in group two coming second, and so on.

Return Value
Array of length 17 containing the test results.

I stat[I]

0 Test statistic (ties are randomized).

1 Conservative test statistic with ties counted in favor of the null
hypothesis.

2 p-value associated with stat[0].

476 � k_trends_test IMSL C/Stat/Library

3 p-value associated with stat[1].

4 Continuity corrected stat[2].

5 Continuity corrected stat [3].

6 Expected mean of the statistic.

7 Expected kurtosis of the statistic. (The expected skewness is zero.)

8 Total sample size.

9 Coefficient of rank correlation based upon stat[0].

10 Coefficient of rank correlation based upon stat[1].

11 Total number of ties between samples.

12 The t-statistic associated with stat [2].

13 The t-statistic associated with stat[3].

14 The t-statistic associated with stat [4].

15 The t-statistic associated with stat[5].

 16 Degrees of freedom for each t-statistic.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_k_trends_test (int n_groups, int ni, float y[],
IMSLS_RETURN_USER, float stat[],
0)

Optional Arguments
IMSLS_RETURN_USER, float stat[] (Output)

User defined array for storage of test results.

Description
Function imsls_f_k_trends_test performs a k-sample trends test against
ordered alternatives. The alternative to the null hypothesis of equality is that
F�(X) < F�(X) < � Fk(X), where F�, F�, etc., are cumulative distribution
functions, and the operator < implies that the less than relationship holds for all
values of X. While the trends test used in k_trends_test requires that the
background populations be continuous, ties occurring within a sample have no
effect on the test statistic or associated probabilities. Ties between samples are
important, however. Two methods for handling ties between samples are used.
These are:

1. Ties are randomly split (stat[0]).

Chapter 6: Nonparametric Statistics k_trends_test � 477

2. Ties are counted in a manner that is unfavorable to the alternative
hypothesis (stat[1]).

Computational Procedure
Consider the matrices

� �
2 if

0 otherwise
ki mjkm km

ij

X X
M m

�� �
� � � �

� �

where Xki is the i-th observation in the k-th population, Xmj is the j-th observation
in the m-th population, and each matrix Mkm is nk by nm where ni = ni(i). Let
Skm denote the sum of all elements in Mkm. Then, stat[1] is computed as the
sum over all elements in Skm, minus the expected value of this sum (computed as

k mk m n n
�

�

when there are no ties and the distributions in all populations are equal). In
stat[0], ties are broken randomly, and the element in the summation is taken as
2.0 or 0.0 depending upon the result of breaking the tie.

stat[2] and stat[3] are computed using the t distribution. The probabilities
reported are asymptotic approximations based upon the t statistics in stat[12]
and stat[13], which are computed as in Jonckheere (1954, page 141).
Similarly, stat[4] and stat[5] give the probabilities for stat[14] and
stat[15], the continuity corrected versions of stat[2] and stat[3]. The
degrees of freedom for each t statistic (stat[16]) are computed so as to make
the t distribution selected as close as possible to the actual distribution of the
statistic (see Jonckheere 1954, page 141).

stat[6], the variance of the test statistic stat[0], and stat[7], the kurtosis
of the test statistic, are computed as in Jonckheere (1954, page 138). The
coefficients of rank correlation in stat[8] and stat[9] reduce to the
Kendall � statistic when there are just two groups.

Exact probabilities in small samples can be obtained from tables in Jonckheere
(1954). Note, however, that the t approximation appears to be a good one.

Assumptions
1. The Xmi for each sample are independently and identically distributed

according to a single continuous distribution.

2. The samples are independent.

Hypothesis tests
H� : F�(X) � F�(X) � � � Fk(X)
H� : F�(X) < F�(X) < � < Fk(X)

478 � k_trends_test IMSL C/Stat/Library

Reject if stat[2] (or stat[3], or stat[4] or stat[5], depending upon the
method used) is too large.

Example
The following example is taken from Jonckheere (1954, page 135). It involves
four observations in four independent samples.

 #include <imsls.h>

 #include <stdio.h>

 void main()

 {

 float *stat;

 int n_groups = 4;

 int ni[] = {4, 4, 4, 4};

 char *fmt = "%9.5f";

 char *rlabel[] = {

 "stat[0] - Test Statistic (random)",

 "stat[1] - Test Statistic (null hypothesis) ...",

 "stat[2] - p-value for stat[0]",

"stat[3] - p-value for stat[1]",

"stat[4] - Continuity corrected for stat[2]",

 "stat[5] - Continuity corrected for stat[3]",

 "stat[6] - Expected mean",

 "stat[7] - Expected kurtosis",

 "stat[8] - Total sample size",

 "stat[9] - Rank corr. coef. based on stat[0] ...",

 "stat[10]- Rank corr. coef. based on stat[1] ...",

 "stat[11]- Total number of ties",

 "stat[12]- t-statistic associated w/stat[2]",

 "stat[13]- t-statistic asscoiated w/stat[3]",

 "stat[14]- t-statistic associated w/stat[4]",

 "stat[15]- t-statistic asscoiated w/stat[5]",

"stat[16]- Degrees of freedom"};

 float y[] = {19., 20., 60., 130., 21., 61., 80., 129.,

 40., 99., 100., 149., 49., 110., 151., 160.};

 stat = imsls_f_k_trends_test(n_groups, ni, y, 0);

 imsls_f_write_matrix("stat", 17, 1, stat,

 IMSLS_WRITE_FORMAT, fmt,

Chapter 6: Nonparametric Statistics k_trends_test � 479

 IMSLS_ROW_LABELS, rlabel,

 0);

}

Output
stat(0) - Test statistic (random) 46.00000
stat(1) - Test statistic (null hypothesis) .. 46.00000
stat(2) - p-value for stat(0) 0.01483
stat(3) - p-value for stat(1) 0.01483
stat(4) - Continuity corrected stat(2) 0.01683
stat(5) - Continuity corrected stat(3) 0.01683
stat(6) - Expected mean 458.66666
stat(7) - Expected kurtosis -0.15365
stat(8) - Total sample size 16.00000
stat(9)- Rank corr. coef. based on stat(0) . 0.47917
stat(10)- Rank corr. coef. based on stat(1) . 0.47917
stat(11)- Total number of ties 0.00000
stat(12)- t-statistic associated w/stat(2) .. 2.26435
stat(13)- t-statistic associated w/stat(3) .. 2.26435
stat(14)- t-statistic associated w/stat(4) .. 2.20838
stat(15)- t-statistic associated w/stat(5) .. 2.20838
stat(16)- Degrees of freedom 36.04963

480 � k_trends_test IMSL C/Stat/Library

Chapter 7: Tests of Goodness of Fit Routines � 481

Chapter 7: Tests of Goodness of Fit

Routines
7.1 General Goodness-of-fit tests

Chi-squared goodness-of-fit test...........................chi_squared_test 482
Shapiro-Wilk W test for normalitynormality_test 490
One-sample continuous data
Kolmogorov-Smirnov .. kolmogorov_one 494
Two-sample continuous data
Kolmogorov-Smirnov ...kolmogorov_two 497
Mardia’s test for multivariate
normality..multivar_normality_test 501

7.2 Tests for Randomness
Runs test, Paris-serial test, d2 test or triplets
tests ... randomness_test 505

Usage Notes
The routines in this chapter are used to test for goodness of fit and randomness.
The goodness-of-fit tests are described in Conover (1980). There are two
goodness-of-fit tests for general distributions, a Kolmogorov-Smirnov test and a
chi-squared test. The user supplies the hypothesized cumulative distribution
function for these two tests. There are three routines that can be used to test
specifically for the normal or exponential distributions.

The tests for randomness are often used to evaluate the adequacy of
pseudorandom number generators. These tests are discussed in Knuth (1981).

The Kolmogorov-Smirnov routines in this chapter compute exact probabilities
in small to moderate sample sizes. The chi-squared goodness-of-fit test may be
used with discrete as well as continuous distributions.

The Kolmogorov-Smirnov and chi-squared goodness-of-fit test routines allow for
missing values (NaN, not a number) in the input data. The routines that test for
randomness do not allow for missing values.

482 � chi_squared_test IMSL C/Stat/Library

chi_squared_test
Performs a chi-squared goodness-of-fit test.

Synopsis
#include <imsls.h>
float imsls_f_chi_squared_test (float user_proc_cdf(),

int n_observations, int n_categories, float x[], ..., 0)

The type double function is imsls_d_chi_squared_test.

Required Arguments

float user_proc_cdf (float y) (Input)
User-supplied function that returns the hypothesized, cumulative
distribution function at the point y.

int n_observations (Input)
Number of data elements input in x.

int n_categories (Input)
Number of cells into which the observations are to be tallied.

float x[] (Input)
Array with n_observations components containing the vector of data
elements for this test.

Return Value
The p-value for the goodness-of-fit chi-squared statistic.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_chi_squared_test (float user_proc_cdf(),

int n_observations, int n_categories, float x[],
IMSLS_N_PARAMETERS_ESTIMATED, int n_parameters,
IMSLS_CUTPOINTS, float **cutpoints,
IMSLS_CUTPOINTS_USER, float cutpoints[],
IMSLS_CUTPOINTS_EQUAL,
IMSLS_CHI_SQUARED, float *chi_squared,
IMSLS_DEGREES_OF_FREEDOM, float *df,
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_BOUNDS, float lower_bound, float upper_bound,
IMSLS_CELL_COUNTS, float **cell_counts,
IMSLS_CELL_COUNTS_USER, float cell_counts[],
IMSLS_CELL_EXPECTED, float **cell_expected,
IMSLS_CELL_EXPECTED_USER, float cell_expected[],

Chapter 7: Tests of Goodness of Fit chi_squared_test � 483

IMSLS_CELL_CHI_SQUARED, float **cell_chi_squared,
IMSLS_CELL_CHI_SQUARED_USER, float cell_chi_squared[],
IMSLS_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSLS_N_PARAMETERS_ESTIMATED, int n_parameters (Input)

Number of parameters estimated in computing the cumulative
distribution function.

IMSLS_CUTPOINTS, float **cutpoints (Output)
Address of a pointer to an internally allocated array of length
n_categories � 1 containing the vector of cutpoints defining the cell
intervals. The intervals defined by the cutpoints are such that the lower
endpoint is not included and the upper endpoint is included in any
interval. If IMSLS_CUTPOINTS_EQUAL is specified, equal probability
cutpoints are computed and returned in cutpoints.

IMSLS_CUTPOINTS_USER, float cutpoints [] (Input/Output)
Storage for array cutpoints is provided by the user. See
IMSLS_CUTPOINTS.

IMSLS_CUTPOINTS_EQUAL
If IMSLS_CUTPOINTS_USER is specified, then equal probability
cutpoints can still be used if, in addition, the
IMSLS_CUTPOINTS_EQUAL option is specified. If
IMSLS_CUTPOINTS_USER is not specified, equal probability cutpoints
are used by default.

IMSLS_CHI_SQUARED, float *chi_squared (Output)
If specified, the chi-squared test statistic is returned in *chi_squared.

IMSLS_DEGREES_OF_FREEDOM, float *df (Output)
If specified, the degrees of freedom for the chi-squared goodness-of-fit
test is returned in *df.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array with n_observations components containing the vector
frequencies for the observations stored in x.

IMSLS_BOUNDS, float lower_bound, float upper_bound (Input)
If IMSLS_BOUNDS is specified, then lower_bound is the lower bound
of the range of the distribution and upper_bound is the upper bound of
this range. If lower_bound = upper_bound, a range on the whole real
line is used (the default). If the lower and upper endpoints are different,
points outside the range of these bounds are ignored. Distributions
conditional on a range can be specified when IMSLS_BOUNDS is used.
By convention, lower_bound is excluded from the first interval, but
upper_bound is included in the last interval.

484 � chi_squared_test IMSL C/Stat/Library

IMSLS_CELL_COUNTS, float **cell_counts (Output)
Address of a pointer to an internally allocated array of length
n_categories containing the cell counts. The cell counts are the
observed frequencies in each of the n_categories cells.

IMSLS_CELL_COUNTS_USER, float cell_counts[] (Output)
Storage for array cell_counts is provided by the user. See
IMSLS_CELL_COUNTS.

IMSLS_CELL_EXPECTED, float **cell_expected (Output)
Address of a pointer to an internally allocated array of length
n_categories containing the cell expected values. The expected value
of a cell is the expected count in the cell given that the hypothesized
distribution is correct.

IMSLS_CELL_EXPECTED_USER, float cell_expected[] (Output)
Storage for array cell_expected is provided by the user. See
IMSLS_CELL_EXPECTED.

IMSLS_CELL_CHI_SQUARED, float **cell_chi_squared (Output)
Address of a pointer to an internally allocated array of length
n_categories containing the cell contributions to chi-squared.

IMSLS_CELL_CHI_SQUARED_USER, float cell_chi_squared[] (Output)
Storage for array cell_chi_squared is provided by the user. See
IMSLS_CELL_CHI_SQUARED.

IMSLS_FCN_W_DATA, float user_proc_cdf (float y), void *data, (Input)
User-supplied function that returns the hypothesized, cumulative
distribution function, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-
supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

Description
Function imsls_f_chi_squared_test performs a chi-squared goodness-of-fit
test that a random sample of observations is distributed according to a specified
theoretical cumulative distribution. The theoretical distribution, which can be
continuous, discrete, or a mixture of discrete and continuous distributions, is
specified by the user-defined function user_proc_cdf. Because the user is
allowed to give a range for the observations, a test that is conditional on the
specified range is performed.

Argument n_categories gives the number of intervals into which the
observations are to be divided. By default, equiprobable intervals are computed
by imsls_f_chi_squared_test, but intervals that are not equiprobable can be
specified through the use of optional argument IMSLS_CUTPOINTS.

Chapter 7: Tests of Goodness of Fit chi_squared_test � 485

Regardless of the method used to obtain the cutpoints, the intervals are such that
the lower endpoint is not included in the interval, while the upper endpoint is
always included. If the cumulative distribution function has discrete elements,
then user-provided cutpoints should always be used since
imsls_f_chi_squared_test cannot determine the discrete elements in
discrete distributions.

By default, the lower and upper endpoints of the first and last intervals are
�� and ��, respectively. If IMSLS_BOUNDS is specified, the endpoints are user-
defined by the two arguments lower_bound and upper_bound.

A tally of counts is maintained for the observations in x as follows:
� If the cutpoints are specified by the user, the tally is made in the interval

to which xi belongs, using the user-specified endpoints.
� If the cutpoints are determined by imsls_f_chi_squared_test, then

the cumulative probability at xi, F(xi), is computed by the function
user_proc_cdf.

The tally for xi is made in interval number �mF(xi) + 1�, where
m = n_categories and �·� is the function that takes the greatest integer that is
no larger than the argument of the function. Thus, if the computer time required
to calculate the cumulative distribution function is large, user-specified cutpoints
may be preferred to reduce the total computing time.

If the expected count in any cell is less than 1, then the chi-squared approximation
may be suspect. A warning message to this effect is issued in this case, as well as
when an expected value is less than 5.

Examples

Example 1
This example illustrates the use of imsls_f_chi_squared_test on a
randomly generated sample from the normal distribution. One-thousand randomly
generated observations are tallied into 10 equiprobable intervals. The null
hypothesis, that the sample is from a normal distribution, is specified by use of
imsls_f_normal_cdf (Chapter 11, Probability Distribution Functions and
Inverses) as the hypothesized distribution function. In this example, the null
hypothesis is not rejected.

#include <imsls.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000

main()
{
 float *x, p_value;

486 � chi_squared_test IMSL C/Stat/Library

 imsls_random_seed_set(SEED);
 /* Generate Normal deviates */
 x = imsls_f_random_normal (N_OBSERVATIONS, 0);
 /* Perform chi squared test */
 p_value = imsls_f_chi_squared_test (imsls_f_normal_cdf,
 N_OBSERVATIONS,
 N_CATEGORIES, x, 0);
 /* Print results */
 printf ("p-value = %7.4f\n", p_value);
}

Output
p-value = 0.1546

Example 2
In this example, optional arguments are used for the data in the initial example.

#include <imsls.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000

main()
{
 float *cell_counts, *cutpoints, *cell_chi_squared;
 float chi_squared_statistics[3], *x;
 char *stat_row_labels[] = {"chi-squared",
 "degrees of freedom","p-value"};
 imsls_random_seed_set(SEED);
 /* Generate normal deviates */
 x = imsls_f_random_normal (N_OBSERVATIONS, 0);
 /* Perform chi squared test */
 chi_squared_statistics[2] =
 imsls_f_chi_squared_test (imsls_f_normal_cdf,
 N_OBSERVATIONS, N_CATEGORIES, x,
 IMSLS_CUTPOINTS, &cutpoints,
 IMSLS_CELL_COUNTS, &cell_counts,
 IMSLS_CELL_CHI_SQUARED, &cell_chi_squared,
 IMSLS_CHI_SQUARED, &chi_squared_statistics[0],
 IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 0);
 /* Print results */
 imsls_f_write_matrix ("\nChi Squared Statistics\n", 3, 1,
 chi_squared_statistics,
 IMSLS_ROW_LABELS, stat_row_labels,
 0);
 imsls_f_write_matrix ("Cut Points", 1, N_CATEGORIES-1,
 cutpoints, 0);
 imsls_f_write_matrix ("Cell Counts", 1, N_CATEGORIES,
 cell_counts, 0);
 imsls_f_write_matrix ("Cell Contributions to Chi-Squared", 1,
 N_CATEGORIES, cell_chi_squared,
 0);
}

Chapter 7: Tests of Goodness of Fit chi_squared_test � 487

Output
 Chi Squared Statistics

chi-squared 13.18
degrees of freedom 9.00
p-value 0.15

 Cut Points
 1 2 3 4 5 6
 -1.282 -0.842 -0.524 -0.253 -0.000 0.253

 7 8 9
 0.524 0.842 1.282

 Cell Counts
 1 2 3 4 5 6
 106 109 89 92 83 87

 7 8 9 10
 110 104 121 99

 Cell Contributions to Chi-Squared
 1 2 3 4 5 6
 0.36 0.81 1.21 0.64 2.89 1.69

 7 8 9 10
 1.00 0.16 4.41 0.01

Example 3
In this example, a discrete Poisson random sample of size 1,000 with parameter
� = 5.0 is generated by function imsls_f_random_poisson (Chapter 12,
Random Number Generation”). In the call to imsls_f_chi_squared_test,
function imsls_f_poisson_cdf (Chapter 11, “Probability Distribution
Functions and Inverses) is used as function user_proc_cdf.

#include <imsls.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_PARAMETERS_ESTIMATED 0
#define N_NUMBERS 1000
#define THETA 5.0

float user_proc_cdf(float);

main()
{
 int i, *poisson;
 float cell_statistics[3][N_CATEGORIES];
 float chi_squared_statistics[3], x[N_NUMBERS];
 float cutpoints[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5,
 7.5, 8.5, 9.5};
 char *cell_row_labels[] = {"count", "expected count",
 "cell chi-squared"};

488 � chi_squared_test IMSL C/Stat/Library

 char *cell_col_labels[] = {"Poisson value", "0", "1", "2",
 "3", "4", "5", "6", "7",
 "8", "9"};
 char *stat_row_labels[] = {"chi-squared",
 "degrees of freedom","p-value"};

 imsls_random_seed_set(SEED);
 /* Generate the data */
 poisson = imsls_random_poisson(N_NUMBERS, THETA, 0);
 /* Copy data to a floating point vector*/
 for (i = 0; i < N_NUMBERS; i++)
 x[i] = poisson[i];

 chi_squared_statistics[2] =
 imsls_f_chi_squared_test(user_proc_cdf, N_NUMBERS,
 N_CATEGORIES, x,
 IMSLS_CUTPOINTS_USER, cutpoints,
 IMSLS_CELL_COUNTS_USER, &cell_statistics[0][0],
 IMSLS_CELL_EXPECTED_USER, &cell_statistics[1][0],
 IMSLS_CELL_CHI_SQUARED_USER, &cell_statistics[2][0],
 IMSLS_CHI_SQUARED, &chi_squared_statistics[0],
 IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 0);
 /* Print results */
 imsls_f_write_matrix("\nChi-squared Statistics\n", 3, 1,
 &chi_squared_statistics[0],
 IMSLS_ROW_LABELS, stat_row_labels,
 0);
 imsls_f_write_matrix("\nCell Statistics\n", 3, N_CATEGORIES,
 &cell_statistics[0][0],
 IMSLS_ROW_LABELS, cell_row_labels,
 IMSLS_COL_LABELS, cell_col_labels,
 IMSLS_WRITE_FORMAT, "%9.1f",
 0);
}

float user_proc_cdf(float k)
{
 float cdf_v;

 cdf_v = imsls_f_poisson_cdf ((int) k, THETA);
 return cdf_v;
}

Output
 Chi-squared Statistics

chi-squared 10.48
degrees of freedom 9.00
p-value 0.31

Chapter 7: Tests of Goodness of Fit chi_squared_test � 489

 Cell Statistics

Poisson value 0 1 2 3 4
count 41.0 94.0 138.0 158.0 150.0
expected count 40.4 84.2 140.4 175.5 175.5
cell chi-squared 0.0 1.1 0.0 1.7 3.7

Poisson value 5 6 7 8 9
count 159.0 116.0 75.0 37.0 32.0
expected count 146.2 104.4 65.3 36.3 31.8
cell chi-squared 1.1 1.3 1.4 0.0 0.0

Programming Notes
Function user_proc_cdf must be supplied with calling sequence
user_proc_cdf(y), which returns the value of the cumulative distribution
function at any point y in the (optionally) specified range. Many of the
cumulative distribution functions in Chapter 11, “Probability Distribution
Functions and Inverses,” can be used for user_proc_cdf, either directly if the
calling sequence is correct or indirectly if, for example, the sample means and
standard deviations are to be used in computing the theoretical cumulative
distribution function.

Warning Errors
IMSLS_EXPECTED_VAL_LESS_THAN_1 An expected value is less than 1.

IMSLS_EXPECTED_VAL_LESS_THAN_5 An expected value is less than 5.

Fatal Errors
IMSLS_ALL_OBSERVATIONS_MISSING All observations contain missing

values.

IMSLS_INCORRECT_CDF_1 Function user_proc_cdf is not a
cumulative distribution function.
The value at the lower bound must
be nonnegative, and the value at
the upper bound must not be
greater than 1.

IMSLS_INCORRECT_CDF_2 Function user_proc_cdf is not a
cumulative distribution function.
The probability of the range of the
distribution is not positive.

IMSLS_INCORRECT_CDF_3 Function user_proc_cdf is not a
cumulative distribution function.
Its evaluation at an element in x is
inconsistent with either the

490 � normality_test IMSL C/Stat/Library

evaluation at the lower or upper
bound.

IMSLS_INCORRECT_CDF_4 Function user_proc_cdf is not a
cumulative distribution function.
Its evaluation at a cutpoint is
inconsistent with either the
evaluation at the lower or upper
bound.

IMSLS_INCORRECT_CDF_5 An error has occurred when
inverting the cumulative
distribution function. This function
must be continuous and defined
over the whole real line.

normality_test
Performs a test for normality.

Synopsis

#include <imsls.h>
float imsls_f_normality_test (int n_observations, float x[], ..., 0)

The type double function is imsls_d_normality_test.

Required Arguments

int n_observations (Input)
Number of observations. Argument n_observations must be in the
range from 3 to 2,000, inclusive, for the Shapiro-Wilk W test and must
be greater than 4 for the Lilliefors test.

float x[] (Input)
Array of size n_observations containing the observations.

Return Value
The p-value for the Shapiro-Wilk W test or the Lilliefors test for normality. The
Shapiro-Wilk test is the default. If the Lilliefors test is used, probabilities less
than 0.01 are reported as 0.01, and probabilities greater than 0.10 for the normal
distribution are reported as 0.5. Otherwise, an approximate probability is
computed.

Chapter 7: Tests of Goodness of Fit normality_test � 491

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_normality_test (int n_observations, float x[],

IMSLS_SHAPIRO_WILK_W, float *shapiro_wilk_w,
IMSLS_LILLIEFORS, float *max_difference,
IMSLS_CHI_SQUARED, int n_categories, float *df,
 float *chi_squared,
0)

Optional Arguments
IMSLS_SHAPIRO_WILK_W, float *shapiro_wilk_w (Output)

Indicates the Shapiro-Wilk W test is to be performed. The Shapiro-Wilk
W statistic is returned in shapiro_wilk_w. Argument
IMSLS_SHAPIRO_WILK_W is the default test.

IMSLS_LILLIEFORS, float *max_difference (Output)
Indicates the Lilliefors test is to be performed. The maximum absolute
difference between the empirical and the theoretical distributions is
returned in max_difference.

IMSLS_CHI_SQUARED, int n_categories (Input),
float *df, float *chi_squared (Output)
Indicates the chi-squared goodness-of-fit test is to be performed.
Argument n_categories is the number of cells into which the
observations are to be tallied. The degrees of freedom for the test are
returned in argument df, and the chi-square statistic is returned in
argument chi_squared.

Description
Three methods are provided for testing normality: the Shapiro-Wilk W test, the
Lilliefors test, and the chi-squared test.

Shapiro-Wilk W Test
The Shapiro-Wilk W test is thought by D’Agostino and Stevens (1986, p. 406) to
be one of the best omnibus tests of normality. The function is based on the
approximations and code given by Royston (1982a, b, c). It can be used in
samples as large as 2,000 or as small as 3. In the Shapiro and Wilk test, W is
given by

� �� � � �� �
2 2/i iiW a x x x� �� �

where x(i) is the i-th largest order statistic and x is the sample mean. Royston
(1982) gives approximations and tabled values that can be used to compute the
coefficients ai, i = 1, �, n, and obtains the significance level of the W statistic.

492 � normality_test IMSL C/Stat/Library

Lilliefors Test
This function computes Lilliefors test and its p-values for a normal distribution in
which both the mean and variance are estimated. The one-sample, two-sided
Kolmogorov-Smirnov statistic D is first computed. The p-values are then
computed using an analytic approximation given by Dallal and Wilkinson (1986).
Because Dallal and Wilkinson give approximations in the range
(0.01, 0.10) if the computed probability of a greater D is less than 0.01, an
IMSLS_NOTE is issued and the p-value is set to 0.50. Note that because
parameters are estimated, p-values in Lilliefors test are not the same as in the
Kolmogorov-Smirnov Test.

Observations should not be tied. If tied observations are found, an informational
message is printed. A general reference for the Lilliefors test is Conover (1980).
The original reference for the test for normality is Lilliefors (1967).

Chi-Squared Test
This function computes the chi-squared statistic, its p-value, and the degrees of
freedom of the test. Argument n_categories finds the number of intervals into
which the observations are to be divided. The intervals are equiprobable except
for the first and last interval which are infinite in length.

If more flexibility is desired for the specification of intervals, the same test can be
performed with a call to function imsls_f_chi_squared_test (page 482)
using the optional arguments described for that function.

Examples

Example 1
The following example is taken from Conover (1980, pp. 195, 364). The data
consists of 50 two-digit numbers taken from a telephone book. The W test fails to
reject the null hypothesis of normality at the .05 level of significance.

#include <imsls.h>

void main()
{

 int n_observations = 50;
 float x[] = {23.0, 36.0, 54.0, 61.0, 73.0, 23.0,
 37.0, 54.0, 61.0, 73.0, 24.0, 40.0,
 56.0, 62.0, 74.0, 27.0, 42.0, 57.0,
 63.0, 75.0, 29.0, 43.0, 57.0, 64.0,
 77.0, 31.0, 43.0, 58.0, 65.0, 81.0,
 32.0, 44.0, 58.0, 66.0, 87.0, 33.0,
 45.0, 58.0, 68.0, 89.0, 33.0, 48.0,
 58.0, 68.0, 93.0, 35.0, 48.0, 59.0,
 70.0, 97.0};
 float p_value;

Chapter 7: Tests of Goodness of Fit normality_test � 493

 /* Shapiro-Wilk test */
 p_value = imsls_f_normality_test (n_observations, x,
 0);
 printf ("p-value = %11.4f.\n", p_value);

}

Output
p-value = 0.2309

Example 2
The following example uses the same data as the previous example. Here, the
Shapiro-Wilk W statistic is output.

#include <imsls.h>

void main()
{

 int n_observations = 50;
 float x[] = {23.0, 36.0, 54.0, 61.0, 73.0, 23.0,
 37.0, 54.0, 61.0, 73.0, 24.0, 40.0,
 56.0, 62.0, 74.0, 27.0, 42.0, 57.0,
 63.0, 75.0, 29.0, 43.0, 57.0, 64.0,
 77.0, 31.0, 43.0, 58.0, 65.0, 81.0,
 32.0, 44.0, 58.0, 66.0, 87.0, 33.0,
 45.0, 58.0, 68.0, 89.0, 33.0, 48.0,
 58.0, 68.0, 93.0, 35.0, 48.0, 59.0,
 70.0, 97.0};
 float p_value, shapiro_wilk_w;

 /* Shapiro-Wilk test */
 p_value = imsls_f_normality_test (n_observations, x,
 IMSLS_SHAPIRO_WILK_W,
 &shapiro_wilk_w,
 0);
 printf ("p-value = %11.4f.\n", p_value);
 printf ("Shapiro Wilk W statistic = %11.4f.\n",
 shapiro_wilk_w);

}

Output
p-value = 0.2309.
Shapiro Wilk W statistic = 0.9642

Warning Errors
IMSLS_ALL_OBS_TIED All observations in “x” are tied.

494 � kolmogorov_one IMSL C/Stat/Library

Fatal Errors
IMSLS_NEED_AT_LEAST_5 All but # elements of “x” are missing. At

least five nonmissing observations are
necessary to continue.

IMSLS_NEG_IN_EXPONENTIAL In testing the exponential distribution, an
invalid element in “x” is found (“x[]” = #).
Negative values are not possible in
exponential distributions.

IMSLS_NO_VARIATION_INPUT There is no variation in the input data. All
nonmissing observations are tied.

kolmogorov_one
Performs a Kolmogorov-Smirnov one-sample test for continuous distributions.

Synopsis
#include <imsls.h>
float *imsls_f_kolmogorov_one (float cdf(), int n_observations,

float x[], ..., 0)
The type double function is imsls_d_kolmogorov_one.

Required Arguments

float cdf (float x) (Input)
User-supplied function to compute the cumulative distribution function
(CDF) at a given value. The form is CDF(x), where
x is the value at which cdf is to be evaluated (Input)
and cdf is the value of CDF at x. (Output)

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of size n_observations containing the observations.

Return Value
Pointer to an array of length 3 containing Z, p 1 , and p2 .

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_kolmogorov_one (float cdf(), int n_observations,

float x[],
IMSLS_DIFFERENCES, int **differences,

Chapter 7: Tests of Goodness of Fit kolmogorov_one � 495

IMSLS_DIFFERENCES_USER, int differences[]
IMSLS_N_MISSING, int *n_missing,
IMSLS_RETURN_USER, , float test_statistic[],
IMSLS_FCN_W_DATA, float cdf (), void *data,
0)

Optional Arguments
IMSLS_DIFFERENCES, int **differences (Output)

Address of a pointer to the internally allocated array containing
Dn , Dn

+, Dn
-.

IMSLS_DIFFERENCES_USER, int differences[]
Storage for the array differences is provided by the user.
See IMSLS_DIFFERENCES.

IMSLS_N_MISSING, int *n_missing (Ouput)
Number of missing values is returned in *n_missing.

IMSLS_RETURN_USER, float test_statistics[] (Output)
If specified, the Z-score and the p-values for hypothesis test against both
one-sided and two-sided alternatives is stored in array
test_statistics provided by the user.

IMSLS_FCN_W_DATA, float cdf (float x) , void *data, (Input)
User-supplied function to compute the cumulative distribution function,
which also accepts a pointer to data that is supplied by the user. data is
a pointer to the data to be passed to the user-supplied function. See the
Introduction, Passing Data to User-Supplied Functions at the beginning
of this manual for more details.

Description

The routine imsls_f_kolmogorov_one performs a Kolmogorov-Smirnov
goodness-of-fit test in one sample. The hypotheses tested follow:

0 1

0 1

0 1

: () () : () ()
: () () : () ()
: () () : () ()

H F x F x H F x F x
H F x F x H F x F x
H F x F x H F x F x

� �

� �

� �

� � �

� � �

� � �

where F is the cumulative distribution function (CDF) of the random variable, and
the theoretical cdf, F* , is specified via the user-supplied function cdf. Let
n = n_observations � n_missing. The test statistics for both one-sided
alternatives

[1]nD differences�

�

and

[2]nD differences�

�

496 � kolmogorov_one IMSL C/Stat/Library

and the two-sided (Dn = differences[0]) alternative are computed as well as
an asymptotic z-score (test_statistics[0]) and p-values associated with the
one-sided (test_statistics[1]) and two-sided (test_statistics[2])
hypotheses. For n > 80, asymptotic p-values are used (see Gibbons 1971). For
n 	 80, exact one-sided p-values are computed according to a method given by
Conover (1980, page 350). An approximate two-sided test p-value is obtained as
twice the one-sided p-value. The approximation is very close for one-sided
p-values less than 0.10 and becomes very bad as the one-sided p-values get
larger.

Programming Notes
1. The theoretical CDF is assumed to be continuous. If the CDF is not

continuous, the statistics

nD�

will not be computed correctly.

2. Estimation of parameters in the theoretical CDF from the sample data
will tend to make the p-values associated with the test statistics too
liberal. The empirical CDF will tend to be closer to the theoretical CDF
than it should be.

3. No attempt is made to check that all points in the sample are in the
support of the theoretical CDF. If all sample points are not in the support
of the CDF, the null hypothesis must be rejected.

Example
In this example, a random sample of size 100 is generated via routine
imsls_f_random_uniform (Chapter 12, Random Number Generation”) for the
uniform (0, 1) distribution. We want to test the null hypothesis that the cdf is the
standard normal distribution with a mean of 0.5 and a variance equal to the
uniform (0, 1) variance (1/12).

#include <imsls.h>

#include <stdio.h>

float cdf(float);

void main()

{

 float *statistics=NULL, *diffs = NULL, *x=NULL;

 int nobs = 100, nmiss;

 imsls_random_seed_set(123457);

 x = imsls_f_random_uniform(nobs, 0);

 statistics = imsls_f_kolmogorov_one(cdf, nobs, x,

 IMSLS_N_MISSING, &nmiss,

Chapter 7: Tests of Goodness of Fit kolmogorov_two � 497

 IMSLS_DIFFERENCES, &diffs,

 0);

 printf("D = %8.4f\n", diffs[0]);

 printf("D+ = %8.4f\n", diffs[1]);

 printf("D- = %8.4f\n", diffs[2]);

 printf("Z = %8.4f\n", statistics[0]);

 printf("Prob greater D one sided = %8.4f\n", statistics[1]);

 printf("Prob greater D two sided = %8.4f\n", statistics[2]);

 printf("N missing = %d\n", nmiss);

}

float cdf(float x)

{

 float mean = .5, std = .2886751, z;

 z = (x-mean)/std;

 return(imsls_f_normal_cdf(z));

}

Output

D = 0.1471
D+ = 0.0810
D- = 0.1471
Z = 1.4708
Prob greater D one-sided = 0.0132
Prob greater D two-sided = 0.0264
N missing = 0

kolmogorov_two
Performs a Kolmogorov-Smirnov two-sample test.

Synopsis
#include <imsls.h>
float *imsls_f_kolmogorov_two (int n_observations_x, float x[], int

n_observations_y, float y[], ..., 0)

The type double function is imsls_d_kolmogorov_two.

Required Arguments

int n_observations_x (Input)
Number of observations in sample one.

498 � kolmogorov_two IMSL C/Stat/Library

float x[] (Input)
Array of size n_observations_x containing the observations from
sample one.

int n_observations_y (Input)
Number of observations in sample two.

float y[] (Input)
Array of size n_observations_y containing the observations from
sample two.

Return Value
Pointer to an array of length 3 containing Z, p 1 , and p 2 .

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_kolmogorov_two (int n_observations_x, float x[], int

n_observations_y, float y[], ...
IMSLS_DIFFERENCES, int **differences,
IMSLS_DIFFERENCES_USER, int differences[],
IMSLS_N_MISSING_X, int *xmissing,
IMSLS_N_MISSING_Y, int *ymissing,
IMSLS_RETURN_USER, float test_statistic[],
0)

Optional Arguments
IMSLS_DIFFERENCES, int **differences (Output)

Address of a pointer to the internally allocated array containing
Dn , Dn

+, Dn
-.

IMSLS_DIFFERENCES_USER, int differences[] (Output)
Storage for array differences is provided by the user.
See IMSLS_DIFFERENCES.

IMSLS_N_MISSING_X, int *xmissing (Ouput)
Number of missing values in the x sample is returned in *xmissing.

IMSLS_N_MISSING_Y, int *ymissing (Ouput)
Number of missing values in the y sample is returned in *ymissing.

IMSLS_RETURN_USER, float test_statistics[] (Output)
If specified, the Z-score and the p-values for hypothesis test against both
one-sided and two-sided alternatives is stored in array
test_statistics provided by the user.

Chapter 7: Tests of Goodness of Fit kolmogorov_two � 499

Description

Function imsls_f_kolmogorov_two computes Kolmogorov-Smirnov two-
sample test statistics for testing that two continuous cumulative distribution
functions (CDF’s) are identical based upon two random samples. One- or two-
sided alternatives are allowed. Exact p-values are computed for the two-sided test
when n_observations_x * n_observations_y is less than 104.

Let Fn(x) denote the empirical CDF in the X sample, let Gm(y) denote the empiri-
cal CDF in the Y sample, where n = n_observations_x � n_missing_x
and m = n_observations_y � n_missing_y, and let the corresponding
population distribution functions be denoted by F(x) and G(y), respectively. Then,
the hypotheses tested by imsls_f_kolmogorov_two are as follows:

0 1

0 1

0 1

: () () : () ()
: () () : () ()
: () () : () ()

H F x G x H F x G x
H F x G x H F x G x
H F x G x H F x G x

� � �

� � �

� � �

The test statistics are given as follows:

� �max , (diffs[0])

max (() ()) (diffs[1])
max (G () ()) (diffs[2])

mn mn mn

mn x n m

mn x m n

D D D

D F x G x
D x F x

� �

�

�

�

� �

� �

Asymptotically, the distribution of the statistic

() /(*mn)Z D m n m n� �

(returned in test_statistics[0]) converges to a distribution given by
Smirnov (1939).

Exact probabilities for the two-sided test are computed when n*m is less than or
equal to 10�, according to an algorithm given by Kim and Jennrich (1973). When
n*m is greater than 10�, the very good approximations given by Kim and Jennrich
are used to obtain the two-sided p-values. The one-sided probability is taken as
one half the two-sided probability. This is a very good approximation when the p-
value is small (say, less than 0.10) and not very good for large
p-values.

Example
The following example illustrates the imsls_f_kolmogorov_two routine with
two randomly generated samples from a uniform(0,1) distribution. Since the two
theoretical distributions are identical, we would not expect to reject the null
hypothesis.

#include <imsls.h>

#include <stdio.h>

500 � kolmogorov_two IMSL C/Stat/Library

void main()

{

 float *statistics=NULL, *diffs = NULL, *x=NULL, *y=NULL;

 int nobsx = 100, nobsy = 60, nmissx, nmissy;

 imsls_random_seed_set(123457);

 x = imsls_f_random_uniform(nobsx, 0);

 y = imsls_f_random_uniform(nobsy, 0);

 statistics = imsls_f_kolmogorov_two(nobsx, x, nobsy, y,

 IMSLS_N_MISSING_X, &nmissx,

 IMSLS_N_MISSING_Y, &nmissy,

 IMSLS_DIFFERENCES, &diffs,

 0);

 printf("D = %8.4f\n", diffs[0]);

 printf("D+ = %8.4f\n", diffs[1]);

 printf("D- = %8.4f\n", diffs[2]);

 printf("Z = %8.4f\n", statistics[0]);

 printf("Prob greater D one sided = %8.4f\n", statistics[1]);

 printf("Prob greater D two sided = %8.4f\n", statistics[2]);

 printf("Missing X = %d\n", nmissx);

 printf("Missing Y = %d\n", nmissy);

}

Output
 D = 0.1800

D+ = 0.1800
D- = 0.0100
Z = 1.1023
Prob greater D one sided = 0.0720
Prob greater D two sided = 0.1440
Missing X = 0
Missing Y = 0

Chapter 7: Tests of Goodness of Fit multivar_normality_test � 501

multivar_normality_test
Computes Mardia’s multivariate measures of skewness and kurtosis and tests for
multivariate normality.

Synopsis
#include <imsls.h>
float *imsls_f_multivar_normality_test (int n_observations,

int n_variables, float x[], ..., 0)

The type double function is imsls_d_multivar_normality_test.

Required Arguments

int n_observations (Input)
Number of observations (number of rows of data) x.

int n_variables (Input)
Dimenionality of the multivariate space for which the skewness and
kurtosis are to be computed. Number of variables in x.

float x[] (Input)
Array of size n_observations by n_variables containing the data.

Return Value
A pointer to an array of dimension 13 containing output statistics

I stat[I]

0 estimated skewness

1 expected skewness assuming a multivariate normal distribution

2 asymptotic chi-squared statistic assuming a multivariate normal
distribution

3 probability of a greater chi-squared

4 Mardia and Foster's standard normal score for skewness

5 estimated kurtosis

6 expected kurtosis assuming a multivariate normal distribution

7 asymptotic standard error of the estimated kurtosis

8 standard normal score obtained from stat[5] through stat[7]

9 p-value corresponding to stat[8]

10 Mardia and Foster's standard normal score for kurtosis

11 Mardia's SW statistic based upon stat[4] and stat[10]

502 � multivar_normality_test IMSL C/Stat/Library

12 p-value for stat[11]

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_multivar_normality_test (int n_observations_x, int

n_variables, float x[], ...
 IMSLS_FREQUENCIES, float frequencies[],
 IMSLS_WEIGHTS, float weights[],
 IMSLS_SUM_FREQ, int *sum_frequencies,
 IMSLS_SUM_WEIGHTS, float *sum_weights,
 IMSLS_N_ROWS_MISSING, int *nrmiss,
 IMSLS_MEANS, float **means,
 IMSLS_MEANS_USER, float means[],
 IMSLS_R, float **R_matrix,
 IMSLS_R_USER, float R_matrix[],
 IMSLS_RETURN_USER, float test_statistics[],

0)

Optional Arguments
IMSLS_FREQUENCIES, float frequencies[] (Input)

Array of size n_rows containing the frequencies. Frequencies must be
integer valued. Default assumes all frequencies equal one.

IMSLS_WEIGHTS, float weights[] (Input)
Array of size n_rows containing the weights. Weights must be greater
than non-negative. Default assumes all weights equal one.

IMSLS_SUM_FREQ, int *sum_frequencies (Output)
The sum of the frequencies of all observations used in the computations.

IMSLS_SUM_WEIGHTS, float *weights[] (Output)
The sum of the weights times the frequencies for all observations used in
the computations.

IMSLS_N_ROWS_MISSING, int **nrmiss (Output)
Number of rows of data in x[] containing any missing values (NaN).

IMSLS_MEANS, float **means (Output)
The address of a pointer to an array of length n_variables
containing the sample means.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by user. See IMSLS_MEANS.

IMSLS_R, float **R_matrix (Output)
The address of a pointer to an n_variables by n_variables upper

Chapter 7: Tests of Goodness of Fit multivar_normality_test � 503

triangular matrix containing the Cholesky RTR factorization of the
covariance matrix.

IMSLS_R_USER, float R_matrix[] (Output)
Storage for array R_matrix is provided by user. See IMSLS_R.

IMSLS_RETURN_USER, float stat[] (Output)
User supplied array of dimension 13 containing the estimates and their
associated test statistics.

Description
Function imsls_f_multivar_normality_test computes Mardia’s (1970)
measures b��p and b��p of multivariate skewness and kurtosis, respectfully, for
p = n_variables. These measures are then used in computing tests for
multivariate normality. Three test statistics, one based upon b��p alone, one based
upon b��p alone, and an omnibus test statistic formed by combining normal scores
obtained from b��p and b��p are computed. On the order of np�, operations are
required in computing b��p when the method of Isogai (1983) is used, where

n = n_observations. On the order of np2, operations are required in
computing b��p.

Let
1() (T

ij i j i jd w w x x S x�

� �)x�

where

1

1

11

()()

1

n T
i i i i i

n
i i

n

i i in
ii i i

w f x x x x
S

f

x w f x
w f

�

�

��

� � �
�

�

�
�

�

fi is the frequency of the i-th observation, and wi is the weight for this
observation. (Weights wi are defined such that xi is distributed according to a
multivariate normal, N(
, �/wi) distribution, where � is the covariance matrix.)
Mardia’s multivariate skewness statistic is defined as:

3
1, 2

1 1

1 n n

p i j ij
i j

b f
n

� �

� �� f d

while Mardia’s kurtosis is given as:

2
2,

1

1 n

p i ii
i

b f
n

�

� � d

Both measures are invariant under the affine (matrix) transformation AX + D,
and reduce to the univariate measures when p = n_variables = 1. Using
formulas given in Mardia and Foster (1983), the approximate expected value,

504 � multivar_normality_test IMSL C/Stat/Library

asymptotic standard error, and asymptotic p-value for b��p, and the approximate
expected value, an asymptotic chi-squared statistic, and p-value for the b��p
statistic are computed. These statistics are all computed under the null hypothesis
of a multivariate normal distribution. In addition, standard normal scores W�(b��p)
and W�(b��p) (different from but similar to the asymptotic normal and chi-squared
statistics above) are computed. These scores are combined into an asymptotic chi-
squared statistic with two degrees of freedom:

� � � �2 2
1 1, 2 2,W pS W b W b� � p

This chi-squared statistic may be used to test for multivariate normality.
A p-value for the chi-squared statistic is also computed.

Example
In the following example, 150 observations from a 5 dimensional standard normal
distribution are generated via routine imsls_f_random_normal (Chapter 12,
“Random Number Generation”). The skewness and kurtosis statistics are then
computed for these observations.

#include <imsls.h>

#include <stdio.h>

void main()

{

 float *x, swt, *xmean, *r, *stats;

 int nobs = 150, ncol = 5, nvar = 5, izero = 0, ni, nrmiss;

 imsls_random_seed_set(123457);

 x = imsls_f_random_normal(nobs*nvar, 0);

 stats = imsls_f_multivar_normality_test(nobs, nvar, x,

 IMSLS_SUM_FREQ, &ni,

 IMSLS_SUM_WEIGHTS, &swt,

 IMSLS_N_ROWS_MISSING, &nrmiss,

 IMSLS_R, &r,IMSLS_MEANS, &xmean,
 0);
 printf("Sum of frequencies = %d\nSum of the weights =%8.3f\nNumber

rows missing = %3d\n", ni, swt, nrmiss);

 imsls_f_write_matrix("stat", 13, 1, stats,

 IMSLS_ROW_NUMBER_ZERO,

 0)

}

Output
Sum of frequencies = 150
Sum of the weights = 150.000

Chapter 7: Tests of Goodness of Fit randomness_test � 505

Number rows missing = 0

 stat
0 0.73
1 1.36
2 18.62
3 0.99
4 -2.37
5 32.67
6 34.54
7 1.27
8 -1.48
9 0.14
10 1.62
11 8.24
12 0.02

 means
 1 2 3 4 5
0.02623 0.09238 0.06536 0.09819 0.05639

 R
 1 2 3 4 5
1 1.033 -0.084 -0.065 0.108 -0.067
2 0.000 1.049 -0.097 -0.042 -0.021
3 0.000 0.000 1.063 0.006 -0.145
4 0.000 0.000 0.000 0.942 -0.084
5 0.000 0.000 0.000 0.000 0.949

randomness_test
Performs a test for randomness.

Synopsis
#include <imsls.h>
float imsls_f_randomness_test (int n_observations, float x[],

int n_run..., 0)

The type double function is imsls_d_randomness_test.

Required Arguments

int n_observations (Input)
Number of observations in x.

float x[] (Input)
Array of size n_observations containing the data.

int n_run (Input)
Length of longest run for which tabulation is desired. For optional
arguments IMSLS_PAIRS, IMSLS_DSQUARE, and IMSLS_DCUBE,

506 � randomness_test IMSL C/Stat/Library

n_run stands for the number of equiprobable cells into which the
statistics are to be tabulated.

Return Value

The probability of a larger chi-squared statistic for testing the null hypothesis of a
uniform distribution.

Synopsis with Optional Arguments

#include <imsls.h>
float imsls_f_randomness_test (int n_observations_x, float x[], int

n_run, ...
 IMSLS_RUNS, float **runs_count, float **covariances,
 IMSLS_RUNS_USER, float runs_count[], float covariances[],

IMSLS_PAIRS, int pairs_lag, float **pairs_count,
 IMSLS_PAIRS_USER, int pairs_lag, float pairs_count[],
 IMSLS_DSQUARE, float **dsquare_count,
 IMSLS_DSQUARE_USER, float dsquare_count[],

 IMSLS_DCUBE, float **dcube_count,
 IMSLS_DCUBE_USER, float dcube_count[],
 IMSLS_RUNS_EXPECT, float **runs_expect,
 IMSLS_RUNS_EXPECT_USER, float runs_expect[],

 IMSLS_EXPECT, float *expect,
 IMSLS_CHI_SQUARED, float *chi_squared,
 IMSLS_DF, float *df,
 IMSLS_RETURN USER, float *pvalue,
 0)

Optional Arguments
IMSLS_RUNS, float **runs_count, float **covariances, (Output) or
IMSLS_PAIRS, int pairs_lag (Input), float **pairs_count,(Output) or
IMSLS_DSQUARE, float **dsquare_count, (Output) or
IMSLS_DCUBE, float **dcube_count, (Output)
 IMSLS_RUNS indicates the runs test is to be performed. Array of

length n_run containing the counts of the number of runs up of each
length is returned in *runs_counts. n_run by n_observations
matrix containing the variances and covariances of the counts is returned
in *covariances. IMSLS_RUNS is the default test, however, to return
the counts and covariances IMSLS_RUNS argument must be used.

Chapter 7: Tests of Goodness of Fit randomness_test � 507

 IMSLS_PAIRS indicates the pairs test is to be performed. The lag to be
used in computing the pairs statistic is stored in pairs_lag. Pairs
(X[i], X[i + pairs_lag]) for i = 0,…, N – pairs_lag -1
are tabulated, where N is the total sample size. n_run by n_run matrix
containing the count of the number of pairs in each cell is returned in
pairs_user.

 IMSLS_DSQUARE indicates the d2 test is to be performed.
**dsquare_counts is an address of a pointer to an internally allocated
array of length n_run containing the tabulations for the d2 test.

 IMSLS_DCUBE indicates the triplets test is to be performed.
**dcube_counts is an address of a pointer to an internally allocated
array of length n_run by n_run by n_run containing the tabulations for
the triplets test.

IMSLS_RUNS_USER, float runs_counts[], float covariances[] (Output)
Storage for runs_counts and covariances is provided by the user.
See IMSLS_RUNS.

IMSLS_PAIRS_USER, int pairs_lag, float pairs_counts[] (Output)
Storage for pairs_lag and pairs_counts is provided by the user.
See IMSLS_PAIRS.

IMSLS_DSQUARE_USER, float dsquare_count[] (Output)
Storage for dsquare_count is provided by the user.
See IMSLS_DSQUARE.

IMSLS_DCUBE_USER, float dcube_count[] (Output)
Storage for dcube_count is provided by the user. See IMSLS_DCUBE.

IMSLS_CHI_SQUARED, float *chi_squared (Output)
Chi-squared statistic for testing the null hypothesis of a uniform
distribution.

IMSLS_DF, float *df (Output)
Degrees of freedom for chi-squared.

IMSLS_RETURN_USER, float *pvalue (Output)
If specified, pvalue returns the probability of a larger chi-squared
statistic for testing the null hypothesis of a uniform distribution.

If IMSLS_RUNS is specified:
IMSLS_RUNS_EXPECT, float **runs_expect (Output)

The address of a pointer to an internally allocated array of length
n_run containing the expected number of runs of each length.

IMSLS_RUNS_EXPECT_USER, float runs_expect[] (Output)
Storage for runs_expect is provided by the user.
See IMSLS_RUNS_EXPECT.

If IMSLS_PAIRS, IMSLS_DSQUARE, or IMSLS_DCUBE is specified:

508 � randomness_test IMSL C/Stat/Library

IMSLS_EXPECT, float **expect (Output)
Expected number of counts for each cell. This argument is optional only
if one of IMSLS_PAIRS, IMSLS_DSQUARE, or IMSLS_DCUBE is used.

Description

Runs Up Test

Function imsls_f_randomness_test performs one of four different tests for
randomness. Optional argument IMSLS_RUNS computes statistics for the runs up
test. Runs tests are used to test for cyclical trend in sequences of random
numbers. If the runs down test is desired, each observation should first be
multiplied by �1 to change its sign, and IMSLS_RUNS called with the modified
vector of observations.

IMSLS_RUNS first tallies the number of runs up (increasing sequences) of each
desired length. For i = 1, �, r � 1, where r = n_run, runs_count[i] contains the
number of runs of length i. runs_count[n_run] contains the number of runs of
length n_run or greater. As an example of how runs are counted, the sequence
(1, 2, 3, 1) contains 1 run up of length 3, and one run up of length 1.

After tallying the number of runs up of each length, IMSLS_RUNS computes the
expected values and the covariances of the counts according to methods given by
Knuth (1981, pages 65�67). Let R denote a vector of length n_run containing
the number of runs of each length so that the i-th element of R, ri, contains the
count of the runs of length i. Let �R denote the covariance matrix of R under the
null hypothesis of randomness, and let
R denote the vector of expected values
for R under this null hypothesis, then an approximate chi-squared statistic with
n_run degrees of freedom is given as

2 1() ()T
R R RR R� � �

�

� � � �

In general, the larger the value of each element of
R, the better the chi-squared
approximation.

Pairs Test
IMSLS_PAIRS computes the pairs test (or the Good’s serial test) on a
hypothesized sequence of uniform (0,1) pseudorandom numbers. The test
proceeds as follows. Subsequent pairs (X(i), X(i + pairs_lag)) are tallied into a
k � k matrix, where k = n_run. In this tally, element (j, m) of the matrix is
incremented, where

() 1

()

j kX i

m kX i l

� �� �� �

� � 1�� �� �

where l = pairs_lag, and the notation � � represents the greatest integer
function, �Y� is the greatest integer less than or equal to Y, where Y is a real
number. If l = 1, then i = 1, 3, 5, �, n � 1. If l > 1, then i = 1, 2, 3, �, n � l,

Chapter 7: Tests of Goodness of Fit randomness_test � 509

where n is the total number of pseudorandom numbers input on the current
invocation of IMSLS_PAIRS (i.e., n = n_observations).

Given the tally matrix in pairs_count, chi-squared is computed as
21

2

, 0

()k
ij

i j

o e
e

�

�

�

�

� �

where e = oij/k2, and oij is the observed count in cell (i, j)
(oij = pairs_count(i, j)).

Because pair statistics for the trailing observations are not tallied on any call, the
user should call IMSLS_PAIRS with n_observations as large as possible. For
pairs_lag < 20 and n_observations = 2000, little power is lost.

d 2 Test
IMSLS_DSQAR computes the d2 test for succeeding quadruples of hypothesized
pseudorandom uniform (0, 1) deviates. The d 2 test is performed as follows. Let
X�, X�, X�, and X� denote four pseudorandom uniform deviates, and consider

D2 = (X� �X�)2 + (X� � X�)2

The probability distribution of D2 is given as
3 4

2 2 2 8Pr()
3 2
d dD d d �� � � �

when D2 	 1, where � denotes the value of pi. If D2 > 1, this probability is given
as

2 2 2 2

322 4 2
2

1Pr() (2) 4 1
3

11(1)8 4 arctan
13 2

D d d d

d d dd

d

�� � � � � �

� �
�� �� � �� � �

� �
� �
	

See Gruenberger and Mark (1951) for a derivation of this distribution.

For each succeeding set of 4 pseudorandom uniform numbers input in X, d2 and
the cumulative probability of d2 (Pr(D� 	 d 2)) are computed. The resulting
probability is tallied into one of k = n_run equally spaced intervals.

Let n denote the number of sets of four random numbers input (n = the total
number of observations/4). Then, under the null hypothesis that the numbers input
are random uniform (0, 1) numbers, the expected value for each element in
dsquare_count is e = n/k. An approximate chi-squared statistic is computed as

510 � randomness_test IMSL C/Stat/Library

21
2

0

()k
i

i

o e
e

�

�

�

�

��

where oi = dsquare_count(i) is the observed count. Thus, �2 has k � 1 degrees
of freedom, and the null hypothesis of pseudorandom uniform (0, 1) deviates is
rejected if �2 is too large. As n increases, the chi-squared approximation becomes
better. A useful generalization is that e > 5 yields a good chi-squared
approximation.

Triplets Test
IMSLS_DCUBE computes the triplets test on a sequence of hypothesized
pseudorandom uniform(0, 1) deviates. The triplets test is computed as follows:

Each set of three successive deviates, X

�
, X

�
, and X

�
, is tallied into one of m� equal

sized cubes, where m = n_run. Let i = [mX�] + 1, j = [mX�] + 1, and
k = [mX

�
] + 1. For the triplet (X

�
, X

�
, X

�
), dcube_count(i, j, k) is incremented.

Under the null hypothesis of pseudorandom uniform(0, 1) deviates, the m� cells
are equally probable and each has expected value e = n/m�, where n is the number
of triplets tallied. An approximate chi-squared statistic is computed as

21
2

, , 0

()k
ijk

i j k

o e
e

�

�

�

�

� �

where oijk = dcube_count(i, j, k).

The computed chi-squared has m� � 1 degrees of freedom, and the null hypothesis
of pseudorandom uniform (0, 1) deviates is rejected if �2 is too large.

Example 1
The following example illustrates the use of the runs test on 104 pseudo-random
uniform deviates. In the example, 2000 deviates are generated for each call to
IMSLS_RUNS. Since the probability of a larger chi-squared statistic is 0.1872,
there is no strong evidence to support rejection of this null hypothesis of
randomness.

#include <imsls.h>

#include <stdio.h>

void main()

{

 int nran = 10000, n_run = 6;

 char *fmt = "%8.1f";

 float *x, pvalue, *runs_counts, *runs_expect, chisq, df;

 imsls_random_seed_set(123457);

 x = imsls_f_random_uniform(nran, 0);

 pvalue = imsls_f_randomness_test(nran, x, n_run,

Chapter 7: Tests of Goodness of Fit randomness_test � 511

 IMSLS_CHI_SQUARED, &chisq,

 IMSLS_DF, &df,

 IMSLS_RUNS_EXPECT, &runs_expect,

 IMSLS_RUNS, &runs_counts, &covariances,

 0);

 imsls_f_write_matrix("runs_counts", 1, n_run, runs_counts, 0);

 imsls_f_write_matrix("runs_expect", 1, n_run, runs_expect,

 IMSLS_WRITE_FORMAT, fmt,

 0);

 imsls_f_write_matrix("covariances", n_run, n_run, covariances,

 IMSLS_WRITE_FORMAT, fmt,

 0);

 printf("chisq = %f\n", chisq);

 printf("df = %f\n", df);

 printf("pvalue = %f\n", pvalue);

}

Output
 runs_count
 1 2 3 4 5 6
1709.0 2046.0 953.0 260.0 55.0 4.0

 runs_expect
 1 2 3 4 5 6
1667.3 2083.4 916.5 263.8 57.5 11.9

 covariances
 1 2 3 4 5 6
1 1278.2 -194.6 -148.9 -71.6 -22.9 -6.7
2 -194.6 1410.1 -490.6 -197.2 -55.2 -14.4
3 -148.9 -490.6 601.4 -117.4 -31.2 -7.8
4 -71.6 -197.2 -117.4 222.1 -10.8 -2.6
5 -22.9 -55.2 -31.2 -10.8 54.8 -0.6
6 -6.7 -14.4 -7.8 -2.6 -0.6 11.7
chisq = 8.76514
df = 6.00000
pvalue = 0.187225

Example 2
The following example illustrates the calculations of the IMSLS_PAIRS statistics
when a random sample of size 10� is used and the pairs_lag is 1. The results
are not significant. IMSL routine imsls_f_random_uniform (Chapter 12,
“Random Number Generation) is used in obtaining the pseudorandom deviates.

#include <imsls.h>

#include <stdio.h>

512 � randomness_test IMSL C/Stat/Library

void main()

{

 int nran = 10000, n_run = 10;

 float *x, pvalue, *pairs_counts, expect, chisq, df;

 imsls_random_seed_set(123467);

 x = imsls_f_random_uniform(nran, 0);

 pvalue = imsls_f_randomness_test(nran, x, n_run,

 IMSLS_CHI_SQUARED, &chisq,

 IMSLS_DF, &df,

 IMSLS_EXPECT, &expect,

 IMSLS_PAIRS, 5, &pairs_counts,

 0);

 imsls_f_write_matrix("pairs_counts", n_run, n_run, pairs_counts, 0);

 printf("expect = %8.2f\n", expect);

 printf("chisq = %8.2f\n", chisq);

 printf("df = %8.2f\n", df);

 printf("pvalue = %10.4f\n", pvalue);

}

Output
pairs_counts
 1 2 3 4 5 6 7 8 9 10
 1 112 82 95 118 103 103 113 84 90 74
 2 104 106 109 108 101 98 102 92 109 88
 3 88 111 86 106 112 79 103 105 106 101
 4 91 110 108 92 88 108 113 93 105 114
 5 104 105 103 104 101 94 96 87 93 104
 6 98 104 103 104 79 89 92 104 92 100
 7 103 91 97 101 116 83 118 118 106 99
 8 105 105 111 91 93 82 100 104 110 89
 9 92 102 82 101 94 128 102 110 125 98
10 79 99 103 98 104 101 93 93 98 105

expect = 99.95
chisq = 104.86
df = 99.00
pvalue = 0.3242

Example 3
In the following example, 2000 observations generated via IMSL routine
imsls_f_random_uniform (Chapter 12, “Random Number Generation”) are
input to IMSLS_DSQAR in one call. In the example, the null hypothesis of a
uniform distribution is not rejected.

#include <imsls.h>

#include <stdio.h>

Chapter 7: Tests of Goodness of Fit randomness_test � 513

void main()

{

 int nran = 2000, n_run = 6;

 float *x, pvalue, *dsquare_counts, *covariances, expect, chisq, df;

 imsls_random_seed_set(123457);

 x = imsls_f_random_uniform(nran, 0);

 pvalue = imsls_f_randomness_test(nran, x, n_run,

 IMSLS_CHI_SQUARED, &chisq,

 IMSLS_DF, &df,

 IMSLS_EXPECT, &expect,

 IMSLS_DSQUARE, &dsquare_counts,

 0);

 imsls_f_write_matrix("dsquare_counts", 1, n_run, dsquare_counts, 0);

 printf("expect = %10.4f\n", expect);

 printf("chisq = %10.4f\n", chisq);

 printf("df = %8.2f\n", df);

 printf("pvalue = %10.4f\n", pvalue);

}

Output
 dsquare_counts
 1 2 3 4 5 6
 87 84 78 76 92 83
expect = 83.3333
chisq = 2.0560
df = 5.00
pvalue = 0.8413

Example 4
In the following example, 2001 deviates generated by IMSL routine
imsls_f_random_uniform (Chapter 12, “Regression”) are input to
IMSLS_DCUBE, and tabulated in 27 equally sized cubes. In the example, the null
hypothesis is not rejected.

#include <imsls.h>

#include <stdio.h>

void main()

{

 int nran = 2001, n_run = 3;

 float *x, pvalue, *dcube_counts, expect, chisq, df;

 imsls_random_seed_set(123457);

 x = imsls_f_random_uniform(nran, 0);

 pvalue = imsls_f_randomness_test(nran, x, n_run,

514 � randomness_test IMSL C/Stat/Library

 IMSLS_CHI_SQUARED, &chisq,

 IMSLS_DF, &df,

 IMSLS_EXPECT, &expect,

 IMSLS_DCUBE, &dcube_counts,

 0);

imsls_f_write_matrix("dcube_counts", n_run, n_run, dcube_counts, 0);

imsls_f_write_matrix("dcube_counts", n_run, n_run,
&dcube_counts[n_run*n_run], 0);

imsls_f_write_matrix("dcube_counts", n_run, n_run,
&dcube_counts[2*n_run*n_run], 0);

 printf("expect = %10.4f\n", expect);

 printf("chisq = %10.4f\n", chisq);

 printf("df = %8.2f\n", df);

 printf("pvalue = %10.4f\n", pvalue);

}

Output
 dcube_counts

 1 2 3
1 26 27 24
2 20 17 32
3 30 18 21

 dcube_counts
 1 2 3
1 20 16 26
2 22 22 27
3 30 24 26

 dcube_counts
 1 2 3
1 28 30 22
2 23 24 22
3 33 30 27
expect = 24.7037
chisq = 21.7631
df = 26.0000
pvalue = 0.701586

IMSL C/Stat/library Appendix A: References � A-1

Appendix A: References

Abramowitz and Stegun

Abramowitz, Milton and Irene A. Stegun (editors) (1964), Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical Tables,
National Bureau of Standards, Washington.

Afifi and Azen

Afifi, A.A. and S.P. Azen (1979), Statistical Analysis: A Computer Oriented
Approach, 2d ed., Academic Press, New York.

Agresti, Wackerly, and Boyette

Agresti, Alan, Dennis Wackerly, and James M. Boyette (1979), Exact conditional
tests for cross-classifications: Approximation of attained significance levels,
Psychometrika, 44, 75-83.

Ahrens and Dieter

Ahrens, J.H. and U. Dieter (1974), Computer methods for sampling from gamma,
beta, Poisson, and binomial distributions, Computing, 12, 223�246.

Ahrens, J.H., and U. Dieter (1985), Sequential random sampling, ACM
Transactions on Mathematical Software, 11, 157�169.

Anderberg
Anderberg, Michael R. (1973), Cluster Analysis for Applications, Academic
Press, New York.

Anderson

Anderson, T.W. (1971), The Statistical Analysis of Time Series, John Wiley &
Sons, New York.

Anderson and Bancroft

Anderson, R.L. and T.A. Bancroft (1952), Statistical Theory in Research,
McGraw-Hill Book Company, New York.

A-2 � Appendix A: References IMSL C/Stat/Library

Atkinson

Atkinson, A.C. (1979), A family of switching algorithms for the computer
generation of beta random variates, Biometrika, 66, 141�145.

Atkinson, A.C. (1985), Plots, Transformations, and Regression, Claredon Press,
Oxford.

Barrodale and Roberts

Barrodale, I., and F.D.K. Roberts (1973), An improved algorithm for discrete L�
approximation, SIAM Journal on Numerical Analysis, 10, 839�848.

Barrodale, I., and F.D.K. Roberts (1974), Solution of an overdetermined system
of equations in the l� norm, Communications of the ACM, 17, 319�320.

Barrodale, I., and C. Phillips (1975), Algorithm 495. Solution of an
overdetermined system of linear equations in the Chebyshev norm, ACM
Transactions on Mathematical Software, 1, 264�270.

Bartlett, M. S.

Bartlett, M.S. (1935), Contingency table interactions, Journal of the Royal
Statistics Society Supplement, 2, 248�252.

Bartlett, M. S. (1937) Some examples of statistical methods of research in
agriculture and applied biology, Supplement to the Journal of the Royal
Statistical Society, 4, 137-183.

Bartlett, M. (1937), The statistical conception of mental factors, British Journal
of Psychology, 28, 97–104.

Bartlett, M.S. (1946), On the theoretical specification and sampling properties of
autocorrelated time series, Supplement to the Journal of the Royal Statistical
Society, 8, 27–41.

Bartlett, M.S. (1978), Stochastic Processes, 3rd. ed., Cambridge University Press,
Cambridge.

Bays and Durham

Bays, Carter and S.D. Durham (1976), Improving a poor random number
generator, ACM Transactions on Mathematical Software, 2, 59�64.

Bendel and Mickey

Bendel, Robert B., and M. Ray Mickey (1978), Population correlation matrices
for sampling experiments, Communications in Statistics, B7, 163�182.

IMSL C/Stat/library Appendix A: References � A-3

Best and Fisher

Best, D.J., and N.I. Fisher (1979), Efficient simulation of the von Mises
distribution, Applied Statistics, 28, 152�157.

Bishop et al

Bishop, Yvonne M.M., Stephen E. Feinberg, and Paul W. Holland (1975),
Discrete Multivariate Analysis: Theory and Practice, MIT Press, Cambridge,
Mass.

Bjorck and Golub

Bjorck, Ake, and Gene H. Golub (1973), Numerical Methods for Computing
Angles Between Subspaces, Mathematics of Computation, 27, 579�594.

Blom

Blom, Gunnar (1958), Statistical Estimates and Transformed Beta-Variables,
John Wiley & Sons, New York.

Bosten and Battiste

Bosten, Nancy E. and E.L. Battiste (1974), Incomplete beta ratio,
Communications of the ACM, 17, 156s�157.

Box and Jenkins

Box, George E.P. and Gwilym M. Jenkins (1976), Time Series Analysis:
Forecasting and Control, revised ed., Holden-Day, Oakland.

Box and Pierce

Box, G.E.P., and David A. Pierce (1970), Distribution of residual
autocorrelations in autoregressive-integrated moving average time series models,
Journal of the American Statistical Association, 65, 1509–1526.

Box and Tidwell

Box, G.E.P. and P.W. Tidwell (1962), Transformation of the independent
variables, Technometrics, 4, 531�550.

Boyette

Boyette, James M. (1979), Random RC tables with given row and column totals,
Applied Statistics, 28, 329�332.

Bradley

Bradley, J.V. (1968), Distribution-Free Statistical Tests, Prentice-Hall, New
Jersey.

A-4 � Appendix A: References IMSL C/Stat/Library

Breslow
Breslow, N.E. (1974), Covariance analysis of censored survival data, Biometrics,
30, 89�99.

Brown

Brown, Morton E. (1983), MCDP4F, two-way and multiway frequency tables-
measures of association and the log-linear model (complete and incomplete
tables), in BMDP Statistical Software, 1983 Printing with Additions, (edited by
W.J. Dixon), University of California Press, Berkeley.

Brown and Benedetti

Brown, Morton B. and Jacqualine K. Benedetti (1977), Sampling behavior and
tests for correlation in two-way contingency tables, Journal of the American
Statistical Association, 42, 309�315.

Cheng

Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape
parameters, Communications of the ACM, 21, 317�322.

Chiang

Chiang, Chin Long (1968), Introduction to Stochastic Processes in Statistics,
John Wiley & Sons, New York.

Conover

Conover, W.J. (1980), Practical Nonparametric Statistics, 2d ed., John Wiley &
Sons, New York.

Conover and Iman

Conover, W.J. and Ronald L. Iman (1983), Introduction to Modern Business
Statistics, John Wiley & Sons, New York.

Conover, W. J., Johnson, M. E., and Johnson, M. M

Conover, W. J., Johnson, M. E., and Johnson, M. M. (1981) A comparative study
of tests for homogeneity of variances, with applications to the outer continental
shelf bidding data, Technometrics, 23, 351-361.

Cook and Weisberg

Cook, R. Dennis and Sanford Weisberg (1982), Residuals and Influence in
Regression, Chapman and Hall, New York.

IMSL C/Stat/library Appendix A: References � A-5

Cooper

Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution
integrals, Applied Statistics, 17, 190�192.

Cox
Cox, David R. (1970), The Analysis of Binary Data, Methuen, London.

Cox, D.R. (1972), Regression models and life tables (with discussion), Journal of
the Royal Statistical Society, Series B, Methodology, 34, 187–220.

Cox and Lewis
Cox, D.R., and P.A.W. Lewis (1966), The Statistical Analysis of Series of Events,
Methuen, London.

Cox and Oakes
Cox, D.R., and D. Oakes (1984), Analysis of Survival Data, Chapman and Hall,
London.

Cox and Stuart

Cox, D.R., and A. Stuart (1955), Some quick sign tests for trend in location and
dispersion, Biometrika, 42, 80�95.

D'Agostino and Stevens

D'Agostino, Ralph B. and Michael A. Stevens (1986), Goodness-of-Fit
Techniques, Marcel Dekker, New York.

Dallal and Wilkinson

Dallal, Gerald E. and Leland Wilkinson (1986), An analytic approximation to the
distribution of Lilliefor's test statistic for normality, The American Statistician,
40, 294�296.

Dennis and Schnabel

Dennis, J.E., Jr. and Robert B. Schnabel (1983), Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood
Cliffs, New Jersey.

Devore

Devore, Jay L (1982), Probability and Statistics for Engineering and Sciences,
Brooks/Cole Publishing Company, Monterey, Calif.

A-6 � Appendix A: References IMSL C/Stat/Library

Draper and Smith

Draper, N.R. and H. Smith (1981), Applied Regression Analysis, 2d ed., John
Wiley & Sons, New York.

Durbin

Durbin, J. (1960), The fitting of time series models, Revue Institute
Internationale de Statistics, 28, 233–243.

Efroymson

Efroymson, M.A. (1960), Multiple regression analysis, Mathematical Methods
for Digital Computers, Volume 1, (edited by A. Ralston and H. Wilf), John Wiley
& Sons, New York, 191�203.

Ekblom

Ekblom, Hakan (1973), Calculation of linear best Lp-approximations, BIT, 13,
292�300.

Ekblom, Hakan (1987), The L�-estimate as limiting case of an Lp or Huber-
estimate, in Statistical Data Analysis Based on the L�-Norm and Related Methods
(edited by Yadolah Dodge), North-Holland, Amsterdam, 109�116.

Elandt-Johnson and Johnson

Elandt-Johnson, Regina C., and Norman L. Johnson (1980), Survival Models and
Data Analysis, John Wiley & Sons, New York, 172�173.

Emmett

Emmett, W.G. (1949), Factor analysis by Lawless method of maximum
likelihood, British Journal of Psychology, Statistical Section, 2, 90�97.

Engle

Engle, C. (1982), Autoregressive conditional heteroskedasticity with estimates of
the variance of U.K. inflation, Econometrica , 50, 987�1008.

Fisher

Fisher, R.A. (1936), The use of multiple measurements in taxonomic problems,
The Annals of Eugenics, 7, 179�188.

Fishman

Fishman, George S. (1978), Principles of Discrete Event Simulation, John Wiley
& Sons, New York.

IMSL C/Stat/library Appendix A: References � A-7

Fishman and Moore

Fishman, George S. and Louis R. Moore (1982), A statistical evaluation of
multiplicative congruential random number generators with modulus , Journal of
the American Statistical Association, 77, 129�136.

Forsythe

Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting
data with a digital computer, SIAM Journal on Applied Mathematics, 5, 74�88.

Fuller
Fuller, Wayne A. (1976), Introduction to Statistical Time Series, John Wiley &
Sons, New York.

Furnival and Wilson

Furnival, G.M. and R.W. Wilson, Jr. (1974), Regressions by leaps and bounds,
Technometrics, 16, 499�511.

Fushimi
Fushimi, Masanori (1990), Random number generation with the recursion
Xt = Xt-3p �Xt-3q, Journal of Computational and Applied Mathematics, 31,
105�118.

Gentleman

Gentleman, W. Morven (1974), Basic procedures for large, sparse or weighted
linear least squares problems, Applied Statistics, 23, 448�454.

Gibbons

Gibbons, J.D. (1971), Nonparametric Statistical Inference, McGraw-Hill, New
York.

Girschick

Girschick, M.A. (1939), On the sampling theory of roots of determinantal
equations, Annals of Mathematical Statistics, 10, 203�224.

Golub and Van Loan

Golub, Gene H. and Charles F. Van Loan (1983), Matrix Computations, Johns
Hopkins University Press, Baltimore, Md.

Gonin and Money

Gonin, Rene, and Arthur H. Money (1989), Nonlinear Lp-Norm Estimation,
Marcel Dekker, New York.

A-8 � Appendix A: References IMSL C/Stat/Library

Goodnight

Goodnight, James H. (1979), A tutorial on the SWEEP operator, The American
Statistician, 33, 149�158.

Graybill

Graybill, Franklin A. (1976), Theory and Application of the Linear Model,
Duxbury Press, North Scituate, Mass.

Griffin and Redish

Griffin, R. and K.A. Redish (1970), Remark on Algorithm 347: An efficient
algorithm for sorting with minimal storage, Communications of the ACM,
13, 54.

Gross and Clark

Gross, Alan J., and Virginia A. Clark (1975), Survival Distributions: Reliability
Applications in the Biomedical Sciences, John Wiley & Sons, New York.

Gruenberger and Mark

Gruenberger, F., and A.M. Mark (1951), The d� test of random digits,
Mathematical Tables and Other Aids in Computation, 5, 109�110.

Guerra et al.

Guerra, Victor O., Richard A. Tapia, and James R. Thompson (1976), A random
number generator for continuous random variables based on an interpolation
procedure of Akima, in Proceedings of the Ninth Interface Symposium on
Computer Science and Statistics, (edited by David C. Hoaglin and Roy E.
Welsch), Prindle, Weber & Schmidt, Boston, 228�230.

Haldane

Haldane, J.B.S. (1939), The mean and variance of when used as a test of
homogeneity, when expectations are small, Biometrika, 31, 346.

Harman

Harman, Harry H. (1976), Modern Factor Analysis, 3d ed. revised, University of
Chicago Press, Chicago.

Hart et al

Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K.
Mesztenyi, John R. Rice, Henry G. Thacher, Jr., and Christoph Witzgall (1968),
Computer Approximations, John Wiley & Sons, New York.

IMSL C/Stat/library Appendix A: References � A-9

Hartigan

Hartigan, John A. (1975), Clustering Algorithms, John Wiley & Sons, New York.

Hartigan and Wong

Hartigan, J.A. and M.A. Wong (1979), Algorithm AS 136: A K-means clustering
algorithm, Applied Statistics, 28, 100�108.

Hayter

Hayter, Anthony J. (1984), A proof of the conjecture that the Tukey-Kramer
multiple comparisons procedure is conservative, Annals of Statistics, 12, 61�75.

Heiberger

Heiberger, Richard M. (1978), Generation of random orthogonal matrices,
Applied Statistics, 27, 199�206.

Hemmerle.

Hemmerle, William J. (1967), Statistical Computations on a Digital Computer,
Blaisdell Publishing Company, Waltham, Mass.

Herraman

Herraman, C. (1968), Sums of squares and products matrix, Applied Statistics,
17, 289�292.

Hill

Hill, G.W. (1970), Student's t-distribution, Communications of the ACM, 13,
617�619.

Hill, G.W. (1970), Student's t-quantiles, Communications of the ACM, 13,
619�620.

Hinkelmann, K and Kemthorne

Hinkelmann, K and Kemthorne, O (1994) Design and Analysis of Experiments –
Vol 1, John Wiley.

Hinkley

Hinkley, David (1977), On quick choice of power transformation, Applied
Statistics, 26, 67�69.

Hoaglin and Welsch

Hoaglin, David C. and Roy E. Welsch (1978), The hat matrix in regression and
ANOVA, The American Statistician, 32, 17�22.

A-10 � Appendix A: References IMSL C/Stat/Library

Hocking

Hocking, R.R. (1972), Criteria for selection of a subset regression: Which one
should be used?, Technometrics, 14, 967�970.

Hocking, R.R. (1973), A discussion of the two-way mixed model, The American
Statistician, 27, 148�152.

Hocking, R.R. (1985), The Analysis of Linear Models, Brooks/Cole Publishing
Company, Monterey, California.

Huber

Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York.

Hughes and Saw

Hughes, David T., and John G. Saw (1972), Approximating the percentage points
of Hotelling’s generalized statistic, Biometrika, 59, 224�226. T0

2

Iman and Davenport

Iman, R.L., and J.M. Davenport (1980), Approximations of the critical region of
the Friedman statistic, Communications in Statistics, A9(6),
571�595.

Jennrich and Robinson

Jennrich, R.I. and S.M. Robinson (1969), A Newton-Raphson algorithm for
maximum likelihood factor analysis, Psychometrika, 34, 111�123.

Jennrich and Sampson
Jennrich, R.I. and P.F. Sampson (1966), Rotation for simple loadings,
Psychometrika, 31, 313–323.

John

John, Peter W.M. (1971), Statistical Design and Analysis of Experiments,
Macmillan Company, New York.

Jöhnk

Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten
Zufallszahlen, Metrika, 8, 5�15.

Johnson and Kotz

Johnson, Norman L., and Samuel Kotz (1969), Discrete Distributions, Houghton
Mifflin Company, Boston.

IMSL C/Stat/library Appendix A: References � A-11

Johnson, Norman L., and Samuel Kotz (1970a), Continuous Univariate
Distributions-1, John Wiley & Sons, New York.

Johnson, Norman L., and Samuel Kotz (1970b), Continuous Univariate
Distributions-2, John Wiley & Sons, New York.

Johnson and Welch

Johnson, D.G., and W.J. Welch (1980), The generation of pseudo-random
correlation matrices, Journal of Statistical Computation and Simulation, 11,
55�69.

Jonckheere

Jonckheere, A.R. (1954), A distribution-free k-sample test against ordered
alternatives, Biometrika, 41, 133�143.

Jöreskog

Jöreskog, K.G. (1977), Factor analysis by least squares and maximum-likelihood
methods, Statistical Methods for Digital Computers, (edited by Kurt Enslein,
Anthony Ralston, and Herbert S. Wilf), John Wiley & Sons, New York,
125�153.

Kachitvichyanukul

Kachitvichyanukul, Voratas (1982), Computer generation of Poisson, binomial,
and hypergeometric random variates, Ph.D. dissertation, Purdue University,
West Lafayette, Indiana.

Kaiser

Kaiser, H.F. (1963), Image analysis, Problems in Measuring Change, (edited by
C. Harris), University of Wisconsin Press, Madison, Wis.

Kaiser and Caffrey

Kaiser, H.F. and J. Caffrey (1965), Alpha factor analysis, Psychometrika, 30,
1�14.

Kalbfleisch and Prentice

Kalbfleisch, John D., and Ross L. Prentice (1980), The Statistical Analysis of
Failure Time Data, John Wiley & Sons, New York.

Kemp

Kemp, A.W., (1981), Efficient generation of logarithmically distributed pseudo-
random variables, Applied Statistics, 30, 249�253.

A-12 � Appendix A: References IMSL C/Stat/Library

Kendall and Stuart

Kendall, Maurice G. and Alan Stuart (1973), The Advanced Theory of Statistics,
Volume 2: Inference and Relationship, 3d ed., Charles Griffin & Company,
London.

Kendall, Maurice G. and Alan Stuart (1979), The Advanced Theory of Statistics,
Volume 2: Inference and Relationship, 4th ed., Oxford University Press, New
York.

Kendall et al.

Kendall, Maurice G., Alan Stuart, and J. Keith Ord (1983), The Advanced Theory
of Statistics, Volume 3: Design and Analysis, and Time Series, 4th. ed., Oxford
University Press, New York.

Kennedy and Gentle

Kennedy, William J., Jr. and James E. Gentle (1980), Statistical Computing,
Marcel Dekker, New York.

Kuehl, R. O.

Kuehl, R. O. (2000) Design of Experiments: Statistical Principles of Research
Design and Analysis, 2nd edition, Duxbury Press.

Kim and Jennrich

Kim, P.J., and R.I. Jennrich (1973), Tables of the exact sampling distribution of
the two sample Kolmogorov-Smirnov criterion Dmn (m < n), in Selected Tables in
Mathematical Statistics, Volume 1, (edited by H. L. Harter and D.B. Owen),
American Mathematical Society, Providence, Rhode Island.

Kinderman and Ramage

Kinderman, A.J., and J.G. Ramage (1976), Computer generation of normal
random variables, Journal of the American Statistical Association, 71, 893�896.

Kinderman et al.

Kinderman, A.J., J.F. Monahan, and J.G. Ramage (1977), Computer methods for
sampling from Student’s t distribution, Mathematics of Computation 31,
1009�1018.

Kinnucan and Kuki

Kinnucan, P. and H. Kuki (1968), A Single Precision INVERSE Error Function
Subroutine, Computation Center, University of Chicago.

IMSL C/Stat/library Appendix A: References � A-13

Kirk

Kirk, Roger E. (1982), Experimental Design: Procedures for the Behavioral
Sciences, 2d ed., Brooks/Cole Publishing Company, Monterey, Calif.

Knuth

Knuth, Donald E. (1981), The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, 2d ed., Addison-Wesley, Reading, Mass.

Kshirsagar

Kshirsagar, Anant M. (1972), Multivariate Analysis, Marcel Dekker, New York.

Lachenbruch

Lachenbruch, Peter A. (1975), Discriminant Analysis, Hafner Press, London.

Lai

Lai, D. (1998a), Local asymptotic normality for location-scale type processes.
Far East Journal of Theorectical Statistics, (in press).

Lai, D. (1998b), Asymptotic distributions of the correlation integral based
statistics. Journal of Nonparametric Statistics, (in press).

Lai, D. (1998c), Asymptotic distributions of the estimated BDS statistic and
residual analysis of AR Models on the Canadian lynx data. Journal
of Biological Systems, (in press).

Laird and Oliver

Laird, N.M., and D. Fisher (1981), Covariance analysis of censored survival data
using log-linear analysis techniques, JASA 76, 1231�1240.

Lawless

Lawless, J.F. (1982), Statistical Models and Methods for Lifetime Data, John
Wiley & Sons, New York.

Lawley and Maxwell

Lawley, D.N. and A.E. Maxwell (1971), Factor Analysis as a Statistical Method,
2d ed., Butterworth, London.

Learmonth and Lewis

Learmonth, G.P. and P.A.W. Lewis (1973), Naval Postgraduate School Random
Number Generator Package LLRANDOM, NPS55LW73061A, Naval
Postgraduate School, Monterey, Calif.

A-14 � Appendix A: References IMSL C/Stat/Library

Lee

Lee, Elisa T. (1980), Statistical Methods for Survival Data Analysis, Lifetime
Learning Publications, Belmont, Calif.

Lehmann

Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on Ranks,
Holden-Day, San Francisco.

Levenberg

Levenberg, K. (1944), A method for the solution of certain problems in least
squares, Quarterly of Applied Mathematics, 2, 164�168.

Levene, H.

Levene, H. (1960) In Contributions to Probability and Statistics: Essays in
Honor of Harold Hotelling, I. Olkin et al. editors, Stanford University Press,
278-292.

Lewis et al.

Lewis, P.A.W., A.S. Goodman, and J.M. Miller (1969), A pseudorandom number
generator for the System/360, IBM Systems Journal, 8, 136�146.

Liffiefors

Lilliefors, H.W. (1967), On the Kolmogorov-Smirnov test for normality with
mean and variance unknown, Journal of the American Statistical Association, 62,
534�544.

Ljung and Box

Ljung, G.M., and G.E.P. Box (1978), On a measure of lack of fit in time series
models, Biometrika, 65, 297–303.

Longley

Longley, James W. (1967), An appraisal of least-squares programs for the
electronic computer from the point of view of the user, Journal of the American
Statistical Association, 62, 819�841.

Marsaglia

Marsaglia, George (1964), Generating a variable from the tail of a normal
distribution, Technometrics, 6, 101�102.

Marsaglia, G. (1968), Random numbers fall mainly in the planes, Proceedings of
the National Academy of Sciences, 61, 25�28.

IMSL C/Stat/library Appendix A: References � A-15

Marsaglia, G. (1972), The structure of linear congruential sequences, in
Applications of Number Theory to Numerical Analysis, (edited by S. K.
Zaremba), Academic Press, New York, 249�286.

Marsaglia, George (1972), Choosing a point from the surface of a sphere,
The Annals of Mathematical Statistics, 43, 645�646.

McKean and Schrader

McKean, Joseph W., and Ronald M. Schrader (1987), Least absolute errors
analysis of variance, in Statistical Data Analysis Based on the L�-Norm and
Related Methods (edited by Yadolah Dodge), North-Holland, Amsterdam,
297�305.

McKeon

McKeon, James J. (1974), F approximations to the distribution of Hotelling’s
, Biometrika, 61, 381�383. T0

2

McCullagh and Nelder

McCullagh, P., and J.A. Nelder, (1983), Generalized Linear Models, Chapman
and Hall, London.

Maindonald

Maindonald, J.H. (1984), Statistical Computation, John Wiley & Sons, New
York.

Marazzi

Marazzi, Alfio (1985), Robust affine invariant covariances in ROBETH,
ROBETH-85 document No. 6, Division de Statistique et Informatique, Institut
Universitaire de Medecine Sociale et Preventive, Laussanne.

Mardia et al.

Mardia, K.V. (1970), Measures of multivariate skewness and kurtosis with
applications, Biometrics, 57, 519�530.

Mardia, K.V., J.T. Kent, J.M. Bibby (1979), Multivariate Analysis, Academic
Press, New York.

Mardia and Foster

Mardia, K.V. and K. Foster (1983), Omnibus tests of multinormality based on
skewness and kurtosis, Communications in Statistics A, Theory and Methods, 12,
207�221.

A-16 � Appendix A: References IMSL C/Stat/Library

Marquardt

Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear
parameters, SIAM Journal on Applied Mathematics, 11, 431�441.

Marsaglia

Marsaglia, George (1964), Generating a variable from the tail of a normal
distribution, Technometrics, 6, 101�102.

Marsaglia and Bray

Marsaglia, G. and T.A. Bray (1964), A convenient method for generating normal
variables, SIAM Review, 6, 260�264.

Marsaglia et al.

Marsaglia, G., M.D. MacLaren, and T.A. Bray (1964), A fast procedure for
generating normal random variables, Communications of the ACM, 7, 4�10.

Merle and Spath

Merle, G., and H. Spath (1974), Computational experiences with discrete Lp
approximation, Computing, 12, 315�321.

Miller

Miller, Rupert G., Jr. (1980), Simultaneous Statistical Inference, 2d ed.,
Springer-Verlag, New York.

Milliken and Johnson

Milliken, George A. and Dallas E. Johnson (1984), Analysis of Messy Data,
Volume 1: Designed Experiments, Van Nostrand Reinhold, New York.

Moran

Moran, P.A.P. (1947), Some theorems on time series I, Biometrika, 34,
281�291.

Moré et al.

Moré, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User Guide for [4]
MINPACK-1, Argonne National Laboratory Report ANL-80_74, Argonne, Ill.

Morrison

Morrison, Donald F. (1976), Multivariate Statistical Methods, 2nd. ed. McGraw-
Hill Book Company, New York.

IMSL C/Stat/library Appendix A: References � A-17

Muller

Muller, M.E. (1959), A note on a method for generating points uniformly on
N-dimensional spheres, Communications of the ACM, 2, 19�20.

Nelson

Nelson, D. B. (1991), Conditional heteroskedasticity in asset returns: A new
approach. Econometrica, , 59, 347�370.

Nelson

Nelson, Peter (1989), Multiple Comparisons of Means Using Simultaneous
Confidence Intervals, Journal of Quality Technology, 21, 232�241.

Neter

Neter, John (1983), Applied Linear Regression Models, Richard D. Irwin,
Homewood, Ill.

Neter and Wasserman

Neter, John and William Wasserman (1974), Applied Linear Statistical Models,
Richard D. Irwin, Homewood, Ill.

Noether

Noether, G.E. (1956), Two sequential tests against trend, Journal of the American
Statistical Association, 51, 440�450.

Owen

Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing
Company, Reading, Mass.

Owen, D.B. (1965), A special case of the bivariate non-central t distribution,
Biometrika, 52, 437�446.

Palm

Palm, F. C. (1996), GARCH models of volatility. In Handbook of Statistics,
Vol. 14, 209-240. Eds: Maddala and Rao. Elsevier,New York.

Patefield

Patefield, W.M. (1981), An efficient method of generating R � C tables with
given row and column totals, Applied Statistics, 30, 91�97.

A-18 � Appendix A: References IMSL C/Stat/Library

Patefield and Tandy
Patefield, W.M. (1981), and Tandy D. (2000) Fast and Accurate Calculation of
Owen’s T-Function, J. Statistical Software, 5, Issue 5.

Peixoto

Peixoto, Julio L. (1986), Testable hypotheses in singular fixed linear models,
Communications in Statistics: Theory and Methods, 15,
1957�1973.

Petro

Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting
with minimal storage, Communications of the ACM, 13, 624.

Pillai

Pillai, K.C.S. (1985), Pillai’s trace, in Encyclopedia of Statistical Sciences,
Volume 6, (edited by Samuel Kotz and Norman L. Johnson), John Wiley & Sons,
New York, 725�729.

Pregibon

Pregibon, Daryl (1981), Logistic regression diagnostics, The Annals of Statistics,
9, 705�724.

Prentice

Prentice, Ross L. (1976), A generalization of the probit and logit methods for
dose response curves, Biometrics, 32, 761�768.

Priestley
Priestley, M.B. (1981), Spectral Analysis and Time Series, Volumes 1 and 2,
Academic Press, New York.

Rao

Rao, C. Radhakrishna (1973), Linear Statistical Inference and Its Applications,
2d ed., John Wiley & Sons, New York.

Robinson

Robinson, Enders A. (1967), Multichannel Time Series Analysis with Digital
Computer Programs, Holden-Day, San Francisco.

Royston

Royston, J.P. (1982a), An extension of Shapiro and Wilk's W test for normality to
large samples, Applied Statistics, 31, 115�124.

IMSL C/Stat/library Appendix A: References � A-19

Royston, J.P. (1982b), The W test for normality, Applied Statistics, 31, 176�180.

Royston, J.P. (1982c), Expected normal order statistics (exact and approximate),
Applied Statistics, 31, 161�165.

Sallas

Sallas, William M. (1990), An algorithm for an Lp norm fit of a multiple linear
regression model, American Statistical Association 1990 Proceedings of the
Statistical Computing Section, 131�136.

Sallas and Lionti

Sallas, William M. and Abby M. Lionti (1988), Some useful computing formulas
for the nonfull rank linear model with linear equality restrictions, IMSL
Technical Report 8805, IMSL, Houston.

Savage

Savage, I. Richard (1956), Contributions to the theory of rank order statistics-the
two-sample case, Annals of Mathematical Statistics, 27, 590�615.

Scheffe

Scheffe, Henry (1959), The Analysis of Variance, John Wiley & Sons, New York.

Schmeiser

Schmeiser, Bruce (1983), Recent advances in generating observations from
discrete random variates, Computer Science and Statistics: Proceedings of the
Fifteenth Symposium on the Interface, (edited by James E. Gentle), North-
Holland Publishing Company, Amsterdam, 154�160.

Schmeiser and Babu

Schmeiser, Bruce W. and A.J.G. Babu (1980), Beta variate generation via
exponential majorizing functions, Operations Research, 28, 917�926.

Schmeiser and Kachitvichyanukul

Schmeiser, Bruce and Voratas Kachitvichyanukul (1981), Poisson Random
Variate Generation, Research Memorandum 81�4, School of Industrial
Engineering, Purdue University, West Lafayette, Ind.

Schmeiser and Lal

Schmeiser, Bruce W. and Ram Lal (1980), Squeeze methods for generating
gamma variates, Journal of the American Statistical Association, 75, 679�682.

A-20 � Appendix A: References IMSL C/Stat/Library

Searle

Searle, S.R. (1971), Linear Models, John Wiley & Sons, New York.

Seber

Seber, G.A.F. (1984), Multivariate Observations, John Wiley & Sons, New York.

Snedecor and Cochran

Snedecor and Cochran (1967) Statistical Methods, 6th edition, Iowa State
University Press.

Snedecor, George W. & Cochran, William G.

Snedecor, George W. and Cochran, William G. (1967) Statistical Methods, 6th
edition, Iowa State University Press, 296-298.

Shampine

Shampine, L.F. (1975), Discrete least-squares polynomial fits, Communications
of the ACM, 18, 179�180.

Siegal

Siegal, Sidney (1956), Nonparametric Statistics for the Behavioral Sciences,
McGraw-Hill, New York.

Singleton

Singleton, R.C. (1969), Algorithm 347: An efficient algorithm for sorting with
minimal storage, Communications of the ACM, 12, 185�187.

Smirnov

Smirnov, N.V. (1939), Estimate of deviation between empirical distribution
functions in two independent samples (in Russian), Bulletin of Moscow
University, 2, 3�16.

Smith and Dubey

Smith, H., and S. D. Dubey (1964), "Some reliability problems in the chemical
industry", Industrial Quality Control, 21 (2), 1964, 64-70.

Snedecor and Cochran

Snedecor, George W. and William G. Cochran (1967), Statistical Methods, 6th
ed., Iowa State University Press, Ames, Iowa.

IMSL C/Stat/library Appendix A: References � A-21

Sposito

Sposito, Vincent A. (1989), Some properties of Lp-estimators, in Robust
Regression: Analysis and Applications (edited by Kenneth D. Lawrence and
Jeffrey L. Arthur), Marcel Dekker, New York, 23�58.

Spurrier and Isham

Spurrier, John D. and Steven P. Isham (1985), Exact simultaneous confidence
intervals for pairwise comparisons of three normal means, Journal of the
American Statistical Association, 80, 438�442.

Stablein, Carter, and Novak
Stablein, D.M, W.H. Carter, and J.W. Novak (1981), Analysis of survival data
with nonproportional hazard functions, Controlled Clinical Trials, 2, 149–159.

Stahel

Stahel, W. (1981), Robuste Schatzugen: Infinitesimale Opimalitat und
Schatzugen von Kovarianzmatrizen, Dissertation no. 6881, ETH, Zurich.

Steel and Torrie

Steel and Torrie (1960) Principles and Procedures of Statistics, McGraw-Hill.

Stephens

Stephens, M.A. (1974), EDF statistics for goodness of fit and some comparisons,
Journal of the American Statistical Association, 69, 730�737.

Stirling

Stirling, W.D. (1981), Least squares subject to linear constraints, Applied
Statistics, 30, 204�212. (See correction, p. 357.)

Stoline

Stoline, Michael R. (1981), The status of multiple comparisons: simultaneous
estimation of all pairwise comparisons in one-way ANOVA designs,
The American Statistician, 35, 134�141.

Strecok

Strecok, Anthony J. (1968), On the calculation of the inverse of the error
function, Mathematics of Computation, 22, 144�158.

A-22 � Appendix A: References IMSL C/Stat/Library

Tanner and Wong
Tanner, Martin A., and Wing H. Wong (1983), The estimation of the hazard
function from randomly censored data by the kernel method, Annals of Statistics,
11, 989–993.

Tanner, Martin A., and Wing H. Wong (1984), Data-based nonparametric
estimation of the hazard function with applications to model diagnostics and
exploratory analysis, Journal of the American Statistical Association, 79, 123–
456.

Taylor and Thompson

Taylor, Malcolm S., and James R. Thompson (1986), Data based random number
generation for a multivariate distribution via stochastic simulation,
Computational Statistics & Data Analysis, 4, 93�101.

Tezuka

Tezuka, S. (1995), Uniform Random Numbers: Theory and Practice. Academic
Publishers, Boston.

Thompson

Thompson, James R, (1989), Empirical Model Building, John Wiley & Sons,
New York.

Tucker and Lewis

Tucker, Ledyard and Charles Lewis (1973), A reliability coefficient for maximum
likelihood factor analysis, Psychometrika, 38, 1�10.

Tukey

Tukey, John W. (1962), The future of data analysis, Annals of Mathematical
Statistics, 33, 1�67.

Velleman and Hoaglin

Velleman, Paul F. and David C. Hoaglin (1981), Applications, Basics, and
Computing of Exploratory Data Analysis, Duxbury Press, Boston.

Verdooren

Verdooren, L. R. (1963), Extended tables of critical values for Wilcoxon's test
statistic, Biometrika, 50, 177�186.

Wallace

Wallace, D.L. (1959), Simplified Beta-approximations to the Kruskal-Wallis H-
test, Journal of the American Statistical Association, 54, 225�230.

IMSL C/Stat/library Appendix A: References � A-23

Weisberg

Weisberg, S. (1985), Applied Linear Regression, 2d ed., John Wiley & Sons,
New York.

Woodfield

Woodfield, Terry J. (1990), Some notes on the Ljung-Box portmanteau statistic,
American Statistical Association 1990 Proceedings of the Statistical Computing
Section, 155–160.

Yates, F.

Yates, F. (1936) A new method of arranging variety trials involving a large
number of varieties. Journal of Agricultural Science, 26, 424-455.

A-24 � Appendix A: References IMSL C/Stat/Library

Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library � B- 1

Appendix B: Alphabetical Summary
of Routines

Function Purpose Statement Page
anova_balanced Analyzes a balanced complete experimental design for

a fixed, random, or mixed model.
256

anova_factorial Analyzes a balanced factorial design with fixed effects. 239

anova_nested Analyzes a completely nested random model with
possibly unequal numbers in the subgroups.

247

anova_oneway Analyzes a one-way classification model. 230

arma Computes least-square estimates of parameters for an
ARMA model.

517

arma_forecast Computes forecasts and their associated probability
limits for an ARMA model.

527

autocorrelation Computes the sample autocorrelation function of a
stationary time series.

541

beta Evaluates the complete beta function. 901

beta_cdf Evaluates the beta probability distribution function. 730

beta_incomplete Evaluates the real incomplete beta function. 903

beta_inverse_cdf Evaluates the inverse of the beta distribution function. 731

binomial_cdf Evaluates the binomial distribution function. 720

binomial_coefficient Evaluates the binomial coefficient. 900

binomial_pdf Evaluates the binomial probability function. 722

bivariate_normal_cdf Evaluates the bivariate normal distribution function. 732

box_cox_transform Performs a Box-Cox transformation. 537

categorical_glm Analyzes categorical data using logistic, Probit,
Poisson, and other generalized linear models.

425

chi_squared_cdf Evaluates the chi-squared distribution function. 734

B-2 � Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library

Function Purpose Statement Page
chi_squared_inverse_cdf Evaluates the inverse of the chi-squared distribution

function.
736

chi_squared_test Performs a chi-squared goodness-of-fit test. 482

cluster_hierarchical Performs a hierarchical cluster analysis given a
distance matrix.

590

cluster_k_means Performs a K-means (centroid) cluster analysis. 598

cluster_number Computes cluster membership for a hierarchical cluster
tree.

594

cochran_q_test Performs a Cochran Q test for related observations. 472

contingency_table Performs a chi-squared analysis of a two-way
contingency table.

404

continuous_table_setup Sets up table to generate pseudorandom numbers from
a general continuous distribution.

812

covariances Computes the sample variance-covariance or
correlation matrix.

185

cox_stuart_trends_test Performs the Cox and Stuart’ sign test for trends in
location and dispersion.

452

crd_factorial Analyzes data from balanced and unbalanced
completely randomized experiments.

267

crosscorrelation Computes the sample cross-correlation function of two
stationary time series

546

ctime Returns the number of CPU seconds used. 911

data_sets Retrieves a commonly analyzed data set. 890

difference Differences a seasonal or nonseasonal time series. 532

discrete_table_setup Sets up a table to generate pseudorandom numbers
from a general discrete distribution.

781

discriminant_analysis Performs discriminant function analysis. 628

dissimilarities Computes a matrix of dissimilarities (or similarities)
between the columns (or rows) of a matrix.

586

error_code Returns the code corresponding to the error message
from the last function called.

885

error_options Sets various error handling options. 879

exact_enumeration Computes exact probabilities in a two-way contingency
table, using the total enumeration method.

417

exact_network Computes exact probabilities in a two-way contingency
table using the network algorithm.

419

Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library � B- 3

Function Purpose Statement Page
F_cdf Evaluates the F distribution function. 742

F_inverse_cdf Evaluates the inverse of the F distribution function. 744

factor_analysis Extracts initial factor-loading estimates in factor
analysis.

609

faure_next_point Computes a shuffled Faure sequence 856

friedmans_test Performs Friedman’s test for a randomized complete
block design.

467

gamma Evaluates the real gamma functions. 905

gamma_cdf Evaluates the gamma distribution function. 745

gamma_incomplete Evaluates the incomplete gamma function. 907

gamma_inverse_cdf Evaluates the inverse of the gamma distribution
function.

747

garch Computes estimates of the parameters of
a GARCH(p, q) model

566

homogeneity Conducts Bartlett’s and Levene’s tests of the
homogeneity of variance assumption in analysis of
variance.

378

hypergeometric_cdf Evaluates the hypergeometric distribution function. 723

hypergeometric_pdf Evaluates the hypergeometric probability function. 725

hypothesis_partial Constructs a completely testable hypothesis. 96

hypothesis_scph Sums of cross products for a multivariate hypothesis. 101

hypothesis_test Tests for the multivariate linear hypothesis. 106

k_trends_test Performs k-sample trends test against ordered
alternatives.

475

kalman Performs Kalman filtering and evaluates the likelihood
function for the state-space model.

571

kaplan_meier_estimates Computes Kaplan-Meier estimates of survival
probabilities in stratified samples.

654

kolmogorov_one Performs a Kolmogorov-Smirnov’s one-sample test for
continuos distributions.

494

kolmogorov_two Performs a Kolmogorov-Smirnov’s two-sample test 497

kruskal_wallis_test Performs a Kruskal-Wallis’s test for identical
population medians.

465

lack_of_fit Performs lack-of-fit test for an univariate time series or
transfer function given the appropriate correlation
function.

563

B-4 � Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library

Function Purpose Statement Page
latin_square Analyzes data from latin-square experiments. 288

lattice Analyzes balanced and partially-balanced lattice
experiments.

297

life_tables Produces population and cohort life tables. 712

Lnorm_regression Fits a multiple linear regression model using criteria
other than least squares.

168

log_beta Evaluates the log of the real beta function. 904

log_gamma Evaluates the logarithm of the absolute value of the
gamma function.

909

machine (float) Returns information describing the computer's floating-
point arithmetic.

888

machine (integer) Returns integer information describing the computer's
arithmetic.

886

mat_mul_rect Computes the transpose of a matrix, a matrix-vector
product, a matrix-matrix product, a bilinear form, or
any triple product.

893

multi_crosscorrelation Computes the multichannel cross-correlation function
of two mutually stationary multichannel time series.

552

multiple_comparisons Performs Student-Newman-Keuls multiple
comparisons test.

385

multivar_normality_test Computes Mardia’s multivariate measures of skewness
and kurtosis and tests for multivariate normality.

501

noether_cyclical_trend Performs the Noether’s test for cyclical trend. 449

non_central_chi_sq Evaluates the noncentral chi-squared distribution
function.

738

non_central_chi_sq_inv Evaluates the inverse of the noncentral chi-squared
function.

740

non_central_t_cdf Evaluates the noncentral Student’s t distribution
function.

754

non_central_t_inv_cdf Evaluates the inverse of the noncentral Student’s t
distribution function.

757

nonlinear_optimization Fits a nonlinear regression model using Powell's
algorithm.

159

nonlinear_regression Fits a nonlinear regression model. 149

nonparam_hazard_rate Performs nonparametric hazard rate estimation using
kernel functions and quasi-likelihoods.

703

Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library � B- 5

Function Purpose Statement Page
normal_cdf Evaluates the standard normal (Gaussian) distribution

function.
748

normal_inverse_cdf Evaluates the inverse of the standard normal
(Gaussian) distribution function.

750

normal_one_sample Computes statistics for mean and variance inferences
using a sample from a normal population.

7

normal_two_sample Computes statistics for mean and variance inferences
using samples from two normal population.

11

normality_test Performs a test for normality. 490

output_file Sets the output file or the error message output file. 874

page Sets or retrieves the page width or length. 867

partial_autocorrelation Computes the sample partial autocorrelation function
of a stationary time series.

560

partial_covariances Computes partial covariances or partial correlations
from the covariance or correlation matrix.

193

permute_matrix Permutes the rows or columns of a matrix. 898

permute_vector Rearranges the elements of a vector as specified by a
permutation.

 897

poisson_cdf Evaluates the Poisson distribution function. 726

poisson_pdf Evaluates the Poisson probability function. 728

poly_prediction Computes predicted values, confidence intervals, and
diagnostics after fitting a polynomial regression model.

140

poly_regression Performs a polynomial least-squares regression. 132

pooled_covariances Computes a pooled variance-covariance from the
observations.

198

principal_components Computes principal components. 603

prop_hazard_gen_lin Analyzes time event data via the proportional hazards
model.

660

random_arma Generates pseudorandom ARMA process numbers. 831

random_beta Generates pseudorandom numbers from a beta
distribution.

786

random_binomial Generates pseudorandom binomial numbers. 765

random_cauchy Generates pseudorandom numbers from a Cauchy
distribution.

 788

random_chi_squared Generates pseudorandom numbers from a chi-squared
distribution.

789

B-6 � Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library

Function Purpose Statement Page
random_exponential Generates pseudorandom numbers from a standard

exponential distribution.
791

random_exponential_mix Generates pseudorandom mixed numbers from a
standard exponential distribution.

792

random_gamma Generates pseudorandom numbers from a standard
gamma distribution.

794

random_general_continuous Generates pseudorandom numbers from a general
continuous distribution.

810

random_general_discrete Generates pseudorandom numbers from a general
discrete distribution using an alias method or optionally
a table lookup method.

777

random_geometric Generates pseudorandom numbers from a geometric
distribution.

766

random_GFSR_table_get Retrieves the current table used in the GFSR generator. 853

random_GFSR_table_set Sets the current table used in the GFSR generator. 853

random_hypergeometric Generates pseudorandom numbers from a
hypergeometric distribution.

768

random_logarithmic Generates pseudorandom numbers from a logarithmic
distribution.

770

random_lognormal Generates pseudorandom numbers from a lognormal
distribution.

796

random_multinomial Generates pseudorandom numbers from a multinomial
distribution.

821

random_mvar_from_data Generates pseudorandom numbers from a multivariate
distribution determined from a given sample.

819

random_neg_binomial Generates pseudorandom numbers from a negative
binomial distribution.

772

random_normal Generates pseudorandom numbers from a standard
normal distribution using an inverse CDF method.

798

random_normal_multivariate Generates pseudorandom numbers from a multivariate
normal distribution.

 815

random_npp Generates pseudorandom numbers from a
nonhomogeneous Poisson process.

835

random_option Selects the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

845

random_option_get Retrieves the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

846

Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library � B- 7

Function Purpose Statement Page
random_order_normal Generates pseudorandom order statistics from a

standard normal distribution.
827

random_order_uniform Generates pseudorandom order statistics from a
uniform (0, 1) distribution

829

random_orthogonal_matrix Generates a pseudorandom orthogonal matrix
or a correlation matrix.

816

random_permutation Generates a pseudorandom permutation. 839

random_poisson Generates pseudorandom numbers from a Poisson
distribution.

774

random_sample Generates a simple pseudorandom sample from a finite
population.

842

random_sample_indices Generates a simple pseudorandom sample of indices. 840

random_seed_get Retrieves the current value of the seed used in the
IMSL random number generators.

847

random_seed_set Initializes a random seed for use in the IMSL random
number generators.

850

random_sphere Generates pseudorandom points on a unit circle or K-
dimensional sphere.

823

random_stable Sets up a table to generate pseudorandom numbers
from a general discrete distribution.

800

random_student_t Generates pseudorandom Student's t. 802

random_substream_seed_get Retrieves a seed for the congruential generators that
do not do shuffling that will generate random numbers
beginning 100,000 numbers farther along.

848

random_table_get Retrieves the current table used in the shuffled
generator.

852

random_table_set Sets the current table used in the shuffled generator. 851

random_table_twoway Generates a pseudorandom two-way table. 825

random_triangular Generates pseudorandom numbers from a triangular
distribution.

803

random_uniform Generates pseudorandom numbers from a uniform (0,
1) distribution.

804

random_uniform_discrete Generates pseudorandom numbers from a discrete
uniform distribution.

775

random_von_mises Generates pseudorandom numbers from a von Mises
distribution.

806

B-8 � Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library

Function Purpose Statement Page
random_weibull Generates pseudorandom numbers from a Weibull

distribution.
808

randomness_test Performs a test for randomness. 505

ranks Computes the ranks, normal scores, or exponential
scores for a vector of observations.

36

rcbd_factorial Analyzes data from balanced and unbalanced
randomized complete-block experiments.

279

regression Fits a multiple linear regression model using least
squares.

64

regression_prediction Computes predicted values, confidence intervals, and
diagnostics after fitting a regression model.

85

regression_selection Selects the best multiple linear regression models. 112

regression_stepwise Builds multiple linear regression models using forward
selection, backward selection or stepwise selection.

123

regression_summary Produces summary statistics for a regression model
given the information from the fit.

77

regressors_for_glm Generates regressors for a general linear model. 56

robust_covariances Computes a robust estimate of a covariance matrix and
mean vector.

204

sign_test Performs a sign test. 442

simple_statistics Computes basic univariate statistics. 2

sort_data Sorts observations by specified keys, with option to
tally cases into a multi-way frequency table.

27

split_plot Analyzes a wide variety of split-plot experiments with
fixed, mixed or random factors.

316

split_split_plot Analyzes data from split-split-plot experiments. 329

strip_plot Analyzes data from strip-plot experiments. 345

strip_split_plot Analyzes data from strip-split-plot experiments. 355

survival_estimates Estimates using various parametric models. 697

survival_glm Analyzes survival data using a generalized linear
model.

673

t_cdf Evaluates the Student's t distribution function. 751

t_inverse_cdf Evaluates the inverse of the Student's t distribution
function.

753

table_oneway Tallies observations into one-way frequency table. 18

table_twoway Tallies observations into a two-way frequency table. 22

Appendix B: Alphabetical Summary of Routines IMSL C/Stat/Library � B- 9

Function Purpose Statement Page
tie_statistics Computes tie statistics for a sample of observations. 458

version Returns integer information describing the version of
the library, license number, operating system, and
compiler.

878

wilcoxon_rank_sum Performs a Wilcoxon rank sum test. 460

wilcoxon_sign_rank Performs a Wilcoxon sign rank test. 445

write_matrix Prints a rectangular matrix (or vector) stored in
contiguous memory locations.

861

write_options Sets or retrieves an option for printing a matrix. 868

yates Estimates missing observations in designed
experiments using Yate’s method.

390

IMSL/C/Stat/Library Appendix B: Alphabetical Summary of Routines � B-11

IMSL C/Stat/Library Index � i

Index

A

alpha factor analysis 619
ANOVA

balanced 256
factorial 239
multiple comparisons 385
nested 247
oneway 230

ANSI C vii
ARIMA models

forecasts 527
least-square estimates 517

association, measures of 410
Autoregressive Moving Average

Model 516

B

backward selection 123
balanced 256
balanced experimental design 256
beta distribution function 730

inverse 731
beta distribution, simulation 786
beta functions 901, 903, 904
binomial coefficient 900
binomial distribution 720
binomial distributions 760, 765, 772,

781, 812, 1, 6, 7
binomial probability 722
bivariate normal distribution

function 732
Bonferroni method 234
Box-Cox transformation 537

C

Cartesian coordinates 824
cauchy distributions 788
chi-squared analysis 404

chi-squared distribution function
734, 736

chi-squared distributions 789
chi-squared goodness-of-fit test 482
chi-squared statistics 403, 408
chi-squared test 481
classification model

one-way 230
cluster analysis 583, 598
cluster membership 594, 2
cluster_hierarchical 590
cluster_number 594
Cochran Q test 472
coefficient

excess (kurtosis) 2
skewness 2
variation 6

compiler 878
computer constants 886, 888
confidence intervals 140

mean 3
constants 886, 888
contingency coefficient 408
contingency tables 417, 419

two-way 404
correlation matrix 185, 816, 6, 7
correlations 193
counts 2, 27
covariances 204
Cox and Stuart sign test 452
CPU 911
Cramer’s V 408
Crd factorial 267

factorial experiments 273
pooled location interaction 273
unbalanced 267, 2
unbalanced completely

randomized experiments 267
crosscorrelation 546
cross-correlation function 515, 546,

552, 654, 660, 703, 712, 2, 4

D

data sets 890
deviation, standard 2
diagnostic checking 516
diagnostics 140
discrete uniform distributions 775
discriminant function analysis 628
dissimilarities 586
distribution functions

beta 730

ii � Index IMSL C/Stat/Library

inverse 731
bivariate normal 732
chi-squared 734

inverse 736
chi-squared, noncentral 738, 740

inverse 740
F_cdf

inverse 742
F_inverse_cdf 744
gamma 745
Gaussian 748
hypergeometric 723
inverse 750
normal 748
Poisson 726
Student’s t 751

inverse 753
Student’s t, noncentral 754

inverse 757
Dunn-Sidák method 234

E

eigensystem analysis 584
empirical tests 764
error handling xiii, 879, 885, 913
error messages 874
estimate of scale

simple robust 6
excess 5
exponential distribution, simulation

791
exponential scores 36

F

F statistic 16
factor analysis 584, 609
factorial 239
factorial design

analysis 239
Faure 858
Faure sequence 856, 857

faure_next_point 857
finite difference gradient 159
finite population 842
Fisher’s LSD 235
forecasting 516
forecasts

ARMA models 527
GARCH 566

forward selection 123
frequency tables 18, 22

multi-way 27
Friedman’s test 467

G

gamma distribution function 745
gamma distribution, simulation 794
gamma functions 905, 907, 909
gamma_inverse_cdf 747
GARCH

(Generalized Autoregressive
Conditional Heteroskedastic)
566

Gaussian distribution functions 748
inverse 750

general continuous distribution 810
general discrete distribution 777,

778, 781, 812, 1, 2, 7
general distributions 481
general linear models 56
Generalized Feedback Shift Register

762
generalized feedback shift register

method 761
generalized linear models 403
geometric distributions 766
GFSR 846
GFSR generator 762, 853
goodness-of-fit tests 481
Gray code 859

H

Haar measure 817
hierarchical cluster analysis 590, 2
hierarchical cluster tree 594
Homogeneity 378
hypergeometric distribution function

723
hypergeometric distributions 768
hypergeometric_pdf 725
hyper-rectangle 857
hypothesis 96, 101, 106

I
image analysis 618
integrated rate function 837

K

Kalman filtering 571
Kaplan_meier estimates 655

IMSL C/Stat/Library Index � iii

Kaplan_meier_estimates 654
Kaplan-Meier estimates 3

computes 654
Kappa analysis 403
K-dimensional sphere 823
kernel functions 654, 703, 4
K-means analysis 598
Kolmogorov one-sample test 494
Kolmogorov two-sample test 497
Kruskal-Wallis test 465
k-sample trends test 475
kurtosis 2, 5

L

lack-of-fit test 563
lack-of-fit tests 52
Latin square 288
Lattice 297

3x3 balanced-lattice 302
balanced lattice experiments 302
intra-Block Error 303
partially-balanced lattice

experiments 297, 302
Least Absolute Value 55, 168, 172,

180
Least Maximum Value 55, 168, 184
Least Squares

Alternatives
Least Absolute Value 55
Least Maximum Value 55
Lp Norm 55

least-squares fit 64, 168, 247, 256,
445, 449, 452, 458, 467, 494,
497, 560

Lebesque measure 858
library version 878
linear dependence 48
linear discriminant function analysis

628
linear regression

multiple 44
simple 44

logarithmic distributions 770
low-discrepancy 859
Lp Norm 55, 173

M

MAD (Median Absolute Deviation)
6

Mardia’s multivariate measures 503
Mardia’s multivariate tests 501

matrices 586, 893, 2
matrix of dissimilarities 586, 2
matrix storage modes ix
maximum 2, 5
maximum likelihood estimates 577
mean 2, 5, 7, 9

for two normal populations 11
normal population 7

measures of association 403, 409
measures of prediction 410
measures of uncertainty 410
median 6

absolute deviation 6
memory allocation x
minimum 2, 5
missing values 55
models 149

general linear 56
multiple linear regression 112
nonlinear regression 50
polynomial 45
polynomial regression 140

Monte Carlo applications 764
multinomial distribution 821
Multiple comparisons 385
Multiple comparisons test

Bonferroni, Tukey’s, or Duncan’s
MRT 385

Student-Newman-Keuls 385
multiple linear regression models 64,

112, 123, 168, 247, 256, 445,
449, 452, 458, 467, 494, 497,
560

multiple_crosscorrelation 552
multiplicative congruential generator

762
multiplicative generator 762
multiplying matrices 893
multivariate distribution 760, 819, 6
multivariate general linear

hypothesis 101, 106
multivariate normal distribution,

simulation 815

N

nested 247
nested random model 215, 247, 251
Noether test 449
non-ANSI C vii
noncentral chi-squared distribution

function 738
inverse 740

iv � Index IMSL C/Stat/Library

noncentral Student’s t distribution
function 754, 757

nonhomogeneous Poisson process
835

nonlinear model 159
nonlinear regression 149
nonlinear regression models 50, 149
nonparam_hazard_rate 703
nonparametric hazard rate estimation

703, 4
nonuniform generators 764
normal distribution function 750
normal distribution, simulation 798
normal populations

mean 7
variance 7

normal scores 36
normality test 490

O

observations
number of 2

oneway 230
one-way classification model 230
one-way frequency table 18
operating system 878
order statistics 827, 829
orthogonal matrix 816
output files 874
overflow xiii

P

parameter estimation 516
partial correlations 193
partial covariances 193
partially tested hypothesis 96
permutations 897, 898
phi 408
Poisson distribution function 726
Poisson distribution, simulation 774
poisson_pdf 728
polynomial models 45
polynomial regression 132
polynomial regression models 140
pooled variance-covariance 198
population 712, 4
predicted values 140
prediction coefficient 410
principal components 603
printing

matrices 861

options 868
retrieving page size 867
setting paper size 867
vectors 861

probability limits
ARMA models 527

prop_hazards_gen_lin 660
pseudorandom number generators

481
pseudorandom numbers 760, 778,

781, 796, 802, 806, 808, 812,
2, 6

pseudorandom order statistics 760, 7
pseudorandom orthogonal matrix

760, 7
pseudorandom permutation 839
pseudorandom points 760, 7
pseudorandom sample 760, 840, 7
p-values 408

Q

quadratic discriminant function
analysis 628

R

random numbers
beta distribution 786
exponential distribution 791
gamma distribution 794
Poisson distribution 774
seed

current value 847, 7
initializing 850

selecting generator 845, 846
random numbers generators 798
randomness test 505
range 2, 6
ranks 36
Rcbd factorial 279
regression models 44, 77, 85
regressors 56
robust covariances 204

S

sample autocorrelation function 541
sample correlation function 516
sample partial autocorrelation

function 560
Scheffé method 234
scores

IMSL C/Stat/Library Index � v

exponential 36
normal 36

seed 848
Seed 763
serial number 878
shuffled generator 851, 852
sign test 442
simulation of random variables 761
skewness 2, 5
Split plot 316

blocking factor 323
completely randomized 316
completely randomized design 323
experiments 316, 8
fixed effects 323
IMSLS_RCBD default setting 324
random effects 325
randomized complete block design

316, 323
randomizing whole-plots 324
split plot factor 324
split plot factors 323
whole plot 323
whole plot factor 324
whole plot factors 323

Split Plots
whole-plots 316

Split-split plot 329
split-plot factors 330
split-split-plot experiments 329
sub-plot factors 330
whole plot factors 330

stable distribution 800
standard deviation 2, 9
standard errors 408
state vector 571
statespace model 571
stepwise selection 123
Strip plot 345
Strip-split plot 355
Student’s t distribution function 751

inverse 753
summary statistics 50
survival probabilities 654, 655, 3

T

t statistic 15
tests for randomness 481
Thread Safe viii

multithreaded application viii
single-threaded application ix
threads and error handling 915

tie statistics 458
time domain methodology 516
time event data 653, 660, 5
time series 516, 831

difference 532
transformation 516
transformations 54
transposing matrices 893
triangular distributions 803
Tukey method 233
Tukey-Kramer method 233
two-way contingency table 826
two-way frequency tables 22
two-way table 825

U

uncertainty, measures of 410
underflow xiii
uniform distribution, simulation 804
unit circle 760, 7
unit sphere 824
univariate statistics 2, 425, 673, 697,

792
update equations 572
user-supplied gradient 159

V

variable selection 45
variance 2, 5, 7

for two normal populations 11
normal population 7

variance-covariance matrix 185
variation, coefficient of 6

W

weighted least squares 50
Wilcoxon rank sum test 460
Wilcoxon signed rank test 445
Wilcoxon two-sample test 466

	C/Stat Library Volume 1 - Version 5.5
	Table of Contents
	Introduction
	IMSL C/Stat/Library
	Getting Started
	ANSI C vs. Non-ANSI C
	The imsls.h File

	Thread Safe Usage
	Signal Handling
	Routines that Produce Output
	Input Arguments

	Matrix Storage Modes
	General Mode
	Rectangular Mode
	Symmetric Mode

	Memory Allocation for Output Arrays
	Finding the Right Function
	Organization of the Documentation
	Naming Conventions
	Error Handling, Underflow, and Overflow
	Printing Results
	Missing Values
	Passing Data to User-Supplied Functions

	Chapter 1: Basic Statistics
	Routines
	Usage Notes
	simple_statistics
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	normal_one_sample
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	normal_two_sample
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	table_oneway
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	table_twoway
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	sort_data
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Example 3

	ranks
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	Chapter 2: Regression
	Routines
	Usage Notes
	Simple and Multiple Linear Regression
	No Intercept Model
	Variable Selection
	Polynomial Model
	Specification of X for the General Linear Model
	Functions for Fitting the Model
	Linear Dependence and the R Matrix
	Nonlinear Regression Model
	Weighted Least Squares
	Summary Statistics
	Tests for Lack-of-Fit
	Diagnostics for Individual Cases

	Transformations
	Alternatives to Least Squares
	Missing Values

	regressors_for_glm
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Examples
	Example 1
	Example 2

	regression
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Example 3
	Warning Errors
	Fatal Errors

	regression_summary
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Remarks
	Example

	regression_prediction
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	hypothesis_partial
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Warning Errors

	hypothesis_scph
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Warning Errors

	hypothesis_test
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	regression_selection
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Programming Notes
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	regression_stepwise
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Warning Errors
	Fatal Errors

	poly_regression
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	poly_prediction
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	nonlinear_regression
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Programming Notes
	Examples
	Example 1
	Example 2
	Informational Errors
	Warning Errors

	nonlinear_optimization
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Fatal Errors

	Lnorm_regression
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Least Absolute Value Criterion
	Lp Norm Criterion
	Least Minimum Value Criterion (minimax)
	Example 1
	Example 2
	Example 3

	Chapter 3: Correlation and Covariance
	Routines
	Usage Notes
	covariances
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Usage Notes
	Examples
	Example 1
	Example 2
	Warning Errors

	partial_covariances
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Warning Errors
	Fatal Errors

	pooled_covariances
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	robust_covariances
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	Chapter 4: Analysis of Variance and Designed Experiments
	Routines
	Usage Notes
	Completely Randomized Experiments
	Factorial Experiments
	Blocking
	Multiple Locations
	Split-Plot Designs – Nesting and Restricted Rando
	Strip-Plot Designs
	Split-Split Plot and Strip-Split Plot Experiments
	Validating Key Assumptions in Anova
	Missing Observations

	anova_oneway
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Example 3

	anova_factorial
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Example 3

	anova_nested
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example 1

	anova_balanced
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example 1

	crd_factorial
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Output

	rcbd_factorial
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Output

	latin_square
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Output

	lattice
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example 1
	Output
	Example 2
	Output

	split_plot
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Output

	split_split_plot
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Output

	strip_plot
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Output

	strip_split_plot
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arugments
	Optional Arguments
	Description
	Example
	Output

	homogeneity
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arugments
	Optional Arguments
	Description
	Example
	Output

	multiple_comparisons
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	yates
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arugments
	Optional Arguments
	Description
	Example
	Output

	Chapter 5: Categorical and Discrete Data Analysis
	Routines
	Usage Notes
	contingency_table
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors

	exact_enumeration
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	exact_network
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	categorical_glm
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Remarks
	Description
	Computational Details
	Programming Notes
	Examples
	Example 1
	Output
	Example 2
	Output
	Warning Errors
	Fatal Errors

	Chapter 6: Nonparametric Statistics
	Routines
	Usage Notes
	sign_test
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	wilcoxon_sign_rank
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	noether_cyclical_trend
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Routine imsls_f_noether_cyclical_trend performs the Noether test for cyclical trend (Noether 1956) for a sequence of measurements. In this test, the observations are first divided into sets of three consecutive observations. Each set is then inspected,
	Example

	cox_stuart_trends_test
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	tie_statistics
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	wilcoxon_rank_sum
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Hypothesis Tests
	Assumptions
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	kruskal_wallis_test
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	friedmans_test
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Assumptions
	Example

	cochran_q_test
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Assumptions
	Hypothesis
	Remarks
	Example
	Warning Errors
	Fatal Errors

	k_trends_test
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Computational Procedure
	Assumptions
	Hypothesis tests
	Example
	Output

	Chapter 7: Tests of Goodness of Fit
	Routines
	Usage Notes
	chi_squared_test
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Example 3
	Programming Notes
	Warning Errors
	Fatal Errors

	normality_test
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Shapiro-Wilk W Test
	Lilliefors Test
	Chi-Squared Test
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	kolmogorov_one
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Programming Notes
	Example

	kolmogorov_two
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	multivar_normality_test
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	randomness_test
	
	Return Value
	The probability of a larger chi-squared statistic for testing the null hypothesis of a uniform distribution.
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Runs Up Test
	Pairs Test
	d 2 Test
	Triplets Test
	Example 1
	Example 2
	Example 3
	Example 4

	Appendix A: References
	
	
	Anderberg
	Breslow
	Cox
	Cox and Lewis
	Cox and Oakes
	Fuller
	Fushimi
	Jennrich and Sampson
	Patefield and Tandy
	Priestley
	Stablein, Carter, and Novak
	Tanner and Wong

	Appendix B: Alphabetical Summary of Routines
	Index

