
C Numerical Library™
User's Guide
VOLUME 2 o f 4 : C Math Library™ [CHAPTERS 8 -12]

V E R S I O N 5 . 5

Visual Numerics, Inc.
Corporate Headquarters
2500 Wilcrest Drive, Ste 200
Houston, Texas 77042-2759
USA

PHONE: 713-784-3131
FAX: 713-781-9260
e-mail: info@vni.com

Visual Numerics
International Ltd.
Centennial Court
Suite 1, North Wing
Easthampstead Road
BRACKNELL BERSHIRE
RG12 1YQ
United Kingdom

PHONE: +44-1-344-45-8700
FAX: +44-1-344-45-8748
e-mail: info@vniuk.co.uk

Visual Numerics SARL
Tour Europe
33 Place des Corolles Cedex
F-92049 Paris La Defense
France

PHONE: +33-1-46-93-94-20
FAX: +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics S. A. de C.V.
Florencia 57 Piso 10-01
Col. Juarez
Mexico D. F. C. P. 06000
Mexico
PHONE: +52-5514-9730 or 9628
FAX: +52-5514-5880

Visual Numerics International GmbH
Zettachring 10
D-70567 Stuttgart
Germany

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Japan, Inc
GOBANCHO HIKARI Building 4th Floor
14 Goban-cho ChIiyoda-KU
Tokyo, 113
JAPAN

PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

Visual Numerics, Inc.
7/F, #510, Chung Hsiao E. Road
Section 5
Taipei, TAIWAN 110
Republic of China

PHONE: (886) 2-727-2255
FAX: (886) 2-727-6798
e-mail: info@vni.com.tw

World Wide Web site: http://www.vni.com

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-Mapo-Dong, Mapo-gu
Seoul 121-050
Korea

PHONE:+82-2-3273-2632 or 2633
FAX: +82-2-3273-2634
e-mail: info@vni.co.kr

COPYRIGHT NOTICE: Copyright 1990-2003, an unpublished work by Visual Numerics, Inc. All rights reserved.

VISUAL NUMERICS, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Visual Numerics, Inc., shall not be liable for errors contained herein or for incidental, consequential, or other indirect
damages in connection with the furnishing, performance, or use of this material.

TRADEMARK NOTICE: IMSL, Visual Numerics, IMSL FORTRAN Numerical Libraries, IMSL Productivity Toolkit, IMSL
Libraries Environment and Installation Assurance Test, C Productivity Tools, FORTRAN Productivity Tools, IMSL C/Math/Library,
IMSL C/Stat/Library, IMSL Fortran 90 MP Library, and IMSL Exponent Graphics are registered trademarks or trademarks of Visual
Numerics, Inc., in the U.S. and other countries. Sun, SunOS, and Solaris are registered trademarks or trademarks of Sun Microsystems,
Inc. SPARC and SPARCompiler are registered trademarks or trademarks of SPARC International, Inc. Silicon Graphics is a registerd
trademark of Silicon Graphics, Inc. IBM, AIX, and RS/6000 are registered trademarks or trademarks of International Business
Machines Corporation. HP is a trademark of Hewlett-Packard. Silicon Graphics and IRIX are registered trademarks or trademarks of
Silicon Graphics, Inc. DEC and AXP are registered trademarks or trademarks of Digital Equipment Corporation. All other trademarks
are the property of their respective owners.

Use of this document is governed by a Visual Numerics Software License Agreement. This document contains confidential and
proprietary information constituting valuable trade secrets. No part of this document may be reproduced or transmitted in any form
without the prior written consent of Visual Numerics.

RESTRICTED RIGHTS LEGEND: This documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by
the U.S. Government is subject to the restrictions set forth in subparagraph (c)(1)(ll) of the Rights in Technical Data and Computer
Software clause at DFAR 252.227-7013, and in subparagraphs (a) through (d) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR Supplement, when applicable. Contractor/Manufacturer is
Visual Numerics, Inc., 2500 Wilcrest Drive, Ste 200, Houston, Texas 77042.

IMSL Fortran and C and Java
Application Development Tools

IMSL C/Math/Library Table of Contents � i

CMath Library /V2- Table of
Contents

Chapter 8: Optimization 399

Chapter 9: Special Functions 455

Chapter 10: Statistics and Random Number Generation 627

Chapter 11: Printing Functions 691

Chapter 12: Utilities 703

Reference Material 797

Product Support 805

Appendix A: References A-1

Appendix B: Alphabetical Summary of Routines B-1

Index i

Chapter 8: Optimization Routines � 399

Chapter 8: Optimization

Routines
8.1 Unconstrained Minimization

Univariate Function
Using function values only.. min_uncon 401
Using function and first derivative valuesmin_uncon_deriv 405
Multivariate Function
Using quasi-Newton methodmin_uncon_multivar 409
Nonlinear Least Squares
Using Levenberg-Marquardt algorithm...................nonlin_least_squares 416

8.2 Linearly Constrained Minimization
Dense linear programming.. lin_prog 425
Quadratic programming..quadratic_prog 429
Minimizes a general objective function..........................min_con_gen_lin 433
Nonlinear least-squares
with simple bounds on the variables...................bounded_least_squares 439

8.3 Nonlinearly Constrained Minimization
Using a sequential equality constrained QP method.......constrained_nlp 447

Usage Notes
Unconstrained Minimization
The unconstrained minimization problem can be stated as follows:

� �min
nx

f x
�R

where f : Rn � R is continuous and has derivatives of all orders required by the
algorithms. The functions for unconstrained minimization are grouped into three
categories: univariate functions, multivariate functions, and nonlinear least-squares
functions.

400 � Usage Notes IMSL C/Math/Library

For the univariate functions, it is assumed that the function is unimodal within the
specified interval. For discussion on unimodality, see Brent (1973).

A quasi-Newton method is used for the multivariate function
imsl_f_min_uncon_multivar. The default is to use a finite-difference
approximation of the gradient of f(x). Here, the gradient is defined to be the vector

� �
� � � � � �

1 2

, , ...,
n

f x f x f x
f x

x x x
� � �� �

� � � �
� � �� 	

However, when the exact gradient can be easily provided, the keyword IMSL_GRAD
should be used.

The nonlinear least-squares function uses a modified Levenberg-Marquardt algorithm.
The most common application of the function is the nonlinear data-fitting problem
where the user is trying to fit the data with a nonlinear model.

These functions are designed to find only a local minimum point. However, a function
may have many local minima. Try different initial points and intervals to obtain a better
local solution.

Double-precision arithmetic is recommended for the functions when the user provides
only the function values.

Linearly Constrained Minimization
The linearly constrained minimization problem can be stated as follows:

� �

1 1

min

subject to

nx
f x

A x b
�

�

R

where f : Rn � R, A1 and A2 are coefficient matrices, and b1 and b2 are vectors. If
f(x) is linear, then the problem is a linear programming problem. If f(x) is quadratic,
the problem is a quadratic programming problem.

The function imsl_f_lin_prog, page 425 uses a revised simplex method to solve
small- to medium-sized linear programming problems. No sparsity is assumed since the
coefficients are stored in full matrix form.

The function imsl_f_quadratic_prog, page 429 is designed to solve convex
quadratic programming problems using a dual quadratic programming algorithm. If the
given Hessian is not positive definite, then imsl_f_quadratic_prog modifies it to
be positive definite. In this case, output should be interpreted with care because the
problem has been changed slightly. Here, the Hessian of f(x) is defined to be the
n � n matrix

� � � �
2

2

i j

f x f
x x
�

� �
x

� �
� � � �

� �� �

Chapter 8: Optimization min_uncon � 401

Nonlinearly Constrained Minimization
The nonlinearly constrained minimization problem can be stated as follows:

� �

� �

� �

1

1

min

subject to 0 for 1, 2, ...,

0 for 1, ...,

nx

i

i

f x

g x i m

g x i m

�

� �

� � �

R

m

where f : Rn � R and gi : Rn � R, for i = 1, 2, �, m.

The function imsl_f_constrained_nlp, page 447 uses a sequential equality
constrained quadratic programming algorithm to solve this problem. A more complete
discussion of this algorithm can be found in the documentation.

min_uncon
Find the minimum point of a smooth function f(x) of a single variable using only
function evaluations.

Synopsis
#include <imsl.h>
float imsl_f_min_uncon (float fcn(), float a, float b, �, 0)

The type double function is imsl_d_min_uncon.

Required Arguments

float fcn(float x) (Input/Output)
User-supplied function to compute the value of the function to be minimized
where x is the point at which the function is evaluated, and fcn is the
computed function value at the point x.

float a (Input)
The lower endpoint of the interval in which the minimum point of fcn is to be
located.

float b (Input)
The upper endpoint of the interval in which the minimum point of fcn is to be
located.

Return Value
The point at which a minimum value of fcn is found. If no value can be computed,
NaN is returned.

402 � min_uncon IMSL C/Math/Library

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_min_uncon (float fcn(), float a, float b,

IMSL_XGUESS, float xguess,
IMSL_STEP, float step,
IMSL_ERR_ABS, float err_abs,
IMSL_MAX_FCN, int max_fcn,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_XGUESS, float xguess (Input)

An initial guess of the minimum point of fcn.
Default: xguess = (a + b)�2

IMSL_STEP, float step (Input)
An order of magnitude estimate of the required change in x.
Default: step = 1.0

IMSL_ERR_ABS, float err_abs (Input)
The required absolute accuracy in the final value of x. On a normal return,
there are points on either side of x within a distance err_abs at which fcn is
no less than fcn at x.
Default: err_abs = 0.0001

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations allowed.
Default: max_fcn = 1000

IMSL_FCN_W_DATA, float fcn(float x, void *data), void *data, (Input)
User supplied function to compute the value of the function to be minimized,
which also accepts a pointer to data that is supplied by the user. data is a
pointer to the data to be passed to the user-supplied function. See the
Introduction, Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

Description
The function imsl_f_min_uncon uses a safeguarded quadratic interpolation method
to find a minimum point of a univariate function. Both the code and the underlying
algorithm are based on the subroutine ZXLSF written by M.J.D. Powell at the
University of Cambridge.

The function imsl_f_min_uncon finds the least value of a univariate function, f,
which is specified by the function fcn. Other required data are two points a and b that
define an interval for finding a minimum point from an initial estimate of the solution,
x0 where x0 = xguess. The algorithm begins the search by moving from
x0 to x = x0 + s where s = step is an estimate of the required change in x and may be
positive or negative. The first two function evaluations indicate the direction to the

Chapter 8: Optimization min_uncon � 403

minimum point and the search strides out along this direction until a bracket on a
minimum point is found or until x reaches one of the endpoints a or b. During this
stage, the step length increases by a factor of between two and nine per function
evaluation. The factor depends on the position of the minimum point that is predicted
by quadratic interpolation of the three most recent function values.

When an interval containing a solution has been found, we have three points,

x1, x2, x3, with x1 < x2 < x3, f(x1) � f(x2), and f(x2) � f(x3).

There are three main rules in the technique for choosing the new x from these three
points. They are (i) the estimate of the minimum point that is given by quadratic
interpolation of the three function values, (ii) a tolerance parameter �, which depends
on the closeness of f to a quadratic, and (iii) whether x2 is near the center of the range
between x1 and x3 or is relatively close to an end of this range. In outline, the new value
of x is as near as possible to the predicted minimum point, subject to being at least
� from x2, and subject to being in the longer interval between x1 and x2, or x2 and x3,
when x2 is particularly close to x1 or x3.

The algorithm is intended to provide fast convergence when f has a positive and
continuous second derivative at the minimum. Also, the algorithim avoids gross
inefficiencies in pathological cases, such as

f(x) = x + 1.001|x|

The algorithm can automatically make � large in the pathological cases. In this case, it
is usual for a new value of x to be at the midpoint of the longer interval that is adjacent
to the least-calculated function value. The midpoint strategy is used frequently when
changes to f are dominated by computer rounding errors, which will almost certainly
happen if the user requests an accuracy that is less than the square root of the machine
precision. In such cases, the subroutine claims to have achieved the required accuracy if
it decides that there is a local minimum point within distance 	 of x, where
	 = err_abs, even though the rounding errors in f may cause the existence of other
local minimum points nearby. This difficulty is inevitable in minimization routines that
use only function values, so high precision arithmetic is recommended.

Examples

Example 1
A minimum point of f(x) = ex
 5x is found.

#include <imsl.h>
#include <math.h>

float fcn(float);

void main ()
{
 float a = -100.0;
 float b = 100.0;
 float fx, x;

404 � min_uncon IMSL C/Math/Library

 x = imsl_f_min_uncon (fcn, a, b, 0);
 fx = fcn(x);

 printf ("The solution is: %8.4f\n", x);
 printf ("The function evaluated at the solution is: %8.4f\n", fx);
}

float fcn(float x)
{
 return exp(x) - 5.0*x;
}

Output
The solution is: 1.6094
The function evaluated at the solution is: -3.0472

Example 2
A minimum point of f(x) = x(x3
 1) + 10 is found with an initial guess x0 = 3.

#include <imsl.h>

float fcn(float);

void main ()
{
 int max_fcn = 50;
 float a = -10.0;
 float b = 10.0;
 float xguess = 3.0;
 float step = 0.1;
 float err_abs = 0.001;
 float fx, x;

 x = imsl_f_min_uncon (fcn, a, b,
 IMSL_XGUESS, xguess,
 IMSL_STEP, step,
 IMSL_ERR_ABS, err_abs,
 IMSL_MAX_FCN, max_fcn,
 0);
 fx = fcn(x);

 printf ("The solution is: %8.4f\n", x);
 printf ("The function evaluated at the solution is: %8.4f\n", fx);
}

float fcn(float x)
{
 return x*(x*x*x-1.0) + 10.0;
}

Output
The solution is: 0.6298
The function evaluated at the solution is: 9.5275

Chapter 8: Optimization min_uncon_deriv � 405

Warning Errors
IMSL_MIN_AT_BOUND The final value of x is at a bound.

IMSL_NO_MORE_PROGRESS Computer rounding errors prevent further
refinement of x.

IMSL_TOO_MANY_FCN_EVAL Maximum number of function evaluations
exceeded.

min_uncon_deriv
Finds the minimum point of a smooth function f(x) of a single variable using both
function and first derivative evaluations.

Synopsis
#include <imsl.h>
float imsl_f_min_uncon_deriv (float fcn(), float grad(), float a, float b,

�, 0)

The type double function is imsl_d_min_uncon_deriv.

Required Arguments

float fcn (float x) (Input/Output)
User-supplied function to compute the value of the function to be minimized
where x is the point at which the function is evaluated, and fcn is the
computed function value at the point x.

float grad (float x) (Input/Output)
User-supplied function to compute the first derivative of the function where
x is the point at which the derivative is evaluated, and grad is the computed
value of the derivative at the point x.

float a (Input)
The lower endpoint of the interval in which the minimum point of fcn is to be
located.

float b (Input)
The upper endpoint of the interval in which the minimum point of fcn is to be
located.

Return Value
The point at which a minimum value of fcn is found. If no value can be computed,
NaN is returned.

406 � min_uncon_deriv IMSL C/Math/Library

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_min_uncon_deriv (float fcn(), float grad(), float a, float b,

IMSL_XGUESS, float xguess,
IMSL_ERR_REL, float err_rel,
IMSL_GRAD_TOL, float grad_tol,
IMSL_MAX_FCN, int max_fcn,
IMSL_FVALUE, float *fvalue,
IMSL_GVALUE, float *gvalue,
IMSL_FCN_W_DATA, float fcn(), void *data,
IMSL_GRADIENT_W_DATA, float grad(), void *data,
 0)

Optional Arguments
IMSL_XGUESS, float xguess (Input)

An initial guess of the minimum point of fcn.
Default: xguess = (a + b)�2

IMSL_ERR_REL, float err_rel (Input)
The required relative accuracy in the final value of x. This is the first stopping
criterion. On a normal return, the solution x is in an interval that contains a
local minimum and is less than or equal to
max (1.0, |x|) * err_rel. When the given err_rel is less than zero,

�

is used as err_rel where � is the machine precision.
Default:

err_rel = �

IMSL_GRAD_TOL, float grad_tol (Input)
The derivative tolerance used to decide if the current point is a local minimum.
This is the second stopping criterion. x is returned as a solution when grad is
less than or equal to grad_tol. grad_tol should be nonnegative; otherwise,
zero would be used.
Default:

grad_tol = �

where � is the machine precision

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations allowed.
Default: max_fcn = 1000

IMSL_FVALUE, float *fvalue (Output)
The function value at point x.

Chapter 8: Optimization min_uncon_deriv � 407

IMSL_GVALUE, float *gvalue (Output)
The derivative value at point x.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data, (Input)
User supplied function to compute the value of the function to be minimized,
which also accepts a pointer to data that is supplied by the user. data is a
pointer to the data to be passed to the user-supplied function. See the
Introduction, Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

IMSL_GRADIENT_W_DATA, float grad (float x, void *data), void *data, (Input)
User supplied function to compute the first derivative of the function, which
also accepts a pointer to data that is supplied by the user. data is a pointer to
the data to be passed to the user-supplied function. See the Introduction,
Passing Data to User-Supplied Functions at the beginning of this manual for
more details.

Description
The function f_min_uncon_deriv uses a descent method with either the secant
method or cubic interpolation to find a minimum point of a univariate function. It starts
with an initial guess and two endpoints. If any of the three points is a local minimum
point and has least function value, the function terminates with a solution. Otherwise,
the point with least function value will be used as the starting point.

From the starting point, say xc, the function value fc = f(xc), the derivative value
gc = g(xc), and a new point xn defined by xn = xc
 gc are computed. The function
fn = f(xn), and the derivative gn = g(xn) are then evaluated. If either
fn � fc or gn has the opposite sign of gc, then there exists a minimum point between
xc and xn, and an initial interval is obtained. Otherwise, since xc is kept as the point that
has lowest function value, an interchange between xn and xc is performed. The secant
method is then used to get a new point

n c
s c c

n c

g g
x x g

x x
� ��

� � � �
�� �

Let xn = xs, and repeat this process until an interval containing a minimum is found or
one of the convergence criteria is satisfied. The convergence criteria are as follows:

Criterion 1: |xc
 xn| � �c

Criterion 2: |gc| � �g

where �c = max {1.0, |xc|} �, � is an error tolerance, and �g is a gradient tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new
point. Function and derivative are then evaluated at that point, and accordingly a
smaller interval that contains a minimum point is chosen. A safeguarded method is used
to ensure that the interval be reduced by at least a fraction of the previous interval.
Another cubic interpolation is then performed, and this function is repeated until one of
the stopping criteria is met.

408 � min_uncon_deriv IMSL C/Math/Library

Examples

Example 1
In this example, a minimum point of f(x) = ex
 5x is found.

#include <imsl.h>
#include <math.h>

float fcn(float);
float deriv(float);

void main ()
{
 float a = -10.0;
 float b = 10.0;
 float fx, gx, x;

 x = imsl_f_min_uncon_deriv (fcn, deriv, a, b, 0);
 fx = fcn(x);
 gx = deriv(x);

 printf ("The solution is: %7.3f\n", x);
 printf ("The function evaluated at the solution is: %9.3f\n", fx);
 printf ("The derivative evaluated at the solution is: %7.3f\n", gx);
}

float fcn(float x)
{
 return exp(x) - 5.0*(x);
}

float deriv (float x)
{
 return exp(x) - 5.0;
}

Output
The solution is: 1.609
The function evaluated at the solution is: -3.047
The derivative evaluated at the solution is: -0.001

Example 2
A minimum point of f(x) = x(x3
 1) + 10 is found with an initial guess x0 = 3.

#include <imsl.h>
#include <stdio.h>

float fcn(float);
float deriv(float);

void main ()
{
 int max_fcn = 50;
 float a = -10.0;

Chapter 8: Optimization min_uncon_multivar � 409

 float b = 10.0;
 float xguess = 3.0;
 float fx, gx, x;

 x = imsl_f_min_uncon_deriv (fcn, deriv, a, b,
 IMSL_XGUESS, xguess,
 IMSL_MAX_FCN, max_fcn,
 IMSL_FVALUE, &fx,
 IMSL_GVALUE, &gx,
 0);
 printf ("The solution is: %7.3f\n", x);
 printf ("The function evaluated at the solution is: %7.3f\n", fx);
 printf ("The derivative evaluated at the solution is: %7.3f\n", gx);
}

float fcn(float x)
{
 return x*(x*x*x-1) + 10.0;
}

float deriv(float x)
{
 return 4.0*(x*x*x) - 1.0;
}

Output
The solution is: 0.630
The function evaluated at the solution is: 9.528
The derivative evaluated at the solution is: 0.000

Warning Errors
IMSL_MIN_AT_LOWERBOUND The final value of x is at the lower bound.

IMSL_MIN_AT_UPPERBOUND The final value of x is at the upper bound.

IMSL_TOO_MANY_FCN_EVAL Maximum number of function evaluations
exceeded.

min_uncon_multivar
Minimizes a function f(x) of n variables using a quasi-Newton method.

Synopsis
#include <imsl.h>
float *imsl_f_min_uncon_multivar (float fcn(), int n, �, 0)

The type double function is imsl_d_min_uncon_multivar.

Required Arguments

float fcn (int n, float x[]) (Input/Output)
User-supplied function to evaluate the function to be minimized where n is the

410 � min_uncon_multivar IMSL C/Math/Library

size of x, x is the point at which the function is evaluated, and fcn is the
computed function value at the point x.

int n (Input)
Number of variables.

Return Value
A pointer to the minimum point x of the function. To release this space, use free. If no
solution can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_min_uncon_multivar (float fcn(), int n,

IMSL_XGUESS, float xguess[],
IMSL_GRAD, void grad(),
IMSL_XSCALE, float xscale[],
IMSL_FSCALE, float fscale,
IMSL_GRAD_TOL, float grad_tol,
IMSL_STEP_TOL, float step_tol,
IMSL_REL_FCN_TOL, float rfcn_tol,
IMSL_MAX_STEP, float max_step,
IMSL_GOOD_DIGIT, int ndigit,
IMSL_MAX_ITN, int max_itn,
IMSL_MAX_FCN, int max_fcn,
IMSL_MAX_GRAD, int max_grad,
IMSL_INIT_HESSIAN, int ihess,
IMSL_RETURN_USER, float x[],
IMSL_FVALUE, float *fvalue,
IMSL_FCN_W_DATA, float fcn(), void *data,
IMSL_GRADIENT_W_DATA, void grad(), void *data,
0)

Optional Arguments
IMSL_XGUESS, float xguess[] (Input)

Array with n components containing an initial guess of the computed solution.
Default: xguess = 0

IMSL_GRAD, void grad (int n, float x[], float g[]) (Input/Output)
User-supplied function to compute the gradient at the point x where n is the
size of x, x is the point at which the gradient is evaluated, and g is the
computed gradient at the point x.

IMSL_XSCALE, float xscale[] (Input)
Array with n components containing the scaling vector for the variables.
xscale is used mainly in scaling the gradient and the distance between two
points. See keywords IMSL_GRAD_TOL and IMSL_STEP_TOL for more

Chapter 8: Optimization min_uncon_multivar � 411

details.
Default: xscale[] = 1.0

IMSL_FSCALE, float fscale (Input)
Scalar containing the function scaling. fscale is used mainly in scaling the
gradient. See keyword IMSL_GRAD_TOL for more details.
Default: fscale = 1.0

IMSL_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance. The i-th component of the scaled gradient at x is
calculated as

� �

� �� �

max ,1/

max ,
i i

s

ig x s

f x f

�

where g = � f(x), s = xscale, and fs = fscale.
Default: gr , ad_tol = �

3 in double where � is the machine precision. �

IMSL_STEP_TOL, float step_tol (Input)
Scaled step tolerance. The i-th component of the scaled step between two
points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

where s = xscale.
Default: step_tol = �2/3

IMSL_REL_FCN_TOL, float rfcn_tol (Input)
Relative function tolerance.
Default: rfcn_tol = max (10-10, �2/3), max (10-20, �2/3) in double

IMSL_MAX_STEP, float max_step (Input)
Maximum allowable step size.
Default: max_step = 1000max (�1, �2) where,

� �
2

1 1

n
i ii

s t�
�

� �

�2 = ||s||2, s = xscale, and t = xguess.

IMSL_GOOD_DIGIT, int ndigit (Input)
Number of good digits in the function. The default is machine dependent.

IMSL_MAX_ITN, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 100

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations.
Default: max_fcn = 400

412 � min_uncon_multivar IMSL C/Math/Library

IMSL_MAX_GRAD, int max_grad (Input)
Maximum number of gradient evaluations.
Default: max_grad = 400

IMSL_INIT_HESSIAN, int ihess (Input)
Hessian initialization parameter. If ihess is zero, the Hessian is initialized to
the identity matrix; otherwise, it is initialized to a diagonal matrix containing

� �� � 2max , s if t f s�

on the diagonal where t = xguess, fs = fscale, and s = xscale.
Default: ihess = 0

IMSL_RETURN_USER, float x[] (Output)
User-supplied array with n components containing the computed solution.

IMSL_FVALUE, float *fvalue (Output)
Address to store the value of the function at the computed solution.

IMSL_FCN_W_DATA, float fcn (int n, float x, void *data), void *data, (Input)
User supplied function to compute the value of the function to be minimized,
which also accepts a pointer to data that is supplied by the user. data is a
pointer to the data to be passed to the user-supplied function. See the
Introduction, Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

IMSL_GRADIENT_W_DATA, void grad (int n, float x[], float g[], void *data),
void *data, (Input)
User supplied function to compute the gradient at the point x, which also
accepts a pointer to data that is supplied by the user. data is a pointer to the
data to be passed to the user-supplied function. See the Introduction, Passing
Data to User-Supplied Functions at the beginning of this manual for more
details.

Description
The function f_min_uncon_multivar uses a quasi-Newton method to find the
minimum of a function f(x) of n variables. The problem is stated as follows:

� �min
nx

f x
�R

Given a starting point xc, the search direction is computed according to the formula

d =
B-1 gc

where B is a positive definite approximation of the Hessian, and gc is the gradient
evaluated at xc. A line search is then used to find a new point

xn = xc + �d, � > 0
such that

Chapter 8: Optimization min_uncon_multivar � 413

f(xn) � f(xc) +
gTd,
 � (0, 0.5)

Finally, the optimality condition ||g(x)|| � � is checked where � is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula
T T

T T

Bss B yyB B
s Bs y s

� � �

where s = xn
 xc and y = gn
 gc. Another search direction is then computed to begin
the next iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

In this implementation, the first stopping criterion for imsl_f_min_uncon_multivar
occurs when the norm of the gradient is less than the given gradient tolerance
grad_tol. The second stopping criterion for imsl_f_min_uncon_multivar occurs
when the scaled distance between the last two steps is less than the step tolerance
step_tol.

Since by default, a finite-difference method is used to estimate the gradient for some
single precision calculations, an inaccurate estimate of the gradient may cause the
algorithm to terminate at a noncritical point. In such cases, high precision arithmetic is
recommended; the keyword IMSL_GRAD should be used to provide more accurate
gradient evaluation.

Figure 8-1 Plot of the Rosenbrock Function

414 � min_uncon_multivar IMSL C/Math/Library

Examples

Example 1
The function

� � � � � �
2 22

2 1 1100 1f x x x� � � � x

is minimized. In the following plot, the solid circle marks the minimum.
#include <stdio.h>
#include <imsl.h>

void main()
{
 int i, n=2;
 float *result, fx;
 static float rosbrk(int, float[]);
 /* Minimize Rosenbrock function */

 result = imsl_f_min_uncon_multivar(rosbrk, n, 0);
 fx = rosbrk(n, result);

 /* Print results */

 printf(" The solution is ");
 for (i = 0; i < n; i++) printf("%8.3f", result[i]);
 printf("\n\n The function value is %8.3f\n", fx);
} /* end of main */

static float rosbrk(int n, float x[])
{
 float f1, f2;

 f1 = x[1] - x[0]*x[0];
 f2 = 1.0 - x[0];

 return 100.0 * f1 * f1 + f2 * f2;
} /* end of function */

Output
The solution is 1.000 1.000

The function value is 0.000

Example 2
The function

� � � � � �
2 22

2 1 1100 1f x x x� � � � x

is minimized with the initial guess x = (
1.2, 1.0). The initial guess is marked with an
open circle in the figure on page 413.

Chapter 8: Optimization min_uncon_multivar � 415

#include <stdio.h>
#include <imsl.h>

void main()
{
 int i, n=2;
 float *result, fx;
 static float rosbrk(int, float[]);
 static void rosgrd(int, float[], float[]);
 static float xguess[2] = {-1.2e0, 1.0e0};
 static float grad_tol = .0001;

/* Minimize Rosenbrock function using initial guesses of -1.2 and 1.0 */

 result = imsl_f_min_uncon_multivar(rosbrk, n, IMSL_XGUESS, xguess,
 IMSL_GRAD, rosgrd,
 IMSL_GRAD_TOL, grad_tol,
 IMSL_FVALUE, &fx, 0);

/* Print results */

 printf(" The solution is ");
 for (i = 0; i < n; i++) printf("%8.3f", result[i]);
 printf("\n\n The function value is %8.3f\n", fx);
} /* End of main */

static float rosbrk(int n, float x[])
{
 float f1, f2;

 f1 = x[1] - x[0]*x[0];
 f2 = 1.0e0 - x[0];

 return 100.0 * f1 * f1 + f2 * f2;
} /* End of function */

static void rosgrd(int n, float x[], float g[])
{

 g[0] = -400.0*(x[1]-x[0]*x[0])*x[0] - 2.0*(1.0-x[0]);
 g[1] = 200.0*(x[1]-x[0]*x[0]);

} /* End of function */

Output
 The solution is 1.000 1.000

 The function value is 0.000

Informational Errors
IMSL_STEP_TOLERANCE Scaled step tolerance satisfied. The current point

may be an approximate local solution, but it is
also possible that the algorithm is making very

416 � nonlin_least_squares IMSL C/Math/Library

slow progress and is not near a solution, or that
step_tol is too big.

Warning Errors
IMSL_REL_FCN_TOLERANCE Relative function convergence—Both the actual

and predicted relative reductions in the function
are less than or equal to the relative function
convergence tolerance rfcn_tol = #.

IMSL_TOO_MANY_ITN Maximum number of iterations exceeded.

IMSL_TOO_MANY_FCN_EVAL Maximum number of function evaluations
exceeded.

IMSL_TOO_MANY_GRAD_EVAL Maximum number of gradient evaluations
exceeded.

IMSL_UNBOUNDED Five consecutive steps have been taken with the
maximum step length.

IMSL_NO_FURTHER_PROGRESS The last global step failed to locate a lower point
than the current x value.

Fatal Errors
IMSL_FALSE_CONVERGENCE False convergence—The iterates appear to be

converging to a noncritical point. Possibly
incorrect gradient information is used, or the
function is discontinuous, or the other stopping
tolerances are too tight.

nonlin_least_squares
Solve a nonlinear least-squares problem using a modified Levenberg-Marquardt
algorithm.

Synopsis
#include <imsl.h>
float *imsl_f_nonlin_least_squares (void fcn(), int m, int n, �, 0)

The type double function is imsl_d_nonlin_least_squares.

Required Arguments

void fcn (int m, int n, float x[], float f[]) (Input/Output)
User-supplied function to evaluate the function that defines the least-squares
problem where x is a vector of length n at which point the function is
evaluated, and f is a vector of length m containing the function values at point
x.

Chapter 8: Optimization nonlin_least_squares � 417

int m (Input)
Number of functions.

int n (Input)
Number of variables where n � m.

Return Value
A pointer to the solution x of the nonlinear least-squares problem. To release this space,
use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_nonlin_least_squares (void fcn(), int m, int n,

IMSL_XGUESS, float xguess[],
IMSL_JACOBIAN, void jacobian(),
IMSL_XSCALE, float xscale[],
IMSL_FSCALE, float fscale[],
IMSL_GRAD_TOL, float grad_tol,
IMSL_STEP_TOL, float step_tol,
IMSL_REL_FCN_TOL, float rfcn_tol,
IMSL_ABS_FCN_TOL, float afcn_tol,
IMSL_MAX_STEP, float max_step,
IMSL_INIT_TRUST_REGION, float trust_region,
IMSL_GOOD_DIGIT, int ndigit,
IMSL_MAX_ITN, int max_itn,
IMSL_MAX_FCN, int max_fcn,
IMSL_MAX_JACOBIAN, int max_jacobian,
IMSL_INTERN_SCALE,
IMSL_TOLERANCE, float tolerance,
IMSL_RETURN_USER, float x[],
IMSL_FVEC, float **fvec,
IMSL_FVEC_USER, float fvec[],
IMSL_FJAC, float **fjac,
IMSL_FJAC_USER, float fjac[],
IMSL_FJAC_COL_DIM, int fjac_col_dim,
IMSL_RANK, int *rank,
IMSL_JTJ_INVERSE, float **jtj_inv,
IMSL_JTJ_INVERSE_USER, float jtj_inv[],
IMSL_JTJ_INV_COL_DIM, int jtj_inv_col_dim,
IMSL_FCN_W_DATA, void fcn(), void *data,
IMSL_JACOBIAN_W_DATA, void jacobian(), void *data,
0)

418 � nonlin_least_squares IMSL C/Math/Library

Optional Arguments
IMSL_XGUESS, float xguess[] (Input)

Array with n components containing an initial guess.
Default: xguess = 0

IMSL_JACOBIAN, void jacobian (int m, int n, float x[], float fjac[],
int fjac_col_dim)(Input)
User-supplied function to compute the Jacobian where x is a vector of length n
at which point the Jacobian is evaluated, fjac is the computed m � n Jacobian
at the point x, and fjac_col_dim is the column dimension of fjac.
Note that each derivative �fi/�xj should be returned in
fjac[(i1)*fjac_col_dim+j-1]

IMSL_XSCALE, float xscale[] (Input)
Array with n components containing the scaling vector for the variables.
xscale is used mainly in scaling the gradient and the distance between two
points. See keywords IMSL_GRAD_TOL and IMSL_STEP_TOL for more detail.
Default: xscale[] = 1

IMSL_FSCALE, float fscale[] (Input)
Array with m components containing the diagonal scaling matrix for the
functions. The i-th component of fscale is a positive scalar specifying the
reciprocal magnitude of the i-th component function of the problem.
Default: fscale[] = 1

IMSL_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance. The i-th component of the scaled gradient at x is
calculated as

� �

� �
2

2

max ,1/
1
2

i i ig x s

F x

�

where g = � F(x), s = xscale, and

� � � �
2 2

12

m
ii

F x f
�

�� x

Default:

grad_tol ��

3
� in double where � is the machine precision

IMSL_STEP_TOL, float step_tol (Input)
Scaled step tolerance. The i-th component of the scaled step between two
points x and y is computed as

Chapter 8: Optimization nonlin_least_squares � 419

� �max , 1/
i y

i i

x y

x s

�

where s = xscale.
Default: step_tol = �2/3 where � is the machine precision.

IMSL_REL_FCN_TOL, float rfcn_tol (Input)
Relative function tolerance.
Default: rfcn_tol = max (10-10, �2/3), max (10-20, �2/3) in double, where � is
the machine precision

IMSL_ABS_FCN_TOL, float afcn_tol (Input)
Absolute function tolerance.
Default: afcn_tol = max (10-20, �2), max (10-40, �2) in double, where � is the
machine precision.

IMSL_MAX_STEP, float max_step (Input)
Maximum allowable step size.
Default: max_step = 1000 max (�1, �2) where,

� �
2

1 2 21
,n

i ii
s t s� �

�

� ��

s = xscale, and t = xguess

IMSL_INIT_TRUST_REGION, float trust_region (Input)
Size of initial trust region radius. The default is based on the initial scaled
Cauchy step.

IMSL_GOOD_DIGIT, int ndigit (Input)
Number of good digits in the function.
Default: machine dependent

IMSL_MAX_ITN, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 100

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations.
Default: max_fcn = 400

IMSL_MAX_JACOBIAN, int max_jacobian (Input)
Maximum number of Jacobian evaluations.
Default: max_jacobian = 400

IMSL_INTERN_SCALE
Internal variable scaling option. With this option, the values for xscale are set
internally.

IMSL_TOLERANCE, float tolerance (Input)
The tolerance used in determining linear dependence for the computation of
the inverse of JTJ. For imsl_f_nonlin_least_squares, if

420 � nonlin_least_squares IMSL C/Math/Library

IMSL_JACOBIAN is specified, then tolerance = 100 � imsl_d_machine(4)
is the default. Otherwise, the square root of imsl_f_machine(4) is the
default. For imsl_d_nonlin_least_ squares, if IMSL_JACOBIAN is
specified, then tolerance = 100 � imsl_machine(4) is the default.
Otherwise, the square root of imsl_d_machine(4) is the default.
See imsl_f_machine (Chapter 12, “Utilities”).

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the computed solution.

IMSL_FVEC, float **fvec (Output)
The address of a pointer to a real array of length m containing the residuals at
the approximate solution. On return, the necessary space is allocated by
imsl_f_nonlin_least_squares. Typically, float *fvec is declared, and
&fvec is used as an argument.

IMSL_FVEC_USER, float fvec[] (Output)
A user-allocated array of size m containing the residuals at the approximate
solution.

IMSL_FJAC, float **fjac (Output)
The address of a pointer to an array of size m � n containing the Jacobian at
the approximate solution. On return, the necessary space is allocated by
imsl_f_nonlin_least_squares. Typically, float *fjac is declared, and
&fjac is used as an argument.

IMSL_FJAC_USER, float fjac[] (Output)
A user-allocated array of size m � n containing the Jacobian at the
approximate solution.

IMSL_FJAC_COL_DIM, int fjac_col_dim (Input)
The column dimension of fjac.
Default: fjac_col_dim = n

IMSL_RANK, int *rank (Output)
The rank of the Jacobian is returned in *rank.

IMSL_JTJ_INVERSE, float **jtj_inv (Output)
The address of a pointer to an array of size n � n containing the inverse matrix of
JTJ where the J is the final Jacobian. If JTJ is singular, the inverse is a symmetric
g2 inverse of JTJ. (See imsl_f_lin_sol_nonnegdef in Chapter 1,
“Linear Systems” for a discussion of generalized inverses and definition of the
g2 inverse.) On return, the necessary space is allocated by
imsl_f_nonlin_least_squares.

IMSL_JTJ_INVERSE_USER, float jtj_inv[] (Output)
A user-allocated array of size n � n containing the inverse matrix of JTJ where
the J is the Jacobian at the solution.

IMSL_JTJ_INV_COL_DIM, int jtj_inv_col_dim (Input)
The column dimension of jtj_inv.
Default: jtj_inv_col_dim = n

Chapter 8: Optimization nonlin_least_squares � 421

IMSL_FCN_W_DATA, void fcn (int m, int n, float x[], float f[], void *data),
void *data (Input)
User supplied function to evaluate the function that defines the least-squares
problem, which also accepts a pointer to data that is supplied by the user.
data is a pointer to the data to be passed to the user-supplied function. See
the Introduction, Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

IMSL_JACOBIAN_W_DATA, void jacobian (int m, int n, float x[], float
fjac[], int fjac_col_dim, void *data), void *data (Input)
User supplied function to compute the Jacobian, which also accepts a pointer
to data that is supplied by the user. data is a pointer to the data to be passed
to the user-supplied function. See the Introduction, Passing Data to User-
Supplied Functions at the beginning of this manual for more details.

Description
The function imsl_f_nonlin_least_squares is based on the MINPACK routine
LMDER by Moré et al. (1980). It uses a modified Levenberg-Marquardt method to
solve nonlinear least-squares problems. The problem is stated as follows:

� � � � � �
2

1

1 1min
2 2

m
T

i
i

F x F x f x
�

� �

where m � n, F : Rn � Rm, and fi(x) is the i-th component function of F(x). From a
current point, the algorithm uses the trust region approach,

� � � �� �
2

2

min

subject to

n c c n c
x

n c c

F x J x x x

x x �

�

� �

� �

R

to get a new point xn, which is computed as

xn = xc
 (J(xc)T J(xc) + �cI)-1 J(xc)T F(xc)

where �c = 0 if 	c � ||(J(xc)T J(xc))-1 J(xc)T F(xc)||2 and �c > 0, otherwise. The value
�c is defined by the function. The vector and matrix F(xc) and J(xc) are the function
values and the Jacobian evaluated at the current point xc, respectively. This function is
repeated until the stopping criteria are satisfied.

The first stopping criterion for imsl_f_nonlin_least_squares occurs when the
norm of the function is less than the absolute function tolerance fcn_tol. The second
stopping criterion occurs when the norm of the scaled gradient is less than the given
gradient tolerance grad_tol. The third stopping criterion for
imsl_f_nonlin_least_squares occurs when the scaled distance between the last
two steps is less than the step tolerance step_tol. For more details, see Levenberg
(1944), Marquardt (1963), or Dennis and Schnabel (1983, Chapter 10).

422 � nonlin_least_squares IMSL C/Math/Library

Figure 8-2 Plot of the Nonlinear Fit

Examples

Example 1
In this example, the nonlinear data-fitting problem found in Dennis and Schnabel
(1983, p. 225),

� �
3

2

1

1min
2 i

i
f x

�

�

where

� � it x
i if x e y� �

is solved with the data t = (1, 2, 3) and y = (2, 4, 3).
#include <stdio.h>
#include <imsl.h>
#include <math.h>

void fcn(int, int, float[], float[]);

void main()
{
 int m=3, n=1;
 float *result, fx[3];

 result = imsl_f_nonlin_least_squares(fcn, m, n, 0);
 fcn(m, n, result, fx);

/* Print results */

Chapter 8: Optimization nonlin_least_squares � 423

 imsl_f_write_matrix("The solution is", 1, 1, result, 0);
 imsl_f_write_matrix("The function values are", 1, 3, fx, 0);
} /* End of main */

void fcn(int m, int n, float x[], float f[])
{
 int i;
 float y[3] = {2.0, 4.0, 3.0};
 float t[3] = {1.0, 2.0, 3.0};

 for (i=0; i<m; i++)
 f[i] = exp(x[0]*t[i]) - y[i];

} /* End of function */

Output
 The solution is
 0.4401

 The function values are
 1 2 3
 -0.447 -1.589 0.744

Example 2
In this example, imsl_f_nonlin_least_squares is first invoked to fit the
following nonlinear regression model discussed by Neter et al. (1983, pp. 475
478):

2
1 1, 2, ...,15ix

i iy e i�
� � � � �

where the �i’s are independently distributed each normal with mean zero and variance
�2. The estimate of �2 is then computed as

� �

15 2
2 1

15 rank
ii

e
s

J
�

�

�

�

where ei is the i-th residual and J is the Jacobian. The estimated asymptotic variance-
covariance matrix of � and � is computed as 1̂ 2̂

� � � �
12ˆest. asy. var Ts J J�

�

�

Finally, the diagonal elements of this matrix are used together with imsl_f_t_inverse_cdf
(see Chapter 9, Special Functions) to compute 95% confidence intervals on �1 and �2.

#include <math.h>
#include <imsl.h>

void exampl(int, int, float[], float[]);

void main()
{
 int i, j, m=15, n=2, rank;
 float a, *result, e[15], jtj_inv[4], s2, dfe;
 char *fmt="%12.5e";

424 � nonlin_least_squares IMSL C/Math/Library

 static float xguess[2] = {60.0, -0.03};
 static float grad_tol = 1.0e-3;

 result = imsl_f_nonlin_least_squares(exampl, m, n,
 IMSL_XGUESS, xguess,
 IMSL_GRAD_TOL, grad_tol,
 IMSL_FVEC_USER, e,
 IMSL_RANK, &rank,
 IMSL_JTJ_INVERSE_USER, jtj_inv,
 0);
 dfe = (float) (m - rank);
 s2 = 0.0;
 for (i=0; i<m; i++)
 s2 += e[i] * e[i];
 s2 = s2 / dfe;
 j = n * n;
 for (i=0; i<j; i++)
 jtj_inv[i] = s2 * jtj_inv[i];
 /* Print results */

 imsl_f_write_matrix (
 "Estimated Asymptotic Variance-Covariance Matrix",
 2, 2, jtj_inv, IMSL_WRITE_FORMAT, fmt, 0);
 printf(" \n 95%% Confidence Intervals \n ");
 printf(" Estimate Lower Limit Upper Limit \n ");
 for (i=0; i<n; i++) {
 j = i * (n+1);
 a = imsl_f_t_inverse_cdf (0.975, dfe) * sqrt(jtj_inv[j]);
 printf(" %10.3f %12.3f %12.3f \n", result[i],
 result[i] - a, result[i] + a);
 }
} /* End of main */

void exampl(int m, int n, float x[], float f[])
{
 int i;
 float y[15] = { 54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0, 16.0,
 18.0, 13.0, 8.0, 11.0, 8.0, 4.0, 6.0 };
 float xdata[15] = { 2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0,
 34.0, 38.0, 45.0, 52.0, 53.0, 60.0, 65.0 };

 for (i=0; i<m; i++)
 f[i] = y[i] - x[0]*exp(x[1]*xdata[i]);

} /* End of function */

Output
Estimated Asymptotic Variance-Covariance Matrix
 1 2
 1 2.17524e+00 -1.80141e-03
 2 -1.80141e-03 2.97216e-06

 95% Confidence Intervals
 Estimate Lower Limit Upper Limit
 58.608 55.422 61.795
 -0.040 -0.043 -0.036

Chapter 8: Optimization lin_prog � 425

Informational Errors
IMSL_STEP_TOLERANCE Scaled step tolerance satisfied. The current

point may be an approximate local solution,
but it is also possible that the algorithm is
making very slow progress and is not near a
solution, or that step_tol is too big.

Warning Errors
IMSL_LITTLE_FCN_CHANGE Both the actual and predicted relative

reductions in the function are less than or equal
to the relative function tolerance.

IMSL_TOO_MANY_ITN Maximum number of iterations exceeded.

IMSL_TOO_MANY_FCN_EVAL Maximum number of function evaluations
exceeded.

IMSL_TOO_MANY_JACOBIAN_EVAL Maximum number of Jacobian evaluations
exceeded.

IMSL_UNBOUNDED Five consecutive steps have been taken with
the maximum step length.

Fatal Errors
IMSL_FALSE_CONVERGE The iterates appear to be converging to a

noncritical point.

lin_prog
Solves a linear programming problem using the revised simplex algorithm.

Synopsis
#include <imsl.h>
float *imsl_f_lin_prog (int m, int n, float a[], float b[],

float c[], �, 0)

The type double function is imsl_d_lin_prog.

Required Arguments

int m (Input)
Number of constraints.

int n (Input)
Number of variables.

float a[] (Input)
Array of size m � n containing a matrix with coefficients of the m constraints.

426 � lin_prog IMSL C/Math/Library

float b[] (Input)
Array with m components containing the right-hand side of the constraints; if
there are limits on both sides of the constraints, then b contains the lower limit
of the constraints.

float c[] (Input)
Array with n components containing the coefficients of the objective function.

Return Value
A pointer to the solution x of the linear programming problem. To release this space,
use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_prog (int m, int n, float a[], float b[], float c[],

IMSL_A_COL_DIM, int a_col_dim,
IMSL_UPPER_LIMIT, float bu[],
IMSL_CONSTR_TYPE, int irtype[],
IMSL_LOWER_BOUND, float xlb[],
IMSL_UPPER_BOUND, float xub[],
IMSL_MAX_ITN, int max_itn,
IMSL_OBJ, float *obj,
IMSL_RETURN_USER, float x[],
IMSL_DUAL, float **y,
IMSL_DUAL_USER, float y[],
0)

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

The column dimension of a.
Default: a_col_dim = n

IMSL_UPPER_LIMIT, float bu[] (Input)
Array with m components containing the upper limit of the constraints that
have both the lower and the upper bounds. If no such constraint exists, then
bu is not needed.

IMSL_CONSTR_TYPE, int irtype[] (Input)
Array with m components indicating the types of general constraints in the
matrix a. Let ri = ai1x1 + � + ainxn. Then, the value of irtype(i) signifies
the following:

Chapter 8: Optimization lin_prog � 427

irtype(i) Constraint
0 ri = bi

1 ri � bui

2 ri � bi
3 bi � ri � bui

Default: irtype = 0

IMSL_LOWER_BOUND, float xlb[] (Input)
Array with n components containing the lower bound on the variables. If there
is no lower bound on a variable, then 1030 should be set as the lower bound.
Default: xlb = 0

IMSL_UPPER_BOUND, float xub[] (Input)
Array with n components containing the upper bound on the variables. If there
is no upper bound on a variable, then
1030 should be set as the upper bound.
Default: xub = �

IMSL_MAX_ITN, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 10000

IMSL_OBJ, float *obj (Output)
Optimal value of the objective function.

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the primal solution.

IMSL_DUAL, float **y (Output)
The address of a pointer y to an array with m components containing the dual
solution. On return, the necessary space is allocated by imsl_f_lin_prog.
Typically, float *y is declared, and &y is used as an argument.

IMSL_DUAL_USER, float y[] (Output)
A user-allocated array of size m. On return, y contains the dual solution.

Description

The function imsl_f_lin_prog uses a revised simplex method to solve linear
programming problems, i.e., problems of the form

min subject to
n

T
l x

x

l u

c x b A b

x x x
�

� �

� �

R
u

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors
bl, bu, xl, and xu are the lower and upper bounds on the constraints and the variables,
respectively.

For a complete description of the revised simplex method, see Murtagh (1981) or
Murty (1983).

428 � lin_prog IMSL C/Math/Library

Examples

Example 1
The linear programming problem in the standard form

� � 1 2

1 2 3

1 2 4

1 5

2 6

min 3
1.5subject to
0.5

1.0
1.0

0, for 1, , 6i

f x x x
x x x
x x x
x x

x x
x i

� � �

� � �

� � �

� �

� �

� � �

is solved.
#include <imsl.h>

main()
{
 int m = 4;
 int n = 6;
 float a[] = {1.0, 1.0, 1.0, 0.0, 0.0, 0.0,
 1.0, 1.0, 0.0, -1.0, 0.0, 0.0,
 1.0, 0.0, 0.0, 0.0, 1.0, 0.0,
 0.0, 1.0, 0.0, 0.0, 0.0, 1.0};
 float b[] = {1.5, 0.5, 1.0, 1.0};
 float c[] = {-1.0, -3.0, 0.0, 0.0, 0.0, 0.0};
 float *x;
 /* Solve the LP problem */

 x = imsl_f_lin_prog (m, n, a, b, c, 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 6, x, 0);
}

Output
 x
 1 2 3 4 5 6
 0.5 1.0 0.0 1.0 0.5 0.0

Example 2
The linear programming problem in the previous example can be formulated as follows:

min f(x) =
x1
 3x2
subject to 0.5 � x1 + x2 � 1.5

 0 � x1 �1.0
 0 � x2 � 1.0

This problem can be solved more efficiently.
#include <imsl.h>

main()
{
 int irtype[] = {3};
 int m = 1;
 int n = 2;

Chapter 8: Optimization quadratic_prog � 429

 float xub[] = {1.0, 1.0};
 float a[] = {1.0, 1.0};
 float b[] = {0.5};
 float bu[] = {1.5};
 float c[] = {-1.0, -3.0};
 float d[1];
 float obj, *x;
 /* Solve the LP problem */

 x = imsl_f_lin_prog (m, n, a, b, c,
 IMSL_UPPER_LIMIT, bu,
 IMSL_CONSTR_TYPE, irtype,
 IMSL_UPPER_BOUND, xub,
 IMSL_DUAL_USER, d,
 IMSL_OBJ, &obj,
 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 2, x, 0);
 /* Print d */
 imsl_f_write_matrix ("d", 1, 1, d, 0);
 printf("\n obj = %g \n", obj);
}

Output
 x
 1 2
 0.5 1.0

 d
 -1

 obj = -3.5

Warning Errors
IMSL_PROB_UNBOUNDED The problem is unbounded.

IMSL_TOO_MANY_ITN Maximum number of iterations exceeded.

IMSL_PROB_INFEASIBLE The problem is infeasible.

Fatal Errors
IMSL_NUMERIC_DIFFICULTY Numerical difficulty occurred (moved to a vertex

that is poorly conditioned). If float is currently
being used, using double precision may help.

IMSL_BOUNDS_INCONSISTENT The bounds are inconsistent.

quadratic_prog
Solves a quadratic programming problem subject to linear equality or inequality
constraints.

Synopsis
#include <imsl.h>

430 � quadratic_prog IMSL C/Math/Library

float *imsl_f_quadratic_prog (int m, int n, int meq, float a[], float b[],
float g[], float h[], �, 0)

The type double function is imsl_d_quadratic_prog.

Required Arguments

int m (Input)
The number of linear constraints.

int n (Input)
The number of variables.

int meq (Input)
The number of linear equality constraints.

float a[] (Input)
Array of size m � n containing the equality constraints in the first meq rows,
followed by the inequality constraints.

float b[] (Input)
Array with m components containing right-hand sides of the linear constraints.

float g[] (Input)
Array with n components containing the coefficients of the linear term of the
objective function.

float h[] (Input)
Array of size n � n containing the Hessian matrix of the objective function. It
must be symmetric positive definite. If h is not positive definite, the algorithm
attempts to solve the QP problem with h replaced by h + diag* I such that
h + diag* I is positive definite.

Return Value
A pointer to the solution x of the QP problem. To release this space, use free. If no
solution can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_quadratic_prog (int m, int n, int meq, float a[], float b[],

float g[], float h[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_H_COL_DIM, int h_col_dim,

 IMSL_RETURN_USER, float x[],
IMSL_DUAL, float **y,
IMSL_DUAL_USER, float y[],
IMSL_ADD_TO_DIAG_H, float *diag,
IMSL_OBJ, float *obj,
0)

Chapter 8: Optimization quadratic_prog � 431

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

Leading dimension of A exactly as specified in the dimension statement of the
calling program.
Default: a_col_dim = n

IMSL_H_COL_DIM, int h_col_dim (Input)
Leading dimension of h exactly as specified in the dimension statement of the
calling program.
Default: n_col_dim = n

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the solution.

IMSL_DUAL, float **y (Output)
The address of a pointer y to an array with m components containing the
Lagrange multiplier estimates. On return, the necessary space is allocated by
imsl_f_quadratic_prog. Typically, float *y is declared, and &y is used as
an argument.

IMSL_DUAL_USER, float y[] (Output)
A user-allocated array with m components. On return, y contains the Lagrange
multiplier estimates.

IMSL_ADD_TO_DIAG_H, float *diag (Output)
Scalar equal to the multiple of the identity matrix added to h to give a positive
definite matrix.

IMSL_OBJ, float *obj (Output)
The optimal object function found.

Description
The function imsl_f_quadratic_prog is based on M.J.D. Powell’s implementation
of the Goldfarb and Idnani dual quadratic programming (QP) algorithm for convex QP
problems subject to general linear equality/inequality constraints (Goldfarb and Idnani
1983); i.e., problems of the form

1 1

2 2

1min
2

subject to

n

T T

x
g x x Hx

A x b
A x b

�

�

�

�

R

given the vectors b1, b2, and g, and the matrices H, A1, and A2. H is required to be
positive definite. In this case, a unique x solves the problem or the constraints are
inconsistent. If H is not positive definite, a positive definite perturbation of H is used in
place of H. For more details, see Powell (1983, 1985).

If a perturbation of H, H +
I, is used in the QP problem, then H +
I also should be
used in the definition of the Lagrange multipliers.

432 � quadratic_prog IMSL C/Math/Library

1

Examples

Example 1
The quadratic programming problem

� � 2 2 2 2 2
1 2 3 4 5 2 3 4 5

1 2 3 4 5

3 4 5

min 2 2 2
subject to 5

2 2 3

f x x x x x x x x x x x
x x x x x
x x x

� � � � � � � �

� � � � �

� � � �

is solved.
#include <imsl.h>

main()
{
 int m = 2;
 int n = 5;
 int meq = 2;
 float *x;
 float h[] = {2.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 2.0,-2.0, 0.0, 0.0,
 0.0,-2.0, 2.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 2.0,-2.0,
 0.0, 0.0, 0.0,-2.0, 2.0};
 float a[] = {1.0, 1.0, 1.0, 1.0, 1.0,
 0.0, 0.0, 1.0,-2.0,-2.0};
 float b[] = {5.0, -3.0};
 float g[] = {-2.0, 0.0, 0.0, 0.0, 0.0};
 /* Solve the QP problem */
 x = imsl_f_quadratic_prog (m, n, meq, a, b, g, h, 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 5, x, 0);
}

Output
 x
 1 2 3 4 5
 1 1 1 1 1

Example 2
Another quadratic programming problem

� � 2 2 2
1 2 3 1 2 3

1 2 3

min subject to 2 4
2

f x x x x x x x
x x x

� � � � � �

� � � �

is solved.
#include <imsl.h>

float h[] = {2.0, 0.0, 0.0,
 0.0, 2.0, 0.0,
 0.0, 0.0, 2.0};
float a[] = {1.0, 2.0, -1.0,
 1.0, -1.0, 1.0};
float b[] = {4.0, -2.0};
float g[] = {0.0, 0.0, 0.0};

Chapter 8: Optimization min_con_gen_lin � 433

main()
{
 int m = 2;
 int n = 3;
 int meq = 2;
 float obj;
 float d[2];
 float *x;
 /* Solve the QP problem */

 x = imsl_f_quadratic_prog (m, n, meq, a, b, g, h,
 IMSL_OBJ, &obj,
 IMSL_DUAL_USER, d,
 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 3, x, 0);
 /* Print d */
 imsl_f_write_matrix ("d", 1, 2, d, 0);
 printf("\n obj = %g \n", obj);
}

Output
 x
 1 2 3
 0.286 1.429 -0.857

 d
 1 2
 1.143 -0.571

 obj = 2.85714

Warning Errors
IMSL_NO_MORE_PROGRESS Due to the effect of computer rounding error, a

change in the variables fail to improve the
objective function value; usually the solution is
close to optimum.

Fatal Errors
IMSL_SYSTEM_INCONSISTENT The system of equations is inconsistent. There is

no solution.

min_con_gen_lin
Minimizes a general objective function subject to linear equality/inequality constraints.

Synopsis

#include <imsl.h>

float *imsl_f_min_con_gen_lin (void fcn(), int nvar, int ncon, int neq,
float a[], float b[], float xlb[], float xub[], ..., 0)

434 � min_con_gen_lin IMSL C/Math/Library

The type double function is imsl_d_min_con_gen_lin.

Required Arguments

void fcn (int n, float x[], float *f) (Input/Output)
User-supplied function to evaluate the function to be minimized. Argument x
is a vector of length n at which point the function is evaluated, and f contains
the function value at x.

int nvar (Input)
Number of variables.

int ncon (Input)
Number of linear constraints (excluding simple bounds).

int neq (Input)
Number of linear equality constraints.

float a[] (Input)
Array of size ncon � nvar containing the equality constraint gradients in the
first neq rows followed by the inequality constraint gradients.

float b[] (Input)
Array of size ncon containing the right-hand sides of the linear constraints.
Specifically, the constraints on the variables
xi, i = 0, nvar
 1, are ak,0x0 + � + ak,nvar-1xnvar-1 = bk, k = 0, �,
neq
 1 and ak,0x0 + � + ak,nvar-1xnvar-1 � bk, k = neq, �, ncon
 1. Note
that the data that define the equality constraints come before the data of the
inequalities.

float xlb[] (Input)
Array of length nvar containing the lower bounds on the variables; choose a
very large negative value if a component should be unbounded below or set
xub[i] = xub[i] to freeze the i-th variable. Specifically, these simple bounds
are xlb[i] � xi, for i = 1, �, nvar.

float xub[] (Input)
Array of length nvar containing the upper bounds on the variables; choose a
very large positive value if a component should be unbounded above.
Specifically, these simple bounds are xi � xub[i], for i = 1, nvar.

Return Value
A pointer to the solution x. To release this space, use free. If no solution can be
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_min_con_gen_lin (void fcn(), int nvar, int ncon, int a,
float b, float xlb[], float xub[],
IMSL_XGUESS, float xguess[],

Chapter 8: Optimization min_con_gen_lin � 435

IMSL_GRADIENT, void gradient(),
IMSL_MAX_FCN, int max_fcn,
IMSL_NUMBER_ACTIVE_CONSTRAINTS, int *nact,
IMSL_ACTIVE_CONSTRAINT, int **iact,
IMSL_ACTIVE_CONSTRAINT_USER, int *iact_user,
IMSL_LAGRANGE_MULTIPLIERS, float **lagrange,
IMSL_LAGRANGE_MULTIPLIERS_USER, float *lagrange_user,
IMSL_TOLERANCE, float tolerance,
IMSL_OBJ, float *obj,
IMSL_RETURN_USER, float x[],
IMSL_FCN_W_DATA, void fcn(), void *data,
IMSL_GRADIENT_W_DATA, void grad(), void *data,
0)

Optional Arguments
IMSL_XGUESS, float xguess[] (Input)

Array with n components containing an initial guess.
Default: xguess = 0

IMSL_GRADIENT, void gradient (int n, float x[], float g[]) (Input)
User-supplied function to compute the gradient at the point x, where x is a
vector of length n, and g is the vector of length n containing the values of the
gradient of the objective function.

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations.
Default: max_fcn = 400

IMSL_NUMBER_ACTIVE_CONSTRAINTS, int *nact (Output)
Final number of active constraints.

IMSL_ACTIVE_CONSTRAINT, int **iact (Output)
The address of a pointer to an int, which on exit, points to an array containing
the nact indices of the final active constraints.

IMSL_ACTIVE_CONSTRAINT_USER, int *iact_user (Output)
A user-supplied array of length at least ncon + 2*nvar containing the indices
of the final active constraints in the first nact locations.

IMSL_LAGRANGE_MULTIPLIERS, float **lagrange (Output)
The address of a pointer, which on exit, points to an array containing the
Lagrange multiplier estimates of the final active constraints in the first nact
locations.

IMSL_LAGRANGE_MULTIPLIERS_USER, float *lagrange_user (Output)
A user-supplied array of length at least nvar containing the Lagrange
multiplier estimates of the final active constraints in the first nact locations.

IMSL_TOLERANCE, float tolerance (Input)
The nonnegative tolerance on the first order conditions at the calculated

436 � min_con_gen_lin IMSL C/Math/Library

solution.
Default: tolerance = � , where � is machine epsilon

IMSL_OBJ, float *obj (Output)
The value of the objective function.

IMSL_RETURN_USER, float x[] (Output)
User-supplied array with nvar components containing the computed solution.

IMSL_FCN_W_DATA, void fcn (int n, float x[], float *f , void *data), void
*data (Input)
User supplied function to compute the value of the function to be minimized,
which also accepts a pointer to data that is supplied by the user. data is a
pointer to the data to be passed to the user-supplied function. See the
Introduction, Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

IMSL_GRADIENT_W_DATA, void gradient (int n, float x[], float g[],void
*data) , void *data (Input)
User-supplied function to compute the gradient at the point x, which also
accepts a pointer to data that is supplied by the user. data is a pointer to the
data to be passed to the user-supplied function. See the Introduction, Passing
Data to User-Supplied Functions at the beginning of this manual for more
details.

Description
The function imsl_f_min_con_gen_lin is based on M.J.D. Powell’s TOLMIN,
which solves linearly constrained optimization problems, i.e., problems of the form

min f (x)

subject to
A1x = b1
A2x � b2

xl � x � xu

given the vectors b1, b2, xl ,and xu and the matrices A1 and A2.
The algorithm starts by checking the equality constraints for inconsistency and
redundancy. If the equality constraints are consistent, the method will revise x0, the
initial guess, to satisfy

A1x = b1

Next, x0 is adjusted to satisfy the simple bounds and inequality constraints. This is done
by solving a sequence of quadratic programming subproblems to minimize the sum of
the constraint or bound violations.

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality
constraints that have small residuals. Here, the simple bounds are treated as inequality
constraints. Let Ik be the set of indices of active constraints. The following quadratic
programming problem

Chapter 8: Optimization min_con_gen_lin � 437

� � � �
1min
2

k T k T kf x d f x d B� � � d

1

subject to
ajd = 0, j � Ik

ajd � 0, j � Jk

is solved to get (dk, �k) where aj is a row vector representing either a constraint in
A1 or A2 or a bound constraint on x. In the latter case, the aj = ei for the bound
constraint xi � (xu)i and aj =
ei for the constraint
xi � (xl)i. Here, ei is a vector with 1
as the i-th component, and zeros elsewhere. Variables �k are the Lagrange multipliers,
and Bk is a positive definite approximation to the second derivative �2 f(xk).

After the search direction dk is obtained, a line search is performed to locate a better
point. The new point xk+1 = xk +
kdk has to satisfy the conditions

f(xk +
kdk) � f(xk) + 0.1
k (dk)T � f(xk)
and

(dK)T� f(xk +
kdk) � 0.7 (dk)T� f(xK)

The main idea in forming the set Jk is that, if any of the equality constraints restricts the
step-length
k, then its index is not in Jk. Therefore, small steps are likely to be
avoided.

Finally, the second derivative approximation BK, is updated by the BFGS formula, if
the condition

(dK)T� f(xk +
kdk)
 � f(xk) > 0

holds. Let xk � xk+1, and start another iteration.

The iteration repeats until the stopping criterion
|| � f(xk)
 Ak�K||2 � �

is satisfied. Here � is the supplied tolerance. For more details, see Powell (1988, 1989).

Since a finite difference method is used to approximate the gradient for some single
precision calculations, an inaccurate estimate of the gradient may cause the algorithm to
terminate at a noncritical point. In such cases, high precision arithmetic is
recommended. Also, if the gradient can be easily provided, the option IMSL_GRADIENT
should be used.

Example 1
In this example, the problem

� � 2 2 2 2 2
1 2 3 4 5 2 3 4 5

1 2 3 4 5

3 4 5

min 2 2 2
subject to 5

2 2 3
0 10

f x x x x x x x x x x x
x x x x x

x x x
x

� � � � � � � �

� � � � �

� � � �

� �

438 � min_con_gen_lin IMSL C/Math/Library

is solved.
#include "imsl.h"

main()
{
 void fcn(int, float *, float *);
 int neq = 2;
 int ncon = 2;
 int nvar = 5;

 float a[] = {1.0, 1.0, 1.0, 1.0, 1.0,
 0.0, 0.0, 1.0, -2.0, -2.0};
 float b[] = {5.0, -3.0};
 float xlb[] = {0.0, 0.0, 0.0, 0.0, 0.0};
 float xub[] = {10.0, 10.0, 10.0, 10.0, 10.0};
 float *x;

 x = imsl_f_min_con_gen_lin(fcn, nvar, ncon, neq, a, b, xlb, xub,
 0);

 imsl_f_write_matrix("Solution", 1, nvar, x, 0);
}

void fcn(int n, float *x, float *f)
{
 *f = x[0]*x[0] + x[1]*x[1] + x[2]*x[2] + x[3]*x[3] + x[4]*x[4]
 - 2.0*x[1]*x[2] - 2.0*x[3] * x[4] - 2.0*x[0];
}

Output
 Solution
 1 2 3 4 5
 1 1 1 1 1

Example 2
In this example, the problem from Schittkowski (1987)

minf(x) =
x0x1x2
subject to
x0
 2x1
 2x2 � 0

x0 + 2x1 + 2x2 � 72
0 � x0 � 20
0 � x1 � 11
0 � x2 � 42

is solved with an initial guess of x0 = 10, x1 = 10 and x2 = 10.
#include "imsl.h"

main()
{
 void fcn(int, float *, float *);
 void grad(int, float *, float *);
 int neq = 0;
 int ncon = 2;
 int nvar = 3;
 int lda = 2;

Chapter 8: Optimization bounded_least_squares � 439

 float obj, x[3];
 float a[] = {-1.0, -2.0, -2.0,
 1.0, 2.0, 2.0};
 float xlb[] = {0.0, 0.0, 0.0};
 float xub[] = {20.0, 11.0, 42.0};
 float xguess[] = {10.0, 10.0, 10.0};
 float b[] = {0.0, 72.0};

 imsl_f_min_con_gen_lin(fcn, nvar, ncon, neq, a, b, xlb, xub,
 IMSL_GRADIENT, grad,
 IMSL_XGUESS, xguess,
 IMSL_OBJ, &obj,
 IMSL_RETURN_USER, x,
 0);

 imsl_f_write_matrix("Solution", 1, nvar, x, 0);
 printf("Objective value = %f\n", obj);
}

void fcn(int n, float *x, float *f)
{
 *f = -x[0] * x[1] * x[2];
}

void grad(int n, float *x, float *g)
{
 g[0] = -x[1]*x[2];
 g[1] = -x[0]*x[2];
 g[2] = -x[0]*x[1];
}

Output
 Solution
 1 2 3
 20 11 15
Objective value = -3300.000000

bounded_least_squares
Solves a nonlinear least-squares problem subject to bounds on the variables using a
modified Levenberg-Marquardt algorithm.

Synopsis

#include <imsl.h>

float *imsl_f_bounded_least_squares (void fcn(), int m, int n,
int ibtype, float xlb[], float xub[], ..., 0)

The type double function is imsl_d_bounded_least_squares.

440 � bounded_least_squares IMSL C/Math/Library

Required Arguments

void fcn (int m, int n, float x[], float f[]) (Input/Output)
User-supplied function to evaluate the function that defines the least-squares
problem where x is a vector of length n at which point the function is
evaluated, and f is a vector of length m containing the function values at point
x.

int m (Input)
Number of functions.

int n (Input)
Number of variables where n � m.

int ibtype (Input)
Scalar indicating the types of bounds on the variables.

ibtype Action

0 User will supply all the bounds.
1 All variables are nonnegative
2 All variables are nonpositive.
3 User supplies only the bounds on 1st variable, all other

variables will have the same bounds

float xlb[] (Input, Output, or Input/Output)
Array with n components containing the lower bounds on the variables. (Input,
if ibtype = 0; output, if ibtype = 1 or 2; Input/Output, if ibtype = 3)

If there is no lower bound on a variable, then the corresponding xlb value
should be set to
106.

float xub[] (Input, Output, or Input/Output)
Array with n components containing the upper bounds on the variables. (Input,
if ibtype = 0; output, if ibtype 1 or 2; Input/Output, if ibtype = 3)

If there is no upper bound on a variable, then the corresponding xub value
should be set to 106.

Return Value
A pointer to the solution x of the nonlinear least-squares problem. To release this space,
use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_bounded_least_squares (void fcn(), int m, int n,
int ibtype, float xlb[], float xub[],
IMSL_XGUESS, float xguess[],
IMSL_JACOBIAN, void jacobian(),

Chapter 8: Optimization bounded_least_squares � 441

IMSL_XSCALE, float xscale[],
IMSL_FSCALE, float fscale[],
IMSL_GRAD_TOL, float grad_tol,
IMSL_STEP_TOL, float step_tol,
IMSL_REL_FCN_TOL, float rfcn_tol,
IMSL_ABS_FCN_TOL, float afcn_tol,
IMSL_MAX_STEP, float max_step,
IMSL_INIT_TRUST_REGION, float trust_region,
IMSL_GOOD_DIGIT, int ndigit,
IMSL_MAX_ITN, int max_itn,
IMSL_MAX_FCN, int max_fcn,
IMSL_MAX_JACOBIAN, int max_jacobian,
IMSL_INTERN_SCALE,
IMSL_RETURN_USER, float x[],
IMSL_FVEC, float **fvec,
IMSL_FVEC_USER, float fvec[],
IMSL_FJAC, float **fjac,
IMSL_FJAC_USER, float fjac[],
IMSL_FJAC_COL_DIM, int fjac_col_dim,
IMSL_FCN_W_DATA, void fcn(), void *data,
IMSL_JACOBIAN_W_DATA, void jacobian(), void *data,
0)

Optional Arguments
IMSL_XGUESS, float xguess[] (Input)

Array with n components containing an initial guess.
Default: xguess = 0

IMSL_JACOBIAN, void jacobian (int m, int n, float x[], float fjac[], int
fjac_col_dim) (Input)
User-supplied function to compute the Jacobian where x is a vector of length n
at which point the Jacobian is evaluated, fjac is the computed m � n Jacobian at
the point x, and fjac_col_dim is the column dimension of fjac. Note that
each derivative fi�xj should be returned in fjac[(i
1)*fjac_col_dim+j
1].

IMSL_XSCALE, float xscale[] (Input)
Array with n components containing the scaling vector for the variables.
Argument xscale is used mainly in scaling the gradient and the distance
between two points. See keywords IMSL_GRAD_TOL and IMSL_STEP_TOL for
more details.
Default: xscale[] = 1

IMSL_FSCALE, float fscale[] (Input)
Array with m components containing the diagonal scaling matrix for the
functions. The i-th component of fscale is a positive scalar specifying the
reciprocal magnitude of the i-th component function of the problem.
Default: fscale[] = 1

442 � bounded_least_squares IMSL C/Math/Library

IMSL_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance. The i-th component of the scaled gradient at x is
calculated as

� �

� � 2
2

| | max ,1/
1 || ||
2

i i ig x s

F x

�

where g = � F(x), s = xscale, and

� � � �
22

12

m
ii

F x f
�

�� x

Default: grad_tol = 3,� � in double where � is the machine precision

IMSL_STEP_TOL, float step_tol (Input)
Scaled step tolerance. The i-th component of the scaled step between two
points x, and y, is computed as

� �

| |
max | |,1/

i y

i i

x y
x s
�

where s = xscale.
Default: step_tol = �2/3, where � is the machine precision

IMSL_REL_FCN_TOL, float rfcn_tol (Input)
Relative function tolerance.
Default: rfcn_tol = max(10-10, �2/3), max(10-20, �2/3) in double, where � is
the machine precision

IMSL_ABS_FCN_TOL, float afcn_tol (Input)
Absolute function tolerance.
Default: afcn_tol = max(10-20, �2), max(10-40, �2) in double, where � is the
machine precision

IMSL_MAX_STEP, float max_step (Input)
Maximum allowable step size.
Default: max_step = 1000 max(�1, �2), where

� �
2

1 21
, || ||n

i ii 2s t s� �
�

� ��

for s = xscale and t = xguess.

IMSL_INIT_TRUST_REGION, float trust_region (Input)
Size of initial trust region radius. The default is based on the initial scaled
Cauchy step.

IMSL_GOOD_DIGIT, int ndigit (Input)
Number of good digits in the function.
Default: machine dependent

Chapter 8: Optimization bounded_least_squares � 443

IMSL_MAX_ITN, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 100

IMSL_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations.
Default: max_fcn = 400

IMSL_MAX_JACOBIAN, int max_jacobian (Input)
Maximum number of Jacobian evaluations.
Default: max_jacobian = 400

IMSL_INTERN_SCALE
Internal variable scaling option. With this option, the values for xscale are
set internally.

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the computed solution.

IMSL_FVEC, float **fvec (Output)
The address of a pointer to a real array of length m containing the residuals at
the approximate solution. On return, the necessary space is allocated by
imsl_f_bounded_least_squares. Typically, float *fvec is declared, and
&fvec is used as an argument.

IMSL_FVEC_USER, float fvec[] (Output)
A user-allocated array of size m containing the residuals at the approximate
solution.

IMSL_FJAC, float **fjac (Output)
The address of a pointer to an array of size m � n containing the Jacobian at
the approximate solution. On return, the necessary space is allocated by
imsl_f_bounded_least_squares. Typically, float *fjac is declared, and
&fjac is used as an argument.

IMSL_FJAC_USER, float fjac[] (Output)
A user-allocated array of size m � n containing the Jacobian at the
approximate solution.

IMSL_FJAC_COL_DIM, int fjac_col_dim (Input)
The column dimension of fjac.
Default: fjac_col_dim = n

IMSL_FCN_W_DATA, void fcn (int m, int n, float x[], float f[], void *data),
void *data, (Input)
User-supplied function to evaluate the function that defines the least-squares
problem, which also accepts a pointer to data that is supplied by the user.
data is a pointer to the data to be passed to the user-supplied function. See
the Introduction, Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

IMSL_JACOBIAN_W_DATA, void jacobian (int m, int n, float x[], float
fjac[], int fjac_col_dim, void *data), void *data, (Input)

444 � bounded_least_squares IMSL C/Math/Library

User-supplied function to compute the Jacobian, which also accepts a pointer
to data that is supplied by the user. data is a pointer to the data to be passed
to the user-supplied function. See the Introduction, Passing Data to User-
Supplied Functions at the beginning of this manual for more details.

Description
The function imsl_f_bounded_least_squares uses a modified Levenberg-
Marquardt method and an active set strategy to solve nonlinear least-squares problems
subject to simple bounds on the variables. The problem is stated as follows:

� � � � � �
2

1

1 1min
2 2

m
T

i
i

F x F x f x
�

� �

subject to l � x � u

where m � n, F : Rn � Rm, and fi(x) is the i-th component function of F(x). From a
given starting point, an active set IA, which contains the indices of the variables at their
bounds, is built. A variable is called a “free variable” if it is not in the active set. The
routine then computes the search direction for the free variables according to the
formula

d =
(JTJ + � I)-1 JTF

where � is the Levenberg-Marquardt parameter, F = F(x), and J is the Jacobian with
respect to the free variables. The search direction for the variables in IA is set to zero.
The trust region approach discussed by Dennis and Schnabel (1983) is used to find the
new point. Finally, the optimality conditions are checked. The conditions are

||g (xi)|| � �, li < xi < ui

g (xi) < 0, xi = ui

g (xi) >0, xi = li

where � is a gradient tolerance. This process is repeated until the optimality criterion is
achieved.

The active set is changed only when a free variable hits its bounds during an iteration or
the optimality condition is met for the free variables but not for all variables in IA, the
active set. In the latter case, a variable that violates the optimality condition will be
dropped out of IA. For more detail on the Levenberg-Marquardt method, see
Levenberg (1944) or Marquardt (1963). For more detail on the active set strategy, see
Gill and Murray (1976).

Since a finite-difference method is used to estimate the Jacobian for some single-
precision calculations, an inaccurate estimate of the Jacobian may cause the algorithm
to terminate at a noncritical point. In such cases, high-precision arithmetic is

Chapter 8: Optimization bounded_least_squares � 445

recommended. Also, whenever the exact Jacobian can be easily provided, the option
IMSL_JACOBIAN should be used.

Examples

Example 1
In this example, the nonlinear least-squares problem

� �
1

2

0

0

1

1min
2

2 0
1 2

i
i

.5

f x

x
x

�

� � �

� � �

�

where
2

0 1 0 1() 10() and () (1)0f x x x f x� � � � x

is solved with an initial guess (
1.2, 1.0).
#include "imsl.h"
#include <math.h>

#define M 2
#define N 2
#define LDFJAC 2

main()
{
 void rosbck(int, int, float *, float *);
 int ibtype = 0;
 float xlb[N] = {-2.0, -1.0};
 float xub[N] = {0.5, 2.0};
 float *x;

 x = imsl_f_bounded_least_squares (rosbck, M, N, ibtype, xlb,
 xub, 0);

 printf("x[0] = %f\n", x[0]);
 printf("x[1] = %f\n", x[1]);
}

void rosbck (int m, int n, float *x, float *f)
{
 f[0] = 10.0*(x[1] - x[0]*x[0]);
 f[1] = 1.0 - x[0];
}

Output
x[0] = 0.500000
x[1] = 0.250000

446 � bounded_least_squares IMSL C/Math/Library

Example 2
This example solves the nonlinear least-squares problem

� �
1

2

0

0

1

1min
2

2 0
1 2

i
i

.5

f x

x
x

�

� � �

� � �

�

where
2

0 1 0 1() 10() and () (1)0f x x x f x� � � � x

This time, an initial guess (
1.2, 1.0) is supplied, as well as the analytic Jacobian. The
residual at the approximate solution is returned.

#include "imsl.h"
#include <math.h>

#define M 2
#define N 2
#define LDFJAC 2

main()
{
 void rosbck(int, int, float *, float *);
 void jacobian(int, int, float *, float *, int);
 int ibtype = 0;
 float xlb[N] = {-2.0, -1.0};
 float xub[N] = {0.5, 2.0};
 float xguess[N] = {-1.2, 1.0};
 float *fvec;
 float *x;

 x = imsl_f_bounded_least_squares (rosbck, M, N, ibtype, xlb, xub,
 IMSL_JACOBIAN, jacobian,
 IMSL_XGUESS, xguess,
 IMSL_FVEC, &fvec,
 0);

 printf("x[0] = %f\n", x[0]);
 printf("x[1] = %f\n\n", x[1]);
 printf("fvec[0] = %f\n", fvec[0]);
 printf("fvec[1] = %f\n\n", fvec[1]);
}

void rosbck (int m, int n, float *x, float *f)
{
 f[0] = 10.0*(x[1] - x[0]*x[0]);
 f[1] = 1.0 - x[0];
}

void jacobian (int m, int n, float *x, float *fjac, int fjac_col_dim)
{
 fjac[0] = -20.0*x[0];

Chapter 8: Optimization constrained_nlp � 447

 fjac[1] = 10.0;
 fjac[2] = -1.0;
 fjac[3] = 0.0;
}

Output
x[0] = 0.500000
x[1] = 0.250000

fvec[0] = 0.000000
fvec[1] = 0.500000

constrained_nlp
Solves a general nonlinear programming problem using a sequential equality
constrained quadratic programming method.

Synopsis
#include <imsl.h>

float *imsl_f_constrained_nlp (void fcn(), int m, int meq, int n, int ibtype,
float xlb[], float xub[], …, 0)

The type double function is imsl_d_constrained_nlp.

Required Arguments
void fcn(int n, float x[], int iact, float *result, int *ierr) (Input)

User supplied function to evaluate the objective function and constraints at a
given point.

int n (Input)
Number of variables.

float x[] (Input)
The point at which the objective function or a constraint is evaluated.

int iact (Input)
Integer indicating whether evaluation of the function is requested or
evaluation of a constraint is requested. If iact is zero, then an
objective function evaluation is requested. If iact is nonzero then
the value of iact indicates the index of the constraint to evaluate.

float result[] (Output)
If iact is zero, then result is the computed objective function at
the point x. If iact is nonzero, then result is the requested
constraint value at the point x.

int *ierr (Output)
Address of an integer. On input ierr is set to 0. If an error or other
undesirable condition occurs during evaluation, then ierr should be
set to 1. Setting ierr to 1 will result in the step size being reduced

448 � constrained_nlp IMSL C/Math/Library

and the step being tried again. (If ierr is set to 1 for xguess, then
an error is issued.)

int m (Input)
Total number of constraints.

int meq (Input)
Number of equality constraints.

int n (Input)
Number of variables.

int ibtype (Input)
Scalar indicating the types of bounds on variables.

ibtype Action
0 User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on first variable, all

other variables will have the same bounds.

float xlb[] (Input, Output, or Input/Output)
Array with n components containing the lower bounds on the variables. (Input,
if ibtype = 0; output, if ibtype = 1 or 2; Input/Output, if ibtype = 3)

 If there is no lower bound on a variable, then the corresponding xlb value
should be set to imsl_f_machine(8).

float xub[] (Input, Output, or Input/Output)
Array with n components containing the upper bounds on the variables. (Input,
if ibtype = 0; output, if ibtype 1 or 2; Input/Output, if ibtype = 3)

 If there is no upper bound on a variable, then the corresponding xub value
should be set to imsl_f_machine(7).

Return Value
A pointer to the solution x of the nonlinear programming problem. To release this
space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arugments
#include <imsl.h>
float *imsl_f_constrained_nlp (void fcn(), int m, int meq, int n, i int nt

ibtype, float xlb[], float xub[],
IMSL_GRADIENT, void grad(),
IMSL_PRINT, int iprint,
IMSL_XGUESS, float xguess[],
IMSL_ITMAX, int itmax,

Chapter 8: Optimization constrained_nlp � 449

IMSL_TAU0, float tau0,
IMSL_DEL0, float del0,
IMSL_SMALLW, float smallw,
IMSL_DELMIN, float delmin,
IMSL_SCFMAX, float scfmax,
IMSL_RETURN_USER, float x[],
IMSL_OBJ, float *obj,
IMSL_DIFFTYPE, int difftype,
IMSL_XSCALE, float xscale[],
IMSL_EPSDIF, float epsdif,
IMSL_EPSFCN, float epsfcn,
IMSL_TAUBND, float taubnd,
IMSL_FCN_W_DATA, void fcn(), void *data,
IMSL_GRADIENT_W_DATA, void grad(), void *data,
 0)

Optional Arguments
IMSL_GRADIENT, void grad(int n, float x[], int iact, float result[]) (Input)

User-supplied function to evaluate the gradients at a given point where

int n (Input)
Number of variables.

float x[] (Input)
The point at which the gradient of the objective function or gradient
of a constraint is evaluated

int iact (Input)
Integer indicating whether evaluation of the function gradient is
requested or evaluation of a constraint gradient is requested. If iact
is zero, then an objective function gradient evaluation is requested. If
iact is nonzero then the value of iact indicates the index of the
constraint gradient to evaluate.

float result[] (Output)
If iact is zero, then result is the computed gradient of the
objective function at the point x. If iact is nonzero, then result is
the computed gradient of the requested constraint value at the point x.

IMSL_PRINT, int iprint (Input)
Parameter indicating the desired output level. (Input)

Iprint Action

0 No output printed.

1 One line of intermediate results is printed in
each iteration.

2 Lines of intermediate results summarizing the
most important data for each step are printed.

450 � constrained_nlp IMSL C/Math/Library

Iprint Action

3 Lines of detailed intermediate results showing
all primal and dual variables, the relevant
values from the working set, progress in the
backtracking and etc are printed

4 Lines of detailed intermediate results showing
all primal and dual variables, the relevant
values from the working set, progress in the
backtracking, the gradients in the working set,
the quasi-Newton updated and etc are printed.

 Default: iprint = 0.

IMSL_XGUESS, float xguess[] (Input)
Array of length n containing an initial guess of the solution. (Input)
Default: xguess = X, (with the smallest value of x

2
) that satisfies the

bounds.

IMSL_ITMAX, int itmax (Input)
Maximum number of iterations allowed. (Input)
Default: itmax = 200.

IMSL_TAU0, float tau0 (Input)
A universal bound describing how much the unscaled penalty-term may
deviate from zero. (Input)
imsl_f_constrained_nlp assumes that within the region described by

� � � �� �
1 1

min 0,
e

e

M M

i i
i i M

g x g x
� � �

� �� � tau0

 all functions may be evaluated safely. The initial guess, however, may violate
these requirements. In that case an initial feasibility improvement phase is run
by imsl_f_constrained_nlp until such a point is found. A small tau0
diminishes the efficiency of imsl_f_constrained_nlp, because the
iterates then will follow the boundary of the feasible set closely. Conversely, a
large tau0 may degrade the reliability of the code.
Default tau0 = 1.0.

IMSL_DEL0, float del0 (Input)
In the initial phase of minimization a constraint is considered binding if

� �

� �� �max
1, ,

1,
i

e
i

M M
g x

i
g x

� � �

�

del0 �

 Good values are between .01 and 1.0. If del0 is chosen too small then
identification of the correct set of binding constraints may be delayed.

Chapter 8: Optimization constrained_nlp � 451

Contrary, if del0 is too large, then the method will often escape to the full
regularized SQP method, using individual slack variables for any active
constraint, which is quite costly. For well-scaled problems del0 = 1.0 is
reasonable.
Default: del0 = .5* tau0

IMSL_SMALLW, float smallw (Input)
Scalar containing the error allowed in the multipliers. For example, a negative
multiplier of an inequality constraint is accepted (as zero) if its absolute value
is less than smallw .
Default: smallw = exp(2*log(eps/3)) where eps is the machine precision.

IMSL_DELMIN, float delmin (Input)
Scalar which defines allowable constraint violations of the final accepted
result. Constraints are satisfied if |gi(x)| delmin for equality constraints,
and g

�

i(x) (-delmin) for equality constraints.
Default: delmin = min(.1*del0, max(epsdif, max(1.e-6*del0, smallw))

�

IMSL_SCFMAX, float scfmax (Input)
Scalar containing the bound for the internal automatic scaling of the objective
function. (Input)
Default: scfmax = 1.0e4

IMSL_RETURN_USER, float x[] (Output)
A user allocated array of length n containing the solution x.

IMSL_OBJ, float *obj (Output)
Scalar containing the value of the objective function at the computed solution.

IMSL_FCN_W_DATA, void fcn(int n, float x[], int iact, float *result, int
*ierr, void *data), void *data, (Input)
User supplied function to evaluate the objective function and constraints at a
given point, which also accepts a pointer to data that is supplied by the user.
data is a pointer to the data to be passed to the user-supplied function. See
the Introduction, Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

IMSL_GRADIENT_W_DATA, void grad(int n, float x[], int iact, float result[],
void *data), void *data, (Input)
User-supplied function to evaluate the gradients at a given point, which also
accepts a pointer to data that is supplied by the user. data is a pointer to the
data to be passed to the user-supplied function. See the Introduction, Passing
Data to User-Supplied Functions at the beginning of this manual for more
details.

 The following optional arguments are valid only if IMSL_GRADIENT is not

supplied.

IMSL_DIFFTYPE, int difftype (Input)
Type of numerical differentiation to be used.
Default: difftype = 1

452 � constrained_nlp IMSL C/Math/Library

difftype Action

1 Use a forward difference quotient with
discretization stepsize 0.1(epsfcn)���
componentwise relative.

2 Use the symmetric difference quotient with
discretization stepsize 0.1(epsfcn)���
componentwise relative.

3 Use the sixth order approximation computing a
Richardson extrapolation of three symmetric
difference quotient values. This uses a
discretization stepsize 0.01(epsfcn)���.

IMSL_XSCALE, float xscale[] (Input)
Vector of length n setting the internal scaling of the variables. The initial
value given and the objective function and gradient evaluations however are
always in the original unscaled variables. The first internal variable is
obtained by dividing values x[i] by xscale[i]. (Input)
In the absence of other information, set all entries to 1.0.
Default: xscale[] = 1.0.

IMSL_EPSDIF, float epsdif (Input)
Relative precision in gradients.
Default: epsdif = � where � is the machine precision.

IMSL_EPSFCN, float epsfcn (Input)
Relative precision of the function evaluation routine. (Input)
Default: epsfcn = � where � is the machine precision

IMSL_TAUBND, float taubnd (Input)
Amount by which bounds may be violated during numerical differentiation.
Bounds are violated by taubnd (at most) only if a variable is on a bound and
finite differences are taken taken for gradient evaluations. (Input)
Default: taubnd = 1.0

Description
The function constrained_nlp provides an interface to a licensed version of
subroutine DONLP2, a code developed by Peter Spellucci (1998). It uses a sequential
equality constrained quadratic programming method with an active set technique, and
an alternative usage of a fully regularized mixed constrained subproblem in case of
nonregular constraints (i.e. linear dependent gradients in the “working sets”). It uses a
slightly modified version of the Pantoja-Mayne update for the Hessian of the
Lagrangian, variable dual scaling and an improved Armjijo-type stepsize algorithm.
Bounds on the variables are treated in a gradient-projection like fashion. Details may be
found in the following two papers:

P. Spellucci: An SQP method for general nonlinear programs using only equality
constrained subproblems. Math. Prog. 82, (1998), 413-448.

Chapter 8: Optimization constrained_nlp � 453

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math.
Meth. of Oper. Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg,
Germany).

The problem is stated as follows:

� �min
nx

f x
�R

� �

� �

subject to 0, for 1, ,

0, for 1, ,

j e

j e

l u

g x j m

g x j m

x x x

� �

� � �

� �

�

� m

i

Although default values are provided for optional input arguments, it may be necessary
to adjust these values for some problems. Through the use of optional arguments,
imsl_f_constrained_nlp allows for several parameters of the algorithm to be
adjusted to account for specific characteristics of problems. The DONLP2 Users
Guide provides detailed descriptions of these parameters as well as strategies for
maximizing the perfomance of the algorithm. The DONLP2 Users Guide is available
in the “help” subdirectory of the main IMSL product installation directory. In addition,
the following are a number of guidelines to consider when using
imsl_f_constrained_nlp.

�� A good initial starting point is very problem specific and should be provided by
the calling program whenever possible. See optional argument IMSL_XGUESS.

�� Gradient approximation methods can have an effect on the success of
imsl_f_constrained_nlp. Selecting a higher order approximation method
may be necessary for some problems. See optional argument IMSL_DIFFTYPE.

�� If a two sided constraint is transformed into two constraints

 and , then choose

()i il g x u� �

() 0�2 () 0ig x � 2 1ig x
�

� �1l0 () / {1, }2 i i iu l max g x� � �de ,
or at least try to provide an estimate for that value. This will increase the
efficiency of the algorithm. See optional argument IMSL_DEL0.

�� The parameter ierr provided in the interface to the user supplied function fcn
can be very useful in cases when evaluation is requested at a point that is not
possible or reasonable. For example, if evaluation at the requested point would
result in a floating point exception, then setting ierr to 1 and returning without
performing the evaluation will avoid the exception.
imsl_f_constrained_nlp will then reduce the stepsize and try the step
again. Note, if ierr is set to 1 for the initial guess, then an error is issued.

454 � constrained_nlp IMSL C/Math/Library

Example
The problem

� � � � � �

� �

� �

2 2
1 2

1 1 2

2
2 1 2

min 2 1

subject to 2 1 0
2 / 4 1 0

F x x x

g x x x

g x x x

� � � �

� � � �

� � � � �

is solved.

include "imsl.h"
#define M 2
#define ME 1
#define N 2
void grad(int n, float x[], int iact, float result[]);
void fcn(int n, float x[], int iact, float *result, int *ierr);

void main()
{
 int ibtype = 0;
 float *x, ans[2];
 static float xlb[N], xub[N];

 xlb[0] = xlb[1] = imsl_f_machine(8);
 xub[0] = xub[1] = imsl_f_machine(7);
 x = imsl_f_constrained_nlp(fcn, M, ME, N, ibtype, xlb, xub, 0);
 imsl_f_write_matrix ("The solution is", 1, N, x, 0);
}
 /* Himmelblau problem 1 */
void fcn(int n, float x[], int iact, float *result, int *ierr)
{
 float tmp1, tmp2;
 tmp1 = x[0] - 2.0e0;
 tmp2 = x[1] - 1.0e0;
 switch (iact) {
 case 0:
 *result = tmp1 * tmp1 + tmp2 * tmp2;
 break;
 case 1:
 *result = x[0] - 2.0e0 * x[1] + 1.0e0;
 break;
 case 2:
 *result = -(x[0]*x[0]) / 4.0e0 - x[1]*x[1] + 1.0e0;
 break;
 default: ;
 break;
 }
 *ierr = 0;
 return;
}

Output
 The solution is
 1 2
 0.8229 0.9114

Chapter 9: Special Functions Routines � 455

Chapter 9: Special Functions

Routines
9.1 Error and Gamma Functions

Error Functions
Evaluates error function ...erf 460
Evaluates complementary error function..erfc 461
Evaluates inverse error function... erf_inverse 465
Evaluates exponentially error function..erfce 463
Evaluates scaled function...erfe 464
Evaluates inverse complementary error function erfc_inverse 467
Evaluates beta function ... beta 469
Evaluates logarithmic beta function.. log_beta 471
Evaluates incomplete beta function................................beta_incomplete 472
Gamma Functions
Evaluates gamma function ...gamma 473
Evaluates logarithmic gamma function log_gamma 475
Evaluates incomplete gamma function gamma_incomplete 476

9.2 Bessel Functions
Evaluates function J0 ..bessel_J0 478
Evaluates function J1 ...bessel_J1 480
Evaluates function Jn ..bessel_Jx 481
Evaluates function Y0... bessel_Y0 482
Evaluates function Y1... bessel_Y1 484
Evaluates function Yv... bessel_Yx 485
Evaluates function I0 ..bessel_I0 487
Evaluates function e-|x|I0(x) ...bessel_exp_I0 489
Evaluates function I1 ..bessel_I1 490
Evaluates function e-|x|I1(x) ...bessel_exp_I1 491
Evaluates function Iv ..bessel_Ix 492
Evaluates function K0... bessel_K0 493
Evaluates function exK0(x) .. bessel_exp_K0 495
Evaluates function K1... bessel_K1 496
Evaluates function exK1(x) .. bessel_exp_K1 497
Evaluates function Kv... bessel_Kx 499

456 � Routines IMSL C/Math/Library

9.3 Elliptic Integrals
Evaluates complete elliptic integral of the first kind elliptic_integral_K 500
Evaluates complete elliptic integral of the
second kind.. elliptic_integral_E 501
Evaluates Carlson's elliptic integral of the first kind ...elliptic_integral_RF 502
Evaluates Carlson's elliptic integral of the
second kind..elliptic_integral_RD 504
Evaluates Carlson's elliptic integral of the third kind.. elliptic_integral_RJ 505
Evaluates special case of Carlson's elliptic integral...elliptic_integral_RC 506

9.4 Fresnel Integrals
Evaluates cosine Fresnel integral fresnel_integral_C 507
Evaluates sine Fresnel integral................................... fresnel_integral_S 508

9.5 Airy Functions
Evaluates Airy function...airy_Ai 509
Evaluates Airy function of the second findairy_Bi 510
Evaluates derivative of the Airy function airy_Ai_derivative 511
Evaluates derivative of the Airy function of
the second kind.. airy_Bi_derivative 512

9.6 Kelvin Functions
Evaluates Kelvin function ber of the first kind, order 0........... kelvin_ber0 513
Evaluates Kelvin function bei of the first kind, order 0 kelvin_bei0 514
Evaluates Kelvin function ker of the second kind, order 0 kelvin_ker0 515
Evaluates Kelvin function kei of the second kind, order 0kelvin_kei0 516
Evaluates derivative of the Kelvin function berkelvin_ber0_derivative 517
Evaluates derivative of the Kelvin function bei...... kelvin_bei0_derivative 518
Evaluates derivative of the Kelvin function kerkelvin_ker0_derivative 519
Evaluates derivative of the Kelvin function kei...... kelvin_kei0_derivative 520

9.7 Statistical Functions
Evaluates normal (Gaussian) distribution functionnormal_cdf 521
Evaluates inverse normal distribution function..........normal_inverse_cdf 523
Evaluates chi-squared distribution function chi_squared_cdf 524
Evaluates Inverse chi-squared
distribution function .. chi_squared_inverse_cdf 526
Evaluates F distribution function ... F_cdf 528
Evaluates inverse F distribution functionF_inverse_cdf 530
Evaluates student’s t distribution function...t_cdf 531
Evaluates inverse of the Student’s t distribution function.... t_inverse_cdf 533
Evaluates gamma distribution function gamma_cdf 534
Evaluates binomial distribution function............................... binomial_cdf 536
Evaluates hypergeometric distribution functionhypergeometric_cdf 537
Evaluates Poisson distribution function poisson_cdf 539
Evaluates beta distribution function ..beta_cdf 540
Evaluates inverse beta distribution function.................. beta_inverse_cdf 542
Evaluates bivariate normal distribution function......bivariate_normal_cdf 543

Chapter 9: Special Functions Routines � 457

9.8 Basic Financial Functions
Evaluates cumulative interest....................................cumulative_interest 545
Evaluates cumulative principal cumulative_principal 546
Evaluates depreciation using the
fixed-declining method .. depreciation_db 548
Evaluates depreciation using the
double-declining method ... depreciation_ddb 550
Evaluates depreciation using the
straight-line method ...depreciation_sln 551
Evaluates depreciation using the
sum-of-years digits method ..depreciation_syd 553
Evaluates depreciation using the
variable declining method ...depreciation_vdb 554
Evaluates and converts fractional price to decimal price ..dollar_decimal 556
Evaluates and converts decimal price to fractional price .. dollar_fraction 557
Evaluates effective rate .. effective_rate 558
Evaluates future value .. future_value 559
Evaluates future value; considering a
schedule of compound interest ratesfuture_value_schedule 561
Evaluates interest payment .. interest_payment 562
Evaluates interest rate.. interest_rate_annuity 563
Evaluates internal rate of returninternal_rate_of_return 565
Evaluates internal rate of return for a schedule
of cash flows...internal_rate_schedule 567
Evaluates modified internal rate modified_internal_rate 569
Evaluates net present value net_present_value 570
Evaluates nominal rate.. nominal_rate 571
Evaluates number of periods.....................................number_of_periods 573
Evaluates periodic payment ... payment 574
Evaluates present value .. present_value 576
Evaluates present value for a schedule
of cash flows..present_value_schedule 577
Evaluates the payment for a principalprincipal_payment 579

9.9 Bond Functions
Evaluates accrued interest at maturityaccr_interest_maturity 580
Evaluates accrued interest periodicallyaccr_interest_periodic 582
Evaluates bond-equivalent yield bond_equivalent_yield 584
Evaluates convexity... convexity 586
Evaluates days in coupon period...coupon_days 588
Evaluates number of coupons..coupon_number 589
Evaluates days before settlementdays_before_settlement 591
Evaluates days to next coupon date......................days_to_next_coupon 592
Evaluates depreciation per accounting period .. depreciation_amordegrc 594
Evaluates depreciation, ...depreciation_amorlinc 596
Evaluates discount price..discount_price 597
Evaluates discount rate .. discount_rate 599

458 � Usage Notes IMSL C/Math/Library

Evaluates yield for a discounted securitydiscount_yield 601
Evaluates duration .. duration 603
Evaluates the interest rate of a security................. interest_rate_security 605
Evaluates Macauley durationmodified_duration 607
Evaluates next coupon date..next_coupon_date 608
Evaluates previous coupon date.......................... previous_coupon_date 610
Evaluates price per $100 face value periodically..............................price 612
Evaluates price per $100 face value at maturityprice_maturity 614
Evaluates amount received at maturity........................ received_maturity 616
Evaluates Treasury bill's price treasury_bill_price 618
Evaluates Treasury bill's yield treasury_bill_yield 619
Evaluates year fraction...year_fraction 621
Evaluates yield at maturity ... yield_maturity 622
Evaluates yield periodically ...yield_periodic 624

Usage Notes
Users can perform financial computations by using pre-defined data types. Most of the
financial functions require one or more of the following:
�� Date
�� Number of payments per year
�� A variable to indicate when payments are due
�� Day count basis

IMSL C/Math/Library provides the identifiers for the input, frequency, to indicate the
number of payments for each year. The identifiers are IMSL_ANNUAL,
IMSL_SEMIANNUAL, and IMSL_QUARTERLY.

Identifier (frequency) Meaning

IMSL_ANNUAL One payment per year
(Annual payment)

IMSL_SEMIANNUAL Two payments per year
 (Semi-annual payment)

IMSL_QUARTERLY Four payments per year
(Quarterly payment)

IMSL C/Math/Library provides the identifiers for the input, when, to indicate when
payments are due. The identifiers are IMSL_AT_END_OF_PERIOD,
IMSL_AT_BEGINNING_OF_PERIOD.

Chapter 9: Special Functions Usage Notes � 459

Identifier (when) Meaning

IMSL_AT_END_OF_PERIOD Payments are due at the end of the
period

IMSL_AT_BEGINNING_OF_PERIOD Payments are due at the beginning of
the period

IMSL C/Math/Library provides the identifiers for the input, basis, to indicate the type
of day count basis. Day count basis is the method for computing the number of days
between two dates. The identifiers are IMSL_DAY_CNT_BASIS_NASD,
IMSL_DAY_CNT_BASIS_ACTUALACTUAL, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, and IMSL_DAY_CNT_BASIS_30E360.

Identifier (basis) Day count basis

IMSL_DAY_CNT_BASIS_NASD US (NASD) 30/360

IMSL_DAY_CNT_BASIS_ACTUALACTUAL Actual/Actual

IMSL_DAY_CNT_BASIS_ACTUAL360 Actual/360

IMSL_DAY_CNT_BASIS_ACTUAL365 Actual/365

IMSL_DAY_CNT_BASIS_30E360 European 30/360

IMSL C/Math/Library uses the C programming language structure, tm, provided in the
standard header <time.h>, to represent a date. For a detailed description of tm, see
Kernighan and Richtie 1988, The C Programming Language, Second Edition, p 255.

The structure tm is declared within <time.h> as follows:
struct tm {
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;
 int tm_isdst;
};

For example, to declare a variable to represent Jan 1, 2001, use the following code
segment:

struct tm date;

date.tm_year = 101;
date.tm_mon = 0;
date.tm_mday = 1;

460 � erf IMSL C/Math/Library

NOTE: IMSL C/Math/Library only uses the tm_year, tm_mon, and tm_mday fields
in structure tm .

Additional Information
In preparing the finance and bond functions we incorporated standards used by
SIA Standard Securities Calculation Methods.

More detailed information on finance and bond functionality can be found in the
following manuals:
�� SIA Standard Securities Calculation Methods 1993, vols. 1 & 2, Third Edition.
�� Accountants' Handbook, Volume 1, Sixth Edition.
�� Microsoft Excel 5, Worksheet Function Reference.

erf
Evaluates the real error function erf(x).

Synopsis
#include <imsl.h>
float imsl_f_erf (float x)

The type double procedure is imsl_d_erf.

Required Arguments

float x (Input)
Point at which the error function is to be evaluated.

Return Value
The value of the error function erf(x).

Description
The error function erf(x) is defined to be

� �
2

0

2erf
x tx e

�

�

� � dt

All values of x are legal.

Chapter 9: Special Functions erfc � 461

Figure 9-1 Plot of erf(x)

Example
Evaluate the error function at x = 1�2.

#include <imsl.h>

main()
{
 float x = 0.5;
 float ans;

 ans = imsl_f_erf(x);
 printf("erf(%f) = %f\n", x, ans);
}

Output
erf(0.500000) = 0.520500

erfc
Evaluates the real complementary error function erfc(x).

Synopsis
#include <imsl.h>
float imsl_f_erfc (float x)

The type double procedure is imsl_d_erfc.

462 � erfc IMSL C/Math/Library

Required Arguments

float x (Input)
Point at which the complementary error function is to be evaluated.

Return Value
The value of the complementary error function erfc(x).

Description
The complementary error function erfc(x) is defined to be

� �
22erfc t

x
x e

�

�
�

� � dt

The argument x must not be so large that the result underflows. Approximately,
x should be less than

� �
1/ 2

ln s�� ��
� �

where s is the smallest representable floating-point number.

Figure 9-2 Plot of erfc(x)

Chapter 9: Special Functions erfce � 463

Example
Evaluate the error function at x = 1/2.

#include <imsl.h>

main()
{
 float x = 0.5;
 float ans;

 ans = imsl_f_erfc(x);
 printf("erfc(%f) = %f\n", x, ans);
}

Output
erfc(0.500000) = 0.479500

Alert Errors
IMSL_LARGE_ARG_UNDERFLOW The argument x is so large that the result

underflows.

erfce
Evaluates the exponentially scaled complementary error function.

Synopsis
#include <imsl.h>
float imsl_f_erfce (float x)

The type double function is imsl_d_erfce.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value
 Exponentially scaled complementary error function value.

Description
Function imsl_f_erfce computes

� �
2

erfc xe x

where erfc(x) is the complementary error function. See imsl_f_erfc (page 461) for
its definition.

464 � erfe IMSL C/Math/Library

To prevent the answer from underflowing, x must be greater than

min ln(/ 2)x b� ��

where b = imsl_f_machine(2) is the largest representable floating-point number.

Example
In this example, imsl_f_erfce(1.0) is computed and printed.

#include "imsl.h"

main()

{

 float value, x;

 x = 1.0;

 value = imsl_f_erfce(x);

 printf("erfce(%6.3f) = %6.3f \n", x, value);

}

Output
 erfce(1.000) = 0.428

erfe
Evaluates a scaled function related to erfc(z).

Synopsis
#include <imsl.h>
f_complex imsl_c_erfe (f_complex z)

The type double complex function is imsl_z_erfe.

Required Arguments

f_complex z (Input)
Complex argument for which the function value is desired.

Return Value
 Complex scaled function value related to erfc(z).

Chapter 9: Special Functions erf_inverse � 465

Description
Function imsl_c_erfe is defined to be

2 2 2erfc()z z

z
e iz ie e

�

�
� �

� � � �
2t dt

Let b = imsl_f_machine(2) be the largest floating-point number. The argument z
must satisfy

z b�

or else the value returned is zero. If the argument z does not satisfy

(�z)� � (�z)� � log b,

 then b is returned. All other arguments are legal (Gautschi 1969, 1970).

Example
In this example, imsl_c_erfe(2.5 + 2.5i) is computed and printed.

#include "imsl.h"

main()

{

 f_complex value, z;

 z = imsl_cf_convert(2.5, 2.5);

 value = imsl_c_erfe(z);

printf("\n erfe(%2.3f + %2.3fi) = %2.3f + %2.3fi \n", z.re, z.im, value.re, value.im);

 z.re, z.im, value.re, value.im);

}

Output
 erfe(2.500 + 2.500i) = 0.117 + 0.108i

erf_inverse
Evaluates the real inverse error function erf-1 (x).

Synopsis

#include <imsl.h>
float imsl_f_erf_inverse (float x)

The type double procedure is imsl_d_erf_inverse.

466 � erf_inverse IMSL C/Math/Library

Required Arguments

float x (Input)
Point at which the inverse error function is to be evaluated. It must be between
�1 and 1.

Return Value
The value of the inverse error function erf-1 (x).

Description
The inverse error function erf-1 (x) is such that x = erf (y), where

� �
2

0

2erf
y ty e

�

�

� � dt

The inverse error function is defined only for �1 < x < 1.

Figure 9-3 Plot of erf -1 (x)

Example
Evaluate the inverse error function at x = 1/2.

#include <imsl.h>

main()
{
 float x = 0.5;
 float ans;

 ans = imsl_f_erf_inverse(x);

Chapter 9: Special Functions erfc_inverse � 467

 printf("inverse erf(%f) = %f\n", x, ans);
}

Output
inverse erf(0.500000) = 0.476936

Warning Errors
IMSL_LARGE_ABS_ARG_WARN The answer is less accurate than half precision

because |x| is too large.
Fatal Errors

IMSL_REAL_OUT_OF_RANGE The inverse error function is defined only for
�1 < x < 1.

erfc_inverse
Evaluates the real inverse complementary error function erfc-1 (x).

Synopsis
#include <imsl.h>
float imsl_f_erfc_inverse (float x)

The type double procedure is imsl_d_erfc_inverse.

Required Arguments
float x (Input)

Point at which the inverse complementary error function is to be evaluated.
The argument x must be in the range 0 < x < 2.

Return Value
The value of the inverse complementary error function.

Description
The inverse complementary error function y = erfc-1 (x) is such that x = erfc (y) where

� �
22erfc t

y
y e

�

�
�

� � dt

468 � erfc_inverse IMSL C/Math/Library

Figure 9-4 Plot of erfc-1 (x)

Example
Evaluate the inverse complementary error function at x = 1/2.

#include <imsl.h>

main()
{
 float x = 0.5;
 float ans;

 ans = imsl_f_erfc_inverse(x);
 printf("inverse erfc(%f) = %f\n", x, ans);
}

Output
inverse erfc(0.500000) = 0.476936

Alert Errors
IMSL_LARGE_ARG_UNDERFLOW The argument x must not be so large that the result

underflows. Very approximately, x should be less
than

� �2 / 4� ��

 where � is the machine precision.

Chapter 9: Special Functions beta � 469

Warning Errors
IMSL_LARGE_ARG_WARN |x| should be less than

1/ � where � is the machine precision, to
prevent the answer from being less accurate than
half precision.

Fatal Errors
IMSL_ERF_ALGORITHM The algorithm failed to converge.

IMSL_SMALL_ARG_OVERFLOW The computation of

must not overflow.

2

erfcxe x

IMSL_REAL_OUT_OF_RANGE The function is defined only for 0 < x < 2.

beta
Evaluates the real beta function 	(x, y).

Synopsis
#include <imsl.h>
float imsl_f_beta (float x, float y)

The type double procedure is imsl_d_beta.

Required Arguments

float x (Input)
Point at which the beta function is to be evaluated. It must be positive.

float y (Input)
Point at which the beta function is to be evaluated. It must be positive.

Return Value
The value of the beta function 	 (x, y). If no result can be computed, NaN is returned.

Description
The beta function, 	 (x, y), is defined to be

� �
� � � �

� �
� �

1 11

0
, 1 yxx y

x y t t dt
x y

�
�

�

� �
� � �

� �
�

The beta function requires that x > 0 and y > 0. It underflows for large arguments.

470 � beta IMSL C/Math/Library

Figure 9-5 Plot of 	(x,y)

Example
Evaluate the beta function 	 (0.5, 0.2).

#include <imsl.h>

main()
{
 float x = 0.5;
 float y = 0.2;
 float ans;

 ans = imsl_f_beta(x, y);
 printf("beta(%f,%f) = %f\n", x, y, ans);
}

Output
beta(0.500000,0.200000) = 6.268653

Alert Errors
IMSL_BETA_UNDERFLOW The arguments must not be so large that the result

underflows.

Fatal Errors
IMSL_ZERO_ARG_OVERFLOW One of the arguments is so close to zero that the

result overflows.

Chapter 9: Special Functions log_beta � 471

log_beta
Evaluates the logarithm of the real beta function ln 	(x, y).

Synopsis
#include <imsl.h>
float imsl_f_log_beta (float x, float y)

The type double procedure is imsl_d_log_beta.

Required Arguments

float x (Input)
Point at which the logarithm of the beta function is to be evaluated. It must be
positive.

float y (Input)
Point at which the logarithm of the beta function is to be evaluated. It must be
positive.

Return Value
The value of the logarithm of the beta function 	(x, y).

Description
The beta function, 	 (x, y), is defined to be

� �
� � � �

� �
� �

1 11

0
, 1 yxx y

x y t t dt
x y

�
�

�

� �
� � �

� �
�

and imsl_f_log_beta returns ln 	(x, y).

The logarithm of the beta function requires that x > 0 and y > 0. It can overflow for
very large arguments.

Example
Evaluate the log of the beta function ln 	(0.5, 0.2).

#include <imsl.h>

main()
{
 float x = 0.5;
 float y = 0.2;
 float ans;

 ans = imsl_f_log_beta(x, y);
 printf("log beta(%f,%f) = %f\n", x, y, ans);
}

472 � beta_incomplete IMSL C/Math/Library

Output
log beta(0.500000,0.200000) = 1.835562

Warning Errors
IMSL_X_IS_TOO_CLOSE_TO_NEG_1 The result is accurate to less than one

precision because the expression �x/(x + y)
is too close to �1.

beta_incomplete
Evaluates the real incomplete beta function Ix = 	x(a,b)/	(a,b).

Synopsis
#include <imsl.h>
float imsl_f_beta_incomplete (float x, float a, float b)

The type double procedure is imsl_d_beta_incomplete.

Required Arguments

float x (Input)
Point at which the incomplete beta function is to be evaluated.

float a (Input)
Point at which the incomplete beta function is to be evaluated.

float b (Input)
Point at which the incomplete beta function is to be evaluated.

Return Value
The value of the incomplete beta function.

Description
The incomplete beta function is defined to be

� �
� �

� � � �
� �

11

0

, 1, 1
, ,

x bx a
x

a b
I a b t t dt

a b a b
�

� �

�
�

� � ��

The incomplete beta function requires that 0 � x � 1, a > 0, and b > 0. It underflows for
sufficiently small x and large a. This underflow is not reported as an error. Instead, the
value zero is returned.

Chapter 9: Special Functions gamma � 473

gamma
Evaluates the real gamma function
(x).

Synopsis

#include <imsl.h>
float imsl_f_gamma (float x)

The type double procedure is imsl_d_gamma.

Required Arguments

float x (Input)
Point at which the gamma function is to be evaluated.

Return Value
The value of the gamma function
(x).

Description
The gamma function,
(x), is defined to be

� � 1

0

x tx t e
�

� �

� � � dt

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. It underflows
for x << 0 and overflows for large x. It also overflows for values near negative integers.

Figure 9-6 Plot of
(x) and 1/
(x)

474 � gamma IMSL C/Math/Library

Example
In this example,
(1.5) is computed and printed.

#include <stdio.h>
#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_gamma(x);
 printf("Gamma(%f) = %f\n", x, ans);
}

Output
Gamma(1.500000) = 0.886227

Alert Errors
IMSL_SMALL_ARG_UNDERFLOW The argument x must be large enough that
(x)

does not underflow. The underflow limit occurs
first for arguments close to large negative half
integers. Even though other arguments away from
these half integers may yield machine-
representable values of
(x), such arguments are
considered illegal. Users who need such values
should use the log
(x) function
imsl_f_log_gamma.

Warning Errors
IMSL_NEAR_NEG_INT_WARN The result is accurate to less than one-half

precision because x is too close to a negative
integer.

Fatal Errors
IMSL_ZERO_ARG_OVERFLOW The argument for the gamma function is too close

to zero.

IMSL_NEAR_NEG_INT_FATAL The argument for the function is too close to a
negative integer.

IMSL_LARGE_ARG_OVERFLOW The function overflows because x is too large.

IMSL_CANNOT_FIND_XMIN The algorithm used to find x$ failed. This error
should never occur.

IMSL_CANNOT_FIND_XMAX The algorithm used to find x" failed. This error
should never occur.

Chapter 9: Special Functions log_gamma � 475

log_gamma
Evaluates the logarithm of the absolute value of the gamma function log �
(x)|.

Synopsis
#include <imsl.h>
float imsl_f_log_gamma (float x)

The type double procedure is imsl_d_log_gamma.

Required Arguments

float x (Input)
Point at which the logarithm of the absolute value of the gamma function is to
be evaluated.

Return Value
The value of the logarithm of gamma function, log �
(x)|.

Description
The logarithm of the absolute value of the gamma function log �
(x)| is computed.

Figure 9-7 Plot of log |
(x)|

476 � gamma_incomplete IMSL C/Math/Library

Example
In this example, log �
(3.5)| is computed and printed.

#include <stdio.h>
#include <imsl.h>

main()
{
 float x = 3.5;
 float ans;

 ans = imsl_f_log_gamma(x);
 printf("log gamma(%f) = %f\n", x, ans);
}

Output
log gamma(3.500000) = 1.200974

Warning Errors
IMSL_NEAR_NEG_INT_WARN The result is accurate to less than one-half

precision because x is too close to a negative
integer.

Fatal Errors
IMSL_NEGATIVE_INTEGER The argument for the function cannot be a

negative integer.

IMSL_NEAR_NEG_INT_FATAL The argument for the function is too close to
a negative integer.

IMSL_LARGE_ABS_ARG_OVERFLOW |x| must not be so large that the result
overflows.

gamma_incomplete
Evaluates the incomplete gamma function �(a, x).

Synopsis
#include <imsl.h>
float imsl_f_gamma_incomplete (float a, float x)

The type double procedure is imsl_d_gamma_incomplete.

Required Arguments

float a (Input)
Parameter of the incomplete gamma function is to be evaluated. It must be
positive.

Chapter 9: Special Functions gamma_incomplete � 477

or 0

float x (Input)
Point at which the incomplete gamma function is to be evaluated. It must be
nonnegative.

Return Value
The value of the incomplete gamma function �(a, x).

Description
The incomplete gamma function, �(a, x), is defined to be

� � 1

0
, f

x a ta x t e dt x�
� �

� ��

The incomplete gamma function is defined only for a > 0. Although �(a, x) is well
defined for x > �
, this algorithm does not calculate �(a, x) for negative x. For large
a and sufficiently large x, �(a, x) may overflow. �(a, x) is bounded by
 (a), and users
may find this bound a useful guide in determining legal values for a.

Figure 9-8 Plot of �(a, x)

Example
Evaluate the incomplete gamma function at a = 1 and x = 3.

#include <stdio.h>
#include <imsl.h>

478 � bessel_J0 IMSL C/Math/Library

main()
{
 float x = 3.0;
 float a = 1.0;
 float ans;

 ans = imsl_f_gamma_incomplete(a, x);
 printf("incomplete gamma(%f,%f) = %f\n", a, x, ans);
}

Output
incomplete gamma(1.000000,3.000000) = 0.950213

Fatal Errors
IMSL_NO_CONV_200_TS_TERMS The function did not converge in 200 terms of

Taylor series.

IMSL_NO_CONV_200_CF_TERMS The function did not converge in 200 terms of the
continued fraction.

bessel_J0
Evaluates the real Bessel function of the first kind of order zero J0(x).

Synopsis
#include <imsl.h>
float imsl_f_bessel_J0 (float x)

The type double procedure is imsl_d_bessel_J0.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value
The value of the Bessel function

� � � �0 0

1 cos sinJ x x
�

� �
�

� � d

If no solution can be computed, NaN is returned.

Description
Because the Bessel function J0(x) is oscillatory, its computation becomes inaccurate as
|x| increases.

Chapter 9: Special Functions bessel_J0 � 479

Figure 9-9 Plot of J0 (x) and J1 (x)

Example
The Bessel function J0(1.5) is evaluated.

#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_bessel_J0(x);
 printf("J0(%f) = %f\n", x, ans);
}

Output
J0(1.500000) = 0.511828

Warning Errors
IMSL_LARGE_ABS_ARG_WARN |x| should be less than 1/

where � is the machine precision, to prevent the
answer from being less accurate than half
precision.

�

Fatal Errors
IMSL_LARGE_ABS_ARG_FATAL |x| should be less than 1/� where � is the machine

precision for the answer to have any precision.

480 � bessel_J1 IMSL C/Math/Library

bessel_J1
Evaluates the real Bessel function of the first kind of order one J1(x).

Synopsis
#include <imsl.h>
float imsl_f_bessel_J1 (float x)

The type double procedure is imsl_d_bessel_J1.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value
The value of the Bessel function

� � � �1 0

1 cos sinJ x x
�

� � �
�

� �� d

If no solution can be computed, NaN is returned.

Description
Because the Bessel function J1(x) is oscillatory, its computation becomes inaccurate as
|x| increases.

Example
The Bessel function J1(1.5) is evaluated.

#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_bessel_J1(x);
 printf("J1(%f) = %f\n", x, ans);
}

Output
J1(1.500000) = 0.557937

Alert Errors
IMSL_SMALL_ABS_ARG_UNDERFLOW To prevent J1(x) from underflowing, either

x must be zero, or |x| > 2s where s is the
smallest representable positive number.

Chapter 9: Special Functions bessel_Jx � 481

Warning Errors
IMSL_LARGE_ABS_ARG_WARN |x| should be less than 1/

where � is the machine precision to prevent
the answer from being less accurate than half
precision.

�

Fatal Errors
IMSL_LARGE_ABS_ARG_FATAL |x| should be less than 1/� where � is the

machine precision for the answer to have
any precision.

bessel_Jx
Evaluates a sequence of Bessel functions of the first kind with real order and complex
arguments.

Synopsis
#include <imsl.h>
f_complex *imsl_c_bessel_Jx (float xnu, f_complex z, int n, �, 0)

The type d_complex function is imsl_z_bessel_Jx.

Required Arguments

float xnu (Input)
The lowest order desired. The argument xnu must be greater than �1/2.

f_complex z (Input)
Argument for which the sequence of Bessel functions is to be evaluated.

int n (Input)
Number of elements in the sequence.

Return Value

A pointer to the n values of the function through the series. Element i contains the value
of the Bessel function of order xnu + i for i = 0, �, n � 1.

Synopsis with Optional Arguments
f_complex *imsl_c_bessel_Jx (float xnu, f_complex z, int n

IMSL_RETURN_USER, f_complex bessel[],
0)

Optional Arguments

IMSL_RETURN_USER, f_complex bessel[] (Output)
Store the sequence of Bessel functions in the user-provided array bessel[].

Description

The Bessel function Jn(z) is defined to be

482 � bessel_Y0 IMSL C/Math/Library

� � � �
� � sinh

0 0

sin1 cos sin

for arg
2

z t tJ z z d e

z

�
�

�

��
� �� �

� �

�

�
�

� � �

�

� � dt

This function is based on the code BESSCC of Barnett (1981) and Thompson and
Barnett (1987). This code computes Jn(z) from the modified Bessel function In(z), using
the following relation, with � = eip/2:

� �
� �

� �3 3

/ for / 2 arg

for arg / 2

I z z
Y z

I z z
�

�

�

� � � �

� � � �

� � ���
� �

� � ���

Example
In this example, J0.3+n-1 (1.2 + 0.5i), � = 1, �, 4 is computed and printed.

#include <imsl.h>

main()
{
 int n = 4;
 int i;
 float xnu = 0.3;
 static f_complex z = {1.2, 0.5};
 f_complex *sequence;

 sequence = imsl_c_bessel_Jx(xnu, z, n, 0);

 for (i = 0; i < n; i++)
 printf("I sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n",
 xnu+i, z.re, z.im, sequence[i].re, sequence[i].im);
}

Output
I sub 0.30 ((1.20,0.50)) = (0.774,-0.107)
I sub 1.30 ((1.20,0.50)) = (0.400,0.159)
I sub 2.30 ((1.20,0.50)) = (0.087,0.092)
I sub 3.30 ((1.20,0.50)) = (0.008,0.024)

bessel_Y0
Evaluates the real Bessel function of the second kind of order zero Y0(x).

Synopsis
#include <imsl.h>

Chapter 9: Special Functions bessel_Y0 � 483

float imsl_f_bessel_Y0 (float x)

The type double procedure is imsl_d_bessel_Y0.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value
The value of the Bessel function

� � � � sinh
0 0 0

1 2sin sin z tY x x d e dt
�

� �
� �

�
�

� �� �

If no solution can be computed, NaN is returned.

Description
This function is sometimes called the Neumann function, N0(x), or Weber’s function.

Since Y0(x) is complex for negative x and is undefined at x = 0, imsl_f_bessel_Y0 is
defined only for x > 0. Because the Bessel function Y0(x) is oscillatory, its computation
becomes inaccurate as x increases.

Figure 9-10 Plot of Y0(x) and Y1(x)

484 � bessel_Y1 IMSL C/Math/Library

Example
The Bessel function Y0(1.5) is evaluated.

#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_bessel_Y0(x);
 printf("Y0(%f) = %f\n", x, ans);
}

Output
Y0(1.500000) = 0.382449

Warning Errors
IMSL_LARGE_ABS_ARG_WARN |x| should be less than 1/ where � is the

machine precision to prevent the answer from
being less accurate than half precision.

�

Fatal Errors
IMSL_LARGE_ABS_ARG_FATAL |x| should be less than 1/� where � is the machine

precision for the answer to have any precision.

bessel_Y1
Evaluates the real Bessel function of the second kind of order one Y1(x).

Synopsis
#include <imsl.h>
float imsl_f_bessel_Y1 (float x)

The type double procedure is imsl_d_bessel_Y1.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value
The value of the Bessel function

� � � � � � sinh
1 0 0

1 1sin sin t t z tY x x d e e e dt
�

� � �
� �

�
� �

� � � � �� �

Chapter 9: Special Functions bessel_Yx � 485

If no solution can be computed, then NaN is returned.

Description
This function is sometimes called the Neumann function, N1(x), or Weber’s function.

Since Y1(x) is complex for negative x and is undefined at x = 0, imsl_f_bessel_Y1 is
defined only for x > 0. Because the Bessel function Y1(x) is oscillatory, its computation
becomes inaccurate as x increases.

Example
The Bessel function Y1(1.5) is evaluated.

#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_bessel_Y1(x);
 printf("Y1(%f) = %f\n", x, ans);
}

Output
Y1(1.500000) = -0.412309

Warning Errors
IMSL_LARGE_ABS_ARG_WARN |x| should be less than 1/ where � is the

machine precision to prevent the answer from
being less accurate than half precision.

�

Fatal Errors
IMSL_SMALL_ARG_OVERFLOW The argument x must be large enough

(x > max (1/b, s) where s is the smallest
repesentable positive number and b is the largest
repesentable number) that Y1(x) does not
overflow.

IMSL_LARGE_ABS_ARG_FATAL |x| should be less than 1/� where � is the machine
precision for the answer to have any precision.

bessel_Yx
Evaluates a sequence of Bessel functions of the second kind with real order and
complex arguments.

Synopsis
#include <imsl.h>

486 � bessel_Yx IMSL C/Math/Library

f_complex *imsl_c_bessel_Yx (float xnu, f_complex z, int n, �, 0)

The type d_complex function is imsl_z_bessel_Yx.

Required Arguments

float xnu (Input)
The lowest order desired. The argument xnu must be greater than �1/2.

f_complex z (Input)
Argument for which the sequence of Bessel functions is to be evaluated.

int n (Input)
Number of elements in the sequence.

Return Value
A pointer to the n values of the function through the series. Element i contains the value
of the Bessel function of order xnu + i for i = 0, �, n � 1.

Synopsis with Optional Arguments
f_complex *imsl_c_bessel_Yx (float xnu, f_complex z, int n,

IMSL_RETURN_USER, f_complex bessel[],
0)

Optional Arguments
IMSL_RETURN_USER, f_complex bessel[] (Output)

Store the sequence of Bessel functions in the user-provided array bessel[].

Description
The Bessel function Yn(z) is defined to be

� � � � � � sinh t

0 0

1 1sin sin cos

for arg
2

t t zY z z d e e e dt

z

�
� �

�
� �� � ��

� �

�

�
� �� �� � � �� �

�

� �

This function is based on the code BESSCC of Barnett (1981) and Thompson and
Barnett (1987). This code computes Yn(z) from the modified Bessel functions In(z) and
Kn(z), using the following relation:

� � � � � � � �1 / 2/ 2 / 22 for arg
2

ii iY z e e I z e K z z� �� ��

� � �

�

�

�

� �

� � � � �

Example
In this example, Y0.3+n-1 (1.2 + 0.5i), � = 1, �, 4 is computed and printed.

#include <imsl.h>

main()
{

Chapter 9: Special Functions bessel_I0 � 487

int n = 4;
 int i;
 float xnu = 0.3;
 static f_complex z = {1.2, 0.5};
 f_complex *sequence;

 sequence = imsl_c_bessel_Yx(xnu, z, n, 0);

 for (i = 0; i < n; i++)
 printf("Y sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n",
 xnu+i, z.re, z.im, sequence[i].re, sequence[i].im);
}

Output
Y sub 0.30 ((1.20,0.50)) = (-0.013,0.380)
Y sub 1.30 ((1.20,0.50)) = (-0.716,0.338)
Y sub 2.30 ((1.20,0.50)) = (-1.048,0.795)
Y sub 3.30 ((1.20,0.50)) = (-1.625,3.684)

bessel_I0
Evaluates the real modified Bessel function of the first kind of order zero I0(x).

Synopsis
#include <imsl.h>
float imsl_f_bessel_I0 (float x)

The type double procedure is imsl_d_bessel_I0.

Required Arguments

float x (Input)
Point at which the modified Bessel function is to be evaluated.

Return Value
The value of the Bessel function

� � � �0 0

1 cosh cosI x x
�

� �
�

� � d

If no solution can be computed, NaN is returned.

Description
For large |x|, imsl_f_bessel_I0 will overflow.

488 � bessel_I0 IMSL C/Math/Library

Figure 9-11 Plot of I0(x) and I1(x)

Example
The Bessel function I0(1.5) is evaluated.

#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_bessel_I0(x);
 printf("I0(%f) = %f\n", x, ans);
}

Output
I0(1.500000) = 1.646723

Fatal Errors
IMSL_LARGE_ABS_ARG_FATAL The absolute value of x must not be so large that

e|x| overflows.

Chapter 9: Special Functions bessel_exp_I0 � 489

bessel_exp_I0
Evaluates the exponentially scaled modified Bessel function of the first kind of order
zero.

Synopsis

#include <imsl.h>

float imsl_f_bessel_exp_I0 (float x)

The type double function is imsl_d_bessel_exp_I0.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value
The value of the scaled Bessel function e-|x| I0(x). If no solution can be computed, NaN
is returned.

Description
The Bessel function is I0(x) is defined to be

� � � �0 0

1 cosh cosI x x
�

� �
�

� � d

Example
The expression e-4.5I0 (4.5) is computed directly by calling imsl_f_bessel_exp_I0
and indirectly by calling imsl_f_bessel_I0. The absolute difference is printed. For
large x, the internal scaling provided by imsl_f_bessel_exp_I0 avoids overflow
that may occur in imsl_f_bessel_I0.

#include <imsl.h>
#include <math.h>

main()
{
 float x = 4.5;
 float ans;
 float error;

 ans = imsl_f_bessel_exp_I0 (x);
 printf("(e**(-4.5))I0(4.5) = %f\n\n", ans);

 error = fabs(ans - (exp(-x)*imsl_f_bessel_I0(x)));
 printf ("Error = %e\n", error);
}

490 � bessel_I1 IMSL C/Math/Library

Output
(e**(-4.5))I0(4.5) = 0.194198

Error = 4.898845e-09

bessel_I1
Evaluates the real modified Bessel function of the first kind of order one I1(x).

Synopsis
#include <imsl.h>
float imsl_f_bessel_I1 (float x)

The type double procedure is imsl_d_bessel_I1.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value
The value of the Bessel function

� � cos
1 0

1 cosxI x e
�

�
� �

�
� � d

If no solution can be computed, NaN is returned.

Description
For large |x|, imsl_f_bessel_I1 will overflow. It will underflow near zero.

Example
The Bessel function I1(1.5) is evaluated.

#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_bessel_I1(x);
 printf("I1(%f) = %f\n", x, ans);
}

Output
I1(1.500000) = 0.981666

Chapter 9: Special Functions bessel_exp_I1 � 491

Alert Errors
IMSL_SMALL_ABS_ARG_UNDERFLOW The argument should not be so close to zero

that I1(x) � x/2 underflows.

Fatal Errors
IMSL_LARGE_ABS_ARG_FATAL The absolute value of x must not be so large

that e|x| overflows.

bessel_exp_I1
Evaluates the exponentially scaled modified Bessel function of the first kind of order
one.

Synopsis

#include <imsl.h>

float imsl_f_bessel_exp_I1 (float x)

The type double function is imsl_d_bessel_exp_I1.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value
The value of the scaled Bessel function e-|x| I1(x). If no solution can be computed, NaN
is returned.

Description
The function imsl_f_bessel_I1 underflows if |x| / 2 underflows. The Bessel function
I1(x) is defined to be

� � cos
1 0

1 cosxI x e
�

�
� �

�
� � d

Example
The expression e-4.5I0(4.5) is computed directly by calling imsl_f_bessel_exp_I1
and indirectly by calling imsl_f_bessel_I1. The absolute difference is printed. For
large x, the internal scaling provided by imsl_f_bessel_exp_I1 avoids overflow
that may occur in imsl_f_bessel_I1.

#include <imsl.h>
#include <math.h>

main()

492 � bessel_Ix IMSL C/Math/Library

{
 float x = 4.5;
 float ans;
 float error;

 ans = imsl_f_bessel_exp_I1 (x);
 printf("(e**(-4.5))I1(4.5) = %f\n\n", ans);

 error = fabs(ans - (exp(-x)*imsl_f_bessel_I1(x)));
 printf ("Error = %e\n", error);
}

Output
(e**(-4.5))I1(4.5) = 0.170959

Error = 1.469216e-09

bessel_Ix
Evaluates a sequence of modified Bessel functions of the first kind with real order and
complex arguments.

Synopsis
#include <imsl.h>
f_complex *imsl_c_bessel_Ix (float xnu, f_complex z, int n, �, 0)

The type d_complex function is imsl_z_bessel_Ix.

Required Arguments

float xnu (Input)
The lowest order desired. Argument xnu must be greater than �1/2.

f_complex z (Input)
Argument for which the sequence of Bessel functions is to be evaluated.

int n (Input)
Number of elements in the sequence.

Return Value
A pointer to the n values of the function through the series. Element i contains the value
of the Bessel function of order xnu + i for i = 0, �, n � 1.

Synopsis with Optional Arguments
f_complex *imsl_c_bessel_Ix (float xnu, f_complex z, int n,

IMSL_RETURN_USER, f_complex bessel[],
0)

Chapter 9: Special Functions bessel_K0 � 493

Optional Arguments
IMSL_RETURN_USER, f_complex bessel[] (Output)

Store the sequence of Bessel functions in the user-provided array bessel[].

Description
The Bessel function In(z) is defined to be

� � � �/ 2 / 2 for < arg
2

i iI z e J ze z�� �

� �

�

�
�

� � �

For large arguments, z, Temme’s (1975) algorithm is used to find In(z). The In(z) values
are recurred upward (if this is stable). This involves evaluating a continued fraction. If
this evaluation fails to converge, the answer may not be accurate.

For moderate and small arguments, Miller’s method is used.

Example
In this example, J0.3+n-1 (1.2 + 0.5i), � = 1, �, 4 is computed and printed.

#include <imsl.h>

main()
{
 int n = 4;
 int i;
 float xnu = 0.3;
 static f_complex z = {1.2, 0.5};
 f_complex *sequence;

 sequence = imsl_c_bessel_Ix(xnu, z, n, 0);

 for (i = 0; i < n; i++)
 printf("I sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n",
 xnu+i, z.re, z.im, sequence[i].re, sequence[i].im);
}

Output
I sub 0.30 ((1.20,0.50)) = (1.163,0.396)
I sub 1.30 ((1.20,0.50)) = (0.447,0.332)
I sub 2.30 ((1.20,0.50)) = (0.082,0.127)
I sub 3.30 ((1.20,0.50)) = (0.006,0.029)

bessel_K0
Evaluates the real modified Bessel function of the second kind of order zero K0(x).

Synopsis
#include <imsl.h>
float imsl_f_bessel_K0 (float x)

494 � bessel_K0 IMSL C/Math/Library

The type double procedure is imsl_d_bessel_K0.

Required Arguments

float x (Input)
Point at which the modified Bessel function is to be evaluated. It must be
positive.

Return Value
The value of the modified Bessel function

� � � �0 0
cos sinhK x x

�

� � t dt

If no solution can be computed, then NaN is returned.

Description
Since K0(x) is complex for negative x and is undefined at x = 0, imsl_f_bessel_K0 is
defined only for x > 0. For large x, imsl_f_bessel_K0 will underflow.

Figure 9-12 Plot of K0(x) and K1(x)

Example
The Bessel function K0(1.5) is evaluated.

#include <imsl.h>

main()
{

Chapter 9: Special Functions bessel_exp_K0 � 495

 float x = 1.5;
 float ans;

 ans = imsl_f_bessel_K0(x);
 printf("K0(%f) = %f\n", x, ans);
}

Output
K0(1.500000) = 0.213806

Alert Errors
IMSL_LARGE_ARG_UNDERFLOW The argument x must not be so large that the result

(approximately equal to

� �/ 2 xx e�
�

 underflows.

bessel_exp_K0
Evaluates the exponentially scaled modified Bessel function of the second kind of order
zero.

Synopsis

#include <imsl.h>

float imsl_f_bessel_exp_K0 (float x)

The type double function is imsl_d_bessel_exp_K0.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value
The value of the scaled Bessel function exK0(x). If no solution can be computed, NaN is
returned.

Description
The argument must be greater than zero for the result to be defined. The Bessel
function K0(x) is defined to be

� � � �0 0
cos sinhK x x

�

� � t dt

Example
The expression

496 � bessel_K1 IMSL C/Math/Library

0 (0.5)eK

is computed directly by calling imsl_f_bessel_exp_K0 and indirectly by calling
imsl_f_bessel_K0. The absolute difference is printed. For large x, the internal
scaling provided by imsl_f_bessel_exp_K0 avoids underflow that may occur in
imsl_f_bessel_K0.

#include <imsl.h>
#include <math.h>

main()
{
 float x = 0.5;
 float ans;
 float error;

 ans = imsl_f_bessel_exp_K0 (x);
 printf("(e**0.5)K0(0.5) = %f\n\n", ans);

 error = fabs(ans - (exp(x)*imsl_f_bessel_K0(x)));
 printf ("Error = %e\n", error);
}

Output
(e**0.5)K0(0.5) = 1.524109

Error = 2.028498e-08

bessel_K1
Evaluates the real modified Bessel function of the second kind of order one K1(x).

Synopsis
#include <imsl.h>
float imsl_f_bessel_K1 (float x)

The type double procedure is imsl_d_bessel_K1.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated. It must be positive.

Return Value
The value of the Bessel function

� � � �1 0
sin sinh sinhK x x t

�

� � t dt

If no solution can be computed, NaN is returned.

Chapter 9: Special Functions bessel_exp_K1 � 497

Description
Since K1(x) is complex for negative x and is undefined at x = 0, imsl_f_bessel_K1 is
defined only for x > 0. For large x, imsl_f_bessel_K1 will underflow.
See Figure 9-12 for a graph of K1(x).

Example
The Bessel function K1(1.5) is evaluated.

#include <imsl.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsl_f_bessel_K1(x);
 printf("K1(%f) = %f\n", x, ans);
}

Output
K1(1.500000) = 0.277388

Alert Errors
IMSL_LARGE_ARG_UNDERFLOW The argument x must not be so large that the

result, approximately equal to,

� �/ 2 xx e�
�

 underflows.

Fatal Errors
IMSL_SMALL_ARG_OVERFLOW The argument x must be large enough

(x > max (1/b, s) where s is the smallest
representable positive number and b is the largest
repesentable number) that K1(x) does not
overflow.

bessel_exp_K1
Evaluates the exponentially scaled modified Bessel function of the second kind
of order one.

Synopsis

#include <imsl.h>

float imsl_f_bessel_exp_K1 (float x)

498 � bessel_exp_K1 IMSL C/Math/Library

The type double function is imsl_d_bessel_exp_K1.

Required Arguments

float x (Input)
Point at which the Bessel function is to be evaluated.

Return Value
The value of the scaled Bessel function exK1(x). If no solution can be computed, NaN is
returned.

Description
The result

� �1imsl_f_bessel_exp_K1
1xe K x
x

� �

overflows if x is too close to zero. The definition of the Bessel function

� � � �1 0
sin sinh sinhK x x t

�

� � t dt

Example
The expression

� �1 0.5eK

is computed directly by calling imsl_f_bessel_exp_K1 and indirectly by calling
imsl_f_bessel_K1. The absolute difference is printed. For large x, the internal
scaling provided by imsl_f_bessel_exp_K1 avoids underflow that may occur in
imsl_f_bessel_K1.

#include <imsl.h>
#include <math.h>

main()
{
 float x = 0.5;
 float ans;
 float error;

 ans = imsl_f_bessel_exp_K1 (x);
 printf("(e**0.5)K1(0.5) = %f\n\n", ans);

 error = fabs(ans - (exp(x)*imsl_f_bessel_K1(x)));
 printf ("Error = %e\n", error);
}

Chapter 9: Special Functions bessel_Kx � 499

Output
(e**0.5)K1(0.5) = 2.731010

Error = 5.890406e-08

bessel_Kx
Evaluates a sequence of modified Bessel functions of the second kind with real order
and complex arguments.

Synopsis
#include <imsl.h>
f_complex *imsl_c_bessel_Kx (float xnu, f_complex z, int n, �, 0)

The type d_complex function is imsl_z_bessel_Jx.

Required Arguments

float xnu (Input)
The lowest order desired. The argument xnu must be greater than �1/2.

f_complex z (Input)
Argument for which the sequence of Bessel functions is to be evaluated.

int n (Input)
Number of elements in the sequence.

Return Value
A pointer to the n values of the function through the series. Element i contains the value
of the Bessel function of order xnu + i for i = 0, �, n � 1.

Synopsis with Optional Arguments
f_complex *imsl_c_bessel_Kx (float xnu, f_complex z,

int IMSL_RETURN_USER, f_complex bessel[],
0)

Optional Arguments
IMSL_RETURN_USER, f_complex bessel[] (Output)

Store the sequence of Bessel functions in the user-provided array bessel[].

Description
The Bessel function Kn(z) is defined to be

� � � � � �/ 2 / 2 / 2 for arg
2 2

i i iK z e iJ ze Y ze z�� � �

� � �

� �

�� �� � � �� � �

500 � elliptic_integral_K IMSL C/Math/Library

This function is based on the code BESSCC of Barnett (1981) and Thompson and
Barnett (1987).

For moderate or large arguments, z, Temme’s (1975) algorithm is used to find Kn(z).
This involves evaluating a continued fraction. If this evaluation fails to converge, the
answer may not be accurate. For small z, a Neumann series is used to compute Kn(z).
Upward recurrence of the Kn(z) is always stable.

Example
In this example, K0.3+n-1 (1.2 + 0.5i), � = 1, �, 4 is computed and printed.

#include <imsl.h>

main()
{
 int n = 4;
 int i;
 float xnu = 0.3;
 static f_complex z = {1.2, 0.5};
 f_complex *sequence;

 sequence = imsl_c_bessel_Kx(xnu, z, n, 0);

 for (i = 0; i < n; i++)
 printf("K sub %4.2f ((%4.2f,%4.2f)) = (%5.3f,%5.3f)\n",
 xnu+i, z.re, z.im, sequence[i].re, sequence[i].im);
}

Output
K sub 0.30 ((1.20,0.50)) = (0.246,-0.200)
K sub 1.30 ((1.20,0.50)) = (0.336,-0.362)
K sub 2.30 ((1.20,0.50)) = (0.587,-1.126)
K sub 3.30 ((1.20,0.50)) = (0.719,-4.839)

elliptic_integral_K
Evaluates the complete elliptic integral of the kind K(x).

Synopsis

#include <imsl.h>

float imsl_f_elliptic_integral_K (float x)

The type double function is imsl_d_elliptic_integral_K.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value
The complete elliptic integral K(x).

Chapter 9: Special Functions elliptic_integral_E � 501

Description
The complete elliptic integral of the first kind is defined to be

� �
/ 2

1/ 20 2
for 0 1

1 sin

dK x x
x

� �

�

� �
� ��� �

� �

The argument x must satisfy 0 � x < 1; otherwise, imsl_f_elliptic_integral_K
returns imsl_f_machine(2), the largest representable floating-point number.

The function K(x) is computed using the routine imsl_f_elliptic_integral_RF (page 502)
and the relation K(x) = RF(0, 1 � x, 1).

Example
The integral K(0) is evaluated.

#include <imsl.h>

main()
{
 float x = 0.0;
 float ans;

 x = imsl_f_elliptic_integral_K (x);

 printf ("K(0.0) = %f\n", x);
}

Output
K(0.0) = 1.570796

elliptic_integral_E
Evaluates the complete elliptic integral of the second kind E(x).

Synopsis

#include <imsl.h>

float imsl_f_elliptic_integral_E (float x)

The type double function is imsl_d_elliptic_integral_E.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value
The complete elliptic integral E(x).

502 � elliptic_integral_RF IMSL C/Math/Library

�

Description
The complete elliptic integral of the second kind is defined to be

� �
/ 2 1/ 22

0
1 sin for 0 1E x x d x

�

� �� �� � �� ��

The argument x must satisfy 0 � x < 1; otherwise, imsl_f_elliptic_integral_E
returns imsl_f_machine(2), the largest representable floating-point number.

The function E(x) is computed using the routine imsl_f_elliptic_integral_RF
(page 502) and imsl_f_elliptic_integral_RD (page 504). The computation is
done using the relation

� � � � � �0,1 ,1 0,1 ,1
3F D
xE x R x R x� � � �

Example
The integral E(0.33) is evaluated.

#include <imsl.h>

main()
{
 float x = 0.33;
 float ans;

 x = imsl_f_elliptic_integral_E (x);

 printf ("E(0.33) = %f\n", x);
}

Output
E(0.33) = 1.431832

elliptic_integral_RF
Evaluates Carlson’s elliptic integral of the first kind RF(x, y, z).

Synopsis

#include <imsl.h>

float imsl_f_elliptic_integral_RF (float x, float y, float z)

The type double function is imsl_d_elliptic_integral_RF.

Required Arguments

float x (Input)
First variable of the incomplete elliptic integral. It must be nonnegative.

Chapter 9: Special Functions elliptic_integral_RF � 503

float y (Input)
Second variable of the incomplete elliptic integral. It must be nonnegative.

float z (Input)
Third variable of the incomplete elliptic integral. It must be nonnegative.

Return Value
The complete elliptic integral RF(x, y, z)

Description
Carlson’s elliptic integral of the first kind is defined to be

� �
� � � �� �

1/ 2
0

1, ,
2F

dtR x y z
t x t y t z

�

�
� � �� �� �

�

The arguments must be nonnegative and less than or equal to b/5. In addition,
x + y, x + z, and y + z must be greater than or equal to 5s. Should any of these
conditions fail, imsl_f_elliptic_integral_RF is set to b. Here,
b = imsl_f_machine(2) is the largest and s = imsl_f_machine(1) is the smallest
representable number.

The function imsl_f_elliptic_integral_RF is based on the code by Carlson and
Notis (1981) and the work of Carlson (1979).

Example
The integral RF(0, 1, 2) is computed.

#include <imsl.h>

main()
{
 float x = 0.0;
 float y = 1.0;
 float z = 2.0;
 float ans;

 x = imsl_f_elliptic_integral_RF (x, y, z);

 printf ("RF(0, 1, 2) = %f\n", x);
}

Output
RF(0, 1, 2) = 1.311029

504 � elliptic_integral_RD IMSL C/Math/Library

elliptic_integral_RD
Evaluates Carlson’s elliptic integral of the second kind RD(x, y, z).

Synopsis

#include <imsl.h>

float imsl_f_elliptic_integral_RD (float x, float y, float z)

The type double function is imsl_d_elliptic_integral_RD.

Required Arguments

float x (Input)
First variable of the incomplete elliptic integral. It must be nonnegative.

float y (Input)
Second variable of the incomplete elliptic integral. It must be nonnegative.

float z (Input)
Third variable of the incomplete elliptic integral. It must be positive.

Return Value
The complete elliptic integral RD(x, y, z)

Description
Carlson’s elliptic integral of the first kind is define to be

� �
� �� �� �

1/ 23
0

3, ,
2D

dtR x y z
t x t y t z

�

�
� �� � �
� �

�

The arguments must be nonnegative and less than or equal to 0.69(�ln�)1/9s-2/3 where
� = imsl_f_machine(4) is the machine precision, s = imsl_f_machine(1) is the
smallest representable positive number. Furthermore, x + y and z must be greater than
max{3s2/3, 3/b2/3}, where b = imsl_f_machine(2) is the largest floating point number.
If any of these conditions are false, then imsl_f_elliptic_integral_RD returns b.

The function imsl_f_elliptic_integral_RD is based on the code by Carlson and
Notis (1981) and the work of Carlson (1979).

Example
The integral RD(0, 2, 1) is computed.

#include <imsl.h>

main()
{
 float x = 0.0;
 float y = 2.0;

Chapter 9: Special Functions elliptic_integral_RJ � 505

 float z = 1.0;
 float ans;

 x = imsl_f_elliptic_integral_RD (x, y, z);

 printf ("RD(0, 2, 1) = %f\n", x);
}

Output
RD(0, 2, 1) = 1.797210

elliptic_integral_RJ
Evaluates Carlson’s elliptic integral of the third kind RJ (x, y, z, �)

Synopsis

#include <imsl.h>

float imsl_f_elliptic_integral_RJ (float x, float y, float z, float rho)

The type double function is imsl_d_elliptic_integral_RJ.

Required Arguments

float x (Input)
First variable of the incomplete elliptic integral. It must be nonnegative.

float y (Input)
Second variable of the incomplete elliptic integral. It must be nonnegative.

float z (Input)
Third variable of the incomplete elliptic integral. It must be positive.

float rho (Input)
Fourth variable of the incomplete elliptic integral. It must be positive.

Return Value
The complete elliptic integral RJ (x, y, z, �)

Description
Carlson’s elliptic integral of the third kind is defined to be

� �
� �� �� � � �

1/ 22
0

3, , ,
2J

dtR x y z
t x t y t z t

�

�

�

�
� �� � � �
� �

�

The arguments must be nonnegative. In addition, x + y, x + z, y + z and � must be
greater than or equal to (5s)1/3 and less than or equal to 0.3(b/5)1/3, where
s = imsl_f_machine(1) is the smallest representable floating-point number. Should

506 � elliptic_integral_RC IMSL C/Math/Library

any of these conditions fail, imsl_f_elliptic_integral_RJ is set to
b = imsl_f_machine(2), the largest floating-point number.

The function imsl_f_elliptic_integral_RJ is based on the code by Carlson and
Notis (1981) and the work of Carlson (1979).

Example
The integral RJ (2, 3, 4, 5) is computed.

#include <imsl.h>

main()
{
 float x = 2.0;
 float y = 3.0;
 float z = 4.0;
 float rho = 5.0;
 float ans;

 x = imsl_f_elliptic_integral_RJ (x, y, z, rho);

 printf ("RJ(2, 3, 4, 5) = %f\n", x);
}

Output
RJ(2, 3, 4, 5) = 0.142976

elliptic_integral_RC
Evaluates an elementary integral from which inverse circular functions, logarithms and
inverse hyperbolic functions can be computed.

Synopsis

#include <imsl.h>

float imsl_f_elliptic_integral_RC (float x, float y)

The type double function is imsl_d_elliptic_integral_RC.

Required Arguments

float x (Input)
First variable of the incomplete elliptic integral. It must be nonnegative and
must satisfy the conditions given below.

float y (Input)
Second variable of the incomplete elliptic integral. It must be positive and
must satisfy the conditions given below.

Return Value
The elliptic integral RC (x, y).

Chapter 9: Special Functions fresnel_integral_C � 507

Description
Carlson’s elliptic integral of the third kind is defined to be

� �
� �� �

1/ 22
0

1,
2C

dtR x y
t x t y

�

�
� �� �
� �

�

The argument x must be nonnegative, y must be positive, and x + y must be less than or
equal to b/5 and greater than or equal to 5s. If any of these conditions are false, the
imsl_f_elliptic_integral_RC is set to b. Here,
b = imsl_f_machine(2) is the largest and s = imsl_f_machine(1) is the smallest
representable floating-point number.

The function imsl_f_elliptic_integral_RC is based on the code by Carlson and
Notis (1981) and the work of Carlson (1979).

Example
The integral RC (2.25, 2) is computed.

#include <imsl.h>

main()
{
 float x = 2.25;
 float y = 2.0;
 float ans;

 x = imsl_f_elliptic_integral_RC (x, y);

 printf ("RC(2.25, 2.0) = %f\n", x);
}

Output
RC(2.25, 2.0) = 0.693147

fresnel_integral_C
Evaluates the cosine Fresnel integral.

Synopsis

#include <imsl.h>

float imsl_f_fresnel_integral_C (float x)

The type double function is imsl_d_fresnel_integral_C.

Required Arguments

float x (Input)
Argument for which the function value is desired.

508 � fresnel_integral_S IMSL C/Math/Library

Return Value
The cosine Fresnel integral.

Description
The cosine Fresnel integral is defined to be

2

0

() cos()
2

x

C x t dt�

� �

Example
The Fresnel integral C(1.75) is evaluated.

#include <imsl.h>

main()
{
 float x = 1.75;
 float ans;

 x = imsl_f_fresnel_integral_C (x);

 printf ("C(1.75) = %f\n", x);
}

Output
C(1.75) = 0.321935

fresnel_integral_S
Evaluates the sine Fresnel integral.

Synopsis

#include <imsl.h>

float imsl_f_fresnel_integral_S (float x)

The type double function is imsl_d_fresnel_integral_S.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value
The sine Fresnel integral.

Chapter 9: Special Functions airy_Ai � 509

Description
The sine Fresnel integral is defined to be

2

0

() sin()
2

x

S x t dt�

� �

Example
The Fresnel integral S(1.75) is evaluated.

#include <imsl.h>

main()
{
 float x = 1.75;
 float ans;

 x = imsl_f_fresnel_integral_S (x);

 printf ("S(1.75) = %f\n", x);
}

Output
S(1.75) = 0.499385

airy_Ai
Evaluates the Airy function.

Synopsis

#include <imsl.h>

float imsl_f_airy_Ai (float x)

The type double function is imsl_d_airy_Ai.

Required Arguments
float x (Input)

Argument for which the function value is desired.

Return Value
The Airy function evaluated at x, Ai(x).

Description
The airy function Ai(x) is defined to be

510 � airy_Bi IMSL C/Math/Library

3 3
1/ 32

0

1 1 2() cos() ()
3 33

xAi x xt t dt K x
� �

�

� � ��
/ 2

The Bessel function Kv(x) is defined on page 495.

If x < �1.31�-2/3, then the answer will have no precision. If x < �1.31�-1/3, the answer
will be less accurate than half precision. Here � = imsl_f_machine(4) is the machine
precision.

Finally, x should be less than x" so the answer does not underflow. Very
approximately, x" = {�1.5lns}2/3, where s = imsl_f_machine(1), the smallest
representable positive number.

Example
In this example, Ai(�4.9) is evaluated.

#include <imsl.h>

main()
{
 float x = -4.9;
 float ans;

 x = imsl_f_airy_Ai (x);

 printf ("Ai(-4.9) = %f\n", x);
}

Output
Ai(-4.9) = 0.374536

airy_Bi
Evaluates the Airy function of the second kind.

Synopsis

#include <imsl.h>

float imsl_f_airy_Bi (float x)

The type double function is imsl_d_airy_Bi.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value
The Airy function of the second kind evaluated at x, Bi(x).

Chapter 9: Special Functions airy_Ai_derivative � 511

Description
The airy function Bi(x) is defined to be

3 3

0 0

1 1 1 1Bi() exp() sin()
3 3

x xt t dt xt
� �

� �

� � � �� � t dt

It can also be expressed in terms of modified Bessel functions of the first kind, Iv(x),
and Bessel functions of the first kind Jv(x) (see bessel_Ix (page 492) and
bessel_Jx (page 481)):

3 / 2 3 / 2
1/ 3 1/ 3

2 2Bi() () () for
3 3 3
xx I x I x x

�

� �
� �� �

� 	
0�

and

3/ 2 3 / 2
1/ 3 1/ 3

2 2Bi() (| |) (| |) for 0
3 3 3
xx J x J x x

�

� � �
� �� �

� 	
�

Let � = imsl_f_machine(4), the machine precision. If x < �1.31�-2/3, then the answer
will have no precision. If x < �1.31�-1/3, the answer will be less accurate than half
precision. In addition, x should not be so large that exp[(2/3)x3/2] overflows.

Example
In this example, Bi(�4.9) is evaluated.

#include <imsl.h>

main()
{
 float x = -4.9;
 float ans;

 x = imsl_f_airy_Bi (x);

 printf ("Bi(-4.9) = %f\n", x);
}

Output
Bi(-4.9) = -0.057747

airy_Ai_derivative
Evaluates the derivative of the Airy function.

Synopsis

#include <imsl.h>

float imsl_f_airy_Ai_derivative (float x)

512 � airy_Bi_derivative IMSL C/Math/Library

The type double function is imsl_d_airy_Ai_derivative.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value
The derivative of the Airy function.

Description

The airy function Ai�(x) is defined to be the derivative of the Airy function,
Ai(x) (page 511). If x < �1.31�-2/3, then the answer will have no precision. If
x < �1.31�-1/3, the answer will be less accurate than half precision. Here
� = imsl_f_machine(4) is the machine precision. Finally, x should be less than
x" so that the answer does not underflow. Very approximately, x" = {�1.51lns},
where s = imsl_f_machine(1), the smallest representable positive number.

Example
In this example, Ai�(�4.9) is evaluated.

#include <imsl.h>

main()
{
 float x = -4.9;
 float ans;

 x = imsl_f_airy_Ai_derivative (x);

 printf ("Ai’(-4.9) = %f\n", x);
}

Output
Ai’(-4.9) = 0.146958

airy_Bi_derivative
Evaluates the derivative of the Airy function of the second kind.

Synopsis

#include <imsl.h>

float imsl_f_airy_Bi_derivative (float x)

The type double function is imsl_d_airy_Bi_derivative.

Chapter 9: Special Functions kelvin_ber0 � 513

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value
The derivative of the Airy function of the second kind.

Description
The airy function Bi�(x) is defined to be the derivative of the Airy function of the
second kind, Bi(x) (page 512). If x < �1.31�-2/3, then the answer will have no precision.
If
x < �1.31�-1/3, the answer will be less accurate than half precision. Here
� = imsl_f_machine(4) is the machine precision. In addition, x should not be so large
that exp[(2/3)x3/2] overflows.

Example
In this example, Bi�(�4.9) is evaluated.

#include <imsl.h>

main()
{
 float x = -4.9;
 float ans;

 x = imsl_f_airy_Bi_derivative (x);

 printf ("Bi’(-4.9) = %f\n", x);
}

Output
Bi’(-4.9) = 0.827219

kelvin_ber0
Evaluates the Kelvin function of the first kind, ber, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_ber0 (float x)

The type double function is imsl_d_kelvin_ber0.

Required Arguments

float x (Input)
Argument for which the function value is desired.

514 � kelvin_bei0 IMSL C/Math/Library

Return Value
The Kelvin function of the first kind, ber, of order zero evaluated at x.

Description
The Kelvin function ber0(x) is defined to be �J0(xe3pi/4). The Bessel function J0(x) is
defined

� � � �0 0

1 cos sinJ x x
�

� �
�

� � d

The function imsl_f_kelvin_ber0 is based on the work of Burgoyne (1963).

Example
In this example, ber0 (0.4) is evaluated.

#include <imsl.h>

main()
{
 float x = 0.4;
 float ans;

 x = imsl_f_kelvin_ber0 (x);

 printf ("ber0(0.4) = %f\n", x);
}

Output
ber0(0.4) = 0.999600

kelvin_bei0
Evaluates the Kelvin function of the first kind, bei, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_bei0 (float x)

The type double function is imsl_d_kelvin_bei0.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value
The Kelvin function of the first kind, bei, of order zero evaluated at x.

Chapter 9: Special Functions kelvin_ker0 � 515

Description
The Kelvin function bie0(x) is defined to be �J0(xe3pi/4). The Bessel function J0(x) is
defined

� � � �0 0

1 cos sinJ x x
�

� �
�

� � d

The function imsl_f_kelvin_bei0 is based on the work of Burgoyne (1963).

In imsl_f_kelvin_bei0, x must be less than 119.

Example
In this example, bei0(0.4) is evaluated.

#include <imsl.h>

main()
{
 float x = 0.4;
 float ans;

 x = imsl_f_kelvin_bei0 (x);

 printf ("bei0(0.4) = %f\n", x);
}

Output
bei0(0.4) = 0.039998

kelvin_ker0
Evaluates the Kelvin function of the second kind, ker, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_ker0 (float x)

The type double function is imsl_d_kelvin_ker0.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Return Value
The Kelvin function of the second kind, ker, of order zero evaluated at x.

516 � kelvin_kei0 IMSL C/Math/Library

Description
The modified Kelvin function ker0(x) is defined to be �K0(xepi/4). The Bessel function
K0(x) is defined

� � � �0 0
cos sinK x x

�

� � t dt

The function imsl_f_kelvin_ker0 is based on the work of Burgoyne (1963).

If x < 0, NaN (Not a Number) is returned. If x � 119, then zero is returned.

Example
In this example, ker0(0.4) is evaluated.

#include <imsl.h>

main()
{
 float x = 0.4;
 float ans;

 x = imsl_f_kelvin_ker0 (x);

 printf ("ker0(0.4) = %f\n", x);
}

Output
ker0(0.4) = 1.062624

kelvin_kei0
Evaluates the Kelvin function of the second kind, kei, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_kei0 (float x)

The type double function is imsl_d_kelvin_kei0.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Chapter 9: Special Functions kelvin_ber0_derivative � 517

Return Value
The Kelvin function of the second kind, kei, of order zero evaluated at x.

Description
The modified Kelvin function kei0(x) is defined to be �K0(xepi/4). The Bessel function
K0(x) is defined

� � � �0 0
cos sinK x x

�

� � t dt

The function imsl_f_kelvin_kei0 is based on the work of Burgoyne (1963).

If x < 0, NaN (Not a Number) is returned. If x � 119, zero is returned.

Example
In this example, kei0(0.4) is evaluated.

#include <imsl.h>

main()
{
 float x = 0.4;
 float ans;

 x = imsl_f_kelvin_kei0 (x);

 printf ("kei0(0.4) = %f\n", x);
}

Output
kei0(0.4) = -0.703800

kelvin_ber0_derivative
Evaluates the derivative of the Kelvin function of the first kind, ber, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_ber0_derivative (float x)

The type double function is imsl_d_kelvin_ber0_derivative.

Required Arguments

float x (Input)
Argument for which the function value is desired.

518 � kelvin_bei0_derivative IMSL C/Math/Library

Return Value
The derivative of the Kelvin function of the first kind, ber, of order zero evaluated at x.

Description
The function ber0�(x) is defined to be

0ber ()d x
dx

The function imsl_f_kelvin_ber0_derivative is based on the work of Burgoyne
(1963).

If |x| > 119, NaN is returned.

Example
In this example, ber0� (0.6) is evaluated.

#include <imsl.h>

main()
{
 float x = 0.6;
 float ans;

 x = imsl_f_kelvin_ber0_derivative (x);

 printf ("ber0'(0.6) = %f\n", x);
}

Output
ber0'(0.6) = -0.013498

kelvin_bei0_derivative
Evaluates the derivative of the Kelvin function of the first kind, bei, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_bei0_derivative (float x)

The type double function is imsl_d_kelvin_bei0_derivative.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Chapter 9: Special Functions kelvin_ker0_derivative � 519

Return Value
The derivative of the Kelvin function of the first kind, bei, of order zero evaluated at x.

Description
The function bei0�(x) is defined to be

0bei ()d x
dx

The function imsl_f_kelvin_bei0_derivative is based on the work of Burgoyne
(1963).

If |x| > 119, NaN is returned.

Example
In this example, bei0�(0.6) is evaluated.

#include <imsl.h>
main()
{
 float x = 0.6;
 float ans;

 x = imsl_f_kelvin_bei0_derivative (x);

 printf ("bei0’(0.6) = %f\n", x);
}

Output
bei0’(0.6) = 0.299798

kelvin_ker0_derivative
Evaluates the derivative of the Kelvin function of the second kind, ker, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_ker0_derivative (float x)

The type double function is imsl_d_kelvin_ker0_derivative.

Required Arguments

float x (Input)
Argument for which the function value is desired.

520 � kelvin_kei0_derivative IMSL C/Math/Library

Return Value
The derivative of the Kelvin function of the second kind, ker, of order zero evaluated at
x.

Description
The function ker0�(x) is defined to be

0ker ()d x
dx

The function imsl_f_kelvin_ker0_derivative is based on the work of Burgoyne
(1963).

If x < 0, NaN (Not a Number) is returned. If x � 119, zero is returned.

Example
In this example, ker0�(0.6) is evaluated.

#include <imsl.h>

main()
{
 float x = 0.6;
 float ans;

 x = imsl_f_kelvin_ker0_derivative (x);

 printf ("ker0’(0.6) = %f\n", x);
}

Output
ker0’(0.6) = -1.456538

kelvin_kei0_derivative
Evaluates the derivative of the Kelvin function of the second kind, kei, of order zero.

Synopsis

#include <imsl.h>

float imsl_f_kelvin_kei0_derivative (float x)

The type double function is imsl_d_kelvin_kei0_derivative.

Required Arguments

float x (Input)
Argument for which the function value is desired.

Chapter 9: Special Functions normal_cdf � 521

Return Value
The derivative of the Kelvin function of the second kind, kei, of order zero evaluated
at x.

Description
The function kei0�(x) is defined to be

0kei ()d x
dx

The function imsl_f_kelvin_kei0_derivative is based on the work of Burgoyne
(1963).

If x < 0, NaN (Not a Number) is returned. If x � 119, zero is returned.

Example
In this example, kei0�(0.6) is evaluated.

#include <imsl.h>

main()
{
 float x = 0.6;
 float ans;

 x = imsl_f_kelvin_kei0_derivative (x);

 printf ("kei0’(0.6) = %f\n", x);
}

Output
kei0’(0.6) = 0.348164

normal_cdf
Evaluates the standard normal (Gaussian) distribution function.

Synopsis
#include <imsl.h>
float imsl_f_normal_cdf (float x)

The type double function is imsl_d_normal_cdf.

Required Arguments

float x (Input)
Point at which the normal distribution function is to be evaluated.

522 � normal_cdf IMSL C/Math/Library

Return Value
The probability that a normal random variable takes a value less than or equal to x.

Description
The function imsl_f_normal_cdf evaluates the distribution function, �, of a
standard normal (Gaussian) random variable; that is,

� �
2 / 21

2

x tx e
�

�

��

� � � dt

The value of the distribution function at the point x is the probability that the random
variable takes a value less than or equal to x.

The standard normal distribution (for which imsl_f_normal_cdf is the distribution
function) has mean of 0 and variance of 1. The probability that a normal random
variable with mean � and variance �2 is less than y is given by imsl_f_normal_cdf
evaluated at (y � �)/�.

�(x) is evaluated by use of the complementary error function, imsl_f_erfc. The
relationship is:

� � � �erfc / 2.0 / 2x x� � �

Figure 9-13 Plot of �(x)

Chapter 9: Special Functions normal_inverse_cdf � 523

Example
Suppose X is a normal random variable with mean 100 and variance 225. This example
finds the probability that X is less than 90 and the probability that X is between 105 and
110.

#include <imsl.h>

main()
{
 float p, x1, x2;

 x1 = (90.0-100.0)/15.0;
 p = imsl_f_normal_cdf(x1);
 printf("The probability that X is less than 90 is %6.4f\n\n", p);

 x1 = (105.0-100.0)/15.0;
 x2 = (110.0-100.0)/15.0;
 p = imsl_f_normal_cdf(x2) - imsl_f_normal_cdf(x1);
 printf("The probability that X is between 105 and 110 is %6.4f\n", p);
}

Output
The probability that X is less than 90 is 0.2525

The probability that X is between 105 and 110 is 0.1169

normal_inverse_cdf
Evaluates the inverse of the standard normal (Gaussian) distribution function.

Synopsis
#include <imsl.h>
float imsl_f_normal_inverse_cdf (float p)

The type double procedure is imsl_d_normal_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the normal distribution function is to be
evaluated. The argument p must be in the open interval (0.0, 1.0).

Return Value
The inverse of the normal distribution function evaluated at p. The probability that a
standard normal random variable takes a value less than or equal to
imsl_f_normal_inverse_cdf is p.

524 � chi_squared_cdf IMSL C/Math/Library

Description
The function imsl_f_normal_inverse_cdf evaluates the inverse of the distribution
function, �, of a standard normal (Gaussian) random variable; that is,
imsl_f_normal_inverse_cdf(p) = �-1 (p) where

� �
2 / 21

2

x tx e
�

�

��

� � � dt

The value of the distribution function at the point x is the probability that the random
variable takes a value less than or equal to x. The standard normal distribution has a
mean of 0 and a variance of 1.

The function imsl_f_normal_inverse_cdf(p) is evaluated by use of minimax
rational-function approximations for the inverse of the error function. General
descriptions of these approximations are given in Hart et al. (1968) and Strecok (1968).
The rational functions used in imsl_f_normal_inverse_cdf are described by
Kinnucan and Kuki (1968).

Example
This example computes the point such that the probability is 0.9 that a standard normal
random variable is less than or equal to this point.

#include <imsl.h>

main()
{
 float x;
 float p = 0.9;

 x = imsl_f_normal_inverse_cdf(p);
 printf("The 90th percentile of a standard normal is %6.4f.\n", x);
}

Output
The 90th percentile of a standard normal is 1.2816.

chi_squared_cdf
Evaluates the chi-squared distribution function.

Synopsis
#include <imsl.h>
float imsl_f_chi_squared_cdf (float chi_squared, float df)

The type double function is imsl_d_chi_squared_cdf.

Chapter 9: Special Functions chi_squared_cdf � 525

Required Arguments

float chi_squared (Input)
Argument for which the chi-squared distribution function is to be evaluated.

float df (Input)
Number of degrees of freedom of the chi-squared distribution. The argument
df must be greater than or equal to 0.5.

Return Value
The probability that a chi-squared random variable takes a value less than or equal to
chi_squared.

Description
The function imsl_f_chi_squared_cdf evaluates the distribution function, F, of a
chi-squared random variable x = chi_squared with � = df. Then,

� �
� �

/ 2 / 2 1
/ 2 0

1
2 / 2

x tF x e �

�

�

� �

�
�

� t dt

where
(�) is the gamma function. The value of the distribution function at the point x is
the probability that the random variable takes a value less than or equal to x.

For � > 65, imsl_f_chi_squared_cdf uses the Wilson-Hilferty approximation
(Abramowitz and Stegun 1964, Equation 26.4.17) to the normal distribution, and
function imsl_f_normal_cdf is used to evaluate the normal distribution function.

For � � 65, imsl_f_chi_squared_cdf uses series expansions to evaluate the
distribution function. If x < max (�/2, 26), imsl_f_chi_squared_cdf uses the series
6.5.29 in Abramowitz and Stegun (1964); otherwise, it uses the asymptotic expansion
6.5.32 in Abramowitz and Stegun.

Example
Suppose X is a chi-squared random variable with 2 degrees of freedom. This example
finds the probability that X is less than 0.15 and the probability that X is greater than
3.0.

#include <imsl.h>

void main()
{
 float chi_squared = 0.15;
 float df = 2.0;
 float p;

 p = imsl_f_chi_squared_cdf(chi_squared, df);
 printf("%s %s %6.4f\n", "The probability that chi-squared",
 "with 2 df is less than 0.15 is", p);

 chi_squared = 3.0;
 p = 1.0 - imsl_f_chi_squared_cdf(chi_squared, df);

526 � chi_squared_inverse_cdf IMSL C/Math/Library

 printf("%s %s %6.4f\n", "The probability that chi-squared",
 "with 2 df is greater than 3.0 is", p);
}

Output
The probability that chi-squared with 2 df is less than 0.15 is 0.0723
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231

Informational Errors
IMSL_ARG_LESS_THAN_ZERO The input argument, chi_squared, is less than

zero.

Alert Errors
IMSL_NORMAL_UNDERFLOW Using the normal distribution for large degrees of

freedom, underflow would have occurred.

chi_squared_inverse_cdf
Evaluates the inverse of the chi-squared distribution function.

Synopsis
#include <imsl.h>
float imsl_f_chi_squared_inverse_cdf (float p, float df)

The type double function is imsl_d_chi_squared_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the chi-squared distribution function is to
be evaluated. The argument p must be in the open interval (0.0, 1.0).

float df (Input)
Number of degrees of freedom of the chi-squared distribution. The argument
df must be greater than or equal to 0.5.

Return Value
The inverse of the chi-squared distribution function evaluated at p. The probability that
a chi-squared random variable takes a value less than or equal to
imsl_f_chi_squared_inverse_cdf is p.

Description
The function imsl_f_chi_squared_inverse_cdf evaluates the inverse distribution
function of a chi-squared random variable with � = df and with probability p. That is, it
determines x = imsl_f_chi_squared_inverse_cdf(p,df) such that

Chapter 9: Special Functions chi_squared_inverse_cdf � 527

� �
/ 2 / 2 1

/ 2 0

1
2 / 2

x tp e t d�

�

�

� �

�
�

� t

where
(�) is the gamma function. The probability that the random variable takes a
value less than or equal to x is p.

For � < 40, imsl_f_chi_squared_inverse_cdf uses bisection (if � � 2 or
p > 0.98) or regula falsi to find the point at which the chi-squared distribution function
is equal to p. The distribution function is evaluated using function
imsl_f_chi_squared_cdf.

For 40 � � < 100, a modified Wilson-Hilferty approximation (Abramowitz and Stegun
1964, equation 26.4.18) to the normal distribution is used. The function
imsl_f_normal_cdf is used to evaluate the inverse of the normal distribution
function. For � � 100, the ordinary Wilson-Hilferty approximation (Abramowitz and
Stegun 1964, equation 26.4.17) is used.

Example
In this example, the 99-th percentage point is calculated for a chi-squared random
variable with two degrees of freedom. The same calculation is made for a similar
variable with 64 degrees of freedom.

#include <imsl.h>

void main ()
{
 float df, x;
 float p = 0.99;

 df = 2.0;
 x = imsl_f_chi_squared_inverse_cdf(p, df);
 printf("For p = .99 with 2 df, x = %7.3f.\n", x);

 df = 64.0;
 x = imsl_f_chi_squared_inverse_cdf(p,df);
 printf("For p = .99 with 64 df, x = %7.3f.\n", x);
}

Output
For p = .99 with 2 df, x = 9.210.
For p = .99 with 64 df, x = 93.217.

528 � F_cdf IMSL C/Math/Library

Warning Errors
IMSL_UNABLE_TO_BRACKET_VALUE The bounds that enclose p could not be

found. An approximation for
imsl_f_chi_squared_inverse_cdf is
returned.

IMSL_CHI_2_INV_CDF_CONVERGENCE The value of the inverse chi-squared could
not be found within a specified number of
iterations. An approximation for
imsl_f_chi_squared_inverse_cdf is
returned.

F_cdf
Evaluates the F distribution function.

Synopsis
#include <imsl.h>
float imsl_f_F_cdf (float f, float df_denominator, float df_numerator)

The type double function is imsl_d_F_cdf.

Required Arguments

float f (Input)
Point at which the F distribution function is to be evaluated.

float df_numerator (Input)
The numerator degrees of freedom. The argument df_numerator must be
positive.

float df_denominator (Input)
The denominator degrees of freedom. The argument df_denominator must
be positive.

Return Value
The probability that an F random variable takes a value less than or equal to the input
point, f.

Description
The function imsl_f_F_cdf evaluates the distribution function of a Snedecor’s F
random variable with df_numerator and df_denominator. The function is
evaluated by making a transformation to a beta random variable and then by evaluating
the incomplete beta function. If X is an F variate with �1 and �2 degrees of freedom and
Y = (�1 X)/(�2 + �1 X), then Y is a beta variate with parameters p = �1/2 and q = �2/2.

Chapter 9: Special Functions F_cdf � 529

The function imsl_f_F_cdf also uses a relationship between F random variables that
can be expressed as follows:

FF(f, �1, �2) = 1 � FF(1/f, �2, �1)where FF is the distribution function for an F random
variable.

Figure 9-14 Plot of FF (f, 1.0, 1.0)

Example
This example finds the probability that an F random variable with one numerator and
one denominator degree of freedom is greater than 648.

#include <imsl.h>

main()
{
 float p;
 float F = 648.0;
 float df_numerator = 1.0;
 float df_denominator = 1.0;

 p = 1.0 - imsl_f_F_cdf(F,df_numerator, df_denominator);
 printf("%s %s %6.4f.\n", "The probability that an F(1,1) variate",
 "is greater than 648 is", p);
}

Output
The probability that an F(1,1) variate is greater than 648 is 0.0250.

530 � F_inverse_cdf IMSL C/Math/Library

F_inverse_cdf
Evaluates the inverse of the F distribution function.

Synopsis
#include <imsl.h>
float imsl_f_F_inverse_cdf (float p, float df_numerator,

float df_denominator)

The type double procedure is imsl_d_F_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the F distribution function is to be
evaluated. The argument p must be in the open interval (0.0, 1.0).

float df_numerator (Input)
Numerator degrees of freedom. Argument df_numerator must be positive.

float df_denominator (Input)
Denominator degrees of freedom. Argument df_denominator must be
positive.

Return Value
The value of the inverse of the F distribution function evaluated at p. The probability
that an F random variable takes a value less than or equal to imsl_f_F_inverse_cdf
is p.

Description
The function imsl_f_F_inverse_cdf evaluates the inverse distribution function of a
Snedecor’s F random variable with �1 � df_numerator numerator degrees of freedom
and �2 = df_denominator denominator degrees of freedom. The function is
evaluated by making a transformation to a beta random variable and then by evaluating
the inverse of an incomplete beta function. If X is an F variate with �1 and �2 degrees of
freedom and Y = (�1, X)/(�2 + �1 X), then Y is a beta variate with parameters p = �1/2
and q = �2/2. If P � 0.5, imsl_f_F_inverse_cdf uses this relationship directly;
otherwise, it also uses a relationship between F random variables that can be expressed
as follows:

FF(f, �1, �2) = 1 � FF(1/f, �2 , �1)

Example
In this example, the 99-th percentage point is calculated for an F random variable with
seven degrees of freedom. The same calculation is made for a similar variable with one
degree of freedom.

Chapter 9: Special Functions t_cdf � 531

#include <imsl.h>

main()
{
 float df_denominator = 1.0;
 float df_numerator = 7.0;
 float f;
 float p = 0.99;

 f = imsl_f_F_inverse_cdf(p, df_numerator, df_denominator);

 printf("The F(7,1) 0.01 critical value is %6.3f\n", f);
}

Output
The F(7,1) 0.01 critical value is 5928.370

Fatal Errors
IMSL_F_INVERSE_OVERFLOW Function imsl_f_F_inverse_cdf is set to

machine infinity since overflow would occur upon
modifying the inverse value for the F distribution
with the result obtained from the inverse beta
distribution.

t_cdf
Evaluates the Student’s t distribution function.

Synopsis
#include <imsl.h>
float imsl_f_t_cdf (float t, float df)

The type double function is imsl_d_t_cdf.

Required Arguments

float t (Input)
Argument for which the Student’s t distribution function is to be evaluated.

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value
The probability that a Student’s t random variable takes a value less than or equal to the
input t.

532 � t_cdf IMSL C/Math/Library

Description
The function imsl_f_t_cdf evaluates the distribution function of a Student’s t
random variable with �1 = df degrees of freedom. If the square of t is greater than or
equal to �, the relationship of a t to an F random variable (and subsequently, to a beta
random variable) is exploited, and percentage points from a beta distribution are used.
Otherwise, the method described by Hill (1970) is used. If � is not an integer, if � is
greater than 19, or if � is greater than 200, a Cornish-Fisher expansion is used to
evaluate the distribution function. If � is less than 20 and |t| is less than 2.0, a
trigonometric series (see Abramowitz and Stegun 1964, equations 26.7.3 and 26.7.4,
with some rearrangement) is used. For the remaining cases, a series given by Hill
(1970) that converges well for large values of t is used.

Example
This example finds the probability that a t random variable with six degrees of freedom
is greater in absolute value than 2.447. The fact that t is symmetric about zero is used.

#include <imsl.h>

main ()
{
 float p;
 float t = 2.447;
 float df = 6.0;

 p = 2.0*imsl_f_t_cdf(-t,df);
 printf("Pr(|t(6)| > 2.447) = %6.4f\n", p);
}

Output
Pr(|t(6)| > 2.447) = 0.0500

Figure 9-15 Plot of Ft(t, 6.0)

Chapter 9: Special Functions t_inverse_cdf � 533

t_inverse_cdf
Evaluates the inverse of the Student’s t distribution function.

Synopsis
#include <imsl.h>
float imsl_f_t_inverse_cdf (float p, float df)

The type double function is imsl_d_t_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the Student’s t distribution function is to
be evaluated. Argument p must be in the open interval (0.0, 1.0).

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value
The inverse of the Student’s t distribution function evaluated at p. The probability that
a Student’s t random variable takes a value less than or equal to
imsl_f_t_inverse_cdf is p.

Description
The function imsl_f_t_inverse_cdf evaluates the inverse distribution function of a
Student’s t random variable with � = df degrees of freedom. If � equals 1 or 2, the
inverse can be obtained in closed form. If � is between 1 and 2, the relationship of a t to
a beta random variable is exploited, and the inverse of the beta distribution is used to
evaluate the inverse; otherwise, the algorithm of Hill (1970) is used. For small values of
� greater than 2, Hill’s algorithm inverts an integrated expansion in 1/(1 + t2/�) of the
t density. For larger values, an asymptotic inverse Cornish-Fisher type expansion about
normal deviates is used.

Example
This example finds the 0.05 critical value for a two-sided t test with six degrees of
freedom.

#include <imsl.h>

void main()
{
 float df = 6.0;
 float p = 0.975;
 float t;

 t = imsl_f_t_inverse_cdf(p,df);

 printf("The two-sided t(6) 0.05 critical value is %6.3f\n", t);
}

534 � gamma_cdf IMSL C/Math/Library

Output
The two-sided t(6) 0.05 critical value is 2.447

Informational Errors
IMSL_OVERFLOW Function imsl_f_t_inverse_cdf is set to machine

infinity since overflow would occur upon modifying
the inverse value for the F distribution with the result
obtained from the inverse beta distribution.

gamma_cdf
Evaluates the gamma distribution function.

Synopsis
#include <imsl.h>
float imsl_f_gamma_cdf (float x, float a)

The type double procedure is imsl_d_gamma_cdf.

Required Arguments

float x (Input)
Argument for which the gamma distribution function is to be evaluated.

float a (Input)
The shape parameter of the gamma distribution. This parameter must be
positive.

Return Value
The probability that a gamma random variable takes a value less than or equal to x.

Description
The function imsl_f_gamma_cdf evaluates the distribution function, F, of a gamma
random variable with shape parameter a, that is,

� �
� �

1

0

1 x t aF x e t
a

� �

�
�

� dt

where
(�) is the gamma function. (The gamma function is the integral from zero to
infinity of the same integrand as above). The value of the distribution function at the
point x is the probability that the random variable takes a value less than or equal to x.

The gamma distribution is often defined as a two-parameter distribution with a scale
parameter b (which must be positive) or even as a three-parameter distribution in which
the third parameter c is a location parameter.

Chapter 9: Special Functions gamma_cdf � 535

In the most general case, the probability density function over
(c,
) is

� �
� �

� � � �
1/1 at c b

af t e x c
b a

�
� �

� �
�

If T is such a random variable with parameters a, b, and c, the probability that
T � t0 can be obtained from imsl_f_gamma_cdf by setting x = (t0 � c)/b.

If x is less than a or if x is less than or equal to 1.0, imsl_f_gamma_cdf uses a series
expansion. Otherwise, a continued fraction expansion is used. (See Abramowitz and
Stegun 1964.)

Example
Let X be a gamma random variable with a shape parameter of four. (In this case, it has
an Erlang distribution since the shape parameter is an integer.) This example finds the
probability that X is less than 0.5 and the probability that X is between 0.5 and 1.0.

#include <imsl.h>

main()
{
 float p, x;
 float a = 4.0;

 x = 0.5;
 p = imsl_f_gamma_cdf(x,a);
 printf("The probability that X is less than 0.5 is %6.4f\n", p);

 x = 1.0;
 p = imsl_f_gamma_cdf(x,a) - p;
 printf("The probability that X is between 0.5 and 1.0 is %6.4f\n", p);
}

Output
The probability that X is less than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172

Informational Errors
IMSL_LESS_THAN_ZERO The input argument, x, is less than zero.

Fatal Errors
IMSL_X_AND_A_TOO_LARGE The function overflows because x and a are too

large.

536 � binomial_cdf IMSL C/Math/Library

binomial_cdf
Evaluates the binomial distribution function.

Synopsis
#include <imsl.h>
float imsl_f_binomial_cdf (int k, int n, float p)

The type double procedure is imsl_d_binomial_cdf.

Required Arguments

int k (Input)
Argument for which the binomial distribution function is to be evaluated.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial.

Return Value
The probability that k or fewer successes occur in n independent Bernoulli trials, each
of which has a probability p of success.

Description
The function imsl_f_binomial_cdf evaluates the distribution function of a binomial
random variable with parameters n and p. It does this by summing probabilities of the
random variable taking on the specific values in its range. These probabilities are
computed by the recursive relationship

� �
� �

� �
� �

1
1

1
n j p

Pr X j Pr X j
j p
� �

� � � �

�

To avoid the possibility of underflow, the probabilities are computed forward from zero
if k is not greater than n � p; otherwise, they are computed backward from n. The
smallest positive machine number, �, is used as the starting value for summing the
probabilities, which are rescaled by (1 � p)n � if forward computation is performed and
by pn� if backward computation is done.

For the special case of p is zero, imsl_f_binomial_cdf is set to 1; and for the case
p is 1, imsl_f_binomial_cdf is set to 1 if k = n and is set to zero otherwise.

Example
Suppose X is a binomial random variable with an n = 5 and a p = 0.95. This example
finds the probability that X is less than or equal to three.

Chapter 9: Special Functions hypergeometric_cdf � 537

#include <imsl.h>

void main()
{
 int k = 3;
 int n = 5;
 float p = 0.95;
 float pr;

 pr = imsl_f_binomial_cdf(k,n,p);
 printf("Pr(x <= 3) = %6.4f\n", pr);
}

Output
Pr(x <= 3) = 0.0226

Informational Errors
IMSL_LESS_THAN_ZERO The input argument, k, is less than zero.

IMSL_GREATER_THAN_N The input argument, k, is greater than the number of
Bernoulli trials, n.

hypergeometric_cdf
Evaluates the hypergeometric distribution function.

Synopsis
#include <imsl.h>
float imsl_f_hypergeometric_cdf (int k, int n, int m, int l)

The type double procedure is imsl_d_hypergeometric_cdf.

Required Arguments

int k (Input)
Argument for which the hypergeometric distribution function is to be
evaluated.

int n (Input)
Sample size n must be greater than or equal to k.

int m (Input)
Number of defectives in the lot.

int l (Input)
Lot size l must be greater than or equal to n and m.

Return Value
The probability that k or fewer defectives occur in a sample of size n drawn from a lot
of size l that contains m defectives.

538 � hypergeometric_cdf IMSL C/Math/Library

Description
The function imsl_f_hypergeometric_cdf evaluates the distribution function of a
hypergeometric random variable with parameters n, l, and m. The hypergeometric
random variable x can be thought of as the number of items of a given type in a random
sample of size n that is drawn without replacement from a population of size
l containing m items of this type. The probability function is

� �
� �� �

� �
� �for , 1, , min ,

m l m
j n j

l
n

Pr x j j i i n m
�

�

� � � � �

where i = max (0, n � l + m).

If k is greater than or equal to i and less than or equal to min (n, m),
imsl_f_hypergeometric_cdf sums the terms in this expression for j going from
i up to k. Otherwise, 0 or 1 is returned, as appropriate.

To avoid rounding in the accumulation, imsl_f_hypergeometric_cdf performs the
summation differently, depending on whether k is greater than the mode of the
distribution, which is the greatest integer in
(m + 1) (n + 1)/(l + 2).

Example
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70.
This example evaluates the distribution function at 7.

#include <imsl.h>

void main()
{
 int k = 7;
 int l = 1000;
 int m = 70;
 int n = 100;
 float p;

 p = imsl_f_hypergeometric_cdf(k,n,m,l);
 printf("\nPr (x <= 7) = %6.4f", p);
}

Output
Pr (x <= 7) = 0.599

Informational Errors
IMSL_LESS_THAN_ZERO The input argument, k, is less than zero.

IMSL_K_GREATER_THAN_N The input argument, k, is greater than the sample
size.

Fatal Errors
IMSL_LOT_SIZE_TOO_SMALL Lot size must be greater than or equal to n and m.

Chapter 9: Special Functions poisson_cdf � 539

poisson_cdf
Evaluates the Poisson distribution function.

Synopsis
#include <imsl.h>
float imsl_f_poisson_cdf (int k, float theta)

The type double function is imsl_d_poisson_cdf.

Required Arguments

int k (Input)
Argument for which the Poisson distribution function is to be evaluated.

float theta (Input)
Mean of the Poisson distribution. Argument theta must be positive.

Return Value
The probability that a Poisson random variable takes a value less than or equal to k.

Description
The function imsl_f_poisson_cdf evaluates the distribution function of a Poisson
random variable with parameter theta. The mean of the Poisson random variable,
theta, must be positive. The probability function (with � = theta) is

f(x) = e-q �x/x!, for x = 0, 1, 2, �

The individual terms are calculated from the tails of the distribution to the mode of the
distribution and summed. The function imsl_f_poisson_cdf uses the recursive
relationship

f(x + 1) = f(x)q/(x + 1), for x = 0, 1, 2, �, k - 1

with f(0) = e-q.

540 � beta_cdf IMSL C/Math/Library

Figure 9-16 Plot of Fp(k, �)

Example
Suppose X is a Poisson random variable with � = 10. This example evaluates the
probability that X � 7.

#include <imsl.h>

void main()
{
 int k = 7;
 float theta = 10.0;
 float p;

 p = imsl_f_poisson_cdf(k, theta);
 printf("Pr(x <= 7) = %6.4f\n", p);
}

Output
Pr(x <= 7) = 0.2202

Informational Errors
IMSL_LESS_THAN_ZERO The input argument, k, is less than zero.

beta_cdf
Evaluates the beta probability distribution function.

Synopsis
#include <imsl.h>
float imsl_f_beta_cdf (float x, float pin, float qin)

The type double function is imsl_d_beta_cdf.

Chapter 9: Special Functions beta_cdf � 541

Required Arguments

float x (Input)
Argument for which the beta probability distribution function is to be
evaluated.

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
The probability that a beta random variable takes on a value less than or equal to x.

Description
Function imsl_f_beta_cdf evaluates the distribution function of a beta random
variable with parameters pin and qin. This function is sometimes called the
incomplete beta ratio and with p = pin and q = qin, is denoted by Ix (p, q). It is given
by

� �
� � � �

� �
� �

11

0
, 1

x qp
x

p q
I p q t t dt

p q
�

�

� �
� �

� �
�

where
(�) is the gamma function. The value of the distribution function by Ix (p, q) is
the probability that the random variable takes a value less than or equal to x.

The integral in the expression above is called the incomplete beta function and is
denoted by 	x (p, q). The constant in the expression is the reciprocal of the beta
function (the incomplete function evaluated at one) and is denoted by 	(p, q).

Function beta_cdf uses the method of Bosten and Battiste (1974).

Example
Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric
distribution.) This example finds the probability that X is less than 0.6 and the
probability that X is between 0.5 and 0.6. (Since X is a symmetric beta random variable,
the probability that it is less than 0.5 is 0.5.)

#include <imsl.h>

main()
{
 float p, pin, qin, x;

 pin = 12.0;
 qin = 12.0;
 x = 0.6;
 p = imsl_f_beta_cdf(x, pin, qin);
 printf(" The probability that X is less than 0.6 is %6.4f\n",
 p);

542 � beta_inverse_cdf IMSL C/Math/Library

 x = 0.5;
 p -= imsl_f_beta_cdf(x, pin, qin);
 printf(" The probability that X is between 0.5 and 0.6 is %6.4f\n",
 p);
}

Output
 The probability that X is less than 0.6 is 0.8364
 The probability that X is between 0.5 and 0.6 is 0.3364

beta_inverse_cdf
Evaluates the inverse of the beta distribution function.

Synopsis
#include <imsl.h>
float imsl_f_beta_inverse_cdf (float p, float pin, float qin)

The type double function is imsl_d_beta_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the beta distribution function is to be
evaluated. Argument p must be in the open interval (0.0 ,1.0).

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
Function imsl_f_beta_inverse_cdf evaluates the inverse distribution function of a
beta random variable with parameters pin and qin.

Description
With P = p, p = pin, and q = qin, function imsl_f_beta_inverse_cdf returns x such
that

� �

� � � �
� �

11

0
1

x qpp q
P t

p q
�

�

� �
� �
� �

� t dt

where
(�) is the gamma function. The probability that the random variable takes a
value less than or equal to x is P.

Chapter 9: Special Functions bivariate_normal_cdf � 543

Example
Suppose X is a beta random variable with parameters 12 and 12. (X has a symmetric
distribution.) This example finds the value x such that the probability that X � x is 0.9.

#include <imsl.h>

main()
{
 float p, pin, qin, x;

 pin = 12.0;
 qin = 12.0;
 p = 0.9;
 x = imsl_f_beta_inverse_cdf(p, pin, qin);
 printf(" X is less than %6.4f with probability 0.9.\n",
 x);
}

Output
 X is less than 0.6299 with probability 0.9.

bivariate_normal_cdf
Evaluates the bivariate normal distribution function.

Synopsis
#include <imsl.h>
float imsl_f_bivariate_normal_cdf (float x, float y, float rho)

The type double function is imsl_d_bivariate_normal_cdf.

Required Arguments

float x (Input)
The x-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

float y (Input)
The y-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

float rho (Input)
Correlation coefficient.

Return Value
The probability that a bivariate normal random variable with correlation rho takes a
value less than or equal to x and less than or equal to y.

544 � bivariate_normal_cdf IMSL C/Math/Library

Description
Function imsl_f_bivariate_normal_cdf evaluates the distribution function F of a
bivariate normal distribution with means of zero, variances of one, and correlation of
rho; that is, with � = rho, and |�| < 1,

2 2

22

1 2(,) exp
2(1)2 1

yx u uv vF x y du dv�

�� � �� ��

� �� �
� �� �

�� � 	
� �

To determine the probability that U � u� and V � v�, where (U, V)T is a bivariate
normal random variable with mean � = (�U, �V)T and variance-covariance matrix

2

2
U UV

UV V

� �

� �

� �
� � � �

� �

transform (U, V)T to a vector with zero means and unit variances. The input
to imsl_f_bivariate_normal_cdf would be
X = (u� � �U)/�U, Y = (v� � �V)/�V, and � = �UV/(�U�V).

Function imsl_f_bivariate_normal_cdf uses the method of Owen (1962, 1965).
Computation of Owen’s T-function is based on code by M. Patefield and D. Tandy
(2000). For |�| = 1, the distribution function is computed based on the univariate
statistic, Z = min(x, y), and on the normal distribution function imsl_f_normal_cdf,
which can be found in Chapter 11, “Probablility Distribution Functions and Inverses.”

Example
Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and variance-
covariance matrix

1.0 0.9
0.9 1.0
� �
� �
� �

This example finds the probability that X is less than �2.0 and Y is less than 0.0.
#include <imsl.h>

main()
{
 float p, rho, x, y;

 x = -2.0;
 y = 0.0;
 rho = 0.9;
 p = imsl_f_bivariate_normal_cdf(x, y, rho);
 printf(" The probability that X is less than -2.0"
 " and Y is less than 0.0 is %6.4f\n", p);

}

Chapter 9: Special Functions cumulative_interest � 545

Output
The probability that X is less than -2.0 and Y is less than 0.0 is 0.0228

cumulative_interest
Evaluates the cumulative interest paid between two periods.

Synopsis
#include <imsl.h>
float imsl_f_cumulative_interest (float rate, int n_periods,

float present_value, int start, int end, int when)

The type double function is imsl_d_cumulative_interest.

Required Arguments

float rate (Input)
Interest rate.

int n_periods (Input)
Total number of payment periods. n_periods cannot be less than or equal
to 0.

float present_value (Input)
The current value of a stream of future payments, after discounting the
payments using some interest rate.

int start (Input)
Starting period in the calculation. start cannot be less than 1; or greater than
end.

int end (Input)
Ending period in the calculation.

int when (Input)
Time in each period when the payment is made, either
IMSL_AT_END_OF_PERIOD or IMSL_AT_BEGINNING_OF_PERIOD. For
a more detailed discussion on when see the Usage Notes section of this
chapter.

Return Value
The cumulative interest paid between the first period and the last period. If no result
can be computed, NaN is returned.

Description
Function imsl_f_cumulative_interest evaluates the cumulative interest paid
between the first period and the last period.

546 � cumulative_principal IMSL C/Math/Library

It is computed using the following:

interest
end

i
i start�

�

where interesti is computed from imsl_f_interest_payment for the ith period.

Example
In this example, imsl_f_cumulative_interest computes the total interest paid for
the first year of a 30-year $200,000 loan with an annual interest rate of 7.25%. The
payment is made at the end of each month.

#include <stdio.h>
#include "imsl.h"

void main()
{
 float rate = 0.0725 / 12;
 int n_periods = 12 * 30;
 float present_value = 200000;
 int start = 1;
 int end = 12;
 float total;

 total = imsl_f_cumulative_interest (rate, n_periods, present_value,
 start, end, IMSL_AT_END_OF_PERIOD);

 printf ("First year interest = $%.2f.\n", total);
}

Output
First year interest = $-14436.52.

cumulative_principal
Evaluates the cumulative principal paid between two periods.

Synopsis
#include <imsl.h>
float imsl_f_cumulative_principal (float rate, int n_periods,

float present_value, int start, int end, int when)

The type double function is imsl_d_cumulative_principal.

Required Arguments

float rate (Input)
Interest rate.

Chapter 9: Special Functions cumulative_principal � 547

int n_periods (Input)
Total number of payment periods. n_periods cannot be less than or equal
to 0.

float present_value (Input)
The current value of a stream of future payments, after discounting the
payments using some interest rate.

int start (Input)
Starting period in the calculation. start cannot be less than 1; or greater than
end.

int end (Input)
Ending period in the calculation.

int when (Input)
Time in each period when the payment is made, either
IMSL_AT_END_OF_PERIOD or IMSL_AT_BEGINNING_OF_PERIOD. For a
more detailed discussion on when see the Usage Notes section of this chapter.

Return Value
The cumulative principal paid between the first period and the last period. If no result
can be computed, NaN is returned.

Description
Function imsl_f_cumulative_principal evaluates the cumulative principal paid
between the first period and the last period.

It is computed using the following:

principal
end

i
i start�

�

where principali is computed from imsl_f_principal_payment for the ith period.

Example
In this example, imsl_f_cumulative_principal computes the total principal paid
for the first year of a 30-year $200,000 loan with an annual interest rate of 7.25%. The
payment is made at the end of each month.

#include <stdio.h>
#include "imsl.h"

void
main ()
{
 float rate = 0.0725 / 12;
 int n_periods = 12 * 30;
 float present_value = 200000;
 int start = 1;

548 � depreciation_db IMSL C/Math/Library

 int end = 12;
 float total;

 total = imsl_f_cumulative_principal (rate, n_periods, present_value,
 start, end, IMSL_AT_END_OF_PERIOD);

 printf ("First year principal = $%.2f.\n", total);
}

Output
First year principal = $-1935.73.

depreciation_db
Evaluates the depreciation of an asset using the fixed-declining balance method.

Synopsis
#include <imsl.h>
float imsl_f_depreciation_db (float cost, float salvage, int life,

int period, int month)

The type double function is imsl_d_depreciation_db.

Required Arguments

float cost (Input)
Initial value of the asset.

float salvage (Input)
The value of an asset at the end of its depreciation period.

int life (Input)
Number of periods over which the asset is being depreciated.

int period (Input)
Period for which the depreciation is to be computed. period cannot be less
than or equal to 0, and cannot be greater than life +1.

int month (Input)
Number of months in the first year. month cannot be greater than 12 or less
than 1.

Return Value
The depreciation of an asset for a specified period using the fixed-declining balance
method. If no result can be computed, NaN is returned.

Description
Function imsl_f_depreciation_db computes the depreciation of an asset for a
specified period using the fixed-declining balance method. Routine

Chapter 9: Special Functions depreciation_db � 549

imsl_f_depreciation_db varies depending on the specified value for the argument
period, see table below.

period Formula
period = 1 monthcost rate

12
� �

period = life
� �

12-monthcost totaldepreciation from periods rate
12

� � �

period other than 1 or
life

� �cost totaldepreciation from prior periods rate� �

where
1

salvage1
cost

life
rate

� �
� �
� �� �

� � � �
� �

NOTE: rate is rounded to three decimal places.

Example
In this example, imsl_f_depreciation_db computes the depreciation of an asset,
which costs $2,500 initially, a useful life of 3 periods and a salvage value of $500, for
each period.

#include <stdio.h>
#include "imsl.h"

void main()
{
 float cost = 2500;
 float salvage = 500;
 int life = 3;
 int month = 6;
 float db;
 int period;

 for (period = 1; period <= life + 1; period++)
 {
 db = imsl_f_depreciation_db (cost, salvage, life, period, month);
 printf ("For period %i, db = $%.2f.\n", period, db);
 }
}

Output
For period 1, db = $518.75.
For period 2, db = $822.22.
For period 3, db = $481.00.
For period 4, db = $140.69.

550 � depreciation_ddb IMSL C/Math/Library

depreciation_ddb
Evaluates the depreciation of an asset using the double-declining balance method.

Synopsis
#include <imsl.h>
float imsl_f_depreciation_ddb (float cost, float salvage, int life,

int period, float factor)

The type double function is imsl_d_depreciation_ddb.

Required Arguments

float cost (Input)
Initial value of the asset.

float salvage (Input)
The value of an asset at the end of its depreciation period.

int life (Input)
Number of periods over which the asset is being depreciated.

int period (Input)
Period for which the depreciation is to be computed. period cannot be
greater than life.

float factor (Input)
Rate at which the balance declines. factor must be positive.

Return Value
The depreciation of an asset using the double-declining balance method for a period
specified by the user. If no result can be computed, NaN is returned.

Description
Function imsl_f_depreciation_ddb computes the depreciation of an asset using
the double-declining balance method for a specified period.

It is computed using the following:

� �total depreciation from prior periodscost salvage factor
life

� �
�� � � �� 	

 �

Example
In this example, imsl_f_depreciation_ddb computes the depreciation of an asset,
which costs $2,500 initially, lasts 24 periods and a salvage value of $500, for each
period.

Chapter 9: Special Functions depreciation_sln � 551

#include <stdio.h>
#include "imsl.h"

void main()
{
 float cost = 2500;
 float salvage = 500;
 float factor = 2;
 int life = 24;
 int period;
 float ddb;

 for (period = 1; period <= life; period++)
 {
 ddb = imsl_f_depreciation_ddb (cost, salvage, life, period, factor);
 printf ("For period %i, ddb = $%.2f.\n", period, ddb);
 }
}

Output
For period 1, ddb = $208.33.
For period 2, ddb = $190.97.
For period 3, ddb = $175.06.
For period 4, ddb = $160.47.
For period 5, ddb = $147.10.
For period 6, ddb = $134.84.
For period 7, ddb = $123.60.
For period 8, ddb = $113.30.
For period 9, ddb = $103.86.
For period 10, ddb = $95.21.
For period 11, ddb = $87.27.
For period 12, ddb = $80.00.
For period 13, ddb = $73.33.
For period 14, ddb = $67.22.
For period 15, ddb = $61.62.
For period 16, ddb = $56.48.
For period 17, ddb = $51.78.
For period 18, ddb = $47.46.
For period 19, ddb = $22.09.
For period 20, ddb = $0.00.
For period 21, ddb = $0.00.
For period 22, ddb = $0.00.
For period 23, ddb = $0.00.
For period 24, ddb = $0.00.

depreciation_sln
Evaluates the depreciation of an asset using the straight-line method.

Synopsis
#include <imsl.h>
float imsl_f_depreciation_sln (float cost, float salvage, int life)

The type double function is imsl_d_depreciation_sln.

552 � depreciation_sln IMSL C/Math/Library

Required Arguments

float cost (Input)
Initial value of the asset.

float salvage (Input)
The value of an asset at the end of its depreciation period.

int life (Input)
Number of periods over which the asset is being depreciated.

Return Value
The straight line depreciation of an asset for its life. If no result can be computed, NaN
is returned.

Description
Function imsl_f_depreciation_sln computes the straight line depreciation of an
asset for its life.

It is computed using the following:

(cost-salvage)/life

Example
In this example, imsl_f_depreciation_sln computes the depreciation of an asset,
which costs $2,500 initially, lasts 24 periods and a salvage value of $500.

#include <stdio.h>
#include "imsl.h"

void main()
{
 float cost = 2500;
 float salvage = 500;
 int life = 24;
 float depreciation_sln;

 depreciation_sln = imsl_f_depreciation_sln (cost, salvage, life);
 printf ("The straight line depreciation of the asset for one ");
 printf ("period is $%.2f.\n", depreciation_sln);
}

Output
The straight line depreciation of the asset for one period is $83.33.

Chapter 9: Special Functions depreciation_syd � 553

depreciation_syd
Evaluates the depreciation of an asset using the sum-of-years digits method.

Synopsis
#include <imsl.h>
float imsl_f_depreciation_syd (float cost, float salvage, int life,

int period)

The type double function is imsl_d_depreciation_syd.

Required Arguments

float cost (Input)
Initial value of the asset.

float salvage (Input)
The value of an asset at the end of its depreciation period.

int life (Input)
Number of periods over which the asset is being depreciated.

int period (Input)
Period for which the depreciation is to be computed. period cannot be
greater than life.

Return Value
The sum-of-years digits depreciation of an asset for a specified period. If no result can
be computed, NaN is returned.

Description
Function imsl_f_depreciation_syd computes the sum-of-years digits depreciation
of an asset for a specified period.

It is computed using the following:

� �(1)

()()
2

life life
cost salvage period

�

�

Example
In this example, imsl_f_depreciation_syd computes the depreciation of an asset,
which costs $25,000 initially, lasts 15 years and a salvage value of $5,000, for the 14th
year.

#include <stdio.h>
#include "imsl.h"

void main()

554 � depreciation_vdb IMSL C/Math/Library

{
 float cost = 25000;
 float salvage = 5000;
 int life = 15;
 int period = 14;
 float depreciation_syd;

 depreciation_syd = imsl_f_depreciation_syd (cost, salvage, life, period);
 printf ("The depreciation allowance for the 14th year ");
 printf ("is $%.2f.\n", depreciation_syd);
}

Output
The depreciation allowance for the 14th year is $333.33.

depreciation_vdb
Evaluates the depreciation of an asset for any given period using the variable-declining
balance method.

Synopsis
#include <imsl.h>
float imsl_f_depreciation_vdb (float cost, float salvage, int life,

int start, int end, float factor, int sln)

The type double function is imsl_d_depreciation_vdb.

Required Arguments

float cost (Input)
Initial value of the asset.

float salvage (Input)
The value of an asset at the end of its depreciation period.

int life (Input)
Number of periods over which the asset is being depreciated.

int start (Input)
Starting period in the calculation. start cannot be less than 1; or greater than
end.

int end (Input)
Final period for the calculation. end cannot be greater than life.

float factor (Input)
Rate at which the balance declines. factor must be positive.

int sln (Input)
If equal to zero, do not switch to straight-line depreciation even when the
depreciation is greater than the declining balance calculation.

Chapter 9: Special Functions depreciation_vdb � 555

Return Value
The depreciation of an asset for any given period, including partial periods, using the
variable-declining balance method. If no result can be computed, NaN is returned.

Description
Function imsl_f_depreciation_vdb computes the depreciation of an asset for any
given period using the variable-declining balance method using the following:

If sln = 0

1

end

i
i start

ddb
� �

�

If sln � 0

cost
1

end

i k

A salvageA
end k

�

� �

�

� �
�

where ddb i is computed from imsl_f_depreciation_ddb for the ith period.
k = the first period where straight line depreciation is greater than the depreciation

using the double-declining balance method.
1

1

k

i
i start

A ddb
�

� �

� � .

Example
In this example, imsl_f_depreciation_vdb computes the depreciation of an asset
between the 10th and 15th year, which costs $25,000 initially, lasts 15 years and has a
salvage value of $5,000.

#include <stdio.h>
#include "imsl.h"

void main()
{
 float cost = 25000;
 float salvage = 5000;
 int life = 15;
 int start = 10;
 int end = 15;
 float factor = 2.;
 int sln = 0;
 float vdb;

 vdb = imsl_f_depreciation_vdb (cost, salvage, life, start,
 end, factor, sln);
 printf ("The depreciation allowance between the 10th and 15th ");
 printf ("year is $%.2f.\n", vdb);
}

556 � dollar_decimal IMSL C/Math/Library

Output
The depreciation allowance between the 10th and 15th year is $976.69.

dollar_decimal
Converts a fractional price to a decimal price.

Synopsis
#include <imsl.h>
float imsl_f_dollar_decimal (float fractional_dollar, int fraction)

The type double function is imsl_d_dollar_decimal.

Required Arguments

float fractional_dollar (Input)
Whole number of dollars plus the numerator, as the fractional part.

int fraction (Input)
Denominator of the fractional dollar. fraction must be positive.

Return Value
The dollar price expressed as a decimal number. The dollar price is the whole number
part of fractional-dollar plus its decimal part divided by fraction. If no result can be
computed, NaN is returned.

Description
Function imsl_f_dollar_decimal converts a dollar price, expressed as a fraction,
into a dollar price, expressed as a decimal number.

It is computed using the following:

� �
� �110 ifrac

idollar fractional_dollar idollar
fraction

�

� � �

where idollar is the integer part of fractional_dollar, and ifrac is the integer part of
log(fraction).

Example
In this example, imsl_f_dollar_decimal converts $ 1 1/4 to $1.25.

#include <stdio.h>
#include "imsl.h"

void main()
{
 float fractional_dollar = 1.1;

Chapter 9: Special Functions dollar_fraction � 557

 int fraction = 4;
 float dollardec;

 dollardec = imsl_f_dollar_decimal (fractional_dollar, fraction);
 printf ("The fractional dollar $1 1/4 = $%.2f.\n", dollardec);
}

Output
The fractional dollar $1 1/4 = $1.25.

dollar_fraction
Converts a decimal price to a fractional price.

Synopsis
#include <imsl.h>
float imsl_f_dollar_fraction (float decimal_dollar, int fraction)

The type double function is imsl_d_dollar_fraction.

Required Arguments

float decimal_dollar (Input)
Dollar price expressed as a decimal number.

int fraction (Input)
Denominator of the fractional dollar. fraction must be positive.

Return Value
The dollar price expressed as a fraction. The numerator is the decimal part of the
return value. If no result can be computed, NaN is returned.

Description
Function imsl_f_dollar_fraction converts a dollar price, expressed as a decimal
number, into a dollar price, expressed as a fractional price. If no result can be
computed, NaN is returned.

It can be found by solving the following

� �
� �1

_
i

10 /ifrac

decimal dollar idollar
dollar

fraction�

�

�

where idollar is the integer part of the decimal_dollar, and ifrac is the integer part of
log(fraction).

Example
In this example, imsl_f_dollar_fraction converts $ 1.25 to $1 1/4.

558 � effective_rate IMSL C/Math/Library

#include <stdio.h>
#include "imsl.h"

void main()
{
 float decimal_dollar = 1.25;
 int fraction = 4;
 int numerator;
 float dollarfrc;

 dollarfrc = imsl_f_dollar_fraction (decimal_dollar, fraction);
 numerator = dollarfrc*10.-((int)dollarfrc)*10;
 printf ("The decimal dollar $1.25 as a fractional dollar = $%i %i/%i.\n",
 (int)dollarfrc, numerator, fraction);
}

Output
The decimal dollar $1.25 as a fractional dollar = $1 1/4.

effective_rate
Evaluates the effective annual interest rate.

Synopsis
#include <imsl.h>
float imsl_f_effective_rate (float nominal_rate, int n_periods)

The type double function is imsl_d_effective_rate.

Required Arguments

float nominal_rate (Input)
The interest rate as stated on the face of a security.

int n_periods (Input)
Number of compounding periods per year.

Return Value
The effective annual interest rate. If no result can be computed, NaN is returned.

Description
Function imsl_f_effective_rate computes the continuously-compounded interest
rate equivalent to a given periodically-compounded interest rate. The nominal interest
rate is the periodically-compounded interest rate as stated on the face of a security.

It can found by solving the following:

Chapter 9: Special Functions future_value � 559

� �_
nominal1 1

_

n periods
_rate

n periods
� �
� �� �

� �

Example
In this example, imsl_f_effective_rate computes the effective annual interest rate
of the nominal interest rate, 6%, compounded quarterly.

#include <stdio.h>
#include "imsl.h"

void main()
{
 float nominal_rate = .06;
 int n_periods = 4;
 float effective_rate;

 effective_rate = imsl_f_effective_rate (nominal_rate, n_periods);
 printf ("The effective rate of the nominal rate, 6.0%%, ");
 printf ("compounded quarterly is %.2f%%.\n", effective_rate * 100.);
}

Output
The effective rate of the nominal rate, 6.0%, compounded quarterly is 6.14%.

future_value
Evaluates the future value of an investment.

Synopsis
#include <imsl.h>
float imsl_f_future_value (float rate, int n_periods, float payment, float

present_value, int when)

The type double function is imsl_d_future_value.

Required Arguments

float rate (Input)
Interest rate.

int n_periods (Input)
Total number of payment periods.

float payment (Input)
Payment made in each period.

float present_value (Input)
The current value of a stream of future payments, after discounting the
payments using some interest rate.

560 � future_value IMSL C/Math/Library

int when (Input)
Time in each period when the payment is made, either
IMSL_AT_END_OF_PERIOD or IMSL_AT_BEGINNING_OF_PERIOD. For a
more detailed discussion on when see the Usage Notes section of this chapter.

Return Value
The future value of an investment. If no result can be computed, NaN is returned.

Description
Function imsl_f_future_value computes the future value of an investment. The
future value is the value, at some time in the future, of a current amount and a stream of
payments.

It can be found by solving the following:

If rate = 0

� � � � =0present_value payment n_periods future_value� �

If rate � 0

� �
n_periods(1) 1n_periods(1) 1+

future_value=0

ratepresent_value rate payment rate when
rate

� �
� � � �� �

�

Example
In this example, imsl_f_future_value computes the value of $30,000 payment
made annually at the beginning of each year for the next 20 years with an annual
interest rate of 5%.

#include <stdio.h>
#include "imsl.h"

void
main ()
{
 float rate = .05;
 int n_periods = 20;
 float payment = -30000.00;
 float present_value = -30000.00;
 int when = IMSL_AT_BEGINNING_OF_PERIOD;
 float future_value;

 future_value = imsl_f_future_value (rate, n_periods, payment,
 present_value, when);
 printf ("After 20 years, the value of the investments ");
 printf ("will be $%.2f.\n", future_value);
}

Chapter 9: Special Functions future_value_schedule � 561

Output
After 20 years, the value of the investments will be $1121176.63.

future_value_schedule
Evaluates the future value of an initial principal taking into consideration a schedule of
compound interest rates.

Synopsis
#include <imsl.h>
float imsl_f_future_value_schedule (float principal, int count,

float schedule[])

The type double function is imsl_d_future_value_schedule.

Required Arguments

float principal (Input)
Principal or present value.

int count (Input)
Number of interest rates in schedule.

float schedule[] (Input)
Array of size count of interest rates to apply.

Return Value
The future value of an initial principal after applying a schedule of compound interest
rates. If no result can be computed, NaN is returned.

Description
Function imsl_f_future_value_schedule computes the future value of an initial
principal after applying a schedule of compound interest rates.

It is computed using the following:

� �
1

count

i
i

principal schedule
�

��

where schedulei = interest rate at the ith period.

Example
In this example, imsl_f_future_value_schedule computes the value of a $10,000
investment after 5 years with interest rates of 5%, 5.1%, 5.2%, 5.3% and 5.4%,
respectively.

#include <stdio.h>

562 � interest_payment IMSL C/Math/Library

#include "imsl.h"

void main()
{
 float principal = 10000.0;
 float schedule[5] = { .050, .051, .052, .053, .054 };
 float fvschedule;

 fvschedule = imsl_f_future_value_schedule (principal, 5, schedule);
 printf ("After 5 years the $10,000 investment will have grown ");
 printf ("to $%.2f.\n", fvschedule);
}

Output
After 5 years the $10,000 investment will have grown to $12884.77.

interest_payment
Evaluates the interest payment for an investment for a given period.

Synopsis
#include <imsl.h>
float imsl_f_interest_payment (float rate, int period, int n_periods,

float present_value, float future_value, int when)

The type double function is imsl_d_interest_payment.

Required Arguments

float rate (Input)
Interest rate.

int period (Input)
Payment period.

int n_periods (Input)
Total number of periods.

float present_value (Input)
The current value of a stream of future payments, after discounting the
payments using some interest rate.

float future_value (Input)
The value, at some time in the future, of a current amount and a stream of
payments.

int when (Input)
Time in each period when the payment is made, either
IMSL_AT_END_OF_PERIOD or IMSL_AT_BEGINNING_OF_PERIOD. For a
more detailed discussion on see the Usage Notes section of this chapter.

Chapter 9: Special Functions interest_rate_annuity � 563

Return Value
The interest payment for an investment for a given period. If no result can be
computed, NaN is returned.

Description
Function imsl_f_interest_payment computes the interest payment for an
investment for a given period.

It is computed using the following:

� � � �
� �

_ 1

_ 1 1
_ 1 1 *

n periods

n periods rate
present value rate payment rate when rate

rate

�

�

� �� ��� �� �� � �	

� �� �� �
 �

Example
In this example, imsl_f_interest_payment computes the interest payment for the
second year of a 25-year $100,000 loan with an annual interest rate of 8%. The
payment is made at the end of each period.

#include <stdio.h>
#include "imsl.h"

void main()
{
 float rate = .08;
 int period = 2;
 int n_periods = 25;
 float present_value = 100000.00;
 float future_value = 0.0;
 int when = IMSL_AT_END_OF_PERIOD;
 float interest_payment;

 interest_payment = imsl_f_interest_payment (rate, period, n_periods,
 present_value, future_value, when);
 printf ("The interest due the second year on the $100,000 ");
 printf ("loan is $%.2f.\n", interest_payment);
}

Output
The interest due the second year on the $100,000 loan is $-7890.57.

interest_rate_annuity
Evaluates the interest rate per period of an annuity.

Synopsis
#include <imsl.h>

564 � interest_rate_annuity IMSL C/Math/Library

float imsl_f_interest_rate_annuity (int n_periods, float payment,
float present_value, float future_value, int when, …, 0)

The type double function is imsl_d_interest_rate_annuity.

Required Arguments

int n_periods (Input)
Total number of periods.

float payment (Input)
Payment made each period.

float present_value (Input)
The current value of a stream of future payments, after discounting the
payments using some interest rate.

float future_value (Input)
The value, at some time in the future, of a current amount and a stream of
payments.

int when (Input)
Time in each period when the payment is made, either
IMSL_AT_END_OF_PERIOD or IMSL_AT_BEGINNING_OF_PERIOD. For a
more detailed discussion on when see the Usage Notes section of this chapter.

Return Value
The interest rate per period of an annuity. If no result can be computed, NaN is
returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_interest_rate_annuity (int n_periods, float payment,

float present_value, float future_value, int when, IMSL_XGUESS,
float guess, IMSL_HIGHEST, float max, 0)

Optional Arguments

IMSL_XGUESS, float guess (Input)
Initial guess at the interest rate.

IMSL_HIGHEST, float max (Input)
Maximum value of the interest rate allowed.
Default: 1.0 (100%)

Description
Function imsl_f_interest_rate_annuity computes the interest rate per period of
an annuity. An annuity is a security that pays a fixed amount at equally spaced
intervals.

Chapter 9: Special Functions internal_rate_of_return � 565

It can be found by solving the following:

If rate = 0

� �� � =0present_value payment n_periods future_value� �

If rate � 0

� �
n_periods(1) 1n_periods(1) 1+

future_value=0

ratepresent_value rate payment rate when
rate

� �
� � � �� �

�

Example

In this example, imsl_f_interest_rate_annuity computes the interest rate of a
$20,000 loan that requires 70 payments of $350 each to pay off.

#include <stdio.h>
#include "imsl.h"

void main()
{
 float rate;
 int n_periods = 70;
 float payment = -350.;
 float present_value = 20000;
 float future_value = 0.;
 int when = IMSL_AT_BEGINNING_OF_PERIOD;

 rate = imsl_f_interest_rate_annuity (n_periods, payment, present_value,
 future_value, when, 0) * 12;
 printf ("The computed interest rate on the loan is ");
 printf ("%.2f%%.\n", rate * 100.);
}

Output
The computed interest rate on the loan is 7.35%.

internal_rate_of_return
Evaluates the internal rate of return for a schedule of cash flows.

Synopsis
#include <imsl.h>
float imsl_f_internal_rate_of_return (int count, float values[], …, 0)

The type double function is imsl_d_internal_rate_of_return.

566 � internal_rate_of_return IMSL C/Math/Library

float imsl_f_internal_rate_of_rtn (int count, float values[],
IMSL_XGUESS, float guess, 0)

Required Arguments

int count (Input)
Number of cash flows in values. count must be greater than one.

float values[] (Input)
Array of size count of cash flows which occur at regular intervals, which
includes the initial investment.

Return Value
The internal rate of return for a schedule of cash flows. If no result can be computed,
NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>

Optional Arguments

IMSL_XGUESS, float guess (Input)
Initial guess at the internal rate of return.

IMSL_HIGHEST, float max (Input)
Maximum value of the internal rate of return allowed.
Default: 1.0 (100%).

Description
Function imsl_f_internal_rate_of_return computes the internal rate of return
for a schedule of cash flows. The internal rate of return is the interest rate such that a
stream of payments has a net present value of zero.

It is found by solving the following:

� �1
0

1

count
i

i
i

value
rate�

�

�

�

where valuei = the ith cash flow, rate is the internal rate of return.

Example
In this example, imsl_f_internal_rate_of_return computes the internal rate of
return for nine cash flows, $-800, $800, $800, $600, $600, $800, $800, $700 and
$3,000, with an initial investment of $4,500.

#include <stdio.h>
#include "imsl.h"

void main()

Chapter 9: Special Functions internal_rate_schedule � 567

{
 float values[] = { -4500., -800., 800., 800., 600.,
 600., 800., 800., 700., 3000. };
 float internal_rate;

 internal_rate = imsl_f_internal_rate_of_return (10, values, 0);
 printf ("After 9 years, the internal rate of return on the ");
 printf ("cows is %.2f%%.\n", internal_rate * 100.);
}

Output
After 9 years, the internal rate of return on the cows is 7.21%.

internal_rate_schedule
Evaluates the internal rate of return for a schedule of cash flows. It is not necessary that
the cash flows be periodic.

Synopsis
#include <imsl.h>
float imsl_f_internal_rate_schedule (int count, float values[],

struct tm dates[], …, 0)

The type double function is imsl_d_internal_rate_schedule.

Required Arguments

int count (Input)
Number of cash flows in values. count must be greater than one.

float values[] (Input)
Array of size count of cash flows, which includes the initial investment.

struct tm dates[] (Input)
Array of size count of dates cash flows are made see the Usage Notes section
of this chapter.

Return Value
The internal rate of return for a schedule of cash flows that is not necessarily periodic.
If no result can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_internal_rate_schedule (int count, float values[],

struct tm dates[], IMSL_XGUESS, float guess, IMSL_HIGHEST,
float max, 0)

568 � internal_rate_schedule IMSL C/Math/Library

Optional Arguments

IMSL_XGUESS, float guess (Input)
Initial guess at the internal rate of return.

IMSL_HIGHEST, float max (Input)
Maximum value of the internal rate of return allowed.
Default: 1.0 (100%)

Description
Function imsl_f_internal_rate_schedule computes the internal rate of return
for a schedule of cash flows that is not necessarily periodic. The internal rate such that
the stream of payments has a net present value of zero.

It can be found by solving the following:

� �
1

1 365

0
1

i

count
i
d d

i

value

rate
�

�

�

�

�

In the equation above, di represents the ith payment date. d1 represents the 1st payment
date. valuei represents the ith cash flow. rate is the internal rate of return.

Example
In this example, imsl_f_internal_rate_schedule computes the internal rate of
return for nine cash flows, $-800, $800, $800, $600, $600, $800, $800, $700 and
$3,000, with an initial investment of $4,500.

#include <stdio.h>
#include "imsl.h"

void main()
{
 float values[10] = { -4500., -800., 800., 800., 600., 600.,
 800., 800., 700., 3000. };
 struct tm dates[10];
 float xirr;

 dates[0].tm_year = 98; dates[0].tm_mon = 0; dates[0].tm_mday = 1;
 dates[1].tm_year = 98; dates[1].tm_mon = 9; dates[1].tm_mday = 1;
 dates[2].tm_year = 99; dates[2].tm_mon = 4; dates[2].tm_mday = 5;
 dates[3].tm_year = 100; dates[3].tm_mon = 4; dates[3].tm_mday = 5;
 dates[4].tm_year = 101; dates[4].tm_mon = 5; dates[4].tm_mday = 1;
 dates[5].tm_year = 102; dates[5].tm_mon = 6; dates[5].tm_mday = 1;
 dates[6].tm_year = 103; dates[6].tm_mon = 7; dates[6].tm_mday = 30;
 dates[7].tm_year = 104; dates[7].tm_mon = 8; dates[7].tm_mday = 15;
 dates[8].tm_year = 105; dates[8].tm_mon = 9; dates[8].tm_mday = 15;
 dates[9].tm_year = 106; dates[9].tm_mon = 10; dates[9].tm_mday = 1;

 xirr = imsl_f_internal_rate_schedule (10, values, dates, 0);
 printf ("After approximately 9 years, the internal\n");
 printf ("rate of return on the cows is %.2f%%.\n", xirr * 100.);
}

Chapter 9: Special Functions modified_internal_rate � 569

Output
After approximately 9 years, the internal
rate of return on the cows is 7.69%.

modified_internal_rate
Evaluates the modified internal rate of return for a schedule of periodic cash flows.

Synopsis
#include <imsl.h>
float imsl_f_modified_internal_rate (int count, float values[],

float finance_rate, float reinvest_rate)

The type double function is imsl_d_modified_internal_rate.

Required Arguments

int count (Input)
Number of cash flows in values and count must greater than one.

float values[] (Input)
Array of size count of cash flows.

float finance_rate (Input)
Interest paid on the money borrowed.

float reinvest_rate (Input)
Interest rate received on the cash flows.

Return Value
The modified internal rate of return for a schedule of periodic cash flows. If no result
can be computed, NaN is returned.

Description
Function imsl_f_modified_internal_rate computes the modified internal rate of
return for a schedule of periodic cash flows. The modified internal rate of return differs
from the ordinary internal rate of return in assuming that the cash flows are reinvested
at the cost of capital, not at the internal rate of return.

It also eliminates the multiple rates of return problem.

It is computed using the following:

� �� �

� �� �

1
_ _ 1pnpv 1 reinvest_rate

1
1 finance_rate

n periods n periods

nnpv

�

� �
� �� �� �

�� 	
 �
�� 	� ��

� �

570 � net_present_value IMSL C/Math/Library

where pnpv is calculated from imsl_f_net_present_value for positive values in
values using reinvest_rate, and where nnpv is calculated from
imsl_f_net_present_value for negative values in values using finance_rate.

Example
In this example, imsl_f_modified_internal_rate computes the modified internal
rate of return for an investment of $4,500 with cash flows of $-800, $800, $800, $600,
$600, $800, $800, $700 and $3,000 for 9 years.

#include <stdio.h>
#include "imsl.h"

void main()
{
 float value[] = { -4500., -800., 800., 800., 600., 600., 800.,
 800., 700., 3000. };
 float finance_rate = .08;
 float reinvest_rate = .055;
 float mirr;

 mirr = imsl_f_modified_internal_rate (10, value, finance_rate,
 reinvest_rate);
 printf ("After 9 years, the modified internal rate of return ");
 printf ("on the cows is %.2f%%.\n", mirr * 100.);
}

Output
After 9 years, the modified internal rate of return on the cows is 6.66%.

net_present_value
Evaluates the net present value of a stream of unequal periodic cash flows, which are
subject to a given discount rate.

Synopsis
#include <imsl.h>
float imsl_f_net_present_value (float rate, int count, float values[])

The type double function is imsl_d_net_present_value.

Required Arguments

float rate (Input)
Interest rate per period.

int count (Input)
Number of cash flows in values.

float values[] (Input)
Array of size count of equally-spaced cash flows.

Chapter 9: Special Functions nominal_rate � 571

Return Value
The net present value of an investment. If no result can be computed, NaN is returned.

Description
Function imsl_f_net_present_value computes the net present value of an
investment. Net present value is the current value of a stream of payments, after
discounting the payments using some interest rate.

It is found by solving the following:

� �1 1

count
i

i
i

value
rate� �

�

where valuei = the ith cash flow.

Example
In this example, imsl_f_net_present_value computes the net present value of a
$10 million prize paid in 20 years ($50,000 per year) with an annual interest rate of 6%.

#include <stdio.h>
#include "imsl.h"

void main()
{
 float rate = 0.06;
 int count = 20;
 float value[20];
 float net_present_value;
 int i;

 for (i = 0; i < count; i++)
 value[i] = 500000.;

 net_present_value = imsl_f_net_present_value (rate, count, value);

 printf ("The net present value of the $10 million prize is $%.2f.\n",
 net_present_value);
}

Output
The net present value of the $10 million prize is $5734963.00.

nominal_rate
Evaluates the nominal annual interest rate.

Synopsis
#include <imsl.h>

572 � nominal_rate IMSL C/Math/Library

float imsl_f_nominal_rate (float effective_rate, int n_periods)

The type double function is imsl_d_nominal_rate.

Required Arguments

float effective_rate (Input)
The amount of interest that would be charged if the interest was paid in a
single lump sum at the end of the loan.

int n_periods (Input)
Number of compounding periods per year.

Return Value
The nominal annual interest rate. If no result can be computed, NaN is returned.

Description
Function imsl_f_nominal_rate computes the nominal annual interest rate. The
nominal interest rate is the interest rate as stated on the face of a security.

It is computed using the following:

 � �

1

1 effective _ rate 1 *n_periods
n_periods� �

� �� �
� �� �

Example
In this example, imsl_f_nominal_rate computes the nominal annual interest rate of
the effective interest rate, 6.14%, compounded quarterly.

#include <stdio.h>
#include "imsl.h"

void main()
{
 double effective_rate = .0614;
 int n_periods = 4;
 double nominal_rate;

 nominal_rate = imsl_d_nominal_rate (effective_rate, n_periods);
 printf ("The nominal rate of the effective rate, 6.14%%, \n");
 printf ("compounded quarterly is %.2f%%.\n", nominal_rate * 100.);
}

Output
The nominal rate of the effective rate, 6.14%,
compounded quarterly is 6.00%.

Chapter 9: Special Functions number_of_periods � 573

number_of_periods
Evaluates the number of periods for an investment for which periodic and constant
payments are made and the interest rate is constant.

Synopsis
#include <imsl.h>
float imsl_f_number_of_periods (float rate, float payment,

float present_value, float future_value, int when)

The type double function is imsl_d_number_of_periods.

Required Arguments

float rate (Input)
Interest rate on the investment.

float payment (Input)
Payment made on the investment.

float present_value (Input)
The current value of a stream of future payments, after discounting the
payments using some interest rate.

float future_value (Input)
The value, at some time in the future, of a current amount and a stream of
payments.

int when (Input)
Time in each period when the payment is made, either
IMSL_AT_END_OF_PERIOD or IMSL_AT_BEGINNING_OF_PERIOD. For a
more detailed discussion on when see the Usage Notes section of this chapter.

Return Value
The number of periods for an investment.

Description
Function imsl_f_number_of_periods computes the number of periods for an
investment based on periodic, constant payment and a constant interest rate.

It can be found by solving the following:

If rate = 0

� �� � =0present_value payment n_periods future_value� �

If rate � 0

574 � payment IMSL C/Math/Library

� �
n_periods(1) 1n_periods(1) 1+

future_value=0

ratepresent_value rate payment rate when
rate

� �
� � � �� �

�

Example
In this example, imsl_f_number_of_periods computes the number of periods
needed to pay off a $20,000 loan with a monthly payment of $350 and an annual
interest rate of 7.25%. The payment is made at the beginning of each period.

#include <stdio.h>
#include "imsl.h"

void main()
{
 float rate = 0.0725 / 12;
 float payment = -350.;
 float present_value = 20000;
 float future_value = 0.;
 int when = IMSL_AT_BEGINNING_OF_PERIOD;
 float number_of_periods;

 number_of_periods = imsl_f_number_of_periods (rate, payment,
 present_value, future_value, when);

 printf ("Number of payment periods = %f.\n", number_of_periods);
}

Output
Number of payment periods = 70.

payment
Evaluates the periodic payment for an investment.

Synopsis
#include <imsl.h>
float imsl_f_payment (float rate, int n_periods, float present_value,

float future_value, int when)

The type double function is imsl_d_payment.

Required Arguments

float rate (Input)
Interest rate.

int n_periods (Input)
Total number of periods.

Chapter 9: Special Functions payment � 575

float present_value (Input)
The current value of a stream of future payments, after discounting the
payments using some interest rate.

float future_value (Input)
The value, at some time in the future, of a current amount and a stream of
payments.

int when (Input)
Time in each period when the payment is made, either
IMSL_AT_END_OF_PERIOD or IMSL_AT_BEGINNING_OF_PERIOD. For a
more detailed discussion on when see the Usage Notes section of this chapter.

Return Value
The periodic payment for an investment. If no result can be computed, NaN is
returned.

Description
Function imsl_f_payment computes the periodic payment for an investment.

It can be found by solving the following:

If rate = 0

� �� � =0present_value payment n_periods future_value� �

If rate � 0

� �
n_periods(1) 1n_periods(1) 1+

future_value=0

ratepresent_value rate payment rate when
rate

� �
� � � �� �

�

Example
In this example, imsl_f_payment computes the periodic payment of a 25-year
$100,000 loan with an annual interest rate of 8%. The payment is made at the end of
each period.

#include <stdio.h>
#include "imsl.h"

void main()
{
 float rate = .08;
 int n_periods = 25;
 float present_value = 100000.00;
 float future_value = 0.0;
 int when = IMSL_AT_END_OF_PERIOD;
 float payment;

 payment = imsl_f_payment (rate, n_periods, present_value,

576 � present_value IMSL C/Math/Library

 future_value, when);
 printf ("The payment due each year on the $100,000 ");
 printf ("loan is $%.2f.\n", payment);
}

Output
The payment due each year on the $100,000 loan is $-9367.88.

present_value
Evaluates the net present value of a stream of equal periodic cash flows, which are
subject to a given discount rate..

Synopsis
#include <imsl.h>
float imsl_f_present_value (float rate, int n_periods, float payment,

float future_value, int when)
The type double function is imsl_d_present_value.

Required Arguments
float rate (Input)

Interest rate.

int n_periods (Input)
Total number of periods.

float payment (Input)
Payment made in each period.

float future_value (Input)
The value, at some time in the future, of a current amount and a stream of
payments.

int when (Input)
Time in each period when the payment is made, either
IMSL_AT_END_OF_PERIOD or IMSL_AT_BEGINNING_OF_PERIOD. For a
more detailed discussion on when see the Usage Notes section of this chapter.

Return Value
The present value of an investment. If no result can be computed, NaN is returned.

Description
Function imsl_f_present_value computes the present value of an investment.

It can be found by solving the following:

If rate = 0

Chapter 9: Special Functions present_value_schedule � 577

� �� � =0present_value payment n_periods future_value� �

If rate � 0

� �
n_periods(1) 1n_periods(1) 1+

future_value=0

ratepresent_value rate payment rate when
rate

� �
� � � �� �

�

Example
In this example, imsl_f_present_value computes the present value of 20 payments
of $500,000 per payment ($10 million) with an annual interest rate of 6%. The payment
is made at the end of each period.

#include <stdio.h>
#include "imsl.h"

void main()
{
 float rate = 0.06;
 float payment = 500000.;
 float future_value = 0.;
 int n_periods = 20;
 int when = IMSL_AT_END_OF_PERIOD;
 float present_value;

 present_value = imsl_f_present_value (rate, n_periods, payment,
 future_value, when);

 printf ("The present value of the $10 million prize is ");
 printf ("$%.2f.\n", present_value);
}

Output
The present value of the $10 million prize is $-5734961.00.

present_value_schedule
Evaluates the present value for a schedule of cash flows. It is not necessary that the
cash flows be periodic.

Synopsis
#include <imsl.h>
float imsl_f_present_value_schedule (float rate, int count,

float values[], struct tm dates[])
The type double function is imsl_d_present_value_schedule.

578 � present_value_schedule IMSL C/Math/Library

Required Arguments

float rate (Input)
Interest rate.

int count (Input)
Number of cash flows in values or number of dates in dates.

float values[] (Input)
Array of size count of cash flows.

struct tm dates[] (Input)
Array of size count of dates cash flows are made. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

Return Value
The present value for a schedule of cash flows that is not necessarily periodic. If no
result can be computed, NaN is returned.

Description
Function imsl_f_present_value_schedule computes the present value for a
schedule of cash flows that is not necessarily periodic.

It can be found by solving the following:

� �
� �1 / 365

1 1 i

count
i

d d
i

value

rate �

� �

�

In the equation above, di represents the ith payment date, d1 represents the 1st payment
date, and valueI represents the ith cash flow.

Example
In this example, imsl_f_present_value_schedule computes the present value of
3 payments, $1,000, $2,000 and $1,000, with an interest rate of 5% made on January 3,
1997, January 3, 1999 and January 3, 2000.

#include <stdio.h>
#include "imsl.h"

void main()
{
 float rate = 0.05;
 float values[3] = { 1000.0, 2000.0, 1000.0 };
 struct tm dates[3];
 float xnpv;

 dates[0].tm_year = 97; dates[0].tm_mon = 0; dates[0].tm_mday = 3;
 dates[1].tm_year = 99; dates[1].tm_mon = 0; dates[1].tm_mday = 3;
 dates[2].tm_year = 100; dates[2].tm_mon = 0; dates[2].tm_mday = 3;

Chapter 9: Special Functions principal_payment � 579

 xnpv = imsl_f_present_value_schedule (rate, 3, values, dates);
 printf ("The present value of the cash flows is $%.2f.\n", xnpv);
}

Output
The present value of the cash flows is $3677.90.

principal_payment
Evaluates the payment on the principal for a specified period.

Synopsis
#include <imsl.h>
float imsl_f_principal_payment (float rate, int period, int n_periods,

float present_value, float future_value, int when)

The type double function is imsl_d_principal_payment.

Required Arguments

float rate (Input)
Interest rate.

int period (Input)
Payment period.

int n_periods (Input)
Total number of periods.

float present_value (Input)
The current value of a stream of future payments, after discounting the
payments using some interest rate.

float future_value (Input)
The value, at some time in the future, of a current amount and a stream of
payments.

int when (Input)
Time in each period when the payment is made, either
IMSL_AT_END_OF_PERIOD or IMSL_AT_BEGINNING_OF_PERIOD. For a
more detailed discussion on when see the Usage Notes section of this chapter.

Return Value
The payment on the principal for a given period. If no result can be computed, NaN is
returned.

Description
Function imsl_f_principal_payment computes the payment on the principal for a
given period.

580 � accr_interest_maturity IMSL C/Math/Library

It is computed using the following:

i ipayment interest�

where paymenti is computed from imsl_f_payment for the ith period,
interesti is calculated from imsl_f_interest_payment for the ith period.

Example
In this example, imsl_f_principal_payment computes the principal paid for the
first year on a 30-year $100,000 loan with an annual interest rate of 8%. The payment
is made at the end of each year.

#include <stdio.h>
#include "imsl.h"

void main()
{
 float rate = .08;
 int period = 1;
 int n_periods = 30;
 float present_value = 100000.00;
 float future_value = 0.0;
 int when = IMSL_AT_END_OF_PERIOD;
 float principal;

 principal = imsl_f_principal_payment (rate, period, n_periods,
 present_value, future_value, when);
 printf ("The payment on the principal for the first year of \n");
 printf ("the $100,000 loan is $%.2f.\n", principal);
}

Output
The payment on the principal for the first year of
the $100,000 loan is $-882.74.

accr_interest_maturity
Evaluates the interest which has accrued on a security that pays interest at maturity.

Synopsis
#include <imsl.h>
float imsl_f_accr_interest_maturity (struct tm issue, struct tm maturity,

float coupon_rate, float par_value, int basis)

The type double function is imsl_d_accr_interest_maturity.

Chapter 9: Special Functions accr_interest_maturity � 581

Required Arguments

struct tm issue (Input)
The date on which interest starts accruing. For a more detailed discussion on
dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

float coupon_rate (Input)
Annual interest rate set forth on the face of the security; the coupon rate.

float par_value (Input)
Nominal or face value of the security used to calculate interest payments.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed discussion see the Usage Notes section of this chapter.

Return Value
The interest which has accrued on a security that pays interest at maturity. If no result
can be computed, NaN is returned.

Description
Function imsl_f_accr_interest_maturity computes the accrued interest for a
security that pays interest at maturity:

� �� �_ Apar value rate
D

� �
� � �

� �

In the above equation, A represents the number of days starting at issue date to
maturity date and D represents the annual basis.

Example
In this example, imsl_f_accr_interest_maturity computes the accrued interest
for a security that pays interest at maturity using the US (NASD) 30/360 day count
method. The security has a par value of $1,000, the issue date of October 1, 2000, the
maturity date of November 3, 2000, and a coupon rate of 6%.

#include <stdio.h>
#include "imsl.h"

void main()
{

582 � accr_interest_periodic IMSL C/Math/Library

 struct tm issue, maturity;
 float rate = .06;
 float par = 1000.;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float accrintm;

 issue.tm_year = 100;
 issue.tm_mon = 9;
 issue.tm_mday = 1;

 maturity.tm_year = 100;
 maturity.tm_mon = 10;
 maturity.tm_mday = 3;

 accrintm = imsl_f_accr_interest_maturity (issue, maturity,
 rate, par, basis);

 printf ("The accrued interest is $%.2f.\n", accrintm);
}

Output
The accrued interest is $5.33.

accr_interest_periodic
Evaluates the interest which has accrued on a security that pays interest periodically.

Synopsis
#include <imsl.h>
float imsl_f_accr_interest_periodic (struct tm issue,

struct tm first_coupon, struct tm settlement, float coupon_rate,
float par_value, int frequency, int basis)

The type double function is imsl_d_accr_interest_periodic.

Required Arguments

struct tm issue (Input)
The date on which interest starts accruing. For a more detailed discussion on
dates see the Usage Notes section of this chapter.

struct tm first_coupon (Input)
First date on which an interest payment is due on the security (e.g. the coupon
date). For a more detailed discussion on dates see the Usage Notes section of
this chapter.

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

float coupon_rate (Input)
Annual interest rate set forth on the face of the security; the coupon rate.

Chapter 9: Special Functions accr_interest_periodic � 583

float par_value (Input)
Nominal or face value of the security used to calculate interest payments.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL,
IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on
frequency see the Usage Notes section of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed discussion see the Usage Notes section of this chapter.

Return Value
The accrued interest for a security that pays periodic interest. If no result can be
computed, NaN is returned.

Description
Function imsl_f_accr_interest_periodic computes the accrued interest for a
security that pays periodic interest.

In the equation below, Ai represents the number days which have accrued for the ith
quasi-coupon period within the odd period. (The quasi-coupon periods are periods
obtained by extending the series of equal payment periods to before or after the actual
payment periods.) NC represents the number of quasi-coupon periods within the odd
period, rounded to the next highest integer. (The odd period is a period between
payments that differs from the usual equally spaced periods at which payments are
made.) NLi represents the length of the normal ith quasi-coupon period within the odd
period. NLI is expressed in days.

Function imsl_f_accr_interest_periodic can be found by solving the following:

� �
1

_
NC

i

i i

Aratepar value
frequency NL

�

� �� �� �
� �� �� �� �� �	
� �	

�

Example
In this example, imsl_f_accr_interest_periodic computes the accrued interest
for a security that pays periodic interest using the US (NASD) 30/360 day count
method. The security has a par value of $1,000, the issue date of October 1, 1999, the
settlement date of November 3, 1999, the first coupon date of March 31, 2000, and a
coupon rate of 6%.

#include <stdio.h>
#include "imsl.h"

584 � bond_equivalent_yield IMSL C/Math/Library

void main()
{
 struct tm issue, first_coupon, settlement;
 float rate = .06;
 float par = 1000.;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float accrint;

 issue.tm_year = 99;
 issue.tm_mon = 9;
 issue.tm_mday = 1;

 first_coupon.tm_year = 100;
 first_coupon.tm_mon = 2;
 first_coupon.tm_mday = 31;

 settlement.tm_year = 99;
 settlement.tm_mon = 10;
 settlement.tm_mday = 3;

 accrint = imsl_f_accr_interest_periodic (issue, first_coupon,
 settlement, rate, par, frequency, basis);

 printf ("The accrued interest is $%.2f.\n", accrint);
}

Output
The accrued interest is $5.33.

bond_equivalent_yield
Evaluates the bond-equivalent yield of a Treasury bill.

Synopsis
#include <imsl.h>
float imsl_f_bond_equivalent_yield (struct tm settlement,

struct tm maturity, float discount_rate)

The type double function is imsl_d_bond_equivalent_yield.

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

Chapter 9: Special Functions bond_equivalent_yield � 585

float discount_rate (Input)
The interest rate implied when a security is sold for less than its value at
maturity in lieu of interest payments.

Return Value
The bond-equivalent yield of a Treasury bill. If no result can be computed, NaN is
returned.

Description
Function imsl_f_bond_equivalent_yield computes the bond-equivalent yield for
a Treasury bill.

It is computed using the following:

182if DSM ��

365 _
360 _

discount rate
discount rate DSM
�

� �

otherwise,

2 _2 1
365 365 365 _ 360

0.5
365

DSM DSM DSM discount rate DSM
discount rate DSM

DSM

�� � � �
� � � � � �� � � � � �� 	 � 	

�

In the above equation, DSM represents the number of days starting at settlement date to
maturity date.

Example
In this example, imsl_f_bond_equivalent_yield computes the bond-equivalent
yield for a Treasury bill with the settlement date of July 1, 1999, the maturity date of
July 1, 2000, and discount rate of 5% at the issue date.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity;
 float discount = .05;
 float yield;

 settlement.tm_year = 99;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 100;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

586 � convexity IMSL C/Math/Library

 yield = imsl_f_bond_equivalent_yield (settlement, maturity, discount);
 printf ("The bond-equivalent yield for the T-bill is %.2f%%.\n",
 yield * 100.);
}

Output
The bond-equivalent yield for the T-bill is 5.29%.

convexity
Evaluates the convexity for a security.

Synopsis
#include <imsl.h>
float imsl_f_convexity (struct tm settlement, struct tm maturity,

float coupon_rate, float yield, int frequency, int basis)

The type double function is imsl_d_convexity.

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

float coupon_rate (Input)
Annual interest rate set forth on the face of the security; the coupon rate.

float yield (Input)
Annual yield of the security.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL,
IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on
frequency see the Usage Notes section of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360. .
For a more detailed discussion see the Usage Notes section of this chapter.

Chapter 9: Special Functions convexity � 587

Return Value
The convexity for a security. If no result can be computed, NaN is returned.

Description
Function imsl_f_convexity computes the convexity for a security. Convexity is the
sensitivity of the duration of a security to changes in yield.

It is computed using the following:

� �
� � � �2

1

1

1 1 1
n

t n

t

n
t n

t

ratet t q n n q
frequencyq frequency

rate q q
frequency

� �

�

� �

�

� �� �
� �� �� 	

 � �
 �

� �� �
�� 	� 	

� �� �

�

�

�

where n is calculated from imsl_coupon_number, and 1 yieldq
frequency

� � .

Example
In this example, imsl_f_convexity computes the convexity for a security with the
settlement date of July 1, 1990, and maturity date of July 1, 2000, using the Actual/365
day count method.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity;
 float coupon = .075;
 float yield = .09;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float convexity;

 settlement.tm_year = 90;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 100;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 convexity = imsl_f_convexity (settlement, maturity,
 coupon, yield, frequency, basis);

 printf ("The convexity of the bond with ");
 printf ("semiannual interest payments is %.4f.\n", convexity);
}

588 � coupon_days IMSL C/Math/Library

Output
The convexity of the bond with semiannual interest payments is 59.4050.

coupon_days
Evaluates the number of days in the coupon period containing the settlement date.

Synopsis
#include <imsl.h>
float imsl_f_coupon_days (struct tm settlement, struct tm maturity,

int frequency, int basis)

The type double function is imsl_d_coupon_days.

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL,
IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on
frequency see the Usage Notes section of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed discussion on basis see the Usage Notes section of this
chapter.

Return Value
The number of days in the coupon period which contains the settlement date. If no
result can be computed, NaN is returned.

Description
Function imsl_f_coupon_days computes the number of days in the coupon period
that contains the settlement date. For a good discussion on day count basis, see SIA
Standard Securities Calculation Methods 1993, vol. 1, pages 17-35.

Chapter 9: Special Functions coupon_number � 589

Example
In this example, imsl_f_coupon_days computes the number of days in the coupon
period of a bond with the settlement date of November 11, 1996, and the maturity date
of March 1, 2009, using the Actual/365 day count method.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float coupdays;

 settlement.tm_year = 96;
 settlement.tm_mon = 10;
 settlement.tm_mday = 11;

 maturity.tm_year = 109;
 maturity.tm_mon = 2;
 maturity.tm_mday = 1;

 coupdays = imsl_f_coupon_days (settlement, maturity, frequency, basis);
 printf ("The number of days in the coupon period that\n");
 printf ("contains the settlement date is %.2f.\n", coupdays);
}

Output
The number of days in the coupon period that
contains the settlement date is 182.50.

coupon_number
Evaluates the number of coupons payable between the settlement date and the maturity
date.

Synopsis
#include <imsl.h>
int imsl_coupon_number (struct tm settlement, struct tm maturity,

int frequency, int basis)

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are

590 � coupon_number IMSL C/Math/Library

paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL,
IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on
frequency see the Usage Notes section of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed discussion on see the Usage Notes section of this chapter.

Return Value
The number of coupons payable between the settlement date and the maturity date.

Description
Function imsl_coupon_number computes the number of coupons payable between
the settlement date and the maturity date. For a good discussion on day count basis, see
SIA Standard Securities Calculation Methods 1993, vol. 1, pages 17-35.

Example
In this example, imsl_coupon_number computes the number of coupons payable with
the settlement date of November 11, 1996, and the maturity date of March 1, 2009,
using the Actual/365 day count method.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 int coupnum;

 settlement.tm_year = 96;
 settlement.tm_mon = 10;
 settlement.tm_mday = 11;

 maturity.tm_year = 109;
 maturity.tm_mon = 2;
 maturity.tm_mday = 1;

 coupnum = imsl_coupon_number (settlement, maturity, frequency, basis);
 printf ("The number of coupons payable between the\n");
 printf ("settlement date and the maturity date is %d.\n", coupnum);
}

Chapter 9: Special Functions days_before_settlement � 591

Output
The number of coupons payable between the
settlement date and the maturity date is 25.

days_before_settlement
Evaluates the number of days starting with the beginning of the coupon period and
ending with the settlement date.

Synopsis
#include <imsl.h>
int imsl_days_before_settlement (struct tm settlement,

struct tm maturity, int frequency, int basis)

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on see the Usage Notes section of this
chapter.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL,
IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on
frequency see the Usage Notes section of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed discussion see the Usage Notes section of this chapter.

Return Value
The number of days in the period starting with the beginning of the coupon period and
ending with the settlement date.

Description
Function imsl_days_before_settlement computes the number of days from the
beginning of the coupon period to the settlement date. For a good discussion on day
count basis, see SIA Standard Securities Calculation Methods 1993, vol. 1, pages 17-
35.

592 � days_to_next_coupon IMSL C/Math/Library

Example
In this example, imsl_days_before_settlement computes the number of days
from the beginning of the coupon period to November 11, 1996, of a bond with the
maturity date of March 1, 2009, using the Actual/365 day count method.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 int days;

 settlement.tm_year = 96;
 settlement.tm_mon = 10;
 settlement.tm_mday = 11;

 maturity.tm_year = 109;
 maturity.tm_mon = 2;
 maturity.tm_mday = 1;

 days = imsl_days_before_settlement (settlement, maturity,
 frequency, basis);

 printf ("The number of days from the beginning of the\n");
 printf ("coupon period to the settlement date is %d.\n", days);
}

Output
The number of days from the beginning of the
coupon period to the settlement date is 71.

days_to_next_coupon
Evaluates the number of days starting with the settlement date and ending with the next
coupon date.

Synopsis
#include <imsl.h>
int imsl_days_to_next_coupon (struct tm settlement, struct tm maturity,

int frequency, int basis)

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

Chapter 9: Special Functions days_to_next_coupon � 593

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL,
IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on
frequency see the Usage Notes section of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E36.
For a more detailed discussion see the Usage Notes section of this chapter.

Return Value
The number of days starting with the settlement date and ending with the next coupon
date.

Description
Function imsl_days_to_next_coupon computes the number of days from the
settlement date to the next coupon date. For a good discussion on day count basis, see
SIA Standard Securities Calculation Methods 1993, vol. 1, pp. 17-35.

Example
In this example, imsl_days_to_next_coupon computes the number of days from
November 11, 1996, to the next coupon date of a bond with the maturity date of March
1, 2009, using the Actual/365 day count method.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 int days;

 settlement.tm_year = 96;
 settlement.tm_mon = 10;
 settlement.tm_mday = 11;

 maturity.tm_year = 109;
 maturity.tm_mon = 2;
 maturity.tm_mday = 1;

 days = imsl_days_to_next_coupon (settlement, maturity, frequency, basis);

594 � depreciation_amordegrc IMSL C/Math/Library

 printf ("The number of days from the settlement date to ");
 printf ("the next coupon date is %d.\n", days);
}

Output
The number of days from the settlement date to the next coupon date is 110.

depreciation_amordegrc
Evaluates the depreciation for each accounting period. During the evaluation of the
function a depreciation coefficient based on the asset life is applied.

Synopsis
#include <imsl.h>
float imsl_f_depreciation_amordegrc (float cost, struct tm issue,

struct tm first_period, float salvage, int period, float rate,
int basis)

The type double function is imsl_d_depreciation_amordegrc.

Required Arguments

float cost (Input)
Initial value of the asset.

struct tm issue (Input)
The date on which interest starts accruing. For a more detailed discussion on
dates see the Usage Notes section of this chapter.

struct tm first_period (Input)
Date of the end of the first period. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

float salvage (Input)
The value of an asset at the end of its depreciation period.

int period (Input)
Depreciation for the accounting period to be computed.

float rate (Input)
Depreciation rate.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E36.
For a more detailed discussion see the Usage Notes section of this chapter.

Chapter 9: Special Functions depreciation_amordegrc � 595

Return Value
The depreciation for each accounting period. If no result can be computed, NaN is
returned.

Description
Function imsl_f_depreciation_amordegrc computes the depreciation for each
accounting period. This function is similar to depreciation_amorlinc. However, in
this function a depreciation coefficient based on the asset life is applied during the
evaluation of the function.

Example
In this example, imsl_f_depreciation_amordegrc computes the depreciation for
the second accounting period using the US (NASD) 30/360 day count method. The
security has the issue date of November 1, 1999, end of first period of November 30,
2000, cost of $2,400, salvage value of $300, depreciation rate of 15%.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm issue, first_period;
 float cost = 2400.;
 float salvage = 300.;
 int period = 2;
 float rate = .15;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float amordegrc;

 issue.tm_year = 99;
 issue.tm_mon = 10;
 issue.tm_mday = 1;

 first_period.tm_year = 100;
 first_period.tm_mon = 10;
 first_period.tm_mday = 30;

 amordegrc = imsl_f_depreciation_amordegrc (cost, issue, first_period,
 salvage, period, rate, basis);

 printf ("The depreciation for the second accounting period ");
 printf ("is $%.2f.\n", amordegrc);
}

Output
The depreciation for the second accounting period is $335.00.

596 � depreciation_amorlinc IMSL C/Math/Library

depreciation_amorlinc
Evaluates the depreciation for each accounting period. This function is similar to
depreciation_amordegrc, except that depreciation_amordegrc has a
depreciation coefficient that is applied during the evaluation that is based on the asset
life.

Synopsis
#include <imsl.h>
float imsl_f_depreciation_amorlinc (float cost, struct tm issue,

struct tm first_period, float salvage, int period, float rate,
int basis)

The type double function is imsl_d_depreciation_amordegrc.

Required Arguments

float cost (Input)
Initial value of the asset.

struct tm issue (Input)
The date on which interest starts accruing. For a more detailed discussion on
dates see the Usage Notes section of this chapter.

struct tm first_period (Input)
Date of the end of the first period. For a more detailed discussion on dates see
the Usage Notes section of this chapter.

float salvage (Input)
The value of an asset at the end of its depreciation period.

int period (Input)
Depreciation for the accounting period to be computed.

float rate (Input)
Depreciation rate.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E36.
For a more detailed discussion see the Usage Notes section of this chapter.

Return Value
The depreciation for each accounting period. If no result can be computed, NaN is
returned.

Chapter 9: Special Functions discount_price � 597

Description
Function imsl_f_depreciation_amorlinc computes the depreciation for each
accounting period.

Example
In this example, imsl_f_depreciation_amorlinc computes the depreciation for
the second accounting period using the US (NASD) 30/360 day count method. The
security has the issue date of November 1, 1999, end of first period of November 30,
2000, cost of $2,400, salvage value of $300, depreciation rate of 15%.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm issue, first_period;
 float cost = 2400.;
 float salvage = 300.;
 int period = 2;
 float rate = .15;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float amorlinc;

 issue.tm_year = 99;
 issue.tm_mon = 10;
 issue.tm_mday = 1;

 first_period.tm_year = 100;
 first_period.tm_mon = 10;
 first_period.tm_mday = 30;

 amorlinc = imsl_f_depreciation_amorlinc (cost, issue, first_period,
 salvage, period, rate, basis);
 printf ("The depreciation for the second accounting period ");
 printf ("is $%.2f.\n", amorlinc);
}

Output
The depreciation for the second accounting period is $360.00.

discount_price
Evaluates the price of a security sold for less than its face value.

Synopsis
#include <imsl.h>
float imsl_f_discount_price (struct tm settlement, struct tm maturity,

float discount_rate, float redemption, int basis)

The type double function is imsl_d_discount_price.

598 � discount_price IMSL C/Math/Library

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on see the Usage Notes section of this
chapter.

float discount_rate (Input)
The interest rate implied when a security is sold for less than its value at
maturity in lieu of interest payments.

float redemption (Input)
Redemption value per $100 face value of the security.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed discussion see the Usage Notes section of this chapter.

Return Value
The price per face value for a discounted security. If no result can be computed, NaN
is returned.

Description
Function imsl_f_discount_price computes the price per $100 face value of a
discounted security.

It is computed using the following:

� �_ DSMredemption discount rate redemption
B

� �� �
� � �� 	

 ��

In the equation above, DSM represents the number of days starting at the settlement
date and ending with the maturity date. B represents the number of days in a year based
on the annual basis.

Example
In this example, imsl_f_discount_price computes the price of the discounted bond
with the settlement date of July 1, 2000, and maturity date of July 1, 2001, at the
discount rate of 5% using the US (NASD) 30/360 day count method.

#include <stdio.h>
#include "imsl.h"

Chapter 9: Special Functions discount_rate � 599

void main()
{
 struct tm settlement, maturity;
 float discount = .05;
 float redemption = 100.;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float price;

 settlement.tm_year = 100;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 101;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 price = imsl_f_discount_price (settlement, maturity, discount,
 redemption, basis);

 printf ("The price of the discounted bond is $%.2f.\n", price);
}

Output
The price of the discounted bond is $95.00.

discount_rate
Evaluates the interest rate implied when a security is sold for less than its value at
maturity in lieu of interest payments.

Synopsis
#include <imsl.h>
float imsl_f_discount_rate (struct tm settlement, struct tm maturity,

float price, float redemption, int basis)

The type double function is imsl_d_discount_rate.

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

float price (Input)
Price per $100 face value of the security.

600 � discount_rate IMSL C/Math/Library

float redemption (Input)
Redemption value per $100 face value of the security.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360,
For a more detailed discussion see the Usage Notes section of this chapter.

Return Value
The discount rate for a security. If no result can be computed, NaN is returned.

Description
Function imsl_f_discount_rate computes the discount rate for a security. The
discount rate is the interest rate implied when a security is sold for less than its value at
maturity in lieu of interest payments.

It is computed using the following:

redemption price B
price DSM

� �� � �
� �� �

 �
 �

In the equation above, B represents the number of days in a year based on the annual
basis and DSM represents the number of days starting with the settlement date and
ending with the maturity date.

Example
In this example, imsl_f_discount_rate computes the discount rate of a security
which is selling at $97.975 with the settlement date of February 15, 2000, and maturity
date of June 10, 2000, using the Actual/365 day count method.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity;
 float price = 97.975;
 float redemption = 100.;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float rate;

 settlement.tm_year = 100;
 settlement.tm_mon = 1;
 settlement.tm_mday = 15;

 maturity.tm_year = 100;
 maturity.tm_mon = 5;
 maturity.tm_mday = 10;

Chapter 9: Special Functions discount_yield � 601

 rate = imsl_f_discount_rate (settlement, maturity, price,
 redemption, basis);

 printf ("The discount rate for the security is %.2f%%.\n", rate * 100.);
}

Output
The discount rate for the security is 6.37%.

discount_yield
Evaluates the annual yield of a discounted security.

Synopsis
#include <imsl.h>
float imsl_f_discount_yield (struct tm settlement, struct tm maturity,

float price, float redemption, int basis)

The type double function is imsl_d_discount_yield.

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on see the Usage Notes section of this
chapter.

float price (Input)
Price per $100 face value of the security.

float redemption (Input)
Redemption value per $100 face value of the security.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed see the Usage Notes section of this chapter.

Return Value
The annual yield for a discounted security. If no result can be computed, NaN is
returned.

602 � discount_yield IMSL C/Math/Library

Description
Function imsl_f_discount_yield computes the annual yield for a discounted
security.

It is computed using the following:

redemption price B
price DSM

� �� � �
� �� �

 �
 �

In the equation above, B represents the number of days in a year based on the annual
basis, and DSM represents the number of days starting with the settlement date and
ending with the maturity date.

Example
In this example, imsl_f_discount_yield computes the annual yield for a
discounted security which is selling at $95.40663 with the settlement date of July 1,
1995, and maturity date of July 1, 2005, using the US (NASD) 30/360 day count
method.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity;
 float price = 95.40663;
 float redemption = 105.;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float yielddisc;

 settlement.tm_year = 95;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 105;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 yielddisc = imsl_f_discount_yield (settlement, maturity,
 price, redemption, basis);
 printf ("The yield on the discounted bond is ");
 printf ("%.2f%%.\n", yielddisc * 100.);
}

Output
The yield on the discounted bond is 1.01%.

Chapter 9: Special Functions duration � 603

duration
Evaluates the annual duration of a security where the security has periodic interest
payments.

Synopsis
#include <imsl.h>
float imsl_f_duration (struct tm settlement, struct tm maturity,

float coupon_rate, float yield, int frequency, int basis)

The type double function is imsl_d_duration.

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

float coupon_rate (Input)
Annual interest rate set forth on the face of the security; the coupon rate.

float yield (Input)
Annual yield of the security.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL,
IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on
frequency see the Usage Notes section of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed discussion see the Usage Notes section of this chapter.

Return Value
The annual duration of a security with periodic interest payments. If no result can be
computed, NaN is returned.

604 � duration IMSL C/Math/Library

Description
Function imsl_f_duration computes the Maccaluey's duration of a security with
periodic interest payments. The Maccaluey's duration is the weighted-average time to
the payments, where the weights are the present value of the payments.

It is computed using the following:

1 11

1 1

100 100 _ 1

1 1

100 100 _

1 1

N

DSC DSCN kkE E

N

DSCN kE

DSC
coupon rate DSCE k

E
yield yieldfreq
freq freq

coupon rate

yield yfreq
freq

� � � �
� � � �� � � ��

� 	 � 	

� � �

� �� �
� �� �

� � �� �� � �� �� � � �� � � �
� 	� �� �� � � �� �� �� � �� � � �� �� �� 	 � 	� 	� 	

�
�

� �
� � �� �

� 	

�

�
1

1

DSCk
E

freq

ield
freq

� �

� �
� �
� �
� �
� �
� �
� �
� �

� �� �
� �� �
� �� �
� �� �
� �� �� �
� �� �� �� �� �� 	� 	� 	

�

In the equation above, DSC represents the number of days starting with the settlement
date and ending with the next coupon date. E represents the number of days within the
coupon period. N represents the number of coupons payable from the settlement date to
the maturity date. freq represents the frequency of the coupon payments annually.

Example
In this example, imsl_f_duration computes the annual duration of a security with
the settlement date of July 1, 1995, and maturity date of July 1, 2005, using the
Actual/365 day count method.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity;
 float coupon = .075;
 float yield = .09;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float duration;

 settlement.tm_year = 95;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 105;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 duration = imsl_f_duration (settlement, maturity, coupon,
 yield, frequency, basis);

Chapter 9: Special Functions interest_rate_security � 605

 printf ("The annual duration of the bond with ");
 printf ("semiannual interest payments is %.4f.\n", duration);
}

Output
The annual duration of the bond with semiannual interest payments is 7.0420.

interest_rate_security
Evaluates the interest rate of a fully invested security.

Synopsis
#include <imsl.h>
float imsl_f_interest_rate_security (struct tm settlement,

struct tm maturity, float investment, float redemption,
int basis)

The type double function is imsl_d_interest_rate_security.

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

float investment (Input)
The total amount one has invested in the security..

float redemption (Input)
Amount to be received at maturity.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed discussion see the Usage Notes section of this chapter.

Return Value
The interest rate for a fully invested security. If no result can be computed, NaN is
returned.

606 � interest_rate_security IMSL C/Math/Library

Description
Function imsl_f_interest_rate_security computes the interest rate for a fully
invested security.

It is computed using the following:

redemption investment B
investment DSM

�� �
� �
� �

� �
� �
� �

In the equation above, B represents the number of days in a year based on the annual
basis, and DSM represents the number of days in the period starting with the settlement
date and ending with the maturity date.

Example
In this example, imsl_f_interest_rate_security computes the interest rate of a
$7,000 investment with the settlement date of July 1, 1995, and maturity date of July 1,
2005, using the Actual/365 day count method. The total amount received at the end of
the investment is $10,000.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity;
 float investment = 7000.;
 float redemption = 10000.;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float intrate;

 settlement.tm_year = 95;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 105;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 intrate = imsl_f_interest_rate_security (settlement, maturity,
 investment, redemption, basis);

 printf ("The interest rate of the bond is %.2f%%.\n", intrate * 100.);
}

Output
The interest rate of the bond is 4.28%.

Chapter 9: Special Functions modified_duration � 607

modified_duration
Evaluates the modified Macauley duration of a security.

Synopsis
#include <imsl.h>
float imsl_f_macauley_duration (struct tm settlement, struct tm maturity,

float coupon_rate, float yield, int frequency, int basis)

The type double function is imsl_d_macauley_duration.

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

float coupon_rate (Input)
Annual interest rate set forth on the face of the security; the coupon rate.

float yield (Input)
Annual yield of the security.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL,
IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on
frequency see the Usage Notes section of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed discussion on basis see the Usage Notes section of this
chapter.

Return Value
The modified Macauley duration of a security is returned. The security has an assumed
par value of $100. If no result can be computed, NaN is returned.

Description
Function imsl_f_macauley_duration computes the modified Macauley duration
for a security with an assumed par value of $100.

608 � next_coupon_date IMSL C/Math/Library

It is computed using the following:

1

duration
yield

frequency
� �

� � �
� 	

where duration is calculated from imsl_f_duration.

Example
In this example, imsl_f_macauley_duration computes the modified Macauley
duration of a security with the settlement date of July 1, 1995, and maturity date of July
1, 2005, using the Actual/365 day count method.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity;
 float coupon = .075;
 float yield = .09;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float mduration;

 settlement.tm_year = 95;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 105;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 mduration = imsl_f_macauley_duration (settlement, maturity,
 coupon, yield, frequency, basis);

 printf ("The modified Macauley duration of the bond with\n");
 printf ("semiannual interest payments is %.4f.\n", mduration);
}

Output
The modified Macauley duration of the bond with
semiannual interest payments is 6.7387.

next_coupon_date
Evaluates the first coupon date which follows the settlement date.

Synopsis
#include <imsl.h>

Chapter 9: Special Functions next_coupon_date � 609

struct tm imsl_next_coupon_date (struct tm settlement,
struct tm maturity, int frequency, int basis)

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL,
IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on
frequency see the Usage Notes section of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed discussion on basis see the Usage Notes section of this
chapter.

Return Value
The first coupon date which follows the settlement date.

Description
Function imsl_next_coupon_date computes the next coupon date after the
settlement date. For a good discussion on day count basis, see SIA Standard Securities
Calculation Methods 1993, vol 1, pages 17-35.

Example
In this example, imsl_next_coupon_date computes the next coupon date of a bond
with the settlement date of November 11, 1996, and the maturity date of March 1,
2009, using the Actual/365 day count method.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity, date;
 char* month[] = { "January", "February", "March", "April", "May",
 "June", "July", "August", "September",
 "October", "November", "December" };

610 � previous_coupon_date IMSL C/Math/Library

 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;

 settlement.tm_year = 96;
 settlement.tm_mon = 10;
 settlement.tm_mday = 11;

 maturity.tm_year = 109;
 maturity.tm_mon = 2;
 maturity.tm_mday = 1;

 date = imsl_next_coupon_date (settlement, maturity, frequency, basis);
 printf ("The next coupon date after the settlement date ");
 printf ("is %s %d, %d.\n", month[date.tm_mon], date.tm_mday,
 date.tm_year+1900);
}

Output
The next coupon date after the settlement date is March 1, 1997.

previous_coupon_date
Evaluates the coupon date which immediately precedes the settlement date.

Synopsis
#include <imsl.h>
struct tm imsl_previous_coupon_date (struct tm settlement,

struct tm maturity, int frequency, int basis)

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL,
IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on
frequency see the Usage Notes section of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.

Chapter 9: Special Functions previous_coupon_date � 611

For a more detailed discussion on basis see the Usage Notes section of this
chapter.

Return Value
The coupon date which immediately precedes the settlement date.

Description
Function imsl_previous_coupon_date computes the coupon date which
immediately precedes the settlement date. For a good discussion on day count basis, see
SIA Standard Securities Calculation Methods 1993, vol 1, pages 17-35.

Example
In this example, imsl_previous_coupon_date computes the previous coupon date
of a bond with the settlement date of November 11, 1986, and the maturity date of
March 1, 1999, using the Actual/365 day count method.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity, date;
 char* month[] = { "January", "February", "March", "April", "May",
 "June", "July", "August", "September",
 "October", "November", "December" };
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;

 settlement.tm_year = 96;
 settlement.tm_mon = 10;
 settlement.tm_mday = 11;

 maturity.tm_year = 109;
 maturity.tm_mon = 2;
 maturity.tm_mday = 1;

 date = imsl_previous_coupon_date (settlement, maturity, frequency, basis);
 printf ("The previous coupon date before the settlement ");
 printf ("date is %s %d, %d.\n", month[date.tm_mon], date.tm_mday,
 date.tm_year+1900);
}

Output
The previous coupon date before the settlement date is September 1, 1996.

612 � price IMSL C/Math/Library

price
Evaluates the price, per $100 face value, of a security that pays periodic interest.

Synopsis
#include <imsl.h>
float imsl_f_price (struct tm settlement, struct tm maturity, float rate,

float yield, float redemption, int frequency, int basis)

The type double function is imsl_d_price.

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

float rate (Input)
Annual interest rate set forth on the face of the security; the coupon rate.

float yield (Input)
Annual yield of the security.

float redemption (Input)
Redemption value per $100 face value of the security.

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL,
IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on
frequency see the Usage Notes section of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed discussion on basis see the Usage Notes section of this
chapter.

Return Value
The price per $100 face value of a security that pays periodic interest. If no result can
be computed, NaN is returned.

Chapter 9: Special Functions price � 613

Description
Function imsl_f_price computes the price per $100 face value of a security that
pays periodic interest.

It is computed using the following:

1 11

100
100

1 1

N

DSC DSCN kkE E

rate
redemption rate Afrequency

frequency E
yield yield

frequency frequency

� � � �
� � � �� � � ��

� 	 � 	

� � � �
� � 	
�� � 	
 � �

� � �� � 	
 � �
� �
 �	
� � � �� � 	
� �� � � �� � 	

 �
 �
 � � �

� �

In the above equation, DSC represents the number of days in the period starting with
the settlement date and ending with the next coupon date. E represents the number of
days within the coupon period. N represents the number of coupons payable in the
timeframe from the settlement date to the redemption date. A represents the number of
days in the timeframe starting with the beginning of coupon period and ending with the
settlement date.

Example
In this example, imsl_f_price computes the price of a bond that pays coupon every
six months with the settlement of July 1, 1995, the maturity date of July 1, 2005, a
annual rate of 6%, annual yield of 7% and redemption value of $105 using the US
(NASD) 30/360 day count method.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity;
 float rate = .06;
 float yield = .07;
 float redemption = 105.;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float price;

 settlement.tm_year = 95;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 105;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 price = imsl_f_price (settlement, maturity, rate, yield,
 redemption, frequency, basis);
 printf ("The price of the bond is $%.2f.\n", price);
}

614 � price_maturity IMSL C/Math/Library

Output
The price of the bond is $95.41.

price_maturity
Evaluates the price, per $100 face value, of a security that pays interest at maturity.

Synopsis
#include <imsl.h>
float imsl_f_price_maturity (struct tm settlement, struct tm maturity,

struct tm issue, float rate, float yield, int basis)

The type double function is imsl_d_price_maturity.

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on see the Usage Notes section of this
chapter.

struct tm issue (Input)
The date on which interest starts accruing. For a more detailed discussion on
dates see the Usage Notes section of this chapter.

float rate (Input)
Annual interest rate set forth on the face of the security; the coupon rate.

float yield (Input)
Annual yield of the security.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed discussion on basis see the Usage Notes section of this
chapter.

Return Value
The price per $100 face value of a security that pays interest at maturity. If no result
can be computed, NaN is returned.

Chapter 9: Special Functions price_maturity � 615

Description
Function imsl_f_price_maturity computes the price per $100 face value of a
security that pays interest at maturity.

It is computed using the following:

100 100
100

1

DIM rate
AB rate

DSM Byield
B

� �� �
� � �� �	
 � �� �	

 � �� �
� �	
 � �� �� �	
� �� �

In the equation above, B represents the number of days in a year based on the annual
basis. DSM represents the number of days in the period starting with the settlement date
and ending with the maturity date. DIM represents the number of days in the period
starting with the issue date and ending with the maturity date. A represents the number
of days in the period starting with the issue date and ending with the settlement date.

Example
In this example, imsl_f_price_maturity computes the price at maturity of a
security with the settlement date of August 1, 2000, maturity date of July 1, 2001 and
issue date of July 1, 2000, using the US (NASD) 30/360 day count method. The
security has 5% annual yield and 5% interest rate at the date of issue.

#include <stdio.h>
#include "imsl.h"

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity, issue;
 float rate = .05;
 float yield = .05;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float pricemat;

 settlement.tm_year = 100;
 settlement.tm_mon = 7;
 settlement.tm_mday = 1;

 maturity.tm_year = 101;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 issue.tm_year = 100;
 issue.tm_mon = 6;
 issue.tm_mday = 1;

 pricemat = imsl_d_price_maturity (settlement, maturity, issue,
 rate, yield, basis);

616 � received_maturity IMSL C/Math/Library

 printf ("The price of the bond is $%.2f.\n", pricemat);
}

Output
The price of the bond is $99.98.

received_maturity
Evaluates the amount one receives when a fully invested security reaches the maturity
date.

Synopsis
#include <imsl.h>
float imsl_f_received_maturity (struct tm settlement, struct tm maturity,

float investment, float discount_rate, int basis)

The type double function is imsl_d_received_maturity.

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.struct tm
maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

float investment (Input)
The total amount one has invested in the security.

float discount_rate (Input)
The interest rate implied when a security is sold for less than its value at
maturity in lieu of interest payments.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed discussion on basis see the Usage Notes section of this
chapter.

Return Value
The amount one receives when a fully invested security reaches its maturity date. If no
result can be computed, NaN is returned.

Chapter 9: Special Functions received_maturity � 617

Description
Function imsl_f_received_maturity computes the amount received at maturity for
a fully invested security.

It is computed using the following:

1 _

investment
DIMdiscount rate

B
� �

� �� �
� �

In the equation above, B represents the number of days in a year based on the annual
basis, and DIM represents the number of days in the period starting with the issue date
and ending with the maturity date.

Example
In this example, imsl_f_received_maturity computes the amount received of a
$7,000 investment with the settlement date of July 1, 1995, maturity date of July 1,
2005 and discount rate of 6%, using the Actual/365 day count method.

include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity;
 float investment = 7000.;
 float discount = .06;
 int basis = IMSL_DAY_CNT_BASIS_ACTUAL365;
 float received;

 settlement.tm_year = 95;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 105;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 received = imsl_f_received_maturity (settlement, maturity,
 investment, discount, basis);
 printf ("The amount received at maturity for the ");
 printf ("bond is $%.2f.\n", received);
}

Output
The amount received at maturity for the bond is $17521.60.

618 � treasury_bill_price IMSL C/Math/Library

treasury_bill_price
Evaluates the price per $100 face value of a Treasury bill.

Synopsis
#include <imsl.h>
float imsl_f_treasury_bill_price (struct tm settlement,

struct tm maturity, float discount_rate)

The type double function is imsl_d_treasury_bill_price.

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

float discount_rate (Input)
The interest rate implied when a security is sold for less than its value at
maturity in lieu of interest payments.

Return Value
The price per $100 face value of a Treasury bill. If no result can be computed, NaN is
returned.

Description
Function imsl_f_treasury_bill_price computes the price per $100 face value
for a Treasury bill.

It is computed using the following:

_100 1
360

discount rate DSM�� �
�� �

� �

In the equation above, DSM represents the number of days in the period starting with
the settlement date and ending with the maturity date (any maturity date that is more
than one calendar year after the settlement date is excluded).

Example
In this example, imsl_f_treasury_bill_price computes the price for a Treasury
bill with the settlement date of July 1, 2000, the maturity date of July 1, 2001, and a
discount rate of 5% at the issue date.

Chapter 9: Special Functions treasury_bill_yield � 619

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity;
 float discount = .05;
 float price;

 settlement.tm_year = 100;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 101;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 price = imsl_f_treasury_bill_price (settlement, maturity, discount);
 printf ("The price per $100 face value for the T-bill ");
 printf ("is $%.2f.\n", price);
}

Output
The price per $100 face value for the T-bill is $94.93.

treasury_bill_yield
Evaluates the yield of a Treasury bill.

Synopsis
#include <imsl.h>
float imsl_f_treasury_bill_yield (struct tm settlement,

struct tm maturity, float price)

The type double function is imsl_d_treasury_bill_yield.

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

float price (Input)
Price per $100 face value of the Treasury bill.

620 � treasury_bill_yield IMSL C/Math/Library

Return Value
The yield for a Treasury bill. If no result can be computed, NaN is returned.

Description
Function imsl_f_treasury_bill_yield computes the yield for a Treasury bill.

It is computed using the following:

100 360price
price DSM

� �� � �
� �� �

� �� �

In the equation above, DSM represents the number of days in the period starting with
the settlement date and ending with the maturity date (any maturity date that is more
than one calendar year after the settlement date is excluded).

Example
In this example, imsl_f_treasury_bill_yield computes the yield for a Treasury
bill with the settlement date of July 1, 2000, the maturity date of July 1, 2001, and
priced at $94.93.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity;
 float price = 94.93;
 float yield;

 settlement.tm_year = 100;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 101;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 yield = imsl_f_treasury_bill_yield (settlement, maturity, price);
 printf ("The yield for the T-bill is %.2f%%.\n", yield * 100.);
}

Output
The yield for the T-bill is 5.27%.

Chapter 9: Special Functions year_fraction � 621

year_fraction
Evaluates the fraction of a year represented by the number of whole days between two
dates.

Synopsis
#include <imsl.h>
float imsl_f_year_fraction (struct tm start, struct tm end, int basis)

The type double function is imsl_d_year_fraction.

Required Arguments

struct tm start (Input)
Initial date. For a more detailed discussion on dates see the Usage Notes
section of this chapter.

struct tm end (Input)
Ending date. For a more detailed discussion on dates see the Usage Notes
section of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed discussion on basis see the Usage Notes section of this
chapter.

Return Value
The fraction of a year represented by the number of whole days between two dates. If
no result can be computed, NaN is returned.

Description
Function imsl_f_year_fraction computes the fraction of the year.

It is computed using the following:

A/D

where A = the number of days from start to end, D = annual basis.

Example
In this example, imsl_f_year_fraction computes the year fraction between August
1, 2000, and July 1, 2001, using the NASD day count method.

#include <stdio.h>

622 � yield_maturity IMSL C/Math/Library

#include "imsl.h"

void main()
{
 struct tm start, end;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float yearfrac;

 start.tm_year = 100;
 start.tm_mon = 7;
 start.tm_mday = 1;

 end.tm_year = 101;
 end.tm_mon = 6;
 end.tm_mday = 1;

 yearfrac = imsl_f_year_fraction (start, end, basis);
 printf ("The year fraction of the 30/360 period is %f.\n", yearfrac);
}

Output
The year fraction of the 30/360 period is 0.916667.

yield_maturity
Evaluates the annual yield of a security that pays interest at maturity.

Synopsis
#include <imsl.h>
float imsl_f_yield_maturity (struct tm settlement, struct tm maturity,

struct tm issue, float rate, float price, int basis)

The type double function is imsl_d_yield_maturity.

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

struct tm issue (Input)
The date on which interest starts accruing. For a more detailed discussion on
dates see the Usage Notes section of this chapter.

float rate (Input)
Interest rate at date of issue of the security.

Chapter 9: Special Functions yield_maturity � 623

float price (Input)
Price per $100 face value of the security.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed discussion on basis see the Usage Notes section of this
chapter.

Return Value
The annual yield of a security that pays interest at maturity. If no result can be
computed, NaN is returned.

Description
Function imsl_f_yield_maturity computes the annual yield of a security that pays
interest at maturity.

It is computed using the following:

1
100

100

DIM price Arate rate
B B B

price A DSMrate
B

� �� � � �� � � �
� � 	 � �

� � � �
 �
 �

 � �� � � �� � � � �� � � �
� � � �

� �� �

� �� �

In the equation above, DIM represents the number of days in the period starting with
the issue date and ending with the maturity date. DSM represents the number of days in
the period starting with the settlement date and ending with the maturity date. A
represents the number of days in the period starting with the issue date and ending with
the settlement date. B represents the number of days in a year based on the annual basis.

Example
In this example, imsl_f_yield_maturity computes the annual yield of a security
that pays interest at maturity which is selling at $95.40663 with the settlement date of
August 1, 2000, the issue date of July 1, 2000, the maturity date of July 1, 2010, and
the interest rate of 6% at the issue using the US (NASD) 30/360 day count method.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity, issue;
 float rate = .06;
 float price = 95.40663;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float yieldmat;

624 � yield_periodic IMSL C/Math/Library

 settlement.tm_year = 100;
 settlement.tm_mon = 7;
 settlement.tm_mday = 1;

 maturity.tm_year = 110;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 issue.tm_year = 100;
 issue.tm_mon = 6;
 issue.tm_mday = 1;

 yieldmat = imsl_f_yield_maturity (settlement, maturity, issue,
 rate, price, basis);
 printf ("The yield on a bond which pays at maturity is ");
 printf ("%.2f%%.\n", yieldmat * 100.);
}

Output
The yield on a bond which pays at maturity is 6.74%.

yield_periodic
Evaluates the yield of a security that pays periodic interest.

Synopsis
#include <imsl.h>
float imsl_f_yield_periodic (struct tm settlement, struct tm maturity,

float coupon_rate, float price, float redemption, int frequency,
int basis, …, 0)

The type double function is imsl_d_yield_periodic.

Required Arguments

struct tm settlement (Input)
The date on which payment is made to settle a trade. For a more detailed
discussion on dates see the Usage Notes section of this chapter.

struct tm maturity (Input)
The date on which the bond comes due, and principal and accrued interest are
paid. For a more detailed discussion on dates see the Usage Notes section of
this chapter.

float coupon_rate (Input)
Annual coupon rate.

float price (Input)
Price per $100 face value of the security.

float redemption (Input)
Redemption value per $100 face value of the security.

Chapter 9: Special Functions yield_periodic � 625

int frequency (Input)
Frequency of the interest payments. It should be one of IMSL_ANNUAL,
IMSL_SEMIANNUAL or IMSL_QUARTERLY. For a more detailed discussion on
frequency see the Usage Notes section of this chapter.

int basis (Input)
The method for computing the number of days between two dates. It should be
one of IMSL_DAY_CNT_BASIS_ACTUALACTUAL,
IMSL_DAY_CNT_BASIS_NASD, IMSL_DAY_CNT_BASIS_ACTUAL360,
IMSL_DAY_CNT_BASIS_ACTUAL365, or IMSL_DAY_CNT_BASIS_30E360.
For a more detailed discussion on basis see the Usage Notes section of this
chapter.

Return Value
The yield of a security that pays interest periodically. If no result can be computed,
NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_yield_periodic (struct tm settlement, struct tm maturity,

float coupon_rate, float price, float redemption, int frequency,
int basis, IMSL_XGUESS, float guess, IMSL_HIGHEST, float max, 0)

Optional Arguments

IMSL_XGUESS, float guess (Input)
Initial guess at the internal rate of return.

IMSL_HIGHEST, float max (Input)
Maximum value of the yield.
Default: 1.0 (100%)

Description
Function imsl_f_yield_periodic computes the yield of a security that pays
periodic interest. If there is one coupon period use the following:

_ _
100 100

_
100

redemption coupon rate price A coupon rate
frequency E frequency frequency E

DSRprice A coupon rate
E frequency

� �� �� � � �
� � � 	

� �
 �
 �

	

� �� � � �� �
� �
 �

� � � �

� 	
 �

� �� �

In the equation above, DSR represents the number of days in the period starting with
the settlement date and ending with the redemption date. E represents the number of
days within the coupon period. A represents the number of days in the period starting
with the beginning of coupon period and ending with the settlement date.

If there is more than one coupon period use the following:

626 � yield_periodic IMSL C/Math/Library

1 11

100
100 0

1 1

N

DSC DSCN kkE E

rate
redemption rate Afrequencyprice

frequency E
yield yield

frequency frequency

� � � �
� � � �� � � ��

� 	 � 	

� �� � � �
� �� � � �	� �� � � � � �
� �
 �
 	� � � � � �
� �� �
 �� �� � � �� �� � � �� �� � � �� �� �� �
 �
 �
 � � �
 �

� 	 �

In the equation above, DSC represents the number of days in the period from the
settlement to the next coupon date. E represents the number of days within the coupon
period. N represents the number of coupons payable in the period starting with the
settlement date and ending with the redemption date. A represents the number of days
in the period starting with the beginning of the coupon period and ending with the
settlement date.

Example
In this example, imsl_f_yield_periodic computes yield of a security which is
selling at $95.40663 with the settlement date of July 1, 1985, the maturity date of July
1, 1995, and the coupon rate of 6% at the issue using the US (NASD) 30/360 day count
method.

#include <stdio.h>
#include "imsl.h"

void main()
{
 struct tm settlement, maturity;
 float coupon_rate = .06;
 float price = 95.40663;
 float redemption = 105.;
 int frequency = IMSL_SEMIANNUAL;
 int basis = IMSL_DAY_CNT_BASIS_NASD;
 float yield;

 settlement.tm_year = 100;
 settlement.tm_mon = 6;
 settlement.tm_mday = 1;

 maturity.tm_year = 110;
 maturity.tm_mon = 6;
 maturity.tm_mday = 1;

 yield = imsl_f_yield_periodic (settlement, maturity, coupon_rate,
 price, redemption, frequency, basis, 0);
 printf ("The yield of the bond is %.2f%%.\n", yield * 100.);
}

Output
The yield of the bond is 7.00%.

Chapter 10: Statistics and Random Number Generation Routines � 627

Chapter 10: Statistics and Random
Number Generation

Routines
10.1 Statistics

Univariate summary statistics...simple_statistics 629
One-way frequency table.. table_oneway 634
Chi-squared one-sample goodness-of-fit testchi_squared_test 638
Correlation ...covariances 646
Multiple linear regression... regression 651
Polynomial regression ...poly_regression 660
Numerical ranking ... ranks 667

10.2 Random Numbers
Retrieves the current value of the seed....................... random_seed_get 674
Initialize a random seed... random_seed_set 675
Selects the uniform (0, 1) generator................................. random_option 676
Generates pseudorandom numbersrandom_uniform 677
Generates pseudorandom normal numbersrandom_normal 679
Generates pseudorandom Poisson numbers................ random_poisson 680
Generates pseudorandom gamma numbersrandom_gamma 682
Generates pseudorandom beta...random_beta 684
Generates pseudorandom
standard exponential ... random_exponential 685

10.3 Low-discrepancy sequence
Generates a shuffled Faure sequence.......................... faure_next_point 687

Usage Notes
Statistics
The functions in this section can be used to compute some common univariate summary
statistics, perform a one-sample goodness-of-fit test, produce measures of correlation,

628 � Usage Notes IMSL C/Math/Library

perform multiple and polynomial regression analysis, and compute ranks
(or a transformation of the ranks, such as normal or exponential scores). The user is
referred to the individual functions for additional information.

Overview of Random Number Generation
“Random Numbers” describes functions for the generation of random numbers and of
random samples and permutations. These functions are useful for applications in Monte
Carlo or simulation studies. Before using any of the random number generators, the
generator must be initialized by selecting a seed or starting value. This can be done by
calling the function imsl_random_seed_set (page 675). If the user does not select a
seed, one is generated using the system clock. A seed needs to be selected only once in
a program, unless two or more separate streams of random numbers are maintained.
There are other utility functions in this chapter for selecting the form of the basic
generator, for restarting simulations, and for maintaining separate simulation streams.

In the following discussions, the phrases “random numbers,” “random deviates,”
“deviates,” and “variates” are used interchangeably. The phrase “pseudorandom” is
sometimes used to emphasize that the numbers generated are really not “random,” since
they result from a deterministic process. The usefulness of pseudorandom numbers is
derived from the similarity, in a statistical sense, of samples of the pseudorandom
numbers to samples of observations from the specified distributions. In short, while the
pseudorandom numbers are completely deterministic and repeatable, they simulate the
realizations of independent and identically distributed random variables.

The Basic Uniform Generator
The random number generators in this chapter use a multiplicative congruential
method. The form of the generator is

xi = cxi-1 mod (231 � 1).

Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primitive root
modulo 231 � 1 (which is a prime), then the generator will have a maximal period of
231 � 2. There are several other considerations, however. See Knuth (1981) for a good
general discussion. The possible values for c in the IMSL generators are 16807,
397204094, and 950706376. The selection is made by the function
imsl_random_ option (page 676). The choice of 16807 will result in the fastest
execution time, but other evidence suggests that the performance of 950706376 is best
among these three choices (Fishman and Moore 1982). If no selection is made explicitly,
the functions use the multiplier 16807, which has been in use for some time (Lewis et al.
1969).

The generation of uniform (0,1) numbers is done by the function
imsl_f_random_uniform (page 677) . This function is portable in the sense that,
given the same seed, it produces the same sequence in all computer/compiler
environments.

Chapter 10: Statistics and Random Number Generation simple_statistics � 629

Shuffled Generators
The user also can select a shuffled version of these generators using
imsl_random_option (page 676). The shuffled generators use a scheme due to
Learmonth and Lewis (1973). In this scheme, a table is filled with the first 128 uniform
(0,1) numbers resulting from the simple multiplicative congruential generator. Then, for
each xi from the simple generator, the low-order bits of xi are used to select a random
integer, j, from 1 to 128. The j-th entry in the table is then delivered as the random
number, and xi, after being scaled into the unit interval, is inserted into the j-th position
in the table. This scheme is similar to that of Bays and Durham (1976), and their
analysis is applicable to this scheme as well.

Setting the Seed
The seed of the generator can be set in imsl_random_seed_set (page 675) and can
be retrieved by imsl_random_seed_get (page 674). Prior to invoking any generator
in this section, the user can call imsl_random_seed_set (page 675) to initialize the
seed, which is an integer variable with a value between 1 and 2147483647. If it is not
initialized by imsl_random_seed_set (page 675), a random seed is obtained from
the system clock. Once it is initialized, the seed need not be set again.

If the user wishes to restart a simulation, imsl_random_seed_get (page 674) can be
used to obtain the final seed value of one run to be used as the starting value in a
subsequent run. Also, if two simultaneous random number streams are desired in one
run, imsl_random_seed_set (page 675) and imsl_random_seed_get (page 674)
can be used before and after the invocations of the generators in each stream.

simple_statistics
Computes basic univariate statistics.

Synopsis
#include <imsl.h>
float *imsl_f_simple_statistics (int n_observations, int _variables,

float x[] ,�, 0)

The type double procedure is imsl_d_simple_statistics.

Required Arguments

int n_observations (Input)
The number of observations.

int n_variables (Input)
The number of variables.

float x[] (Input)
Array of size n_observations � n_variables containing the data matrix.

630 � simple_statistics IMSL C/Math/Library

Return Value
A pointer to a matrix containing some simple statistics for each of the columns in x. If
MEDIAN and MEDIAN_AND_SCALE are not used as optional arguments, the size of the
matrix is 14 by n_variables. The columns of this matrix correspond to the columns
of x and the rows contain the following statistics:

Row Statistic
0 the mean
1 the variance
2 the standard deviation
3 the coefficient of skewness
4 the coefficient of excess (kurtosis)
5 the minimum value
6 the maximum value
7 the range
8 the coefficient of variation (when defined)

If the coefficient of variation is not defined, zero is returned.
9 the number of observations (the counts)

10 a lower confidence limit for the mean (assuming normality)
The default is a 95 percent confidence interval.

11 an upper confidence limit for the mean (assuming normality)
12 a lower confidence limit for the variance (assuming normality)

The default is a 95 percent confidence interval.
13 an upper confidence limit for the variance (assuming normality)

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_simple_statistics (int n_observations, int n_variables,

float x[],
IMSL_CONFIDENCE_MEANS, float confidence_means,
IMSL_CONFIDENCE_VARIANCES, float confidence_variances,
IMSL_X_COL_DIM, int x_col_dim,
IMSL_STAT_COL_DIM, int stat_col_dim,
IMSL_MEDIAN,
IMSL_MEDIAN_AND_SCALE,
IMSL_RETURN_USER, float simple_statistics[],
0)

Chapter 10: Statistics and Random Number Generation simple_statistics � 631

Optional Arguments
IMSL_CONFIDENCE_MEANS, float confidence_means (Input)

The confidence level for a two-sided interval estimate of the means (assuming
normality) in percent. Argument confidence_means must be between 0.0
and 100.0 and is often 90.0, 95.0, or 99.0. For a one-sided confidence interval
with confidence level c, set confidence_means = 100.0 � 2(100 � c). If
IMSL_CONFIDENCE_MEANS is not specified, a 95 percent confidence interval
is computed.

IMSL_CONFIDENCE_VARIANCES, float confidence_variances (Input)
The confidence level for a two-sided interval estimate of the variances
(assuming normality) in percent. The confidence intervals are symmetric in
probability (rather than in length). For a one-sided confidence interval with
confidence level c, set confidence_means = 100.0 � 2(100 � c). If
IMSL_CONFIDENCE_VARIANCES is not specified, a 95 percent confidence
interval is computed.

IMSL_X_COL_DIM, int x_col_dim (Input)
The column dimension of array x.
Default: x_col_dim = n_variables

IMSL_STAT_COL_DIM, int stat_col_dim (Input)
The column dimension of the returned value array, or if IMSL_RETURN_USER
is specified, the column dimension of array simple_statistics.
Default: stat_col_dim = n_variables

IMSL_MEDIAN, or
IMSL_MEDIAN_AND_SCALE

Exactly one of these optional arguments can be specified in order to indicate
the additional simple robust statistics to be computed. If IMSL_MEDIAN is
specified, the medians are computed and stored in one additional row (row
number 14) in the returned matrix of simple statistics. If
IMSL_MEDIAN_AND_SCALE is specified, the medians, the medians of the
absolute deviations from the medians, and a simple robust estimate of scale are
computed, then stored in three additional rows (rows 14, 15, and 16) in the
returned matrix of simple statistics.

IMSL_RETURN_USER, float simple_statistics[] (Output)
Store the matrix of statistics in the user-provided array simple_statistics.
If neither IMSL_MEDIAN nor IMSL_MEDIAN_AND_SCALE is specified, the
matrix is 14 by n_variables. If IMSL_MEDIAN is specified, the matrix is
15 by n_variables. If IMSL_MEDIAN_AND_SCALE is specified, the matrix is
17 by n_variables.

Description
For the data in each column of x, imsl_f_simple_statistics computes the sample
mean, variance, minimum, maximum, and other basic statistics. It also computes
confidence intervals for the mean and variance (under the hypothesis that the sample is
from a normal population).

632 � simple_statistics IMSL C/Math/Library

The definitions of some of the statistics are given below in terms of a single variable
x of which the i-th datum is xi.

Mean

ix
x

n
�

�

Variance

� �
2

2

1
ix x

s
n

�

�

�

�

Skewness

� �

� �

3

2 3 / 2

/

[/
i

i

x x n

x x n

�

�

�

�]

Excess or Kurtosis

� �

� �

4

2 2

/
3

[/]
i

i

x x n

x x n

�

�

�

�

�

Minimum

� �min min ix x�

Maximum

� �max max ix x�

Range

max minx x�

Coefficient of Variation

/ for 0s x x �

Median

� �
middle after sorting if is odd

median
average of middle two 's if is even

i
i

i

x n
x

x n
�

� �
�

Chapter 10: Statistics and Random Number Generation simple_statistics � 633

Median Absolute Deviation

� �� �MAD=median mediani jx x�

Simple Robust Estimate of Scale

� �1MAD/ 3/ 4�

�

where �-1(3/4) � 0.6745 is the inverse of the standard normal distribution function
evaluated at 3�4. This standardizes MAD in order to make the scale estimate consistent at
the normal distribution for estimating the standard deviation (Huber 1981, pp. 107�108).

Example
This example uses data from Draper and Smith (1981). There are five variables and 13
observations.

#include <imsl.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 13

main()
{
 float *simple_statistics;
 float x[] = {7., 26., 6., 60., 78.5,
 1., 29., 15., 52., 74.3,
 11., 56., 8., 20., 104.3,
 11., 31., 8., 47., 87.6,
 7., 52., 6., 33., 95.9,
 11., 55., 9., 22., 109.2,
 3., 71., 17., 6., 102.7,
 1., 31., 22., 44., 72.5,
 2., 54., 18., 22., 93.1,
 21., 47., 4., 26., 115.9,
 1., 40., 23., 34., 83.8,
 11., 66., 9., 12., 113.3,
 10., 68., 8., 12., 109.4};
 char *row_labels[] = {"means", "variances", "std. dev",
 "skewness", "kurtosis", "minima",
 "maxima", "ranges", "C.V.", "counts",
 "lower mean", "upper mean",
 "lower var", "upper var"};

 simple_statistics = imsl_f_simple_statistics(N_OBSERVATIONS,
 N_VARIABLES, x, 0);

 imsl_f_write_matrix("* * * Statistics * * *\n", 14, N_VARIABLES,
 simple_statistics,
 IMSL_ROW_LABELS, row_labels,
 IMSL_WRITE_FORMAT, "%7.3f",
 0);
}

634 � table_oneway IMSL C/Math/Library

Output
 * * * Statistics * * *

 1 2 3 4 5
means 7.462 48.154 11.769 30.000 95.423
variances 34.603 242.141 41.026 280.167 226.314
std. dev 5.882 15.561 6.405 16.738 15.044
skewness 0.688 -0.047 0.611 0.330 -0.195
kurtosis 0.075 -1.323 -1.079 -1.014 -1.342
minima 1.000 26.000 4.000 6.000 72.500
maxima 21.000 71.000 23.000 60.000 115.900
ranges 20.000 45.000 19.000 54.000 43.400
C.V. 0.788 0.323 0.544 0.558 0.158
counts 13.000 13.000 13.000 13.000 13.000
lower mean 3.907 38.750 7.899 19.885 86.332
upper mean 11.016 57.557 15.640 40.115 104.514
lower var 17.793 124.512 21.096 144.065 116.373
upper var 94.289 659.817 111.792 763.434 616.688

table_oneway
Tallies observations into a one-way frequency table.

Synopsis
#include <imsl.h>
float *imsl_f_table_oneway (int n_observations, float x[],

int _intervals, �, 0)

The type double function is imsl_d_table_oneway.

Required Arguments

int n_observations (Input)

Number of observations.

float x[] (Input)

Array of length n_observations containing the observations.

int n_intervals (Input)

Number of intervals (bins).

Return Value
Pointer to an array of length n_intervals containing the counts.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_table_oneway (int n_observations, float x[],

int n_intervals,
IMSL_DATA_BOUNDS, float *minimum, float *maximum,

Chapter 10: Statistics and Random Number Generation table_oneway � 635

IMSL_KNOWN_BOUNDS, float lower_bound, float upper_bound,
IMSL_CUTPOINTS, float cutpoints[],
IMSL_CLASS_MARKS, float class_marks[],
IMSL_RETURN_USER, float table_oneway[],
0)

Optional Arguments
IMSL_DATA_BOUNDS, float *minimum, float *maximum (Output)

or
IMSL_KNOWN_BOUNDS, float lower_bound, float upper_bound (Input)

or
IMSL_CUTPOINTS, float cutpoints[] (Input)

or
IMSL_CLASS_MARKS, float class_marks[] (Input)

None, or exactly one, of these four optional arguments can be specified in
order to define the intervals or bins for the one-way table. If none is specified,
or if IMSL_DATA_BOUNDS is specified, n_intervals, intervals of equal
length, are used with the initial interval starting with the minimum value in
x and the last interval ending with the maximum value in x. The initial interval
is closed on the left and right. The remaining intervals are open on the left and
closed on the right. When IMSL_DATA_BOUNDS is explicitly specified, the
minimum and maximum values in x are output in minimum and maximum.
With this option, each interval is of (maximum�minimum)���n_intervals
length. If IMSL_KNOWN_BOUNDS is specified, two semi-infinite intervals are
used as the initial and last interval. The initial interval is closed on the right
and includes lower_bound as its right endpoint. The last interval is open on
the left and includes all values greater than uppe
r_ bound. The remaining n_intervals � 2 intervals are each of length

upper_bound lower_bound
n_intervals

-
2�

and are open on the left and closed on the right. Argument n_intervals
must be greater than or equal to three for this option. If IMSL_CLASS_MARKS
is specified, equally spaced class marks in ascending order must be provided
in the array class_marks of length n_intervals. The class marks are the
midpoints of each of the n_intervals, and each interval is taken to have
length class_marks[1] � class_marks[0]. The argument n_intervals
must be greater than or equal to two for this option. If
IMSL_ CUTPOINTS is specified, cutpoints (boundaries) must be provided in
the array cutpoints of length n_intervals � 1. This option allows unequal
interval lengths. The initial interval is closed on the right and includes the
initial cutpoint as its right endpoint. The last interval is open on the left and
includes all values greater than the last cutpoint. The remaining n_intervals
� 2 intervals are open on the left and closed on the right. The argument
n_interval must be greater than or equal to three for this option.

636 � table_oneway IMSL C/Math/Library

IMSL_RETURN_USER, float table[] (Output)
Counts are stored in the user-supplied array table of length n_intervals.

Examples

Example 1
The data for this example is from Hinkley (1977) and Velleman and Hoaglin (1981).
They are the measurements (in inches) of precipitation in Minneapolis/St. Paul during
the month of March for 30 consecutive years.

#include <imsl.h>
main()
{
 int n_intervals=10;
 int n_observations=30;
 float *table;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 table = imsl_f_table_oneway (n_observations, x, n_intervals, 0);
 imsl_f_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output
 counts
 1 2 3 4 5 6
 4 8 5 5 3 1

 7 8 9 10
 3 0 0 1

Example 2
This example selects IMSL_KNOWN_BOUNDS and sets lower_bound = 0.5 and
upper_bound = 4.5 so that the eight interior intervals each have width
(4.5 � 0.5)/(10 � 2) = 0.5. The 10 intervals are (��, 0.5], (0.5, 1.0], �, (4.0, .5],
and (4.5, �].

#include <imsl.h>
main()
{
 int n_observations=30;
 int n_intervals=10;
 float *table;
 float lower_bound=0.5, upper_bound=4.5;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 table = imsl_f_table_oneway (n_observations, x, n_intervals,
 IMSL_KNOWN_BOUNDS, lower_bound,
 upper_bound, 0);
 imsl_f_write_matrix("counts", 1, n_intervals, table, 0);
 }

Chapter 10: Statistics and Random Number Generation table_oneway � 637

Output
 counts
 1 2 3 4 5 6
 2 7 6 6 4 2

 7 8 9 10
 2 0 0 1

Example 3
This example inputs 10 class marks 0.25, 0.75, 1.25, �, 4.75. This defines the class
intervals (0.0, 0.5], (0.5, 1.0], �, (4.0, 4.5], (4.5, 5.0]. Note that unlike the previous
example, the initial and last intervals are the same length as the remaining intervals.

#include <imsl.h>
main()
{
 int n_intervals=10;
 int n_observations=30;
 double *table;
 double x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
 double class_marks[] = {0.25, 0.75, 1.25, 1.75, 2.25, 2.75,
 3.25, 3.75, 4.25, 4.75};
 table = imsl_d_table_oneway (n_observations, x, n_intervals,
 IMSL_CLASS_MARKS, class_marks,
 0);
 imsl_d_write_matrix("counts", 1, n_intervals, table, 0);
}

Output
 counts
 1 2 3 4 5 6
 2 7 6 6 4 2

 7 8 9 10
 2 0 0 1

Example 4
This example inputs nine cutpoints 0.5, 1.0, 1.5, 2.0, �, 4.5 to define the same 10
intervals as in Example 3. Here again, the initial and last intervals are semi-infinite
intervals.

#include <imsl.h>
main()
{
 int n_intervals=10;
 int n_observations=30;
 double *table;
 double x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};

638 � chi_squared_test IMSL C/Math/Library

 double cutpoints[] = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
 4.5};
 table = imsl_d_table_oneway (n_observations, x, n_intervals,
 IMSL_CUTPOINTS, cutpoints,
 0);
 imsl_d_write_matrix("counts", 1, n_intervals, table, 0);
}

Output
 counts
1 2 3 4 5 6
2 7 6 6 4 2

7 8 9 10
2 0 0 1

chi_squared_test
Performs a chi-squared goodness-of-fit test.

Synopsis
#include <imsl.h>
float imsl_f_chi_squared_test (float user_proc_cdf(),

int n_observations, int n_categories, float x[], �, 0)

The type double function is imsl_d_chi_squared_test.

Required Arguments

float user_proc_cdf (float y) (Input)
User-supplied function that returns the hypothesized, cumulative distribution
function at the point y.

int n_observations (Input)
The number of data elements input in x.

int n_categories (Input)
The number of cells into which the observations are to be tallied.

float x[] (Input)
Array with n_observations components containing the vector of data
elements for this test.

Return Value
The p-value for the goodness-of-fit chi-squared statistic.

Synopsis with Optional Arguments
#include <imsl.h>

Chapter 10: Statistics and Random Number Generation chi_squared_test � 639

float imsl_f_chi_squared_test (float *user_proc_cdf(), int
n_observations, int n_categories, float x[],
IMSL_N_PARAMETERS_ESTIMATED, int n_parameters,
IMSL_CUTPOINTS, float **p_cutpoints,
IMSL_CUTPOINTS_USER, float cutpoints[],
IMSL_CUTPOINTS_EQUAL,
IMSL_CHI_SQUARED, float *chi_squared,
IMSL_DEGREES_OF_FREEDOM, float *df,
IMSL_FREQUENCIES, float frequencies[],
IMSL_BOUNDS, float lower_bound, float upper_bound,
IMSL_CELL_COUNTS, float **p_cell_counts,
IMSL_CELL_COUNTS_USER, float cell_counts[],
IMSL_CELL_EXPECTED, float **p_cell_expected,
IMSL_CELL_EXPECTED_USER, float cell_expected[],
IMSL_CELL_CHI_SQUARED, float **p_cell_chi_squared,
IMSL_CELL_CHI_SQUARED_USER, float cell_chi_squared[],
IMSL_FCN_W_DATA, float user_proc_cdf(), void *data,
0)

Optional Arguments
IMSL_N_PARAMETERS_ESTIMATED, int n_parameters (Input)

The number of parameters estimated in computing the cumulative distribution
function.

IMSL_CUTPOINTS, float **p_cutpoints (Output)
The address of a pointer to the cutpoints array. On return, the pointer is
initialized (through a memory allocation request to malloc), and the array is
stored there. Typically, float *p_cutpoints is declared; &p_cutpoints is
used as an argument to this function; and free(p_cutpoints) is used to
free this array.

IMSL_CUTPOINTS_USER, float cutpoints[] (Input or Output)
Array with n_categories � 1 components containing the vector of cutpoints
defining the cell intervals. The intervals defined by the cutpoints are such that
the lower endpoint is not included, and the upper endpoint is included in any
interval. If IMSL_CUTPOINTS_EQUAL is specified, equal probability cutpoints
are computed and returned in cutpoints.

IMSL_CUTPOINTS_EQUAL
If IMSL_CUTPOINTS_USER is specified, then equal probability cutpoints can
still be used if, in addition, the IMSL_CUTPOINTS_EQUAL option is specified.
If IMSL_CUTPOINTS_USER is not specified, equal probability cutpoints are
used by default.

IMSL_CHI_SQUARED, float *chi_squared (Output)
If specified, the chi-squared test statistic is returned in *chi_squared.

640 � chi_squared_test IMSL C/Math/Library

IMSL_DEGREES_OF_FREEDOM, float *df (Output)
If specified, the degrees of freedom for the chi-squared goodness-of-fit test is
returned in *df.

IMSL_FREQUENCIES, float frequencies[] (Input)
Array with n_observations components containing the vector frequencies
for the observations stored in x.

IMSL_BOUNDS, float lower_bound, float upper_bound (Input)
If IMSL_BOUNDS is specified, then lower_bound is the lower bound of the
range of the distribution, and upper_bound is the upper bound of this range.
If lower_bound = upper_bound, a range on the whole real line is used
(the default). If the lower and upper endpoints are different, points outside the
range of these bounds are ignored. Distributions conditional on a range can be
specified when IMSL_BOUNDS is used. By convention, lower_bound is
excluded from the first interval, but upper_bound is included in the last
interval.

IMSL_CELL_COUNTS, float **p_cell_counts (Output)
The address of a pointer to an array containing the cell counts. The cell counts
are the observed frequencies in each of the n_categories cells. On return,
the pointer is initialized (through a memory allocation request to malloc), and
the array is stored there. Typically, float *p_cell_counts is declared;
&p_cell_counts is used as an argument to this function; and
free(p_cell_counts) is used to free this array.

IMSL_CELL_COUNTS_USER, float cell_counts[] (Output)
If specified, the n_categories cell counts are returned in the array
cell_counts provided by the user.

IMSL_CELL_EXPECTED, float **p_cell_expected (Output)
The address of a pointer to the cell expected values. The expected value of a
cell is the expected count in the cell given that the hypothesized distribution is
correct. On return, the pointer is initialized (through a memory allocation
request to malloc), and the array is stored there. Typically, float
*p_cell_expected is declared; &p_cell_expected is used as an
argument to this function; and free(p_cell_expected) is used to free this
array.

IMSL_CELL_EXPECTED_USER, float cell_expected[] (Output)
If specified, the n_categories cell expected values are returned in the array
cell_expected provided by the user.

IMSL_CELL_CHI_SQUARED, float **p_cell_chi_squared (Output)
The address of a pointer to an array of length n_categories containing the
cell contributions to chi-squared. On return, the pointer is initialized (through
a memory allocation request to malloc), and the array is stored there.
Typically, float *p_cell_chi_squared is declared;
&p_cell_chi_squared is used as an argument to this function; and
free(p_cell_chi_squared) is used to free this array.

Chapter 10: Statistics and Random Number Generation chi_squared_test � 641

�

IMSL_CELL_CHI_SQUARED_USER, float cell_chi_squared[] (Output)
If specified, the cell contributions to chi-squared are returned in the array
cell_chi_squared provided by the user.

IMSL_FCN_W_DATA, float user_proc_cdf (float y, void *data), void *data,
(Input)
User supplied function that returns the hypothesized, cumulative distribution
function at the point y, which also accepts a pointer to data that is supplied by
the user. data is a pointer to the data to be passed to the user-supplied
function. See the Introduction, Passing Data to User-Supplied Functions at
the beginning of this manual for more details.

Description
The function imsl_f_chi_squared_test performs a chi-squared goodness-of-fit
test that a random sample of observations is distributed according to a specified
theoretical cumulative distribution. The theoretical distribution, which may be
continuous, discrete, or a mixture of discrete and continuous distributions, is specified
via the user-defined function user_proc_cdf. Because the user is allowed to give a
range for the observations, a test conditional upon the specified range is performed.

Argument n_categories gives the number of intervals into which the observations
are to be divided. By default, equiprobable intervals are computed by
imsl_f_chi_squared_test, but intervals that are not equiprobable can be specified
(through the use of optional argument IMSL_CUTPOINTS).

Regardless of the method used to obtain the cutpoints, the intervals are such that the
lower endpoint is not included in the interval, while the upper endpoint is always
included. If the cumulative distribution function has discrete elements, then user-
provided cutpoints should always be used since imsl_f_chi_squared_test cannot
determine the discrete elements in discrete distributions.

By default, the lower and upper endpoints of the first and last intervals are � �
and � �, respectively. If IMSL_BOUNDS is specified, the endpoints are defined by the
user via the two arguments lower_bound and upper_bound.

A tally of counts is maintained for the observations in x as follows. If the cutpoints are
specified by the user, the tally is made in the interval to which xi belongs using the
endpoints specified by the user. If the cutpoints are determined by
imsl_f_chi_squared_test, then the cumulative probability at xi, F(xi), is computed
via the function user_proc_cdf. The tally for xi is made in interval number

� � n_categories1 where and imF x m� �� � � �� �� �

is the function that takes the greatest integer that is no larger than the argument of the
function. Thus, if the computer time required to calculate the cumulative distribution
function is large, user-specified cutpoints may be preferred to reduce the total
computing time.

642 � chi_squared_test IMSL C/Math/Library

If the expected count in any cell is less than 1, then a rule of thumb is that the chi-
squared approximation may be suspect. A warning message to this effect is issued in
this case, as well as when an expected value is less than 5.

Programming Notes
The user must supply a function user_proc_cdf with calling sequence
user_proc_cdf(y), that returns the value of the cumulative distribution function at
any point y in the (optionally) specified range. Many of the cumulative distribution
functions in Chapter 9, “Special Functions,” can be used for user_proc_cdf, either
directly, if the calling sequence is correct, or indirectly, if, for example, the sample
means and standard deviations are to be used in computing the theoretical cumulative
distribution function.

Examples

Example 1
This example illustrates the use of imsl_f_chi_squared_test on a randomly
generated sample from the normal distribution. One-thousand randomly generated
observations are tallied into 10 equiprobable intervals. The null hypothesis that the
sample is from a normal distribution is specified by use of the imsl_f_normal_cdf
as the hypothesized distribution function. In this example, the null hypothesis is not
rejected.

#include <imsl.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000

main()
{
 float *x, p_value;

 imsl_random_seed_set(SEED);
 /* Generate Normal deviates */
 x = imsl_f_random_normal (N_OBSERVATIONS, 0);
 /* Perform chi squared test */
 p_value = imsl_f_chi_squared_test (imsl_f_normal_cdf, N_OBSERVATIONS,
 N_CATEGORIES, x, 0);
 /* Print results */
 printf ("p value %7.4f\n", p_value);
}

Output
p value 0.1546

Chapter 10: Statistics and Random Number Generation chi_squared_test � 643

Example 2
In this example, some optional arguments are used for the data in the initial example.

#include <imsl.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000

main()
{
 float *cell_counts, *cutpoints, *cell_chi_squared;
 float chi_squared_statistics[3], *x;
 char *stat_row_labels[] = {"chi-squared", "degrees of freedom",
 "p-value"};
 imsl_random_seed_set(SEED);
 /* Generate Normal deviates */
 x = imsl_f_random_normal (N_OBSERVATIONS, 0);
 /* Perform chi squared test */
 chi_squared_statistics[2] =
 imsl_f_chi_squared_test (imsl_f_normal_cdf,
 N_OBSERVATIONS, N_CATEGORIES, x,
 IMSL_CUTPOINTS, &cutpoints,
 IMSL_CELL_COUNTS, &cell_counts,
 IMSL_CELL_CHI_SQUARED, &cell_chi_squared,
 IMSL_CHI_SQUARED, &chi_squared_statistics[0],
 IMSL_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 0);
 /* Print results */
 imsl_f_write_matrix ("\nChi Squared Statistics\n", 3, 1,
 chi_squared_statistics,
 IMSL_ROW_LABELS, stat_row_labels,
 0);
 imsl_f_write_matrix ("Cut Points", 1, N_CATEGORIES-1, cutpoints, 0);
 imsl_f_write_matrix ("Cell Counts", 1, N_CATEGORIES, cell_counts,
 0);
 imsl_f_write_matrix ("Cell Contributions to Chi-Squared", 1,
 N_CATEGORIES, cell_chi_squared,
 0);
}

Output
 Chi Squared Statistics

chi-squared 13.18
degrees of freedom 9.00
p-value 0.15

 Cut Points
 1 2 3 4 5 6
 -1.282 -0.842 -0.524 -0.253 -0.000 0.253

 7 8 9
 0.524 0.842 1.282

644 � chi_squared_test IMSL C/Math/Library

 Cell Counts
 1 2 3 4 5 6
 106 109 89 92 83 87

 7 8 9 10
 110 104 121 99

 Cell Contributions to Chi-Squared
 1 2 3 4 5 6
 0.36 0.81 1.21 0.64 2.89 1.69

 7 8 9 10
 1.00 0.16 4.41 0.01

Example 3
In this example, a discrete Poisson random sample of size 1000 with parameter 	 = 5.0
is generated via function imsl_f_random_poisson (page 680). In the call to
imsl_f_chi_squared_test, function imsl_f_poisson_cdf(page 680) is used as
function user_proc_cdf.

#include <imsl.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_PARAMETERS_ESTIMATED 0
#define N_NUMBERS 1000
#define THETA 5.0

float user_proc_cdf(float);

main()
{
 int i, *poisson;
 float cell_statistics[3][N_CATEGORIES];
 float chi_squared_statistics[3], x[N_NUMBERS];
 float cutpoints[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5,
 7.5, 8.5, 9.5};
 char *cell_row_labels[] = {"count", "expected count",
 "cell chi-squared"};
 char *cell_col_labels[] = {"Poisson value", "0", "1", "2",
 "3", "4", "5", "6", "7", "8", "9"};
 char *stat_row_labels[] = {"chi-squared", "degrees of freedom",
 "p-value"};

 imsl_random_seed_set(SEED);
 /* Generate the data */
 poisson = imsl_random_poisson(N_NUMBERS, THETA, 0);
 /* Copy data to a floating point vector*/
 for (i = 0; i < N_NUMBERS; i++)
 x[i] = poisson[i];

 chi_squared_statistics[2] =
 imsl_f_chi_squared_test(user_proc_cdf, N_NUMBERS, N_CATEGORIES, x,
 IMSL_CUTPOINTS_USER, cutpoints,
 IMSL_CELL_COUNTS_USER, &cell_statistics[0][0],
 IMSL_CELL_EXPECTED_USER, &cell_statistics[1][0],
 IMSL_CELL_CHI_SQUARED_USER, &cell_statistics[2][0],

Chapter 10: Statistics and Random Number Generation chi_squared_test � 645

 IMSL_CHI_SQUARED, &chi_squared_statistics[0],
 IMSL_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 0);
 /* Print results */
 imsl_f_write_matrix("\nChi-squared statistics\n", 3, 1,
 &chi_squared_statistics[0],
 IMSL_ROW_LABELS, stat_row_labels,
 0);
 imsl_f_write_matrix("\nCell Statistics\n", 3, N_CATEGORIES,
 &cell_statistics[0][0],
 IMSL_ROW_LABELS, cell_row_labels,
 IMSL_COL_LABELS, cell_col_labels,
 0);
}

float user_proc_cdf(float k)
{
 float cdf_v;

 cdf_v = imsl_f_poisson_cdf ((int) k, THETA);
 return cdf_v;
}

Output
 Chi-squared statistics

chi-squared 10.48
degrees of freedom 9.00
p-value 0.31

 Cell Statistics

Poisson value 0 1 2 3 4
count 41.0 94.0 138.0 158.0 150.0
expected count 40.4 84.2 140.4 175.5 175.5
cell chi-squared 0.0 1.1 0.0 1.7 3.7

Poisson value 5 6 7 8 9
count 159.0 116.0 75.0 37.0 32.0
expected count 146.2 104.4 65.3 36.3 31.8
cell chi-squared 1.1 1.3 1.4 0.0 0.0

Warning Errors
IMSL_EXPECTED_VAL_LESS_THAN_1 An expected value is less than 1.

IMSL_EXPECTED_VAL_LESS_THAN_5 An expected value is less than 5.

Fatal Errors
IMSL_ALL_OBSERVATIONS_MISSING All observations contain missing values.

IMSL_INCORRECT_CDF_1 The function user_proc_cdf is not a
cumulative distribution function. The
value at the lower bound must be

646 � covariances IMSL C/Math/Library

nonnegative, and the value at the upper
bound must not be greater than one.

IMSL_INCORRECT_CDF_2 The function user_proc_cdf is not a
cumulative distribution function. The
probability of the range of the
distribution is not positive.

IMSL_INCORRECT_CDF_3 The function user_proc_cdf is not a
cumulative distribution function. Its
evaluation at an element in x is
inconsistent with either the evaluation at
the lower or upper bound.

IMSL_INCORRECT_CDF_4 The function user_proc_cdf is not a
cumulative distribution function. Its
evaluation at a cutpoint is inconsistent
with either the evaluation at the lower or
upper bound.

IMSL_INCORRECT_CDF_5 An error has occurred when inverting the
cumulative distribution function. This
function must be continuous and defined
over the whole real line.

covariances
Computes the sample variance-covariance or correlation matrix.

Synopsis
#include <imsl.h>
float *imsl_f_covariances (int n_observations, int n_variables, float

x[], �, 0)

The type double function is imsl_d_covariances.

Required Arguments

int n_observations (Input)
The number of observations.

int n_variables (Input)
The number of variables.

float x[] (Input)
Array of size n_observations
 n_variables containing the matrix of
data.

Chapter 10: Statistics and Random Number Generation covariances � 647

Return Value
If no optional arguments are used, imsl_f_covariances returns a pointer to an
n_variables
 n_variables matrix containing the sample variance-covariance
matrix of the observations. The rows and columns of this matrix correspond to the
columns of x.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_covariances (int n_observations, int n_variables, float

x[],
IMSL_X_COL_DIM, int x_col_dim,
IMSL_VARIANCE_COVARIANCE_MATRIX,
IMSL_CORRECTED_SSCP_MATRIX,
IMSL_CORRELATION_MATRIX,
IMSL_STDEV_CORRELATION_MATRIX,
IMSL_MEANS, float **p_means,
IMSL_MEANS_USER, float means[],
IMSL_COVARIANCE_COL_DIM, int covariance_col_dim,
IMSL_RETURN_USER, float covariance[],
0)

Optional Arguments
IMSL_X_COL_DIM, int x_col_dim (Input)

The column dimension of array x.
Default: x_col_dim = n_variables

IMSL_VARIANCE_COVARIANCE_MATRIX, or
IMSL_CORRECTED_SSCP_MATRIX, or
IMSL_CORRELATION_MATRIX, or
IMSL_STDEV_CORRELATION_MATRIX

Exactly one of these options can be used to specify the type of matrix to be
computed.

Keyword Type of Matrix
IMSL_VARIANCE_COVARIANCE_MATRIX variance-covariance matrix

(default)
IMSL_CORRECTED_SSCP_MATRIX corrected sums of squares and

crossproducts matrix
IMSL_CORRELATION_MATRIX correlation matrix
IMSL_STDEV_CORRELATION_MATRIX correlation matrix except for the

diagonal elements which are the
standard deviations

IMSL_MEANS, float **p_means (Output)
The address of a pointer to the array containing the means of the variables in

648 � covariances IMSL C/Math/Library

x. The components of the array correspond to the columns of x. On return, the
pointer is initialized (through a memory allocation request to malloc), and the
array is stored there. Typically, float *p_means is declared; &p_means is
used as an argument to this function; and free(p_means) is used to free this
array.

IMSL_MEANS_USER, float means[] (Output)
Calculate the n_variables means and store them in the memory provided by
the user. The elements of means correspond to the columns of x.

IMSL_COVARIANCE_COL_DIM, int covariance_col_dim (Input)
The column dimension of array covariance, if IMSL_RETURN_USER is
specified, or the column dimension of the return value otherwise.
Default: covariance_col_dim = n_variables

IMSL_RETURN_USER, float covariance[] (Output)
If specified, the output is stored in the array covariance of size
n_variables
 n_variables provided by the user.

Description
The function imsl_f_covariances computes estimates of correlations, covariances,
or sums of squares and crossproducts for a data matrix x. The means, (corrected) sums
of squares, and (corrected) sums of crossproducts are computed using the method of
provisional means. Let

kix

denote the mean based on i observations for the k-th variable, and let cjki denote the
sum of crossproducts (or sum of squares if j = k) based on i observations. Then, the
method of provisional means finds new means and sums of crossproducts as follows:

The means and crossproducts are initialized as:

0

0

0.0 1, ,
0.0 , 1, ,

k

jk

x k
c j k

� �

� �

�

�

p
p

where p denotes the number of variables. Letting xk,i+1 denote the k-th variable on
observation i + 1, each new observation leads to the following updates for

kix

and cjki using update constant ri+1:

� �

� �� �� �

1

, 1 , 1 1

, 1 , 1 , 1 1

1
1

1

i

k i ki k i ki i

jk i jki j i ji k i ki i

r
i

x x x x r

c c x x x x

�

� � �

� � �

�

�

� � �

� � � � � r
�

Chapter 10: Statistics and Random Number Generation covariances � 649

Usage Notes
The function imsl_f_covariances uses the following definition of a sample mean:

1

n
kii

k

x
x

n
�

�

�

where n is the number of observations. The following formula defines the sample
covariance, sj k, between variables j and k:

� �� �1

1

n
ji j ki ki

jk

x x x x
s

n
�

� �

�

�

�

The sample correlation between variables j and k, rjk, is defined as follows:

jk
jk

jj kk

s
r

s s
�

Examples

Example 1
The first example illustrates the use of imsl_f_covariances for the first 50
observations in the Fisher iris data (Fisher 1936). Note in this example that the first
variable is constant over the first 50 observations.

#include <imsl.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 50

main()
{
 float *covariances;
 float x[] = {1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
 1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
 1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
 1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
 1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
 1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
 1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
 1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
 1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
 1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
 1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
 1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
 1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
 1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
 1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
 1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
 1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
 1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,

650 � covariances IMSL C/Math/Library

 1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
 1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
 1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
 1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
 1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
 1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
 1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};

 covariances = imsl_f_covariances (N_OBSERVATIONS, N_VARIABLES, x, 0);
 imsl_f_write_matrix ("The default case: variances/covariances",
 N_VARIABLES, N_VARIABLES, covariances,
 IMSL_PRINT_UPPER,
 0);
}

Output
 The default case: variances/covariances
 1 2 3 4 5
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.1242 0.0992 0.0164 0.0103
3 0.1437 0.0117 0.0093
4 0.0302 0.0061
5 0.0111

Example 2
This example illustrates the use of some optional arguments in imsl_f_covariances.
Once again, the first 50 observations in the Fisher iris data are used.

#include <imsl.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 50

main()
{
 char *title;
 float *means, *correlations;
 float x[] = {1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
 1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
 1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
 1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
 1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
 1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
 1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
 1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
 1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
 1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
 1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
 1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
 1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
 1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
 1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
 1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
 1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
 1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
 1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
 1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
 1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,

Chapter 10: Statistics and Random Number Generation regression � 651

 1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
 1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
 1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
 1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};

 correlations = imsl_f_covariances (N_OBSERVATIONS,
 N_VARIABLES-1, x+1,
 IMSL_STDEV_CORRELATION_MATRIX,
 IMSL_X_COL_DIM, N_VARIABLES,
 IMSL_MEANS, &means,
 0);
 imsl_f_write_matrix ("Means\n", 1, N_VARIABLES-1, means, 0);
 title = "Correlations with Standard Deviations on the Diagonal\n";
 imsl_f_write_matrix (title, N_VARIABLES-1, N_VARIABLES-1,
 correlations, IMSL_PRINT_UPPER,
 0);
}

Output
 Means

 1 2 3 4
5.006 3.428 1.462 0.246

Correlations with Standard Deviations on the Diagonal

 1 2 3 4
1 0.3525 0.7425 0.2672 0.2781
2 0.3791 0.1777 0.2328
3 0.1737 0.3316
4 0.1054

Warning Errors
IMSL_CONSTANT_VARIABLE Correlations are requested, but the observations

on one or more variables are constant. The
corresponding correlations are set to NaN.

regression
Fits a multiple linear regression model using least squares.

Synopsis
#include <imsl.h>
float *imsl_f_regression (int n_observations, int n_independent, float

x[], float y[], �, 0)

The type double function is imsl_d_regression.

Required Arguments

int n_observations (Input)
The number of observations.

652 � regression IMSL C/Math/Library

int n_independent (Input)
The number of independent (explanatory) variables.

float x[] (Input)
Array of size n_observations
 n_independent containing the matrix of
independent (explanatory) variables.

float y[] (Input)
Array of length n_observations containing the dependent (response)
variable.

Return Value
If the optional argument IMSL_NO_INTERCEPT is not used, imsl_f_regression
returns a pointer to an array of length n_independent + 1 containing a least-squares
solution for the regression coefficients. The estimated intercept is the initial component
of the array.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_regression (int n_observations, int n_independent,

float x[], float y[],
IMSL_X_COL_DIM, int x_col_dim,
IMSL_NO_INTERCEPT,
IMSL_TOLERANCE, float tolerance,
IMSL_RANK, int *rank,
IMSL_COEF_COVARIANCES, float **p_coef_covariances,
IMSL_COEF_COVARIANCES_USER, float coef_covariances[],
IMSL_COV_COL_DIM, int cov_col_dim,
IMSL_X_MEAN, float **p_x_mean,
IMSL_X_MEAN_USER, float x_mean[],
IMSL_RESIDUAL, float **p_residual,
IMSL_RESIDUAL_USER, float residual[],
IMSL_ANOVA_TABLE, float **p_anova_table,
IMSL_ANOVA_TABLE_USER, float anova_table[],
IMSL_RETURN_USER, float coefficients[],
0)

Optional Arguments
IMSL_X_COL_DIM, int x_col_dim (Input)

The column dimension of x.
Default: x_col_dim = n_independent

IMSL_NO_INTERCEPT
By default, the fitted value for observation i is

Chapter 10: Statistics and Random Number Generation regression � 653

0 1 1
ˆ ˆ ˆ

k kx x� � �� � ��

where k = n_independent. If IMSL_NO_INTERCEPT is specified, the
intercept term

0�̂

is omitted from the model.

IMSL_TOLERANCE, float tolerance (Input)
The tolerance used in determining linear dependence. For
imsl_f_regression, tolerance = 100
 imsl_f_machine(4) is the
default choice. For imsl_d_regression,
tolerance = 100
 imsl_d_machine(4) is the default. See
imsl_f_machine (page 635).

IMSL_RANK, int *rank (Output)
The rank of the fitted model is returned in *rank.

IMSL_COEF_COVARIANCES, float **p_coef_covariances (Output)
The address of a pointer to the m
 m array containing the estimated variances
and covariances of the estimated regression coefficients. Here, m is the
number of regression coefficients in the model. If IMSL_NO_INTERCEPT is
specified, m = n_independent; otherwise, m = n_independent + 1. On
return, the pointer is initialized (through a memory allocation request to
malloc), and the array is stored there. Typically, float
*p_coef_covariances is declared; &p_coef_covariances is used as an
argument to this function; and free(p_coef_covariances) is used to free
this array.

IMSL_COEF_COVARIANCES_USER, float coef_covariances[] (Output)
If specified, coef_covariances is an array of length m
 m containing the
estimated variances and covariances of the estimated coefficients where m is
the number of regression coefficients in the model.

IMSL_COV_COL_DIM, int cov_col_dim (Input)
The column dimension of array coef_covariance.
Default: cov_col_dim = m where m is the number of regression coefficients
in the model.

IMSL_X_MEAN, float **p_x_mean (Output)
The address of a pointer to the array containing the estimated means of the
independent variables. On return, the pointer is initialized (through a memory
allocation request to malloc), and the array is stored there. Typically, float
*p_x_mean is declared; &p_x_mean is used as an argument to this function;
and free(p_x_mean) is used to free this array.

IMSL_X_MEAN_USER, float x_mean[] (Output)
If specified, x_mean is an array of length n_independent provided by the
user. On return, x_mean contains the means of the independent variables.

654 � regression IMSL C/Math/Library

IMSL_RESIDUAL, float **p_residual (Output)
The address of a pointer to the array containing the residuals. On return, the
pointer is initialized (through a memory allocation request to malloc), and the
array is stored there. Typically, float *p_residual is declared;
&p_residual is used as argument to this function; and free(p_residual)
is used to free this array.

IMSL_RESIDUAL_USER, float residual[] (Output)
If specified, residual is an array of length n_observations provided by
the user. On return, residual contains the residuals.

IMSL_ANOVA_TABLE, float **p_anova_table (Output)
The address of a pointer to the array containing the analysis of variance table.
On return, the pointer is initialized (through a memory allocation request to
malloc), and the array is stored there. Typically, float *p_anova_table is
declared; &p_anova_table is used as argument to this function; and
free(p_anova_table) is used to free this array.

The analysis of variance statistics are given as follows:

Element Analysis of Variance Statistics
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square
8 overall F-statistic
9 p-value

10 R2 (in percent)
11 adjusted R2 (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

IMSL_ANOVA_TABLE_USER, float anova_table[] (Output)
If specified, the 15 analysis of variance statistics listed above are computed
and stored in the array anova_table provided by the user.

IMSL_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is stored
in array coefficients provided by the user. If IMSL_NO_INTERCEPT is

Chapter 10: Statistics and Random Number Generation regression � 655

specified, the array requires m = n_independent units of memory;
otherwise, the number of units of memory required to store the coefficients is
m = n_independent + 1.

Description
The function imsl_f_regression fits a multiple linear regression model with or
without an intercept. By default, the multiple linear regression model is

yi = �0 + �1xi1 +�2xi2 + � + �kxik + �i i = 1, 2, �, n

where the observed values of the yi’s (input in y) are the responses or values of the
dependent variable; the xi1’s, xi2’s, �, xik’s (input in x) are the settings of the k (input
in n_independent) independent variables; �0, �1, �
 �k are the regression
coefficients whose estimated values are to be output by imsl_f_regression; and the
�i’s are independently distributed normal errors each with mean zero and variance �2.
Here, n is the number of rows in the augmented matrix (x,y), i.e., n equals
n_observations. Note that by default, �0 is included in the model.

The function imsl_f_regression computes estimates of the regression coefficients
by minimizing the sum of squares of the deviations of the observed response yi from the
fitted response

ˆiy

for the n observations. This minimum sum of squares (the error sum of squares) is
output as one of the analysis of variance statistics if IMSL_ANOVA_TABLE (or
IMSL_ANOVA_TABLE_USER) is specified and is computed as

� �
2

1

ˆSSE
n

i i
i

y y
�

� ��

Another analysis of variance statistic is the total sum of squares. By default, the total
sum of squares is the sum of squares of the deviations of yi from its mean

y

the so-called corrected total sum of squares. This statistic is computed as

� �
2

1
SST

n

i
i

y y
�

� ��

When IMSL_NO_INTERCEPT is specified, the total sum of squares is the sum of squares
of yi, the so-called uncorrected total sum of squares. This is computed as

2

1
SST

n

i
i

y
�

��

656 � regression IMSL C/Math/Library

See Draper and Smith (1981) for a good general treatment of the multiple linear
regression model, its analysis, and many examples.

In order to compute a least-squares solution, imsl_f_regression performs an
orthogonal reduction of the matrix of regressors to upper-triangular form. The reduction
is based on one pass through the rows of the augmented matrix (x, y) using fast Givens
transformations. (See Golub and Van Loan 1983, pp. 156�162; Gentleman 1974.) This
method has the advantage that the loss of accuracy resulting from forming the
crossproduct matrix used in the normal equations is avoided.

By default, the current means of the dependent and independent variables are used to
internally center the data for improved accuracy. Let xi be a column vector containing
the j-th row of data for the independent variables. Let ix represent the mean vector for
the independent variables given the data for rows 1, 2, �, i. The current mean vector is
defined to be

1

i
jj

i

x
x

i
�

�

�

The i-th row of data has ix subtracted from it and is then weighted by i/(i � 1).
Although a crossproduct matrix is not computed, the validity of this centering operation
can be seen from the following formula for the sum of squares and crossproducts
matrix:

� �� � � �� �
1 2 1

n n
T T

i n i n i i i i
i i

ix x x x x x x x
i

� �

� � � � �

�

� �

An orthogonal reduction on the centered matrix is computed. When the final
computations are performed, the intercept estimate and the first row and column of the
estimated covariance matrix of the estimated coefficients are updated (if
IMSL_COEF_COVARIANCES or IMSL_COEF_COVARIANCES_USER is specified) to
reflect the statistics for the original (uncentered) data. This means that the estimate of
the intercept is for the uncentered data.

As part of the final computations, imsl_regression checks for linearly dependent
regressors. In particular, linear dependence of the regressors is declared if any of the
following three conditions are satisfied:

� A regressor equals zero.

� Two or more regressors are constant.

�
2

1,2, , 11 i iR
� �

�
�

is less than or equal to tolerance. Here, Ri�1,2, ¼, i-1 is the multiple
correlation coefficient of the i-th independent variable with the first
i � 1 independent variables. If no intercept is in the model, the “multiple
correlation” coefficient is computed without adjusting for the mean.

Chapter 10: Statistics and Random Number Generation regression � 657

On completion of the final computations, if the i-th regressor is declared to be linearly
dependent upon the previous i � 1 regressors, then the i-th coefficient estimate and all
elements in the i-th row and i-th column of the estimated variance-covariance matrix of
the estimated coefficients (if IMSL_COEF_COVARIANCES or
IMSL_COEF_COVARIANCES_USER is specified) are set to zero. Finally, if a linear
dependence is declared, an informational (error) message, code
IMSL_RANK_DEFICIENT, is issued indicating the model is not full rank.

Examples

Example 1
A regression model

0 1 1 2 2 3 3 1,2, , 9i i i i iy x x x i� � � � �� � � � � � �

is fitted to data taken from Maindonald (1984, pp. 203�204).
#include <imsl.h>

#define INTERCEPT 1
#define N_INDEPENDENT 3
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_OBSERVATIONS 9

main()
{
 float *coefficients;
 float x[][N_INDEPENDENT] = {7.0, 5.0, 6.0,
 2.0,-1.0, 6.0,
 7.0, 3.0, 5.0,
 -3.0, 1.0, 4.0,
 2.0,-1.0, 0.0,
 2.0, 1.0, 7.0,
 -3.0,-1.0, 3.0,
 2.0, 1.0, 1.0,
 2.0, 1.0, 4.0};
 float y[] = {7.0,-5.0, 6.0, 5.0, 5.0, -2.0, 0.0, 8.0, 3.0};

 coefficients = imsl_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y, 0);
 imsl_f_write_matrix("Least-Squares Coefficients", 1, N_COEFFICIENTS,
 coefficients,
 IMSL_COL_NUMBER_ZERO,
 0);
}

Output
 Least-Squares Coefficients
 0 1 2 3
7.733 -0.200 2.333 -1.667

658 � regression IMSL C/Math/Library

Example 2
A weighted least-squares fit is computed using the model

yi = �0xi0 +�1xi1 + �2xi2 + �i i = 1, 2, �, 4

and weights 1/i2 discussed by Maindonald (1984, pp. 67�68). In order to compute the
weighted least-squares fit, using an ordinary least-squares function
(imsl_f_regression), the regressors (including the column of ones for the intercept
term) and the responses must be transformed prior to invocation of
imsl_f_regression. Specifically, the i-th response and regressors are multiplied by
a square root of the i-th weight. IMSL_NO_INTERCEPT must be specified since the
column of ones corresponding to the intercept term in the untransformed model is
transformed by the weights and is regarded as an additional independent variable.

In the example, IMSL_ANOVA_TABLE is specified. The minimum sum of squares for
error in terms of the original untransformed regressors and responses for this weighted
regression is

� �
4

2

1

ˆSSE i i i
i

w y y
�

� ��

where wi = 1/i2. Also, since IMSL_NO_INTERCEPT is specified, the uncorrected total
sum-of-squares terms of the original untransformed responses is

4
2

1

SST i i
i

w y
�

��

#include <imsl.h>
#include <math.h>

#define N_INDEPENDENT 3
#define N_COEFFICIENTS N_INDEPENDENT
#define N_OBSERVATIONS 4

main()
{
 int i, j;
 float *coefficients, w, anova_table[15], power;
 float x[][N_INDEPENDENT] = {1.0, -2.0, 0.0,
 1.0, -1.0, 2.0,
 1.0, 2.0, 5.0,
 1.0, 7.0, 3.0};
 float y[] = {-3.0, 1.0, 2.0, 6.0};
 char *anova_row_labels[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total (uncorrected) degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total (uncorrected) sum of squares",
 "regression mean square",
 "error mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",

Chapter 10: Statistics and Random Number Generation regression � 659

 "est. standard deviation of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};
 power = 0.0;
 for (i = 0; i < N_OBSERVATIONS; i++) {
 power += 1.0;
 /* The square root of the weight */
 w = sqrt(1.0 / (power*power));
 /* Transform response */
 y[i] *= w;
 /* Transform regressors */
 for (j = 0; j < N_INDEPENDENT; j++)
 x[i][j] *= w;
 }

 coefficients = imsl_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y,
 IMSL_NO_INTERCEPT,
 IMSL_ANOVA_TABLE_USER,
 anova_table, 0);

 imsl_f_write_matrix("Least-Squares Coefficients", 1,
 N_COEFFICIENTS, coefficients, 0);
 imsl_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table, IMSL_ROW_LABELS, anova_row_labels,
 IMSL_WRITE_FORMAT, "%10.2f", 0);
}

Output
Least-Squares Coefficients
 1 2 3
-1.431 0.658 0.748

 * * * Analysis of Variance * * *

degrees of freedom for regression 3.00
degrees of freedom for error 1.00
total (uncorrected) degrees of freedom 4.00
sum of squares for regression 10.93
sum of squares for error 1.01
total (uncorrected) sum of squares 11.94
regression mean square 3.64
error mean square 1.01
F-statistic 3.60
p-value 0.37
R-squared (in percent) 91.52
adjusted R-squared (in percent) 66.08
est. standard deviation of model error 1.01
overall mean of y -0.08
coefficient of variation (in percent) -1207.73

Warning Errors
IMSL_RANK_DEFICIENT The model is not full rank. There is not a unique

least-squares solution.

660 � poly_regression IMSL C/Math/Library

poly_regression
Performs a polynomial least-squares regression.

Synopsis
#include <imsl.h>
float *imsl_f_poly_regression (int n_observations, float x[], float y[],

int degree, �, 0)

The type double procedure is imsl_d_poly_regression.

Required Arguments

int n_observations (Input)
The number of observations.

float x[] (Input)
Array of length n_observations containing the independent variable.

float y[] (Input)
Array of length n_observations containing the dependent variable.

int degree (Input)
The degree of the polynomial.

Return Value
A pointer to the vector of size degree + 1 containing the coefficients of the fitted
polynomial. If a fit cannot be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_poly_regression (int n_observations, float xdata[], float

ydata[], int degree,
IMSL_WEIGHTS, float weights[],
IMSL_SSQ_POLY, float **p_ssq_poly,
IMSL_SSQ_POLY_USER, float ssq_poly[],
IMSL_SSQ_POLY_COL_DIM, int ssq_poly_col_dim,
IMSL_SSQ_LOF, float **p_ssq_lof,
IMSL_SSQ_LOF_USER, float ssq_lof[],
IMSL_SSQ_LOF_COL_DIM, int ssq_lof_col_dim,
IMSL_X_MEAN, float *x_mean,
IMSL_X_VARIANCE, float *x_variance,
IMSL_ANOVA_TABLE, float **p_anova_table,
IMSL_ANOVA_TABLE_USER, float anova_table[],
IMSL_DF_PURE_ERROR, int *df_pure_error,
IMSL_SSQ_PURE_ERROR, float *ssq_pure_error,
IMSL_RESIDUAL, float **p_residual,

Chapter 10: Statistics and Random Number Generation poly_regression � 661

IMSL_RESIDUAL_USER, float residual[],
IMSL_RETURN_USER, float coefficients[],
0)

Optional Arguments
IMSL_WEIGHTS, float weights[] (Input)

Array with n_observations components containing the vector of weights
for the observation. If this option is not specified, all observations have equal
weights of one.

IMSL_SSQ_POLY, float **p_ssq_poly (Output)
The address of a pointer to the array containing the sequential sums of squares
and other statistics. On return, the pointer is initialized (through a memory
allocation request to malloc), and the array is stored there. Typically, float
*p_ssq_poly is declared; &p_ssq_poly is used as an argument to this
function; and free(p_ssq_poly) is used to free this array. Row i
corresponds to xi, i = 1, �, degree, and the columns are described as follows:

Column Description
1 degrees of freedom
2 sums of squares
3 F-statistic
4 p-value

IMSL_SSQ_POLY_USER, float ssq_poly[] (Output)
Array of size degree
 4 containing the sequential sums of squares for a
polynomial fit described under optional argument IMSL_SSQ_POLY.

IMSL_SSQ_POLY_COL_DIM, int ssq_poly_col_dim (Input)
The column dimension of ssq_poly.
Default: ssq_poly_col_dim = 4

IMSL_SSQ_LOF, float **p_ssq_lof (Output)
The address of a pointer to the array containing the lack-of-fit statistics. On
return, the pointer is initialized (through a memory allocation request to
malloc), and the array is stored there. Typically, float *p_ssq_lof is
declared; &p_ssq_lof is used as an argument to this function; and
free(p_ssq_lof) is used to free this array. Row i corresponds to
xi, i = 1, �, degree, and the columns are described in the following table:

Column Description
1 degrees of freedom
2 lack-of-fit sums of squares
3 F-statistic for testing lack-of-fit for a

polynomial model of degree i

662 � poly_regression IMSL C/Math/Library

Column Description
4 p-value for the test

IMSL_SSQ_LOF_USER, float ssq_lof[] (Output)
Array of size degree
 4 containing the matrix of lack-of-fit statistics
described under optional argument IMSL_SSQ_LOF.

IMSL_SSQ_LOF_COL_DIM, int ssq_lof_col_dim (Input)
The column dimension of ssq_lof.
Default: ssq_lof_col_dim = 4

IMSL_X_MEAN, float *x_mean (Output)
The mean of x.

IMSL_X_VARIANCE, float *x_variance (Output)
The variance of x.

IMSL_ANOVA_TABLE, float **p_anova_table (Output)
The address of a pointer to the array containing the analysis of variance table.
On return, the pointer is initialized (through a memory allocation request to
malloc), and the array is stored there. Typically, float *p_anova_table is
declared; &p_anova_table is used as an argument to this function; and
free(p_anova_table) is used to free this array.

Element Analysis of Variance Statistic
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square
8 overall F-statistic
9 p-value

10 R2 (in percent)
11 adjusted R2 (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

IMSL_ANOVA_TABLE_USER, float anova_table[] (Output)
Array of size 15 containing the analysis variance statistics listed under
optional argument IMSL_ANOVA_TABLE.

Chapter 10: Statistics and Random Number Generation poly_regression � 663

IMSL_DF_PURE_ERROR, int *df_pure_error (Output)
If specified, the degrees of freedom for pure error are returned in
df_pure_error.

IMSL_SSQ_PURE_ERROR, float *ssq_pure_error (Output)
If specified, the sums of squares for pure error are returned in
ssq_pure_error.

IMSL_RESIDUAL, float **p_residual (Output)
The address of a pointer to the array containing the residuals. On return, the
pointer is initialized (through a memory allocation request to malloc), and the
array is stored there. Typically, float *p_residual is declared;
&p_residual is used as an argument to this function; and
free(p_residual)is used to free this array.

IMSL_RESIDUAL_USER, float residual[] (Output)
If specified, residual is an array of length n_observations provided by
the user. On return, residual contains the residuals.

IMSL_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is stored
in array coefficients of size degree + 1 provided by the user.

Description
The function imsl_f_poly_regression computes estimates of the regression
coefficients in a polynomial (curvilinear) regression model. In addition to the
computation of the fit, imsl_f_poly_regression computes some summary
statistics. Sequential sums of squares attributable to each power of the independent
variable (stored in ssq_poly) are computed. These are useful in assessing the
importance of the higher order powers in the fit. Draper and Smith (1981, pp. 101�102)
and Neter and Wasserman (1974, pp. 278�287) discuss the interpretation of the
sequential sums of squares. The statistic R2 is the percentage of the sum of squares of
y about its mean explained by the polynomial curve. Specifically,

� �

� �

2
2

2
1

ˆ
100%iy y

R
y y

�

�

�

�

�

where is the fitted y value at xi and ˆiy y is the mean of y. This statistic is useful in
assessing the overall fit of the curve to the data. R2 must be between 0% and 100%,
inclusive. R2 = 100% indicates a perfect fit to the data.

Estimates of the regression coefficients in a polynomial model are computed using
orthogonal polynomials as the regressor variables. This reparameterization of the
polynomial model in terms of orthogonal polynomials has the advantage that the loss of
accuracy resulting from forming powers of the x-values is avoided. All results are
returned to the user for the original model (power form).

The function imsl_f_poly_regression is based on the algorithm of Forsythe
(1957). A modification to Forsythe’s algorithm suggested by Shampine (1975) is used

664 � poly_regression IMSL C/Math/Library

for computing the polynomial coefficients. A discussion of Forsythe’s algorithm and
Shampine’s modification appears in Kennedy and Gentle (1980, pp. 342�347).

Examples

Example 1
A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pp.
279�285). The data set contains the response variable y measuring coffee sales (in
hundred gallons) and the number of self-service coffee dispensers. Responses for
14 similar cafeterias are in the data set. A graph of the results also is given.

#include <imsl.h>

#define DEGREE 2
#define NOBS 14

main()
{
 float *coefficients;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};

 coefficients = imsl_f_poly_regression (NOBS, x, y, DEGREE, 0);

 imsl_f_write_matrix("Least-Squares Polynomial Coefficients",
 DEGREE + 1, 1, coefficients,
 IMSL_ROW_NUMBER_ZERO,
 0);
}

Output
Least-Squares Polynomial Coefficients
 0 503.3
 1 78.9
 2 -4.0

Chapter 10: Statistics and Random Number Generation poly_regression � 665

Figure 10-1 A Polynomial Fit

Example 2
This example is a continuation of the initial example. Here, many optional arguments
are used.

#include <stdio.h>
#include <imsl.h>

#define DEGREE 2
#define NOBS 14

void main()
{
 int iset = 1, dfpe;
 float *coefficients, *anova, sspe, *sspoly, *sslof;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
 char *coef_rlab[2];
 char *coef_clab[] = {" ", "intercept", "linear", "quadratic"};
 char *stat_clab[] = {" ", "Degrees of\nFreedom",
 "Sum of\nSquares", "\nF-Statistic",
 "\np-value"};
 char *anova_rlab[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "regression mean square",
 "error mean square", "F-statistic",

666 � poly_regression IMSL C/Math/Library

 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 coefficients = imsl_f_poly_regression (NOBS, x, y, DEGREE,
 IMSL_SSQ_POLY, &sspoly,
 IMSL_SSQ_LOF, &sslof,
 IMSL_ANOVA_TABLE, &anova,
 IMSL_DF_PURE_ERROR, &dfpe,
 IMSL_SSQ_PURE_ERROR, &sspe,
 0);
 imsl_write_options(-1, &iset);
 imsl_f_write_matrix("Least-Squares Polynomial Coefficients",
 1, DEGREE + 1, coefficients,
 IMSL_COL_LABELS, coef_clab, 0);
 coef_rlab[0] = coef_clab[2];
 coef_rlab[1] = coef_clab[3];
 imsl_f_write_matrix("Sequential Statistics", DEGREE, 4, sspoly,
 IMSL_COL_LABELS, stat_clab,
 IMSL_ROW_LABELS, coef_rlab,
 IMSL_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
 0);
 imsl_f_write_matrix("Lack-of-Fit Statistics", DEGREE, 4, sslof,
 IMSL_COL_LABELS, stat_clab,
 IMSL_ROW_LABELS, coef_rlab,
 IMSL_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
 0);
 imsl_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova,
 IMSL_ROW_LABELS, anova_rlab,
 IMSL_WRITE_FORMAT, "%9.2f",
 0);
}

Output
 Least-Squares Polynomial Coefficients
 intercept linear quadratic
 503.3 78.9 -4.0

 Sequential Statistics
 Degrees of Sum of
 Freedom Squares F-Statistic p-value
 linear 1.0 220644.2 3415.8 0.0000
 quadratic 1.0 4387.7 67.9 0.0000

 Lack-of-Fit Statistics
 Degrees of Sum of
 Freedom Squares F-Statistic p-value
 linear 5.0 4793.7 22.0 0.0004
 quadratic 4.0 405.9 2.3 0.1548

 * * * Analysis of Variance * * *

 degrees of freedom for regression 2.00
 degrees of freedom for error 11.00
 total (corrected) degrees of freedom 13.00

Chapter 10: Statistics and Random Number Generation ranks � 667

 sum of squares for regression 225031.94
 sum of squares for error 710.55
 total (corrected) sum of squares 225742.48
 regression mean square 112515.97
 error mean square 64.60
 F-statistic 1741.86
 p-value 0.00
 R-squared (in percent) 99.69
 adjusted R-squared (in percent) 99.63
 est. standard deviation of model error 8.04
 overall mean of y 710.99
 coefficient of variation (in percent) 1.13

Warning Errors
IMSL_CONSTANT_YVALUES The y values are constant. A zero-order

polynomial is fit. High order coefficients
are set to zero.

IMSL_FEW_DISTINCT_XVALUES There are too few distinct x values to fit
the desired degree polynomial. High
order coefficients are set to zero.

IMSL_PERFECT_FIT A perfect fit was obtained with a
polynomial of degree less than degree.
High order coefficients are set to zero.

Fatal Errors
IMSL_NONNEG_WEIGHT_REQUEST_2 All weights must be nonnegative.

IMSL_ALL_OBSERVATIONS_MISSING Each (x, y) point contains NaN (not a
number). There are no valid data.

IMSL_CONSTANT_XVALUES The x values are constant.

ranks
Computes the ranks, normal scores, or exponential scores for a vector of observations.

Synopsis
#include <imsl.h>
float *imsl_f_ranks (int n_observations, float x[], �, 0)

The type double function is imsl_d_ranks.

Required Arguments

int n_observations (Input)
The number of observations.

float x[] (Input)
Array of length n_observations containing the observations to be ranked.

668 � ranks IMSL C/Math/Library

Return Value
A pointer to a vector of length n_observations containing the rank (or optionally, a
transformation of the rank) of each observation.

Synopsis with Optional Arguments
#include <imsl.h>
float* imsl_f_ranks (int n_observations, float x[],

IMSL_AVERAGE_TIE,
IMSL_HIGHEST,
IMSL_LOWEST,
IMSL_RANDOM_SPLIT,
IMSL_FUZZ, float fuzz_value,
IMSL_RANKS,
IMSL_BLOM_SCORES,
IMSL_TUKEY_SCORES,
IMSL_VAN_DER_WAERDEN_SCORES,
IMSL_EXPECTED_NORMAL_SCORES,
IMSL_SAVAGE_SCORES,
IMSL_RETURN_USER, float ranks[],
0)

Optional Arguments
IMSL_AVERAGE_TIE, or
IMSL_HIGHEST, or
IMSL_LOWEST, or

IMSL_RANDOM_SPLIT

Exactly one of these optional arguments may be used to change the method
used to assign a score to tied observations.

Keyword Method
IMSL_AVERAGE_TIE average of the scores of the tied

observations (default)
IMSL_HIGHEST highest score in the group of ties
IMSL_LOWEST lowest score in the group of ties
IMSL_RANDOM_SPLIT tied observations are randomly split

using a random number generator.

IMSL_FUZZ, float fuzz_value (Input)
Value used to determine when two items are tied. If abs(x[i]-x[j]) is less
than or equal to fuzz_value, then x[i] and x[j] are said to be tied. The
default value for fuzz_value is 0.0.

IMSL_RANKS, or
IMSL_BLOM_SCORES, or

Chapter 10: Statistics and Random Number Generation ranks � 669

IMSL_TUKEY_SCORES, or
IMSL_VAN_DER_WAERDEN_SCORES, or
IMSL_EXPECTED_NORMAL_SCORES, or
IMSL_SAVAGE_SCORES

Exactly one of these optional arguments may be used to specify the type of
values returned.

Keyword Result
IMSL_RANKS ranks (default)
IMSL_BLOM_SCORES Blom version of normal scores
IMSL_TUKEY_SCORES Tukey version of normal scores
IMSL_VAN_DER_WAERDEN_SCORES Van der Waerden version of normal

scores
IMSL_EXPECTED_NORMAL_SCORES expected value of normal order

statistics (For tied observations, the
average of the expected normal
scores.)

IMSL_SAVAGE_SCORES Savage scores (the expected value of
exponential order statistics)

IMSL_RETURN_USER, float ranks[] (Output)
If specified, the ranks are returned in the user-supplied array ranks.

Description

Ties
In data without ties, the output values are the ordinary ranks (or a transformation of the
ranks) of the data in x. If x[i] has the smallest value among the values in x and there is
no other element in x with this value, then ranks[i] = 1. If both x[i] and x[j] have the
same smallest value, then the output value depends upon the option used to break ties.

Keyword Result
IMSL_AVERAGE_TIE ranks[i] = ranks[j] = 1.5
IMSL_HIGHEST ranks[i] = ranks[j] = 2.0
IMSL_LOWEST ranks[i] = ranks [j] = 1.0
IMSL_RANDOM_SPLIT ranks[i] = 1.0 and ranks[j] = 2.0

or, randomly,
ranks[i] = 2.0 and ranks[j] = 1.0

When the ties are resolved randomly, the function imsl_f_random_uniform is used
to generate random numbers. Different results may occur from different executions of
the program unless the “seed” of the random number generator is set explicitly by use
of the function imsl_random_seed_set (page 675).

670 � ranks IMSL C/Math/Library

The Scores
Normal and other functions of the ranks can optionally be returned. Normal scores can
be defined as the expected values, or approximations to the expected values, of order
statistics from a normal distribution. The simplest approximations are obtained by
evaluating the inverse cumulative normal distribution function,
imsl_f_normal_inverse_cdf, at the ranks scaled into the open interval (0,1). In the
Blom version (see Blom 1958), the scaling transformation for the rank
ri (1 � ri � n where n is the sample size, n_observations) is (ri � 3/8)/(n + 1/4).
The Blom normal score corresponding to the observation with rank ri is

1 3 / 8
()

1/ 4
ir
n

�

�
�

�

where ���� is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation; that is, if x[i]
equals x[j] (within fuzz_value) and their value is the k-th smallest in the data set, the
Blom normal scores are determined for ranks of k and k + 1. Then, these normal scores
are averaged or selected in the manner specified. (Whether the transformations are
made first or ties are resolved first makes no difference except when IMSL_AVERAGE is
specified.)

In the Tukey version (see Tukey 1962), the scaling transformation for the rank
ri is (ri � 1/3)/(n + 1/3). The Tukey normal score corresponding to the observation with
rank ri is

1 1/ 3
()

1/ 3
ir

n
�

�
�

�

Ties are handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling transformation
for the rank ri is ri/(n + 1). The Van der Waerden normal score corresponding to the
observation with rank ri is

1()
1

ir
n

�

�
�

Ties are handled in the same way as for the Blom normal scores.

When option IMSL_EXPECTED_NORMAL_SCORES is used, the output values are the
expected values of the normal order statistics from a sample of size n_observations.
If the value in x[i] is the k-th smallest, then the value output in ranks[i] is E(zk) where
E(�) is the expectation operator, and zk is the k-th order statistic in a sample of size
n_observations from a standard normal distribution. Ties are handled in the same
way as for the Blom normal scores.

Chapter 10: Statistics and Random Number Generation ranks � 671

Savage scores are the expected values of the exponential order statistics from a sample
of size n_observations. These values are called Savage scores because of their use
in a test discussed by Savage (1956) (see Lehmann 1975). If the value in x[i] is the
k-th smallest, then the value output in ranks[i] is E(yk) where yk is the k-th order
statistic in a sample of size n_observations from a standard exponential distribution.
The expected value of the k-th order statistic from an exponential sample of size n
(n_observations) is

1 1 1
1 1n n n k

� � �
� �

�

�

Ties are handled in the same way as for the Blom normal scores.

Examples

Example 1
The data for this example, from Hinkley (1977), contains 30 observations. Note that the
fourth and sixth observations are tied, and that the third and twentieth observations are
tied.

#include <imsl.h>

#define N_OBSERVATIONS 30

main()
{
 float *ranks;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};

 ranks = imsl_f_ranks(N_OBSERVATIONS, x, 0);
 imsl_f_write_matrix("Ranks" , 1, N_OBSERVATIONS, ranks, 0);
}

Output
 Ranks
 1 2 3 4 5 6
5.0 18.0 6.5 11.5 21.0 11.5

 7 8 9 10 11 12
2.0 15.0 29.0 24.0 27.0 28.0

 13 14 15 16 17 18
16.0 23.0 3.0 17.0 13.0 1.0

 19 20 21 22 23 24
4.0 6.5 26.0 19.0 10.0 14.0

 25 26 27 28 29 30
30.0 25.0 9.0 20.0 8.0 22.0

672 � ranks IMSL C/Math/Library

Example 2
This example uses all of the score options with the same data set, which contains some
ties. Ties are handled in several different ways in this example.

#include <imsl.h>

#define N_OBSERVATIONS 30

void main()
{
 float fuzz_value=0.0, score[4][N_OBSERVATIONS], *ranks;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
 char *row_labels[] = {"Blom", "Tukey", "Van der Waerden",
 "Expected Value"};

 /* Blom scores using largest ranks */
 /* for ties */
 imsl_f_ranks(N_OBSERVATIONS, x,
 IMSL_HIGHEST,
 IMSL_BLOM_SCORES,
 IMSL_RETURN_USER, &score[0][0],
 0);
 /* Tukey normal scores using smallest */
 /* ranks for ties */
 imsl_f_ranks(N_OBSERVATIONS, x,
 IMSL_LOWEST,
 IMSL_TUKEY_SCORES,
 IMSL_RETURN_USER, &score[1][0],
 0);
 /* Van der Waerden scores using */
 /* randomly resolved ties */
 imsl_random_seed_set(123457);
 imsl_f_ranks(N_OBSERVATIONS, x,
 IMSL_RANDOM_SPLIT,
 IMSL_VAN_DER_WAERDEN_SCORES,
 IMSL_RETURN_USER, &score[2][0],
 0);
 /* Expected value of normal order */
 /* statistics using averaging to */
 /* break ties */
 imsl_f_ranks(N_OBSERVATIONS, x,
 IMSL_EXPECTED_NORMAL_SCORES,
 IMSL_RETURN_USER, &score[3][0],
 0);
 imsl_f_write_matrix("Normal Order Statistics", 4, N_OBSERVATIONS,
 (float *)score,
 IMSL_ROW_LABELS, row_labels,
 0);
 /* Savage scores using averaging */
 /* to break ties */
 ranks = imsl_f_ranks(N_OBSERVATIONS, x,
 IMSL_SAVAGE_SCORES,
 0);
 imsl_f_write_matrix("Expected values of exponential order "
 "statistics", 1,

Chapter 10: Statistics and Random Number Generation ranks � 673

 N_OBSERVATIONS, ranks,
 0);
}

Output
 Normal Order Statistics
 1 2 3 4 5
Blom -1.024 0.209 -0.776 -0.294 0.473
Tukey -1.020 0.208 -0.890 -0.381 0.471
Van der Waerden -0.989 0.204 -0.753 -0.287 0.460
Expected Value -1.026 0.209 -0.836 -0.338 0.473

 6 7 8 9 10
Blom -0.294 -1.610 -0.041 1.610 0.776
Tukey -0.381 -1.599 -0.041 1.599 0.773
Van der Waerden -0.372 -1.518 -0.040 1.518 0.753
Expected Value -0.338 -1.616 -0.041 1.616 0.777

 11 12 13 14 15
Blom 1.176 1.361 0.041 0.668 -1.361
Tukey 1.171 1.354 0.041 0.666 -1.354
Van der Waerden 1.131 1.300 0.040 0.649 -1.300
Expected Value 1.179 1.365 0.041 0.669 -1.365

 16 17 18 19 20
Blom 0.125 -0.209 -2.040 -1.176 -0.776
Tukey 0.124 -0.208 -2.015 -1.171 -0.890
Van der Waerden 0.122 -0.204 -1.849 -1.131 -0.865
Expected Value 0.125 -0.209 -2.043 -1.179 -0.836

 21 22 23 24 25
Blom 1.024 0.294 -0.473 -0.125 2.040
Tukey 1.020 0.293 -0.471 -0.124 2.015
Van der Waerden 0.989 0.287 -0.460 -0.122 1.849
Expected Value 1.026 0.294 -0.473 -0.125 2.043

 26 27 28 29 30
Blom 0.893 -0.568 0.382 -0.668 0.568
Tukey 0.890 -0.566 0.381 -0.666 0.566
Van der Waerden 0.865 -0.552 0.372 -0.649 0.552
Expected Value 0.894 -0.568 0.382 -0.669 0.568

 Expected values of exponential order statistics
 1 2 3 4 5 6
 0.179 0.892 0.240 0.474 1.166 0.474

 7 8 9 10 11 12
 0.068 0.677 2.995 1.545 2.162 2.495

 13 14 15 16 17 18
 0.743 1.402 0.104 0.815 0.555 0.033

 19 20 21 22 23 24
 0.141 0.240 1.912 0.975 0.397 0.614

 25 26 27 28 29 30
 3.995 1.712 0.350 1.066 0.304 1.277

674 � random_seed_get IMSL C/Math/Library

random_seed_get
Retrieves the current value of the seed used in the IMSL random number generators.

Synopsis
#include <imsl.h>
int imsl_random_seed_get ()

Return Value
The value of the seed.

Description
The function imsl_random_seed_get retrieves the current value of the “seed” used
in the random number generators. A reason for doing this would be to restart a
simulation, using imsl_random_seed_set to reset the seed.

Example
This example illustrates the statements required to restart a simulation using
imsl_random_seed_get and imsl_random_seed_set. Also, the example shows
that restarting the sequence of random numbers at the value of the seed last generated is
the same as generating the random numbers all at once.

#include <imsl.h>

#define N_RANDOM 5

main()
{
 int seed = 123457;
 float *r1, *r2, *r;

 imsl_random_seed_set(seed);
 r1 = imsl_f_random_uniform(N_RANDOM, 0);
 imsl_f_write_matrix ("First Group of Random Numbers", 1,
 N_RANDOM, r1, 0);
 seed = imsl_random_seed_get();

 imsl_random_seed_set(seed);
 r2 = imsl_f_random_uniform(N_RANDOM, 0);
 imsl_f_write_matrix ("Second Group of Random Numbers", 1,
 N_RANDOM, r2, 0);

 imsl_random_seed_set(123457);
 r = imsl_f_random_uniform(2*N_RANDOM, 0);
 imsl_f_write_matrix ("Both Groups of Random Numbers", 1,
 2*N_RANDOM, r, 0);
}

Chapter 10: Statistics and Random Number Generation random_seed_set � 675

Output
 First Group of Random Numbers
 1 2 3 4 5
0.9662 0.2607 0.7663 0.5693 0.8448

 Second Group of Random Numbers
 1 2 3 4 5
0.0443 0.9872 0.6014 0.8964 0.3809

 Both Groups of Random Numbers
 1 2 3 4 5 6
0.9662 0.2607 0.7663 0.5693 0.8448 0.0443

 7 8 9 10
0.9872 0.6014 0.8964 0.3809

random_seed_set
Initializes a random seed for use in the IMSL random number generators.

Synopsis
#include <imsl.h>
void imsl_random_seed_set (int seed)

Required Arguments

int seed (Input)
The seed of the random number generator. The argument seed must be in the
range (0, 2147483646). If seed is zero, a value is computed using the system
clock. Hence, the results of programs using the IMSL random number
generators will be different at various times.

Description
The function imsl_random_seed_set is used to initialize the seed used in the IMSL
random number generators. The form of the generators is

xi � cxi-1 mod (231 � 1)

The value of x0 is the seed. If the seed is not initialized prior to invocation of any of the
routines for random number generation by calling imsl_random_seed_set, the seed
is initialized via the system clock. The seed can be reinitialized to a clock-dependent
value by calling imsl_random_seed_set with seed set to 0.

The effect of imsl_random_seed_set is to set some global values used by the
random number generators.

A common use of imsl_random_seed_set is in conjunction with
imsl_random_seed_get to restart a simulation.

676 � random_option IMSL C/Math/Library

Example
See function imsl_random_seed_get (page 674).

random_option
Selects the uniform (0,1) multiplicative congruential pseudorandom number generator.

Synopsis
#include <imsl.h>
void imsl_random_option (int generator_option)

Required Arguments

int generator_option (Input)
Indicator of the generator. The random number generator is a multiplicative
congruential generator with modulus 231 � 1. Argument generator_option
is used to choose the multiplier and whether or not shuffling is done.

generator_option Generator
1 multiplier 16807 used
2 multiplier 16807 used with shuffling
3 multiplier 397204094 used
4 multiplier 397204094 used with shuffling
5 multiplier 950706376 used
6 multiplier 950706376 used with shuffling

Description
The IMSL uniform pseudorandom number generators use a multiplicative congruential
method, with or without shuffling. The value of the multiplier and whether or not to use
shuffling are determined by imsl_random_option. The description of function
imsl_f_random_uniform may provide some guidance in the choice of the form of
the generator. If no selection is made explicitly, the generators use the multiplier 16807
without shuffling. This form of the generator has been in use for some time (Lewis et al.
1969).

Example
The C statement

imsl_random_option(1)

selects the simple multiplicative congruential generator with multiplier 16807. Since
this is the same as the default, this statement has no effect unless

Chapter 10: Statistics and Random Number Generation random_uniform � 677

imsl_random_option had previously been called in the same program to select a
different generator.

random_uniform
Generates pseudorandom numbers from a uniform (0,1) distribution.

Synopsis
#include <imsl.h>
float *imsl_f_random_uniform (int n_random, �, 0)

The type double function is imsl_d_random_uniform.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
A pointer to a vector of length n_random containing the random uniform (0, 1)
deviates.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_random_uniform (int n_random,

IMSL_RETURN_USER, float r[],
0)

Optional Arguments
IMSL_RETURN_USER, float r[] (Output)

If specified, the array of length n_random containing the random uniform
(0, 1) deviates is returned in the user-provided array r.

Description
The function imsl_f_random_uniform generates pseudorandom numbers from a
uniform (0, 1) distribution using a multiplicative congruential method. The form of the
generator is

xi � cxi-1 mod (231 � 1)

Each xi is then scaled into the unit interval (0,1). The possible values for c in the
generators are 16807, 397204094, and 950706376. The selection is made by the
function imsl_random_option. The choice of 16807 will result in the fastest

678 � random_uniform IMSL C/Math/Library

execution time. If no selection is made explicitly, the functions use the multiplier
16807.

The function imsl_random_seed_set can be used to initialize the seed of the
random number generator. The function imsl_random_option can be used to select
the form of the generator.

The user can select a shuffled version of these generators. In this scheme, a table is
filled with the first 128 uniform (0, 1) numbers resulting from the simple multiplicative
congruential generator. Then, for each xi from the simple generator, the low-order bits
of xi are used to select a random integer, j, from 1 to 128. The j-th entry in the table is
then delivered as the random number; and xi, after being scaled into the unit interval, is
inserted into the j-th position in the table.

The values returned by imsl_f_random_uniform are positive and less than 1.0.
Some values returned may be smaller than the smallest relative spacing, however.
Hence, it may be the case that some value, for example r[i], is such that
1.0 � r[i] = 1.0.

Deviates from the distribution with uniform density over the interval (a, b) can be
obtained by scaling the output from imsl_f_random_uniform. The following
statements (in single precision) would yield random deviates from a uniform (a, b)
distribution.
float *r;
r = imsl_f_random_uniform (n_random, 0);
for (i=0; i<n_random; i++) r[i]*(b-a) + a;

Example
In this example, imsl_f_random_uniform is used to generate five pseudorandom
uniform numbers. Since imsl_random_option is not called, the generator used is a
simple multiplicative congruential one with a multiplier of 16807.

#include <imsl.h>
#include <stdio.h>

#define N_RANDOM 5

void main()
{
 float *r;

 imsl_random_seed_set(123457);

 r = imsl_f_random_uniform(N_RANDOM, 0);

 printf("Uniform random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 r[0], r[1], r[2], r[3], r[4]);
}

Output
Uniform random deviates: 0.9662 0.2607 0.7663 0.5693 0.8448

Chapter 10: Statistics and Random Number Generation random_normal � 679

random_normal
Generates pseudorandom numbers from a standard normal distribution using an inverse
CDF method.

Synopsis
#include <imsl.h>
float *imsl_f_random_normal (int n_random, �, 0)

The type double function is imsl_d_random_normal.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
A pointer to a vector of length n_random containing the random standard normal
deviates. To release this space, use free.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_random_normal (int n_random,

IMSL_RETURN_USER, float r[],
0)

Optional Arguments
IMSL_RETURN_USER, float r[] (Output)

Pointer to a vector of length n_random that will contain the generated random
standard normal deviates.

Description
Function imsl_f_random_normal generates pseudorandom numbers from a standard
normal (Gaussian) distribution using an inverse CDF technique. In this method, a
uniform (0, 1) random deviate is generated. Then, the inverse of the normal distribution
function is evaluated at that point, using the function imsl_f_normal_inverse_cdf.

Deviates from the normal distribution with mean mean and standard deviation
std_dev can be obtained by scaling the output from imsl_f_random_normal. The
following statements (in single precision) would yield random deviates from a normal
(mean, std_dev2) distribution.

 float *r;
 r = imsl_f_random_normal (n_random, 0);
 for (i=0; i<n_random; i++)
 r[i] = r[i]*std_dev + mean;

680 � random_poisson IMSL C/Math/Library

Example
In this example, imsl_f_random_normal is used to generate five pseudorandom
deviates from a standard normal distribution.

#include <imsl.h>

#define N_RANDOM 5

void main()
{
 int seed = 123457;
 int n_random = N_RANDOM;
 float *r;

 imsl_random_seed_set (seed);
 r = imsl_f_random_normal(n_random, 0);
 printf("%s: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 "Standard normal random deviates",
 r[0], r[1], r[2], r[3], r[4]);
}

Output
Standard normal random deviates: 1.8279 -0.6412 0.7266 0.1747 1.0145

Remark
The function imsl_random_seed_set can be used to initialize the seed of the
random number generator. The function imsl_random_option can be used to select
the form of the generator.

random_poisson
Generates pseudorandom numbers from a Poisson distribution.

Synopsis
#include <imsl.h>
int *imsl_random_poisson (int n_random, float theta, �, 0)

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float theta (Input)
Mean of the Poisson distribution. The argument theta must be positive.

Return Value
If no optional arguments are used, imsl_random_poisson returns a pointer to a
vector of length n_random containing the random Poisson deviates. To release this
space, use free.

Chapter 10: Statistics and Random Number Generation random_poisson � 681

Synopsis with Optional Arguments
#include <imsl.h>
int *imsl_random_poisson (int n_random, float theta,

IMSL_RETURN_USER, int r[],
0)

Optional Arguments
IMSL_RETURN_USER, int r[] (Output)

If specified, the vector of length n_random of random Poisson deviates is
returned in the user-provided array r.

Description
The function imsl_random_poisson generates pseudorandom numbers from
a Poisson distribution with positive mean theta. The probability function
(with 	 = theta) is

f(x) = (e-q	x)/x!, for x = 0, 1,2, �

If theta is less than 15, imsl_random_poisson uses an inverse CDF method;
otherwise, the PTPE method of Schmeiser and Kachitvichyanukul (1981) (see also
Schmeiser 1983) is used. The PTPE method uses a composition of four regions, a
triangle, a parallelogram, and two negative exponentials. In each region except the
triangle, acceptance/rejection is used. The execution time of the method is essentially
insensitive to the mean of the Poisson.

The function imsl_random_seed_set can be used to initialize the seed of the
random number generator. The function imsl_random_option can be used to select
the form of the generator.

Example
In this example, imsl_random_poisson is used to generate five pseudorandom
deviates from a Poisson distribution with mean equal to 0.5.

#include <imsl.h>

#define N_RANDOM 5

void main()
{
 int *r;
 int seed = 123457;
 float theta = 0.5;

 imsl_random_seed_set (seed);
 r = imsl_random_poisson (N_RANDOM, theta, 0);
 imsl_i_write_matrix ("Poisson(0.5) random deviates", 1, 5, r, 0);
}

682 � random_gamma IMSL C/Math/Library

Output
Poisson(0.5) random deviates
 1 2 3 4 5
 2 0 1 0 1

random_gamma
Generates pseudorandom numbers from a standard gamma distribution.

Synopsis
#include <imsl.h>
float *imsl_f_random_gamma (int n_random, float a, �, 0)

The type double procedure is imsl_d_random_gamma.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float a (Input)
The shape parameter of the gamma distribution. This parameter must be
positive.

Return Value
If no optional arguments are used, imsl_f_random_gamma returns a pointer to a
vector of length n_random containing the random standard gamma deviates. To release
this space, use free.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_random_gamma (int n_random, float a,

IMSL_RETURN_USER, float r[],
0)

Optional Arguments
IMSL_USER_RETURN, float r[] (Output)

If specified, the vector of length n_random containing the random standard
gamma deviates is returned in the user-provided array r.

Description
The function imsl_f_random_gamma generates pseudorandom numbers from a
gamma distribution with shape parameter a and unit scale parameter. The probability
density function is

Chapter 10: Statistics and Random Number Generation random_gamma � 683

� �
� �

11 for 0a xf x x e x
a

� �

� �
�

Various computational algorithms are used depending on the value of the shape
parameter a. For the special case of a = 0.5, squared and halved normal deviates are
used; and for the special case of a = 1.0, exponential deviates are generated. Otherwise,
if a is less than 1.0, an acceptance-rejection method due to Ahrens, described in Ahrens
and Dieter (1974), is used. If a is greater than 1.0, a ten-region rejection procedure
developed by Schmeiser and Lal (1980) is used.

Deviates from the two-parameter gamma distribution with shape parameter a and scale
parameter b can be generated by using imsl_f_random_gamma and then multiplying
each entry in r by b. The following statements (in single precision) would yield random
deviates from a gamma (a, b) distribution.
float *r;
r = imsl_f_random_gamma(n_random, a, 0);
for (i=0; i<n_random; i++) *(r+i) *= b;

The Erlang distribution is a standard gamma distribution with the shape parameter
having a value equal to a positive integer; hence, imsl_f_random_gamma generates
pseudorandom deviates from an Erlang distribution with no modifications required.

The function imsl_random_seed_set can be used to initialize the seed of the
random number generator. The function imsl_random_option can be used to select
the form of the generator.

Example
In this example, imsl_f_random_gamma is used to generate five pseudorandom
deviates from a gamma (Erlang) distribution with shape parameter equal to 3.0.

#include <imsl.h>

void main()
{
 int seed = 123457;
 int n_random = 5;
 float a = 3.0;
 float *r;

 imsl_random_seed_set(seed);
 r = imsl_f_random_gamma(n_random, a, 0);
 imsl_f_write_matrix("Gamma(3) random deviates", 1, n_random, r, 0);
}

Output
 Gamma(3) random deviates
 1 2 3 4 5
6.843 3.445 1.853 3.999 0.779

684 � random_beta IMSL C/Math/Library

random_beta
Generates pseudorandom numbers from a beta distribution.

Synopsis
#include <imsl.h>
float *imsl_f_random_beta (float n_random, float pin, float qin, �, 0)

The type double function is imsl_d_random_beta.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
If no optional arguments are used, imsl_f_random_beta returns a pointer to a vector
of length n_random containing the random standard beta deviates. To release this
space, use free.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_random_beta (float n_random, float pin, float qin,

IMSL_RETURN_USER, float r[],
0)

Optional Arguments
IMSL_RETURN_USER, float r[] (Output)

If specified, the vector of length n_random containing the random standard
beta deviates is returned in r.

Description
The function imsl_f_random_beta generates pseudorandom numbers from a beta
distribution with parameters pin and qin, both of which must be positive. With
p = pin and q = qin, the probability density function is

� �
� �

� � � �
� �

11 1 for 0qpp q
f x x x x

p q
�

�

� �
� �
� �

1� �

Chapter 10: Statistics and Random Number Generation random_exponential � 685

where �(�) is the gamma function.

The algorithm used depends on the values of p and q. Except for the trivial cases of
p = 1 or q = 1, in which the inverse CDF method is used, all of the methods use
acceptance/rejection. If p and q are both less than 1, the method of Jöhnk (1964) is
used. If either p or q is less than 1 and the other is greater than 1, the method of
Atkinson (1979) is used. If both p and q are greater than 1, algorithm BB of Cheng
(1978), which requires very little setup time, is used if n_random is less than 4; and
algorithm B4PE of Schmeiser and Babu (1980) is used if n_random is greater than or
equal to 4. Note that for p and q both greater than 1, calling imsl_f_random_beta in
a loop getting less than 4 variates on each call will not yield the same set of deviates as
calling imsl_f_random_beta once and getting all the deviates at once.

The values returned in r are less than 1.0 and greater than � where � is the smallest
positive number such that 1.0 � � is less than 1.0.

The function imsl_random_seed_set can be used to initialize the seed of the
random number generator. The function imsl_random_option can be used to select
the form of the generator.

Example
In this example, imsl_f_random_beta is used to generate five pseudorandom beta
(3, 2) variates.

#include <imsl.h>

main()
{

 int n_random = 5;
 int seed = 123457;
 float pin = 3.0;
 float qin = 2.0;
 float *r;

 imsl_random_seed_set (seed);
 r = imsl_f_random_beta (n_random, pin, qin, 0);
 imsl_f_write_matrix("Beta (3,2) random deviates", 1, n_random, r, 0);
}

Output
 Beta (3,2) random deviates
 1 2 3 4 5
0.2814 0.9483 0.3984 0.3103 0.8296

random_exponential
Generates pseudorandom numbers from a standard exponential distribution.

Synopsis
#include <imsl.h>

686 � random_exponential IMSL C/Math/Library

float *imsl_f_random_exponential (int n_random, �, 0)

The type double function is imsl_d_random_exponential.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
A pointer to an array of length n_random containing the random standard exponential
deviates.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_random_exponential (int n_random,

IMSL_RETURN_USER, float r[],
0)

Optional Arguments
IMSL_RETURN_USER, float r[] (Output)

If specified, the array of length n_random containing the random standard
exponential deviates is returned in the user-provided array r.

Description
Function imsl_f_random_exponential generates pseudorandom numbers from a
standard exponential distribution. The probability density function is f(x) = e-x, for
x > 0. Function imsl_random_exponential uses an antithetic inverse CDF
technique; that is, a uniform random deviate U is generated, and the inverse of the
exponential cumulative distribution function is evaluated at 1.0 � U to yield the
exponential deviate.

Deviates from the exponential distribution with mean 	 can be generated by using
imsl_f_random_exponential and then multiplying each entry in r by 	.

Example
In this example, imsl_f_random_exponential is used to generate five
pseudorandom deviates from a standard exponential distribution.

#include <imsl.h>

#define N_RANDOM 5

main()

{
 int seed = 123457;
 int n_random = N_RANDOM;
 float *r;

Chapter 10: Statistics and Random Number Generation faure_next_point � 687

 imsl_random_seed_set(seed);
 r = imsl_f_random_exponential(n_random, 0);
 printf("%s: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 "Exponential random deviates",
 r[0], r[1], r[2], r[3], r[4]);
}

Output
Exponential random deviates: 0.0344 1.3443 0.2662 0.5633 0.1686

faure_next_point
Computes a shuffled Faure sequence.

Synopsis
#include <imsl.h>
Imsl_faure* imsl_faure_sequence_init (int ndim, �, 0)
float* imsl_f_faure_next_point (Imsl_faure *state, �, 0)
void imsl_faure_sequence_free (Imsl_faure *state)

The type double function is imsl_d_faure_next_point. The functions
imsl_faure_sequence_init and imsl_faure_sequence_free
are precision independent.

Required Arguments for imsl_faure_sequence_init
int ndim (Input)

The dimension of the hyper-rectangle.

Return Value for imsl_faure_sequence_init
Returns a structure that contains information about the sequence. The structure should
be freed using imsl_faure_sequence_free after it is no longer needed.

Required Arguments for imsl_faure_next_point
Imsl_faure *state (Input/Output)

Structure created by a call to imsl_faure_sequence_init.

Return Value for imsl_faure_next_point
Returns the next point in the shuffled Faure sequence. To release this space, use free.

Required Arguments for imsl_faure_sequence_free
Imsl_faure *state (Input/Output)

Structure created by a call to imsl_faure_sequence_init.

688 � faure_next_point IMSL C/Math/Library

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_faure_sequence_init (int ndim,

IMSL_BASE, int base,
IMSL_SKIP, int skip,
0)

float* imsl_f_faure_next_point (Imsl_faure *state,
IMSL_RETURN_USER, float *user,
IMSL_RETURN_SKIP, int *skip,
0)

Optional Arguments
IMSL_BASE, int base (Input)

The base of the Faure sequence.
Default: The smallest prime greater than or equal to ndim.

IMSL_SKIP, int *skip (Input)
The number of points to be skipped at the beginning of the Faure sequence.
Default: , where / 2 1m �� �� �base log /logBm � � �� �base and B is the largest
representable integer.

IMSL_RETURN_USER, float *user (Output)
User-supplied array of length ndim containing the current point in the
sequence.

IMSL_RETURN_SKIP, int *skip (Output)
The current point in the sequence. The sequence can be restarted by
initializing a new sequence using this value for IMSL_SKIP, and using the
same dimension for ndim.

Description
Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set , is � �1, , 0,1 , 1d
nx x d� ��

� � � �
� �

;
sup ,

E

A E ndD En n
�� �

where the supremum is over all subsets of [0, 1]d of the form

� �1
0, 0, , 0 1, 1

d jE t t t��� � � � � � �� �� j d ,

� is the Lebesque measure, and � �;A E n is the number of the xj contained in E.

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there exists a
constant c(d), depending only on d, such that

Chapter 10: Statistics and Random Number Generation faure_next_point � 689

� �
� �

� �log dndD c dn n
�

for all n>1.

Generalized Faure sequences can be defined for any prime base b�d. The lowest bound
for the discrepancy is obtained for the smallest prime b�d, so the optional argument
IMSL_BASE defaults to the smallest prime greater than or equal to the dimension.

The generalized Faure sequence x1, x2, …, is computed as follows:

Write the positive integer n in its b-ary expansion,

0

() i
i

i

n a n
�

�

�� b

where ai(n) are integers, � �0 . ia n b� �

The j-th coordinate of xn is

() () 1

0 0

() , 1j j k
n kd d

k d

x c a n b j
� �

� �

� �

� ��� d�

The generator matrix for the series, ()jc , is defined to be k d

()j d k
k d k dc j c�

�

and is an element of the Pascal matrix, k dc

� �
!

! !
0

k d

d k d
c d cc

k d

�
��

�� �
� ��

It is faster to compute a shuffled Faure sequence than to compute the Faure sequence
itself. It can be shown that this shuffling preserves the low-discrepancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive integer
n into the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized Faure
sequence.

Example
In this example, five points in the Faure sequence are computed. The points are in the
three-dimensional unit cube.

690 � faure_next_point IMSL C/Math/Library

Note that imsl_faure_sequence_init is used to create a structure that holds the
state of the sequence. Each call to imsl_f_faure_next_point returns the next point
in the sequence and updates the Imsl_faure structure. The final call to
imsl_faure_sequence_free frees data items, stored in the structure, that were
allocated by imsl_faure_sequence_init.

#include "stdio.h"
#include "imsl.h"

void main()
{
 Imsl_faure *state;
 float *x;
 int ndim = 3;
 int k;

 state = imsl_faure_sequence_init(ndim, 0);

 for (k = 0; k < 5; k++) {
 x = imsl_f_faure_next_point(state, 0);
 printf("%10.3f %10.3f %10.3f\n", x[0], x[1], x[2]);
 free(x);
 }

 imsl_faure_sequence_free(state);
}

Output

 0.334 0.493 0.064
 0.667 0.826 0.397
 0.778 0.270 0.175
 0.111 0.604 0.509
 0.445 0.937 0.842

Chapter 11: Printing Functions Routines � 691

Chapter 11: Printing Functions

Routines
Prints a matrix or vector ..write_matrix 691
Sets the page width and length .. page 697
Sets the printing options ..write_options 698

write_matrix
Prints a rectangular matrix (or vector) stored in contiguous memory locations.

Synopsis
#include <imsl.h>
void imsl_f_write_matrix (char *title, int nra, int nca, float a[], …, 0)

For int a[], use imsl_i_write_matrix.

For double a[], use imsl_d_write_matrix.

For f_complex a[], use imsl_c_write_matrix.

For d_complex a[], use imsl_z_write_matrix.

Required Arguments

char *title (Input)
The matrix title. Use \n within a title to create a new line. Long titles are
automatically wrapped.

int nra (Input)
The number of rows in the matrix.

int nca (Input)
The number of columns in the matrix.

float a[] (Input)
Array of size nra � nca containing the matrix to be printed.

692 � write_matrix IMSL C/Math/Library

Synopsis with Optional Arguments
#include <imsl.h>

void imsl_f_write_matrix (char *title, int nra, int nca, float a[],
IMSL_TRANSPOSE,
IMSL_A_COL_DIM, int a_col_dim,
IMSL_PRINT_ALL,
IMSL_PRINT_LOWER,
IMSL_PRINT_UPPER,
IMSL_PRINT_LOWER_NO_DIAG,
IMSL_PRINT_UPPER_NO_DIAG,
IMSL_WRITE_FORMAT, char *fmt,
IMSL_ROW_LABELS, char *rlabel[],
IMSL_NO_ROW_LABELS,
IMSL_ROW_NUMBER,
IMSL_ROW_NUMBER_ZERO,
IMSL_COL_LABELS, char *clabel[],
IMSL_NO_COL_LABELS,
IMSL_COL_NUMBER,
IMSL_COL_NUMBER_ZERO,
IMSL_RETURN_STRING, char **string,
IMSL_WRITE_TO_CONSOLE,
0)

Optional Arguments
IMSL_TRANSPOSE

Print aT.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of a.
Default: a_col_dim = nca

IMSL_PRINT_ALL, or
IMSL_PRINT_LOWER, or
IMSL_PRINT_UPPER, or
IMSL_PRINT_LOWER_NO_DIAG, or
IMSL_PRINT_UPPER_NO_DIAG

Exactly one of these optional arguments can be specified in order to indicate
that either a triangular part of the matrix or the entire matrix is to be printed.
If omitted, the entire matrix is printed.

Keyword Action
IMSL_PRINT_ALL The entire matrix is printed (the default).
IMSL_PRINT_LOWER The lower triangle of the matrix is printed,

including the diagonal.

Chapter 11: Printing Functions write_matrix � 693

Keyword Action
IMSL_PRINT_UPPER The upper triangle of the matrix is printed,

including the diagonal.
IMSL_PRINT_LOWER_NO_DIAG The lower triangle of the matrix is printed,

without the diagonal.
IMSL_PRINT_UPPER_NO_DIAG The upper triangle of the matrix is printed,

without the diagonal.

IMSL_WRITE_FORMAT, char *fmt (Input)
Character string containing a list of C conversion specifications (formats) to be
used when printing the matrix. Any list of C conversion specifications suitable
for the data type may be given. For example, fmt = "%10.3f" specifies the
conversion character f for the entire matrix. (For the conversion character f,
the matrix must be of type float, double, f_complex, or d_complex).
Alternatively, fmt = "%10.3e%10.3e%10.3f%10.3f%10.3f" specifies the
conversion character e for columns 1 and 2 and the conversion character f for
columns 3, 4, and 5. (For complex matrices, two conversion specifications are
required for each column of the matrix so the conversion character e is used in
column 1. The conversion character f is used in column 2 and the real part of
column 3.) If the end of fmt is encountered and if some columns of the matrix
remain, format control continues with the first conversion specification in fmt.

Aside from restarting the format from the beginning, other exceptions to the
usual C formatting rules are as follows:

1. Characters not associated with a conversion specification are not
allowed. For example, in the format fmt = "1%d2%d", the characters
1 and 2 are not allowed and result in an error.

2. A conversion character d can be used for floating-point values
(matrices of type float, double, f_complex, or d_complex). The
integer part of the floating-point value is printed.

3. For printing numbers whose magnitudes are unknown, the conversion
character g is useful; however, the decimal points will generally not
be aligned when printing a column of numbers. The w (or W)
conversion character is a special conversion character used by this
function to select a conversion specification so that the decimal
points will be aligned. The conversion specification ending with w is
specified as "%n.dw". Here, n is the field width and d is the number
of significant digits generally printed. Valid values for n are
3, 4, …, 40. Valid values for d are 1, 2, …, n-2. If fmt specifies one
conversion specification ending with w, all elements of a are
examined to determine one conversion specification for printing.
If fmt specifies more than one conversion specification, separate
conversion specifications are generated for each conversion
specification ending with w. Set fmt = "10.4w" if you want a single

694 � write_matrix IMSL C/Math/Library

conversion specification selected automatically with field width 10
and with four significant digits.

IMSL_NO_ROW_LABELS, or
IMSL_ROW_NUMBER, or
IMSL_ROW_NUMBER_ZERO, or
IMSL_ROW_LABELS, char *rlabel[] (Input)

If IMSL_ROW_LABELS is specified, rlabel is a vector of length nra
containing pointers to the character strings comprising the row labels. Here,
nra is the number of rows in the printed matrix. Use \n within a label to
create a new line. Long labels are automatically wrapped. If no row labels are
desired, use the IMSL_NO_ROW_LABELS optional argument. If the numbers
1, 2, …, nra are desired, use the IMSL_ROW_NUMBER optional argument. If
the numbers 1, 2, …, nra � 1 are desired, use the IMSL_ROW_NUMBER_ZERO
optional argument. If none of these optional arguments is used, the numbers
1, 2, 3, …, nra are used for the row labels by default whenever nra > 1.
If nra = 1, the default is no row labels.

IMSL_NO_COL_LABELS, or
IMSL_COL_NUMBER, or
IMSL_COL_NUMBER_ZERO, or
IMSL_COL_LABELS, char *clabel[] (Input)

If IMSL_COL_LABELS is specified, clabel is a vector of length nca + 1
containing pointers to the character strings comprising the column headings.
The heading for the row labels is clabel[0], and clabel[i], i = 1, �,
nca, is the heading for the i-th column. Use \n within a label to create a new
line. Long labels are automatically wrapped. If no column labels are desired,
use the IMSL_NO_COL_LABELS optional argument. If the numbers 1, 2, …,
nca, are desired, use the IMSL_COL_NUMBER optional argument. If the
numbers 0, 1, …, nca � 1 are desired, use the IMSL_COL_NUMBER_ZERO
optional argument. If none of these optional arguments is used, the numbers
1, 2, 3, …, nca are used for the column labels by default whenever nca > 1.
If nca = 1, the default is no column labels.

IMSL_RETURN_STRING, char **string (Output)
The address of a pointer to a NULL-terminated string containing the matrix to
be printed. Lines are new-line separated and the last line does not have a
trailing new-line character. Typically char *string is declared, and &string
is used as the argument.

IMSL_WRITE_TO_CONSOLE
This matrix is printed to a console window. If a console has not been
allocated, a default console (80 � 24, white on black, no scrollbars) is created.

Description
The function imsl_write_matrix prints a real rectangular matrix (stored in a) with
optional row and column labels (specified by rlabel and clabel, respectively,

Chapter 11: Printing Functions write_matrix � 695

regardless of whether a or aT is printed). An optional format, fmt, may be used to
specify a conversion specification for each column of the matrix.

In addition, the write matrix functions can restrict printing to the elements of the upper
or lower triangles of a matrix via the IMSL_TRIANGLE option. Generally, the
IMSL_TRIANGLE option is used with symmetric matrices, but this is not required.
Vectors can be printed by specifying a row or column dimension of 1.

Output is written to the file specified by the function imsl_output_file,
Chapter 12, “Utilities.” The default output file is standard output (corresponding to the
file pointer stdout).

A page width of 78 characters is used. Page width and page length can be reset by
invoking function imsl_page (page 697).

Horizontal centering, the method for printing large matrices, paging, the method for
printing NaN (Not a Number), and whether or not a title is printed on each page can be
selected by invoking function imsl_write_options (page 698).

Examples

Example 1
This example is representative of the most common situation in which no optional
arguments are given.

#include <imsl.h>

#define NRA 3
#define NCA 4

main()
{
 int i, j;
 f_complex a[NRA][NCA];

 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j].re = (i+1+(j+1)*0.1);
 a[i][j].im = -a[i][j].re+100;
 }
 }
 /* Write matrix */
 imsl_c_write_matrix ("matrix\na", NRA, NCA, (f_complex *)a, 0);
}

Output
 matrix
 a
 1 2 3
1 (1.1, 98.9) (1.2, 98.8) (1.3, 98.7)
2 (2.1, 97.9) (2.2, 97.8) (2.3, 97.7)
3 (3.1, 96.9) (3.2, 96.8) (3.3, 96.7)

 4

696 � write_matrix IMSL C/Math/Library

1 (1.4, 98.6)
2 (2.4, 97.6)
3 (3.4, 96.6)

Example 2
In this example, some of the optional arguments available in the write_matrix
functions are demonstrated.

#include <imsl.h>

#define NRA 3
#define NCA 4

main()
{
 int i, j;
 float a[NRA][NCA];
 char *fmt = "%10.6W";
 char *rlabel[] = {"row 1", "row 2", "row 3"};
 char *clabel[] = { "", "col 1", "col 2", "col 3", "col 4"};

 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1+(j+1)*0.1);
 }
 }
 /* Write matrix */
 imsl_f_write_matrix ("matrix\na", NRA, NCA, (float *)a,
 IMSL_WRITE_FORMAT, fmt,
 IMSL_ROW_LABELS, rlabel,
 IMSL_COL_LABELS, clabel,
 IMSL_PRINT_UPPER_NO_DIAG,
 0);
}

Output
 matrix
 a
 col 2 col 3 col 4
row 1 1.2 1.3 1.4
row 2 2.3 2.4
row 3 3.4

Example 3
In this example, a row vector of length four is printed.

#include <imsl.h>

#define NRA 1
#define NCA 4

main()
{
 int i;
 float a[NCA];
 char *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};

Chapter 11: Printing Functions page � 697

 for (i = 0; i < NCA; i++) {
 a[i] = i + 1;
 }
 /* Write matrix */
 imsl_f_write_matrix ("matrix\na", NRA, NCA, a,
 IMSL_COL_LABELS, clabel,
 0);
}

Output
 matrix
 a
 col 1 col 2 col 3 col 4
 1 2 3 4

page
Sets or retrieves the page width or length.

Synopsis
#include <imsl.h>
void imsl_page (Imsl_page_options option, int *page_attribute)

Required Arguments

Imsl_page_options option (Input)
Option giving which page attribute is to be set or retrieved. The possible
values are:

option Description
IMSL_SET_PAGE_WIDTH Set the page width.
IMSL_GET_PAGE_WIDTH Retrieve the page width.
IMSL_SET_PAGE_LENGTH Set the page length.
IMSL_GET_PAGE_LENGTH Retrieve the page length.

int *page_attribute (Input, if the attribute is set; Output, otherwise)
The value of the page attribute to be set or retrieved. The page width is the
number of characters per line of output (default 78), and the page length is
the number of lines of output per page (default 60). Ten or more characters per
line and 10 or more lines per page are required.

698 � write_options IMSL C/Math/Library

Example
The following example illustrates the use of imsl_page to set the page width to 40
characters. The IMSL function imsl_f_write_matrix is then used to print a 3 � 4
matrix A, where aij = i + j�10.

#include <imsl.h>

#define NRA 3
#define NCA 4

main()
{
 int i, j, page_attribute;
 float a[NRA][NCA];

 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1) + (j+1)/10.0;
 }
 }
 page_attribute = 40;
 imsl_page(IMSL_SET_PAGE_WIDTH, &page_attribute);
 imsl_f_write_matrix("a", NRA, NCA, (float *)a, 0);
}

Output
 a
 1 2 3
1 1.1 1.2 1.3
2 2.1 2.2 2.3
3 3.1 3.2 3.3

 4
1 1.4
2 2.4
3 3.4

write_options
Sets or retrieves an option for printing a matrix.

Synopsis
#include <imsl.h>
void imsl_write_options (Imsl_write_options option, int* option_value)

Required Arguments

Imsl_write_options option (Input)
Option giving the type of the printing attribute to set or retrieve.

Chapter 11: Printing Functions write_options � 699

option for Setting option for Retrieving Attribute
Description

IMSL_SET_DEFAULTS Use the default settings
for all parameters

IMSL_SET_CENTERING IMSL_GET_CENTERING Horizontal centering
IMSL_SET_ROW_WRAP IMSL_GET_ROW_WRAP Row wrapping
IMSL_SET_PAGING IMSL_GET_PAGING Paging
IMSL_SET_NAN_CHAR IMSL_GET_NAN_CHAR Method for printing

NaN (not a number)
IMSL_SET_TITLE_PAGE IMSL_GET_TITLE_PAGE Whether or not titles

appear on each page
IMSL_SET_FORMAT IMSL_GET_FORMAT Default format for real

and complex numbers

int *option_value (Input, if option is to be set; Output, otherwise)
The value of the option attribute selected by option. The values to be used
when setting attributes are described in a table in the description section.

Description
The function imsl_write_options allows the user to set or retrieve an option for
printing a matrix. Options controlled by imsl_write_options are horizontal
centering, method for printing large matrices, paging, method for printing NaN
(not a number), method for printing titles, and the default format for real and complex
numbers. (NaN can be retrieved by functions imsl_f_machine and
imsl_d_machine, Chapter 12, “Utilities.”)

The values that may be used for the attributes are as follows:

Option Value Meaning
CENTERING 0

1
Matrix is left justified.
Matrix is centered.

ROW_WRAP 0

m

A complete row is printed before the next row is printed.
Wrapping is used if necessary.
Here m is a positive integer. Let n1 be the maximum
number of columns that fit across the page, as determined
by the widths in the conversion specifications starting
with column 1. First, columns 1 through n1 are printed for
rows 1 through m. Let n2 be the maximum number of
columns that fit across the page, starting with column
n1 + 1. Second, columns n1+1 through n1 + n2 are printed
for rows 1 through m. This continues until the last
columns are printed for rows 1 through m. Printing
continues in this fashion for the next m rows, etc.

700 � write_options IMSL C/Math/Library

Option Value Meaning
PAGING �2

�1

0

k

No paging occurs.
Paging is on. Every invocation of a
imsl_f_write_matrix function begins on a new page,
and paging occurs within each invocation as is needed.
Paging is on. The first invocation of a
imsl_f_write_matrix function begins on a new page,
and subsequent paging occurs as is needed. Paging
occurs in the second and all subsequent calls to a
imsl_f_write_matrix function only as needed.
Turn paging on and set the number of lines printed on the
current page to k lines. If k is greater than or equal to the
page length, then the first invocation of a
imsl_f_write_matrix function begins on a new page.
In any case, subsequent paging occurs as is needed.

NAN_CHAR 0
1

. is printed for NaN.
A blank field is printed for NaN.

TITLE_PAGE 0
1

Title appears only on first page.
Title appears on the first page and all continuation pages.

FORMAT 0
1
2

Format is "%10.4x".
Format is "%12.6w".
Format is "%22.5e".

The w conversion character used by the FORMAT option is a special conversion character
that can be used to automatically select a pretty C conversion specification ending in
either e, f, or d. The conversion specification ending with w is specified as "%n.dw".
Here, n is the field width, and d is the number of significant digits generally printed.

The function imsl_write_options can be invoked repeatedly before using a
write_matrix function to print a matrix. The matrix printing functions retrieve the
values set by imsl_write_options to determine the printing options. It is not
necessary to call imsl_write_options if a default value of a printing option is
desired. The defaults are as follows:

Option Default Value
CENTERING 0 Left justified
ROW_WRAP 1000 Lines before wrapping
PAGING �2 No paging
NAN_CHAR 0
TITLE_PAGE 0 Title appears only on the first page
FORMAT 0 %10.4w

Chapter 11: Printing Functions write_options � 701

Example
The following example illustrates the effect of imsl_write_options when printing a
3 � 4 real matrix A with IMSL function imsl_f_write_matrix, where aij = i + j�10.
The first call to imsl_write_options sets horizontal centering so that the matrix is
printed centered horizontally on the page. In the next invocation of
imsl_f_write_matrix, the left-justification option has been set via function
imsl_write_options, so the matrix is left justified when printed.

#include <imsl.h>

#define NRA 4
#define NCA 3

main()
{
 int i, j, option_value;
 float a[NRA][NCA];

 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1) + (j+1)/10.0;
 }
 }
 /* Activate centering option */
 option_value = 1;
 imsl_write_options (IMSL_SET_CENTERING, &option_value);
 /* Write a matrix */
 imsl_f_write_matrix ("a", NRA, NCA, (float*) a, 0);
 /* Activate left justification */
 option_value = 0;
 imsl_write_options (IMSL_SET_CENTERING, &option_value);
 imsl_f_write_matrix ("a", NRA, NCA, (float*) a, 0);
}

Output
 a
 1 2 3
 1 1.1 1.2 1.3
 2 2.1 2.2 2.3
 3 3.1 3.2 3.3
 4 4.1 4.2 4.3

 a
 1 2 3
1 1.1 1.2 1.3
2 2.1 2.2 2.3
3 3.1 3.2 3.3
4 4.1 4.2 4.3

702 � write_options IMSL C/Math/Library

Chapter 12: Utilities Routines � 703

Chapter 12: Utilities

Routines
12.1 Set Output Files

Set output files... output_file 704
Get library version and license number................................ version 708

12.2 Time and Date
CPU time used .. ctime 709
Date to days since epoch ... date_to_days 709
Days since epoch to date ... days_to_date 711

12.3 Error Handling
Error message options ..error_options 712
Get error code ...error_code 718

12.4 Constants
Natural and mathematical constants.................................. constant 719
Integer machine constantsmachine (integer) 723
Float machine constants .. machine (float) 725

12.5 Sorting
Sort float vector .. sort 728
Sort integer vector ..sort (integer) 730

12.6 Computing Vector Norms
Compute various norms...vector_norm 733

12.7 Linear Algebra Support
 Vector-Vector, Matrix-Vector, and Matrix-Matrix-Multiplication

Real Matrix ...mat_mul_rect 735
Complex matrix ... mat_mul_rect (complex) 738
Real band matrix ..mat_mul_rect_band 742
Complex band matrix mat_mul_rect_band (complex) 746
Real coordinate matrix mat_mul_rect_coordinate 751
Complex coordinate matrix mat_mul_rect_coordinate (complex) 755

704 � output_file IMSL C/Math/Library

 Vector-Vector, Matrix-Vector, and Matrix-Matrix-Addition
Real band matrix.. mat_add_band 760
Complex band matrix.............................. mat_add_band (complex) 764
Real coordinate matrix.....................................mat_add_coordinate 768
Complex coordinate matrixmat_add_coordinate (complex) 771

 Matrix Norm
Real matrix... matrix_norm 775
Real band matrix.. matrix_norm_band 777
Real coordinate matrix.............................. matrix_norm_coordinate 779

 Test Matrices of Class
Real matrix... generate_test_band 782
Complex matrix............................... generate_test_band (complex) 784
Real matrix...generate_test_coordinate 786
Complex..................................generate_test_coordinate (complex) 791

output_file
Sets the output file or the error message output file.

Synopsis with Optional Arguments
#include <imsl.h>

void imsl_output_file (
IMSL_SET_OUTPUT_FILE, FILE *ofile,
IMSL_GET_OUTPUT_FILE, FILE **pofile,
IMSL_SET_ERROR_FILE, FILE *efile,
IMSL_GET_ERROR_FILE, FILE **pefile,
0)

Optional Arguments
IMSL_SET_OUTPUT_FILE, FILE *ofile (Input)

Set the output file to ofile.
Default: ofile = stdout

IMSL_GET_OUTPUT_FILE, FILE **pfile (Output)
Set the FILE pointed to by pfile to the current output file.

IMSL_SET_ERROR_FILE, FILE *efile (Input)
Set the error message output file to efile.
Default: efile = stderr

IMSL_GET_ERROR_FILE, FILE **pefile (Output)
Set the FILE pointed to by pefile to the error message output file.

Description
This function allows the file used for printing by IMSL routines to be changed.

Chapter 12: Utilities output_file � 705

If multiple threads are used then default settings are valid for each thread. When
using threads it is possible to set different output files for each thread by calling
imsl_output_file from within each thread. See Example 2 for details.

Examples

Example 1
This example opens the file myfile and changes the output file to this new file.
The function imsl_f_write_matrix then writes to this file.

#include <stdio.h>
#include <imsl.h>

main()
{
 FILE *ofile;
 float x[] = {3.0, 2.0, 1.0};

 imsl_f_write_matrix ("x (default file)", 1, 3, x, 0);

 ofile = fopen("myfile", "w");
 imsl_output_file(IMSL_SET_OUTPUT_FILE, ofile,
 0);
 imsl_f_write_matrix ("x (myfile)", 1, 3, x, 0);
}

Output
x (default file)
1 2 3
3 2 1

File myfile
x (myfile)
1 2 3
3 2 1

Example 2
The following example illustrates how to direct output from IMSL routines that
run in separate threads to different files. First, two threads are created, each
calling a different IMSL function, then the results are printed by calling
imsl_f_write_matrix from within each thread. Note that
imsl_output_file is called from within each thread to change the default
output file.

#include <pthread.h>

#include <stdio.h>

#include "imsl.h"

706 � output_file IMSL C/Math/Library

void *ex1(void* arg);

void *ex2(void* arg);

void main()

{

 pthread_t thread1;

 pthread_t thread2;

 /* Disable IMSL signal trapping. */

 imsl_error_options(IMSL_SET_SIGNAL_TRAPPING, 0, 0);

 /* Create two threads. */

 if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0)

 perror("pthread_create"), exit(1);

 if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0)

 perror("pthread_create"), exit(1);

 /* Wait for threads to finish. */

 if (pthread_join(thread1, NULL) != 0)

 perror("pthread_join"),exit(1);

 if (pthread_join(thread2, NULL) != 0)

 perror("pthread_join"),exit(1);

}

void *ex1(void* arg)

{

 float *rand_nums = NULL;

 FILE *file_ptr;

 /* Open a file to write the result in. */

 file_ptr = fopen("ex1.out", "w");

 /* Set the output file for this thread. */

 imsl_output_file(IMSL_SET_OUTPUT_FILE, file_ptr, 0);

 /* Compute 5 random numbers. */

 imsl_random_seed_set(12345);

 rand_nums = imsl_f_random_uniform(5, 0);

 /* Output random numbers. */

 imsl_f_write_matrix("Random Numbers", 5, 1, rand_nums, 0);

 if (rand_nums) free(rand_nums);

 fclose(file_ptr);

Chapter 12: Utilities output_file � 707

}

void *ex2(void* arg)

{

 int n = 3;

 float *x;

 float a[] = {1.0, 3.0, 3.0,

 1.0, 3.0, 4.0,

 1.0, 4.0, 3.0};

 float b[] = {1.0, 4.0, -1.0};

 FILE *file_ptr;

 /* Open a file to write the result in. */

 file_ptr = fopen("ex2.out", "w");

 /* Set the output file for this thread. */

 imsl_output_file(IMSL_SET_OUTPUT_FILE, file_ptr, 0);

 /* Solve Ax = b for x */

 x = imsl_f_lin_sol_gen (n, a, b, 0);

 /* Print x */

 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, 3, x, 0);

 if (x) free(x);

 fclose(file_ptr);

}

Output

ex1.out

Random Numbers
 1 0.0966
 2 0.8340
 3 0.9477
 4 0.0359
 5 0.0115

ex2.out

 Solution, x, of Ax = b
 1 2 3
 -2 -2 3

708 � version IMSL C/Math/Library

version
Returns information describing the version of the library, serial number, operating
system, and compiler.

Synopsis
#include <imsl.h>
char* imsl_version (Imsl_keyword code)

Required Arguments

Imsl_keyword code (Input)
Index indicating which value is to be returned. It must be
IMSL_LIBRARY_VERSION, IMSL_OS_VERSION,
IMSL_COMPILER_VERSION, or IMSL_LICENSE_NUMBER.

Return Value
The requested value is returned. If code is out of range, then NULL is returned.
Use free to release the returned string.

Description
The function imsl_version returns information describing the version of this
library, the version of the operating system under which it was compiled, the
compiler used, and the IMSL number.

Example
This example prints all the values returned by imsl_version on a particular
machine. The output is omitted because the results are system dependent.

#include <imsl.h>

main()
{
 char *library_version, *os_version;
 char *compiler_version, *license_number;

 library_version = imsl_version(IMSL_LIBRARY_VERSION);
 os_version = imsl_version(IMSL_OS_VERSION);
 compiler_version = imsl_version(IMSL_COMPILER_VERSION);
 license_number = imsl_version(IMSL_LICENSE_NUMBER);

 printf("Library version = %s\n", library_version);
 printf("OS version = %s\n", os_version);
 printf("Compiler version = %s\n", compiler_version);
 printf("Serial number = %s\n", license_number);
}

Chapter 12: Utilities ctime � 709

ctime
Returns the number of CPU seconds used.

Synopsis

#include <imsl.h>

double imsl_ctime ()

Return Value
The number of CPU seconds used so far by the program.

Example
The CPU time needed to compute

1,000,000

0k
k

�
�

is obtained and printed. The time needed is, of course, machine dependent. The
CPU time needed will also vary slightly from run to run on the same machine.

#include <imsl.h>

main()
{
 int k;
 double sum, time;
 /* Sum 1 million values */
 for (sum=0, k=1; k<=1000000; k++)
 sum += k;
 /* Get amount of CPU time used */
 time = imsl_ctime();
 printf("sum = %f\n", sum);
 printf("time = %f\n", time);
}

Output
sum = 500000500000.000000
time = 2.260000

date_to_days
Computes the number of days from January 1, 1900, to the given date.

Synopsis

#include <imsl.h>

710 � date_to_days IMSL C/Math/Library

int imsl_date_to_days (int day, int month, int year)

Required Arguments

int day (Input)
Day of the input date.

int month (Input)
Month of the input date.

int year (Input)
Year of the input date. The year 1950 would correspond to the year
1950 A.D., and the year 50 would correspond to year 50 A.D.

Return Value
Number of days from January 1, 1900, to the given date. If negative, it indicates
the number of days prior to January 1, 1900.

Description
The function imsl_date_to_days returns the number of days from
January 1, 1900, to the given date. The function imsl_date_to_days returns
negative values for days prior to January 1, 1900. A negative year can be used to
specify B.C. Input dates in year 0 and for October 5, 1582, through October 14,
1582, inclusive, do not exist; consequently, in these cases,
imsl_date_to_days issues a terminal error.

The beginning of the Gregorian calendar was the first day after October 4, 1582,
which became October 15, 1582. Prior to that, the Julian calendar was in use.

Example
The following example uses imsl_date_to_days to compute the number of
days from January 15, 1986, to February 28, 1986.

#include <imsl.h>

main()
{
 int day0, day1;

 day0 = imsl_date_to_days(15, 1, 1986);
 day1 = imsl_date_to_days(28, 2, 1986);
 printf("Number of days = %d\n", day1 - day0);
}

Output
Number of days = 44

Chapter 12: Utilities days_to_date � 711

days_to_date
Gives the date corresponding to the number of days since January 1, 1900.

Synopsis
#include <imsl.h>
void imsl_days_to_date (int days, int *day, int *month, int *year)

Required Arguments

int days (Input)
Number of days since January 1, 1900.

int *day (Output)
Day of the output date.

int *month (Output)
Month of the output date.

int *year (Output)
Year of the output date. The year 1950 would correspond to the year
1950 A.D., and the year 50 would correspond to year 50 A.D.

Description
The function imsl_days_to_date computes the date corresponding to the
number of days since January 1, 1900. For a negative input value of days, the
date computed is prior to January 1, 1900. This function is the inverse of function
imsl_date_to_days (page 711).

The beginning of the Gregorian calendar was the first day after October 4, 1582,
which became October 15, 1582. Prior to that, the Julian calendar was in use.

Example
The following example uses imsl_days_to_date to compute the date for the
100th day of 1986. This is accomplished by first using IMSL function
imsl_date_to_days (page 711) to get the “day number” for December 31, 1985.

#include <imsl.h>

main()
{
 int day0, day, month, year;

 day0 = imsl_date_to_days(31, 12, 1985);
 imsl_days_to_date(day0+100, &day, &month, &year);
 printf("Day 100 of 1986 is (day-month-year) %d-%d-%d\n",
 day, month, year);
}

712 � error_options IMSL C/Math/Library

Output
Day 100 of 1986 is (day-month-year) 10-4-1986

error_options
Sets various error handling options.

Synopsis with Optional Arguments
#include <imsl.h>

void imsl_error_options (
IMSL_SET_PRINT, Imsl_error type, int setting,
IMSL_SET_STOP, Imsl_error type, int setting,
IMSL_SET_TRACEBACK, Imsl_error type, int setting,
IMSL_FULL_TRACEBACK, int setting,
IMSL_GET_PRINT, Imsl_error type, int *psetting,
IMSL_GET_STOP, Imsl_error type, int *psetting,
IMSL_GET_TRACEBACK, Imsl_error type, int *psetting,
IMSL_SET_ERROR_FILE, FILE *file,
IMSL_GET_ERROR_FILE, FILE **pfile,
IMSL_ERROR_MSG_PATH, char *path,
IMSL_ERROR_MSG_NAME, char *name,
IMSL_ERROR_PRINT_PROC, Imsl_error_print_proc print_proc,
IMSL_SET_SIGNAL_TRAPPING, int setting,
0)

Optional Arguments
IMSL_SET_PRINT, Imsl_error type, int setting (Input)

Printing of type type error messages is turned off if setting is 0;
otherwise, printing is turned on.
Default: Printing turned on for IMSL_WARNING, IMSL_FATAL,
IMSL_TERMINAL, IMSL_FATAL_IMMEDIATE, and
IMSL_WARNING_IMMEDIATE messages

IMSL_SET_STOP, Imsl_error type, int setting (Input)
Stopping on type type error messages is turned off if setting is 0;
otherwise, stopping is turned on.
Default: Stopping turned on for IMSL_FATAL, IMSL_TERMINAL, and
IMSL_FATAL_IMMEDIATE messages

IMSL_SET_TRACEBACK, Imsl_error type, int setting (Input)
Printing of a traceback on type type error messages is turned off if
setting is 0; otherwise, printing of the traceback turned on.
Default: Traceback turned off for all message types

IMSL_FULL_TRACEBACK, int setting (Input)
Only documented functions are listed in the traceback if setting is 0;

Chapter 12: Utilities error_options � 713

otherwise, internal function names also are listed.
Default: Full traceback turned off

IMSL_GET_PRINT, Imsl_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for
printing of type type error messages.

IMSL_GET_STOP, Imsl_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for
stopping on type type error messages.

IMSL_GET_TRACEBACK, Imsl_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for
printing of a traceback for type type error messages.

IMSL_SET_ERROR_FILE, FILE *file (Input)
Sets the error output file.
Default: file = stderr

IMSL_GET_ERROR_FILE, FILE **pfile (Output)
Sets the FILE * pointed to by pfile to the error output file.

IMSL_ERROR_MSG_PATH, char *path (Input)
Sets the error message file path. On UNIX systems, this is a colon-
separated list of directories to be searched for the file containing the
error messages.
Default: system dependent

IMSL_ERROR_MSG_NAME, char *name (Input)
Sets the name of the file containing the error messages.
Default: file = “imslerr.bin”

IMSL_ERROR_PRINT_PROC, Imsl_error_print_proc print_proc (Input)
Sets the error printing function. The procedure print_proc has the
form void print_proc (Imsl_error type, long code,
char *function_name, char *message).

In this case, type is the error message type number (IMSL_FATAL, etc.),
code is the error message code number (IMSL_MAJOR_VIOLATION,
etc.), function_name is the name of the function setting the error, and
message is the error message to be printed. If print_proc is NULL,
then the default error printing function is used.

IMSL_SET_SIGNAL_TRAPPING, int setting (Input)
C/Math/Library will use its own signal handler if setting is 1; otherwise
the C/Math/Library signal handler is not used. If C/Math/Library is
called from a multi-threaded application, signal handling must be turned
off. See Example 3 for details.

 Default: setting = 1

714 � error_options IMSL C/Math/Library

Return Value
The return value for this function is void.

Description
This function allows the error handling system to be customized.

If multiple threads are used then default settings are valid for each thread but can
be altered for each individual thread. When using threads it is necessary to set
options (excluding IMSL_SET_SIGNAL_TRAPPING) for each thread by calling
imsl_error_options from within each thread.

The IMSL signal-trapping mechanism must be disabled when multiple threads are
used. The IMSL signal-trapping mechanism can be disabled by making the
following call before any threads are created:
imsl_error_options(IMSL_SET_SIGNAL_TRAPPING, 0, 0);

 See Example 3 and Example 4 for multithreaded examples.

Examples

Example 1
In this example, the IMSL_TERMINAL print setting is retrieved. Next, stopping on
IMSL_TERMINAL errors is turned off, then output to standard output is redirected,
and an error is deliberately caused by calling imsl_error_options with an
illegal value.

#include <imsl.h>
#include <stdio.h>

main()
{
 int setting;
 /* Turn off stopping on IMSL_TERMINAL */
 /* error messages and write error */
 /* messages to standard output */
 imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, 0,
 IMSL_SET_ERROR_FILE, stdout,
 0);
 /* Call imsl_error_options() with */
 /* an illegal value */
 imsl_error_options(-1);
 /* Get setting for IMSL_TERMINAL */
 imsl_error_options(IMSL_GET_PRINT, IMSL_TERMINAL, &setting,
 0);
 printf("IMSL_TERMINAL error print setting = %d\n", setting);
}

Output
*** TERMINAL Error from imsl_error_options. There is an error with
*** argument number 1. This may be caused by an incorrect number of

Chapter 12: Utilities error_options � 715

*** values following a previous optional argument name.

IMSL_TERMINAL error print setting = 1

Example 2
In this example, IMSL’s error printing function has been substituted for the
standard function. Only the first four lines are printed below.

#include <imsl.h>
#include <stdio.h>

void print_proc(Imsl_error, long, char*, char*);

main()
{
 /* Turn off tracebacks on IMSL_TERMINAL */
 /* error messages and use a custom */
 /* print function */
 imsl_error_options(IMSL_ERROR_PRINT_PROC, print_proc,
 0);
 /* Call imsl_error_options() with an */
 /* illegal value */
 imsl_error_options(-1);
}

void print_proc(Imsl_error type, long code, char *function_name,
 char *message)
{
 printf("Error message type %d\n", type);
 printf("Error code %d\n", code);
 printf("From function %s\n", function_name);
 printf("%s\n", message);
}

Output
Error message type 5
Error code 103
From function imsl_error_options
There is an error with argument number 1. This may be caused by an
incorrect number of values following a previous optional argument name.

Example 3
In this example, two threads are created and error options is called within each
thread to set the error handling options differently for each thread. Since we
expect to generate terminal errors in each thread, we must turn off stopping on
terminal errors for each thread. Also notice that imsl_error_options is called
from main to disable the IMSL signal-trapping mechanism. See Example 4 for a
similar example using WIN32 threads. Note since multiple threads are executing,
the order of the errors output may differ on some systems.

#include <pthread.h>

716 � error_options IMSL C/Math/Library

#include <stdio.h>
#include "imsl.h"

void *ex1(void* arg);
void *ex2(void* arg);

void main()
{
 pthread_t thread1;
 pthread_t thread2;

 /* Disable IMSL signal trapping. */
 imsl_error_options(IMSL_SET_SIGNAL_TRAPPING, 0, 0);

 /* Create two threads. */
 if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0)
 perror("pthread_create"), exit(1);
 if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0)
 perror("pthread_create"), exit(1);

 /* Wait for threads to finish. */
 if (pthread_join(thread1, NULL) != 0)
 perror("pthread_join"),exit(1);
 if (pthread_join(thread2, NULL) != 0)
 perror("pthread_join"),exit(1);

}

void *ex1(void* arg)
{
 float res;
 /*
 * Call imsl_error_options to set teh error handling
 * options for this thread. Notice that the error printing
 * function wil lbe user defined for this thread only.
 */
 imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, 0, 0);

 res = imsl_f_beta(-1.0, .5);
}

void *ex2(void* arg)
{
 float res;
 /*
 * Call imsl_error_options to set the error handling
 * options for this thread.
 */
 imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, 0,
 IMSL_SET_TRACEBACK, IMSL_TERMINAL, 1, 0);

 res = imsl_f_gamma(-1.0);
}

Chapter 12: Utilities error_options � 717

Output

*** TERMINAL Error from imsl_f_beta. Both "x" = -1.000000e+00 and "y" =
*** 5.000000e-01 must be greater than zero.

*** TERMINAL Error from imsl_f_gamma. The argument for the function can not
*** be a negative integer. Argument "x" = -1.000000e+00.

Here is a traceback of the calls in reverse order.
 Error Type Error Code Routine
 ---------- ---------- -------
 IMSL_TERMINAL IMSL_NEGATIVE_INTEGER imsl_f_gamma
 USER

Example 4
In this example the WIN32 API is used to demonstrate the same functionality as
shown in Example 3 above. Note since multiple threads are executing, the order
of the errors output may differ on some systems.

#include <windows.h>
#include <stdio.h>
#include "imsl.h"

DWORD WINAPI ex1(void *arg);
DWORD WINAPI ex2(void *arg);

int main(int argc, char* argv[])
{
 HANDLE thread[2];

 imsl_error_options(IMSL_SET_SIGNAL_TRAPPING, 0, 0);

 thread[0] = CreateThread(NULL, 0, ex1, NULL, 0, NULL);
 thread[1] = CreateThread(NULL, 0, ex2, NULL, 0, NULL);

 WaitForMultipleObjects(2, thread, TRUE, INFINITE);

}
DWORD WINAPI ex1(void *arg)
{
 float res;
 /*
 * Call imsl_error_options to set the error handling
 * options for this thread.
 */
 imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, 0, 0);
 res = imsl_f_beta(-1.0, .5);
 return(0);
}
DWORD WINAPI ex2(void *arg)
{
 float res;
 /*

718 � error_code IMSL C/Math/Library

 * Call imsl_error_options to set the error handling
 * options for this thread. Notice that tracebacks are
 * turned on for IMSL_TERMINAL errors.
 */
 imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, 0,
 IMSL_SET_TRACEBACK, IMSL_TERMINAL, 1,
 0);
 res = imsl_f_gamma(-1.0);
 return(0);
}

Output

*** TERMINAL Error from imsl_f_gamma. The argument for the function can not
*** be a negative integer. Argument "x" = -1.000000e+00.

Here is a traceback of the calls in reverse order.
 Error Type Error Code Routine
 ---------- ---------- -------
 IMSL_TERMINAL IMSL_NEGATIVE_INTEGER imsl_f_gamma
 USER

*** TERMINAL Error from imsl_f_beta. Both "x" = -1.000000e+00 and "y" =
*** 5.000000e-01 must be greater than zero.

error_code
Gets the code corresponding to the error message from the last function called.

Synopsis

#include <imsl.h>

long imsl_error_code ()

Return Value
This function returns the error message code from the last IMSL function called.
The include file imsl.h defines a name for each error code.

Example
This example turns off stopping on IMSL_TERMINAL error messages and
generates an error by calling imsl_error_options with an illegal value for
IMSL_SET_PRINT. The error message code number is retrieved and printed. In
imsl.h, IMSL_INTEGER_OUT_OF_RANGE is defined to be 132.

#include <imsl.h>
#include <stdio.h>

main()
{

Chapter 12: Utilities constant � 719

 long code;
 /* Turn off stopping IMSL_TERMINAL */
 /* messages and print error messages */
 /* on standard output. */
 imsl_error_options(IMSL_SET_STOP, IMSL_TERMINAL, 0,
 IMSL_SET_ERROR_FILE, stdout,
 0);
 /* Call imsl_error_options() with */
 /* an illegal value */
 imsl_error_options(IMSL_SET_PRINT, 100, 0,
 0);
 /* Get the error message code */
 code = imsl_error_code();
 printf("error code = %d\n", code);
}

Output
*** TERMINAL Error from imsl_error_options."type" must be between 1 and 5,
*** but "type" = 100.

error code = 132

constant
Returns the value of various mathematical and physical constants.

Synopsis

#include <imsl.h>

float imsl_f_constant (char name, char unit)

The type double function is imsl_d_constant.

Required Arguments
char *name (Input)

Character string containing the name of the desired constant. The case of
the character string name does not matter. The names “PI”, “Pi”, “pI”,
and “pi” are equivalent. Spaces and underscores are allowed and
ignored.

char *unit (Input)
Character string containing the units of the desired constant. If NULL,
then Système International d’Unités (SI) units are assumed. The case of
the character string unit does not matter. The names “METER”,
“Meter” and “meter” are equivalent. unit has the form U1*U2*...
*Um/V1/.../Vn, where Ui and Vi are the names of basic units or are
the names of basic units raised to a power. Basic units must be separated
by * or /. Powers are indicated by ^, as in “m^2” for m2. Examples are,
“METER*KILOGRAM/SECOND”, “M*KG/S”, “METER”, or “M/KG^2”.

720 � constant IMSL C/Math/Library

Return Value

By default, imsl_f_constant returns the desired constant. If no value can be
computed, NaN is returned.

Description
The names allowed are listed in the following table. Values marked with a ‡ are exact
(to machine precision). The references in the right-hand column are indicated by the
code numbers: [1] for Cohen and Taylor (1986), [2] for Liepman (1964), and [3] for
precomputed mathematical constants.

Name Description Value Reference

amu Atomic mass unit 1.6605655 � 10-27 kg 1

ATM Standard atm pressure 1.01325 � 105 N/m2 ‡ 2

AU Astronomical unit 1.496 � 1011 m

Avogadro Avogadro's number, N 6.022045 � 1023 1/mole 1

Boltzman Boltzman's constant, k 1.380662 � 10-23 J/K 1

C Speed of light, c 2.997924580 � 108 m/s 1

Catalan Catalan's constant 0.915965� ‡ 3

E Base of natural logs, e 2.718� ‡ 3

ElectronCharge Electron charge, e 1.6021892 � 10-19 C 1

ElectronMass Electron mass, me 9.109534 � 10-31 kg 1

ElectronVolt
Euler

ElectronVolt, ev

Euler's constant, �
1.6021892 x10 -19J

0.577� ‡

1
3

Faraday Faraday constant, F 9.648456 � 104 C/mole 1

FineStructure Fine structure, � 7.2973506 � 10-3 1

Gamma Euler's constant, � 0.577� ‡ 3

Gas Gas constant, R0 8.31441 J/mole/K 1

Gravity Gravitational constant, G 6.6720 � 10-11 N m2/kg2 1

Hbar Planck's constant/2� 1.0545887 � 10-34 J s 1

PerfectGasVolume Std vol ideal gas 2.241383 � 10-2 m3/mole 1

Pi Pi, � 3.141� ‡ 3

Planck Planck's constant, h 6.626176 � 10-34 J s 1

Chapter 12: Utilities constant � 721

Name Description Value Reference

ProtonMass Proton mass, Mp 1.6726485 � 10-27 kg 1

Rydberg Rydberg's constant, Rµ 1.097373177 � 107/m 1

Speedlight Speed of light, c 2.997924580 � 108 m/s 1

StandardGravity Standard g 9.80665 m/s2 ‡ 2

StandardPressure Standard atm pressure 1.01325 � 105 N/m2 ‡ 2

StefanBoltzman Stefan-Boltzman, � 5.67032 � 10-8W/K4/m2 1

WaterTriple Triple point of water 2.7316 � 102 K 2

The units allowed are as follows:

Unit Description
Time day, hour = hr, min, minute, s = sec = second, year
Frequency Hertz = Hz
Mass AMU, g = gram, lb = pound, ounce = oz, slug
Distance Angstrom, AU, feet = foot, in = inch, m = meter = metre, micron, mile,

mill, parsec, yard
Area acre
Volume 1 = liter=litre
Force dyne, N = Newton
Energy BTU, Erg, J = Joule
Work W = watt
Pressure ATM = atmosphere, bar
Temperature degC = Celsius, degF = Fahrenheit, degK = Kelvin
Viscosity poise, stoke
Charge Abcoulomb, C = Coulomb, statcoulomb
Current A = ampere, abampere, statampere
Voltage Abvolt, V = volt
Magnetic induction T = Telsa, Wb = Weber
Other units I, farad, mole, Gauss, Henry, Maxwell, Ohm

722 � constant IMSL C/Math/Library

The following metric prefixes may be used with the above units. The one or two
letter prefixes may only be used with one letter unit abbreviations.

a atto 10-18 d deci 10-1
f femto 10-15 dk deca 102
p pico 10-12 k kilo 103
n nano 10-9 myria 104
u micro 10-6 mega 106
m milli 10-3 g giga 109
c centi 10-2 t tera 1012

There is no one letter unit abbreviation for myria or mega since m means milli.

Examples

Example 1

In this example, Euler’s constant � is obtained and printed. Euler’s constant is
defined to be

1

1

1lim ln
n

n k
n

k
�

�

��

�

� �
� �� �

� �
�

#include <stdio.h>
#include <imsl.h>

main()
{
 float gamma;
 /* Get gamma */
 gamma = imsl_f_constant("gamma", 0);
 /* Print gamma */
 printf("gamma = %f\n", gamma);
}

Output
gamma = 0.577216

Example 2
In this example, the speed of light is obtained using several different units.

#include <stdio.h>
#include <imsl.h>

main()
{

Chapter 12: Utilities machine (integer) � 723

 float speed_light;
 /* Get speed of light in meters/second */
 speed_light = imsl_f_constant("Speed Light", "meter/second");
 printf("speed of light = %g meter/second\n", speed_light);
 /* Get speed of light in miles/second */
 speed_light = imsl_f_constant("Speed Light", "mile/second");
 printf("speed of light = %g mile/second\n", speed_light);
 /* Get speed of light in */
 /* centimeters/nanosecond */
 speed_light = imsl_f_constant("Speed Light", "cm/ns");
 printf("speed of light = %g cm/ns\n", speed_light);
}

Output
speed of light = 2.99792e+08 meter/second
speed of light = 186282 mile/second
speed of light = 29.9793 cm/ns

Warning Errors
IMSL_MASS_TO_FORCE A conversion of units of mass to units of force

was required for consistency.

machine (integer)
Returns integer information describing the computer’s arithmetic.

Synopsis

#include <imsl.h>

int imsl_i_machine (int n)

Required Arguments

int n (Input)
Index indicating which value is to be returned. It must be between 0
and 12.

Return Value
The requested value is returned. If n is out of range, then NaN is returned.

Description
The function imsl_i_machine returns information describing the computer’s
arithmetic. This can be used to make programs machine independent.

imsl_1_machine(0) = Number of bits per byte

Assume that integers are represented in M-digit, base-A form as

724 � machine (integer) IMSL C/Math/Library

0

M k
kk

x A�
�

�

where � is the sign and 0 � xk < A for k = 0, �, M. Then,

n Definition
0 C, bits per character

1 A, the base
2 Ms, the number of base-A digits in a short int

3 1, the largest sMA short int�

4 Ml, the number of base-A digits in a long int

5 1 1, the largest MA long int�

Assume that floating-point numbers are represented in N-digit, base B form as

1

NE k
kk

B x B�
�

�
�

where � is the sign and 0 � xk < B for k = 1, �, N for and E$ � E � E". Then,

n Definition
6 B, the base
7 Nf, the number of base-B digits in float

8 min , the smallest exponent
f

E float

9 max , the largest exponent
f

E float

10 Nd, the number of base-B digits in double

11 min , the smallest double exponent
d

E

12 max , the largest double exponent
d

E

Chapter 12: Utilities machine (float) � 725

Example
This example prints all the values returned by imsl_i_machine on a machine
with IEEE (Institute for Electrical and Electronics Engineer) arithmetic.

#include <imsl.h>

main()
{
 int n, ans;

 for (n = 0; n <= 12; n++) {
 ans = imsl_i_machine(n);
 printf("imsl_i_machine(%d) = %d\n", n, ans);
 }
}

Output
imsl_i_machine(0) = 8
imsl_i_machine(1) = 2
imsl_i_machine(2) = 15
imsl_i_machine(3) = 32767
imsl_i_machine(4) = 31
imsl_i_machine(5) = 2147483647
imsl_i_machine(6) = 2
imsl_i_machine(7) = 24
imsl_i_machine(8) = -125
imsl_i_machine(9) = 128
imsl_i_machine(10) = 53
imsl_i_machine(11) = -1021
imsl_i_machine(12) = 1024

machine (float)
Returns information describing the computer’s floating-point arithmetic.

Synopsis

#include <imsl.h>

float imsl_f_machine (int n)

The type double function is imsl_d_machine.

Required Arguments

int n (Input)
Index indicating which value is to be returned.The index must be
between 1 and 8.

Return Value
The requested value is returned. If n is out of range, then NaN is returned.

726 � machine (float) IMSL C/Math/Library

Description
The function imsl_f_machine returns information describing the computer’s
floating-point arithmetic. This can be used to make programs machine
independent. In addition, some of the functions are also important in setting
missing values (see below).

Assume that float numbers are represented in Nf-digit, base B form as

1
fNE k

kk
B x B�

�

�
�

where � is the sign, 0 � xk < B for k = 1, 2, �, Nf, and

min maxf f
E E E� �

Note that B = imsl_i_machine(6), Nf = imsl_i_machine(7),

min imsl_i_machine(8)
f

E �

and

max imsl_i_machine(9)
f

E �

The ANSI/IEEE Std 754-1985 standard for binary arithmetic uses NaN (not a
number) as the result of various otherwise illegal operations, such as computing
0/0. On computers that do not support NaN, a value larger than
imsl_d_machine(2) is returned for imsl_f_machine(6). On computers that do
not have a special representation for infinity, imsl_f_machine(2) returns the
same value as imsl_f_machine(7).

The function imsl_f_machine is defined by the following table:

n Definition
1 min 1, the smallest positive numberfEB �

2 max -(1), the largest numberf fE NB B�

3 , the smallest relative spacingfNB�

4 1 , the largest relative spacingfNB �

5 log10(B)
6 NaN (not a number)
7 positive machine infinity
8 negative machine infinity

Chapter 12: Utilities machine (float) � 727

The function imsl_d_machine retrieves machine constants which define the
computer’s double arithmetic. Note that for double B = imsl_i_machine(6),
Nd = imsl_i_machine(10),

min imsl_i_machine(11)
f

E �

and

max imsl_i_machine(12)
f

E �

Missing values in IMSL functions are always indicated by NaN (Not a Number).
This is imsl_f_machine(6) in single precision and imsl_d_machine(6) in
double. There is no missing-value indicator for integers. Users will almost always
have to convert from their missing value indicators to NaN.

Example
This example prints all eight values returned by imsl_f_machine and by
imsl_d_machine on a machine with IEEE arithmetic.

#include <imsl.h>

main()
{
 int n;
 float fans;
 double dans;

 for (n = 1; n <= 8; n++) {
 fans = imsl_f_machine(n);
 printf("imsl_f_machine(%d) = %g\n", n, fans);
 }

 for (n = 1; n <= 8; n++) {
 dans = imsl_d_machine(n);
 printf("imsl_d_machine(%d) = %g\n", n, dans);
 }
}

Output
imsl_f_machine(1) = 1.17549e-38
imsl_f_machine(2) = 3.40282e+38
imsl_f_machine(3) = 5.96046e-08
imsl_f_machine(4) = 1.19209e-07
imsl_f_machine(5) = 0.30103
imsl_f_machine(6) = NaN
imsl_f_machine(7) = Inf
imsl_f_machine(8) = -Inf
imsl_d_machine(1) = 2.22507e-308
imsl_d_machine(2) = 1.79769e+308
imsl_d_machine(3) = 1.11022e-16
imsl_d_machine(4) = 2.22045e-16
imsl_d_machine(5) = 0.30103
imsl_d_machine(6) = NaN

728 � sort IMSL C/Math/Library

imsl_d_machine(7) = Inf
imsl_d_machine(8) = -Inf

sort
Sorts a vector by algebraic value. Optionally, a vector can be sorted by absolute
value, and a sort permutation can be returned.

Synopsis

#include <imsl.h>

float *imsl_f_sort (int n, float *x, �, 0)

The type double function is imsl_d_sort.

Required Arguments

int n (Input)
The length of the input vector.

float *x (Input)
Input vector to be sorted.

Return Value
A vector of length n containing the values of the input vector x sorted into
ascending order. If an error occurs, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_sort (int n, float *x,
IMSL_ABSOLUTE,
IMSL_PERMUTATION, int **perm,
IMSL_PERMUTATION_USER, int perm_user[],
IMSL_RETURN_USER, float y[],
0)

Optional Arguments
IMSL_ABSOLUTE

Sort x by absolute value.

IMSL_PERMUTATION, int **perm (Output)
Return a pointer to the sort permutation.

IMSL_PERMUTATION_USER, int perm_user[] (Output)
Return the sort permutation in user-supplied space.

Chapter 12: Utilities sort � 729

IMSL_RETURN_USER, float y[] (Output)
Return the sorted data in user-supplied space.

Description
By default, imsl_f_sort sorts the elements of x into ascending order by
algebraic value. The vector is divided into two parts by choosing a central
element T of the vector. The first and last elements of x are compared with T and
exchanged until the three values appear in the vector in ascending order. The
elements of the vector are rearranged until all elements greater than or equal to
the central elements appear in the second part of the vector and all those less than
or equal to the central element appear in the first part. The upper and lower
subscripts of one of the segments are saved, and the process continues iteratively
on the other segment. When one segment is finally sorted, the process begins
again by retrieving the subscripts of another unsorted portion of the vector. On
completion, xj � xi for j < i. If the option IMSL_ABSOLUTE is selected, the
elements of x are sorted into ascending order by absolute value. If we denote the
return vector by y, on completion, |yj| � |yi| for j < i.

If the option IMSL_PERMUTATION is chosen, a record of the permutations to the
array x is returned. That is, after the initialization of permi = i, the elements of
perm are moved in the same manner as are the elements of x.

Examples

Example 1
In this example, an input vector is sorted algebraically.

#include <stdio.h>
#include <imsl.h>

main()
{
 float x[] = {1.0, 3.0, -2.0, 4.0};
 float *sorted_result;
 int n;

 n = 4;
 sorted_result = imsl_f_sort (n, x, 0);

 imsl_f_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}

Output
 Sorted vector
 1 2 3 4
-2 1 3 4

730 � sort (integer) IMSL C/Math/Library

Example 2
This example sorts an input vector by absolute value and prints the result stored in
user-allocated space.

#include <stdio.h>
#include <imsl.h>

main()
{
 float x[] = {1.0, 3.0, -2.0, 4.0};
 float sorted_result[4];
 int n;

 n = 4;
 imsl_f_sort (n, x,
 IMSL_ABSOLUTE,
 IMSL_RETURN_USER, sorted_result,
 0);

 imsl_f_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}

Output
 Sorted vector
1 2 3 4
1 -2 3 4

sort (integer)
Sorts an integer vector by algebraic value. Optionally, a vector can be sorted by
absolute value, and a sort permutation can be returned.

Synopsis

#include <imsl.h>

int *imsl_i_sort (int n, int *x, �, 0)

Required Arguments

int n (Input)
The length of the input vector.

int *x (Input)
Input vector to be sorted.

Return Value
A vector of length n containing the values of the input vector x sorted into
ascending order. If an error occurs, then NULL is returned.

Chapter 12: Utilities sort (integer) � 731

Synopsis with Optional Arguments
#include <imsl.h>

int *imsl_i_sort (int, n int *x,
IMSL_ABSOLUTE,
IMSL_PERMUTATION, int **perm,
IMSL_PERMUTATION_USER, int perm_user[],
IMSL_RETURN_USER, int y[],
0)

Optional Arguments
IMSL_ABSOLUTE

Sort x by absolute value.

IMSL_PERMUTAION, int **perm (Output)
Return a pointer to the sort permutation.

IMSL_PERMUTATION_USER, int perm_user[] (Output)
Return the sort permutation in user-supplied space.

IMSL_RETURN_USER, int y[] (Output)
Return the sorted data in user-supplied space.

Description
By default, imsl_i_sort sorts the elements of x into ascending order by
algebraic value. The vector is divided into two parts by choosing a central
element T of the vector. The first and last elements of x are compared with T and
exchanged until the three values appear in the vector in ascending order. The
elements of the vector are rearranged until all elements greater than or equal to
the central elements appear in the second part of the vector and all those less than
or equal to the central element appear in the first part. The upper and lower
subscripts of one of the segments are saved, and the process continues iteratively
on the other segment. When one segment is finally sorted, the process begins
again by retrieving the subscripts of another unsorted portion of the vector. On
completion, xj � xi for j < i. If the option IMSL_ABSOLUTE is selected, the
elements of x are sorted into ascending order by absolute value. If we denote the
return vector by y, on completion, |yj| � |yi| for j < i.

If the option IMSL_PERMUTATION is chosen, a record of the permutations to the
array x is returned. That is, after the initialization of permi = i, the elements of
perm are moved in the same manner as are the elements of x.

732 � sort (integer) IMSL C/Math/Library

Examples

Example 1
In this example, an input vector is sorted algebraically.

#include <stdio.h>
#include <imsl.h>

main()
{
 int x[] = {1, 3, -2, 4};
 int *sorted_result;
 int n;

 n = 4;
 sorted_result = imsl_i_sort (n, x, 0);

 imsl_i_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}

Output
 Sorted vector
 1 2 3 4
-2 1 3 4

Example 2
This example sorts an input vector by absolute value and prints the result stored in
user-allocated space.

#include <stdio.h>
#include <imsl.h>

main()
{
 int x[] = {1, 3, -2, 4};
 int sorted_result[4];
 int n;

 n = 4;
 imsl_i_sort (n, x,
 IMSL_ABSOLUTE,
 IMSL_RETURN_USER, sorted_result,
 0);

 imsl_i_write_matrix("Sorted vector", 1, 4, sorted_result, 0);
}

Output
 Sorted vector
 1 2 3 4
 1 -2 3 4

Chapter 12: Utilities vector_norm � 733

vector_norm
Computes various norms of a vector or the difference of two vectors.

Synopsis

#include <imsl.h>

float imsl_f_vector_norm (int n, float *x, �., 0)

The type double function is imsl_d_vector_norm.

Required Arguments

int n (Input)
The length of the input vector(s).

float *x (Input)
Input vector for which the norm is to be computed

Return Value
The requested norm of the input vector. If the norm cannot be computed, NaN is
returned.

Synopsis with Optional Arguments
#include <imsl.h>

float imsl_f_vector_norm (int n, float *x,
IMSL_ONE_NORM,
IMSL_INF_NORM,
IMSL_SECOND_VECTOR, float *y,
0)

Description
By default, imsl_f_vector_norm computes the Euclidean norm

1
1 2

2

0

n

i
i

x
�

�

� �
� �
� �
�

If the option IMSL_ONE_NORM is selected, the 1-norm
1

0

n

i
i

x
�

�

�

is returned. If the option IMSL_INF_NORM is selected, the infinity norm

max |xi|

734 � vector_norm IMSL C/Math/Library

is returned. In the case of the infinity norm, the program also returns the index of
the element with maximum modulus. If IMSL_SECOND_VECTOR is selected, then
the norm of x � y is computed.

Examples

Example 1
In this example, the Euclidean norm of an input vector is computed.

#include <stdio.h>
#include "imsl.h"

main()
{
 float x[] = {1.0, 3.0, -2.0, 4.0};
 float norm;
 int n;

 n = sizeof(x)/sizeof(*x);
 norm = imsl_f_vector_norm (n, x, 0);

 printf("Euclidean norm of x = %f\n", norm);
}

Output
Euclidean norm of x = 5.477226

Example 2

This example computes max |xi � yi| and prints the norm and index.
#include <stdio.h>
#include "imsl.h"

main()
{
 float x[] = {1.0, 3.0, -2.0, 4.0};
 float y[] = {4.0, 2.0, -1.0, -5.0};
 float norm;
 int index;
 int n;

 n = sizeof(x)/sizeof(*x);
 norm = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, y,
 IMSL_INF_NORM, &index, 0);

 printf("Infinity norm of x-y = %f ", norm);
 printf("at location %d\n", index);
}

Output
Infinity norm of x-y = 9.000000 at location 3

Chapter 12: Utilities mat_mul_rect � 735

mat_mul_rect
Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix
product, the bilinear form, or any triple product.

Synopsis

#include <imsl.h>

float *imsl_f_mat_mul_rect (char *string, �, 0)

The type double procedure is imsl_d_mat_mul_rect.

Required Arguments

char *string (Input)
String indicating matrix multiplication to be performed.

Return Value
The result of the multiplication. This is always a pointer to a float, even if the
result is a single number. To release this space, use free. If no answer was
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_mat_mul_rect (char *string,
IMSL_A_MATRIX, int nrowa, int ncola, float a[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_MATRIX, int nrowb, int ncolb, float b[],
IMSL_B_COL_DIM, int b_col_dim,
IMSL_X_VECTOR, int nx, float *x,
IMSL_Y_VECTOR, int ny, float *y,
IMSL_RETURN_USER, float ans[],
IMSL_RETURN_COL_DIM, int return_col_dim,
0)

Optional Arguments
IMSL_A_MATRIX, int nrowa, int ncola, float a[] (Input)

The nrowa � ncola matrix A.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = ncola

IMSL_B_MATRIX, int nrowb, int ncolb, float b[] (Input)
The nrowb � ncolb matrix A.

736 � mat_mul_rect IMSL C/Math/Library

y

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = ncolb

IMSL_X_VECTOR, int nx, float *x (Input)
The vector x of size nx.

IMSL_Y_VECTOR, int ny, float *y (Input)
The vector y of size ny.

IMSL_RETURN_USER, float ans[] (Output)
A user-allocated array containing the result.

IMSL_RETURN_COL_DIM, int return_col_dim (Input)
The column dimension of the answer.
Default: return_col_dim = the number of columns in the answer

Description
This function computes a matrix-vector product, a matrix-matrix product, a
bilinear form of a matrix, or a triple product according to the specification given
by string. For example, if “A*x” is given, Ax is computed. In string, the
matrices A and B and the vectors x and y can be used. Any of these four names
can be used with trans, indicating transpose. The vectors x and y are treated as
n � 1 matrices.

If string contains only one item, such as “x” or “trans(A)”, then a copy of the
array, or its transpose, is returned. If string contains one multiplication, such as
“A*x” or “B*A”, then the indicated product is returned. Some other legal values
for string are “trans(y)*A”, “A*trans(B)”, “x*trans(y)”, or
“trans(x)*y”.

The matrices and/or vectors referred to in string must be given as optional
arguments. If string is “B*x”, then IMSL_B_MATRIX and IMSL_X_VECTOR
must be given.

Example
Let

3 2 7 3
1 2 9

7 4 2 4
5 4 7

9 1 1 2
A B x

� � � � �
� �

�
� � � � �� � �� �

��� � � � �
� �

�
� � � � � �� � � � � �

The arrays AT, Ax, xTAT, AB, BTAT, xTy, xyT, and xTAy are computed and
printed.

#include <imsl.h>

main()
{

Chapter 12: Utilities mat_mul_rect � 737

 float A[] = {1, 2, 9,
 5, 4, 7};
 float B[] = {3, 2,
 7, 4,
 9, 1};
 float x[] = {7, 2, 1};
 float y[] = {3, 4, 2};
 float *ans;

 ans = imsl_f_mat_mul_rect("trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 0);
 imsl_f_write_matrix("trans(A)", 3, 2, ans, 0);

 ans = imsl_f_mat_mul_rect("A*x",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_X_VECTOR, 3, x,
 0);
 imsl_f_write_matrix("A*x", 1, 2, ans, 0);

 ans = imsl_f_mat_mul_rect("trans(x)*trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_X_VECTOR, 3, x,
 0);
 imsl_f_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0);

 ans = imsl_f_mat_mul_rect("A*B",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_B_MATRIX, 3, 2, B,
 0);
 imsl_f_write_matrix("A*B", 2, 2, ans, 0);

 ans = imsl_f_mat_mul_rect("trans(B)*trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_B_MATRIX, 3, 2, B,
 0);
 imsl_f_write_matrix("trans(B)*trans(A)", 2, 2, ans, 0);

 ans = imsl_f_mat_mul_rect("trans(x)*y",
 IMSL_X_VECTOR, 3, x,
 IMSL_Y_VECTOR, 3, y,
 0);
 imsl_f_write_matrix("trans(x)*y", 1, 1, ans, 0);

 ans = imsl_f_mat_mul_rect("x*trans(y)",
 IMSL_X_VECTOR, 3, x,
 IMSL_Y_VECTOR, 3, y,
 0);
 imsl_f_write_matrix("x*trans(y)", 3, 3, ans, 0);

 ans = imsl_f_mat_mul_rect("trans(x)*A*y",
 IMSL_A_MATRIX, 2, 3, A,
 /* use only the first 2 components of x */
 IMSL_X_VECTOR, 2, x,
 IMSL_Y_VECTOR, 3, y,
 0);

738 � mat_mul_rect (complex) IMSL C/Math/Library

 imsl_f_write_matrix("trans(x)*A*y", 1, 1, ans, 0);
}

Output
 trans(A)
 1 2
1 1 5
2 2 4
3 9 7

 A*x
 1 2
 20 50

 trans(x)*trans(A)
 1 2
 20 50

 A*B
 1 2
1 98 19
2 106 33

 trans(B)*trans(A)
 1 2
1 98 106
2 19 33

trans(x)*y
 31

 x*trans(y)
 1 2 3
1 21 28 14

2 6 8 4
3 3 4 2

trans(x)*A*y
 293

mat_mul_rect (complex)
Computes the transpose of a matrix, the conjugate-transpose of a matrix, a matrix-
vector product, a matrix-matrix product, the bilinear form, or any triple product.

Synopsis

#include <imsl.h>

f_complex *imsl_c_mat_mul_rect (char *string, �, 0)

The type d_complex function is imsl_z_mat_mul_rect.

Chapter 12: Utilities mat_mul_rect (complex) � 739

Required Arguments

char *string (Input)
String indicating matrix multiplication to be performed.

Return Value
The result of the multiplication. This is always a pointer to a f_complex, even if
the result is a single number. To release this space, use free. If no answer was
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

f_complex *imsl_c_mat_mul_rect (char *string,
IMSL_A_MATRIX, int nrowa, int ncola, f_complex *a,
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_MATRIX, int nrowb, int ncolb, f_complex *b,
IMSL_B_COL_DIM, int b_col_dim,
IMSL_X_VECTOR, int nx, f_complex *x,
IMSL_Y_VECTOR, int ny, f_complex *y,
IMSL_RETURN_USER, f_complex ans[],
IMSL_RETURN_COL_DIM, int return_col_dim,
0)

Optional Arguments
IMSL_A_MATRIX, int nrowa, int ncola, f_complex *a (Input)

The nrowa � ncola matrix A.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = ncola

IMSL_B_MATRIX, int nrowb, int ncolb, f_complex *b (Input)
The nrowb � ncolb matrix B.

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = ncolb

IMSL_X_VECTOR, int nx, f_complex *x (Input)
The vector x of size nx.

IMSL_Y_VECTOR, int ny, f_complex *y (Input)
The vector y of size ny.

IMSL_RETURN_USER, f_complex ans[] (Output)
A user-allocated array containing the result.

740 � mat_mul_rect (complex) IMSL C/Math/Library

IMSL_RETURN_COL_DIM, int return_col_dim (Input)
The column dimension of the answer.
Default: return_col_dim = the number of columns in the answer

Description
This function computes a matrix-vector product, a matrix-matrix product, a
bilinear form of a matrix, or a triple product according to the specification given
by string. For example, if “A*x” is given, Ax is computed. In string, the
matrices A and B and the vectors x and y can be used. Any of these four names
can be used with trans, indicating transpose, or with ctrans, indicating
conjugate (or Hermitian) transpose. The vectors x and y are treated as n � 1
matrices.

If string contains only one item, such as “x” or “trans(A)”, then a copy of
the array, or its transpose, is returned. If string contains one multiplication, such
as “A*x” or “B*A”, then the indicated product is returned. Some other legal values
for string are “trans(y)*A”, “A*ctrans(B)”, “x*trans(y)”, or
“ctrans(x)*y”.

The matrices and/or vectors referred to in string must be given as optional
arguments. If string is “B*x”, then IMSL_B_MATRIX and IMSL_X_VECTOR
must be given.

Example
Let

3 6 2 4
1 4 2 3 9 6

7 3 4 5
5 2 4 3 7

9 2 1 3

7 4 3 4
2 2 4 2
1 5 2 3

i i
i i i

A B i
i i i

i i

i i
x i y i

i i

� �

i
� �

� � �� � � �� �� � � �� �� � �� 	 � �� �� 	

� �� � � �
� � � �� � � �� � � �
� � � �� �� 	 � 	

The arrays AH, Ax, xTAT, AB, BHAT, xTy, and xyH are computed and printed.
#include <imsl.h>

main()
{
 f_complex A[] = {{1,4}, {2, 3}, {9,6},
 {5,2}, {4,-3}, {7,1}};

 f_complex B[] = {{3,-6}, {2, 4},
 {7, 3}, {4,-5},
 {9, 2}, {1, 3}};

 f_complex x[] = {{7,4}, {2, 2}, {1,-5}};
 f_complex y[] = {{3,4}, {4,-2}, {2, 3}};

Chapter 12: Utilities mat_mul_rect (complex) � 741

 f_complex *ans;

 ans = imsl_c_mat_mul_rect("ctrans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 0);
 imsl_c_write_matrix("ctrans(A)", 3, 2, ans, 0);

 ans = imsl_c_mat_mul_rect("A*x",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_X_VECTOR, 3, x,
 0);
 imsl_c_write_matrix("A*x", 1, 2, ans, 0);

 ans = imsl_c_mat_mul_rect("trans(x)*trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_X_VECTOR, 3, x,
 0);
 imsl_c_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0);

 ans = imsl_c_mat_mul_rect("A*B",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_B_MATRIX, 3, 2, B,
 0);
 imsl_c_write_matrix("A*B", 2, 2, ans, 0);

 ans = imsl_c_mat_mul_rect("ctrans(B)*trans(A)",
 IMSL_A_MATRIX, 2, 3, A,
 IMSL_B_MATRIX, 3, 2, B,
 0);
 imsl_c_write_matrix("ctrans(B)*trans(A)", 2, 2, ans, 0);

 ans = imsl_c_mat_mul_rect("trans(x)*y",
 IMSL_X_VECTOR, 3, x,
 IMSL_Y_VECTOR, 3, y,
 0);
 imsl_c_write_matrix("trans(x)*y", 1, 1, ans, 0);

 ans = imsl_c_mat_mul_rect("x*ctrans(y)",
 IMSL_X_VECTOR, 3, x,
 IMSL_Y_VECTOR, 3, y,
 0);
 imsl_c_write_matrix("x*ctrans(y)", 3, 3, ans, 0);
}

Output
 ctrans(A)
 1 2
1 (1, -4) (5, -2)
2 (2, -3) (4, 3)
3 (9, -6) (7, -1)

 A*x
 1 2
(28, 3) (53, 2)

 trans(x)*trans(A)

742 � mat_mul_rect_band IMSL C/Math/Library

 1 2
(28, 3) (53, 2)

 A*B
 1 2
1 (101, 105) (0, 47)
2 (125, -10) (7, 14)

 ctrans(B)*trans(A)
 1 2
1 (95, 69) (87, -2)
2 (38, 5) (59, -28)

 trans(x)*y
(34, 37)

 x*ctrans(y)
 1 2 3
1 (37, -16) (20, 30) (26, -13)
2 (14, -2) (4, 12) (10, -2)
3 (-17, -19) (14, -18) (-13, -13)

mat_mul_rect_band
Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix
product, all matrices stored in band form.

Synopsis

#include <imsl.h>

float *imsl_f_mat_mul_rect_band (char *string, ..., 0)

The equivalent double function is imsl_d_mat_mul_rect_band.

Required Arguments

char *string (Input)
String indicating matrix multiplication to be performed.

Return Value
The result of the multiplication is returned. To release this space, use free.

Synopsis with Optional Arguments
#include <imsl.h>

void *imsl_f_mat_mul_rect_band (char *string,
IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca,
 float *a,
IMSL_B_MATRIX, int nrowb, int ncolb, int nlcb, int nucb,
 float *b,

Chapter 12: Utilities mat_mul_rect_band � 743

IMSL_X_VECTOR, int nx, float *x,
IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result,
 int *nuc_result,
IMSL_RETURN_USER_VECTOR, float vector_user[],
0)

Optional Arguments
IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca, float *a

(Input)
The sparse matrix

nrowa ncolaA �

��

IMSL_B_MATRIX, int nrowb, int ncolb, int nlcb, int nucb, float *b
(Input)
The sparse matrix

nrowb xnolbB �

��

IMSL_X_VECTOR, int nx, float *x, (Input)
The vector x of length nx.

IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result,
int *nuc_result, (Output)
If the function imsl_f_mat_mul_rect_band returns data for a band
matrix, use this option to retrieve the number of lower and upper
codiagonals of the return matrix.

IMSL_RETURN_USER_VECTOR, float vector_user[], (Output)
If the result of the computation in a vector, return the answer in the user
supplied sparse vector_user.

Description
The function imsl_f_mat_mul_rect_band computes a matrix-matrix product
or a matrix-vector product, where the matrices are specified in band format. The
operation performed is specified by string. For example, if “A*x” is given,
Ax is computed. In string, the matrices A and B and the vector x can be used.
Any of these names can be used with trans, indicating transpose. The vector x is
treated as a dense n � 1 matrix. If string contains only one item, such as “x” or
“trans(A)”, then a copy of the array, or its transpose is returned.

The matrices and/or vector referred to in string must be given as optional
arguments. Therefore, if string is “A*x”, then IMSL_A_MATRIX and
IMSL_X_VECTOR must be given.

744 � mat_mul_rect_band IMSL C/Math/Library

Examples

Example 1
Consider the matrix

2 1 0 0
3 1 2 0

0 0 1 2
0 0 2 1

A

�� �
� �� �� ��
� ��
� �
� �� �

After storing A in band format, multiply A by x = (1, 2, 3, 4)T and print the result.
#include <imsl.h>
main()
{
 float a[] = {0.0, -1.0, -2.0, 2.0,
 2.0, 1.0, -1.0, 1.0,
 -3.0, 0.0, 2.0, 0.0};

 float x[] = {1.0, 2.0, 3.0, 4.0};
 int n = 4;
 int nuca = 1;
 int nlca = 1;
 float *b;

 /* Set b = A*x */

 b = imsl_f_mat_mul_rect_band ("A*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);

 imsl_f_write_matrix ("Product, Ax", 1, n, b, 0);
}

Output
 Product, Ax
 1 2 3 4
 0 -7 5 10

Example 2
This example uses the power method to determine the dominant eigenvector of
E(100, 10). The same computation is performed by using imsl_f_eig_sym. The
iteration stops when the component-wise absolute difference between the
dominant eigenvector found by imsl_f_eig_sym and the eigenvector at the
current iteration is less than the square root of machine unit roundoff.

#include <imsl.h>
#include <math.h>

Chapter 12: Utilities mat_mul_rect_band � 745

void main()
{
 int i;
 int j;
 int k;
 int n;
 int c;
 int nz;
 int index;
 int start;
 int stop;
 float *a;
 float *z;
 float *q;
 float *dense_a;
 float *dense_evec;
 float *dense_eval;
 float norm;
 float *evec;
 float error;
 float tolerance;

 n = 100;
 c = 10;
 tolerance = sqrt(imsl_f_machine(4));
 error = 1.0;

 evec = (float*) malloc (n*sizeof(*evec));
 z = (float*) malloc (n*sizeof(*z));
 q = (float*) malloc (n*sizeof(*q));
 dense_a = (float*) calloc (n*n, sizeof(*dense_a));
 a = imsl_f_generate_test_band (n, c, 0);

 /* Convert to dense format,
 starting with upper triangle */

 start = c;
 for (i=0; i<c; i++, start--)
 for (k=0, j=start; j<n; j++, k++)
 dense_a[k*n + j] = a[i*n + j];

 /* Convert diagonal */

 for (j=0; j<n; j++)
 dense_a[j*n + j] = a[c*n + j];

 /* Convert lower triangle */
 stop = n-1;
 for (i=c+1; i<2*c+1; i++, stop--)
 for (k=i-c, j=0; j<stop; j++, k++)
 dense_a[k*n + j] = a[i*n + j];

 /* Determine dominant eigenvector by a dense method
*/

 dense_eval = imsl_f_eig_sym (n, dense_a,

746 � mat_mul_rect_band (complex) IMSL C/Math/Library

 IMSL_VECTORS, &dense_evec,
 0);
 for (i=0; i<n; i++) evec[i] = dense_evec[n*i];

 /* Normalize */

 norm = imsl_f_vector_norm (n, evec, 0);
 for (i=0; i<n; i++) evec[i] /= norm;

 for (i=0; i<n; i++) q[i] = 1.0/sqrt((float) n);

 /* Do power method */

 while (error > tolerance) {
 imsl_f_mat_mul_rect_band ("A*x",
 IMSL_A_MATRIX, n, n, c, c, a,
 IMSL_X_VECTOR, n, q,
 IMSL_RETURN_USER_VECTOR, z,
 0);

 /* Normalize */

 norm = imsl_f_vector_norm (n, z, 0);
 for (i=0; i<n; i++) q[i] = z[i]/norm;

 /* Compute maximum absolute error between any
 two elements */

 error = imsl_f_vector_norm (n, q,
 IMSL_SECOND_VECTOR, evec,
 IMSL_INF_NORM, &index,
 0);
 }
 printf ("Maximum absolute error = %e\n", error);
}

Output
Maximum absolute error = 3.367960e-04

mat_mul_rect_band (complex)
Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix
product for all matrices of complex type and stored in band form.

Synopsis

#include <imsl.h>

f_complex *imsl_c_mat_mul_rect_band (char *string, ..., 0)

The equivalent d_complex function is imsl_z_mat_mul_rect_band.

Chapter 12: Utilities mat_mul_rect_band (complex) � 747

Required Arguments

char *string (Input)
String indicating matrix multiplication to be performed.

Return Value
The result of the multiplication is returned. To release this space, use free.

Synopsis with Optional Arguments
#include <imsl.h>

void *imsl_c_mat_mul_rect_band (char *string,
IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca,
 f_complex *a,
IMSL_B_MATRIX, int nrowb, int ncolb, int nlcb, int nucb,
 f_complex *b,
IMSL_X_VECTOR, int nx, f_complex *x,
IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result,
 int *nuc_result,
IMSL_RETURN_USER_VECTOR, f_complex vector_user[],
0)

Optional Arguments
IMSL_A_MATRIX, int nrowa, int ncola, int nlca, int nuca,

f_complex *a (Input)
The sparse matrix

nrowa ncolaA �

��

IMSL_B_MATRIX, int nrowb, int ncolb, int nlcb, int nucb,
f_complex *b (Input)
The sparse matrix

nrowb xnolbB �

��

IMSL_X_VECTOR, int nx, f_complex *x, (Input)
The vector x of length nx.

IMSL_RETURN_MATRIX_CODIAGONALS, int *nlc_result,
int *nuc_result, (Output)
If the function imsl_c_mat_mul_rect_band returns data for a band
matrix, use this option to retrieve the number of lower and upper
codiagonals of the return matrix.

IMSL_RETURN_USER_VECTOR, f_complex vector_user[], (Output)
If the result of the computation in a vector, return the answer in the user
supplied sparse vector_user.

748 � mat_mul_rect_band (complex) IMSL C/Math/Library

i

Description
The function imsl_c_mat_mul_rect_band computes a matrix-matrix product
or a matrix-vector product, where the matrices are specified in band format. The
operation performed is specified by string. For example, if “A*x” is given,
Ax is computed. In string, the matrices A and B and the vector x can be used.
Any of these names can be used with trans, indicating transpose. The vector x is
treated as a dense n � 1 matrix. If string contains only one item, such as “x” or
“trans(A)”, then a copy of the array, or its transpose is returned.

The matrices and/or vector referred to in string must be given as optional
arguments. Therefore, if string is “A*x”, then IMSL_A_MATRIX and
IMSL_X_VECTOR must be given.

Examples

Example 1
Let

2 4 0 0
6 0.5 3 2 2 0

0 1 3 3 4
0 0 2 1

i i i
A

i i
i i

�� �
� �	 � 	 � 	� ��
� �	 � � �
� �

�� �� �

and

3
1
3

1

i
x

i

� �
� �� �� ��
� �
� �
� �� �� 	

This example computes the product Ax.
#include <imsl.h>

main()
{
 int n = 4;
 int nlca = 1;
 int nuca = 1;
 f_complex *b;

 /* Note that a is in band storage mode */

 f_complex a[] =
 {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
 {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
 {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};

 f_complex x[] =

Chapter 12: Utilities mat_mul_rect_band (complex) � 749

 {{3.0, 0.0}, {-1.0, 1.0}, {3.0, 0.0}, {-1.0, 1.0}};

 /* Set b = A*x */

 b = imsl_c_mat_mul_rect_band ("A*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);

 imsl_c_write_matrix ("Product, Ax", 1, n, b, 0);
}

Output
 Product, Ax
 1 2 3
(-10.0, -5.0) (9.5, 5.5) (12.0, -12.0)

 4
(0.0, 8.0)

Example 2
Using the same matrix A and vector x given in the last example, the products Ax,
ATx, AHx and AAH are computed.

#include <imsl.h>

#include <stdlib.h>
main()
{
 int n = 4;
 int nlca = 1;
 int nuca = 1;
 f_complex *b;
 f_complex *z;
 int nlca_z;
 int nuca_z;

 /* Note that a is in band storage mode */

 f_complex a[] =
 {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
 {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
 {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};

 f_complex x[] =
 {{3.0, 0.0}, {-1.0, 1.0}, {3.0, 0.0}, {-1.0, 1.0}};

 /* Set b = A*x */

 b = imsl_c_mat_mul_rect_band ("A*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);

 imsl_c_write_matrix ("Ax", 1, n, b, 0);

750 � mat_mul_rect_band (complex) IMSL C/Math/Library

 free(b);

 /* Set b = trans(A)*x */

 b = imsl_c_mat_mul_rect_band ("trans(A)*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);

 imsl_c_write_matrix ("\n\ntrans(A)x", 1, n, b, 0);
 free(b);

 /* Set b = ctrans(A)*x */

 b = imsl_c_mat_mul_rect_band ("ctrans(A)*x",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 0);

 imsl_c_write_matrix ("\n\nctrans(A)x", 1, n, b, 0);
 free(b);

 /* Set z = A*ctrans(A) */

 z = imsl_c_mat_mul_rect_band ("A*ctrans(A)",
 IMSL_A_MATRIX, n, n, nlca, nuca, a,
 IMSL_X_VECTOR, n, x,
 IMSL_RETURN_MATRIX_CODIAGONALS, &nlca_z, &nuca_z,
 0);

 imsl_c_write_matrix("A*ctrans(A)", nlca_z+nuca_z+1, n, z, 0);
}

Output
 Ax
 1 2 3
(-10.0, -5.0) (9.5, 5.5) (12.0, -12.0)

 4
(0.0, 8.0)

 trans(A)x
 1 2 3
(-13.0, -4.0) (12.5, -0.5) (7.0, -15.0)

 4
(-12.0, -1.0)

 ctrans(A)x
 1 2 3
(-11.0, 16.0) (18.5, -0.5) (15.0, 11.0)

 4
(-14.0, 3.0)

Chapter 12: Utilities mat_mul_rect_coordinate � 751

 A*ctrans(A)
 1 2 3
1 (0.00, 0.00) (0.00, 0.00) (4.00, -4.00)
2 (0.00, 0.00) (-17.00, -28.00) (-9.50, 3.50)
3 (29.00, 0.00) (54.25, 0.00) (37.00, 0.00)
4 (-17.00, 28.00) (-9.50, -3.50) (-9.00, 11.00)
5 (4.00, 4.00) (4.00, -4.00) (0.00, 0.00)

 4
1 (4.00, 4.00)
2 (-9.00, -11.00)
3 (6.00, 0.00)
4 (0.00, 0.00)
5 (0.00, 0.00)

mat_mul_rect_coordinate
Computes the transpose of a matrix, a matrix-vector product, or a matrix-matrix
product for all matrices stored in sparse coordinate form.

Synopsis

#include <imsl.h>

void *imsl_f_mat_mul_rect_coordinate (char *string, ..., 0)

The equivalent double function is imsl_d_mat_mul_rect_coordinate.

Required Arguments

char *string (Input)
String indicating matrix multiplication to be performed.

Return Value
The result of the multiplication. If the result is a vector, the return type is pointer
to float. If the result of the multiplication is a sparse matrix, the return type is
pointer to Imsl_f_sparse_elem. To release this space, use free.

Synopsis with Optional Arguments
#include <imsl.h>

void *imsl_f_mat_mul_rect_coordinate (char *string,
IMSL_A_MATRIX, int nrowa, int ncola, int nza,
 Imsl_f_sparse_elem *a,
IMSL_B_MATRIX, int nrowb, int ncolb, int nzb,
 Imsl_f_sparse_elem *b,
IMSL_X_VECTOR, int nx, float *x,
IMSL_RETURN_MATRIX_SIZE, int *size,

752 � mat_mul_rect_coordinate IMSL C/Math/Library

IMSL_RETURN_USER_VECTOR, float vector_user[],
0)

Optional Arguments
IMSL_A_MATRIX, int nrowa, int ncola, int nza, Imsl_f_sparse_elem *a

(Input)
The sparse matrix

nrowa ncolaA �

��

with nza nonzero elements.

IMSL_B_MATRIX, int nrowb, int ncolb, int nzb, Imsl_f_sparse_elem *b
(Input)
The sparse matrix

nrowb xnolbB �

��

with nzb nonzero elements.

IMSL_X_VECTOR, int nx, float *x, (Input)
The vector x of length nx.

IMSL_RETURN_MATRIX_SIZE, int *size, (Output)
If the function imsl_f_mat_mul_rect_coordinate returns a vector
of type Imsl_f_sparse_elem, use this option to retrieve the length of the
return vector, i.e. the number of nonzero elements in the sparse matrix
generated by the requested computations.

IMSL_RETURN_USER_VECTOR, float vector_user[], (Output)
If the result of the computation in a vector, return the answer in the user
supplied sparse vector_user. It’s size depends on the computation.

Description
The function imsl_f_mat_mul_rect_coordinate computes a matrix-matrix
product or a matrix-vector product, where the matrices are specified in coordinate
representation. The operation performed is specified by string. For example, if
“A*x” is given, Ax is computed. In string, the matrices A and B and the vector x
can be used. Any of these names can be used with trans, indicating transpose.
The vector x is treated as a dense n � 1 matrix.

If string contains only one item, such as “x” or “trans(A)”, then a copy of the
array, or its transpose is returned. Some multiplications, such as “A*trans(A)”
or “trans(x)*B”, will produce a sparse matrix in coordinate format as a result.
Other products such as “B*x” will produce a pointer to a floating type, containing
the resulting vector.

The matrices and/or vector referred to in string must be given as optional
arguments. Therefore, if string is “A*x”, then IMSL_A_MATRIX and
IMSL_X_VECTOR must be given.

Chapter 12: Utilities mat_mul_rect_coordinate � 753

Examples

Example 1
In this example, a sparse matrix in coordinate form is multipled by a vector.

#include <imsl.h>
main()
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};

 float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 int n = 6;
 int nz = 15;
 float *x;

 /* Set x = A*b */

 x = imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, b,
 0);

 imsl_f_write_matrix ("Product Ab", 1, n, x, 0);
}

Output
 Product Ab
 1 2 3 4 5 6
 100 -98 675 344 -302 162

Example 2
This example uses the power method to determine the dominant eigenvector of
E(100, 10). The same computation is performed by using imsl_f_eig_sym. The
iteration stops when the component-wise absolute difference between the
dominant eigenvector found by imsl_f_eig_sym and the eigenvector at the
current iteration is less than the square root of machine unit roundoff.

#include <imsl.h>
#include <math.h>

754 � mat_mul_rect_coordinate IMSL C/Math/Library

void main()
{
 int i;
 int n;
 int c;
 int nz;
 int index;
 Imsl_f_sparse_elem *a;
 float *z;
 float *q;
 float *dense_a;
 float *dense_evec;
 float *dense_eval;
 float norm;
 float *evec;
 float error;
 float tolerance;

 n = 100;
 c = 10;
 tolerance = sqrt(imsl_f_machine(4));
 error = 1.0;

 evec = (float*) malloc (n*sizeof(*evec));
 z = (float*) malloc (n*sizeof(*z));
 q = (float*) malloc (n*sizeof(*q));
 dense_a = (float*) calloc (n*n, sizeof(*dense_a));
 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);

 /* Convert to dense format */

 for (i=0; i<nz; i++)
 dense_a[a[i].col + n*a[i].row] = a[i].val;

 /* Determine dominant eigenvector by a dense method */

 dense_eval = imsl_f_eig_sym (n, dense_a,
 IMSL_VECTORS, &dense_evec,
 0);
 for (i=0; i<n; i++) evec[i] = dense_evec[n*i];

 /* Normalize */

 norm = imsl_f_vector_norm (n, evec, 0);
 for (i=0; i<n; i++) evec[i] /= norm;

 for (i=0; i<n; i++) q[i] = 1.0/sqrt((float) n);

 /* Do power method */

 while (error > tolerance) {
 imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, q,
 IMSL_RETURN_USER_VECTOR, z,
 0);

Chapter 12: Utilities mat_mul_rect_coordinate (complex) � 755

 /* Normalize */

 norm = imsl_f_vector_norm (n, z, 0);
 for (i=0; i<n; i++) q[i] = z[i]/norm;

 /* Compute maximum absolute error between any
 two elements */
 error = imsl_f_vector_norm (n, q,
 IMSL_SECOND_VECTOR, evec,
 IMSL_INF_NORM, &index,
 0);
 }
 printf ("Maximum absolute error = %e\n", error);
}

Output
Maximum absolute error = 3.368035e-04

mat_mul_rect_coordinate (complex)
Computes the transpose of a matrix, a matrix-vector produce, or a matrix-matrix
product for all matrices stored in sparse coordinate form.

Synopsis

#include <imsl.h>

void *imsl_c_mat_mul_rect_coordinate (char *string, ..., 0)

The equivalent double function is imsl_d_mat_mul_rect_coordinate.

Required Arguments

char *string (Input)
String indicating matrix multiplication to be performed.

Return Value
The result of the multiplication. If the result is a vector, the return type is pointer
to f_complex. If the result of the multiplication is a sparse matrix, the return type
is pointer to Imsl_c_sparse_elem.

Synopsis with Optional Arguments
#include <imsl.h>

void *imsl_c_mat_mul_rect_coordinate (char *string,
IMSL_A_MATRIX, int nrowa, int ncola, int nza,
 Imsl_c_sparse_elem *a,
IMSL_B_MATRIX, int nrowb, int ncolb, int nzb,
 Imsl_c_sparse_elem *b,

756 � mat_mul_rect_coordinate (complex) IMSL C/Math/Library

IMSL_X_VECTOR, int nx, f_complex *x,
IMSL_RETURN_MATRIX_SIZE, int *size,
IMSL_RETURN_USER_VECTOR, f_complex vector_user[],
0)

Optional Arguments
IMSL_A_MATRIX, int nrowa, int ncola, int nza, Imsl_c_sparse_elem *a

(Input)
The sparse matrix

nrowa ncolaA C �

�
with nza nonzero elements.

IMSL_B_MATRIX, int nrowb, int ncolb, int nzb, Imsl_c_sparse_elem *b
(Input)
The sparse matrix

nrowb xnolbB C �

�
with nzb nonzero elements.

IMSL_X_VECTOR, int nx, f_complex *x, (Input)
The vector x of length nx.

IMSL_RETURN_MATRIX_SIZE, int *size, (Output)
If the function imsl_c_mat_mul_rect_coordinate returns a vector
of type Imsl_c_sparse_elem, use this option to retrieve the length of the
return vector, i.e. the number of nonzero elements in the sparse matrix
generated by the requested computations.

IMSL_RETURN_USER_VECTOR, f_complex vector_user[], (Output)
If the result of the computation is a vector, return the answer in the user
supplied space vector_user. It’s size depends on the computation.

Description
The function imsl_c_mat_mul_rect_coordinate computes a matrix-matrix
product or a matrix-vector product, where the matrices are specified in coordinate
representation. The operation performed is specified by string. For example, if
“A*x” is given, Ax is computed. In string, the matrices A and B and the vector x
can be used. Any of these names can be used with trans or ctrans, indicating
transpose and conjugate transpose, respectively. The vector x is treated as a dense
n � 1 matrix.

If string contains only one item, such as “x” or “trans(A)”, then a copy of the
array, or its transpose is returned. Some multiplications, such as “A*ctrans(A)”
or “trans(x)*B”, will produce a sparse matrix in coordinate format as a result.
Other products such as “B*x” will produce a pointer to a complex type,
containing the resulting vector.

Chapter 12: Utilities mat_mul_rect_coordinate (complex) � 757

i
i

i

The matrix and/or vector referred to in string must be given as optional
arguments. Therefore, if string is “A*x”, IMSL_A_MATRIX and
IMSL_X_VECTOR must be given.

To release this space, use free.

Examples

Example 1
Let

10 7 0 0 0 0 0
0 3 2 3 1 2 0 0
0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0
5 4 0 0 5 12 2 7 7
1 12 2 8 0 0 0 3 7

i
i i

i
A

i i
i i
i i

�� �
� �� � � �� �
� ��

� � �
� � � � �� �

� �� � � � � �
� �
� � � � �� �� 	

and

xT = (1 + i, 2 +2i, 3 + 3i, 4 + 4i, 5 +5i, 6 + 6i)

This example computes the product Ax.
#include <imsl.h>

main()
{
 Imsl_c_sparse_elem a[] = {0, 0, {10.0, 7.0},
 1, 1, {3.0, 2.0},
 1, 2, {-3.0, 0.0},
 1, 3, {-1.0, 2.0},
 2, 2, {4.0, 2.0},
 3, 0, {-2.0, -4.0},
 3, 3, {1.0, 6.0},
 3, 4, {-1.0, 3.0},
 4, 0, {-5.0, 4.0},
 4, 3, {-5.0, 0.0},
 4, 4, {12.0, 2.0},
 4, 5, {-7.0, 7.0},
 5, 0, {-1.0, 12.0},
 5, 1, {-2.0, 8.0},
 5, 5, {3.0, 7.0}};
 f_complex b[] = {{1.0, 1.0}, {2.0, 2.0}, {3.0, 3.0},
 {4.0, 4.0}, {5.0, 5.0}, {6.0, 6.0}};

 int n = 6;
 int nz = 15;
 f_complex *x;

 /* Set x = A*b */

 x = imsl_c_mat_mul_rect_coordinate ("A*x",

758 � mat_mul_rect_coordinate (complex) IMSL C/Math/Library

 IMSL_A_MATRIX, n, nz, a,
 IMSL_X_VECTOR, n, b,
 0);

 imsl_c_write_matrix ("Product Ab", 1, n, x, 0);
}

Output
 Product Ab
 1 2 3
(3, 17) (-19, 5) (6, 18)

 4 5 6
(-38, 32) (-63, 49) (-57, 83)

Example 2
Using the same matrix A and vector x given in the last example, the products Ax,
ATx, AHx and AAH are computed.

#include <imsl.h>

main()
{
 Imsl_c_sparse_elem *z;
 Imsl_c_sparse_elem a[] = {0, 0, {10.0, 7.0},
 1, 1, {3.0, 2.0},
 1, 2, {-3.0, 0.0},
 1, 3, {-1.0, 2.0},
 2, 2, {4.0, 2.0},
 3, 0, {-2.0, -4.0},
 3, 3, {1.0, 6.0},
 3, 4, {-1.0, 3.0},
 4, 0, {-5.0, 4.0},
 4, 3, {-5.0, 0.0},
 4, 4, {12.0, 2.0},
 4, 5, {-7.0, 7.0},
 5, 0, {-1.0, 12.0},
 5, 1, {-2.0, 8.0},
 5, 5, {3.0, 7.0}};
 f_complex x[] = {{1.0, 1.0}, {2.0, 2.0}, {3.0, 3.0},
 {4.0, 4.0}, {5.0, 5.0}, {6.0, 6.0}};

 int n = 6;
 int nz = 15;
 int nz_z;
 int i;
 f_complex *b;

 /* Set b = A*x */

 b = imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, nz, a,
 IMSL_X_VECTOR, n, x,
 0);

Chapter 12: Utilities mat_mul_rect_coordinate (complex) � 759

 imsl_c_write_matrix ("Ax", 1, n, b, 0);
 free(b);

 /* Set b = trans(A)*x */

 b = imsl_c_mat_mul_rect_coordinate ("trans(A)*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, x,
 0);

 imsl_c_write_matrix ("\n\ntrans(A)x", 1, n, b, 0);
 free(b);

 /* Set b = ctrans(A)*x */

 b = imsl_c_mat_mul_rect_coordinate ("ctrans(A)*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, x,
 0);

 imsl_c_write_matrix ("\n\nctrans(A)x", 1, n, b, 0);
 free(b);

 /* Set z = A*ctrans(A) */

 z = imsl_c_mat_mul_rect_coordinate ("A*ctrans(A)",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, x,
 IMSL_RETURN_MATRIX_SIZE, &nz_z,
 0);

 printf("\n\n\t\t\t z = A*ctrans(A)\n\n");

 for (i=0; i<nz_z; i++)
 printf ("\t\t\tz(%1d,%1d) = (%6.1f, %6.1f)\n",
 z[i].row, z[i].col, z[i].val.re, z[i].val.im);
}

Output
 Ax
 1 2 3
(3, 17) (-19, 5) (6, 18)

 4 5 6
(-38, 32) (-63, 49) (-57, 83)

 trans(A)x
 1 2 3
(-112, 54) (-58, 46) (0, 12)

 4 5 6
(-51, 5) (34, 78) (-94, 60)

760 � mat_add_band IMSL C/Math/Library

 ctrans(A)x
 1 2 3
(54, -112) (46, -58) (12, 0)

 4 5 6
(5, -51) (78, 34) (60, -94)

 z = A*ctrans(A)

 z(0,0) = (149.0, 0.0)
 z(0,3) = (-48.0, 26.0)
 z(0,4) = (-22.0, -75.0)
 z(0,5) = (74.0, -127.0)
 z(1,1) = (27.0, 0.0)
 z(1,2) = (-12.0, 6.0)
 z(1,3) = (11.0, 8.0)
 z(1,4) = (5.0, -10.0)
 z(1,5) = (10.0, -28.0)
 z(2,1) = (-12.0, -6.0)
 z(2,2) = (20.0, 0.0)
 z(3,0) = (-48.0, -26.0)
 z(3,1) = (11.0, -8.0)
 z(3,3) = (67.0, 0.0)
 z(3,4) = (-17.0, 36.0)
 z(3,5) = (-46.0, 28.0)
 z(4,0) = (-22.0, 75.0)
 z(4,1) = (5.0, 10.0)
 z(4,3) = (-17.0, -36.0)
 z(4,4) = (312.0, 0.0)
 z(4,5) = (81.0, 126.0)
 z(5,0) = (74.0, 127.0)
 z(5,1) = (10.0, 28.0)
 z(5,3) = (-46.0, -28.0)
 z(5,4) = (81.0, -126.0)
 z(5,5) = (271.0, 0.0)

mat_add_band
Adds two band matrices, both in band storage mode, C � �A + �B.

Synopsis

#include <imsl.h>

float *imsl_f_mat_add_band (int n, int nlca, int nuca, float alpha,
float a[], int nlcb, int nucb, float beta, float b[], int *nlcc,
int *nucc, ..., 0)

The type double function is imsl_d_mat_add_band.

Chapter 12: Utilities mat_add_band � 761

Required Arguments

int n (Input)
The order of the matrices A and B.

int nlca (Input)
Number of lower codiagonals of A.

int nuca (Input)
Number of upper codiagonals of A.

float alpha (Input)
Scalar multiplier for A.

float a[] (Input)
An n by n band matrix with nlca lower codiagonals and nuca upper
codiagonals stored in band mode with dimension (nlca + nuca + 1) by n.

int nlcb (Input)
Number of lower codiagonals of B.

int nucb (Input)
Number of upper codiagonals of B.

float beta (Input)
Scalar multiplier for B.

float b[] (Input)
An n by n band matrix with nlcb lower codiagonals and nucb upper
codiagonals stored in band mode with dimension (nlcb + nucb + 1) by n.

int *nlcc (Output)
Number of lower codiagonals of C.

int *nucc (Output)
Number of upper codiagonals of C.

Return Value
A pointer to an array of type float containing the computed sum. NULL is returned
in the event of an error or if the return matrix has no nonzero elements.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_mat_add_band (int n, int nlca, int nuca, float alpha,
float a[], int nlcb, int nucb, float beta, float b[], int *nlcc,
int *nucc, IMSL_A_TRANSPOSE,
IMSL_B_TRANSPOSE,
IMSL_SYMMETRIC,
0)

762 � mat_add_band IMSL C/Math/Library

Optional Arguments
IMSL_A_TRANSPOSE,

Replace A with AT in the expression �A + �B.

IMSL_B_TRANSPOSE,
Replace B with BT in the expression �A + �B.

IMSL_SYMMETRIC,
A, B and C are stored in band symmetric storage mode.

Description

The function imsl_f_mat_add_band forms the sum �A + �B, given the scalars
� and �, and, the matrices A and B in band format. The transpose of
A and/or B may be used during the computation if optional arguments are
specified. Symmetric storage mode may be used if the optional argument is
specified.

If IMSL_SYMMETRIC is specified, the return value for the number of lower
codiagonals, nlcc, will be equal to 0.

If the return matrix equals NULL, the return value for the number of lower
codiagonals, nlcc, will be equal to �1 and the number of upper codiagonals, nucc,
will be equal to 0.

Examples

Example 1
Add two real matrices of order 4 stored in band mode. Matrix A has one upper
codiagonal and one lower codiagonal. Matrix B has no upper codiagonals and two
lower codiagonals.

#include <imsl.h>

void main()
{
 float a[] = {0.0, 2.0, 3.0, -1.0,
 1.0, 1.0, 1.0, 1.0,
 0.0, 3.0, 4.0, 0.0};
 float b[] = {3.0, 3.0, 3.0, 3.0,
 1.0, -2.0, 1.0, 0.0,
 -1.0, 2.0, 0.0, 0.0};
 int nucb = 0, nlcb = 2;
 int nuca = 1, nlca = 1;
 int nucc, nlcc;
 int n = 4, m;
 float alpha = 1.0, beta = 1.0;
 float *c;

 c = imsl_f_mat_add_band(n, nlca, nuca, alpha, a,
 nlcb, nucb, beta, b,

Chapter 12: Utilities mat_add_band � 763

 &nlcc, &nucc, 0);

 m = nlcc + nucc + 1;
 imsl_f_write_matrix("C = A + B", m, n, c, 0);
 free(c);
}

 C = A + B
 1 2 3 4
1 0 2 3 -1
2 4 4 4 4
3 1 1 5 0
4 -1 2 0 0

Example 2
Compute 4*A + 2*B, where

3 4 0 0 5 2 0 0
4 2 3 0 2 1 3 0

 and
0 3 1 1 0 3 2 1
0 0 1 2 0 0 1 2

A B

� � � �
� � � �
� � �� � �
� � � �
� � � �
� � � �� � � �

#include <imsl.h>

void main()
{
 float a[] = {0.0, 4.0, 3.0, 1.0,
 3.0, 2.0, 1.0, 2.0};
 float b[] = {0.0, 2.0, 3.0, 1.0,
 5.0, 1.0, 2.0, 2.0};
 int nuca = 1, nlca = 1;
 int nucb = 1, nlcb = 1;
 int n = 4, m, nlcc, nucc;
 float alpha = 4.0, beta = 2.0;
 float *c;

 c = imsl_f_mat_add_band(n, nlca, nuca, alpha, a,
 nlcb, nucb, beta, b,
 &nlcc, &nucc,
 IMSL_SYMMETRIC, 0);

 m = nucc + nlcc + 1;
 imsl_f_write_matrix("C = 4*A + 2*B\n", m, n, c, 0);
 free(c);
}

Output

 C = 4*A + 2*B

 1 2 3 4
1 0 20 18 6
2 22 10 8 12

764 � mat_add_band (complex) IMSL C/Math/Library

mat_add_band (complex)
Adds two band matrices, both in band storage mode, C � �A + �B.

Synopsis

#include <imsl.h>

f_complex *imsl_c_mat_add_band (int n, int nlca, int nuca, f_complex
alpha, f_complex a[], int nlcb, int nucb, f_complex beta,
f_complex b[], int *nlcc, int *nucc, ..., 0)

The type double function is imsl_z_mat_add_band.

Required Arguments

int n (Input)
The order of the matrices A and B.

int nlca (Input)
Number of lower codiagonals of A.

int nuca (Input)
Number of upper codiagonals of A.

f_complex alpha (Input)
Scalar multiplier for A.

f_complex a[] (Input)
An n by n band matrix with nlca lower codiagonals and nuca upper
codiagonals stored in band mode with dimension (nlca + nuca + 1) by n.

int nlcb (Input)
Number of lower codiagonals of B.

int nucb (Input)
Number of upper codiagonals of B.

f_complex beta (Input)
Scalar multiplier for B.

f_complex b[] (Input)
An n by n band matrix with nlcb lower codiagonals and nucb upper
codiagonals stored in band mode with dimension (nlcb + nucb + 1) by n.

int *nlcc (Output)
Number of lower codiagonals of C.

int *nucc (Output)
Number of upper codiagonals of C.

Chapter 12: Utilities mat_add_band (complex) � 765

Return Value
A pointer to an array of type f_complex containing the computed sum. In the
event of an error or if the return matrix has no nonzero elements, NULL is
returned.

Synopsis with Optional Arguments
#include <imsl.h>

f_complex *imsl_c_mat_add_band (int n, int nlca, int nuca, f_complex
alpha, f_complex a[], int nlcb, int nucb, f_complex beta,
f_complex b[], int *nlcc, int *nucc,
IMSL_A_TRANSPOSE,
IMSL_B_TRANSPOSE,
IMSL_A_CONJUGATE_TRANSPOSE,
IMSL_B_CONJUGATE_TRANSPOSE,
IMSL_SYMMETRIC,
0)

Optional Arguments
IMSL_A_TRANSPOSE,

Replace A with AT in the expression �A + �B.

IMSL_B_TRANSPOSE,
Replace B with BT in the expression �A + �B.

IMSL_A_CONJUGATE_TRANSPOSE,
Replace A with AH in the expression �A + �B.

IMSL_B_CONJUGATE_TRANSPOSE,
Replace B with BH in the expression �A + �B.

IMSL_SYMMETRIC,
Matrix A, B, and C are stored in band symmetric storage mode.

Description

The function imsl_c_mat_add_band forms the sum �A + �B, given the scalars
� and �, and the matrices A and B in band format. The transpose or conjugate
transpose of A and/or B may be used during the computation if optional
arguments are specified. Symmetric storage mode may be used if the optional
argument is specified.

If IMSL_SYMMETRIC is specified, the return value for the number of lower
codiagonals, nlcc, will be equal to 0.

If the return matrix equals NULL, the return value for the number of lower
codiagonals, nlcc, will be equal to �1 and the number of upper codiagonals, nucc,
will be equal to 0.

766 � mat_add_band (complex) IMSL C/Math/Library

Examples

Example 1
Add two complex matrices of order 4 stored in band mode. Matrix A has one
upper codiagonal and one lower codiagonal. Matrix B has no upper codiagonals
and two lower codiagonals.

#include <imsl.h>

void main()
{
 f_complex a[] =
 {{0.0, 0.0}, {2.0, 1.0}, {3.0, 3.0}, {-1.0, 0.0},
 {1.0, 1.0}, {1.0, 3.0}, {1.0, -2.0}, {1.0, 5.0},
 {0.0, 0.0}, {3.0, -2.0}, {4.0, 0.0}, {0.0, 0.0}};
 f_complex b[] =
 {{3.0, 1.0}, {3.0, 5.0}, {3.0, -1.0}, {3.0, 1.0},
 {1.0, -3.0}, {-2.0, 0.0}, {1.0, 2.0}, {0.0, 0.0},
 {-1.0, 4.0}, {2.0, 1.0}, {0.0, 0.0}, {0.0, 0.0}};
 int nucb = 0, nlcb = 2;
 int nuca = 1, nlca = 1;
 int nucc, nlcc;
 int n = 4, m;
 f_complex *c;
 f_complex alpha = {1.0, 0.0};
 f_complex beta = {1.0, 0.0};

 c = imsl_c_mat_add_band(n, nlca, nuca, alpha, a,
 nlcb, nucb, beta, b,
 &nlcc, &nucc, 0);

 m = nlcc + nucc + 1;
 imsl_c_write_matrix("C = A + B", m, n, c, 0);
 free(c);
}

Output
 C = A + B
 1 2 3
1 (0, 0) (2, 1) (3, 3)
2 (4, 2) (4, 8) (4, -3)
3 (1, -3) (1, -2) (5, 2)
4 (-1, 4) (2, 1) (0, 0)

 4
1 (-1, 0)
2 (4, 6)
3 (0, 0)
4 (0, 0)

Example 2
Compute

(3 + 2i)AH + (4 + i) BH

Chapter 12: Utilities mat_add_band (complex) � 767

i
i

�
�
�
�
�

	 ��

where

2 3 1 3 0 0 1 2 5 0 0
0 6 2 3 0 4 1 3 2 3 0

 and
0 0 4 2 5 0 2 3 3 2 4 2
0 0 0 1 2 0 0 2 6 1 4

i i i i
i i i i i

A B
i i i i

i i

	 	 	 	� � �
� � �	 	 	 	 	� � �� �
� � �	 	 	 	 	
� � �

	 	� � �� � �

#include <imsl.h>

void main()
{
 f_complex a[] =
 {{0.0, 0.0}, {1.0, 3.0}, {3.0, 1.0}, {2.0, 5.0},
 {2.0, 3.0}, {6.0, 2.0}, {4.0, 1.0}, {1.0, 2.0}};
 f_complex b[] =
 {{0.0, 0.0}, {5.0, 1.0}, {2.0, 3.0}, {4.0, 2.0},
 {1.0, 2.0}, {1.0, 3.0}, {3.0, 2.0}, {1.0, 4.0},
 {4.0, 1.0}, {2.0, 3.0}, {2.0, 6.0}, {0.0, 0.0}};
 int nuca = 1, nlca = 0;
 int nucb = 1, nlcb = 1;
 int n = 4, m, nlcc, nucc;
 f_complex *c;
 f_complex alpha = {3.0, 2.0};
 f_complex beta = {4.0, 1.0};
 c = imsl_c_mat_add_band(n, nlca, nuca, alpha, a,
 nlcb, nucb, beta, b,
 &nlcc, &nucc,
 IMSL_A_CONJUGATE_TRANSPOSE,
 IMSL_B_CONJUGATE_TRANSPOSE, 0);

 m = nlcc + nucc + 1;
 imsl_c_write_matrix("C = (3+2i)*ctrans(A) + (4+i)*ctrans(B)\n",
 m, n, c, 0);
 free(c);
}

Output
 C = (3+2i)*ctrans(A) + (4+i)*ctrans(B)

 1 2 3
1 (0, 0) (17, 0) (11, -10)
2 (18, -12) (29, -5) (28, 0)
3 (30, -6) (22, -7) (34, -15)

 4
1 (14, -22)
2 (15, -19)
3 (0, 0)

768 � mat_add_coordinate IMSL C/Math/Library

mat_add_coordinate
Performs element-wise addition on two real matrices stored in coordinate format,
C � �A + �B.

Synopsis

#include <imsl.h>

Imsl_f_sparse_elem *imsl_f_mat_add_coordinate (int n, int nz_a, float
alpha, Imsl_f_sparse_elem a[], int nz_b, float beta,
Imsl_f_sparse_elem b[], int *nz_c, ..., 0)

The type double function is imsl_d_mat_add_coordinate.

Required Arguments

int n (Input)
The order of the matrices A and B.

int nz_a (Input)
Number of nonzeros in the matrix A.

float alpha (Input)
Scalar multiplier for A.

Imsl_f_sparse_elem a[] (Input)
Vector of length nz_a containing the location and value of each nonzero
entry in the matrix A.

int nz_b (Input)
Number of nonzeros in the matrix B.

float beta (Input)
Scalar multiplier for B.

Imsl_f_sparse_elem b[] (Input)
Vector of length nz_b containing the location and value of each nonzero
entry in the matrix B.

int *nz_c (Output)
The number of nonzeros in the sum �A + �B.

Return Value
A pointer to an array of type Imsl_f_sparse_elem containing the computed sum.
In the event of an error or if the return matrix has no nonzero elements, NULL is
returned.

Synopsis with Optional Arguments
#include <imsl.h>

Chapter 12: Utilities mat_add_coordinate � 769

Imsl_f_sparse_elem *imsl_f_mat_add_coordinate (int n, int nz_a, float
alpha, Imsl_f_sparse_elem a[], int nz_b, float beta,
Imsl_f_sparse_elem b[], int *nz_c,
IMSL_A_TRANSPOSE,
IMSL_B_TRANSPOSE,
0)

Optional Arguments
IMSL_A_TRANSPOSE,

Replace A with AT in the expression �A + �B.

IMSL_B_TRANSPOSE,
Replace B with BT in the expression �A + �B.

Description

The function imsl_f_mat_add_coordinate forms the sum �A + �B, given the
scalars � and �, and the matrices A and B in coordinate format. The transpose of
A and/or B may be used during the computation if optional arguments are
specified. The method starts by storing A in a linked list data structure, and
performs the multiply by
�. Next the data in matrix B is traversed and if the coordinates of a nonzero
element correspond to those of a nonzero element in A, that entry in the linked list
is updated. Otherwise, a new node in the linked list is created. The multiply by �
occurs at this time. Lastly, the linked list representation of C is converted to
coordinate representation, omitting any elements that may have become zero
through cancellation.

Examples

Example 1
Add two real matrices of order 4 stored in coordinate format. Matrix A has five
nonzero elements. Matrix B has seven nonzero elements.

#include <imsl.h>

void main ()
{
 Imsl_f_sparse_elem a[] = {0, 0, 3,
 0, 3, -1,
 1, 2, 5,
 2, 0, 1,
 3, 1, 3};
 Imsl_f_sparse_elem b[] = {0, 1, -2,
 0, 3, 1,
 1, 0, 3,
 2, 2, 5,
 2, 3, 1,
 3, 0, 4,

770 � mat_add_coordinate IMSL C/Math/Library

 3, 1, 3};
 int nz_a = 5, nz_b = 7, nz_c;
 int n = 4, i;
 float alpha = 1.0, beta = 1.0;
 Imsl_f_sparse_elem *c;

 c = imsl_f_mat_add_coordinate(n, nz_a, alpha, a,
 nz_b, beta, b, &nz_c, 0);

 printf(" row column value\n");
 for (i = 0; i < nz_c; i++)
 printf("%3d %5d %8.2f\n", c[i].row, c[i].col, c[i].val);

 free(c);
}

Output
 row column value
 0 0 3.00
 0 1 -2.00
 1 0 3.00
 1 2 5.00
 2 0 1.00
 2 2 5.00
 2 3 1.00
 3 0 4.00
 3 1 6.00

Example 2

Compute 2*AT + 2*BT, where
3 0 0 1 0 2 0 1
0 0 5 0 3 0 0 0

 and
1 0 0 0 0 0 5 1
0 3 0 0 4 3 0 0

A B

� �� � � �
� � � �
� � �� � �
� � � �
� � � �
� � � �� � � �

#include <imsl.h>

void main ()
{
 Imsl_f_sparse_elem a[] = {0, 0, 3,
 0, 3, -1,
 1, 2, 5,
 2, 0, 1,
 3, 1, 3};
 Imsl_f_sparse_elem b[] = {0, 1, -2,
 0, 3, 1,
 1, 0, 3,
 2, 2, 5,
 2, 3, 1,
 3, 0, 4,
 3, 1, 3};
 int nz_a = 5, nz_b = 7, nz_c;
 int n = 4, i;
 float alpha = 2.0, beta = 2.0;

Chapter 12: Utilities mat_add_coordinate (complex) � 771

 Imsl_f_sparse_elem *c;

 c = imsl_f_mat_add_coordinate(n, nz_a, alpha, a,
 nz_b, beta, b, &nz_c,
 IMSL_A_TRANSPOSE,
 IMSL_B_TRANSPOSE, 0);

 printf(" row column value\n");
 for (i = 0; i < nz_c; i++)
 printf("%3d %5d %8.2f\n", c[i].row, c[i].col, c[i].val);

 free(c);
}

Output
 row column value
 0 0 6.00
 0 1 6.00
 0 2 2.00
 0 3 8.00
 1 0 -4.00
 1 3 12.00
 2 1 10.00
 2 2 10.00
 3 2 2.00

mat_add_coordinate (complex)
Performs element-wise addition on two complex matrices stored in coordinate
format, C � �A + �B.

Synopsis

#include <imsl.h>

Imsl_c_sparse_elem *imsl_c_mat_add_coordinate (int n, int nz_a,
f_complex alpha, Imsl_c_sparse_elem a[], int nz_b,
f_complex beta, Imsl_c_sparse_elem b[], int *nz_c, ..., 0)

The type double function is imsl_z_mat_add_coordinate.

Required Arguments
int n (Input)

The order of the matrices A and B.

int nz_a (Input)
Number of nonzeros in the matrix A.

f_complex alpha (Input)
Scalar multiplier for A.

772 � mat_add_coordinate (complex) IMSL C/Math/Library

Imsl_c_sparse_elem a[] (Input)
Vector of length nz_a containing the location and value of each nonzero
entry in the matrix A.

int nz_b (Input)
Number of nonzeros in the matrix B.

f_complex beta (Input)
Scalar multiplier for B.

Imsl_c_sparse_elem b[] (Input)
Vector of length nz_b containing the location and value of each nonzero
entry in the matrix B.

int *nz_c (Output)
The number of nonzeros in the sum �A + �B.

Return Value
A pointer to an array of type Imsl_c_sparse_elem containing the computed sum.
In the event of an error or if the return matrix has no nonzero elements, NULL is
returned.

Synopsis with Optional Arguments
#include <imsl.h>

Imsl_c_sparse_elem *imsl_c_mat_add_coordinate (int n, int nz_a,
f_complex alpha, Imsl_c_sparse_elem a[], int nz_b,
f_complex beta, Imsl_c_sparse_elem b[], int *nz_c,
IMSL_A_TRANSPOSE,
IMSL_B_TRANSPOSE,
IMSL_A_CONJUGATE_TRANSPOSE,
IMSL_B_CONJUGATE_TRANSPOSE,
0)

Optional Arguments
IMSL_A_TRANSPOSE,

Replace A with AT in the expression �A + �B.

IMSL_B_TRANSPOSE,
Replace B with BT in the expression �A + �B.

IMSL_A_CONJUGATE_TRANSPOSE,
Replace A with AH in the expression �A + �B.

IMSL_B_CONJUGATE_TRANSPOSE,
Replace B with BH in the expression �A + �B.

Chapter 12: Utilities mat_add_coordinate (complex) � 773

Description

The function imsl_c_mat_add_coordinate forms the sum �A + �B, given the
scalars � and �, and the matrices A and B in coordinate format. The transpose or
conjugate transpose of A and/or B may be used during the computation if optional
arguments are specified. The method starts by storing A in a linked list data
structure, and performs the multiply by �. Next the data in matrix B is traversed
and if the coordinates of a nonzero element correspond to those of a nonzero ele-
ment in A, that entry in the linked list is updated. Otherwise, a new node in the
linked list is created. The multiply by � occurs at this time. Lastly, the linked list
representation of C is converted to coordinate representation, omitting any
elements that may have become zero through cancellation.

Examples

Example 1
Add two complex matrices of order 4 stored in coordinate format. Matrix A has
five nonzero elements. Matrix B has seven nonzero elements.

#include <imsl.h>

void main ()
{
 Imsl_c_sparse_elem a[] = {0, 0, 3, 4,
 0, 3, -1, 2,
 1, 2, 5, -1,
 2, 0, 1, 2,
 3, 1, 3, 0};
 Imsl_c_sparse_elem b[] = {0, 1, -2, 1,
 0, 3, 1, -2,
 1, 0, 3, 0,
 2, 2, 5, 2,
 2, 3, 1, 4,
 3, 0, 4, 0,
 3, 1, 3, -2};
 int nz_a = 5, nz_b = 7, nz_c;
 int n = 4, i;
 f_complex alpha = {1.0, 0.0}, beta = {1.0, 0.0};
 Imsl_c_sparse_elem *c;

 c = imsl_c_mat_add_coordinate(n, nz_a, alpha, a,
 nz_b, beta, b, &nz_c, 0);

 printf(" row column value\n");
 for (i = 0; i < nz_c; i++)
 printf("%3d %5d %8.2f %8.2f\n",
 c[i].row, c[i].col, c[i].val.re, c[i].val.im);

 free(c);
}

774 � mat_add_coordinate (complex) IMSL C/Math/Library

i

i

� �
�
�
��
�
�	

Output
 row column value
 0 0 3.00 4.00
 0 1 -2.00 1.00
 1 0 3.00 0.00
 1 2 5.00 -1.00
 2 0 1.00 2.00
 2 2 5.00 2.00
 2 3 1.00 4.00
 3 0 4.00 0.00
 3 1 6.00 -2.00

Example 2

Compute 2+3i*AT + 2�i*BT, where

3 4 0 0 1 2 0 2 0 1 2
0 0 5 0 3 0 0 0 0

 and
1 2 0 0 0 0 0 5 2 1 4

0 3 0 0 0 4 0 3 2 0 0

i i i
i i

A B
i i

i i i

� � � � �� � �
� � �� �� � �� �
� � �� �
� � �

� � �� � �� 	 �

#include <imsl.h>

void main ()
{
 Imsl_c_sparse_elem a[] = {0, 0, 3, 4,
 0, 3, -1, 2,
 1, 2, 5, -1,
 2, 0, 1, 2,
 3, 1, 3, 0};
 Imsl_c_sparse_elem b[] = {0, 1, -2, 1,
 0, 3, 1, -2,
 1, 0, 3, 0,
 2, 2, 5, 2,
 2, 3, 1, 4,
 3, 0, 4, 0,
 3, 1, 3, -2};
 int nz_a = 5, nz_b = 7, nz_c;
 int n = 4, i;
 f_complex alpha = {2.0, 3.0}, beta = {2.0, -1.0};
 Imsl_c_sparse_elem *c;

 c = imsl_c_mat_add_coordinate(n, nz_a, alpha, a,
 nz_b, beta, b, &nz_c,
 IMSL_A_TRANSPOSE,
 IMSL_B_TRANSPOSE, 0);

 printf(" row column value\n");
 for (i = 0; i < nz_c; i++)
 printf("%3d %5d %8.2f %8.2f\n",
 c[i].row, c[i].col, c[i].val.re, c[i].val.im);

 free(c);
}

Chapter 12: Utilities matrix_norm � 775

Output
 row column value
 0 0 -6.00 17.00
 0 1 6.00 -3.00
 0 2 -4.00 7.00
 0 3 8.00 -4.00
 1 0 -3.00 4.00
 1 3 10.00 2.00
 2 1 13.00 13.00
 2 2 12.00 -1.00
 3 0 -8.00 -4.00
 3 2 6.00 7.00

matrix_norm
Computes various norms of a rectangular matrix.

Synopsis

#include <imsl.h>

float imsl_f_matrix_norm (int m, int n, float a[], ..., 0)

The type double function is imsl_d_matrix_norm.

Required Arguments
int m (Input)

The number of rows in matrix A.

int n (Input)
The number of columns in matrix A.

float a[] (Input)
Matrix for which the norm will be computed.

Return Value
The requested norm of the input matrix. If the norm cannot be computed, NaN is
returned.

Synopsis with Optional Arguments
#include <imsl.h>

float imsl_f_matrix_norm (int m, int n, float a[],
IMSL_ONE_NORM,
IMSL_INF_NORM,
0)

776 � matrix_norm IMSL C/Math/Library

Description
By default, imsl_f_matrix_norm computes the Frobenius norm

1
1 1 2

2
2

0 0

m n

ij
i j

A A
� �

� �

� �
� � �
� �
��

If the option IMSL_ONE_NORM is selected, the 1-norm
1

1 0 1 0
max

m

ijj n i
A A

�

� � �
�

� �

is returned. If the option IMSL_INF_NORM is selected, the infinity norm
1

0 1 0
max

n

iji m j
A A

�

�
� � �

�

� �

 is returned.

Example
Compute the Frobenius norm, infinity norm, and one norm of matrix A.

#include <imsl.h>

void main()
{
 float a[] = {1.0, 2.0, -2.0, 3.0,
 -2.0, 1.0, 3.0, 0.0,
 0.0, 3.0, 1.0, -7.0,
 5.0, -2.0, 7.0, 6.0,
 4.0, 3.0, 4.0, 0.0};
 int m = 5, n = 4;
 float frobenius_norm, inf_norm, one_norm;

 frobenius_norm = imsl_f_matrix_norm(m, n, a, 0);

 inf_norm = imsl_f_matrix_norm(m, n, a, IMSL_INF_NORM, 0);

 one_norm = imsl_f_matrix_norm(m, n, a, IMSL_ONE_NORM, 0);

 printf("Frobenius norm = %f\n", frobenius_norm);
 printf("Infinity norm = %f\n", inf_norm);
 printf("One norm = %f\n", one_norm);
}

Output
Frobenius norm = 15.684387
Infinity norm = 20.000000
One norm = 17.000000

Chapter 12: Utilities matrix_norm_band � 777

matrix_norm_band
Computes various norms of a matrix stored in band storage mode.

Synopsis
#include <imsl.h>
float imsl_f_matrix_norm_band (int n, float a[], int nlc, int nuc, ...,

0)
The type double function is imsl_d_matrix_norm_band.

Required Arguments
int n (Input)

The order of matrix A.

float a[] (Input)
Matrix for which the norm will be computed.

int nlc (Input)
Number of lower codiagonals of A.

int nuc (Input)
Number of upper codiagonals of A.

Return Value
The requested norm of the input matrix, by default, the Frobenius norm. If the
norm cannot be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float imsl_f_matrix_norm_band (int n, float a[], int nlc, int nuc,
IMSL_ONE_NORM,
IMSL_INF_NORM,
IMSL_SYMMETRIC,
0)

Optional Arguments
IMSL_ONE_NORM,

Compute the 1-norm of matrix A,

IMSL_INF_NORM,
Compute the infinity norm of matrix A,

IMSL_SYMMETRIC,
Matrix A is stored in band symmetric storage mode.

778 � matrix_norm_band IMSL C/Math/Library

Description
By default, imsl_f_matrix_norm_band computes the Frobenius norm

1
1 1 2

2
2

0 0

m n

ij
i j

A A
� �

� �

� �
� � �
� �
��

If the option IMSL_ONE_NORM is selected, the 1-norm
1

1 0 1 0
max

m

ijj n i
A A

�

� � �
�

� �

is returned. If the option IMSL_INF_NORM is selected, the infinity norm
1

0 1 0
max

n

iji m j
A A

�

�
� � �

�

� �

is returned.

Examples

Example 1
Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A
is stored in band storage mode.

#include <imsl.h>

void main()
{
 float a[] = {0.0, 2.0, 3.0, -1.0,
 1.0, 1.0, 1.0, 1.0,
 0.0, 3.0, 4.0, 0.0};
 int nlc = 1, nuc = 1;
 int n = 4;
 float frobenius_norm, inf_norm, one_norm;

 frobenius_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc, 0);

 inf_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_INF_NORM, 0);

 one_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_ONE_NORM, 0);

 printf("Frobenius norm = %f\n", frobenius_norm);
 printf("Infinity norm = %f\n", inf_norm);
 printf("One norm = %f\n", one_norm);
}

Output
Frobenius norm = 6.557438
Infinity norm = 5.000000

Chapter 12: Utilities matrix_norm_coordinate � 779

One norm = 8.000000

Example 2
Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A
is stored in symmetric band storage mode.

#include <imsl.h>

void main()
{
 float a[] = {0.0, 0.0, 7.0, 3.0, 1.0, 4.0,
 0.0, 5.0, 1.0, 2.0, 1.0, 2.0,
 1.0, 2.0, 4.0, 6.0, 3.0, 1.0};
 int nlc = 2, nuc = 2;
 int n = 6;
 float frobenius_norm, inf_norm, one_norm;

 frobenius_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_SYMMETRIC, 0);

 inf_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_INF_NORM,
 IMSL_SYMMETRIC, 0);

 one_norm = imsl_f_matrix_norm_band(n, a, nlc, nuc,
 IMSL_ONE_NORM,
 IMSL_SYMMETRIC, 0);

 printf("Frobenius norm = %f\n", frobenius_norm);
 printf("Infinity norm = %f\n", inf_norm);
 printf("One norm = %f\n", one_norm);
}

Output
Frobenius norm = 16.941074
Infinity norm = 16.000000
One norm = 16.000000

matrix_norm_coordinate
Computes various norms of a matrix stored in coordinate format.

Synopsis

#include <imsl.h>

float imsl_f_matrix_norm_coordinate (int m, int n, int nz,
Imsl_f_sparse_elem a[], ..., 0)

The type double function is imsl_d_matrix_norm_coordinate.

780 � matrix_norm_coordinate IMSL C/Math/Library

Required Arguments

int m (Input)
The number of rows in matrix A.

int n (Input)
The number of columns in matrix A.

int nz (Input)
The number of nonzeros in the matrix A.

Imsl_f_sparse_elem a[] (Input)
Matrix for which the norm will be computed.

Return Value
The requested norm of the input matrix, by default, the Frobenius norm. If the
norm cannot be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float imsl_f_matrix_norm_coordinate (int m, int n, int nz,
Imsl_f_sparse_elem a[],
IMSL_ONE_NORM,
IMSL_INF_NORM,
IMSL_SYMMETRIC,
0)

Optional Arguments
IMSL_ONE_NORM,

Compute the 1-norm of matrix A.

IMSL_INF_NORM,
Compute the infinity norm of matrix A.

IMSL_SYMMETRIC,
Matrix A is stored in symmetric coordinate format.

Description
By default, imsl_f_matrix_norm_coordinate computes the Frobenius norm

1
1 1 2

2
2

0 0

m n

ij
i j

A A
� �

� �

� �
� � �
� �
��

If the option IMSL_ONE_NORM is selected, the 1-norm
1

1 0 1 0
max

m

ijj n i
A A

�

� � �
�

� �

Chapter 12: Utilities matrix_norm_coordinate � 781

is returned. If the option IMSL_INF_NORM is selected, the infinity norm
1

0 1 0
max

n

iji m j
A A

�

�
� � �

�

� �

is returned.

Examples

Example 1
Compute the Frobenius norm, infinity norm, and one norm of matrix A. Matrix A
is stored in coordinate format.

#include <imsl.h>

void main()
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};
 int m = 6, n = 6;
 int nz = 15;
 float frobenius_norm, inf_norm, one_norm;

 frobenius_norm = imsl_f_matrix_norm_coordinate (m, n, nz, a, 0);

 inf_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
 IMSL_INF_NORM, 0);

 one_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
 IMSL_ONE_NORM, 0);

 printf("Frobenius norm = %f\n", frobenius_norm);
 printf("Infinity norm = %f\n", inf_norm);
 printf("One norm = %f\n", one_norm);
}

Output
Frobenius norm = 24.839485
Infinity norm = 15.000000
One norm = 18.000000

782 � generate_test_band IMSL C/Math/Library

Example 2
Compute the Frobenius norm, infinity norm and one norm of matrix A. Matrix A
is stored in symmetric coordinate format.

#include <imsl.h>

void main()
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 0, 2, -1.0,
 0, 5, 5.0,
 1, 3, 2.0,
 1, 4, 3.0,
 2, 2, 3.0,
 2, 5, 4.0,
 4, 4, -1.0,
 4, 5, 4.0};
 int m = 6, n = 6;
 int nz = 9;
 float frobenius_norm, inf_norm, one_norm;

 frobenius_norm = imsl_f_matrix_norm_coordinate (m, n, nz, a,
 IMSL_SYMMETRIC, 0);

 inf_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
 IMSL_INF_NORM,
 IMSL_SYMMETRIC, 0);

 one_norm = imsl_f_matrix_norm_coordinate(m, n, nz, a,
 IMSL_ONE_NORM,
 IMSL_SYMMETRIC, 0);

 printf("Frobenius norm = %f\n", frobenius_norm);
 printf("Infinity norm = %f\n", inf_norm);
 printf("One norm = %f\n", one_norm);
}

Output
Frobenius norm = 15.874508
Infinity norm = 16.000000
One norm = 16.000000

generate_test_band
Generates test matrices of class and E(n, c). Returns in band or band symmetric
format.

Synopsis

#include <imsl.h>

float *imsl_f_generate_test_band (int n, int c, ..., 0)

The function imsl_d_generate_test_band is the double precision analogue.

Chapter 12: Utilities generate_test_band � 783

Required Arguments

int n (Input)
Number of rows in the matrix.

int c (Input)
Parameter used to alter structure, also the number of upper/lower
codiagonals.

Return Value
A pointer to a vector of type float. To release this space, use free. If no test was
generated, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

void *imsl_f_generate_sparse_test (int n, int c,
IMSL_SYMMETRIC_STORAGE,
0)

Optional Arguments
IMSL_SYMMETRIC_STORAGE,

Return matrix stored in band symmetric format.

Description
The same nomenclature as Østerby and Zlatev (1982) is used. Test matrices of
class E(n, c), to which we will generally refer to as E-matrices, are symmetric,
positive definite matrices of order n with 4 in the diagonal and �1 in the
superdiagonal and subdiagonal. In addition there are two bands with �1 at a
distance c from the diagonal. More precisely:

ai,i = 4 0 � i < n

ai,i+1 = �1 0 � i < n � 1

ai+1,1 = �1 0 � i < n � 1

ai,i+c = �1 0 � i < n � c

ai+c,i = �1 0 � i < n � c

for any n � 3 and 2 � c � n � 1.

E-matrices are similar to those obtained from the five-point formula in the
discretization of elliptic partial differential equations.

By default, imsl_f_generate_test_band returns an E-matrix in band storage
mode. Option IMSL_SYMMETRIC_STORAGE returns a matrix in band symmetric
storage mode.

784 � generate_test_band (complex) IMSL C/Math/Library

Example
This example generates the matrix

� �

4 1 0 1 0
1 4 1 0 1

5,3 0 1 4 1 0
1 0 1 4 1

0 1 0 1 4

E

� �� �
� �� � �� �
� �� � �
� �
� � �� �
� �� �� �

and prints the result.
#include <imsl.h>

main()
{
 int n = 5;
 int c = 3;
 float *a;

 a = imsl_f_generate_test_band (n, c, 0);

 imsl_f_write_matrix ("E(5,3) in band storage", 2*c + 1, n,
 a, 0);
}

Output
 E(5,3) in band storage
 1 2 3 4 5
1 0 0 0 -1 -1
2 0 0 0 0 0
3 0 -1 -1 -1 -1
4 4 4 4 4 4
5 -1 -1 -1 -1 0
6 0 0 0 0 0
7 -1 -1 0 0 0

generate_test_band (complex)
Generates test matrices of class Ec(n, c). Returns in band or band symmetric
format.

Synopsis

#include <imsl.h>

f_complex *imsl_c_generate_test_band (int n, int c, ..., 0)

The function imsl_z_generate_test_band is the double precision analogue.

Required Arguments

int n (Input)
Number of rows in the matrix.

Chapter 12: Utilities generate_test_band (complex) � 785

int c (Input)
Parameter used to alter structure, also the number of upper/lower
codiagonals

Return Value
A pointer to a vector of type f_complex. To release this space, use free. If no test
was generated, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

void *imsl_c_generate_sparse_test (int n, int c,
IMSL_SYMMETRIC_STORAGE,
0)

Optional Arguments
IMSL_SYMMETRIC_STORAGE,

Return matrix stored in band symmetric format.

Description
We use the same nomenclature as Østerby and Zlatev (1982). Test matrices of
class E(n, c), to which we will generally refer to as E-matrices, are symmetric,
positive definite matrices of order n with (6.0, 0.0) in the diagonal, (�1.0, 1.0) in
the superdiagonal and (�1.0, �1.0) subdiagonal. In addition there are two bands at
a distance c from the diagonal with (�1.0, 1.0) in the upper codiagonal and
(�1.0, �1.0) in the lower codiagonal. More precisely:

ai,i = 6 0 � i < n

ai,i+1 = �1 � i 0 � i < n � 1

ai+1,1 = �1 � i 0 � i < n � 1

ai,i+c = �1 + i 0 � i < n � c

ai+c,i = �1 + i 0 � i < n � c

for any n � 3 and 2 � c � n � 1.

E-matrices are similar to those obtained from the five-point formula in the
discretization of elliptic partial differential equations.

By default, imsl_c_generate_test_band returns an E-matrix in band storage
mode. Option IMSL_SYMMETRIC_STORAGE returns a matrix in band symmetric
storage mode.

786 � generate_test_coordinate IMSL C/Math/Library

i

i

Example
This example generates the following matrix and prints the result:

� �

6 1 0 1 0
1 6 1 0 1

5,3 0 1 6 1 0
1 0 1 6 1
0 1 0 1 6

c

i i
i i

E i i
i i

i i

� � � �� �
� �� � � � � �� �
� �� � � � �
� �
� � � � � �� �
� �� � � �� 	

#include <imsl.h>

main()
{
 int i;
 int n = 5;
 int c = 3;
 f_complex *a;

 a = imsl_c_generate_test_band (n, c, 0);

 imsl_c_write_matrix ("E(5,3) in band storage", 2*c + 1, n,
 a, 0);
}

Output
 E(5,3) in band storage
 1 2 3
1 (0, 0) (0, 0) (0, 0)
2 (0, 0) (0, 0) (0, 0)
3 (0, 0) (-1, 1) (-1, 1)
4 (6, 0) (6, 0) (6, 0)
5 (-1, -1) (-1, -1) (-1, -1)
6 (0, 0) (0, 0) (0, 0)
7 (-1, -1) (-1, -1) (0, 0)

 4 5
1 (-1, 1) (-1, 1)
2 (0, 0) (0, 0)
3 (-1, 1) (-1, 1)
4 (6, 0) (6, 0)
5 (-1, -1) (0, 0)
6 (0, 0) (0, 0)
7 (0, 0) (0, 0)

generate_test_coordinate
Generates test matrices of class D(n, c) and E(n, c). Returns in either coordinate
format.

Synopsis

#include <imsl.h>

Chapter 12: Utilities generate_test_coordinate � 787

Imsl_f_sparse_elem *imsl_f_generate_test_coordinate (int n, int c,
int *nz, ..., 0)

The function imsl_d_generate_test_coordinate is the double precision
analogue.

Required Arguments

int n (Input)
Number of rows in the matrix.

int c (Input)
Parameter used to alter structure.

int *nz (Output)
Length of the return vector.

Return Value
A pointer to a vector of length nz of type Imsl_f_sparse_elem. To release this
space, use free. If no test was generated, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

void *imsl_f_generate_test_coordinate (int n, int c, int *nz,
IMSL_D_MATRIX,
IMSL_SYMMETRIC_STORAGE,
0)

Optional Arguments
IMSL_D_MATRIX

Return a matrix of class D(n, c).
Default: Return a matrix of class E(n, c).

IMSL_SYMMETRIC_STORAGE,
For coordinate representation, return only values for the diagonal and
lower triangle. This option is not allowed if IMSL_D_MATRIX is
specified.

Description
We use the same nomenclature as Østerby and Zlatev (1982).Test matrices of
class
E(n, c), to which we will generally refer to as E-matrices, are symmetric, positive
definite matrices of order n with 4 in the diagonal and �1 in the superdiagonal and
subdiagonal. In addition there are two bands with �1 at a distance c from the
diagonal. More precisely

788 � generate_test_coordinate IMSL C/Math/Library

ai,i = 4 0 � i < n

ai,i+1 = �1 0 � i < n � 1

ai+1,1 = �1 0 � i < n � 1

ai,i+c = �1 0 � i < n � c

ai+c,i = �1 0 � i < n � c

for any n � 3 and 2 � c � n � 1.

E-matrices are similar to those obtained from the five-point formula in the
discretization of elliptic partial differential equations.

Test matrices of class D(n, c) are square matrices of order n with a full diagonal,
three bands at a distance c above the diagonal and reappearing cyclically under
the diagonal, and a 10 � 10 triangle of elements in the upper right corner. More
precisely:

ai,i = 1 0 � i < n
ai,i+c = i + 2 0 � i < n � c
ai,i-n+c = i + 2 n � c � i < n
ai,i+c+1 = �(i + 1) 0 � i < n � c � 1
ai,i-n+c+1 = �(i + 1) n � c � 1 � i < n
ai,i+c+2 = 16 0 � i < n � c � 2
ai,i-n+c+2 = 16 n � c � 2 � i < n
ai,n-11+i+j = 100j 1 � i< 11 � j, 0 � j < 10

for any n � 14 and 1 � c � n � 13.

Chapter 12: Utilities generate_test_coordinate � 789

We now show the sparsity pattern of D(20, 5)

x x x x x x x x x x x x x x

 x x x x x x x x x x x x x

 x x x x x x x x x x x x

 x x x x x x x x x x x

 x x x x x x x x x x

 x x x x x x x x x

 x x x x x x x x

 x x x x x x x

 x x x x x x

 x x x x x

 x x x x

 x x x x

 x x x x

x x x x

x x x x

x x x x

 x x x x

 x x x x

 x x x x

 x x x x

By default imsl_f_generate_test_coordinate returns an E-matrix in
coordinate representation. By specifying the IMSL_SYMMETRIC_STORAGE option,
only the diagonal and lower triangle are returned. The scalar nz will contain the
number of nonzeros in this representation.

The option IMSL_D_MATRIX will return a matrix of class D(n, c). Since D-
matrices are not symmetric, the IMSL_SYMMETRIC_STORAGE option is not
allowed.

790 � generate_test_coordinate IMSL C/Math/Library

Examples

Example 1
This example generates the matrix

� �

4 1 0 1 0
1 4 1 0 1

5,3 0 1 4 1 0
1 0 1 4 1

0 1 0 1 4

E

� �� �
� �� � �� �
� �� � �
� �
� � �� �
� �� �� �

and prints the result.
#include "imsl.h"

main()
{
 int i;
 int n = 5;
 int c = 3;
 int nz;
 Imsl_f_sparse_elem *a;

 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);

 printf ("row col val\n");
 for (i=0; i<nz; i++)
 printf (" %d %d %5.1f\n",
 a[i].row, a[i].col, a[i].val);
}

Output
row col val
 0 0 4.0
 1 1 4.0
 2 2 4.0
 3 3 4.0
 4 4 4.0
 1 0 -1.0
 2 1 -1.0
 3 2 -1.0
 4 3 -1.0
 0 1 -1.0
 1 2 -1.0
 2 3 -1.0
 3 4 -1.0
 3 0 -1.0
 4 1 -1.0
 0 3 -1.0
 1 4 -1.0

Chapter 12: Utilities generate_test_coordinate (complex) � 791

Example 2
In this example, the matrix E(5, 3) is returned in symmetric storage and printed.

#include <imsl.h>

main()
{
 int i;
 int n = 5;
 int c = 3;
 int nz;
 Imsl_f_sparse_elem *a;

 a = imsl_f_generate_test_coordinate (n, c, &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);

 printf ("row col val\n");
 for (i=0; i<nz; i++)
 printf (" %d %d %5.1f\n",
 a[i].row, a[i].col, a[i].val);

}

Output
row col val
 0 0 4.0
 1 1 4.0
 2 2 4.0
 3 3 4.0
 4 4 4.0
 1 0 -1.0
 2 1 -1.0
 3 2 -1.0
 4 3 -1.0
 3 0 -1.0
 4 1 -1.0

generate_test_coordinate (complex)
Generates test matrices of class D(n, c) and E(n, c). Returns in either coordinate
or band storage format, where possible.

Synopsis

#include <imsl.h>

void *imsl_c_generate_test_coordinate (int n, int c, int *nz, ..., 0)

The function is imsl_z_generate_test_coordinate is the double precision
analogue.

792 � generate_test_coordinate (complex) IMSL C/Math/Library

Required Arguments

int n (Input)
Number of rows in the matrix.

int c (Input)
Parameter used to alter structure.

int *nz (Output)
Length of the return vector.

Return Value
A pointer to a vector of length nz of type imsl_c_sparse_elem. To release this
space, use free. If no test was generated, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

void *imsl_c_generate_test_coordinate (int n, int c, int *nz,
IMSL_D_MATRIX,
IMSL_SYMMETRIC_STORAGE,
0)

Optional Arguments
IMSL_D_MATRIX

Return a matrix of class D(n, c).
Default: Return a matrix of class E(n, c).

IMSL_SYMMETRIC_STORAGE,
For coordinate representation, return only values for the diagonal and
lower triangle. This option is not allowed if IMSL_D_MATRIX is
specified.

Description
The same nomenclature as Østerby and Zlatev (1982) is used. Test matrices of
class E(n, c), to which we will generally refer to as E-matrices, are symmetric,
positive definite matrices of order n with (6.0, 0.0) in the diagonal, (�1.0, 1.0) in
the superdiagonal and (�1.0, �1.0) subdiagonal. In addition there are two bands at
a distance c from the diagonal with (�1.0, 1.0) in the upper codiagonal and (�1.0,
�1.0) in the lower codiagonal. More precisely:

Chapter 12: Utilities generate_test_coordinate (complex) � 793

ai,i = 6 0 � i < n

ai,i+1 = �1 � i 0 � i < n � 1

ai+1,1 = �1 � i 0 � i < n � 1

ai,i+c = �1 + i 0 � i < n � c

ai+c,i = �1 + i 0 � i < n � c

for any n � 3 and 2 � c � n � 1.

Test matrices of class D(n, c) are square matrices of order n with a full diagonal,
three bands at a distance c above the diagonal and reappearing cyclically under
the diagonal, and a 10 � 10 triangle of elements in the upper-right corner. More
precisely:

ai,i = 1 0 � i < n
ai,i+c = i + 2 0 � i < n � c
ai,i-n+c = i + 2 n � c � i < n
ai,i+c+1 = �(i + 1) 0 � i < n � c � 1
ai,i+c+1 = �(i + 1) n � c � 1� i < n
ai,i+c+2 = 16 0 � i < n � c � 2
ai,i-n+c+2 = 16 n � c � 2� i < n
ai,n-11+i+j = 100j 1 � i< 11 � j, 0 � j < 10

for any n � 14 and 1 � c � n � 13.

794 � generate_test_coordinate (complex) IMSL C/Math/Library

The sparsity pattern of D(20, 5) is as follows:

x x x x x x x x x x x x x x

 x x x x x x x x x x x x x

 x x x x x x x x x x x x

 x x x x x x x x x x x

 x x x x x x x x x x

 x x x x x x x x x

 x x x x x x x x

 x x x x x x x

 x x x x x x

 x x x x x

 x x x x

 x x x x

 x x x x

x x x x

x x x x

x x x x

 x x x x

 x x x x

 x x x x

 x x x x

By default imsl_c_generate_test_coordinate returns an E-matrix in
coordinate representation. By specifying the IMSL_SYMMETRIC_STORAGE option,
only the diagonal and lower triangle are returned. The scalar nz will contain the
number of non-zeros in this representation.

The option IMSL_D_MATRIX will return a matrix of class D(n, c). Since D-
matrices are not symmetric, the IMSL_SYMMETRIC_STORAGE option is not
allowed.

Chapter 12: Utilities generate_test_coordinate (complex) � 795

i

i

Examples

Example 1
This example generates the matrix

� �

6 1 0 1 0
1 6 1 0 1

5,3 0 1 6 1 0
1 0 1 6 1
0 1 0 1 6

c

i i
i i

E i i
i i

i i

� � � �� �
� �� � � � � �� �
� �� � � � �
� �
� � � � � �� �
� �� � � �� 	

and prints the result.
#include "imsl.h"

main()
{
 int i;
 int n = 5;
 int c = 3;
 int nz;
 Imsl_c_sparse_elem *a;

 a = imsl_c_generate_test_coordinate (n, c, &nz, 0);

 printf ("row col val\n");
 for (i=0; i<nz; i++)
 printf (" %d %d (%5.1f, %5.1f)\n",
 a[i].row, a[i].col, a[i].val.re, a[i].val.im);
}

Output
row col val
 0 0 (6.0, 0.0)
 1 1 (6.0, 0.0)
 2 2 (6.0, 0.0)
 3 3 (6.0, 0.0)
 4 4 (6.0, 0.0)
 1 0 (-1.0, -1.0)
 2 1 (-1.0, -1.0)
 3 2 (-1.0, -1.0)
 4 3 (-1.0, -1.0)
 0 1 (-1.0, 1.0)
 1 2 (-1.0, 1.0)
 2 3 (-1.0, 1.0)
 3 4 (-1.0, 1.0)
 3 0 (-1.0, -1.0)
 4 1 (-1.0, -1.0)
 0 3 (-1.0, 1.0)
 1 4 (-1.0, 1.0)

796 � generate_test_coordinate (complex) IMSL C/Math/Library

Example 2
In this example, the matrix E(5, 3) is returned in symmetric storage and printed.

#include <imsl.h>

main()
{
 int i;
 int n = 5;
 int c = 3;
 int nz;
 Imsl_c_sparse_elem *a;

 a = imsl_c_generate_test_coordinate (n, c, &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);

 printf ("row col val\n");
 for (i=0; i<nz; i++)
 printf (" %d %d (%5.1f, %5.1f)\n",
 a[i].row, a[i].col, a[i].val.re, a[i].val.im);
}

Output
row col val
 0 0 (6.0, 0.0)
 1 1 (6.0, 0.0)
 2 2 (6.0, 0.0)
 3 3 (6.0, 0.0)
 4 4 (6.0, 0.0)
 1 0 (-1.0, -1.0)
 2 1 (-1.0, -1.0)
 3 2 (-1.0, -1.0)
 4 3 (-1.0, -1.0)
 3 0 (-1.0, -1.0)
 4 1 (-1.0, -1.0)

Reference Material User Errors � 797

Reference Material

User Errors
IMSL functions attempt to detect user errors and handle them in a way that provides as
much information to the user as possible. To do this, we recognize various levels of
severity of errors, and we also consider the extent of the error in the context of the
purpose of the function; a trivial error in one situation may be serious in another.
Functions attempt to report as many errors as they can reasonably detect. Multiple
errors present a difficult problem in error detection because input is interpreted in an
uncertain context after the first error is detected.

What Determines Error Severity
In some cases, the user’s input may be mathematically correct, but because of
limitations of the computer arithmetic and of the algorithm used, it is not possible to
compute an answer accurately. In this case, the assessed degree of accuracy determines
the severity of the error. In cases where the function computes several output quantities,
if some are not computable but most are, an error condition exists; and its severity
depends on an assessment of the overall impact of the error.

Kinds of Errors and Default Actions
Five levels of severity of errors are defined in the IMSL C/Math/Library. Each level has
an associated PRINT attribute and a STOP attribute. These attributes have default
settings (YES or NO), but they may also be set by the user. The purpose of having
multiple error types is to provide independent control of actions to be taken for errors
of different levels of severity. Upon return from a Visual Numerics function, exactly
one error state exists. (A code 0 “error” is no error.) Even if more than one
informational error occurs, only one message is printed (if the PRINT attribute is YES).
Multiple errors for which no corrective action within the calling program is reasonable
or necessary result in the printing of multiple messages (if the PRINT attribute for their
severity level is YES). Errors of any of the severity levels except IMSL_TERMINAL may
be informational errors. The include file, imsl.h, defines IMSL_NOTE, IMSL_ALERT,
IMSL_WARNING, IMSL_FATAL, IMSL_TERMINAL, IMSL_WARNING_IMMEDIATE, and
IMSL_FATAL_IMMEDIATE as an enumerated data type Imsl_error.

798 � User Errors IMSL C/Math/Library

IMSL_NOTE. A note is issued to indicate the possibility of a trivial error or simply to
provide information about the computations.

Default attributes: PRINT=NO, STOP=NO.

IMSL_ALERT. An alert indicates that a function value has been set to 0 due to
underflow.

Default attributes: PRINT=NO, STOP=NO.

IMSL_WARNING. A warning indicates the existence of a condition that may require
corrective action by the user or calling routine. A warning error may be issued
because the results are accurate to only a few decimal places, because some of
the output may be erroneous, but most of the output is correct, or because
some assumptions underlying the analysis technique are violated. Usually no
corrective action is necessary, and the condition can be ignored.

Default attributes: PRINT=YES, STOP=NO.

IMSL_FATAL. A fatal error indicates the existence of a condition that may be serious.
In most cases, the user or calling routine must take corrective action to
recover.

Default attributes: PRINT=YES, STOP=YES.

IMSL_TERMINAL. A terminal error is serious. It usually is the result of an incorrect
specification, such as specifying a negative number as the number of
equations. These errors may also be caused by various programming errors
impossible to diagnose correctly in C. The resulting error message may be
perplexing to the user. In such cases, the user is advised to compare carefully
the actual arguments passed to the function with the dummy argument
descriptions given in the documentation. Special attention should be given to
checking argument order and data types.

 A terminal error is not an informational error, because corrective action within
the program is generally not reasonable. In normal usage, execution is
terminated immediately when a terminal error occurs. Messages relating to
more than one terminal error are printed if they occur.

Default attributes: PRINT=YES, STOP=YES.

IMSL_WARNING_IMMEDIATE. An immediate warning error is identical to a warning
error, except it is printed immediately.

Default attributes: PRINT=YES, STOP=NO.

IMSL_FATAL_IMMEDIATE. An immediate fatal error is identical to a fatal error, except
it is printed immediately.

Default attributes: PRINT=YES, STOP=YES.

The user can set PRINT and STOP attributes by calling imsl_error_options as
described Chapter 12, “Utilities.”

Reference Material User Errors � 799

Errors in Lower-Level Functions
It is possible that a user’s program may call an IMSL C/Math/Library function that in
turn calls a nested sequence of lower-level functions. If an error occurs at a lower level
in such a nest of functions, and if the lower-level function cannot pass the information
up to the original user-called function, then a traceback of the functions is produced.
The only common situation in which this can occur is when an IMSL C/Math/Library
function calls a user-supplied routine that in turn calls another IMSL C/Math/Library
function.

Functions for Error Handling
There are two ways in which the user may interact with the error handling system:
(1) to change the default actions and (2) to determine the code of an informational error
so as to take corrective action. The functions to use are imsl_error_options and
imsl_error_code. Function imsl_error_options sets the actions to be taken
when errors occur. Function imsl_error_code retrieves the integer code for an
informational error. See functions imsl_error_options and imsl_error_code.

Threads and Error Handling
If multiple threads are used then default settings are valid for each thread but can be
altered for each individual thread. When using threads it is necessary to set options
using imsl_error_options (excluding IMSL_SET_SIGNAL_TRAPPING) for each
thread by calling imsl_error_options from within each thread.

The IMSL signal-trapping mechanism must be disabled when multiple threads are used.
The IMSL signal-trapping mechanism can be disabled by making the following call
before any threads are created:
imsl_error_options(IMSL_SET_SIGNAL_TRAPPING, 0, 0);

 See Examples 3 and 4 of imsl_error_options for multithreaded examples.

Use of Informational Error to Determine Program Action
In the program segment below, the Cholesky factorization of a matrix is to be
performed. If it is determined that the matrix is not nonnegative definite (and often this
is not immediately obvious), the program is to take a different branch.

 x = imsl_f_lin_sol_nonnegdef (n, a, b, 0);
 if (imsl_error_code() == IMSL_NOT_NONNEG_DEFINITE) {
 /* Handle matrix that is not nonnegative
 definite */
 }

Additional Examples
See functions imsl_error_options and imsl_error_code in Chapter 12, “Utilities”
for additional examples.

800 � Complex Data Types and Functions IMSL C/Math/Library

Complex Data Types and Functions
Users can perform computations with complex arithmetic by using predefined data
types. These types are available in two floating-point precisions:
� f_complex z for single-precision complex values
� d_complex w for double-precision complex values

Each complex value is a C language structure that consists of a pair of real values, the
real and imaginary part of the complex number. To access the real part of a single-
precision complex number z, use the subexpression z.re. For the imaginary part, use
the subexpression z.im. Use subexpressions w.re and w.im for the real and imaginary
parts of a double-precision complex number w. The structure is declared within
imsl.h as follows:

 typedef struct{
 float re;
 float im;
 } f_complex;

Several standard operations and functions are available for users to perform
calculations with complex numbers within their programs. The operations are provided
for both single and double precision data types. Notice that even the ordinary arithmetic
operations of “+”, “-”, “*”, and “/” must be performed using the appropriate functions.

A uniform prefix name is used as part of the names for the operations and functions.
The prefix imsl_c_ is used for f_complex data. The prefix imsl_z_ is used with
d_complex data.

Single-Precision Complex Operations and Functions

Operation Function Name Function Result Function Argument(s)
z = –x z = imsl_c_neg(x) f_complex f_complex

z = x + y z = imsl_c_add(x,y) f_complex f_complex (both)

z = x – y z = imsl_c_sub(x,y) f_complex f_complex (both)

z = x * y z = imsl_c_mul(x,y) f_complex f_complex (both)

z = x / y z = imsl_c_div(x,y) f_complex f_complex (both)

x= =ya z = imsl_c_eq(x,y) int f_complex (both)

z = x
Drop
Precision

z = imsl_cz_convert(x) f_complex d_complex

a Result has the value 1 if x and y are valid numbers with real and imaginary parts identical; otherwise, result has the value 0.

Reference Material Complex Data Types and Functions � 801

Operation Function Name Function Result Function Argument(s)
z = a + ib
Ascend Data

z = imsl_cf_convert(a,b) f_complex float (both)

z = x z = imsl_c_conjg(x) f_complex f_complex

a = �z� a = imsl_c_abs(z) float f_complex

a = arg (z)

–� < a � �

a = imsl_c_arg(z) float f_complex

z = x �
z = imsl_c_sqrt(z) f_complex f_complex

z = cos (x) z = imsl_c_cos(z) f_complex f_complex

z = sin (x) z = imsl_c_sin(z) f_complex f_complex

z = exp (x) z = imsl_c_exp(z) f_complex f_complex

z = log (x) z = imsl_c_log(z) f_complex f_complex

z = xa z = imsl_cf_power(x,a) f_complex f_complex, float

z = xy z = imsl_cc_power(x,y) f_complex f_complex (both)

c = ak c = imsl_fi_power(a,k) float float, int

c = ab c = imsl_ff_power(a,b) float float (both)

m = jk m = imsl_ii_power(j,k) int int (both)

Double-Precision Complex Operations and Functions

Operation Function Name Function Result Function Argument(s)
z = –x z = imsl_z_neg(x) d_complex d_complex

z = x + y z = imsl_z_add(x,y) d_complex d_complex (both)

z = x – y z = imsl_z_sub(x,y) d_complex d_complex (both)

z = x * y z = imsl_z_mul(x,y) d_complex d_complex (both)

z = x / y z = imsl_z_div(x,y) d_complex d_complex (both)

x==yb z = imsl_z_eq(x,y) int d_complex (both)

z = x
Drop Precision

z = imsl_zc_convert(x) d_complex f_complex

z = a + ib
Ascend Data

z = imsl_zd_convert(a,b) d_complex double (both)

b Result has the value 1 if x and y are valid numbers with real and imaginary parts identical; otherwise, result has the value 0.

802 � Complex Data Types and Functions IMSL C/Math/Library

Operation Function Name Function Result Function Argument(s)
z = x z = imsl_z_conjg(x) d_complex d_complex

a = �z� a = imsl_z_abs(z) double d_complex

a = arg (z)

–� < a � �

a = imsl_z_arg(z) double d_complex

z = x �
z = imsl_z_sqrt(z) d_complex d_complex

z = cos (x) z = imsl_z_cos(z) d_complex d_complex

z = sin (x) z = imsl_z_sin(z) d_complex d_complex

z = exp (x) z = imsl_z_exp(z) d_complex d_complex

z = log (x) z = imsl_z_log(z) d_complex d_complex

z = xa z = imsl_zd_power(x,a) d_complex d_complex, double

z = xy z = imsl_zz_power(x,y) d_complex d_complex (both)

c = ak c = imsl_di_power(a,k) double double, int

c = ab c = imsl_dd_power(a,b) double double (both)

m = jk m = imsl_ii_power(j,k) int int (both)

The following sample code computes and prints several quantities associated with
complex numbers. Note that the quantity

3 4w i� �

has a rounding error associated with it. Also the quotient z = (1 + 2i) / (3 + 4i) has a
rounding error. The result is acceptable in both cases because the relative errors
�w – (2 + 2i)�/ �w� and �z * (3 + 4i) – (1 + 2i)�/ �(1 + 2i)� are approximately the size of
machine precision.

#include <imsl.h>

main()
{
 f_complex x = {1,2};
 f_complex y = {3,4};
 f_complex z;
 f_complex w;
 int isame;
 float eps = imsl_f_machine(4);
 /* Echo inputs x and y */
 printf("Data: x = (%g, %g)\n y = (%g, %g)\n\n",
 x.re, x.im, y.re, y.im);
 /* Add inputs */
 z = imsl_c_add(x,y);
 printf("Sum: z = x + y = (%g, %g)\n\n", z.re, z.im);
 /* Compute square root of y */

Reference Material Complex Data Types and Functions � 803

 w = imsl_c_sqrt(y);
 printf("Square Root: w = sqrt(y) = (%g, %g)\n", w.re, w.im);
 /* Check results */
 z = imsl_c_mul(w,w);
 printf("Check: w*w = (%g, %g)\n", z.re, z.im);
 isame = imsl_c_eq(y,z);
 printf(" y == w*w = %d\n", isame);
 z = imsl_c_sub(z,y);
 printf("Difference: w*w - y = (%g, %g) = (%g, %g) * eps\n\n",
 z.re, z.im, z.re/eps, z.im/eps);
 /* Divide inputs */
 z = imsl_c_div(x,y);
 printf("Quotient: z = x/y = (%g, %g)\n", z.re, z.im);
 /* Check results */
 w = imsl_c_sub(x, imsl_c_mul(z, y));
 printf("Check: w = x - z*y = (%g, %g) = (%g, %g) * eps\n",
 w.re, w.im, w.re/eps, w.im/eps);
}

Output
Data: x = (1, 2)
 y = (3, 4)

Sum: z = x + y = (4, 6)

Square Root: w = sqrt(y) = (2, 1)
Check: w*w = (3, 4)
 y == w*w = 0
Difference: w*w - y = (-2.38419e-07, 4.76837e-07) = (-2, 4) * eps

Quotient: z = x/y = (0.44, 0.08)
Check: w = x - z*y = (5.96046e-08, 0) = (0.5, 0) * eps

804 � Complex Data Types and Functions IMSL C/Math/Library

IMSL C Math Library Product Support � 805

Product Support

Contacting Visual Numerics Support
Users within support warranty may contact Visual Numerics regarding the use of
the IMSL C Numerical Libraries. Visual Numerics can consult on the following
topics:

� Clarity of documentation

� Possible Visual Numerics-related programming problems

� Choice of IMSL Libraries functions or procedures for a particular problem

� Evolution of the IMSL Libraries

Not included in these consultation topics are mathematical/statistical consulting
and debugging of your program.

Consultation
Contact Visual Numerics Product Support emailing:

� support@houston.vni.com

Electronic addresses are not handled uniformly across the major networks, and
some local conventions for specifying electronic addresses might cause further
variations to occur; contact your E-mail postmaster for further details.

The following describes the procedure for consultation with Visual Numerics:

1. Include license number

2. Include the product name and version number: IMSL C/Stat/Library
Version 5.5

3. Include compiler and operating system version numbers

806 � Product Support IMSL C Math Library

4. Include the name of the routine for which assistance is needed and a
description of the problem

IMSL C/Math/Library Appendix A: References � A-1

Appendix A: References

Abramowitz and Stegun
Abramowitz, Milton, and Irene A. Stegun (editors) (1964), Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, National Bureau of Standards, Washington.

Ahrens and Dieter
Ahrens, J.H., and U. Dieter (1974), Computer methods for sampling from
gamma, beta, Poisson, and binomial distributions, Computing, 12,
223–246.

Akima
Akima, H. (1970), A new method of interpolation and smooth curve
fitting based on local procedures, Journal of the ACM, 17, 589–602.
Akima, H. (1978), A method of bivariate interpolation and smooth
surface fitting for irregularly distributed data points, ACM Transactions
on Mathematical Software, 4, 148–159.

Ashcraft
Ashcraft, C. (1987), A vector implementation of the multifrontal method
for large sparse symmetric positive definite systems, Technical Report
ETA-TR-51, Engineering Technology Applications Division, Boeing
Computer Services, Seattle, Washington.

Ashcraft et al.
Ashcraft, C., R. Grimes, J. Lewis, B. Peyton, and H. Simon (1987),
Progress in sparse matrix methods for large linear systems on vector
supercomputers. Intern. J. Supercomputer Applic., 1(4), 10–29.

Atkinson (1979)
Atkinson, A.C. (1979), A family of switching algorithms for the computer
generation of beta random variates, Biometrika, 66, 141–145.

A-2 � Appendix A: References IMSLC/Math/Library

Atkinson (1978)
Atkinson, Ken (1978), An Introduction to Numerical Analysis, John
Wiley & Sons, New York.

Barnett
Barnett, A.R. (1981), An algorithm for regular and irregular Coulomb
and Bessel functions of real order to machine accuracy, Computer
Physics Communication, 21, 297–314.

Barrett and Healy
Barrett, J.C., and M. J.R. Healy (1978), A remark on Algorithm AS 6:
Triangular decomposition of a symmetric matrix, Applied Statistics, 27,
379–380.

Bays and Durham
Bays, Carter, and S.D. Durham (1976), Improving a poor random number
generator, ACM Transactions on Mathematical Software, 2,
59–64.

Blom
Blom, Gunnar (1958), Statistical Estimates and Transformed Beta-
Variables, John Wiley & Sons, New York.

Boisvert
Boisvert, Ronald (1984), A fourth order accurate fast direct method of
the Helmholtz equation, Elliptic Problem solvers II, (edited by G.
Birkhoff and A. Schoenstadt), Academic Press, Orlando, Florida, 35–44.

Bosten and Battiste
Bosten, Nancy E., and E.L. Battiste (1974), Incomplete beta ratio,
Communications of the ACM, 17, 156–157.

Brent
Brent, Richard P. (1973), Algorithms for Minimization without
Derivatives, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Brigham
Brigham, E. Oran (1974), The Fast Fourier Transform, Prentice-Hall,
Englewood Cliffs, New Jersey.

Burgoyne
Burgoyne, F.D. (1963), Approximations to Kelvin functions,
Mathematics of Computation, 83, 295-298.

IMSL C/Math/Library Appendix A: References � A-3

Carlson
Carlson, B.C. (1979), Computing elliptic integrals by duplication,
Numerische Mathematik, 33, 1–16.

Carlson and Notis
Carlson, B.C., and E.M. Notis (1981), Algorithms for incomplete elliptic
integrals, ACM Transactions on Mathematical Software, 7,
398–403.

Carlson and Foley
Carlson, R.E., and T.A. Foley (1991),The parameter R2 in multiquadric
interpolation, Computer Mathematical Applications, 21, 29–42.

Cheng
Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape
parameters, Communications of the ACM, 21, 317–322.

Cohen and Taylor
Cohen, E. Richard, and Barry N. Taylor (1986), The 1986 Adjustment of
the Fundamental Physical Constants, Codata Bulletin, Pergamon Press,
New York.

Cooley and Tukey
Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine
computation of complex Fourier series, Mathematics of Computation, 19,
297–301.

Cooper
Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for
distribution integrals, Applied Statistics, 17, 190–192.

Courant and Hilbert
Courant, R., and D. Hilbert (1962), Methods of Mathematical Physics,
Volume II, John Wiley & Sons, New York, NY.

Craven and Wahba
Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with
spline functions, Numerische Mathematik, 31, 377–403.

Crowe et al.
Crowe, Keith, Yuan-An Fan, Jing Li, Dale Neaderhouser, and Phil Smith
(1990), A direct sparse linear equation solver using linked list storage,
IMSL Technical Report 9006, IMSL, Houston.

A-4 � Appendix A: References IMSLC/Math/Library

Davis and Rabinowitz
Davis, Philip F., and Philip Rabinowitz (1984), Methods of Numerical
Integration, Academic Press, Orlando, Florida.

de Boor
de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag,
New York.

Dennis and Schnabel
Dennis, J.E., Jr., and Robert B. Schnabel (1983), Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, Prentice-Hall,
Englewood Cliffs, New Jersey.

Dongarra et al.
Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979),
LINPACK User’s Guide, SIAM, Philadelphia.

Draper and Smith
Draper, N.R., and H. Smith (1981), Applied Regression Analysis, 2nd.
ed., John Wiley & Sons, New York.

DuCroz et al.
Du Croz, Jeremy, P. Mayes, and G. Radicati (1990), Factorization of
band matrices using Level-3 BLAS, Proceedings of CONPAR 90-VAPP
IV, Lecture Notes in Computer Science, Springer, Berlin, 222.

Duff et al.
Duff, I. S., A. M. Erisman, and J. K. Reid (1986), Direct Methods for
Sparse Matrices, Clarendon Press, Oxford.

Duff and Reid
Duff, I.S., and J.K. Reid (1983), The multifrontal solution of indefinite
sparse symmetric linear equations. ACM Transactions on Mathematical
Software, 9, 302–325.
Duff, I.S., and J.K. Reid (1984), The multifrontal solution of
unsymmetric sets of linear equations. SIAM Journal on Scientific and
Statistical Computing, 5, 633–641.

Enright and Pryce
Enright, W.H., and J.D. Pryce (1987), Two FORTRAN packages for
assessing initial value methods, ACM Transactions on Mathematical
Software, 13, 1–22.

IMSL C/Math/Library Appendix A: References � A-5

Farebrother and Berry
Farebrother, R.W., and G. Berry (1974), A remark on Algorithm AS 6:
Triangular decomposition of a symmetric matrix, Applied Statistics, 23,
477.

Fisher
Fisher, R.A. (1936), The use of multiple measurements in taxonomic
problems, Annals of Eugenics, 7, 179– 188.

Fishman and Moore
Fishman, George S. and Louis R. Moore (1982), A statistical evaluation
of multiplicative congruential random number generators with modulus
231 – 1, Journal of the American Statistical Association, 77, 129–136.

Forsythe
Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for
fitting data with a digital computer, SIAM Journal on Applied
Mathematics, 5, 74–88.

Franke
Franke, R. (1982), Scattered data interpolation: Tests of some methods,
Mathematics of Computation, 38, 181–200.

Garbow et al.
Garbow, B.S., J.M. Boyle, K.J. Dongarra, and C.B. Moler (1977), Matrix
Eigensystem Routines - EISPACK Guide Extension, Springer–Verlag,
New York.
Garbow, B.S., G. Giunta, J.N. Lyness, and A. Murli (1988), Software for
an implementation of Weeks’ method for the inverse Laplace transform
problem, ACM Transactions on Mathematical Software, 14, 163–170.

Gautschi
Gautschi, Walter (1968), Construction of Gauss-Christoffel quadrature
formulas, Mathematics of Computation, 22, 251–270.
Gautschi, Walter (1969), Complex error function, Communications of the
ACM, 12, 635. Gautschi, Walter (1970), Efficient computation of the
complex error function, SIAM Journal on Mathematical Analysis, 7,
187�198.

Gear
Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary
Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

A-6 � Appendix A: References IMSLC/Math/Library

Gentleman
Gentleman, W. Morven (1974), Basic procedures for large, sparse or
weighted linear least squares problems, Applied Statistics, 23, 448–454.

George and Liu
George, A., and J.W.H. Liu (1981), Computer Solution of Large Sparse
Positive Definite Systems, Prentice-Hall, Englewood Cliffs, New Jersey.

Gill and Murray
Gill, Philip E., and Walter Murray (1976), Minimization subject to
bounds on the variables, NPL Report NAC 92, National Physical
Laboratory, England.

Gill et al.
Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright (1985), Model
building and practical aspects of nonlinear programming, in
Computational Mathematical Programming, (edited by K. Schittkowski),
NATO ASI Series, 15, Springer-Verlag, Berlin, Germany.

Goldfarb and Idnani
Goldfarb, D., and A. Idnani (1983), A numerically stable dual method for
solving strictly convex quadratic programs, Mathematical Programming,
27, 1–33.

Golub
Golub, G.H. (1973), Some modified matrix eigenvalue problems, SIAM
Review, 15, 318–334.

Golub and Van Loan
Golub, G.H., and C.F. Van Loan (1989), Matrix Computations, Second
Edition, The Johns Hopkins University Press, Baltimore, Maryland.
Golub, Gene H., and Charles F. Van Loan (1983), Matrix Computations,
Johns Hopkins University Press, Baltimore, Maryland.

Golub and Welsch
Golub, G.H., and J.H. Welsch (1969), Calculation of Gaussian quadrature
rules, Mathematics of Computation, 23, 221–230.

Gregory and Karney
Gregory, Robert, and David Karney (1969), A Collection of Matrices for
Testing Computational Algorithms, Wiley-Interscience, John Wiley &
Sons, New York.

IMSL C/Math/Library Appendix A: References � A-7

Griffin and Redfish
Griffin, R., and K A. Redish (1970), Remark on Algorithm 347: An
efficient algorithm for sorting with minimal storage, Communications of
the ACM, 13, 54.

Grosse
Grosse, Eric (1980), Tensor spline approximation, Linear Algebra and its
Applications, 34, 29–41.

Guerra and Tapia
Guerra, V., and R. A. Tapia (1974), A local procedure for error detection
and data smoothing, MRC Technical Summary Report 1452,
Mathematics Research Center, University of Wisconsin, Madison.

Hageman and Young
Hageman, Louis A., and David M. Young (1981), Applied Iterative
Methods, Academic Press, New York.

Hanson
Hanson, Richard J. (1986), Least squares with bounds and linear
constraints, SIAM Journal Sci. Stat. Computing, 7, #3.

Hardy
Hardy, R.L. (1971), Multiquadric equations of topography and other
irregular surfaces, Journal of Geophysical Research, 76, 1905–1915.

Hart et al.
Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J.Maehly, Charles
K. Mesztenyi, John R. Rice, Henry G. Thacher, Jr., and Christoph
Witzgall (1968), Computer Approximations, John Wiley & Sons, New
York.

Healy
Healy, M.J.R. (1968), Algorithm AS 6: Triangular decomposition of a
symmetric matrix, Applied Statistics, 17, 195–197.

Herraman
Herraman, C. (1968), Sums of squares and products matrix, Applied
Statistics, 17, 289–292.

A-8 � Appendix A: References IMSLC/Math/Library

Higham
Higham, Nicholas J. (1988), FORTRAN Codes for estimating the one-
norm of a real or complex matrix, with applications to condition
estimation, ACM Transactions on Mathematical Software, 14, 381-396.

Hill
Hill, G.W. (1970), Student’s t-distribution, Communications of the ACM,
13, 617–619.

Hindmarsh
Hindmarsh, A.C. (1974), GEAR: Ordinary Differential Equation System
Solver, Lawrence Livermore National Laboratory Report UCID-30001,
Revision 3, Lawrence Livermore National Laboratory, Livermore, Calif.

Hinkley
Hinkley, David (1977), On quick choice of power transformation,
Applied Statistics, 26, 67–69.

Huber
Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York.

Hull et al.
Hull, T.E., W.H. Enright, and K.R. Jackson (1976), User’s guide for
DVERK — A subroutine for solving non-stiff ODEs, Department of
Computer Science Technical Report 100, University of Toronto.

Irvine et al.
Irvine, Larry D., Samuel P. Marin, and Philip W. Smith (1986),
Constrained interpolation and smoothing, Constructive Approximation, 2,
129–151.

Jackson et al.
Jackson, K.R., W.H. Enright, and T.E. Hull (1978), A theoretical
criterion for comparing Runge-Kutta formulas, SIAM Journal of
Numerical Analysis, 15, 618–641.

Jenkins
Jenkins, M.A. (1975), Algorithm 493: Zeros of a real polynomial, ACM
Transactions on Mathematical Software, 1, 178–189.

IMSL C/Math/Library Appendix A: References � A-9

Jenkins and Traub
Jenkins, M.A., and J.F. Traub (1970), A three-stage algorithm for real
polynomials using quadratic iteration, SIAM Journal on Numerical
Analysis, 7, 545–566.
Jenkins, M.A., and J.F. Traub (1970), A three-stage variable-shift
iteration for polynomial zeros and its relation to generalized Rayleigh
iteration, Numerishe Mathematik, 14, 252–263.
Jenkins, M.A., and J.F. Traub (1972), Zeros of a complex polynomial,
Communications of the ACM, 15, 97– 99.

Jöhnk
Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten
Zufalls-zahlen, Metrika, 8, 5–15.

Kendall and Stuart
Kendall, Maurice G., and Alan Stuart (1973), The Advanced Theory of
Statistics, Volume II, Inference and Relationship, Third Edition, Charles
Griffin & Company, London, Chapter 30.

Kennedy and Gentle
Kennedy, William J., Jr., and James E. Gentle (1980), Statistical
Computing, Marcel Dekker, New York.

Kernighan and Richtie
Kernighan, Brian W., and Richtie, Dennis M. 1988, "The C
Programming Language" Second Edition, 241.

Kinnucan and Kuki
Kinnucan, P., and Kuki, H., (1968), A single precision inverse error
function subroutine, Computation Center, University of Chicago.

Knuth
Knuth, Donald E. (1981), The Art of Computer Programming, Volume
II: Seminumerical Algorithms, 2nd. ed., Addison-Wesley, Reading, Mass.

Learmonth and Lewis
Learmonth, G.P., and P.A.W. Lewis (1973), Naval Postgraduate School
Random Number Generator Package LLRANDOM, NPS55LW73061A,
Naval Postgraduate School, Monterey, California.

A-10 � Appendix A: References IMSLC/Math/Library

Lehmann
Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on
Ranks, Holden-Day, San Francisco.

Levenberg
Levenberg, K. (1944), A method for the solution of certain problems in
least squares, Quarterly of Applied Mathematics, 2, 164–168.

Leavenworth
Leavenworth, B. (1960), Algorithm 25: Real zeros of an arbitrary
function, Communications of the ACM, 3, 602.

Lentini and Pereyra
Pereyra, Victor (1978), PASVA3: An adaptive finite-difference
FORTRAN program for first order nonlinear boundary value problems,
in Lecture Notes in Computer Science, 76, Springer-Verlag, Berlin,
67�88.

Lewis et al.
Lewis, P.A.W., A.S. Goodman, and J.M. Miller (1969), A pseudorandom
number generator for the System/ 360, IBM Systems Journal, 8, 136–146.

Liepman
Liepman, David S. (1964), Mathematical constants, in Handbook of
Mathematical Functions, Dover Publications, New York.

Liu
Liu, J.W.H. (1987), A collection of routines for an implementation of the
multifrontal method, Technical Report CS-87-10, Department of
Computer Science, York University, North York, Ontario, Canada.
Liu, J.W.H. (1989), The multifrontal method and paging in sparse
Cholesky factorization. ACM Transactions on Mathematical Software,
15, 310-325.
Liu, J.W.H. (1990), The multifrontal method for sparse matrix solution:
theory and practice, Technical Report CS-90-04, Department of
Computer Science, York University, North York, Ontario, Canada.
Liu, J.W.H. (1986), On the storage requirement in the out-of-core
multifrontal method for sparse factorization. ACM Transactions on
Mathematical Software, 12, 249-264.

IMSL C/Math/Library Appendix A: References � A-11

Lyness and Giunta
Lyness, J.N. and G. Giunta (1986), A modification of the Weeks Method
for numerical inversion of the Laplace transform, Mathematics of
Computation, 47, 313–322.

Madsen and Sincovec
Madsen, N.K., and R.F. Sincovec (1979), Algorithm 540: PDECOL,
General collocation software for partial differential equations, ACM
Transactions on Mathematical Software, 5, #3, 326–351.

Maindonald
Maindonald, J.H. (1984), Statistical Computation, John Wiley & Sons,
New York.

Marquardt
Marquardt, D. (1963), An algorithm for least-squares estimation of
nonlinear parameters, SIAM Journal on Applied Mathematics, 11,
431–441.

Martin and Wilkinson
Martin, R.S., and J.H. Wilkinson (1971), Reduction of the Symmetric
Eigenproblem Ax = �Bx and Related Problems to Standard Form,
Volume II, Linear Algebra Handbook, Springer, New York.
Martin, R.S., and J.H. Wilkinson (1971), The Modified LR Algorithm for
Complex Hessenberg Matrices, Handbook, Volume II, Linear Algebra,
Springer, New York.

Mayle
Mayle, Jan, (1993), Fixed Income Securities Formulas for Price, Yield,
and Accrued Interest, SIA Standard Securities Calculation Methods,
Volume I, Third Edition, pages 17-35.

Michelli
Micchelli, C.A. (1986), Interpolation of scattered data: Distance matrices
and conditionally positive definite functions, Constructive
Approximation, 2, 11–22.

Michelli et al.
Micchelli, C.A., T.J. Rivlin, and S. Winograd (1976), The optimal
recovery of smooth functions, Numerische Mathematik, 26, 279–285.
Micchelli, C.A., Philip W. Smith, John Swetits, and Joseph D. Ward
(1985), Constrained Lp approximation, Constructive Approximation, 1,
93–102.

A-12 � Appendix A: References IMSLC/Math/Library

Moler and Stewart
Moler, C., and G.W. Stewart (1973), An algorithm for generalized matrix
eigenvalue problems, SIAM Journal on Numerical Analysis, 10, 241-256.

Moré et al.
Moré, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User Guide
for MINPACK-1, Argonne National Laboratory Report ANL-80-74,
Argonne, Illinois.

Müller
Müller, D.E. (1956), A method for solving algebraic equations using an
automatic computer, Mathematical Tables and Aids to Computation, 10,
208–215.

Murtagh
Murtagh, Bruce A. (1981), Advanced Linear Programming: Computation
and Practice, McGraw-Hill, New York.

Murty
Murty, Katta G. (1983), Linear Programming, John Wiley and Sons,
New York.

Neter and Wasserman
Neter, John, and William Wasserman (1974), Applied Linear Statistical
Models, Richard D. Irwin, Homewood, Illinois.

Neter et al.
Neter, John, William Wasserman, and Michael H. Kutner (1983), Applied
Linear Regression Models, Richard D. Irwin, Homewood, Illinois.

Østerby and Zlatev
Østerby, Ole, and Zahari Zlatev (1982), Direct Methods for Sparse
Matrices, Lecture Notes in Computer Science, 157, Springer-Verlag, New
York.

Owen
Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley
Publishing Company, Reading, Mass.
Owen, D.B. (1965), A special case of the bivariate non-central t
distribution, Biometrika, 52, 437–446.

IMSL C/Math/Library Appendix A: References � A-13

Parlett
Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey.

Petro
Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for
sorting with minimal storage, Communications of the ACM, 13, 624.

Piessens et al.
Piessens, R., E. deDoncker-Kapenga, C.W. Überhuber, and D.K.
Kahaner (1983), QUADPACK, Springer-Verlag, New York.

Powell
Powell, M.J.D. (1978), A fast algorithm for nonlinearly constrained
optimization calculations, Numerical Analysis Proceedings, Dundee
1977, Lecture Notes in Mathematics, (edited by G. A. Watson), 630,
Springer-Verlag, Berlin, Germany, 144–157.
Powell, M.J.D. (1985), On the quadratic programming algorithm of
Goldfarb and Idnani, Mathematical Programming Study, 25, 46–61.
Powell, M.J.D. (1988), A tolerant algorithm for linearly constrained
optimizations calculations, DAMTP Report NA17, University of
Cambridge, England.
Powell, M.J.D. (1989), TOLMIN: A fortran package for linearly
constrained optimizations calculations, DAMTP Report NA2, University
of Cambridge, England.
Powell, M.J.D. (1983), ZQPCVX a FORTRAN subroutine for convex
quadratic programming, DAMTP Report 1983/NA17, University of
Cambridge, Cambridge, England.

Reinsch
Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische
Mathematik, 10, 177–183.

Rice
Rice, J.R. (1983), Numerical Methods, Software, and Analysis, McGraw-
Hill, New York.

Saad and Schultz
Saad, Y., and M. H. Schultz (1986), GMRES: A generalized minimum
residual algorithm for solving nonsymmetric linear systems, SIAM
Journal of Scientific and Statistical Computing, 7, 856-869.

A-14 � Appendix A: References IMSLC/Math/Library

Sallas and Lionti
Sallas, William M., and Abby M. Lionti (1988), Some useful computing
formulas for the nonfull rank linear model with linear equality
restrictions, IMSL Technical Report 8805, IMSL, Houston.

Savage
Savage, I. Richard (1956), Contributions to the theory of rank order
statistics—the two-sample case, Annals of Mathematical Statistics, 27,
590–615.

Schmeiser
Schmeiser, Bruce (1983), Recent advances in generating observations
from discrete random variates, in Computer Science and Statistics:
Proceedings of the Fifteenth Symposium on the Interface, (edited by
James E. Gentle), North-Holland Publishing Company, Amsterdam, 154–
160.

Schmeiser and Babu
Schmeiser, Bruce W., and A.J.G. Babu (1980), Beta variate generation
via exponential majorizing functions, Operations Research, 28, 917–926.

Schmeiser and Kachitvichyanukul
Schmeiser, Bruce, and Voratas Kachitvichyanukul (1981), Poisson
Random Variate Generation, Research Memorandum 81–4, School of
Industrial Engineering, Purdue University, West Lafayette, Indiana.

Schmeiser and Lal
Schmeiser, Bruce W., and Ram Lal (1980), Squeeze methods for
generating gamma variates, Journal of the American Statistical
Association, 75, 679–682.

Seidler and Carmichael
Seidler, Lee J. and Carmichael, D.R., (editors) (1980), Accountants'
Handbook, Volume I, Sixth Edition, The Ronald Press Company, New
York.

Shampine
Shampine, L.F. (1975), Discrete least squares polynomial fits,
Communications of the ACM, 18, 179–180.

Shampine and Gear
Shampine, L.F. and C.W. Gear (1979), A user’s view of solving stiff
ordinary differential equations, SIAM Review, 21, 1–17.

IMSL C/Math/Library Appendix A: References � A-15

Sincovec and Madsen
Sincovec, R.F., and N.K. Madsen (1975), Software for nonlinear partial
differential equations, ACM Transactions on Mathematical Software, 1,
#3, 232–260.

Singleton
Singleton, T.C. (1969), Algorithm 347: An efficient algorithm for sorting
with minimal storage, Communications of the ACM, 12, 185–187.

Smith et al.
Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C.
Klema, and C.B. Moler (1976), Matrix Eigensystem Routines —
EISPACK Guide, Springer-Verlag, New York.

Smith
Smith, P.W. (1990), On knots and nodes for spline interpolation,
Algorithms for Approximation II, J.C. Mason and M.G. Cox, Eds.,
Chapman and Hall, New York.

Spellucci, Peter
Spellucci, P. (1998), An SQP method for general nonlinear programs
using only equality constrained subproblems, Math. Prog., 82, 413-448,
Physica Verlag, Heidelberg, Germany
Spellucci, P. (1998), A new technique for inconsistent problems in the
SQP method. Math. Meth. of Oper. Res.,47, 355-500, Physica Verlag,
Heidelberg, Germany.

Stewart
Stewart, G.W. (1973), Introduction to Matrix Computations, Academic
Press, New York.

Strecok
Strecok, Anthony J. (1968), On the calculation of the inverse of the error
function, Mathematics of Computation, 22, 144–158.

Stroud and Secrest
Stroud, A.H., and D.H. Secrest (1963), Gaussian Quadrature Formulae,
Prentice-Hall, Englewood Cliffs, New Jersey.

Temme
Temme, N.M (1975), On the numerical evaluation of the modified Bessel
Function of the third kind, Journal of Computational Physics, 19, 324–
337.

A-16 � Appendix A: References IMSLC/Math/Library

Tezuka
Tezuka, S. (1995), Uniform Random Numbers: Theory and Practice.
Academic Publishers, Boston.

Thompson and Barnett
Thompson, I.J. and A.R. Barnett (1987), Modified Bessel functions I

�
(z)

and K
�
(z) of real order and complex argument, Computer Physics

Communication, 47, 245–257.

Tukey
Tukey, John W. (1962), The future of data analysis, Annals of
Mathematical Statistics, 33, 1–67.

Velleman and Hoaglin
Velleman, Paul F., and David C. Hoaglin (1981), Applications, Basics,
and Computing of Exploratory Data Analysis, Duxbury Press, Boston.

Walker
Walker, H.F. (1988), Implementation of the GMRES method using
Householder transformations, SIAM Journal of Scientific and Statistical
Computing, 9, 152-163.

Watkins
Watkins, David S., L. Elsner (1991), Convergence of algorithm of
decomposition type for the eigenvalue problem, Linear Algebra
Applications, 143, pp. 29–47.

Weeks
Weeks, W.T. (1966), Numerical inversion of Laplace transforms using
Laguerre functions, J. ACM, 13, 419–429.

IMSL/C/Math/ Library Appendix B: Alphabetical Summary of Routines � B-1

Appendix B: Alphabetical Summary
of Routines

Function Purpose Statement Page
accr_interest_maturity Evaluates the accrued interest for a security that pays at

maturity.
580

accr_interest_periodic Evaluates the accrued interest for a security that pays
periodic interest.

582

airy_Ai Evaluates the Airy function. 509
airy_Ai_derivative Evaluates the derivative of the Airy function 511
airy_Bi Evaluates the Airy function of the second kind. 510
airy_Bi_derivative Evaluates the derivative of the Airy function of the second

kind.
512

bessel_exp_I0 Evaluates the exponentially scale modified Bessel function of
the first kind of order zero.

489

bessel_exp_I1 Evaluates the exponentially scaled modified Bessel function
of the first kind of order one.

491

bessel_exp_K0 Evaluates the exponentially scaled modified Bessel function
of the third kind of order zero.

495

bessel_exp_K1 Evaluates the exponentially scaled modified Bessel function
of the third kind of order one.

497

bessel_I0 Evaluates the real modified Bessel function of the first kind
of order zero I0(x).

487

bessel_I1 Evaluates the real modified Bessel function of the first kind
of order one I1(x).

490

bessel_Ix Evaluates a sequence of modified Bessel functions of the first
kind with real order and complex arguments.

492

bessel_J0 Evaluates the real Bessel function of the first kind of order
zero J0(x).

478

bessel_J1 Evaluates the real Bessel function of the first kind of order
one J1(x).

480

bessel_Jx Evaluates a sequence of Bessel functions of the first kind
with real order and complex arguments.

481

bessel_K0 Evaluates the real modified Bessel function of the third kind
of order zero K0(x).

493

B-2 � Appendix B: Alphabetical Summary of Routines IMSL C/Math/Library

Function Purpose Statement Page
bessel_K1 Evaluates the real modified Bessel function of the third kind

of order one K1(x).
496

bessel_Kx Evaluates a sequence of modified Bessel functions of the
third kind with real order and complex arguments.

499

bessel_Y0 Evaluates the real Bessel function of the second kind of order
zero Y0(x).

482

bessel_Y1 Evaluates the real Bessel function of the second kind of order
one Y1(x).

484

bessel_Yx Evaluates a sequence of Bessel functions of the second kind
with real order and complex arguments.

485

beta Evaluates the real beta function �(x, y). 469
beta_cdf Evaluates the beta probability distribution function 540
beta_incomplete Evaluates the real incomplete beta function

Ix = �x(a, b)/�(a, b).
472

beta_inverse_cdf Evaluates the inverse of the beta distribution function. 542
binomial_cdf Evaluates the binomial distribution function. 536
bivariate_normal_cdf Evaluates the bivariate normal distribution function. 543
bond_equivalent_yield Evaluates the bond-equivalent for a Treasury yield. 584
bounded_least_squares Solves a nonlinear least-squares problem subject to bounds

on the variables using a modified Levenberg-Marquardt
algorithm.

439

bvp_finite_difference Solves a (parameterized) system of differential equations
with boundary conditions at two points, using a variable
order, variable step size finite difference method with
deferred corrections.

321

chi_squared_cdf Evaluates the chi-squared distribution function 524
chi_squared_inverse_cdf Evaluates the inverse of the chi-squared distribution function. 526
chi_squared_test Performs a chi-squared goodness-of-fit test 638
constant Returns the value of various mathematical and physical

constants.
719

constrained_nlp Solves a general nonlinear programming problem using a
sequential equality constrained quadratic programming
method.

447

convexity Evaluates the convexity for a security. 586
convolution (complex) Computes the convolution, and optionally, the correlation of

two complex vectors.
370

convolution Computes the convolution, and optionally, the correlation of
two real vectors.

363

IMSL/C/Math/ Library Appendix B: Alphabetical Summary of Routines � B-3

Function Purpose Statement Page
coupon_days Evaluates the number of days in the coupon period that

contains the settlement date.
588

coupon_number Evaluates the number of coupons payable between the
settlement date and maturity date.

589

covariances Computes the sample variance-covariance or correlation
matrix.

646

ctime Returns the number of CPU seconds used. 709
cub_spline_integral Computes the integral of a cubic spline. 160
cub_spline_interp_e_cnd Computes a cubic spline interpolant, specifying various

endpoint conditions.
145

cub_spline_interp_shape Computes a shape-preserving cubic spline. 152
cub_spline_smooth Computes a smooth cubic spline approximation to noisy data

by using cross-validation to estimate the smoothing
parameter or by directly choosing the smoothing parameter.

205

cub_spline_value Computes the value of a cubic spline or the value of one of
its derivatives.

157

cumalative_interest Evaluates the cumulative interest paid between two periods. 545
cumalative_principal Evaluates the cumulative principal paid between two periods. 546
date_to_days Evaluates the number of days from January 1, 1900, to the

given date.
709

days_before_settlement Evaluates the number of days from the beginning of the
coupon period to the settlement date.

591

days_to_date Gives the date corresponding to the number of days since
January 1, 1900.

 711

days_to_next_coupon Evaluates the number of days from settlement date to the
next coupon date.

592

depreciation_amordegrc Evaluates the depreciation for each accounting period.
Similar to depreciation_amorlinc.

594

depreciation_amorlinc Evaluates the depreciation for each accounting period.
Similar to depreciation_amordegrc.

596

depreciation_db Evaluates the depreciation of an asset for a specified period
using the fixed-declining balance method.

548

depreciation_ddb Evaluates the depreciation of an asset for a specified period
using the double-declining method.

550

depreciation_sln Evaluates the straight line depreciation of an asset for one
period.

551

depreciation_syd Evaluates the sum-of-years digits depreciation of an asset for
a specified period.

553

B-4 � Appendix B: Alphabetical Summary of Routines IMSL C/Math/Library

Function Purpose Statement Page
depreciation_vdb Evaluates the depreciation of an asset for any given period,

including partial periods, using the double-declining balance
method.

554

discount_price Evaluates the price per $100 face value of a discounted
security.

597

discount_rate Evaluates the discount rate for a security. 599
discount_yield Evaluates the annual yield for a discounted security. 601
dollar_decimal Converts a dollar price, expressed as a fraction, into a dollar

price, expressed as a decimal number.
556

dollar_fraction Converts a dollar price, expressed as a decimal number, into
a dollar price, expressed as a fraction.

557

duration Evaluates the annual duration of a security with periodic
interest payment.

603

effective_rate Evaluates the effective annual interest rate. 558
eig_gen (complex) Computes the eigenexpansion of a complex matrix A. 120
eig_gen Computes the eigenexpansion of a real matrix A 118
eig_herm (complex) Computes the eigenexpansion of a complex Hermitian matrix

A.
126

eig_sym Computes the eigenexpansion of a real symmetric matrix A. 123
eig_symgen Computes the generalized eigenexpansion of a system

Ax = �Bx. A and B are real and symmetric. B is positive
definite.

129

elliptic_integral_E Evaluates the complete elliptic integral of the second kind
E(x).

501

elliptic_integral_K Evaluates the complete elliptic integral of the kind K(x). 500
elliptic_integral_RC Evaluates an elementary integral from which inverse circular

functions, logarithms, and inverse hyperbolic functions can
be computed.

506

elliptic_integral_RD Evaluates Carlson’s elliptic integral of the second kind RD(x,
y, z).

504

elliptic_integral_RF Evaluates Carlson’s elliptic integral of the first kind RF(x, y,
z).

502

elliptic_integral_RJ Evaluates Carlson’s elliptic integral of the third kind RJ(x, y,
z, �).

505

erf Evaluates the real error function erf(x). 460
erf_inverse Evaluates the real inverse error function

erf-1(x).
465

erfc Evaluates the real complementary error function erfc(x). 461

IMSL/C/Math/ Library Appendix B: Alphabetical Summary of Routines � B-5

Function Purpose Statement Page
erfc_inverse Evaluates the real inverse complementary error function

erfc-1(x).
467

erfce Evaluates the exponentially scaled complementary error
function.

463

erfe Evaluates a scaled function related to erfc(z) 464
error_code Gets the code corresponding to the error message from the

last function called.
718

error_options Sets various error handling options. 712
F_cdf Evaluates the F distribution function. 528
F_inverse_cdf Evaluates the inverse of the F distribution function. 530
fast_poisson_2d Solves Poisson’s or Helmholtz’s equation on a two-

dimensional rectangle using a fast Poisson solver based on
the HODIE finite-difference scheme on a uniform mesh.

332

faure_next_point Evaluates a shuffled Faure sequence 687
fcn_derivative Computes the first, second or third derivative of a user-

supplied function.
286

fft_2d_complex Computes the complex discrete two-dimensional Fourier
transform of a complex two-dimensional array.

359

fft_complex Computes the complex discrete Fourier transform of a
complex sequence.

346

fft_complex_init Computes the parameters for imsl_c_fft_complex. 349
fft_cosine Computes the discrete Fourier cosine transformation of an

even sequence.
351

fft_cosine_init Computes the parameters needed for imsl_f_fft_cosine. 353
fft_real Computes the real discrete Fourier transform of a real

sequence.
341

fft_real_init Computes the parameters for imsl_f_fft_real 345
fft_sine Computes the discrete Fourier sine transformation of an odd

sequence.
355

fft_sine_init Computes the parameters needed for imsl_f_fft_sine. 357
fresnel_integral_C Evaluates the cosine Fresnel integral. 507
fresnel_integral_S Evaluates the sine Fresnel integral. 508
future_value Evaluates the future value of an investment. 559
future_value_schedule Evaluates the future value of an initial principal after

applying a series of compound interest rates.
561

gamma Evaluates the real gamma function �(x). 473
gamma_cdf Evaluates the gamma distribution function 534

B-6 � Appendix B: Alphabetical Summary of Routines IMSL C/Math/Library

Function Purpose Statement Page
gamma_incomplete Evaluates the incomplete gamma function

� (a, x).
476

gauss_quad_rule Computes a Gauss, Gauss-Radau, or Gauss-Lobatto
quadrature rule with various classical weight functions.

282

geneig (complex) Computes the generalized eigenexpansion of a system
Ax = �Bx, with A and B complex.

135

geneig Computes the generalized eigenexpansion of a system
Ax = �Bx, with A and B real.

132

generate_test_band
(complex)

Generates test matrices of class Ec(n, c). 784

generate_test_band Generates test matrices of class E(n, c). 782
generate_test_coordinate
(complex)

Generates test matrices of class D(n, c) and E(n, c). 791

generate_test_coordinate Generates test matrices of class D(n, c) and E(n, c). 786
hypergeometric_cdf Evaluates the hypergeometric distribution function. 537
int_fcn Integrates a function using a globally adaptive scheme based

on Gauss-Kronrod rules.
241

int_fcn_2d Computes a two-dimensional iterated integral 272
int_fcn_alg_log Integrates a function with algebraic-logarithmic singularities. 249
int_fcn_cauchy Computes integrals of the form

f x
x c

dx
a

b b g
�
z

in the Cauchy principal value sense.

265

int_fcn_fourier Computes a Fourier sine or cosine transform. 261
int_fcn_hyper_rect Integrates a function on a hyper-rectangle. 276
int_fcn_inf Integrates a function over an infinite or semi-infinite

interval.
253

int_fcn_qmc Integrates a function on a hyper-rectangle using a quasi-
Monte Carlo method.

279

int_fcn_sing Integrates a function, which may have endpoint singularities,
using a globally adaptive scheme based on Gauss-Kronrod
rules.

237

int_fcn_sing_pts Integrates a function with singularity points given 245
int_fcn_smooth Integrates a smooth function using a nonadaptive rule. 268
int_fcn_trig Integrates a function containing a sine or a cosine factor. 257
interest_payment Evaluates the interest payment for a given period for an

investment.
562

interest_rate_annuity Evaluates the interest rate per period for an annuity. 563

IMSL/C/Math/ Library Appendix B: Alphabetical Summary of Routines � B-7

Function Purpose Statement Page
interest_rate_security Evaluates the interest rate for a fully invested security. 605
internal_rate_of_return Evaluates the internal rate of return for a schedule of cash

flows.
565

internal_rate_schedule Evaluates the internal rate of return for a schedule of cash
flows that is not necessarily periodic.

567

inverse_laplace Computes the inverse Laplace transform of a complex
function.

376

kelvin_bei0 Evaluates the Kelvin function of the first kind, bei, of order
zero.

514

kelvin_bei0_derivative Evaluates the derivative of the Kelvin function of the first
kind, bei, of order zero.

518

kelvin_ber0 Evaluates the Kelvin function of the first kind, ber, of order
zero.

513

kelvin_ber0_derivative Evaluates the derivative of the Kelvin function of the first
kind, ber, of order zero.

517

kelvin_kei0 Evaluates the Kelvin function of the second kind, kei, of
order zero.

516

kelvin_kei0_derivative Evaluates the derivative of the Kelvin function of the second
kind, kei, of order zero.

520

kelvin_ker0 Evaluates the Kelvin function of the second kind, der, of
order zero.

515

kelvin_ker0_derivative Evaluates the derivative of the Kelvin function of the second
kind, ker, of order zero.

519

lin_least_squares_gen Solves a linear least-squares problem Ax = b. 84
lin_lsq_lin_constraints Solves a linear least squares problem with linear constraints. 92
lin_prog Solves a linear programming problem using the revised

simplex algorithm.
425

lin_sol_def_cg Solves a real symmetric definite linear system using a
conjugate gradient method.

78

lin_sol_gen (complex) Solves a complex general system of linear equations
Ax = b.

11

lin_sol_gen Solves a real general system of linear equations
Ax = b.

4

lin_sol_gen_band
(complex)

Solves a complex general system of linear equations
Ax = b.

31

lin_sol_gen_band Solves a real geeral band system of linear equations Ax=b. 26
lin_sol_gen_coordinate
(complex)

Solves a system of linear equations Ax = b, with sparse
complex coefficient matrix A.

54

lin_sol_gen_coordinate Solves a sparse system of linear equations Ax = b. 44

B-8 � Appendix B: Alphabetical Summary of Routines IMSL C/Math/Library

Function Purpose Statement Page
lin_sol_gen_min_residual Solves a linear system Ax = b using the restarted generalized

minimum residual (GMRES) method.
73

lin_sol_nonnegdef Solves a real symmetric nonnegative definite system of
linear equations Ax = b.

107

lin_sol_posdef (complex) Solves a complex Hermitian positive definite system of
linear equations Ax = b.

22

lin_sol_posdef Solves a real symmetric positive definite system of linear
equations Ax = b.

17

lin_sol_posdef_band
(complex)

Solves a complex Hermitian positive definite system of
linear equations Ax = b in band symmetric storage mode.

39

lin_sol_posdef_band Solves a real symmetric positive definite system of linear
equations Ax = b in band symmetric storage mode.

35

lin_sol_posdef_coordinate
(complex)

Solves a sparse Hermitian positive definite system of linear
equations Ax = b.

68

lin_sol_posdef_coordinate Solves a sparse real symmetric positive definite system of
linear equations Ax = b.

62

lin_svd_gen (complex) Computes the SVD, A = USVH, of a complex rectangular
matrix A.

102

lin_svd_gen Computes the SVD, A = USVT, of a real rectangular matrix
A.

96

log_beta Evaluates the logarithm of the real beta function ln
� (x, y).

471

log_gamma Evaluates the logarithm of the absolute value of the gamma
function log |�(x)|.

475

machine (float) Returns information describing the computer’s floating-point
arithmetic.

725

machine (integer) Returns integer information describing the computer’s
arithmetic.

723

mat_add_band (complex) Adds two band matrices, both in band storage mode,
C � �A + �B.

764

mat_add_band Adds two band matrices, both in band storage mode,
C � �A + �B.

760

mat_add_coordinate
(complex)

Performs element-wise addition on two complex matrices
stored in coordinate format, C � �A + �B.

771

mat_add_coordinate Performs element-wise addition of two real matrices stored
in coordinate format, C � �A + �B.

 768

mat_mul_rect (complex) Computes the transpose of a matrix, the conjugate-transpose
of a matrix, a matrix-vector product, a matrix-matrix
product, the bilinear form, or any triple product.

738

IMSL/C/Math/ Library Appendix B: Alphabetical Summary of Routines � B-9

Function Purpose Statement Page
mat_mul_rect Computes the transpose of a matrix, a matrix-vector product,

a matrix-matrix product, the bilinear form, or any triple
product.

735

mat_mul_rect_band
(complex)

Computes the transpose of a matrix, a matrix-vector product,
or a matrix-matrix product, all matrices of complex type and
stored in band form.

746

mat_mul_rect_band Computes the transpose of a matrix, a matrix-vector product,
or a matrix-matrix product, all matrices stored in band form.

742

mat_mul_rect_coordinate
(complex)

Computes the transpose of a matrix, a matrix-vector product
or a matrix-matrix product, all matrices stored in sparse
coordinate form.

755

mat_mul_rect_coordinate Computes the transpose of a matrix, a matrix-vector product,
or a matrix-matrix product, all matrices stored in sparse
coordinate form.

751

matrix_norm Computes various norms of a rectangular matrix. 775
matrix_norm_band Computes various norms of a matrix stored in band storage

mode.
777

matrix_norm_coordinate Computes various norms of a matrix stored in coordinate
format.

779

min_con_gen_lin Minimizes a general objective function subject to linear
equality/inequality constraints.

433

min_uncon Finds the minimum point of a smooth function f(x) of a
single variable using only function evaluations.

401

min_uncon_deriv Finds the minimum point of a smooth function f(x) of a
single variable using both function and first derivative
evaluations.

405

min_uncon_multivar Minimizes a function f(x) of n variables using a quasi-
Newton method.

409

modified_duration Evaluates the modified Macauley duration of a security. 607
modified_internal_rate Evaluates the modified internal rate of return for a series of

periodic cash flows.
569

net_present_value Evaluates the net present value of an investment based on a
series of periodic.

570

next_coupon_date Evaluates the next coupon date after the settlement date. 608
nominal_rate Evaluates the nominal annual interest rate. 571
nonlin_least_squares Solves a nonlinear least-squares problem using a modified

Levenberg-Marquardt algorithm.
416

normal_cdf Evaluates the standard normal (Gaussian) distribution
function.

521

normal_inverse_cdf Evaluates the inverse of the standard normal (Gaussian)
distribution function.

523

B-10 � Appendix B: Alphabetical Summary of Routines IMSL C/Math/Library

Function Purpose Statement Page
number_of_periods Evaluates the number of periods for an investment based on

periodic and constant payment and a constant interest rate.
573

ode_adams_gear Solves a stiff initial-value problem for ordinary differential
equations using the Adams-Gear methods.

297

ode_runge_kutta Solves an initial-value problem for ordinary differential
equations using the Runge-Kutta-Verner fifth-order and
sixth-order method.

291

output_file Sets the output file or the error message output file. 704
page Sets or retrieve the page width or length. 697
payment Evaluates the periodic payment for an investment. 574
pde_method_of_lines Solves a system of partial differential equations of the form

ut + f(x, t, u, ux, uxx) using the method of lines.
304

poisson_cdf Evaluates the Poisson distribution function. 539
poly_regression Performs a polynomial least-squares regression. 660
present_value Evaluates the present value of an investment. 576
present_value_schedule Evaluates the present value for a schedule of cash flows that

is not necessarily periodic.
577

previous_coupon_date Evaluates the previous coupon date before the settlement
date.

610

price Evaluates the price per $100 face value of a security that
pays periodic interest.

612

price_maturity Evaluates the price per $100 face value of a security that
pays interest at maturity.

614

principal_payment Evaluates the payment on the principal for a given period. 579
quadratic_prog Solves a quadratic programming problem subject to linear

equality or inequality constraints.
429

radial_evaluate Evaluates a radial basis fit. 231
radial_scattered_fit Computes an approximation to scattered data in Rn for

n � 2 using radial basis functions.
225

random_beta Generates pseudorandom numbers from a beta distribution. 684
random_exponential Generates pseudorandom numbers from a standard

exponential distribution.
685

random_gamma Generates pseudorandom numbers from a standard gamma
distribution.

682

random_normal Generates pseudorandom numbers from a standard normal
distribution using an inverse CDF method.

679

random_option Selects the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

676

IMSL/C/Math/ Library Appendix B: Alphabetical Summary of Routines � B-11

Function Purpose Statement Page
random_poisson Generates pseudorandom numbers from a Poisson

distribution.
680

random_seed_get Retrieves the current value of the seed used in the IMSL
random number generators.

674

random_seed_set Initializes a random seed for use in the IMSL random
number generators.

675

random_uniform Generates pseudorandom numbers from a uniform (0, 1)
distribution.

677

ranks Computes the ranks, normal scores, or exponential scores for
a vector of observations.

667

received_maturity Evaluates the amount received for a fully invested
security.

616

regression Fits a multiple linear regression model using least squares. 651
scattered_2d_interp Computes a smooth bivariate interpolant to scattered data

that is locally a quintic polynomial in two variables.
220

simple_statistics Computes basic univariate statistics. 629
smooth_1d_data Smooth one-dimensional data by error detection 216
sort (integer) Sorts an integer vector by algebraic value. Optionally, a

vector can be sorted by absolute value, and a sort
permutation can be returned.

 730

sort Sorts a vector by algebraic value. Optionally, a vector can be
sorted by absolute value, and a sort permutation can be
returned.

728

spline_2d_integral Evaluates the integral of a tensor-product spline on a
rectangular domain.

186

spline_2d_interp Computes a two-dimensional, tensor-product spline
interpolant from two-dimensional, tensor-product data.

171

spline_2d_least_squares Computes a two-dimensional, tensor-product spline
approximant using least squares.

199

spline_2d_value Computes the value of a tensor-product spline or the value
of one of its partial derivatives.

182

spline_integral Computes the integral of a spline. 180
spline_interp Computes a spline interpolant. 161
spline_knots Computes the knots for a spline interpolant. 167
spline_least_squares Computes a least-squares spline approximation. 193
spline_lsq_constrained Computes a least-squares constrained spline approximation. 209
spline_value Computes the value of a spline or the value of one of its

derivatives.
177

t_cdf Evaluates the Student’s t distribution function. 531

B-12 � Appendix B: Alphabetical Summary of Routines IMSL C/Math/Library

Function Purpose Statement Page
t_inverse_cdf Evaluates the inverse of the Student’s t distribution function. 533
table_oneway Tallies observations into a one-way frequency table. 634
treasury_bill_price Computes the price per $100 face value for a Treasury bill. 618
treasury_bill_yield Computes the yield for a Treasury bill. 619
user_fcn_least_squares Computes a least-squares fit using user-supplied functions. 189
vector_norm Computes various norms of a vector or the difference of two

vectors.
733

version Returns integer information describing the version of the
library, license number, operating system, and compiler.

708

write_matrix Prints a rectangular matrix (or vector) stored in contiguous
memory locations.

691

write_options Sets or retrieve an option for printing a matrix. 698
year_fraction Evaluates the year fraction that represents the number of

whole days between two dates.
621

yield_maturity Evaluates the annual yield of a security that pays interest at
maturity.

622

yield_periodic Evaluates the yield of a security that pays periodic interest. 624
zeros_fcn Finds the real zeros of a real function using Müller’s

method.
388

zeros_poly (complex) Finds the zeros of a polynomial with complex coefficients
using the Jenkins-Traub three-stage algorithm.

386

zeros_poly Finds the zeros of a polynomial with real coefficients using
the Jenkins-Traub three-stage algorithm.

384

zeros_sys_eqn Solves a system of n nonlinear equations f (x) = 0 using a
modified Powell hybrid algorithm.

393

IMSL C Math Library Index � i

Index

A

Adams-Gear method 297
Airy functions 509, 510, 511, 512
algebraic-logarithmic singularities

249
ANSI C ix
approximation 225
arithmetic 800

B

backward differentiation formulas
300

band matrices 760, 764
band storage mode 760, 764, 777
Bauer and Fike theorem 116
Bessel functions 478, 480, 481, 482,

484, 485, 487, 489, 490, 491,
492, 493, 495, 496, 497, 499

beta distributions 684
beta functions 469, 471, 472, 540,

542
binomial functions 536
bivariate functions 543
Blom scores 667
bond functions 580, 582, 584, 586,

588, 589, 591, 592, 594, 596,
597, 599, 601, 603, 605, 607,
608, 610, 612, 614, 616, 618,
619, 621, 622, 624

boundary conditions 321, 2

C

Cauchy principal 265
chi-squared functions 524, 526
chi-squared goodness-of-fit test 638
Cholesky factorization 17, 22, 35,

39, 107, 130
column pivoting 87

complex arithmetic xxiv, 800
complex general band system 31
complex Hermitian positive definite

system 39
computer’s arithmetic 723
computer’s floating-point arithmetic

725
condition numbers 116
conjugate gradient method 78
constrained quadratic programming

447
Constrained_nlp

nonlinear programming 447
convolution 363, 370
coordinate format 768, 771, 779
correlation 363, 370
correlation matrix 646
cosine factor 257
cosine Fresnel integrals 507
CPU time 709
cubic Hermite polynomials 304
cubic spline interpolant 217
cubic splines 145, 152, 157, 160,

205
current value of the seed 674

D

data types 800
dates and days 709, 711
decay rates 290
derivatives 286
differential equations 321, 2

bvp_finite_difference 321
discrete Fourier cosine

transformation 351, 353
discrete Fourier sine transformation

355, 357
distribution functions 521, 523, 524,

526, 528, 530, 531, 533, 534,
536, 537, 539, 540, 542, 543

E

eigenvalues 115, 116, 117, 118, 120,
123, 126, 129, 132, 135

eigenvectors 115, 116, 117, 118,
120, 123, 126, 129, 132, 135

elementary functions 800
elementary integrals 506
element-wise addition 768, 771
elliptic integrals 500, 501, 502, 504,

505

ii � Index IMSL C Math Library

equality/inequality constraints 433
equilibrium 290
error detection 216
error functions 460, 461, 465, 467

complementary
exponentially scaled 463, 5

error handling xxiii, 712, 718
error messages 704
errors 797
Euler’s constant 722
evaluation 157
even sequence 351
expected normal scores 667

F

factorization 2
fast Fourier transforms 339, 340,

341, 345, 346, 349, 359
Faure 689
Faure sequence 687

faure_next_point 687
financial functions 545, 546, 548,

550, 551, 553, 554, 556, 557,
558, 559, 561, 562, 563, 565,
567, 569, 570, 571, 573, 574,
576, 577, 579

Fourier transform 261

G

gamma distributions 682
gamma functions 473, 475, 476, 534
Gauss quadrature 282
Gaussian elimination 7, 14
Gaussian functions 521, 523
Gauss-Kronrod rules 237, 241
generalized inverses 3, 99
GMRES method 73
Gray code 689

H

Harding, L.J. 7
Healy’s algorithm 110
Helmholtz’s equation 332
Hermitian matrices 126
HODIE finite-difference scheme 332
Householder’ s method 86, 87, 99,

104
hypergeometric functions 537
hyper-rectangle 276, 279, 687

I
ill-conditioning 3
imsl.h include file x
infinite interval 253
initialize random seed 675
initial-value problems 289, 297
integration 180, 186, 237, 241, 245,

249, 253, 257, 261, 265, 268,
272, 276, 279, 282

interpolation 142, 145, 152, 161,
167, 171, 220

inverse matrix 11, 17, 22
inversions 2, 4

J

Jenkins-Traub algorithm 384, 386

K

Kelvin functions 513, 514, 515, 516,
517, 518, 519, 520

L

lack-of-fit test 660
least squares 142
least-squares approximation 209
least-squares fit 84, 139, 189, 193,

199, 216, 416, 660
least-squares solutions 3
Lebesque measure 688
Levenberg-Marquardt algorithm 416
linear constraints 92
linear equations 26, 31, 35, 44, 54,

62, 68
linear least squares 3
linear least-squares problem 92
linear system solution 2, 4, 107
loop unrolling and jamming 7
low-discrepancy 689
LU factorization 4, 11, 26, 31, 44, 54

M

mathematical constants 719
matrices xii, 2, 4, 7, 11, 14, 17, 22,

107, 691
general xii
Hermitian xiii
multiplying 735
rectangular xii

IMSL C Math Library Index � iii

symmetric xii
matrix multiply 738
matrix transpose 742, 746, 751, 755
matrix-matrix product 742, 746, 751,

755
matrix-vector produce 755
matrix-vector product 742, 746, 751
matrix-vector products 735, 738
memory allocation xx
method of lines 304
minimization 399, 400, 401, 405,

409, 416, 425, 429, 433, 447,
2

Müller’s method 388
multiple right-hand sides 3

N

non-ANSI C ix
nonlinear least squares 416
nonlinear programming problem

447, 2
norms of a vector 733
numerical ranking 667

O

odd sequence 355
one-way frequency table 634
order statistics 667
ordinary differential equations 289,

291, 297
output files 704
overflow xxiii

P

page size 697
partial differential equations 290,

304
partial pivoting 11, 13
Poisson distributions 680
Poisson functions 539
Poisson solver 332
polynomial functions 383
polynomials 140, 143
Powell hybrid algorithm 393
predator-prey model 294
printing 691, 697, 698
pseudorandom numbers 685

Q

QR factorizations 3, 84
quadratic programming 429
quadrature 235, 236, 237
quasi-Monte Carlo 279, 6
quasi-Newton method 409

R

radial-basis fit 231
radial-basis functions 225
random number generation 628, 629
random numbers 674, 675, 676, 677,

679, 680, 682, 684
rank deficiency 3
real general band system 26
real symmetric definite linear system

78
real symmetric positive definite

system 35
rectangular matrix 775
regression 651, 660
restarted generalized minimum

residual method 73
right-hand side data 4
Runge-Kutta-Verner method 291

S

Savage scores 667
scattered data 220, 225
select random number generator 676
semi-infinite interval 253
simplex algorithm 425
sine factor 257
sine Fresnel integrals 508
singular value decomposition 3
singularity 3
smoothed data 216
smoothing 205
sort 728, 730
sparse Hermitian positive definite

system 68
sparse real symmetric positive

definite system 62
sparse system 44
spline interpolant 161, 167, 171
splines 160
splines 140, 141, 143, 177, 180, 182,

186, 193, 199, 209
standard exponential distributions

685

iv � Index IMSL C Math Library

statistics 629, 646, 651
Van der Waerden scores 667
stiff systems 290
storage modes xii
SVD factorization 96, 102
symbolic factorizations 62, 68

T

test matrices 782, 784, 786, 791
Thread Safe xi

multithreaded application xi
single-threaded application xi
threads and error handling 799

time constants 290
Tukey scores 667

U

uncertainty 4
underflow xxiii
uniform mesh 332
univariate 249
univariate statistics 629

V

variable order 321, 2
vectors 691
Verner, J.H. 294
version 708

Z

zero of a system 393
zeros of a function 388

	C/Math Library Volume 2 - Version 5.5
	Table of Contents
	Chapter 8: Optimization
	Routines
	Usage Notes
	Unconstrained Minimization
	Linearly Constrained Minimization
	Nonlinearly Constrained Minimization

	min_uncon
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors

	min_uncon_deriv
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors

	min_uncon_multivar
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Informational Errors
	Warning Errors
	Fatal Errors

	nonlin_least_squares
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Informational Errors
	Warning Errors
	Fatal Errors

	lin_prog
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	quadratic_prog
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	min_con_gen_lin
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example 1
	Example 2

	bounded_least_squares
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	constrained_nlp
	
	Synopsis
	Required Arguments
	Return Value
	Synopsis with Optional Arugments
	Optional Arguments
	Description
	Example
	Output

	Chapter 9: Special Functions
	Routines
	Usage Notes
	
	Additional Information

	erf
	
	Return Value
	Description
	Example

	erfc
	
	Return Value
	Description
	Example
	Alert Errors

	erfce
	
	Return Value
	Description
	Example

	erfe
	
	Return Value
	Description
	Example

	erf_inverse
	
	Return Value
	Description
	Example
	Warning Errors

	erfc_inverse
	
	Required Arguments
	Return Value
	Description
	Example
	Alert Errors
	Warning Errors
	Fatal Errors

	beta
	
	Return Value
	Description
	Example
	Alert Errors
	Fatal Errors

	log_beta
	
	Return Value
	Description
	Example
	Warning Errors

	beta_incomplete
	
	Return Value
	Description

	gamma
	
	Return Value
	Description
	Example
	Alert Errors
	Warning Errors
	Fatal Errors

	log_gamma
	
	Return Value
	Description
	Example
	Warning Errors
	Fatal Errors

	gamma_incomplete
	
	Return Value
	Description
	Example
	Fatal Errors

	bessel_J0
	
	Return Value
	Description
	Example
	Warning Errors
	Fatal Errors

	bessel_J1
	
	Return Value
	Description
	Example
	Alert Errors
	Warning Errors
	Fatal Errors

	bessel_Jx
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	bessel_Y0
	
	Return Value
	Description
	Example
	Warning Errors
	Fatal Errors

	bessel_Y1
	
	Return Value
	Description
	Example
	Warning Errors
	Fatal Errors

	bessel_Yx
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	bessel_I0
	
	Return Value
	Description
	Example
	Fatal Errors

	bessel_exp_I0
	
	Return Value
	Description
	Example

	bessel_I1
	
	Return Value
	Description
	Example
	Alert Errors
	Fatal Errors

	bessel_exp_I1
	
	Return Value
	Description
	Example

	bessel_Ix
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	bessel_K0
	
	Return Value
	Description
	Example
	Alert Errors

	bessel_exp_K0
	
	Return Value
	Description
	Example

	bessel_K1
	
	Return Value
	Description
	Example
	Alert Errors
	Fatal Errors

	bessel_exp_K1
	
	Return Value
	Description
	Example

	bessel_Kx
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	elliptic_integral_K
	
	Return Value
	Description
	Example

	elliptic_integral_E
	
	Return Value
	Description
	Example

	elliptic_integral_RF
	
	Return Value
	Description
	Example

	elliptic_integral_RD
	
	Return Value
	Description
	Example

	elliptic_integral_RJ
	
	Return Value
	Description
	Example

	elliptic_integral_RC
	
	Return Value
	Description
	Example

	fresnel_integral_C
	
	Return Value
	Description
	Example

	fresnel_integral_S
	
	Return Value
	Description
	Example

	airy_Ai
	
	Required Arguments
	Return Value
	Description
	Example

	airy_Bi
	
	Return Value
	Description
	Example

	airy_Ai_derivative
	
	Return Value
	Description
	Example

	airy_Bi_derivative
	
	Return Value
	Description
	Example

	kelvin_ber0
	
	Return Value
	Description
	Example

	kelvin_bei0
	
	Return Value
	Description
	Example

	kelvin_ker0
	
	Return Value
	Description
	Example

	kelvin_kei0
	
	Return Value
	Description
	Example

	kelvin_ber0_derivative
	
	Return Value
	Description
	Example

	kelvin_bei0_derivative
	
	Return Value
	Description
	Example

	kelvin_ker0_derivative
	
	Return Value
	Description
	Example

	kelvin_kei0_derivative
	
	Return Value
	Description
	Example

	normal_cdf
	
	Return Value
	Description
	Example

	normal_inverse_cdf
	
	Return Value
	Description
	Example

	chi_squared_cdf
	
	Return Value
	Description
	Example
	Informational Errors
	Alert Errors

	chi_squared_inverse_cdf
	
	Return Value
	Description
	Example
	Warning Errors

	F_cdf
	
	Return Value
	Description
	Example

	F_inverse_cdf
	
	Return Value
	Description
	Example
	Fatal Errors

	t_cdf
	
	Return Value
	Description
	Example

	t_inverse_cdf
	
	Return Value
	Description
	Example
	Informational Errors

	gamma_cdf
	
	Return Value
	Description
	Example
	Informational Errors
	Fatal Errors

	binomial_cdf
	
	Return Value
	Description
	Example
	Informational Errors

	hypergeometric_cdf
	
	Return Value
	Description
	Example
	Informational Errors
	Fatal Errors

	poisson_cdf
	
	Return Value
	Description
	Example
	Informational Errors

	beta_cdf
	
	Return Value
	Description
	Example

	beta_inverse_cdf
	
	Return Value
	Description
	Example

	bivariate_normal_cdf
	
	Return Value
	Description
	Example

	cumulative_interest
	
	Return Value
	Description
	Example

	cumulative_principal
	
	Return Value
	Description
	Example

	depreciation_db
	
	Return Value
	Description
	Example

	depreciation_ddb
	
	Return Value
	Description
	Example

	depreciation_sln
	
	Return Value
	Description
	Example

	depreciation_syd
	
	Return Value
	Description
	Example

	depreciation_vdb
	
	Return Value
	Description
	Example

	dollar_decimal
	
	Return Value
	Description
	Example

	dollar_fraction
	
	Return Value
	Description
	Example

	effective_rate
	
	Return Value
	Description
	Example

	future_value
	
	Return Value
	Description
	Example

	future_value_schedule
	
	Return Value
	Description
	Example

	interest_payment
	
	Return Value
	Description
	Example

	interest_rate_annuity
	
	Return Value
	Description
	Example

	internal_rate_of_return
	
	Return Value
	Description
	Example

	internal_rate_schedule
	
	Return Value
	Description
	Example

	modified_internal_rate
	
	Return Value
	Description
	Example

	net_present_value
	
	Return Value
	Description
	Example

	nominal_rate
	
	Return Value
	Description
	Example

	number_of_periods
	
	Return Value
	Description
	Example

	payment
	
	Return Value
	Description
	�
	Example

	present_value
	
	Return Value
	Description
	Example

	present_value_schedule
	
	Return Value
	Description
	Example

	principal_payment
	
	Return Value
	Description
	Example

	accr_interest_maturity
	
	Return Value
	Description
	Example

	accr_interest_periodic
	
	Return Value
	Description
	Example

	bond_equivalent_yield
	
	Return Value
	Description
	Example

	convexity
	
	Return Value
	Description
	Example

	coupon_days
	
	Return Value
	Description
	Example

	coupon_number
	
	Return Value
	Description
	Example

	days_before_settlement
	
	Return Value
	Description
	Example

	days_to_next_coupon
	
	Return Value
	Description
	Example

	depreciation_amordegrc
	
	Return Value
	Description
	Example

	depreciation_amorlinc
	
	Return Value
	Description
	Example

	discount_price
	
	Return Value
	Description
	Example

	discount_rate
	
	Return Value
	Description
	Example

	discount_yield
	
	Return Value
	Description
	Example

	duration
	
	Return Value
	Description
	Example

	interest_rate_security
	
	Return Value
	Description
	Example

	modified_duration
	
	Return Value
	Description
	Example

	next_coupon_date
	
	Return Value
	Description
	Example

	previous_coupon_date
	
	Return Value
	Description
	Example

	price
	
	Return Value
	Description
	Example

	price_maturity
	
	Return Value
	Description
	Example

	received_maturity
	
	Return Value
	Description
	Example

	treasury_bill_price
	
	Return Value
	Description
	Example

	treasury_bill_yield
	
	Return Value
	Description
	Example

	year_fraction
	
	Return Value
	Description
	Example

	yield_maturity
	
	Return Value
	Description
	Example

	yield_periodic
	
	Return Value
	Description
	Example

	Chapter 10: Statistics and Random Number Generation
	Routines
	Usage Notes
	Statistics
	Overview of Random Number Generation
	The Basic Uniform Generator
	Shuffled Generators
	Setting the Seed

	simple_statistics
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	table_oneway
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	chi_squared_test
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Programming Notes
	Examples
	Example 1
	Example 2
	Example 3
	Warning Errors
	Fatal Errors

	covariances
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Usage Notes
	Examples
	Example 1
	Example 2
	Warning Errors

	regression
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors

	poly_regression
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	ranks
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Ties
	The Scores
	Examples
	Example 1
	Example 2

	random_seed_get
	
	Return Value
	Description
	Example

	random_seed_set
	
	Description
	Example

	random_option
	
	Description
	Example

	random_uniform
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_normal
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Remark

	random_poisson
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_gamma
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_beta
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	random_exponential
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	faure_next_point
	
	Synopsis
	Required Arguments for imsl_faure_sequence_init
	Return Value for imsl_faure_sequence_init
	Required Arguments for imsl_faure_next_point
	Return Value for imsl_faure_next_point
	Required Arguments for imsl_faure_sequence_free
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	Chapter 11: Printing Functions
	Routines
	write_matrix
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Example 3

	page
	
	Example

	write_options
	
	Description
	Example

	Chapter 12: Utilities
	Routines
	output_file
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	File myfile
	Example 2

	version
	
	Return Value
	Description
	Example

	ctime
	
	Return Value
	Example

	date_to_days
	
	Return Value
	Description
	Example

	days_to_date
	
	Description
	Example

	error_options
	
	Synopsis with Optional Arguments
	Optional Arguments
	Return Value
	Description
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	error_code
	
	Return Value
	Example

	constant
	
	Required Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors

	machine (integer)
	
	Return Value
	Description
	Example

	machine (float)
	
	Return Value
	Description
	Example

	sort
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	sort (integer)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	vector_norm
	
	Return Value
	Synopsis with Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	mat_mul_rect
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	mat_mul_rect (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	mat_mul_rect_band
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	mat_mul_rect_band (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	mat_mul_rect_coordinate
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	mat_mul_rect_coordinate (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	mat_add_band
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	mat_add_band (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	mat_add_coordinate
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	mat_add_coordinate (complex)
	
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	matrix_norm
	
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Description
	Example

	matrix_norm_band
	
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	matrix_norm_coordinate
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	generate_test_band
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	generate_test_band (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	generate_test_coordinate
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	generate_test_coordinate (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	Reference Material
	User Errors
	What Determines Error Severity
	Kinds of Errors and Default Actions
	Errors in Lower-Level Functions
	Functions for Error Handling
	Threads and Error Handling
	Use of Informational Error to Determine Program Action
	Additional Examples

	Complex Data Types and Functions
	
	Output

	Product Support
	Contacting Visual Numerics Support
	Consultation

	Appendix A: References
	Appendix B: Alphabetical Summary of Routines
	Index

