
C Numerical Library™
User's Guide
VOLUME 1  o f  4 :  C Math Library™ [ CHAPTERS 1 -7 ]

V E R S I O N  5 . 5



Visual Numerics, Inc.
Corporate Headquarters
2500 Wilcrest Drive, Ste 200
Houston, Texas 77042-2759
USA

PHONE:  713-784-3131
FAX:  713-781-9260
e-mail: info@vni.com

Visual Numerics
International Ltd.
Centennial Court
Suite 1, North Wing
Easthampstead Road
BRACKNELL BERSHIRE
RG12 1YQ
United Kingdom

PHONE:  +44-1-344-45-8700
FAX: +44-1-344-45-8748
e-mail: info@vniuk.co.uk

Visual Numerics SARL
Tour Europe
33 Place des Corolles Cedex
F-92049 Paris La Defense
France

PHONE:  +33-1-46-93-94-20
FAX:  +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics S. A. de C.V.
Florencia 57 Piso 10-01
Col. Juarez
Mexico D. F.   C. P. 06000
Mexico
PHONE: +52-5514-9730 or 9628
FAX:  +52-5514-5880

Visual Numerics International GmbH
Zettachring 10
D-70567 Stuttgart
Germany

PHONE: +49-711-13287-0
FAX:  +49-711-13287-99
e-mail:  vni@visual-numerics.de

Visual Numerics Japan, Inc
GOBANCHO HIKARI Building  4th Floor
14 Goban-cho ChIiyoda-KU
Tokyo, 113
JAPAN

PHONE:  +81-3-5211-7760
FAX:  +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

Visual Numerics, Inc.
7/F, #510, Chung Hsiao E. Road
Section 5
Taipei, TAIWAN 110
Republic  of China

PHONE: (886) 2-727-2255
FAX:  (886) 2-727-6798
e-mail: info@vni.com.tw

World Wide Web site: http://www.vni.com

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-Mapo-Dong, Mapo-gu
Seoul 121-050
Korea

PHONE:+82-2-3273-2632 or 2633
FAX:  +82-2-3273-2634
e-mail: info@vni.co.kr

COPYRIGHT NOTICE:  Copyright 1990-2003, an unpublished work by Visual Numerics, Inc.  All rights reserved.

VISUAL NUMERICS, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.  Visual Numerics, Inc., shall not be liable for errors contained herein or for incidental, consequential, or other indirect
damages in connection with the furnishing, performance, or use of this material.

TRADEMARK NOTICE:  IMSL, Visual Numerics, IMSL FORTRAN Numerical Libraries, IMSL Productivity Toolkit, IMSL
Libraries Environment and Installation Assurance Test, C Productivity Tools, FORTRAN Productivity Tools, IMSL C/Math/Library,
IMSL C/Stat/Library, IMSL Fortran 90 MP Library, and IMSL Exponent Graphics are registered trademarks or trademarks of Visual
Numerics, Inc., in the U.S. and other countries.  Sun, SunOS, and Solaris are registered trademarks or trademarks of Sun Microsystems,
Inc.  SPARC and SPARCompiler are registered trademarks or trademarks of SPARC International, Inc.  Silicon Graphics is a registerd
trademark of Silicon Graphics, Inc.  IBM, AIX, and RS/6000 are registered trademarks or trademarks of International Business
Machines Corporation.  HP is a trademark of Hewlett-Packard.  Silicon Graphics and IRIX are registered trademarks or trademarks of
Silicon Graphics, Inc.  DEC and AXP are registered trademarks or trademarks of Digital Equipment Corporation. All other trademarks
are the property of their respective owners.

Use of this document is governed by a Visual Numerics Software License Agreement.  This document contains confidential and
proprietary information constituting valuable trade secrets.  No part of this document may be reproduced or transmitted in any form
without the  prior written consent of Visual Numerics.

RESTRICTED RIGHTS LEGEND:  This documentation is provided with RESTRICTED RIGHTS.  Use, duplication, or disclosure by
the U.S. Government is subject to the restrictions set forth in subparagraph (c)(1)(ll) of the Rights in Technical Data and Computer
Software clause at DFAR 252.227-7013, and in subparagraphs (a) through (d) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR Supplement, when applicable.  Contractor/Manufacturer is
Visual Numerics, Inc., 2500 Wilcrest Drive, Ste 200, Houston, Texas 77042.

IMSL Fortran and C and Java 
Application Development Tools



 

 
 

IMSL C/Math/Library Table of Contents � i 

 

 

 

CMath Library /V1- Table of 
Contents 

Introduction ix 

Chapter 1: Linear Systems 1 

Chapter 2: Eigensystem Analysis 115 

Chapter 3: Interpolation and Approximation 139 

Chapter 4: Quadrature 235 

Chapter 5: Differential Equations 289 

Chapter 6: Transforms 339 

Chapter 7: Nonlinear Equations 383 

Appendix A: References A-1 

Appendix B:  Alphabetical Summary of Routines B-1 

Index i 
 
 
 



 

 
 

Introduction 

IMSL C/Math/Library 
The IMSL C/Math/Library is a library of C functions useful in scientific 
programming. Each function is designed and documented to be used in research 
activities as well as by technical specialists. A number of the example programs 
also show graphs of resulting output.  

Getting Started 
To use any of the IMSL C/Math/Library functions, you first must write a program 
in C to call the function. Each function conforms to established conventions in 
programming and documentation. We give first priority in development to 
efficient algorithms, clear documentation, and accurate results. The uniform 
design of the functions makes it easy to use more than one function in a given 
application. Also, you will find that the design consistency enables you to apply 
your experience with one IMSL C/Math/Library function to all other IMSL 
functions that you use. 

ANSI C vs. Non-ANSI C 
All of the examples in this user’s manual conform to ANSI C. If you are not using 
ANSI C, you will need to modify your examples in which functions are declared 
or in which arrays are initialized as the type float.  

The following is an ANSI C program in which a function is declared. The 
program estimates the value of the following: 

� �
1 1/ 2

0
ln 4x x dx�

� ��  

1 #include <math.h>  
2 #include <imsl.h>  
3  
4 float           fcn(float x);  
5  
6 main()  
7 {  
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8     float       q, exact;  
9                      /* evaluate the integral */  
10    q = imsl_f_int_fcn_sing (fcn, 0.0, 1.0, 0);  
11                     /* print the result and the exact answer */  
12    exact = -4.0;  

13    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact);  
14 }  
15  
16 float fcn(float x)  
17 {  
18    return log(x)/sqrt(x);  
19 } 

If using non-ANSI C, you would need to modify lines 4 and 16 as follows: 

4   float          fcn(); /* function is not prototyped */ 
     . 
     . 
     . 
16  float fcn(x)          /*Only variable of function defined here */ 
16a float x;             /* Type of variable declared here */ 

Non-ANSI C does not allow for automatic aggregate initialization, and thus, all 
auto arrays that are initialized as type float in ANSI C must be initialized as type 
static float in non-ANSI C. The next program contains arrays that are initialized 
as type float. 

1 #include <imsl.h>  
2  
3 main()  
4 {  
5     int          n = 3;  
6     float        *x;  
7     float        a[] = {1.0, 3.0, 3.0,  
8                         1.0, 3.0, 4.0,  
9                         1.0, 4.0, 3.0};  
10  
11    float        b[] = {1.0, 4.0, -1.0};  
12                           /* Solve Ax = b for x */  
13    x = imsl_f_lin_sol_gen (n, a, b, 0);  
14                           /* Print x */  
15    imsl_f_write_matrix ("Solution, x, of Ax = b", 1, 3, x, 0);  
16 } 

If using non-ANSI C, you would need to modify lines 7 and 11 as follows: 

7     static float       a[] = {1.0, 3.0, 3.0,  
         . 
         . 
         . 
11    static float       b[] = {1.0, 4.0, -1.0}; 

The imsl.h File 
The include file <imsl.h> is used in all of the examples in this manual. This file 
contains prototypes for all IMSL-defined functions; the spline structures, 
Imsl_f_ppoly, Imsl_d_ppoly, Imsl_f_spline, and Imsl_d_spline; enumerated data 
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types, Imsl_quad, Imsl_write_options, Imsl_page_options, Imsl_ode, and 
Imsl_error; and the  
IMSL-defined data types f_complex (which is the type float complex) and 
d_complex (which is the type double complex). 

Thread Safe Usage 
On systems that support either POSIX threads or WIN32 threads, IMSL 
C/Math/Library can be safely called from a multithreaded application.  When 
IMSL C/Math/Library is used in a multithreaded application, the calling program 
must adhere to a few important guidelines. In particular, IMSL C/Math/Library's 
implementation of signal handling, error handling, and I/O must be understood. 

Signal Handling 
When calling C/Math/Library from a multithreaded application it is necessary to 
turn C/Math/Library 's signal-handling capability off.  This is accomplished by 
making a single call to imsl_error_options before any calls are made to 
C/Math/Library. For an example of turning off C/Math/Library's internal signal 
handling , see “Utilities” chapter, Example 3 of imsl_error_options.  

C/Math/Library 's error handling in a multithreaded application behaves similarly 
to how it behaves in a single-threaded application.  The major difference is that 
an error stack exists for each thread calling C/Math/Library  functions.  The result 
of separate error stacks for each thread is greater control of the error handler 
options for each thread.  Each thread can set its own options for the 
C/Math/Library error handler using imsl_error_options.  For an example of 
setting error handler options for separate threads, see the “Utilities chapter, 
Example 3 of imsl_error_options.  

Routines that Produce Output 
A number of routines in C/Math/Library can be used to produce output.  The 
function imsl_output_file can be used to control which file the output is 
directed.  In an application with a single thread of execution, a single call to 
imsl_output_file can be used to set the file to which the output will be 
directed.  In a multithreaded application each thread must call 
imsl_output_file to change the default setting of where output will be 
directed. See the “Utilities” chapter, Example 2 of imsl_output_file for more 
details. 

Input Arguments 
In a multithreaded application attention must be given to the data sent to 
C/Math/Library. Some arguments that may appear to be input-only are 
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temporarily modified during the call and restored before returning to the caller. 
Care must be used to avoid usage of the same data space in separate threads 
calling functions in C/Math/Library. 

Matrix Storage Modes 
In this section, the word matrix is used to refer to a mathematical object and the 
word array is used to refer to its representation as a C data structure. In the 
following list of array types, the IMSL C/Math/Library functions require input 
consisting of matrix dimension values and all values for the matrix entries. These 
values are stored in  
row-major order in the arrays. 

Each function processes the input array and typically returns a pointer to a 
“result.”  
For example, in solving linear algebraic systems, the pointer is to the solution. 
For general, real eigenvalue problems, the pointer is to the eigenvalues. 
Normally, the input array values are not changed by the functions. 

In the IMSL C/Math/Library, an array is a pointer to a contiguous block of data. 
They are not pointers to pointers to the rows of the matrix. Typical declarations 
are: 

      float *a = {1, 2, 3, 4};  
      float b[2][2] = {1, 2, 3, 4};  
      float c[] = {1, 2, 3, 4}; 

Note: If you are using non-ANSI C and the variables are of type auto, then the 
above declarations would need to be declared as type static float. 

General Mode 
A general matrix is a square n � n matrix. The data type of a general array can be 
float, double, f_complex, or d_complex. 

Rectangular Mode 
A rectangular matrix is an m � n matrix. The data type of a rectangular array can 
be float, double, f_complex, or d_complex. 

Symmetric Mode 
A symmetric matrix is a square n � n matrix A, such that AT = A. (The matrix AT 
is the transpose of A.) The data type of a symmetric array can be float or double. 



 

 
 

Hermitian Mode 
A Hermitian matrix is a square n � n matrix A, such that  

H TA A A� �  

The matrix A  is the complex conjugate of A, and 
H TA A�  

is the conjugate transpose of A. For Hermitian matrices AH = A. The data type of 
a Hermitian array can be f_complex or d_complex. 

Sparse Coordinate Storage Format 
Only the nonzero elements of a sparse matrix need to be communicated to a 
function. Sparse coordinate storage format stores the value of each matrix entry 
along with that entry’s row and column index. The following four non-
homogeneous data structures are defined to support this concept: 

      typedef struct { 
              int row; 
              int col; 
              float val; 
      } Imsl_f_sparse_elem; 
  

      typedef struct { 
              int row; 
              int col; 
              double val; 
      } Imsl_d_sparse_elem; 
  

      typedef struct { 
              int row; 
              int col; 
              f_complex val; 
      } Imsl_c_sparse_elem; 
  

      typedef struct { 
              int row; 
              int col; 
              d_complex val; 
      } Imsl_z_sparse_elem; 

See the “User Errors” section in the “Reference Material” for further detailsSee 
the Reference Material at the end of this manual for a discussion of the complex 
data types f_complex and d_complex. Note that the only difference in these 
structures involves changes in underlying data types. A sparse matrix is passed to 
functions that accept sparse coordinate format by forming an array of one of these 
data types. The number of elements in that array will be equal to the number of 
nonzeros in the sparse matrix. 

As an example consider the 6 � 6 matrix: 
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2 0 0 0 0 0
0 9 3 1 0 0
0 0 5 0 0 0
2 0 0 7 1 0
1 0 0 5 1 3
1 2 0 0 0 6

A

� �
� �� �� �
� �

� � �
� � �� �
� �� � �
� �
� �� �� �

 

The matrix A has 15 nonzero elements, and the sparse coordinate representation 
would be 

row 0 1   1   1 2   3   3   3   4   4 4   4   5   5 5 
col 0 1   2   3 2   0   3   4   0   3 4   5   0   1 5 
val 2 9 �3 �1 5 �2 �7 �1 �1 �5 1 �3 �1 �2 6 

Since this representation does not rely on order, an equivalent form would be 

row 5 4 3 0 5 1 2 1 4 3 1 4 3 5 4 
col 0 0 0 0 1 1 2 2 3 3 3 4 4 5 5 
val �1 �1 �2 2 �2 9 5 �3 �5 �7 �1 1 �1 6 �3 

There are different ways this data could be used to initialize an array of type, for 
example, Imsl_f_sparse_elem. Consider the following program fragment: 

#include <imsl.h> 
main() 
{ 
Imsl_f_sparse_elem a[] = { 
       {0, 0, 2.0}, 
       {1, 1, 9.0}, 
       {1, 2, -3.0}, 
       {1, 3, -1.0}, 
       {2, 2, 5.0}, 
       {3, 0, -2.0}, 
       {3, 3, -7.0}, 
       {3, 4, -1.0}, 
       {4, 0, -1.0}, 
       {4, 3, -5.0}, 
       {4, 4, 1.0}, 
       {4, 5, -3.0}, 
       {5, 0, -1.0}, 
       {5, 1, -2.0}, 
       {5, 5, 6.0} }; 
Imsl_f_sparse_elem b[15]; 
 
       b[0].row = b[0].col = 0;          b[0].val = 2.0; 
       b[1].row = b[1].col = 1;          b[1].val = 9.0; 
       b[2].row = 1; b[2].col = 2;       b[2].val = -3.0; 
       b[3].row = 1; b[3].col = 3;       b[3].val = -1.0; 
       b[4].row = b[4].col = 2;          b[4].val = 5.0; 
       b[5].row = 3; b[5].col = 0;       b[5].val = -2.0; 
       b[6].row = b[6].col = 3;          b[6].val = -7.0; 
       b[7].row = 3; b[7].col = 4;       b[7].val = -1; 
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       b[8].row = 4; b[8].col = 0;       b[8].val = -1.0; 
       b[9].row = 4; b[9].col = 3;       b[9].val = -5.0; 
       b[10].row = b[10].col = 4;        b[10].val = 1.0; 
       b[11].row = 4; b[11].col = 5;     b[11].val = -3.0; 
       b[12].row = 5; b[12].col = 0;     b[12].val = -1.0; 
       b[13].row = 5; b[13] = 1;         b[13].val = -2.0; 
       b[14].row = b[14].col = 5;        b[14].val = 6.0; 
} 

Both a and b represent the sparse matrix A, and the functions in this module 
would produce identical results regardless of which identifier was sent through 
the argument list.  

A sparse symmetric or Hermitian matrix is a special case, since it is only 
necessary to store the diagonal and either the upper or lower triangle. As an 
example, consider the  
5 � 5 linear system: 

� � � �

� � � � � �

� � � � � �

� � � �

4,0 1, 1 0 0
1,1 4,0 1, 1 0
0 1,1 4,0 1, 1
0 0 1,1 4,0

H

� � �
� �

�� ��
� ��
� �
� �� �

 

The Hermitian and symmetric positive definite system solvers in this library 
expect the diagonal and lower triangle to be specified. The sparse coordinate 
form for the lower triangle is given by 

row 0 1 2 3 1 2 3 
col 0 1 2 3 0 1 2 
val (4,0) (4,0) (4,0) (4,0) (1,1) (1,1) (1,1) 

As before, an equivalent form would be 

row 0 1 1 2 2 3 3 
col 0 0 1 1 2 2 3 
val (4,0) (1,1) (4,0) (1,1) (4,0) (1,1) (4,0) 

The following program fragment will initialize both a and b to H. 

#include <imsl.h> 
main() 
{ 
      Imsl_c_sparse_elem a[] = { 
              {0, 0, {4.0, 0.0}}, 
              {1, 1, {4.0, 0.0}}, 
              {2, 2, {4.0, 0.0}}, 
              {3, 3, {4.0, 0.0}}, 
              {1, 0, {1.0, 1.0}}, 
              {2, 1, {1.0, 1.0}}, 
              {3, 2, {1.0, 1.0}} 
              } 
      Imsl_c_sparse_elem b[7]; 
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              b[0].row = b[0].col = 0; 
                    b[0].val = imsl_cf_convert (4.0, 0.0); 
              b[1].row = 1; b[1].col = 0; 
                    b[1].val = imsl_cf_convert (1.0, 1.0); 
              b[2].row = b[2].col = 1; 
                    b[2].val = imsl_cf_convert (4.0, 0.0); 
              b[3].row = 2; b[3].col = 1; 
                    b[3].val = imsl_cf_convert (1.0, 1.0); 
              b[4].row = b[4].col = 2; 
                    b[4].val = imsl_cf_convert (4.0, 0.0); 
              b[5].row = 3; b[5].col = 2; 
                    b[5].val = imsl_cf_convert (1.0, 1.0); 
              b[6].row = b[6].col = 3; 
                    b[6].val = imsl_cf_convert (4.0, 0.0); 
} 

There are some important points to note here. H is not symmetric, but rather 
Hermitian. The functions that accept Hermitian data understand this and operate 
assuming that  

ij ijh h�  

The IMSL C/Math/Library cannot take advantage of the symmetry in matrices 
that are not positive definite. The implication here is that a symmetric matrix that 
happens to be indefinite cannot be stored in this compact symmetric form. Rather, 
both upper and lower triangles must be specified and the sparse general solver 
called. 

Band Storage Format 
A band matrix is an M � N matrix  with all of its nonzero elements “close” to the 
main diagonal. Specifically, values Aij = 0 if i � j > nlca or j � i > nuca. The 
integer  
m = nlca + nuca + 1 is the total band width. The diagonals, other than the main 
diagonal, are called codiagonals. While any M � N matrix is a band matrix, band 
storage format is only useful when the number of nonzero codiagonals is much less 
than N. 

In band storage format, the nlca lower codiagonals and the nuca upper 
codiagonals are stored in the rows of an array of size m � N. The elements are 
stored in the same column of the array as they are in the matrix. The values Aij 
inside the band width are stored in the linear array in positions [(i - j + nuca + 1) 
* n + j]. This results in a row-major, one-dimensional mapping from the two-
dimensional notion of the matrix. 

For example, consider the 5 � 5 matrix A with 1 lower and 2 upper codiagonals: 
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0,0 0,1 0,2

1,0 1,1 1,2 1,3

2,1 2,2 2,3 2,4

3,2 3,3 3,4

4,3 4,4

0 0
0

0
0 0
0 0 0

A A A
A A A A

A A A AA
A A A

A A

� �
� �
� �
� ��
� �
� �
� �
� �

 

In band storage format, the data would be arranged as 

0,2 1,3 2,4

0,1 1,2 2,3 3,4

0,0 1,1 2,2 3,3 4,4

1,0 2,1 3,2 4,3

0 0
0

0

A A A
A A A A

A A A A A
A A A A

� �
� �
� �
� �
� �
� �� �

 

This data would then be stored contiguously, row-major order, in an array of 
length 20. 

As an example, consider the following tridiagonal matrix: 

10 1 0 0 0
5 20 2 0 0
0 6 30 3 0
0 0 7 40 4
0 0 0 8 50

A

� �
� �
� �
� ��
� �
� �
� �� �

 

The following declaration will store this matrix in band storage format: 

      float a[] = { 
              0.0, 1.0, 2.0, 3.0, 4.0, 
              10.0, 20.0, 30.0, 40.0, 50.0, 
              5.0, 6.0, 7.0, 8.0, 0.0}; 

As in the sparse coordinate representation, there is a space saving symmetric 
version of band storage. As an example, look at the following 5 � 5 symmetric 
problem: 

0,0 0,1 0,2

0,1 1,1 1,2 1,3

0,2 1,2 2,2 2,3 2,4

1,3 2,3 3,3 3,4

2,4 3,4 4,4

0 0
0

0
0 0

A A A
A A A A
A A A A AA

A A A A
A A A

� �
� �
� �
� ��
� �
� �
� �
� �

 

In band symmetric storage format, the data would be arranged as 

0,2 1,3 2,4

0,1 1,2 2,3 3,4

0,0 1,1 2,2 3,3 4,4

0 0
0

A A A
A A A A

A A A A A

� �
� �
� �
� �
� �
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The following Hermitian example illustrates the procedure: 

� � � � � �
� � � � � � � �
� � � � � � � � � �

� � � � � � � �
� � � � � �

8,0 1,1 1,1 0 0
1, 1 8,0 1,1 1,1 0
1, 1 1, 1 8,0 1,1 1,1

0 1, 1 1, 1 8,0 1,1
0 0 1, 1 1, 1 8,0

H

� �
� �

�� �
� �� � �
� �

� �� �
� �� �� �

 

The following program fragments would store H in h, using band symmetric 
storage format. 

f_complex h[] = { 
              {0.0, 0.0}, {0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0}, 
              {0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0}, 
              {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}}; 

or equivalently 

f_complex h[15]; 
       h[0] = h[1] = h[5] = imsl_cf_convert (0.0, 0.0); 
       h[2] = h[3] = h[4] = h[6] = h[7] = h[8] = h[9] =  
              imsl_cf_convert (1.0, 1.0); 
       h[10] = h[11] = h[12] = h[13] = h[14] =  
              imsl_cf_convert (8.0, 0.0); 

Choosing Between Banded and Coordinate Forms 
It is clear that any matrix can be stored in either sparse coordinate or band format. 
The choice depends on the sparsity pattern of the matrix. A matrix with all 
nonzero data stored in bands close to the main diagonal would probably be a 
good candidate for band format. If nonzero information is scattered more or less 
uniformly through the matrix, sparse coordinate format is the best choice. As 
extreme examples, consider the following two cases: (1) an n � n matrix with all 
elements on the main diagonal and the (0, n � 1) and (n � 1, 0) entries nonzero. 
The sparse coordinate vector would be n + 2 units long. An array of length  
n(2n � 1) would be required to store the band representation, nearly twice as 
much storage as a dense solver might require. Secondly, a tridiagonal matrix with 
all diagonal, superdiagonal and subdiagonal entries nonzero. In band format, an 
array of length 3n is needed. In sparse coordinate, format a vector of length  
3n � 2 is required. But the problem is that, for example, float precision on a  
32-bit machine, each of those 3n � 2 units in coordinate format requires three 
times as much storage as any of the 3n units needed for band representation. This 
is due to carrying the row and column indices in coordinate form. Band storage 
evades this requirement by being essentially an ordered list, and defining location 
in the original matrix by position in the list. 
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Compressed Sparse Column (CSC) Format 
Functions that accept data in coordinate format can also accept data stored in the 
format described in the Users’ Guide for the Harwell-Boeing Sparse Matrix 
Collection. The scheme is column oriented, with each column held as a sparse 
vector, represented by a list of the row indices of the entries in an integer array 
and a list of the corresponding values in a separate float (double, f_complex, 
d_complex) array. Data for each column are stored consecutively and in order. A 
separate integer array holds the location of the first entry of each column and the 
first free location. Only entries in the lower triangle and diagonal are stored for 
symmetric and Hermitian matrices. All arrays are based at zero, which is in 
contrast to the Harwell-Boeing test suite’s one-based arrays.  

As in the Harwell-Boeing Users’ Guide, the storage scheme is illustrated with the 
following example: The 5 � 5 matrix 

1 3 0 1 0
0 0 2 0 3
2 0 0 0 0
0 4 0 4 0
5 0 5 0 6

� �� �
� ��� �
� �
� �

�� �
� ��� �

 

would be stored in the arrays colptr (location of first entry), rowind (row 
indices), and values (nonzero entries) as follows. 

Subscripts   0   1   2   3   4   5   6   7   8   9 10 
colptr 0 3 5 7 9 11      

rowind 0 4 2 3 0 1 4 0 3 4 1 

values 1 5 2 4 �3 �2 �5 �1 �4 6 3 

The following program fragment shows the relation between CSC storage format 
and coordinate representation: 

       k = 0; 
       for (i=0; i<n; i++) { 
              start = colptr[i]; 
              stop = colptr[i+1]; 
              for (j=start; j<stop; j++) { 
                   a[k].row = rowind[j];  
                   a[k].col = i;  
                   a[k++].val = values[j];  
              } 
       } 
       nz =k; 

Introduction Matrix Storage Modes � xix 

 

 

 



 

 
 

xx � Memory Allocation for Output Arrays IMSL C/Math/ Library 

 

 

 

Memory Allocation for Output Arrays 
Many functions return a pointer to an array containing the computed answers. If 
the function invocation uses the optional arguments 

IMSL_RETURN_USER, float a[] 

then the computed answers are stored in the user-provided array a, and the 
pointer returned by the function is set to point to the user-provided array a. If an 
invocation does not use IMSL_RETURN_USER, then the function initializes the 
pointer (through a memory allocation request to malloc) and stores the answers 
there. (To release this space, free can be used. Both malloc and free are 
standard C library functions declared in the header <stdlib.h>.) In this way, 
the allocation of space for the computed answers can be made either by the user 
or internally by the function. 

Similarly, other optional arguments specify whether additional computed output 
arrays are allocated by the user or are to be allocated internally by the function. 
For example, in many functions in “Linear Systems,” the optional arguments 

IMSL_INVERSE_USER, float inva[]   (Output) 
IMSL_INVERSE, float **p_inva   (Output) 

specify two mutually exclusive optional arguments. If the first option is chosen, 
the inverse of the matrix is stored in the user-provided array inva. In the second 
option, float **p_inva refers to the address of a pointer to the inverse. If the 
second option is chosen, on return, the pointer is initialized (through a memory 
allocation request to malloc), and the inverse of the matrix is stored there. 
Typically, float *p_inva is declared, &p_inva is used as an argument to this 
function, and free(p_inva) is used to release the space. 

Finding the Right Routine 
The IMSL C/Math/Library is organized into chapters; each chapter contains 
functions with similar computational or analytical capabilities. To locate the right 
function for a given problem, you may use either the table of contents located in 
each chapter introduction, or the alphabetical “Summary of Functions” at the end 
of this manual. 

Often the quickest way to use the IMSL C/Math/Library is to find an example 
similar to your problem and then mimic the example. Each function in the 
document has at least one example demonstrating its application. 
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Organization of the Documentation 
This manual contains a concise description of each function, with at least one 
demonstrated example of each function, including sample input and results. You 
will find all information pertaining to the IMSL C/Math/Library in this manual. 
Moreover, all information pertaining to a particular function is in one place 
within a chapter. 

Each chapter begins with an introduction followed by a table of contents listing 
the functions included in the chapter. Documentation of the functions consists of 
the following information: 

� Section Name: Usually, the common root for the type float and type double 
versions of the function is given. 

� Purpose: A statement of the purpose of the function. 

� Synopsis: The form for referencing the subprogram with required 
arguments listed. 

� Required Arguments: A description of the required arguments in the order 
of their occurrence, as follows: 

Input: Argument must be initialized; it is not changed by the function. 

Input/Output: Argument must be initialized; the function returns output through 
this argument. The argument cannot be a constant or an expression. 

Output: No initialization is necessary. The argument cannot be a constant or an 
expression; the function returns output through this argument. 

� Return Value: The value returned by the function. 

� Synopsis with Optional Arguments: The form for referencing the function 
with both required and optional arguments listed. 

� Optional Arguments: A description of the optional arguments in the order 
of their occurrence. 

� Description: A description of the algorithm and references to detailed 
information. In many cases, other IMSL functions with similar or 
complementary functions are noted. 

� Examples: At least one application of this function showing input and 
optional arguments. 
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� Errors: Listing of any errors that may occur with a particular function. A 
discussion on error types is given in the “User Errors” section of the 
Reference Material. The errors are listed by their type as follows: 

Informational Errors: List of informational errors that may occur with the 
function. 

Alert Errors: List of alert errors that may occur with the function. 

Warning Errors: List of warning errors that may occur with the function. 

Fatal Errors: List of fatal errors that may occur with the function. 

Naming Conventions 
Most functions are available in both a type float and a type double version, with 
names of the two versions sharing a common root. Some functions also are 
available in type int, or the IMSL-defined types f_complex or d_complex 
versions. A list of each type and the corresponding prefix of the function name in 
which multiple type versions exist follows: 

Type Prefix 
float imsl_f_ 

double imsl_d_ 

int imsl_i_ 

f_complex imsl_c_ 

d_complex imsl_z_ 

The section names for the functions only contain the common root to make 
finding the functions easier. For example, the functions imsl_f_lin_sol_gen 
and imsl_d_lin_sol_gen can be found in section lin_sol_gen in Chapter 1, 
“Linear Systems”.  

Where appropriate, the same variable name is used consistently throughout a 
chapter in the IMSL C/Math/Library. For example, in the functions for 
eigensystem analysis, eval denotes the vector of eigenvalues and n_eval 
denotes the number of eigenvalues computed or to be computed.  

When writing programs accessing the IMSL C/Math/Library, the user should 
choose C names that do not conflict with IMSL external names. The careful user 
can avoid any conflicts with IMSL names if, in choosing names, the following 
rule is observed: 

� Do not choose a name beginning with “imsl_” in any combination of 
uppercase or lowercase characters. 
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Error Handling, Underflow, Overflow, and 
Document Examples 

The functions in the IMSL C/Math/Library attempt to detect and report errors and 
invalid input. This error-handling capability provides automatic protection for the 
user without requiring the user to make any specific provisions for the treatment 
of error conditions. Errors are classified according to severity and are assigned a 
code number. By default, errors of moderate or higher severity result in messages 
being automatically printed by the function. Moreover, errors of highest severity 
cause program execution to stop. The severity level, as well as the general nature 
of the error, is designated by an “error type” with symbolic names IMSL_FATAL, 
IMSL_WARNING, etc.  
See the “User Errors” section in the “Reference Material” for further details. 

In general, the IMSL C/Math/Library codes are written so that computations are 
not affected by underflow, provided the system (hardware or software) replaces 
an underflow with the value zero. Normally, system error messages indicating 
underflow can be ignored.  

IMSL codes are also written to avoid overflow. A program that produces system 
error messages indicating overflow should be examined for programming errors 
such as incorrect input data, mismatch of argument types, or improper 
dimensions.  

In many cases, the documentation for a function points out common pitfalls that 
can lead to failure of the algorithm. 

Output from document examples can be system dependent and the user’s results 
may vary depending upon the system used. 

Printing Results 
Most functions in the IMSL C/Math/Library do not print any of the results; the 
output is returned in C variables. You can print the results yourself.  

The IMSL C/Math/Library contains some special functions just for printing 
arrays. For example, imsl_f_write_matrix is a convenient function for 
printing matrices of type float. See Chapter 11, “Printing Functions,” for detailed 
descriptions of these functions. 
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Complex Arithmetic 
Users can perform computations with complex arithmetic by using IMSL 
predefined data types. These types are available in two floating-point precisions: 

� f_complex for single-precision complex values 

� d_complex for double-precision complex values 

A description of complex data types and functions is given in the Reference 
Material. 

Missing Values 
Some of the functions in the IMSL C/Math/Library allow the data to contain 
missing values. These functions recognize as a missing value the special value 
referred to as “not a number,” or NaN. The actual value is different on different 
computers, but it can be obtained by reference to the IMSL function 
imsl_f_machine, described in Chapter 12, “Utilities.”  

The way that missing values are treated depends on the individual function and is 
described in the documentation for the function. 

Passing Data to User-Supplied Functions  
In some cases it may be advantageous to pass problem-specific data to a user-
supplied function through the IMSL C/Math/Library interface.  This ability can be 
useful if a user-supplied function requires data that is local to the user's calling 
function, and the user wants to avoid using global data to allow the user-supplied 
function to access the data.  Functions in IMSL C/Math/Library that accept user-
supplied functions have an optional argument(s) that will accept an alternative user-
supplied function, along with a pointer to the data,  that allows user-specified data 
to be passed to the function.  The example below demonstrates this feature using the 
IMSL C/Math/Library function imsl_f_min_uncon and optional argument 
IMSL_FCN_W_DATA. 

 
#include "imsl.h" 
#include <math.h> 
 
static float fcn_w_data(float x, void *data_ptr); 
static float fcn(float); 
 
void main() 
{ 
  float a = -100.0; 
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  float b = 100.0; 
  float fx, x; 
  float usr_data[] = {5.0, 10.0}; 
  x = imsl_f_min_uncon (fcn, a, b,  
       IMSL_FCN_W_DATA, fcn_w_data, usr_data, 
       0); 
  fx = fcn_w_data(x, (void*)usr_data); 
 
  printf ("The solution is: %8.4f\n", x); 
  printf ("The function evaluated at the solution is: %8.4f\n", fx); 
} 
 
/*  
 * User function that accepts additional data in a (void*) pointer. 
 * This (void*) pointer can be cast to any type and dereferenced to  
 * get at any sort of data-type or structure that is needed.  
 * For example, to get at the data in this example 
 *  *((float*)data_ptr)   contains the value  5.0 
 *  *((float*)data_ptr+1) contains the value 10.0 
 */ 
static float fcn_w_data(float x, void *data_ptr) 
{ 
  return exp(x) - (*((float*)data_ptr))*x + *((float*)data_ptr+1); 
} 
 
/*  Dummy function to satisfy C prototypes. */ 
static float fcn(float x) 
{ 
  return; 
} 
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Chapter 1: Linear Systems 

Routines 
1.1 Linear Equations with Full Matrices 

Factor, Solve, and Inverse for General Matrices 
Real matrices ......................................................................... lin_sol_gen 4  
Complex matrices.................................................. lin_sol_gen (complex) 11 
Factor, Solve, and Inverse for Positive Definite Matrices 
Real matrices .................................................................... lin_sol_posdef 17 
Complex matrices............................................. lin_sol_posdef (complex) 22 

1.2 Linear Equations with Band Matrices 
Factor and Solve for Band Matrices 
Real matrices ............................................................... lin_sol_gen_band 26 
Complex matrices........................................ lin_sol_gen_band (complex) 31 
Factor and Solve for Positive Definite Matrices Symmetric  
Real matrices .......................................................... lin_sol_posdef_band 35 
Complex matrices................................... lin_sol_posdef_band (complex) 39 

1.3 Linear Equations with General Sparse Matrices 
Factor and Solve for Sparse Matrices 
Real matrices ...................................................... lin_sol_gen_coordinate 44 
Complex matrices............................... lin_sol_gen_coordinate (complex) 54 
Factor and Solve for Positive Definite Matrices 
Real matrices ................................................. lin_sol_posdef_coordinate 62 
Complex matrices.......................... lin_sol_posdef_coordinate (complex) 68 

1.4 Iterative Methods 
Restarted generalized minimum  
residual (GMRES) method .............................. lin_sol_gen_min_residual 73 
Conjugate gradient method ............................................... lin_sol_def_cg 78 
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1.5 Linear Least-squares with Full Matrices 
Least-squares and QR decomposition 
Least-squares solve, QR decomposition ............. lin_least_squares_gen 84 
Linear constraints.................................................. lin_lsq_lin_constraints 92 
Singular Value Decompositions (SVD) and Generalized Inverse 
Real matrix............................................................................ lin_svd_gen 96 
Complex matrix .................................................... lin_svd_gen (complex) 102 
Factor, Solve, and Generalized Inverse for Positive Semidefinite Matrices 
Real matrices .............................................................. lin_sol_nonnegdef 107 

Usage Notes 
Solving Systems of Linear Equations 
A square system of linear equations has the form Ax = b, where A is a user-specified  
n � n matrix, b is a given right-hand side n vector, and x is the solution n vector. Each 
entry of A and b must be specified by the user. The entire vector x is returned as output. 

When A is invertible, a unique solution to Ax = b exists. The most commonly used 
direct method for solving Ax = b factors the matrix A into a product of triangular 
matrices and solves the resulting triangular systems of linear equations. Functions that 
use direct methods for solving systems of linear equations all compute the solution to 
Ax = b. Thus, if a function with the prefix “imsl_f_lin_sol” is called with the 
required arguments, a pointer to x is returned by default. Additional tasks, such as only 
factoring the matrix A into a product of triangular matrices, can be done using 
keywords. 

Matrix Factorizations 
In some applications, it is desirable to just factor the n � n matrix A into a product of 
two triangular matrices. This can be done by calling the appropriate function for 
solving the system of linear equations Ax = b. Suppose that in addition to the solution  
x of a linear system of equations Ax = b, the LU factorization of A is desired. Use the 
keyword IMSL_FACTOR in the function imsl_f_lin_sol_gen (page 4) to obtain 
access to the factorization. If only the factorization is desired, use the keywords 
IMSL_FACTOR_ONLY and IMSL_FACTOR. 

Besides the basic matrix factorizations, such as LU and LLT, additional matrix 
factorizations also are provided. For a real matrix A, its QR factorization can be 
computed by the function imsl_f_lin_least_squares_gen (page 84). Functions 
for computing the singular value decomposition (SVD) of a matrix are discussed in a 
later section. 

Matrix Inversions 
The inverse of an n � n nonsingular matrix can be obtained by using the keyword 
IMSL_INVERSE in functions for solving systems of linear equations. The inverse of a 
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matrix need not be computed if the purpose is to solve one or more systems of linear 
equations. Even with multiple right-hand sides, solving a system of linear equations by 
computing the inverse and performing matrix multiplication is usually more expensive 
than the method discussed in the next section. 

Multiple Right-Hand Sides 
Consider the case where a system of linear equations has more than one right-hand side 
vector. It is most economical to find the solution vectors by first factoring the 
coefficient matrix A into products of triangular matrices. Then, the resulting triangular 
systems of linear equations are solved for each right-hand side. When A is a real 
general matrix, access to the LU factorization of A is computed by using the keywords 
IMSL_FACTOR and IMSL_FACTOR_ONLY in function imsl_f_lin_sol_gen (page 4). 
The solution xk for the k-th right-hand side vector bk is then found by two triangular 
solves, Lyk = bk and Uxk = yk. The keyword IMSL_SOLVE_ONLY in the function 
imsl_f_lin_sol_gen is used to solve each right-hand side. These arguments are 
found in other functions for solving systems of linear equations. 

Least-Squares Solutions and QR Factorizations 
Least-squares solutions are usually computed for an over-determined system of linear 
equations Am´n x = b, where m > n. A least-squares solution x minimizes the Euclidean 
length of the residual vector r = Ax � b. The function 
imsl_f_lin_least_squares_gen (page 84) computes a unique least-squares 
solution for x when A has full column rank. If A is rank-deficient, then the base 
solution for some variables is computed. These variables consist of the resulting 
columns after the interchanges. The QR decomposition, with column interchanges or 
pivoting, is computed such that AP = QR. Here, Q is orthogonal, R is  
upper-trapezoidal with its diagonal elements nonincreasing in magnitude, and P is the 
permutation matrix determined by the pivoting. The base solution xB is obtained by  
solving R(PT)x = QTb for the base variables. For details, see “Description” in 
imsl_f_lin_least_squares_gen (page 84). The QR factorization of a matrix A 
such that AP = QR with P specified by the user can be computed using keywords. 

Singular Value Decompositions and Generalized Inverses 
The SVD of an m � n matrix A is a matrix decomposition A = USVT. With 
q = min(m, n), the factors Um´q and Vn´q are orthogonal matrices, and Sq´q is a 
nonnegative diagonal matrix with nonincreasing diagonal terms. The function 
imsl_f_lin_svd_gen (page 96) computes the singular values of A by default. Using 
keywords, part or all of the U and V matrices, an estimate of the rank of A, and the 
generalized inverse of A, also can be obtained. 

Ill-Conditioning and Singularity 
An m � n matrix A is mathematically singular if there is an x � 0 such that Ax = 0. In 
this case, the system of linear equations Ax = b does not have a unique solution. On the 
other hand, a matrix A is numerically singular if it is “close” to a mathematically 



 

 
 

singular matrix. Such problems are called ill-conditioned. If the numerical results with 
an ill-conditioned problem are unacceptable, users can either use more accuracy if it is 
available (for type float accuracy switch to double) or they can obtain an approximate 
solution to the system. One form of approximation can be obtained using the SVD of  
A: If q = min(m, n) and 
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The user specifies the value of tol. This value determines how “close” the given matrix 
is to a singular matrix. Further restrictions may apply to the number of terms in the sum, 
k � q. For example, there may be a value of k � q such that the scalars �(bTui)�, i > k are 
smaller than the average uncertainty in the right-hand side b. This means that these 
scalars can be replaced by zero; and hence, b is replaced by a vector that is within the 
stated uncertainty of the problem. 

lin_sol_gen 
Solves a real general system of linear equations Ax = b. Using optional arguments, any 
of several related computations can be performed. These extra tasks include computing 
the LU factorization of A using partial pivoting, computing the inverse matrix A-1, 
solving ATx = b, or computing the solution of Ax = b given the LU factorization of A. 

Synopsis 
#include <imsl.h> 
float *imsl_f_lin_sol_gen (int n, float a[], float b[], �, 0) 

The type double procedure is imsl_d_lin_sol_gen. 

Required Arguments 

int n   (Input) 
Number of rows and columns in the matrix. 

float a[]   (Input) 
Array of size n � n containing the matrix. 
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float b[]   (Input) 
Array of size n containing the right-hand side. 

Return Value 
A pointer to the solution x of the linear system Ax = b. To release this space, use free. 
If no solution was computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float *imsl_f_lin_sol_gen (int n, float a[], float b[], 

IMSL_A_COL_DIM, int a_col_dim, 
IMSL_TRANSPOSE, 
IMSL_RETURN_USER, float x[], 
IMSL_FACTOR, int **p_pvt, float **p_factor, 
IMSL_FACTOR_USER, int pvt[], float factor[], 
IMSL_FAC_COL_DIM, int fac_col_dim, 
IMSL_INVERSE, float **p_inva, 
IMSL_INVERSE_USER, float inva[], 
IMSL_INV_COL_DIM, int inva_col_dim, 
IMSL_CONDITION, float *cond, 
IMSL_FACTOR_ONLY, 
IMSL_SOLVE_ONLY, 
IMSL_INVERSE_ONLY, 
0) 

Optional Arguments 
IMSL_A_COL_DIM, int a_col_dim   (Input) 

The column dimension of the array a. 
Default: a_col_dim = n 

IMSL_TRANSPOSE 
Solve ATx = b. 
Default: Solve Ax = b 

IMSL_RETURN_USER, float  x[]   (Output) 
A user-allocated array of length n containing the solution x. 

IMSL_FACTOR, int **p_pvt, float  **p_factor   (Output) 

p_pvt: The address of a pointer to an array of length n containing the pivot 
sequence for the factorization. On return, the necessary space is allocated by 
imsl_f_lin_sol_gen. Typically, int *p_pvt is declared, and &p_pvt is 
used as an argument. 

p_factor: The address of a pointer to an array of size n � n containing the 
LU factorization of A with column pivoting. On return, the necessary space is 
allocated by imsl_f_lin_sol_gen. The lower-triangular part of this array 
contains information necessary to construct L, and the upper-triangular part 
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contains U. Typically, float *p_factor is declared, and &p_factor is used 
as an argument. 

IMSL_FACTOR_USER, int pvt[], float factor[]   (Input/Output) 

pvt[]: A user-allocated array of size n containing the pivot sequence for the 
factorization. 

factor[]: A user-allocated array of size n � n containing the LU 
factorization of A. The strictly lower-triangular part of this array contains 
information necessary to construct L, and the upper-triangular part contains U. 
If A is not needed, factor and a can share the same storage. 

These parameters are input if IMSL_SOLVE is specified. They are output 
otherwise. 

IMSL_FAC_COL_DIM, int fac_col_dim   (Input) 
The column dimension of the array containing the LU factorization of A.  
Default: fac_col_dim = n 

IMSL_INVERSE, float **p_inva   (Output) 
The address of a pointer to an array of size n � n containing the inverse of the 
matrix A. On return, the necessary space is allocated by 
imsl_f_lin_sol_gen. Typically, float *p_inva is declared, and &p_inva 
is used as an argument. 

IMSL_INVERSE_USER, float inva[]   (Output) 
A user-allocated array of size n � n containing the inverse of A. 

IMSL_INV_COL_DIM, int inva_col_dim   (Input) 
The column dimension of the array containing the inverse of A.  
Default: inva_col_dim = n 

IMSL_CONDITION, float *cond   (Output) 
A pointer to a scalar containing an estimate of the L1 norm condition number 
of the matrix A. This option cannot be used with the option 
IMSL_SOLVE_ONLY. 

IMSL_FACTOR_ONLY 
Compute the LU factorization of A with partial pivoting. If 
IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER is 
required. The argument b is then ignored, and the returned value of 
imsl_f_lin_sol_gen is NULL. 

IMSL_SOLVE_ONLY 
Solve Ax = b given the LU factorization previously computed by 
imsl_f_lin_sol_gen. By default, the solution to Ax = b is pointed to by 
imsl_f_lin_sol_gen. If IMSL_SOLVE_ONLY is used, argument 
IMSL_FACTOR_USER is required, and the argument a is ignored. 

IMSL_INVERSE_ONLY 
Compute the inverse of the matrix A. If IMSL_INVERSE_ONLY is used, either 



 

 
 

IMSL_INVERSE or IMSL_INVERSE_USER is required. The argument b is then 
ignored, and the returned value of imsl_f_lin_sol_gen is NULL. 

Description 
The function imsl_f_lin_sol_gen solves a system of linear algebraic equations with 
a real coefficient matrix A. It first computes the LU factorization of A with partial 
pivoting such that L-1A = U. The matrix U is upper triangular, while  
L-1A � Pn Ln-1Pn-1 � L1P1A � U. The factors Pi and Li are defined by the partial 
pivoting. Each Pi is an interchange of row i with row j � i. Thus, Pi is defined by that 
value of j. Every  
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is an elementary elimination matrix. The vector mi is zero in entries 1, �, i. This vector 
is stored as column i in the strictly lower-triangular part of the working array containing 
the decomposition information. 

The factorization efficiency is based on a technique of “loop unrolling and jamming” 
by Dr. Leonard J. Harding of the University of Michigan, Ann Arbor, Michigan. The 
solution of the linear system is then found by solving two simpler systems, y = L-1b and 
x = U-1y. When the solution to the linear system or the inverse of the matrix is sought, 
an estimate of the L1 condition number of A is computed using the same algorithm as in 
Dongarra et al. (1979). If the estimated condition number is greater than 1	
 (where 
 is 
the machine precision), a warning message is issued. This indicates that very small 
changes in A may produce large changes in the solution x. The function 
imsl_f_lin_sol_gen fails if U, the upper triangular part of the factorization, has a 
zero diagonal element. 

Examples 

Example 1 
This example solves a system of three linear equations. This is the simplest use of the 
function. The equations follow below: 

x1 + 3x2 + 3x3 = 1 

x1 + 3x2 + 4x3 = 4 

x1 + 4x2 + 3x3 = �1 
#include <imsl.h> 
 
main() 
{ 
    int         n = 3; 
    float       *x; 
    float       a[] =  {1.0, 3.0, 3.0, 
                        1.0, 3.0, 4.0, 
                        1.0, 4.0, 3.0}; 
    float       b[] =  {1.0, 4.0, -1.0}; 
                                /* Solve Ax = b  for  x  */ 
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    x = imsl_f_lin_sol_gen (n, a, b, 0); 
                                /* Print x */ 
    imsl_f_write_matrix ("Solution, x, of Ax = b", 1, 3, x, 0); 
} 

Output 
Solution, x, of Ax = b 
 1           2           3 
-2          -2           3 

Example 2 
This example solves the transpose problem ATx = b and returns the LU factorization of 
A with partial pivoting. The same data as the initial example is used, except the solution 
x = A-Tb is returned in an array allocated in the main program. The L matrix is returned 
in implicit form. 

 
#include <imsl.h> 
 
main() 
{ 
    int         n = 3, pvt[3]; 
    float       factor[9]; 
    float       x[3]; 
    float       a[] =  {1.0, 3.0, 3.0, 
                         1.0, 3.0, 4.0, 
                         1.0, 4.0, 3.0}; 
 
    float       b[] =  {1.0, 4.0, -1.0}; 
                                /* Solve trans(A)*x = b  for  x  */ 
    imsl_f_lin_sol_gen (n, a, b, 
                        IMSL_TRANSPOSE, 
                        IMSL_RETURN_USER, x, 
                        IMSL_FACTOR_USER, pvt, factor, 
                        0); 
 
                                /* Print x */ 
    imsl_f_write_matrix ("Solution, x, of trans(A)x = b", 1, n, x, 0); 
 
                                /* Print factors and pivot sequence */ 
    imsl_f_write_matrix ("LU factors of A", n, n, factor, 0); 
    imsl_i_write_matrix ("Pivot sequence", 1, n, pvt, 0); 
} 

Output 
Solution, x, of trans(A)x = b 
     1           2           3 
     4          -4           1 
  
           LU factors of A 
            1           2           3 
1           1           3           3 
2          -1           1           0 
3          -1           0           1 
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Pivot sequence 
   1   2   3 
   1   3   3 

Example 3 
This example computes the inverse of the 3 � 3 matrix A of the initial example and 
solves the same linear system. The matrix product C = A-1A is computed and printed. 
The function imsl_f_mat_mul_rect is used to compute C. The approximate result 
C = I is obtained.  

 
#include <imsl.h> 
 
float    a[] =  {1.0, 3.0, 3.0, 
                  1.0, 3.0, 4.0, 
                  1.0, 4.0, 3.0}; 
 
float    b[] =  {1.0, 4.0, -1.0}; 
 
main() 
{ 
    int          n = 3; 
    float        *x; 
    float        *p_inva; 
    float        *C; 
                                    /* Solve Ax = b  */ 
    x = imsl_f_lin_sol_gen (n, a, b, 
        IMSL_INVERSE, &p_inva, 
        0); 
 
                                    /* Print solution */ 
 
    imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0); 
 
                                    /* Print input and inverse matrices */ 
    imsl_f_write_matrix ("Input A", n, n, a, 0); 
    imsl_f_write_matrix ("Inverse of A", n, n, p_inva, 0); 
                                    /* Check result and print */ 
    C = imsl_f_mat_mul_rect("A*B", 
        IMSL_A_MATRIX, n, n, p_inva, 
        IMSL_B_MATRIX, n, n, a, 
        0); 
    imsl_f_write_matrix ("Product matrix, inv(A)*A",n,n,C,0); 
} 

Output 
Solution, x, of Ax = b 
   1           2           3 
  -2          -2           3 
  
               Input A 
            1           2           3 
1           1           3           3 
2           1           3           4 
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3           1           4           3 
  
            Inverse of A 
            1           2           3 
1           7          -3          -3 
2          -1           0           1 
3          -1           1           0 
  
      Product matrix, inv(A)*A 
            1           2           3 
1           1           0           0 
2           0           1           0 
3           0           0           1 

Example 4 
This example computes the solution of two systems. Only the right-hand sides differ. 
The matrix and first right-hand side are given in the initial example. The second right-
hand side is the vector c = [0.5, 0.3, 0.4]T. The factorization information is computed 
with the first solution and is used to compute the second solution. The factorization 
work done in the first step is avoided in computing the second solution. 

#include <imsl.h> 
 
main() 
{ 
    int         n = 3, pvt[3]; 
    float       factor[9]; 
    float       *x,*y; 
 
    float       a[] =  {1.0, 3.0, 3.0, 
                        1.0, 3.0, 4.0, 
                        1.0, 4.0, 3.0}; 
 
    float       b[] =  {1.0, 4.0, -1.0}; 
    float       c[]  = {0.5, 0.3,  0.4}; 
 
                                /* Solve A*x = b  for  x  */ 
    x = imsl_f_lin_sol_gen (n, a, b, 
                        IMSL_FACTOR_USER, pvt, factor, 
                        0); 
 
                                /* Print x */ 
    imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0); 
 
                               /* Solve for A*y = c for y */ 
    y = imsl_f_lin_sol_gen (n, a, c, 
                        IMSL_SOLVE_ONLY, 
                        IMSL_FACTOR_USER, pvt, factor, 
                        0); 
    imsl_f_write_matrix ("Solution, y, of Ay = c", 1, n, y, 0); 
 
} 

Output 
Solution, x, of Ax = b 
   1           2           3 
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  -2          -2           3 
  
Solution, y, of Ay = c 
   1           2           3 
 1.4        -0.1        -0.2 

Warning Errors 
IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of 

the reciprocal of its L1 condition number is 
“rcond” = #. The solution might not be accurate. 

Fatal Errors 
IMSL_SINGULAR_MATRIX The input matrix is singular. 

lin_sol_gen (complex) 
Solves a complex general system of linear equations Ax = b. Using optional arguments, 
any of several related computations can be performed. These extra tasks include 
computing the LU factorization of A using partial pivoting, computing the inverse 
matrix A-1, solving AHx = b, or computing the solution of Ax = b given the LU 
factorization of A. 

Synopsis 
#include <imsl.h> 
f_complex *imsl_c_lin_sol_gen (int n, f_complex a[], f_complex b[], �, 

0) 

The type d_complex procedure is imsl_z_lin_sol_gen. 

Required Arguments 

int n   (Input) 
Number of rows and columns in the matrix. 

f_complex a[]   (Input) 
Array of size n � n containing the matrix. 

f_complex b[]   (Input) 
Array of length n containing the right-hand side. 

Return Value 
A pointer to the solution x of the linear system Ax = b. To release this space, use free. 
If no solution was computed, then NULL is returned.  

Synopsis with Optional Arguments 
#include <imsl.h> 
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f_complex *imsl_c_lin_sol_gen (int n, f_complex a[], f_complex b[], 
IMSL_A_COL_DIM, int a_col_dim, 
IMSL_TRANSPOSE,  
IMSL_RETURN_USER, f_complex x[], 
IMSL_FACTOR, int **p_pvt, f_complex **p_factor, 
IMSL_FACTOR_USER, int pvt[], f_complex factor[], 
IMSL_FAC_COL_DIM, int fac_col_dim, 
IMSL_INVERSE, f_complex **p_inva, 
IMSL_INVERSE_USER, f_complex inva[], 
IMSL_INV_COL_DIM, int inva_col_dim, 
IMSL_CONDITION, float *cond, 
IMSL_FACTOR_ONLY, 
IMSL_SOLVE_ONLY, 
IMSL_INVERSE_ONLY, 
0) 

Optional Arguments 
IMSL_A_COL_DIM, int a_col_dim   (Input) 

The column dimension of the array a.  
Default: a_col_dim = n 

IMSL_TRANSPOSE 
Solve AHx = b 
Default: Solve Ax = b 

IMSL_RETURN_USER, f_complex x[]   (Output) 
A user-allocated array of length n containing the solution x. 

IMSL_FACTOR, int **p_pvt, f_complex  **p_factor   (Output) 

p_pvt: The address of a pointer to an array of length n containing the pivot 
sequence for the factorization. On return, the necessary space is allocated by 
imsl_c_lin_sol_gen. Typically, int *p_pvt is declared, and &p_pvt is 
used as an argument. 

p_factor: The address of a pointer to an array of size n � n containing the 
LU factorization of A with column pivoting. On return, the necessary space is 
allocated by imsl_c_lin_sol_gen. The lower-triangular part of this array 
contains information necessary to construct L, and the upper-triangular part 
contains U. Typically,  f_complex  *p_factor is declared, and &p_factor 
is used as an argument. 

IMSL_FACTOR_USER, int pvt[], f_complex factor[]   (Input/Output) 

pvt[]: A user-allocated array of size n containing the pivot sequence for the 
factorization. 

factor[]: A user-allocated array of size n � n containing the LU 
factorization of A. The lower-triangular part of this array contains information 
necessary to construct L, and the upper-triangular part contains U. 



 

 
 

These parameters are input if IMSL_SOLVE is specified. They are output 
otherwise. If A is not needed, factor and a can share the same storage. 

IMSL_FAC_COL_DIM, int fac_col_dim   (Input) 
The column dimension of the array containing the LU factorization of A.  
Default: fac_col_dim = n 

IMSL_INVERSE, f_complex **p_inva   (Output) 
The address of a pointer to an array of size n � n containing the inverse of the 
matrix A. On return, the necessary space is allocated by 
imsl_c_lin_sol_gen. Typically,  f_complex *p_inva is declared, and 
&p_inva is used as an argument. 

IMSL_INVERSE_USER, f_complex inva[]   (Output) 
A user-allocated array of size n � n containing the inverse of A. 

IMSL_INV_COL_DIM, int inva_col_dim   (Input) 
The column dimension of the array containing the inverse of A.  
Default: inva_col_dim = n 

IMSL_CONDITION, float *cond   (Output) 
A pointer to a scalar containing an estimate of the L1 norm condition number 
of the matrix A. Do not use this option with IMSL_SOLVE_ONLY. 

IMSL_FACTOR_ONLY 
Compute the LU factorization of A with partial pivoting. If 
IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER  
is required. The argument b is then ignored, and the returned value of 
imsl_c_lin_sol_gen is NULL. 

IMSL_SOLVE_ONLY 
Solve Ax = b given the LU factorization previously computed by 
imsl_c_lin_sol_gen. By default, the solution to Ax = b is pointed to by 
imsl_c_lin_sol_gen. If IMSL_SOLVE_ONLY is used, argument 
IMSL_FACTOR_USER is required and argument a is ignored. 

IMSL_INVERSE_ONLY 
Compute the inverse of the matrix A. If IMSL_INVERSE_ONLY is used, either 
IMSL_INVERSE or IMSL_INVERSE_USER is required. Argument b is then 
ignored, and the returned value of imsl_c_lin_sol_gen is NULL. 

Description 
The function imsl_c_lin_sol_gen solves a system of linear algebraic equations with 
a complex coefficient matrix A. It first computes the LU factorization of A with partial 
pivoting such that L-1A = U. The matrix U is upper-triangular, while  
L-1A � PnLn-1Pn-1�L1P1A � U. The factors Pi and Li are defined by the partial 
pivoting. Each Pi is an interchange of row i with row j � i. Thus, Pi is defined by that 
value of j. Every  
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is an elementary elimination matrix. The vector mi is zero in entries 1, �, i. This vector 
is stored in the strictly lower-triangular part of column i of the working array containing 
the decomposition information. 

The solution of the linear system is then found by solving two simpler systems,  
y = L-1b and x = U-1y. When the solution to the linear system or the inverse of the 
matrix is computed, an estimate of the L1 condition number of A is computed using the 
algorithm as in Dongarra et al. (1979). If the estimated condition number is greater than 
1	
 (where 
 is the machine precision), a warning message is issued. This indicates that 
very small changes in A may produce large changes in the solution x. The function 
imsl_c_lin_sol_gen fails if U, the upper-triangular part of the factorization, has a 
zero diagonal element. 

Examples 

Example 1 
This example solves a system of three linear equations. The equations are: 

(1 + i) x1 + (2 + 3i) x2 + (3 � 3i) x3 = 3 + 5i 

(2 + i) x1 + (5 + 3i) x2 + (7 � 5i) x3 = 22 + 10i 

(�2 + i) x1 + (�4 + 4i) x2 + (5 + 3i) x3 = �10 + 4i 

#include <imsl.h> 
 
f_complex    a[] =  {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0}, 
                     {2.0, 1.0}, {5.0, 3.0}, {7.0, -5.0}, 
                     {-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}}; 
 
f_complex    b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}}; 
 
main() 
{ 
    int           n = 3; 
    f_complex        *x; 
                                    /* Solve Ax = b  for  x  */ 
    x = imsl_c_lin_sol_gen (n, a, b, 0); 
 
                                    /* Print x */ 
    imsl_c_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0); 
} 

Output 
                         Solution, x, of Ax = b 
                      1                        2                        3 
(         1,        -1)  (         2,         4)  (         3,        -0) 
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Example 2 
This example solves the conjugate transpose problem AHx = b and returns the  
LU factorization of A using partial pivoting. This example differs from the first example 
in that the solution array is allocated in the main program. 

#include <imsl.h> 
 
f_complex    a[] =  {{1.0, 1.0},  {2.0, 3.0},   {3.0, -3.0}, 
                     {2.0, 1.0},  {5.0, 3.0},   {7.0, -5.0}, 
                     {-2.0, 1.0}, {-4.0, 4.0},  {5.0,  3.0}}; 
 
f_complex    b[] =  {{3.0, 5.0},  {22.0, 10.0}, {-10.0, 4.0}}; 
 
main() 
{ 
    int           n = 3, pvt[3]; 
    f_complex     factor[9]; 
    f_complex     x[3]; 
                                    /* Solve ctrans(A)*x = b  for  x  */ 
    imsl_c_lin_sol_gen (n, a, b, 
                IMSL_TRANSPOSE, 
                IMSL_RETURN_USER, x, 
                IMSL_FACTOR_USER, pvt, factor, 
                0); 
                                    /* Print x */ 
    imsl_c_write_matrix ("Solution, x, of ctrans(A)x = b", 1, n, x, 0); 
 
                                    /* Print factors and pivot sequence */ 
    imsl_c_write_matrix ("LU factors of A", n, n, factor, 0); 
    imsl_i_write_matrix ("Pivot sequence", 1, n, pvt, 0); 
} 

Output 
                     Solution, x, of ctrans(A)x = b 
                      1                        2                        3 
(     -9.79,     11.23)  (      2.96,     -3.13)  (      1.85,      2.47) 
  
                              LU factors of A 
                        1                        2                        3 
1  (    -2.000,    1.000)  (    -4.000,     4.000)  (     5.000,     3.000) 
2  (     0.600,    0.800)  (    -1.200,     1.400)  (     2.200,     0.600) 
3  (     0.200,    0.600)  (    -1.118,     0.529)  (     4.824,     1.294) 
Pivot sequence 
   1   2   3 
   3   3   3 

Example 3 
This example computes the inverse of the 3 � 3 matrix A in the first example and also 
solves the linear system. The product matrix C = A-1A is computed as a check. The 
approximate result is C = I. 

#include <imsl.h> 
 
f_complex    a[] =  {{1.0, 1.0},  {2.0, 3.0},   {3.0, -3.0}, 
                      {2.0, 1.0},  {5.0, 3.0},   {7.0, -5.0}, 
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                      {-2.0, 1.0}, {-4.0, 4.0},  {5.0, 3.0}}; 
 
f_complex    b[] =  {{3.0, 5.0},  {22.0, 10.0}, {-10.0, 4.0}}; 
 
main() 
{ 
    int           n = 3; 
    f_complex     *x; 
    f_complex     *p_inva; 
    f_complex     *C; 
 
                                    /* Solve Ax = b  for  x  */ 
    x = imsl_c_lin_sol_gen (n, a, b, 
                    IMSL_INVERSE, &p_inva, 
                    0); 
 
                                    /* Print solution */ 
    imsl_c_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0); 
 
                                    /* Print input and inverse matrices */ 
    imsl_c_write_matrix ("Input A", n, n, a, 0); 
    imsl_c_write_matrix ("Inverse of A", n, n, p_inva, 0); 
 
                                    /* Check and print result */ 
    C = imsl_c_mat_mul_rect ("A*B", 
                   IMSL_A_MATRIX, n,n, p_inva, 
                   IMSL_B_MATRIX, n,n, a, 
                   0); 
    imsl_c_write_matrix ("Product, inv(A)*A", n, n, C, 0); 
} 

Output 
                         Solution, x, of Ax = b 
                      1                        2                        3 
(         1,        -1)  (         2,         4)  (         3,        -0) 
  
                                   Input A 
                        1                        2                       3 
1 (         1,         1)  (         2,         3)  (         3,        -3) 
2 (         2,         1)  (         5,         3)  (         7,        -5) 
3 (        -2,         1)  (        -4,         4)  (         5,         3) 
                                Inverse of A 
                        1                        2                        3 
1 (     1.330,     0.594)  (    -0.151,     0.028)  (    -0.604,     0.613) 
2 (    -0.632,    -0.538)  (     0.160,     0.189)  (     0.142,    -0.245) 
3 (    -0.189,     0.160)  (     0.193,    -0.052)  (     0.024,     0.042) 
  
                              Product, inv(A)*A 
                        1                        2                        3 
1 (         1,        -0)  (        -0,        -0)  (        -0,         0) 
2 (         0,         0)  (         1,         0)  (         0,        -0) 
3 (        -0,        -0)  (        -0,         0)  (         1,         0) 
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Warning Errors 
IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of 

the reciprocal of the L1 condition number is “rcond” = #. 
The solution might not be accurate. 

Fatal Errors 
IMSL_SINGULAR_MATRIX The input matrix is singular. 

lin_sol_posdef 
Solves a real symmetric positive definite system of linear equations Ax = b. Using 
optional arguments, any of several related computations can be performed. These extra 
tasks include computing the Cholesky factor, L, of A such that A = LLT, computing the 
inverse matrix A-1, or computing the solution of Ax = b given the Cholesky factor, L. 

Synopsis 
#include <imsl.h> 
float *imsl_f_lin_sol_posdef (int n, float a[], float b[], �, 0) 

The type double procedure is imsl_d_lin_sol_posdef. 

Required Arguments 

int n   (Input) 
Number of rows and columns in the matrix. 

float a[]   (Input) 
Array of size n � n containing the matrix. 

float b[]   (Input) 
Array of size n containing the right-hand side. 

Return Value 
A pointer to the solution x of the symmetric positive definite linear system Ax = b.  
To release this space, use free. If no solution was computed, then NULL is returned.  

Synopsis with Optional Arguments 
#include <imsl.h> 
float *imsl_f_lin_sol_posdef (int n, float a[], float b[],  

IMSL_A_COL_DIM, int a_col_dim, 
IMSL_RETURN_USER, float x[],  
IMSL_FACTOR, float **p_factor,  
IMSL_FACTOR_USER, float factor[], 
IMSL_FAC_COL_DIM, int fac_col_dim,  
IMSL_INVERSE, float **p_inva,  
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IMSL_INVERSE_USER, float inva[], 
IMSL_INV_COL_DIM, int inv_col_dim, 
IMSL_CONDITION, float *cond, 
IMSL_FACTOR_ONLY,  
IMSL_SOLVE_ONLY,  
IMSL_INVERSE_ONLY,  
0) 

Optional Arguments 
IMSL_A_COL_DIM, int a_col_dim   (Input) 

The column dimension of the array a.  
Default: a_col_dim = n 

IMSL_RETURN_USER, float x[]   (Output) 
A user-allocated array of length n containing the solution x. 

IMSL_FACTOR, float **p_factor   (Output) 
The address of a pointer to an array of size n � n containing the  
LLT factorization of A. On return, the necessary space is allocated by 
imsl_f_lin_sol_posdef. The lower-triangular part of this array contains  
L and the upper-triangular part contains LT. Typically,  float *p_factor is 
declared, and &p_factor is used as an argument. 

IMSL_FACTOR_USER, float factor[]   (Input/Output) 
A user-allocated array of size n � n containing the LLT factorization of A.  
The lower-triangular part of this array contains L, and the upper-triangular part 
contains LT. If A is not needed, a and factor can share the same storage.  
If IMSL_SOLVE is specified, it is input; otherwise, it is output. 

IMSL_FAC_COL_DIM, int fac_col_dim   (Input) 
The column dimension of the array containing the LLT factorization of A. 
Default: fac_col_dim = n 

IMSL_INVERSE, float **p_inva   (Output) 
The address of a pointer to an array of size n � n containing the inverse of the 
matrix A. On return, the necessary space is allocated by 
imsl_f_lin_sol_posdef. Typically,  float *p_inva is declared, and 
&p_inva is used as an argument. 

IMSL_INVERSE_USER, float inva[]   (Output) 
A user-allocated array of size n � n containing the inverse of A. 

IMSL_INV_COL_DIM, int inva_col_dim   (Input) 
The column dimension of the array containing the inverse of A.  
Default: inva_col_dim = n 

IMSL_CONDITION, float *cond   (Output) 
A pointer to a scalar containing an estimate of the L1 norm condition number 
of the matrix A. Do not use this option with IMSL_SOLVE_ONLY. 



 

 
 

Chapter 1: Linear Systems lin_sol_posdef � 19 

 

 

 

IMSL_FACTOR_ONLY 
Compute the Cholesky factorization LLT of A. If IMSL_FACTOR_ONLY is 
used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument 
b is then ignored, and the returned value of imsl_f_lin_sol_posdef is 
NULL. 

IMSL_SOLVE_ONLY 
Solve Ax = b given the LLT factorization previously computed by 
imsl_f_lin_sol_posdef. By default, the solution to Ax = b is pointed to 
by imsl_f_lin_sol_posdef. If IMSL_SOLVE_ONLY is used, argument 
IMSL_FACTOR_USER is required and the argument a is ignored. 

IMSL_INVERSE_ONLY 
Compute the inverse of the matrix A. If IMSL_INVERSE_ONLY is used, either 
IMSL_INVERSE or IMSL_INVERSE_USER is required. The argument b is then 
ignored, and the returned value of imsl_f_lin_sol_posdef is NULL. 

Description 
The function imsl_f_lin_sol_posdef solves a system of linear algebraic equations 
having a symmetric positive definite coefficient matrix A. The function first computes 
the Cholesky factorization LLT of A. The solution of the linear system is then found by 
solving the two simpler systems, y = L-1b and x = L-Ty. When the solution to the linear 
system or the inverse of the matrix is sought, an estimate of the L1 condition number of 
A is computed using the same algorithm as in Dongarra et al. (1979). If the estimated 
condition number is greater than 1/
 (where 
 is the machine precision), a warning 
message is issued. This indicates that very small changes in A may produce large 
changes in the solution x. 

The function imsl_f_lin_sol_posdef fails if L, the lower-triangular matrix in the 
factorization, has a zero diagonal element. 

Examples 

Example 1 
A system of three linear equations with a symmetric positive definite coefficient matrix 
is solved in this example. The equations are listed below: 

x1 � 3x2 + 2x3 = 27 

�3x1 + 10x2 � 5x3 = �78 

2x1 � 5x2 + 6x3 = 64 

#include <imsl.h> 
 
main() 
{ 



 

 
 

20 � lin_sol_posdef IMSL C/Math/Library 

 

 

 

    int         n = 3; 
    float       *x; 
    float       a[] =  {1.0, -3.0,  2.0, 
                        -3.0, 10.0, -5.0, 
                         2.0, -5.0,  6.0}; 
    float       b[] =  {27.0, -78.0, 64.0}; 
 
                                /* Solve Ax = b  for  x  */ 
    x = imsl_f_lin_sol_posdef (n, a, b, 0); 
 
                                /* Print x */ 
    imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0); 
} 

Output 
Solution, x, of Ax = b 
   1           2           3 
   1          -4           7 

Example 2 
This example solves the same system of three linear equations as in the initial example, 
but this time returns the LLT factorization of A. The solution x is returned in an array 
allocated in the main program. 

#include <imsl.h> 
 
main() 
{ 
    int         n = 3; 
    float       x[3], *p_factor; 
    float       a[] =  {1.0, -3.0,  2.0, 
                        -3.0, 10.0, -5.0, 
                         2.0, -5.0,  6.0}; 
    float       b[] =  {27.0, -78.0, 64.0}; 
 
                                /* Solve Ax = b  for  x  */ 
    imsl_f_lin_sol_posdef (n, a, b, 
                IMSL_RETURN_USER, x, 
                IMSL_FACTOR, &p_factor, 
                0); 
 
                                /* Print x */ 
    imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0); 
 
                                /* Print Cholesky factor of A */ 
    imsl_f_write_matrix ("Cholesky factor L, and trans(L), of A", 
                         n, n, p_factor, 0); 
} 

Output 
Solution, x, of Ax = b 
1           2           3 
1          -4           7 
  
Cholesky factor L, and trans(L), of A 
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            1           2           3 
1           1          -3           2 
2          -3           1           1 
3           2           1           1 

Example 3 
This example solves the same system as in the initial example, but given the Cholesky 
factors of A. 

#include <imsl.h> 
 
main() 
{ 
    int         n = 3; 
    float       *x, *a; 
    float       factor[ ] =  {1.0, -3.0, 2.0, 
                              -3.0, 1.0, 1.0, 
                              2.0,  1.0, 1.0}; 
    float       b[ ] =  {27.0, -78.0, 64.0}; 
 
                                /* Solve Ax = b  for  x  */ 
    x = imsl_f_lin_sol_posdef (n, a, b, 
                    IMSL_FACTOR_USER, factor, 
                    IMSL_SOLVE_ONLY, 
                    0); 
 
                                /* Print x */ 
    imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0); 
} 

Output 
Solution, x, of Ax = b 
1           2           3 
1          -4           7 

Warning Errors 
IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of 

the reciprocal of its L1 condition number is 
“rcond” = #. The solution might not be accurate. 

Fatal Errors 
IMSL_NONPOSITIVE_MATRIX The leading # by # submatrix of the input matrix is 

not positive definite. 

IMSL_SINGULAR_MATRIX The input matrix is singular. 

IMSL_SINGULAR_TRI_MATRIX The input triangular matrix is singular. The index of 
the first zero diagonal element is #. 
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lin_sol_posdef (complex) 
Solves a complex Hermitian positive definite system of linear equations Ax = b. Using 
optional arguments, any of several related computations can be performed. These extra 
tasks include computing the Cholesky factor, L, of A such that A = LLH or computing 
the solution to Ax = b given the Cholesky factor, L. 

Synopsis 
#include <imsl.h> 
f_complex *imsl_c_lin_sol_posdef (int n, f_complex a[], f_complex b[], 

�, 0) 

The type d_complex procedure is imsl_z_lin_sol_posdef. 

Required Arguments  

int n   (Input) 
Number of rows and columns in the matrix. 

f_complex a[]   (Input) 
Array of size n � n containing the matrix. 

f_complex b[]   (Input) 
Array of size n containing the right-hand side. 

Return Value 
A pointer to the solution x of the Hermitian positive definite linear system Ax = b. To 
release this space, use free. If no solution was computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
f_complex *imsl_c_lin_sol_posdef (int n, f_complex a[], f_complex b[],  

IMSL_A_COL_DIM, int a_col_dim, 
IMSL_RETURN_USER, f_complex x[], 
IMSL_FACTOR, f_complex **p_factor, 
IMSL_FACTOR_USER, f_complex factor[], 
IMSL_FAC_COL_DIM, int fac_col_dim, 
IMSL_CONDITION, float *cond, 
IMSL_FACTOR_ONLY, 
IMSL_SOLVE_ONLY, 
0) 

Optional Arguments 
IMSL_A_COL_DIM, int a_col_dim   (Input) 

The column dimension of the array a. 
Default: a_col_dim = n 
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IMSL_RETURN_USER, f_complex x[]   (Output) 
A user-allocated array of size n containing the solution x. 

IMSL_FACTOR, f_complex **p_factor   (Output) 
The address of a pointer to an array of size n � n containing the  
LLH factorization of A. On return, the necessary space is allocated by 
imsl_c_lin_sol_posdef. The lower- triangular part of this array contains 
L, and the upper-triangular part contains LH. Typically,  f_complex 
*p_factor is declared, and &p_factor is used as an argument. 

IMSL_FACTOR_USER, f_complex factor[]   (Input/Output) 
A user-allocated array of size n � n containing the LLH factorization of A.  
The lower- triangular part of this array contains L, and the upper-triangular 
part contains LH. If A is not needed, a and factor can share the same 
storage. If IMSL_SOLVE is specified, Factor is input. Otherwise, it is output. 

IMSL_FAC_COL_DIM, int fac_col_dim   (Input) 
The column dimension of the array containing the LLH factorization  
of A.  
Default: fac_col_dim = n 

IMSL_CONDITION, float *cond   (Output) 
A pointer to a scalar containing an estimate of the L1 norm condition number 
of the matrix A. Do not use this option with IMSL_SOLVE_ONLY. 

IMSL_FACTOR_ONLY 
Compute the Cholesky factorization LLH of A. If IMSL_FACTOR_ONLY is 
used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument 
b is then ignored, and the returned value of imsl_c_lin_sol_posdef is 
NULL. 

IMSL_SOLVE_ONLY 
Solve Ax = b given the LLH factorization previously computed by 
imsl_c_lin_sol_posdef. By default, the solution to Ax = b is pointed to 
by imsl_c_lin_sol_posdef. If IMSL_SOLVE_ONLY is used, argument 
IMSL_FACTOR_USER is required and argument a is ignored. 

Description 
The function imsl_c_lin_sol_posdef solves a system of linear algebraic equations 
having a Hermitian positive definite coefficient matrix A. The function first computes 
the LLH factorization of A. The solution of the linear system is then found by solving 
the two simpler systems, y = L-1b and x = L-Hy. When the solution to the linear system 
is required, an estimate of the L1 condition number of A is computed using the 
algorithm in Dongarra et al. (1979). If the estimated condition number is greater than  
1	
 (where 
 is the machine precision), a warning message is issued. This indicates that 
very small changes in A may produce large changes in the solution x. The function 
imsl_c_lin_sol_posdef fails if L, the lower-triangular matrix in the factorization, 
has a zero diagonal element. 
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Examples 

Example 1 
A system of five linear equations with a Hermitian positive definite coefficient matrix is 
solved in this example. The equations are as follows: 

2x1 +(�1 + i)x2 = 1 +5i 

(�1 � i)x1 +4x2 + (1 + 2i)x3 = 12 � 6i 

(1 � 2i)x2 +10x3 + 4ix4 = 1 � 16i 

�4ix3 + 6x4 + (1 + i)x5 = �3 � 3i 

(1 � i)x4 + 9x5 = 25 + 16i 
#include <imsl.h> 
 
main() 
{ 
    int         n = 5; 
    f_complex   *x; 
    f_complex   a[] = { 
         {2.0,0.0},  {-1.0,1.0},{0.0,0.0}, {0.0,0.0}, {0.0,0.0},  
         {-1.0,-1.0},{4.0,0.0}, {1.0,2.0}, {0.0,0.0}, {0.0,0.0},  
         {0.0,0.0},  {1.0,-2.0},{10.0,0.0},{0.0,4.0}, {0.0,0.0},  
         {0.0,0.0},  {0.0,0.0}, {0.0,-4.0},{6.0,0.0}, {1.0,1.0},  
         {0.0,0.0},  {0.0,0.0}, {0.0,0.0}, {1.0,-1.0},{9.0,0.0} 
                      }; 
 
    f_complex   b[] = { 
         {1.0,5.0}, {12.0,-6.0}, {1.0,-16.0}, {-3.0,-3.0}, {25.0,16.0} 
                      }; 
                                /* Solve Ax = b  for  x  */ 
    x = imsl_c_lin_sol_posdef(n, a, b, 0); 
 
                                /* Print x */ 
    imsl_c_write_matrix("Solution, x, of Ax = b", 1, n, x, 0); 
} 

Output 
                         Solution, x, of Ax = b 
                      1                        2                        3 
(         2,         1)  (         3,        -0)  (        -1,        -1) 
  
                      4                        5 
(         0,        -2)  (         3,         2) 

Example 2 
This example solves the same system of five linear equations as in the first example. 
This time, the LLH factorization of A and the solution x is returned in an array allocated 
in the main program. 

#include <imsl.h> 
 
main() 
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{ 
    int          n = 5; 
    f_complex    x[5], *p_factor; 
    f_complex    a[] = {  
        {2.0,0.0},  {-1.0,1.0},{0.0,0.0}, {0.0,0.0}, {0.0,0.0},  
        {-1.0,-1.0},{4.0,0.0}, {1.0,2.0}, {0.0,0.0}, {0.0,0.0},  
        {0.0,0.0},  {1.0,-2.0},{10.0,0.0},{0.0,4.0}, {0.0,0.0},  
        {0.0,0.0},  {0.0,0.0}, {0.0,-4.0},{6.0,0.0}, {1.0,1.0},  
        {0.0,0.0},  {0.0,0.0}, {0.0,0.0}, {1.0,-1.0},{9.0,0.0} 
                      }; 
    f_complex    b[] = { 
        {1.0,5.0}, {12.0,-6.0}, {1.0,-16.0}, {-3.0,-3.0}, {25.0,16.0} 
                      }; 
                                /* Solve Ax = b  for  x  */ 
    imsl_c_lin_sol_posdef(n, a, b, 
                    IMSL_RETURN_USER, x, 
                    IMSL_FACTOR, &p_factor, 
                    0); 
 
                                /* Print x */ 
    imsl_c_write_matrix("Solution, x, of Ax = b", 1, n, x, 0); 
 
                                /* Print Cholesky factor of A */ 
    imsl_c_write_matrix("Cholesky factor L, and ctrans(L), of A", 
                        n, n, p_factor, 0); 
} 

Output 
                         Solution, x, of Ax = b 
                      1                        2                        3 
(         2,         1)  (         3,        -0)  (        -1,        -1) 
  
                      4                        5 
(         0,        -2)  (         3,         2) 

  

 

 

                   Cholesky factor L, and ctrans(L), of A 
                        1                        2                        3 
1 (     1.414,     0.000)  (    -0.707,     0.707)  (     0.000,    -0.000) 
2 (    -0.707,    -0.707)  (     1.732,     0.000)  (     0.577,     1.155) 
3 (     0.000,     0.000)  (     0.577,    -1.155)  (     2.887,     0.000) 
4 (     0.000,     0.000)  (     0.000,     0.000)  (     0.000,    -1.386) 
5 (     0.000,     0.000)  (     0.000,     0.000)  (     0.000,     0.000) 
  
                        4                        5 
1 (     0.000,    -0.000)  (     0.000,    -0.000) 
2 (     0.000,    -0.000)  (     0.000,    -0.000) 
3 (     0.000,     1.386)  (     0.000,    -0.000) 
4 (     2.020,     0.000)  (     0.495,     0.495) 
5 (     0.495,    -0.495)  (     2.917,     0.000) 
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Warning Errors 
IMSL_HERMITIAN_DIAG_REAL_1 The diagonal of a Hermitian matrix must be real. 

Its imaginary part is set to zero. 

IMSL_HERMITIAN_DIAG_REAL_2 The diagonal of a Hermitian matrix must be real. 
The imaginary part will be used as zero in the 
algorithm. 

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An 
estimate of the reciprocal of its L1condition 
number is “rcond” = #. The solution might not  
be accurate. 

Fatal Errors 
IMSL_NONPOSITIVE_MATRIX The leading # by # minor matrix of the input 

matrix is not positive definite. 

IMSL_HERMITIAN_DIAG_REAL During the factorization the matrix has a large 
imaginary component on the diagonal. Thus, it 
cannot be positive definite. 

IMSL_SINGULAR_TRI_MATRIX The triangular matrix is singular. The index of 
the first zero diagonal term is #. 

lin_sol_gen_band 
Solves a real general band system of linear equations, Ax = b. Using optional arguments,  
any of several related computations can be performed. These extra tasks include computing  
the LU factorization of A using partial pivoting, solving ATx = b, or computing the solution  
of  Ax = b given the LU factorization of A. 

Synopsis 
#include <imsl.h> 

float *imsl_f_lin_sol_gen_band (int n, float a[], int nlca, int nuca, float 
b[], …, 0) 

The type double procedure is imsl_d_lin_sol_gen_band. 

Required Arguments 

int n   (Input) 
Number of rows and columns in the matrix. 

float a[]   (Input) 
Array of size (nlca + nuca + 1) containing the n � n banded coefficient matrix 
in band storage mode. 
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int nlca   (Input) 
Number of lower codiagonals in a. 

int nuca   (Input) 
Number of upper codiagonals in a. 

float b[]   (Input) 
Array of size n containing the right-hand side. 

Return Value 
A pointer to the solution x of the linear system Ax = b. To release this space use free. 
If no solution was computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 

float *imsl_f_lin_sol_gen_band (int n, float a[], int nlca,  
int nuca, float b[], 
IMSL_TRANSPOSE, 
IMSL_RETURN_USER, float x[], 
IMSL_FACTOR, int **p_pvt, float **p_factor, 
IMSL_FACTOR_USER, int pvt[], float factor[], 
IMSL_CONDITION, float *condition, 
IMSL_FACTOR_ONLY, 
IMSL_SOLVE_ONLY, 
IMSL_BLOCKING_FACTOR, int block_factor, 
0) 

Optional Arguments 
IMSL_TRANSPOSE 

Solve ATx = b. 
Default: Solve Ax = b. 

IMSL_RETURN_USER, float x[]   (Output) 
A user-allocated array of length n containing the solution x. 

IMSL_FACTOR, int **p_pvt, float **p_factor   (Output) 
p_pvt: The address of a pointer to an array of length n containing the pivot 
sequence for the factorization. On return, the necessary space is allocated by 
imsl_f_lin_sol_gen_band. Typically, int *p_pvt is declared and 
&p_pvt is used as an argument. 
p_factor: The address of a pointer to an array of size  
(2nlca + nuca + 1) � n containing the LU factorization of A with column 
pivoting. On return, the necessary space is allocated by 
imsl_f_lin_sol_gen_band. Typically, float *p_factor is declared and 
&p_factor is used as an argument. 

IMSL_FACTOR_USER, int pvt[], float factor[]   (Input/Output) 
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pvt[]: A user-allocated array of size n containing the pivot sequence for the 
factorization. 
factor[]: A user-allocated array of size (2nlca + nuca + 1) � n containing 
the LU factorization of A. The strictly lower triangular part of this array 
contains information necessary to construct L, and the upper triangular part 
contains U. If A is not needed, factor and a can share the first  
(nlca + nuca + 1) � n locations. 
These parameters are “Input” if IMSL_SOLVE_ONLY is specified. They are 
“Output” otherwise. 

IMSL_CONDITION, float *condition   (Output) 
A pointer to a scalar containing an estimate of the L1 norm condition number 
of the matrix A. This option cannot be used with the option 
IMSL_SOLVE_ONLY. 

IMSL_FACTOR_ONLY 
Compute the LU factorization of A with partial pivoting. If 
IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER  
is required. The argument b is then ignored, and the returned value of 
imsl_f_lin_sol_gen_band is NULL. 

IMSL_SOLVE_ONLY 
Solve Ax = b given the LU factorization previously computed by 
imsl_f_lin_sol_gen_band. By default, the solution to Ax = b is pointed to 
by imsl_f_lin_sol_gen_band. If IMSL_SOLVE_ONLY is used, argument 
IMSL_FACTOR_USER is required and the argument a is ignored. 

IMSL_BLOCKING_FACTOR, int block_factor   (Input) 
The blocking factor. block_factor must be set no larger than 32. 
Default: block_factor = 1 

Description 
The function imsl_f_lin_sol_gen_band solves a system of linear algebraic 
equations with a real band matrix A. It first computes the LU factorization of A based 
on the blocked LU factorization algorithm given in Du Croz et al. (1990). Level-3 
BLAS invocations are replaced with inline loops. The blocking factor block_factor 
has the default value of 1, but can be reset to any positive value not exceeding 32. 

The solution of the linear system is then found by solving two simpler systems,  
y = L-1b and x = U-1y. When the solution to the linear system or the inverse of the 
matrix is sought, an estimate of the L1 condition number of A is computed using 
Higham’s modifications to Hager’s method, as given in Higham (1988). If the 
estimated condition number is greater than 1/
 (where 
 is the machine precision), a 
warning message is issued. This indicates that very small changes in A may produce 
large changes in the solution x. The function imsl_f_lin_sol_gen_band fails if  
U, the upper triangular part of the factorization, has a zero diagonal element. 



 

 
 

Chapter 1: Linear Systems lin_sol_gen_band � 29 

 

 

 

Examples 

Example 1 
This example demonstrates the simplest use of this function by solving a system of four 
linear equations. This is the simplest usage of the function. The equations are as 
follows: 

2x1 � x2 = 3 

�3x1 + x2 � 2x3 = 1 

�x3 + 2x4 = 11 

2x3 + x4 = �2 

#include <imsl.h> 
 
void main () 
{ 
        int         n = 4; 
        int         nuca = 1; 
        int         nlca = 1; 
        float      *x; 
 
                        /*  Note that a is in band storage mode */ 
 
        float a[] = {0.0, -1.0, -2.0, 2.0, 
                2.0, 1.0, -1.0, 1.0, 
                -3.0, 0.0, 2.0, 0.0}; 
        float b[] = {3.0, 1.0, 11.0, -2.0}; 
 
        x = imsl_f_lin_sol_gen_band (n, a, nlca, nuca, b, 0); 
 
        imsl_f_write_matrix ("Solution x, of Ax = b", 1, n, x, 0); 
} 

Output 
             Solution x, of Ax = b 
         1           2           3           4 
         2           1          -3           4 

Example 2 
In this example, the problem Ax = b is solved using the data from the first example. 
This time, the factorizations are returned and the problem ATx = b is solved without 
recomputing LU.  

#include <imsl.h> 
 
void main () 
{ 
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        int         n = 4; 
        int         nuca = 1; 
        int         nlca = 1; 
        int        *pivot; 
        float       x[4]; 
        float      *factor; 
 
                        /*  Note that a is in band storage mode */ 
 
        float a[] = {0.0, -1.0, -2.0, 2.0, 
                     2.0, 1.0, -1.0, 1.0, 
                    -3.0, 0.0, 2.0, 0.0}; 
        float b[] = {3.0, 1.0, 11.0, -2.0}; 
 
                        /*  Solve Ax = b and return LU */ 
 
        imsl_f_lin_sol_gen_band (n, a, nlca, nuca, b, 
                IMSL_FACTOR, &pivot, &factor, 
                IMSL_RETURN_USER, x, 
                0); 
 
        imsl_f_write_matrix ("Solution of Ax = b", 1, n, x, 0); 
 
                        /*  Use precomputed LU to solve trans(A)x = b */ 
                        /*  The original matrix A is not needed */ 
 
        imsl_f_lin_sol_gen_band (n, (float*) 0, nlca, nuca, b, 
                IMSL_FACTOR_USER, pivot, factor, 
                IMSL_SOLVE_ONLY, 
                IMSL_TRANSPOSE, 
                IMSL_RETURN_USER, x, 
                0); 
 
        imsl_f_write_matrix ("Solution of trans(A)x = b", 1, n, x, 0); 
} 

Output 
              Solution of Ax = b 
         1           2           3           4 
         2           1          -3           4 
  
           Solution of trans(A)x = b 
         1           2           3           4 
        -6          -5          -1          -0 

Warning Errors 
IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of 

the reciprocal of its L1 condition number is  
"rcond" = #. The solution might not be accurate. 

Fatal Errors 
IMSL_SINGULAR_MATRIX The input matrix is singular. 



 

 
 

Chapter 1: Linear Systems lin_sol_gen_band (complex) � 31 

 

 

 

lin_sol_gen_band (complex) 
Solves a complex general band system of linear equations Ax = b. Using optional 
arguments, any of several related computations can be performed. These extra tasks 
include computing the LU factorization of A using partial pivoting, solving AHx = b,  
or computing the solution of Ax = b given the LU factorization of A. 

Synopsis 
#include <imsl.h> 
f_complex *imsl_c_lin_sol_gen_band (int n, f_complex a[], int nlca,  

int nuca, f_complex b[], �, 0) 

The type double procedure is imsl_z_lin_sol_gen_band. 

Required Arguments 

int n   (Input) 
Number of rows and columns in the matrix. 

f_complex a[]   (Input) 
Array of size (nlca + nuca + 1) � n containing the n � n banded coefficient 
matrix in band storage mode. 

int nlca   (Input) 
Number of lower codiagonals in a. 

int nuca   (Input) 
Number of upper codiagonals in a. 

f_complex b[] (Input) 
Array of size n containing the right-hand side. 

Return Value 
A pointer to the solution x of the linear system Ax = b. To release this space use free. 
If no solution was computed, NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
f_complex *imsl_c_lin_sol_gen_band (int n, f_complex a[],  

int nlca, int nuca, f_complex b[], 
IMSL_TRANSPOSE, 
IMSL_RETURN_USER, f_complex x[], 
IMSL_FACTOR, int **p_pvt, f_complex **p_factor, 
IMSL_FACTOR_USER, int pvt[], f_complex factor[], 
IMSL_CONDITION, float *condition, 
IMSL_FACTOR_ONLY, 
IMSL_SOLVE_ONLY, 
0) 
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Optional Arguments 
IMSL_TRANSPOSE 

Solve AHx = b 
Default: Solve Ax = b. 

IMSL_RETURN_USER, f_complex x[]  (Output) 
A user-allocated array of length n containing the solution x. 

IMSL_FACTOR, int **p_pvt, f_complex **p_factor   (Output) 
p_pvt: The address of a pointer to an array of length n containing the pivot 
sequence for the factorization. On return, the necessary space is allocated by 
imsl_c_lin_sol_gen_band. Typically, int *p_pvt is declared and 
&p_pvt is used as an argument. 
p_factor: The address of a pointer to an array of size  
(2nlca + nuca + 1) � n containing the LU factorization of A with column 
pivoting. On return, the necessary space is allocated by 
imsl_c_lin_sol_gen_band. Typically, f_complex *p_factor is declared 
and &p_factor is used as an argument. 

IMSL_FACTOR_USER, int pvt[], f_complex factor[]   (Input/Output) 
pvt[]: A user-allocated array of size n containing the pivot sequence for the 
factorization. 
factor[]: A user-allocated array of size (2nlca + nuca + 1) � n containing 
the LU factorization of A. If A is not needed, factor and a can share the first 
(nlca + nuca + 1) � n locations. 
These parameters are “Input” if IMSL_SOLVE_ONLY is specified. They are 
“Output” otherwise. 

IMSL_CONDITION, float *condition   (Output) 
A pointer to a scalar containing an estimate of the L1 norm condition number 
of the matrix A. This option cannot be used with the option 
IMSL_SOLVE_ONLY. 

IMSL_FACTOR_ONLY 
Compute the LU factorization of A with partial pivoting. If 
IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER  
is required. The argument b is then ignored, and the returned value of 
imsl_c_lin_sol_gen_band is NULL. 

IMSL_SOLVE_ONLY 
Solve Ax = b given the LU factorization previously computed by 
imsl_c_lin_sol_gen_band. By default, the solution to Ax = b is pointed to 
by imsl_c_lin_sol_gen_band. If IMSL_SOLVE_ONLY is used, argument 
IMSL_FACTOR_USER is required and argument a is ignored. 

Description 
The function imsl_c_lin_sol_gen_band solves a system of linear algebraic 
equations with a complex band matrix A. It first computes the LU factorization of A 



 

 
 

using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting in that 
the pivoting strategy is the same as if each row were scaled to have the same L¥ norm. 
The factorization fails if U has a zero diagonal element. This can occur only if  
A is singular or very close to a singular matrix. 

The solution of the linear system is then found by solving two simpler systems,  
y = L-1b and x = U-1y. When the solution to the linear system or the inverse of the matrix 
is sought, an estimate of the L1 condition number of A is computed using Higham’s 
modifications to Hager’s method, as given in Higham (1988). If the estimated condition 
number is greater than 1/
 (where 
 is the machine precision), a warning message is 
issued. This indicates that very small changes in A may produce large changes in the 
solution x. The function imsl_c_lin_sol_gen_band fails if U, the upper triangular 
part of the factorization, has a zero diagonal element. The function 
imsl_c_lin_sol_gen_band is based on the LINPACK subroutine CGBFA; see 
Dongarra et al. (1979). CGBFA uses unscaled partial pivoting. 

Examples 

Example 1 
The following linear system is solved: 
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#include <imsl.h> 
 
void main() 
{ 
        int          n = 4; 
        int          nlca = 1; 
        int          nuca = 1; 
        f_complex    *x; 
 
                     /* Note that a is in band storage mode */ 
 
        f_complex    a[] = 
                {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0}, 
                {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0}, 
                {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}}; 
 
        f_complex    b[] =  
                {{-10.0, -5.0}, {9.5, 5.5}, {12.0, -12.0}, {0.0, 8.0}}; 
 
        x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b, 0); 
 
        imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0);  



 

 
 

34 � lin_sol_gen_band (complex) IMSL C/Math/Library 

 

 

 

Output 
  Solution, x, of Ax = b 
1  (         3,        -0) 
2  (        -1,         1) 
3  (         3,         0) 
4  (        -1,         1) 

Example 2 
This example solves the problem Ax = b using the data from the first example. This 
time, the factorizations are returned and then the problem AHx = b is solved without 
recomputing LU.  

#include <imsl.h> 

 

#include <stdlib.h> 
void main() 
{ 
        int            n = 4; 
        int            nlca = 1; 
        int            nuca = 1; 
        int           *pivot; 
        f_complex     *x; 
        f_complex     *factor; 
 
                        /* Note that a is in band storage mode */ 
 
        f_complex      a[] = 
                {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0}, 
                {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0}, 
                {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}}; 
        f_complex      b[] =  
                {{-10.0, -5.0}, {9.5, 5.5}, {12.0, -12.0}, {0.0, 8.0}}; 
 
                        /* Solve Ax = b and return LU */ 
 
        x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b, 
                IMSL_FACTOR, &pivot, &factor, 
                0); 
 
        imsl_c_write_matrix ("solution of Ax = b", n, 1, x, 0); 
        free (x); 
 
                        /* Use precomputed LU to solve ctrans(A)x = b */ 
 
        x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b, 
                IMSL_FACTOR_USER, pivot, factor, 
                IMSL_TRANSPOSE, 
                0); 
 
        imsl_c_write_matrix ("solution of ctrans(A)x = b", n, 1, x, 0); 
} 
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Output 
    solution of Ax = b 
1  (         3,        -0) 
2  (        -1,         1) 
3  (         3,         0) 
4  (        -1,         1) 
  
solution of ctrans(A)x = b 
1  (      5.58,     -2.91) 
2  (     -0.48,     -4.67) 
3  (     -6.19,      7.15) 
4  (     12.60,     30.20) 

Warning Errors 
IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of 

the  reciprocal of its L1 condition number is  
“rcond” = #. The solution might not be accurate. 

Fatal Errors 
IMSL_SINGULAR_MATRIX The input matrix is singular. 

lin_sol_posdef_band 
Solves a real symmetric positive definite system of linear equations Ax = b in band 
symmetric storage mode. Using optional arguments, any of several related computations 
can be performed. These extra tasks include computing the RTR Cholesky factorization 
of A, computing the solution of Ax = b given the Cholesky factorization of A, or 
estimating the L1 condition number of A. 

Synopsis 

#include <imsl.h> 

float *imsl_f_lin_sol_posdef_band (int n, float a[], int ncoda, float b[], 
…, 0) 

The type double procedure is imsl_d_lin_sol_posdef_band. 

Required Arguments 

int n   (Input) 
Number of rows and columns in the matrix. 

float a[]   (Input) 
Array of size (ncoda + 1) � n containing the n � n positive definite band 
coefficient matrix in band symmetric storage mode. 

int ncoda   (Input) 
Number of upper codiagonals of the matrix. 
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float b[]   (Input) 
Array of size n containing the right-hand side. 

Return Value 
A pointer to the solution x of the linear system Ax = b. To release this space use free. 
If no solution was computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 

float *imsl_f_lin_sol_posdef_band (int n, float a[], int ncoda, float b[], 
IMSL_RETURN_USER, float x[], 
IMSL_FACTOR, float **p_factor, 
IMSL_FACTOR_USER, float factor[], 
IMSL_CONDITION, float *cond, 
IMSL_FACTOR_ONLY, 
IMSL_SOLVE_ONLY, 
0) 

Optional Arguments 
IMSL_RETURN_USER, float x[]   (Output) 

A user-allocated array of length n containing the solution x. 

IMSL_FACTOR, float **p_factor   (Output) 
The address of a pointer to an array of size (ncoda + 1) � n containing the  
LLT factorization of A. On return, the necessary space is allocated by 
imsl_f_lin_sol_posdef_band. Typically, float *p_factor is declared 
and &p_factor is used as an argument. 

IMSL_FACTOR_USER, float factor[]   (Input/Output) 
A user-allocated array of size (ncoda + 1) � n containing the LLT factorization 
of A in band symmetric form. If A is not needed, factor and a can share the 
same storage. 
These parameters are “Input” if IMSL_SOLVE is specified. They are “Output” 
otherwise. 

IMSL_CONDITION, float *cond   (Output) 
A pointer to a scalar containing an estimate of the L1 norm condition number 
of the matrix A. This option cannot be used with the option 
IMSL_SOLVE_ONLY. 

IMSL_FACTOR_ONLY 
Compute the LLT factorization of A. If IMSL_FACTOR_ONLY is used, either 
IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then 
ignored, and the returned value of imsl_f_lin_sol_posdef_band is NULL. 

IMSL_SOLVE_ONLY 
Solve Ax = b given the LLT factorization previously computed by 



 

 
 

imsl_f_lin_sol_posdef_band. By default, the solution to Ax = b is 
pointed to by imsl_f_lin_sol_posdef_band. If IMSL_SOLVE_ONLY is 
used, argument IMSL_FACTOR_USER is required and the argument a is 
ignored. 

Description 
The function imsl_f_lin_sol_posdef_band solves a system of linear algebraic 
equations with a real symmetric positive definite band coefficient matrix A. It computes 
the RTR Cholesky factorization of A. R is an upper triangular band matrix. 

When the solution to the linear system or the inverse of the matrix is sought, an 
estimate of the L1 condition number of A is computed using Higham’s modifications to 
Hager’s method, as given in Higham (1988). If the estimated condition number is 
greater than 1/
 (where 
 is the machine precision), a warning message is issued. This 
indicates that very small changes in A may produce large changes in the solution x. 

The function imsl_f_lin_sol_posdef_band fails if any submatrix of R is not 
positive definite or if R has a zero diagonal element. These errors occur only if A is 
very close to a singular matrix or to a matrix which is not positive definite. 

The function imsl_f_lin_sol_posdef_band is partially based on the LINPACK 
subroutines CPBFA and SPBSL; see Dongarra et al. (1979). 

Example 1 
Solves a system of linear equations Ax = b, where 

2 0 1 0 6
0 4 2 1 11
1 2 7 1 11

0 1 1 3 19

A b
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#include <imsl.h> 
 
void main() 
{ 
        int         n = 4; 
        int         ncoda = 2; 
        float      *x; 
 
                        /* Note that a is in band storage mode */ 
 
        float       a[] = {0.0, 0.0, -1.0, 1.0, 
                           0.0, 0.0, 2.0, -1.0, 
                           2.0, 4.0, 7.0, 3.0}; 
        float       b[] = {6.0, -11.0, -11.0, 19.0}; 
 
        x = imsl_f_lin_sol_posdef_band (n, a, ncoda, b, 0); 
 
        imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0); 
} 
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Output 
            Solution, x, of Ax = b 
         1           2           3           4 
         4          -6           2           9 

Example 2 
This example solves the same problem Ax = b given in the first example. The solution 
is returned in user-allocated space and an estimate of �1(A) is computed. Additionally, 
the RTR factorization is returned. Then, knowing that �1(A) = ||A|| ||A-1||, the condition 
number is computed directly and compared to the estimate from Higham’s method. 

#include <imsl.h> 
 
void main() 
{ 
        int         n = 4; 
        int         ncoda = 2; 
        float       a[] = {0.0, 0.0, -1.0, 1.0, 
                           0.0, 0.0, 2.0, -1.0, 
                           2.0, 4.0, 7.0, 3.0}; 
        float       b[] = {6.0, -11.0, -11.0, 19.0}; 
        float       x[4]; 
        float       e_i[4]; 
        float      *factor; 
        float       condition; 
        float       column_norm; 
        float       inverse_norm; 
        int         i; 
        int         j; 
 
        imsl_f_lin_sol_posdef_band (n, a, ncoda, b, 
                IMSL_FACTOR, &factor, 
                IMSL_CONDITION, &condition, 
                IMSL_RETURN_USER, x, 
                0); 
 
        imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0); 
 
                        /*  find one norm of inverse */ 
 
        inverse_norm = 0.0; 
        for (i=0; i<n; i++) { 
                for (j=0; j<n; j++) e_i[j] = 0.0; 
                e_i[i] = 1.0; 
 
                        /*  determine one norm of each column of inverse */ 
 
                imsl_f_lin_sol_posdef_band (n, a, ncoda, e_i, 
                        IMSL_FACTOR_USER, factor, 
                        IMSL_SOLVE_ONLY, 
                        IMSL_RETURN_USER, x, 
                        0); 
                column_norm = imsl_f_vector_norm (n, x,  
                        IMSL_ONE_NORM, 
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                        0); 
 
                        /*  the max of the column norms is the norm of 
                            inv(A) */ 
 
                if (inverse_norm < column_norm) 
                        inverse_norm = column_norm; 
        } 
 
                        /*  by observation, one norm of A is 11 */ 
 
        printf ("\nHigham’s condition estimate = %f\n", condition); 
        printf ("Direct condition estimate   = %f\n", 
                11.0*inverse_norm); 
} 

Output  
            Solution, x, of Ax = b 
         1           2           3           4 
         4          -6           2           9 
 
Higham’s condition estimate = 8.650485 
Direct condition estimate   = 8.650485 

Warning Errors 
IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of 

the  reciprocal of its L1 condition number is  
"rcond" = #. The solution might not be accurate. 

Fatal Errors 
IMSL_NONPOSITIVE_MATRIX The leading # by # submatrix of the input matrix is 

not positive definite. 

IMSL_SINGULAR_MATRIX The input matrix is singular. 

lin_sol_posdef_band (complex) 
Solves a complex Hermitian positive definite system of linear equations  
Ax = b in band symmetric storage mode. Using optional arguments, any of several 
related computations can be performed. These extra tasks include computing the  
RHR Cholesky factorization of A, computing the solution of Ax = b given the  
Cholesky factorization of A, or estimating the L1 condition number of A. 

Synopsis 

#include <imsl.h> 

f_complex *imsl_c_lin_sol_posdef_band (int n, f_complex a[], int ncoda, 
f_complex b[], …, 0) 

The type double procedure is imsl_z_lin_sol_posdef_band. 
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Required Arguments 

int n   (Input) 
Number of rows and columns in the matrix. 

f_complex a[]   (Input) 
Array of size (ncoda + 1) � n containing the n � n positive definite band 
coefficient matrix in band symmetric storage mode. 

int ncoda   (Input) 
Number of upper codiagonals of the matrix. 

f_complex b[]   (Input) 
Array of size n containing the right-hand side. 

Return Value 
A pointer to the solution x of the linear system Ax = b. To release this space use free. 
If no solution was computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 

f_complex *imsl_c_lin_sol_posdef_band (int n, f_complex a[], int ncoda, 
f_complex b[], 
IMSL_RETURN_USER, f_complex x[], 
IMSL_FACTOR, f_complex **p_factor, 
IMSL_FACTOR_USER, f_complex factor[], 
IMSL_CONDITION, float *condition, 
IMSL_FACTOR_ONLY, 
IMSL_SOLVE_ONLY, 
0) 

Optional Arguments 
IMSL_RETURN_USER, f_complex x[]   (Output) 

A user-allocated array of length n containing the solution x. 

IMSL_FACTOR, f_complex **p_factor   (Output) 
The address of a pointer to an array of size (ncoda + 1) � n containing the 
RHR factorization of A. On return, the necessary space is allocated by 
imsl_c_lin_sol_posdef_band. Typically, f_complex *p_factor is 
declared and &p_factor is used as an argument. 

IMSL_FACTOR_USER, f_complex factor[]   (Input/Output) 
A user-allocated array of size (ncoda + 1) � n containing the RHR 
factorization of A in band symmetric form. If A is not needed, factor and a 
can share the same storage. 
These parameters are “Input” if IMSL_SOLVE is specified. They are “Output” 
otherwise. 



 

 
 

IMSL_CONDITION, float *condition   (Output) 
A pointer to a scalar containing an estimate of the L1 norm condition number 
of the matrix A. This option cannot be used with the option 
IMSL_SOLVE_ONLY. 

IMSL_FACTOR_ONLY 
Compute the RHR factorization of A. If IMSL_FACTOR_ONLY is used, either 
IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then 
ignored, and the returned value of imsl_c_lin_sol_posdef_band is NULL. 

IMSL_SOLVE_ONLY 
Solve Ax = b given the RHR factorization previously computed by 
imsl_c_lin_sol_posdef_band. By default, the solution to Ax = b is 
pointed to by imsl_c_lin_sol_posdef_band. If IMSL_SOLVE_ONLY is 
used, argument IMSL_FACTOR_USER is required and the argument a is 
ignored. 

Description 
The function imsl_c_lin_sol_posdef_band solves a system of linear algebraic 
equations with a real symmetric positive definite band coefficient matrix A. It computes 
the RHR Cholesky factorization of A. Argument R is an upper triangular band matrix. 

When the solution to the linear system or the inverse of the matrix is sought, an 
estimate of the L1 condition number of A is computed using Higham’s modifications to 
Hager’s method, as given in Higham (1988). If the estimated condition number is 
greater than 1/
 (where 
 is the machine precision), a warning message is issued. This 
indicates that very small changes in A may produce large changes in the solution x. 

The function imsl_c_lin_sol_posdef_band fails if any submatrix of R is not positive 
definite or if R has a zero diagonal element. These errors occur only if A is very close to a 
singular matrix or to a matrix which is not positive definite. 

The function imsl_c_lin_sol_posdef_band is based partially on the LINPACK 
subroutines SPBFA and CPBSL; see Dongarra et al. (1979). 

Examples 

Example 1 
Solve a linear system Ax = b where  

2 1 0 0 0
1 4 1 2 0 0
0 1 2 10 4 0
0 0 4 6 1
0 0 0 1 9
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#include <imsl.h> 
 
void main() 
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{ 
        int         n = 5; 
        int         ncoda = 1; 
        f_complex  *x; 
 
                        /* Note that a is in band storage mode */ 
 
        f_complex   a[] = 
                    {{0.0, 0.0}, {-1.0, 1.0}, {1.0, 2.0}, {0.0, 4.0}, 
                        {1.0, 1.0}, 
                    {2.0, 0.0}, {4.0, 0.0}, {10.0, 0.0}, {6.0, 0.0}, 
                        {9.0, 0.0}}; 
        f_complex   b[] = 
                    {{1.0, 5.0}, {12.0, -6.0}, {1.0, -16.0},{-3.0, -3.0}, 
                        {25.0, 16.0}}; 
 
        x = imsl_c_lin_sol_posdef_band (n, a, ncoda, b, 0); 
 
        imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0); 
} 

Output 
  Solution, x, of Ax = b 
1  (         2,         1) 
2  (         3,        -0) 
3  (        -1,        -1) 
4  (         0,        -2) 
5  (         3,         2) 

Example 2 
This example solves the same problem Ax = b given in the first example. The solution 
is returned in user-allocated space and an estimate of �1(A) is computed. Additionally, 
the RHR factorization is returned. Then, knowing that �1(A) = ||A|| ||A-1||, the condition 
number is computed directly and compared to the estimate from Higham’s method. 

#include <imsl.h> 
#include <math.h> 
 
void main() 
{ 
        int         n = 5; 
        int         ncoda = 1; 
 
                        /* Note that a is in band storage mode */ 
 
        f_complex   a[] = 
                    {{0.0, 0.0}, {-1.0, 1.0}, {1.0, 2.0}, {0.0, 4.0}, 
                        {1.0, 1.0}, 
                    {2.0, 0.0}, {4.0, 0.0}, {10.0, 0.0}, {6.0, 0.0}, 
                        {9.0, 0.0}}; 
        f_complex   b[] = 
                    {{1.0, 5.0}, {12.0, -6.0}, {1.0, -16.0},{-3.0, -3.0}, 
                        {25.0, 16.0}}; 
        f_complex   x[5]; 
        f_complex   e_i[5]; 
        f_complex  *factor; 
        float       condition; 
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        float       column_norm; 
        float       inverse_norm; 
        int         i; 
        int         j; 
 
        imsl_c_lin_sol_posdef_band (n, a, ncoda, b, 
                IMSL_FACTOR, &factor, 
                IMSL_CONDITION, &condition, 
                IMSL_RETURN_USER, x, 
                0); 
 
        imsl_c_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0); 
 
                        /*  Find one norm of inverse */ 
 
        inverse_norm = 0.0; 
        for (i=0; i<n; i++) { 
                for (j=0; j<n; j++) e_i[j] = imsl_cf_convert (0.0, 0.0); 
                e_i[i] = imsl_cf_convert (1.0, 0.0); 
 
                        /*  Determine one norm of each column of inverse */ 
 
                imsl_c_lin_sol_posdef_band (n, a, ncoda, e_i, 
                        IMSL_FACTOR_USER, factor, 
                        IMSL_SOLVE_ONLY, 
                        IMSL_RETURN_USER, x, 
                        0); 
 
                column_norm = imsl_c_vector_norm (n, x,  
                        IMSL_ONE_NORM, 
                        0); 
 
                        /*  The max of the column norms is the 
                            norm of inv(A) */ 
 
                if (inverse_norm < column_norm) 
                        inverse_norm = column_norm; 
        } 
 
                        /*  By observation, one norm of A is 14+sqrt(5) */ 
 
        printf ("\nHigham’s condition estimate = %7.4f\n", condition); 
        printf ("Direct condition estimate   = %7.4f\n", 
                (14.0+sqrt(5.0))*inverse_norm); 
} 

Output 
                         Solution, x, of Ax = b 
                      1                        2                        3 
(         2,         1)  (         3,        -0)  (        -1,        -1) 
  
                      4                        5 
(         0,        -2)  (         3,         2) 
 
Higham’s condition estimate = 19.3777 
Direct condition estimate   = 19.3777 
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Warning Errors 
IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of 

the  reciprocal of its L1 condition number is "rcond" = #. 
The solution might not be accurate. 

Fatal Errors 
IMSL_NONPOSITIVE_MATRIX The leading # by # submatrix of the input matrix is 

not positive definite. 

IMSL_SINGULAR_MATRIX The input matrix is singular. 

lin_sol_gen_coordinate 
Solves a sparse system of linear equations Ax = b. Using optional arguments, any of 
several related computations can be performed. These extra tasks include returning the 
LU factorization of A computing the solution of Ax = b given an LU factorization 
setting drop tolerances, and controlling iterative refinement. 

Synopsis 

#include <imsl.h> 

float *imsl_f_lin_sol_gen_coordinate (int n, int nz, Imsl_f_sparse_elem 
*a, float *b, ..., 0) 

The type double function is imsl_d_lin_sol_gen_coordinate. 

Required Arguments 

int n   (Input) 
Number of rows in the matrix. 

int nz   (Input) 
Number of nonzeros in the matrix. 

Imsl_f_sparse_elem *a   (Input) 
Vector of length nz containing the location and value of each nonzero entry in 
the matrix. 

float *b   (Input) 
Vector of length n containing the right-hand side. 

Return Value 
A pointer to the solution x of the sparse linear system Ax = b. To release this space, use 
free. If no solution was computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
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float *imsl_f_lin_sol_gen_coordinate (int n, int nz, Imsl_f_sparse_elem 
*a, float *b, 
IMSL_RETURN_SPARSE_LU_FACTOR,  
 Imsl_f_sparse_lu_factor *lu_factor, 
IMSL_SUPPLY_SPARSE_LU_FACTOR,  
 Imsl_f_sparse_lu_factor *lu_factor, 
IMSL_FREE_SPARSE_LU_FACTOR, 
IMSL_RETURN_SPARSE_LU_IN_COORD,  
 Imsl_f_sparse_elem **lu_coordinate, 
 int **row_pivots, int **col_pivots, 
IMSL_SUPPLY_SPARSE_LU_IN_COORD,  
 Imsl_f_sparse_elem *lu_coordinate, int *row_pivots, 
 int *col_pivots, 
IMSL_FACTOR_ONLY, 
IMSL_SOLVE_ONLY, 
IMSL_RETURN_USER, float x[], 
IMSL_TRANSPOSE, 
IMSL_CONDITION, float *condition, 
IMSL_PIVOTING_STRATEGY, Imsl_pivot method, 
IMSL_NUM_OF_SEARCH_ROWS, int num_search_row, 
IMSL_ITERATIVE_REFINEMENT, 
IMSL_DROP_TOLERANCE, float tolerance, 
IMSL_HYBRID_FACTORIZATION, float density,  
 int order_bound, 
IMSL_STABILITY_FACTOR, float s_factor, 
IMSL_GROWTH_FACTOR_LIMIT, float gf_limit, 
IMSL_GROWTH_FACTOR, float *gf, 
IMSL_SMALLEST_PIVOT, float *small_pivot 
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros, 
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind,  
 float *values, 
IMSL_MEMORY_BLOCK_SIZE, int block_size, 
0) 

Optional Arguments 
IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_f_sparse_lu_factor *lu_factor   

(Output) 
The address of a structure of type Imsl_f_sparse_lu_factor. The pointers 
within the structure are initialized to point to the LU factorization by 
imsl_f_lin_sol_gen_coordinate. 

IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_f_sparse_lu_factor *lu_factor (Input)  
The address of a structure of type Imsl_f_sparse_lu_factor. This structure 
contains the LU factorization of the input matrix computed by 
imsl_f_lin_sol_gen_coordinate with the 
IMSL_RETURN_SPARSE_LU_FACTOR option. 
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IMSL_FREE_SPARSE_LU_FACTOR,  
Before returning, free the linked list data structure containing the  
LU factorization of A. Use this option only if the factors are no longer required. 

IMSL_RETURN_SPARSE_LU_IN_COORD,  
Imsl_f_sparse_elem **lu_coordinate, int **row_pivots, 
int **col_pivots   (Output) 
The LU factorization is returned in coordinate form. This is more compact 
than the internal representation encapsulated in Imsl_f_sparse_lu. The 
disadvantage is that during a SOLVE_ONLY call, the internal representation of 
the factor must be reconstructed. If however, the factor is to be stored after the 
program exits, and loaded again at some subsequent run, the combination of 
IMSL_RETURN_LU_IN_COORD and IMSL_SUPPLY_LU_IN_COORD is probably 
the best choice, since the factors are in a format that is simple to store and 
read. 

IMSL_SUPPLY_SPARSE_LU_IN_COORD,  
Imsl_f_sparse_elem *lu_coordinate, int *row_pivots, 
int *col_pivots   (Output) 
Supply the LU factorization in coordinate form. See 
IMSL_RETURN_SPARSE_LU_IN_COORD for a description. 

IMSL_FACTOR_ONLY, 
Compute the LU factorization of the input matrix and return. The argument b 
is ignored. 

IMSL_SOLVE_ONLY, 
Solve Ax = b given the LU factorization of A. This option requires the use of 
option IMSL_SUPPLY_SPARSE_LU_FACTOR or 
IMSL_SUPPLY_SPARSE_LU_IN_COORD. 

IMSL_RETURN_USER, float x[]   (Output) 
A user-allocated array of length n containing the solution x. 

IMSL_TRANSPOSE, 
Solve the problem ATx = b. This option can be used in conjunction with either 
of the options that supply the factorization. 

IMSL_CONDITION, float *condition, 
Estimate the L1 condition number of A and return in the variable condition. 

IMSL_PIVOTING_STRATEGY, Imsl_pivot method   (Input) 
Select the pivoting strategy by setting method to one of the following: 
IMSL_ROW_MARKOWITZ, IMSL_COLUMN_MARKOWITZ, or 
IMSL_SYMMETRIC_MARKOWITZ. 
Default: IMSL_SYMMETRIC_MARKOWITZ. 

IMSL_NUM_OF_SEARCH_ROWS, int num_search_row   (Input) 
The number of rows which have the least number of nonzero elements that 
will be searched for a pivot element. 
Default: num_search_row = 3 
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IMSL_ITERATIVE_REFINEMENT, 
Select this option if iterative refinement is desired. 

IMSL_DROP_TOLERANCE, float tolerance   (Input) 
Possible fill-in is checked against tolerance. If the absolute value of the new 
element is less than tolerance, it will be discarded. 
Default: tolerance = 0.0 

IMSL_HYBRID_FACTORIZATION, float density, int order_bound, 
Enable the function to switch to a dense factorization method when the density 
of the active submatrix reaches 0.0 � density � 1.0 and the order of the 
active submatrix is less than or equal to order_bound. 

IMSL_STABILITY_FACTOR, float s_factor   (Input) 
The absolute value of the pivot element must be bigger than the largest 
element in absolute value in its row divided by s_factor. 
Default: s_factor = 10.0 

IMSL_GROWTH_FACTOR_LIMIT, float gf_limit   (Input) 
The computation stops if the growth factor exceeds gf_limit. 
Default: gf_limit = 1.0e16 

IMSL_GROWTH_FACTOR, float *gf   (Output) 
Argument gf is calculated as the largest element in absolute value at any stage 
of the Gaussian elimination divided by the largest element in absolute value in 
A. 

IMSL_SMALLEST_PIVOT, float *small_pivot   (Output) 
A pointer to the value of the pivot element of smallest magnitude that occurred 
during the factorization. 

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros   (Output) 
A pointer to a scalar containing the total number of nonzeros in the factor. 

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values   (Input) 
Accept the coefficient matrix in compressed sparse column (CSC) format.  
See the main “Introduction” chapter of this manual for a discussion of this 
storage scheme. 

IMSL_MEMORY_BLOCKSIZE, int blocksize   (Input) 
If space must be allocated for fill-in, allocate enough space for blocksize 
new nonzero elements. 
Default: blocksize = nz 

Description 
The function imsl_f_lin_sol_gen_coordinate (page 44) solves a system of linear 
equations Ax = b, where A is sparse. In its default use, it solves the so-called one off 
problem, by first performing an LU factorization of A using the improved generalized 
symmetric Markowitz pivoting scheme. The factor L is not stored explicitly because the 
saxpy operations performed during the elimination are extended to the right-hand side, 
along with any row interchanges. Thus, the system Ly = b is solved implicitly. The 
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factor U is then passed to a triangular solver which computes the solution x from  
Ux = y. 

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually 
more efficient to compute the factorization once, and perform multiple forward and 
back solves with the various right-hand sides. In this case, the factor L is explicitly 
stored and a record of all row as well as column interchanges is made. The solve step 
then solves the two triangular systems Ly = b and Ux = y. The user specifies either the 
IMSL_RETURN_SPARSE_LU_FACTOR or the IMSL_RETURN_LU_IN_COORD option to 
retrieve the factorization, then calls the function subsequently with different right-hand 
sides, passing the factorization back in using either  
IMSL_SUPPLY_SPARSE_LU_FACTOR or IMSL_SUPPLY_SPARSE_LU_IN_COORD in 
conjunction with IMSL_SOLVE_ONLY. If IMSL_RETURN_SPARSE_LU_FACTOR is used, 
the final call to imsl_lin_sol_gen_coordinate should include 
IMSL_FREE_SPARSE_LU_FACTOR to release the heap used to store L and U. 

If the solution to ATx = b is required, specify the option IMSL_TRANSPOSE. This 
keyword only alters the forward elimination and back substitution so that the operations 
UTy = b and LTx = y are performed to obtain the solution. So, with one call to produce 
the factorization, solutions to both Ax = b and ATx = b can be obtained.  

The option IMSL_CONDITION is used to calculate and return an estimation of the  
L1 condition number of A. The algorithm used is due to Higham. Specification of 
IMSL_CONDITION causes a complete L to be computed and stored, even if a one off 
problem is being solved. This is due to the fact that Higham’s method requires solution 
to problems of the form Az = r and ATz = r. 

The default pivoting strategy is symmetric Markowitz. If a row or column oriented 
problem is encountered, there may be some reduction in fill-in by selecting either 
IMSL_ROW_MARKOWITZ or IMSL_COLUMN_MARKOWITZ. The Markowitz strategy will 
search a pre-elected number of row or columns for pivot candidates. The default 
number is three, but this can be changed by using IMSL_NUM_OF_SEARCH_ROWS. 

The option IMSL_DROP_TOLERANCE can be used to set a tolerance which can reduce 
fill-in. This works by preventing any new fill element which has magnitude less than the 
specified drop tolerance from being added to the factorization. Since this can introduce 
substantial error into the factorization, it is recommended that 
IMSL_ITERATIVE_REFINEMENT be used to recover more accuracy in the final 
solution. The trade-off is between space savings from the drop tolerance and the extra 
time needed in repeated solve steps needed for refinement.  

The function imsl_f_lin_sol_gen_coordinate (page 44)  provides the option of 
switching to a dense factorization method at some point during the decomposition. This 
option is enabled by choosing IMSL_HYBRID_FACTORIZATION. One of the two 
parameters required by this option, density, specifies a minimum density for the 
active submatrix before a format switch will occur. A density of 1.0 indicates complete 
fill-in. The other parameter, order_bound, places an upper bound of the order of the 
active submatrix which will be converted to dense format. This is used to prevent a 
switch from occurring too early, possibly when the O(n3) nature of the dense factoriza-



 

 
 

tion will cause performance degradation. Note that this option can significantly increase 
heap storage requirements. 

Examples 

Example 1 
As an example, consider the following matrix: 

10 0 0 0 0 0
0 10 3 1 0 0
0 0 15 0 0 0
2 0 0 10 1 0
1 0 0 5 1 3
1 2 0 0 0 6

A

� �
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� �
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Let xT = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33, �34, 31)T. The number of 
nonzeros in A is nz = 15. 

#include <imsl.h> 

#include <stdlib.h> 
main() 
{ 
        Imsl_f_sparse_elem a[] = {0, 0, 10.0, 
                                1, 1, 10.0, 
                                1, 2, -3.0, 
                                1, 3, -1.0, 
                                2, 2, 15.0, 
                                3, 0, -2.0, 
                                3, 3, 10.0, 
                                3, 4, -1.0, 
                                4, 0, -1.0, 
                                4, 3, -5.0, 
                                4, 4, 1.0, 
                                4, 5, -3.0, 
                                5, 0, -1.0,  
                                5, 1, -2.0, 
                                5, 5, 6.0}; 
 
        float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0}; 
        int n = 6;                                          
        int nz = 15; 
        float *x; 
  
        x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b, 0); 
  
        imsl_f_write_matrix ("solution", 1, n, x, 0); 
  
        free (x); 
} 
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Output 
                               solution 
         1           2           3           4           5           6 
         1           2           3           4           5           6 

Example 2 
This examples sets A = E(1000, 10). A linear system is solved and the LU factorization 
returned. Then a second linear system is solved, using the same coefficient matrix A 
just factored. Maximum absolute errors and execution time ratios are printed, showing 
that forward and back solves take approximately 10 percent of the computation time of 
a factor and solve. This ratio can vary greatly, depending on the order of the coefficient 
matrix, the initial number of nonzeros, and especially on the amount of fill-in produced 
during the elimination. Be aware that timing results are highly machine dependent. 

#include <imsl.h> 
 

#include <stdlib.h> 
main() 
{ 
        Imsl_f_sparse_elem          *a; 
        Imsl_f_sparse_lu_factor      lu_factor; 
        float                       *b; 
        float                       *x; 
        float                       *mod_five; 
        float                       *mod_ten; 
        float                        error_factor_solve; 
        float                        error_solve; 
        double                       time_factor_solve; 
        double                       time_solve; 
        int                          n = 1000; 
        int                          c = 10; 
        int                          i; 
        int                          nz; 
        int                          index; 
 
                        /*  Get the coefficient matrix */ 
 
        a = imsl_f_generate_test_coordinate (n, c, &nz, 0); 
 
                        /*  Set two different predetermined solutions */ 
 
        mod_five = (float*) malloc (n*sizeof(*mod_five)); 
        mod_ten = (float*) malloc (n*sizeof(*mod_ten)); 
        for (i=0; i<n; i++) { 
                mod_five[i] = (float) (i % 5); 
                mod_ten[i] = (float) (i % 10); 
        } 
  
                        /*  Choose b so that x will approximate mod_five */ 
 
        b = imsl_f_mat_mul_rect_coordinate ("A*x", 
                IMSL_A_MATRIX, n, n, nz, a,  
                IMSL_X_VECTOR, n, mod_five, 
                0); 
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                        /*  Time the factor/solve */ 
 
        time_factor_solve = imsl_ctime(); 
        x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,  
                        IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor, 
                        0); 
        time_factor_solve = imsl_ctime() - time_factor_solve; 
 
                        /*  Compute max abolute error */ 
 
        error_factor_solve = imsl_f_vector_norm (n, x,  
                IMSL_SECOND_VECTOR, mod_five, 
                IMSL_INF_NORM, &index, 
                0); 
        free (mod_five); 
        free (b); 
        free (x); 
 
                        /*  Get new right hand side -- b = A * mod_ten */ 
 
        b = imsl_f_mat_mul_rect_coordinate ("A*x",  
                IMSL_A_MATRIX, n, n, nz, a,   
                IMSL_X_VECTOR, n, mod_ten,  
                0);  
 
                        /*  Use the previously computed factorization 
                            to solve Ax = b */ 
 
        time_solve = imsl_ctime(); 
        x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b, 
                IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor, 
                IMSL_SOLVE_ONLY, 
                0); 
        time_solve = imsl_ctime() - time_solve;  
        error_solve = imsl_f_vector_norm (n, x,   
                IMSL_SECOND_VECTOR, mod_ten,  
                IMSL_INF_NORM, &index,  
                0);  
        free (mod_ten); 
        free (b); 
        free (x); 
  
                        /*  Print errors and ratio of execution times */ 
 
        printf ("absolute error (factor/solve) = %e\n", 
                error_factor_solve); 
        printf ("absolute error (solve)        = %e\n", error_solve); 
        printf ("time_solve/time_factor_solve  = %f\n",  
                time_solve/time_factor_solve); 
} 

Output 
absolute error (factor/solve) = 9.179115e-05 
absolute error (solve)        = 2.160072e-04 
time_solve/time_factor_solve  = 0.093750 
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Example 3 
This example solves a system Ax = b, where A = E (500, 50). Then, the same system is 
solved using a large drop tolerance. Finally, using the factorization just computed, the 
same linear system is solved with iterative refinement. Be aware that timing results are 
highly machine dependent. 

#include <imsl.h> 

#include <stdlib.h> 

 
main() 
{ 
        Imsl_f_sparse_elem      *a; 
        Imsl_f_sparse_lu_factor  lu_factor; 
        float                   *b; 
        float                   *x; 
        float                   *mod_five; 
        float                    error_zero_drop_tol; 
        float                    error_nonzero_drop_tol; 
        float                    error_nonzero_drop_tol_IR; 
        double                   time_zero_drop_tol; 
        double                   time_nonzero_drop_tol; 
        double                   time_nonzero_drop_tol_IR; 
        int                      nz_nonzero_drop_tol; 
        int                      nz_zero_drop_tol; 
        int                      n = 500; 
        int                      c = 50; 
        int                      i; 
        int                      nz; 
        int                      index; 
 
                        /*  Get the coefficient matrix */ 
 
        a = imsl_f_generate_test_coordinate (n, c, &nz, 0); 
        for (i=0; i<nz; i++) a[i].val *= 0.05; 
 
                        /*  Set a predetermined solution */ 
 
        mod_five = (float*) malloc (n*sizeof(*mod_five)); 
        for (i=0; i<n; i++) 
                mod_five[i] = (float) (i % 5); 
  
                        /*  Choose b so that x will approximate mod_five */ 
 
        b = imsl_f_mat_mul_rect_coordinate ("A*x", 
                IMSL_A_MATRIX, n, n, nz, a,  
                IMSL_X_VECTOR, n, mod_five, 
                0); 
 
                        /*  Time the factor/solve */ 
 
        time_zero_drop_tol = imsl_ctime(); 
        x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,  
                IMSL_NUM_NONZEROS_IN_FACTOR, &nz_zero_drop_tol, 
                0); 
        time_zero_drop_tol = imsl_ctime() - time_zero_drop_tol; 
 
                        /*  Compute max abolute error */ 



 

 
 

Chapter 1: Linear Systems lin_sol_gen_coordinate � 53 

 

 

 

 
        error_zero_drop_tol = imsl_f_vector_norm (n, x,  
                IMSL_SECOND_VECTOR, mod_five, 
                IMSL_INF_NORM, &index, 
                0); 
        free (x); 
 
                        /* Solve the same problem, with drop 
                           tolerance = 0.005 */ 
 
        time_nonzero_drop_tol = imsl_ctime(); 
        x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,  
                IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor, 
                IMSL_DROP_TOLERANCE, 0.005, 
                IMSL_NUM_NONZEROS_IN_FACTOR, &nz_nonzero_drop_tol, 
                0); 
        time_nonzero_drop_tol = imsl_ctime() - time_nonzero_drop_tol; 
 
                        /*  Compute max abolute error */ 
 
        error_nonzero_drop_tol = imsl_f_vector_norm (n, x,  
                IMSL_SECOND_VECTOR, mod_five, 
                IMSL_INF_NORM, &index, 
                0); 
        free (x); 
 
                        /* Solve the same problem with IR, use last 
                           factorization */ 
  
        time_nonzero_drop_tol_IR = imsl_ctime(); 
        x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,  
                IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,  
                IMSL_SOLVE_ONLY, 
                IMSL_ITERATIVE_REFINEMENT, 
                0); 
        time_nonzero_drop_tol_IR = imsl_ctime() - time_nonzero_drop_tol_IR; 
 
                        /*  Compute max abolute error */ 
 
        error_nonzero_drop_tol_IR = imsl_f_vector_norm (n, x, 
                IMSL_SECOND_VECTOR, mod_five, 
                IMSL_INF_NORM, &index, 
                0); 
        free (x); 
        free (b); 
  
                        /*  Print errors and ratio of execution times */ 
 
        printf ("drop tolerance = 0.0\n"); 
        printf ("\tabsolute error = %e\n", error_zero_drop_tol); 
        printf ("\tfillin         = %d\n\n", nz_zero_drop_tol); 
 
        printf ("drop tolerance = 0.005\n"); 
        printf ("\tabsolute error = %e\n", error_nonzero_drop_tol); 
        printf ("\tfillin         = %d\n\n", nz_nonzero_drop_tol); 
 
        printf ("drop tolerance = 0.005 (with IR)\n"); 
        printf ("\tabsolute error = %e\n", error_nonzero_drop_tol_IR); 
        printf ("\tfillin         = %d\n\n", nz_nonzero_drop_tol); 
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        printf ("time_nonzero_drop_tol/time_zero_drop_tol  = %f\n",  
                time_nonzero_drop_tol/time_zero_drop_tol); 
        printf ("time_nonzero_drop_tol_IR/time_zero_drop_tol  = %f\n",  
                time_nonzero_drop_tol_IR/time_zero_drop_tol); 
} 

Output 
drop tolerance = 0.0 
        absolute error = 3.814697e-06 
        fillin         = 9530 
 
drop tolerance = 0.005 
        absolute error = 2.699481e+00 
        fillin         = 8656 
 
drop tolerance = 0.005 (with IR) 
        absolute error = 1.907349e-06 
        fillin         = 8656 
 
time_nonzero_drop_tol/time_zero_drop_tol  = 1.086957 
time_nonzero_drop_tol_IR/time_zero_drop_tol  = 0.840580 

Notice the absolute error when iterative refinement is not used. Also note that iterative 
refinement itself can be quite expensive. In this case, for example, the IR solve took 
approximately as much time as the factorization. For this problem the use of a drop 
high drop tolerance and iterative refinement was able to reduce fill-in by 10 percent at a 
time cost double that of the default usage. In tight memory situations, such a trade-off 
may be acceptable. Users should be aware that a drop tolerance can be chosen large 
enough, introducing large errors into LU, to prevent convergence of iterative 
refinement. 

lin_sol_gen_coordinate (complex) 
Solves a system of linear equations Ax = b, with sparse complex coefficient matrix A. 
Using optional arguments, any of several related computations can be performed. These 
extra tasks include returning the LU factorization of A, computing the solution of  
Ax = b given an LU factorization, setting drop tolerances, and controlling iterative 
refinement. 

Synopsis 

#include <imsl.h> 
f_complex *imsl_c_lin_sol_gen_coordinate (int n, int nz, 

Imsl_c_sparse_elem *a, f_complex *b, ..., 0) 

The type double function is imsl_z_lin_sol_gen_coordinate. 
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Required Arguments 

int n   (Input) 
Number of rows in the matrix. 

int nz   (Input) 
Number of nonzeros in the matrix. 

Imsl_c_sparse_elem *a   (Input) 
Vector of length nz containing the location and value of each nonzero entry in 
the matrix. 

f_complex *b   (Input) 
Vector of length n containing the right-hand side. 

Return Value 
A pointer to the solution x of the sparse linear system Ax = b. To release this space, use 
free. If no solution was computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
f_complex *imsl_c_lin_sol_gen_coordinate (int n, int nz, 

Imsl_c_sparse_elem *a, f_complex *b, 
IMSL_RETURN_SPARSE_LU_FACTOR,  
 Imsl_c_sparse_lu_factor *lu_factor, 
IMSL_SUPPLY_SPARSE_LU_FACTOR,  
 Imsl_c_sparse_lu_factor *lu_factor, 
IMSL_FREE_SPARSE_LU_FACTOR, 
IMSL_RETURN_SPARSE_LU_IN_COORD,  
 Imsl_c_sparse_elem **lu_coordinate, 
 int **row_pivots, int **col_pivots, 
IMSL_SUPPLY_SPARSE_LU_IN_COORD,  
 Imsl_c_sparse_elem *lu_coordinate, int *row_pivots,  
 int *col_pivots, 
IMSL_FACTOR_ONLY, 
IMSL_SOLVE_ONLY, 
IMSL_RETURN_USER, f_complex x[], 
IMSL_TRANSPOSE, 
IMSL_CONDITION, float *condition, 
IMSL_PIVOTING_STRATEGY, Imsl_pivot method, 
IMSL_NUM_OF_SEARCH_ROWS, int num_search_row, 
IMSL_ITERATIVE_REFINEMENT, 
IMSL_DROP_TOLERANCE, float tolerance, 
IMSL_HYBRID_FACTORIZATION, float density,  
 int order_bound, 
IMSL_GROWTH_FACTOR_LIMIT, float gf_limit, 
IMSL_GROWTH_FACTOR, float *gf, 
IMSL_SMALLEST_PIVOT, float *small_pivot 
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros, 
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IMSL_CSC_FORMAT, int *col_ptr, int *row_ind,  
 f_complex *values, 
IMSL_MEMORY_BLOCK_SIZE, int block_size, 
0) 

Optional Arguments 
IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_c_sparse_lu_factor *lu_factor   

(Output) 
The address of a structure of type Imsl_c_sparse_lu_factor. The pointers 
within the structure are initialized to point to the LU factorization by 
imsl_c_lin_sol_gen_coordinate. 

IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_c_sparse_lu_factor *lu_factor   
(Input) 
The address of a structure of type Imsl_c_sparse_lu_factor. This structure 
contains the LU factorization of the input matrix computed by 
imsl_c_lin_sol_gen_coordinate with the 
IMSL_RETURN_SPARSE_LU_FACTOR option. 

IMSL_FREE_SPARSE_LU_FACTOR,  
Before returning, free the linked list data structure containing the LU 
factorization of A. Use this option only if the factors are no longer required. 

IMSL_RETURN_SPARSE_LU_IN_COORD,  
Imsl_c_sparse_elem **lu_coordinate, int **row_pivots, 
int **col_pivots   (Output) 
The LU factorization is returned in coordinate form. This is more compact 
than the internal representation encapsulated in Imsl_c_sparse_lu. The 
disadvantage is that during a SOLVE_ONLY call, the internal representation of 
the factor must be reconstructed. If however, the factor is to be stored after the 
program exits, and loaded again at some subsequent run, the combination of 
IMSL_RETURN_LU_IN_COORD and IMSL_SUPPLY_LU_IN_COORD is probably 
the best choice, since the factors are in a format that is simple to store and 
read. 

IMSL_SUPPLY_SPARSE_LU_IN_COORD, Imsl_c_sparse_elem *lu_coordinate,  
int *row_pivots, int *col_pivots   (Output) 
Supply the LU factorization in coordinate form. See 
IMSL_RETURN_SPARSE_LU_IN_COORD for a description. 

IMSL_FACTOR_ONLY, 
Compute the LU factorization of the input matrix and return. The argument b 
is ignored. 

IMSL_SOLVE_ONLY, 
Solve Ax = b given the LU factorization of A. This option requires the use of 
option IMSL_SUPPLY_SPARSE_LU_FACTOR or 
IMSL_SUPPLY_SPARSE_LU_IN_COORD. 
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IMSL_RETURN_USER, f_complex x[]   (Output) 
A user-allocated array of length n containing the solution x. 

IMSL_TRANSPOSE, 
Solve the problem ATx = b. This option can be used in conjunction with either 
of the options that supply the factorization. 

IMSL_CONDITION, float *condition, 
Estimate the L1 condition number of A and return in the variable condition. 

IMSL_PIVOTING_STRATEGY, Imsl_pivot method   (Input) 
Select the pivoting strategy by setting method to one of the following: 
IMSL_ROW_MARKOWITZ, IMSL_COLUMN_MARKOWITZ, or 
IMSL_SYMMETRIC_MARKOWITZ. 
Default: IMSL_SYMMETRIC_MARKOWITZ. 

IMSL_NUM_OF_SEARCH_ROWS, int num_search_row   (Input) 
The number of rows which have the least number of nonzero elements that 
will be searched for a pivot element. 
Default: num_search_row = 3 

IMSL_ITERATIVE_REFINEMENT, 
Select this option if iterative refinement is desired. 

IMSL_DROP_TOLERANCE, float tolerance   (Input) 
Possible fill-in is checked against tolerance. If the absolute value of the new 
element is less than tolerance, it will be discarded. 
Default: tolerance = 0.0 

IMSL_HYBRID_FACTORIZATION, float density, int order_bound, 
Enable the code to switch to a dense factorization method when the density of 
the active submatrix reaches 0.0 � density � 1.0 and the order of the active 
submatrix is less than or equal to order_bound. 

IMSL_GROWTH_FACTOR_LIMIT, float gf_limit   (Input) 
The computation stops if the growth factor exceeds gf_limit. 
Default: gf_limit = 1.e16 

IMSL_GROWTH_FACTOR, float *gf   (Output) 
gf is calculated as the largest element in absolute value at any stage of the 
Gaussian elimination divided by the largest element in absolute value in A. 

IMSL_SMALLEST_PIVOT, float *small_pivot   (Output) 
A pointer to the value of the pivot element of smallest magnitude. 

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros   (Output) 
A pointer to a scalar containing the total number of nonzeros in the factor. 

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, f_complex *values (Input) 
Accept the coefficient matrix in compressed sparse column (CSC) format.  
See the main “Introduction” chapter at the beginning of this manual for a 
discussion of this storage scheme. 
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IMSL_FACTOR_RESIZE_INCREMENT, int increment   (Input) 
Supply the number of nonzeros which will be added to the factor if current 
allocations are inadequate. 
Default: increment = nz 

Description 
The function imsl_c_lin_sol_gen_coordinate (page 44)  solves a system of 
linear equations Ax = b, where A is sparse. In its default use, it solves the so-called one 
off problem, by first performing an LU factorization of A using the improved 
generalized symmetric Markowitz pivoting scheme. The factor L is not stored explicitly 
because the saxpy operations performed during the elimination are extended to the 
right-hand side, along with any row interchanges. Thus, the system Ly = b is solved 
implicitly. The factor U is then passed to a triangular solver which computes the 
solution x from Ux = y. 

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually 
more efficient to compute the factorization once, and perform multiple forward and 
back solves with the various right-hand sides. In this case the factor L is explicitly 
stored and a record of all row as well as column interchanges is made. The solve step 
then solves the two triangular systems Ly = b and Ux = y. The user specifies either the 
IMSL_RETURN_SPARSE_LU_FACTOR or the IMSL_RETURN_LU_IN_COORD option to 
retrieve the factorization, then calls the function subsequently with different right-hand 
sides, passing the factorization back in using either IMSL_SUPPLY_S-
PARSE_LU_FACTOR or IMSL_SUPPLY_SPARSE_LU_IN_COORD in conjunction with 
IMSL_SOLVE_ONLY. If IMSL_RETURN_SPARSE_LU_FACTOR is used, the final call to 
imsl_lin_sol_gen_coordinate should include IMSL_FREE_SPARSE_LU_FACTOR 
to release the heap used to store L and U. 

If the solution to ATx = b is required, specify the option IMSL_TRANSPOSE. This 
keyword only alters the forward elimination and back substitution so that the operations 
UTy = b and LTx = y are performed to obtain the solution. So, with one call to produce 
the factorization, solutions to both Ax = b and ATx = b can be obtained. 

The option IMSL_CONDITION is used to calculate and return an estimation of the  
L1 condition number of A. The algorithm used is due to Higham. Specification of 
IMSL_CONDITION causes a complete L to be computed and stored, even if a one off 
problem is being solved. This is due to the fact that Higham’s method requires solution 
to problems of the form Az = r and ATz = r. 

The default pivoting strategy is symmetric Markowitz. If a row or column oriented 
problem is encountered, there may be some reduction in fill-in by selecting either 
IMSL_ROW_MARKOWITZ or IMSL_COLUMN_MARKOWITZ. The Markowitz strategy will 
search a pre-elected number of row or columns for pivot candidates. The default 
number is three, by this can be changed by using IMSL_NUM_OF_SEARCH_ROWS. 

The option IMSL_DROP_TOLERANCE can be used to set a tolerance which can reduce 
fill-in. This works by preventing any new fill element which has magnitude less than the 
specified drop tolerance from being added to the factorization. Since this can introduce 
substantial error into the factorization, it is recommended that 



 

 
 

IMSL_ITERATIVE_REFINEMENT be used to recover more accuracy in the final 
solution. The trade-off is between space savings from the drop tolerance and the extra 
time needed in repeated solve steps needed for refinement.  

The function imsl_c_lin_sol_gen_coordinate provides the option of switching 
to a dense factorization method at some point during the decomposition. This option is 
enabled by choosing IMSL_HYBRID_FACTORIZATION. One of the two parameters 
required by this option, density, specifies a minimum density for the active submatrix 
before a format switch will occur. A density of 1.0 indicates complete fill-in. The other 
parameter, order_bound, places an upper bound of the order of the active submatrix 
which will be converted to dense format. This is used to prevent a switch from 
occurring too early, possibly when the O(n3) nature of the dense factorization will cause 
performance degradation. Note that this option can significantly increase heap storage 
requirements. 

Examples 

Example 1 
As an example, consider the following matrix: 
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10 7 0 0 0 0 0
0 3 2 3 1 2 0 0
0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0
5 4 0 0 5 12 2 7 7
1 12 2 8 0 0 0 3 7
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Let 

xT = (1 + i, 2 + 2i, 3 + 3i, 4 + 4i, 5 + 5i, 6 + 6i) 

so that 

Ax = (3 + 17i, �19 + 5i, 6 + 18i, � 38 + 32i, �63 + 49i, �57 + 83i)T 

#include <imsl.h> 

#include <stdlib.h> 
 
main() 
{ 
        static Imsl_c_sparse_elem a[] = {0, 0, {10.0, 7.0}, 
                                1, 1, {3.0, 2.0}, 
                                1, 2, {-3.0, 0.0}, 
                                1, 3, {-1.0, 2.0}, 
                                2, 2, {4.0, 2.0}, 
                                3, 0, {-2.0, -4.0}, 
                                3, 3, {1.0, 6.0}, 
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                                3, 4, {-1.0, 3.0}, 
                                4, 0, {-5.0, 4.0}, 
                                4, 3, {-5.0, 0.0}, 
                                4, 4, {12.0, 2.0}, 
                                4, 5, {-7.0, 7.0}, 
                                5, 0, {-1.0, 12.0}, 
                                5, 1, {-2.0, 8.0}, 
                                5, 5, {3.0, 7.0}}; 
 
        static f_complex b[] = {{3.0, 17.0}, {-19.0, 5.0}, {6.0, 18.0}, 
                {-38.0, 32.0}, {-63.0, 49.0}, {-57.0, 83.0}}; 
        int              n = 6;                                          
        int              nz = 15; 
        f_complex       *x; 
  
        x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b, 0); 
  
        imsl_c_write_matrix ("solution", n, 1, x, 0); 
  
        free (x); 
} 

Output 
         solution 
1  (         1,         1) 
2  (         2,         2) 
3  (         3,         3) 
4  (         4,         4) 
5  (         5,         5) 
6  (         6,         6) 

Example 2 
This examples sets A = E (1000, 10). A linear system is solved and the LU factorization 
returned. Then a second linear system is solved using the same coefficient matrix A just 
factored. Maximum absolute errors and execution time ratios are printed showing that 
forward and back solves take a small percentage of the computation time of a factor and 
solve. This ratio can vary greatly, depending on the order of the coefficient matrix, the 
initial number of nonzeros, and especially on the amount of fill-in produced during the 
elimination. Be aware that timing results are highly machine dependent. 

#include <imsl.h> 

#include <stdlib.h> 
main() 
{ 
        Imsl_c_sparse_elem      *a; 
        Imsl_c_sparse_lu_factor  lu_factor; 
        f_complex               *b; 
        f_complex               *x; 
        f_complex               *mod_five; 
        f_complex               *mod_ten; 
        float                    error_factor_solve; 
        float                    error_solve; 
        double                   time_factor_solve; 
        double                   time_solve; 
        int                      n = 1000; 
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        int                      c = 10; 
        int                      i; 
        int                      nz; 
        int                      index; 
 
                        /*  Get the coefficient matrix */ 
 
        a = imsl_c_generate_test_coordinate (n, c, &nz, 0); 
 
                        /*  Set two different predetermined solutions */ 
 
        mod_five = (f_complex*) malloc (n*sizeof(*mod_five)); 
        mod_ten = (f_complex*) malloc (n*sizeof(*mod_ten)); 
        for (i=0; i<n; i++) { 
                mod_five[i] = imsl_cf_convert ((float)(i % 5), 0.0); 
                mod_ten[i] = imsl_cf_convert ((float)(i % 10), 0.0); 
        } 
  
                        /*  Choose b so that x will approximate mod_five */ 
 
        b = imsl_c_mat_mul_rect_coordinate ("A*x", 
                IMSL_A_MATRIX, n, n, nz, a,  
                IMSL_X_VECTOR, n, mod_five, 
                0); 
 
                        /*  Time the factor/solve */ 
 
        time_factor_solve = imsl_ctime(); 
        x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b,  
                        IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor, 
                        0); 
        time_factor_solve = imsl_ctime() - time_factor_solve; 
 
                        /*  Compute max abolute error */ 
 
        error_factor_solve = imsl_c_vector_norm (n, x,  
                IMSL_SECOND_VECTOR, mod_five, 
                IMSL_INF_NORM, &index, 
                0); 
        free (b); 
        free (x); 
 
                        /*  Get new right hand side -- b = A * mod_ten */ 
 
        b = imsl_c_mat_mul_rect_coordinate ("A*x",  
                IMSL_A_MATRIX, n, n, nz, a,   
                IMSL_X_VECTOR, n, mod_ten,  
                0);  
 
                        /*  Use the previously computed factorization 
                            to solve Ax = b */ 
 
        time_solve = imsl_ctime(); 
        x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b, 
                IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor, 
                IMSL_SOLVE_ONLY, 
                0); 
        time_solve = imsl_ctime() - time_solve;  
        error_solve = imsl_c_vector_norm (n, x,   



 

 
 

62 � lin_sol_posdef_coordinate IMSL C/Math/Library 

 

 

 

                IMSL_SECOND_VECTOR, mod_ten,  
                IMSL_INF_NORM, &index,  
                0);  
        free (b); 
        free (x); 
  
                        /*  Print errors and ratio of execution times */ 
 
        printf ("absolute error (factor/solve) = %e\n", 
                error_factor_solve); 
        printf ("absolute error (solve)        = %e\n", error_solve); 
        printf ("time_solve/time_factor_solve  = %f\n",  
                time_solve/time_factor_solve); 
} 

Output 
absolute error (factor/solve) = 2.389053e-06 
absolute error (solve)        = 7.656095e-06 
time_solve/time_factor_solve  = 0.070313 
 
 

lin_sol_posdef_coordinate 
Solves a sparse real symmetric positive definite system of linear equations  
Ax = b. Using optional arguments, any of several related computations can be 
performed. These extra tasks include returning the symbolic factorization of A, 
returning the numeric factorization of A, and computing the solution of Ax = b given 
either the symbolic or numeric factorizations. 

Synopsis 
#include <imsl.h> 
float *imsl_f_lin_sol_posdef_coordinate (int n, int nz, 

Imsl_f_sparse_elem *a, float *b, ..., 0) 

The type double function is imsl_d_lin_sol_posdef_coordinate. 

Required Arguments 

int n   (Input) 
Number of rows in the matrix. 

int nz   (Input) 
Number of nonzeros in lower triangle of the matrix. 

Imsl_f_sparse_elem *a   (Input) 
Vector of length nz containing the location and value of each nonzero entry in 
the lower triangle of the matrix. 

float *b   (Input) 
Vector of length n containing the right-hand side. 



 

 
 

Chapter 1: Linear Systems lin_sol_posdef_coordinate � 63 

 

 

 

Return Value 
A pointer to the solution x of the sparse symmetric positive definite linear system Ax = b. 
To release this space, use free. If no solution was computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float *imsl_f_lin_sol_posdef_coordinate (int n, int nz, 

Imsl_f_sparse_elem *a, float *b, 
IMSL_RETURN_SYMBOLIC_FACTOR,  
 Imsl_symbolic_factor *sym_factor, 
IMSL_SUPPLY_SYMBOLIC_FACTOR,  
 Imsl_symbolic_factor *sym_factor, 
IMSL_SYMBOLIC_FACTOR_ONLY, 
IMSL_RETURN_NUMERIC_FACTOR,  
 Imsl_f_numeric_factor *num_factor, 
 
IMSL_SUPPLY_NUMERIC_FACTOR,  
 Imsl_f_numeric_factor *num_factor, 
IMSL_NUMERIC_FACTOR_ONLY, 
IMSL_SOLVE_ONLY, 
IMSL_MULTIFRONTAL_FACTORIZATION, 
IMSL_RETURN_USER, float x[], 
IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element, 
IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element, 
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros, 
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind,  
 float *values, 
0) 

Optional Arguments 
IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor   (Output) 

A pointer to a structure of type Imsl_symbolic_factor containing, on return, the 
symbolic factorization of the input matrix. 

IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor   (Input) 
A pointer to a structure of type Imsl_symbolic_factor. This structure contains 
the symbolic factorization of the input matrix computed by 
imsl_f_lin_sol_posdef_coordinate with the 
IMSL_RETURN_SYMBOLIC_FACTOR option. 

IMSL_SYMBOLIC_FACTOR_ONLY, 
Compute the symbolic factorization of the input matrix and return. The 
argument b is ignored. 

IMSL_RETURN_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor   (Output) 
A pointer to a structure of type Imsl_f_numeric_factor containing, on return, 
the numeric factorization of the input matrix. 
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IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor   (Input) 
A pointer to a structure of type Imsl_f_numeric_factor. This structure contains 
the numeric factorization of the input matrix computed by 
imsl_f_lin_sol_posdef_coordinate with the 
IMSL_RETURN_NUMERIC_FACTOR option. 

IMSL_NUMERIC_FACTOR_ONLY, 
Compute the numeric factorization of the input matrix and return. The 
argument b is ignored. 

IMSL_SOLVE_ONLY, 
Solve Ax = b given the numeric or symbolic factorization of A. This option 
requires the use of either IMSL_SUPPLY_NUMERIC_FACTOR or 
IMSL_SUPPLY_SYMBOLIC_FACTOR. 

IMSL_MULTIFRONTAL_FACTORIZATION, 
Perform the numeric factorization using a multifrontal technique. By default, a 
standard factorization is computed based on a sparse compressed storage 
scheme. 

IMSL_RETURN_USER, float x[]   (Output) 
A user-allocated array of length n containing the solution x. 

IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element   (Output) 
A pointer to a scalar containing the smallest diagonal element that occurred 
during the numeric factorization. This option is valid only if the numeric 
factorization is computed during this call to 
imsl_f_lin_sol_posdef_coordinate. 

IMSL_LARGEST_DIAGONAL_ELEMENT, float *large_element   (Output) 
A pointer to a scalar containing the largest diagonal element that occurred 
during the numeric factorization. This option is valid only if the numeric 
factorization is computed during this call to 
imsl_f_lin_sol_posdef_coordinate. 

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros   (Output) 
A pointer to a scalar containing the total number of nonzeros in the factor. 

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values   (Input) 
Accept the coefficient matrix in compressed sparse column (CSC) format.  
See the main “Introduction” main at the beginning of this manual for a 
discussion of this storage scheme. 

Description 
The function imsl_f_lin_sol_posdef_coordinate solves a system of linear 
algebraic equations having a sparse symmetric positive definite coefficient matrix A. In 
this function’s default usage, a symbolic factorization of a permutation of the 
coefficient matrix is computed first. Then a numerical factorization is performed. The 
solution of the linear system is then found using the numeric factor. 
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The symbolic factorization step of the computation consists of determining a minimum 
degree ordering and then setting up a sparse data structure for the Cholesky factor, L. This 
step only requires the “pattern” of the sparse coefficient matrix, i.e., the locations of the 
nonzeros elements but not any of the elements themselves. Thus, the val field in the 
Imsl_f_sparse_elem structure is ignored. If an application generates different sparse 
symmetric positive definite coefficient matrices that all have the same sparsity pattern, then 
by using IMSL_RETURN_SYMBOLIC_FACTOR and IMSL_SUPPLY_SYMBOLIC_FACTOR,  
the symbolic factorization need only be computed once. 

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic 
factor, the numeric factorization produces the entries in L so that 

PAPT = LLT 

Here P is the permutation matrix determined by the minimum degree ordering. 

The numerical factorization can be carried out in one of two ways. By default, the 
standard factorization is performed based on a sparse compressed storage scheme. This 
is fully described in George and Liu (1981). Optionally, a multifrontal technique can be 
used. The multifrontal method requires more storage but will be faster in certain cases. 
The multifrontal factorization is based on the routines in Liu (1987). For a detailed 
description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft 
(1987), Ashcraft et al. (1987), and Liu (1986, 1989). 

If an application requires that several linear systems be solved where the coefficient 
matrix is the same but the right-hand sides change, the options 
IMSL_RETURN_NUMERIC_FACTOR and IMSL_SUPPLY_NUMERIC_FACTOR can be used 
to precompute the Cholesky factor. Then the IMSL_SOLVE_ONLY option can be used to 
efficiently solve all subsequent systems. 

Given the numeric factorization, the solution x is obtained by the following 
calculations: 

Ly1 = Pb 

LTy2 = y1 

x = PTy2 

The permutation information, P, is carried in the numeric factor structure. 

Examples 

Example 1 
As an example consider the 5 � 5 coefficient matrix: 



 

 
 

10 0 1 0 2
0 20 0 0 3
1 0 30 4 0
0 0 4 40 5
2 3 0 5 50

a
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Let xT = (5, 4, 3, 2, 1) so that Ax = (55, 83, 103, 97, 82)T. The number of nonzeros in 
the lower triangle of A is nz = 10. The sparse coordinate form for the lower triangle is 
given by the following: 

row 0 1 2 2 3 3 4 4 4 4
col 0 1 0 2 2 3 0 1 3 4
val 10 20 1 30 4 40 2 3 5 50

Since this representation is not unique, an equivalent form would be as follows: 

row 3 4 4 4 0 1 2 2 3 4
col 3 0 1 3 0 1 0 2 2 4
val 40 2 3 5 10 20 1 30 4 50

#include <imsl.h> 

#include <stdlib.h> 
main() 
{ 
        Imsl_f_sparse_elem a[] = {0, 0, 10.0, 
                                1, 1, 20.0, 
                                2, 0, 1.0, 
                                2, 2, 30.0, 
                                3, 2, 4.0, 
                                3, 3, 40.0, 
                                4, 0, 2.0, 
                                4, 1, 3.0, 
                                4, 3, 5.0, 
                                4, 4, 50.0}; 
  
        float   b[] = {55.0, 83.0, 103.0, 97.0, 82.0}; 
        int     n = 5;                                          
        int     nz = 10; 
        float  *x; 
         x = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b, 0); 
  
        imsl_f_write_matrix ("solution", 1, n, x, 0); 
  
        free (x); 
} 

Output 
                         solution 
         1           2           3           4           5 
         5           4           3           2           1 
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Example 2 
In this example, set A = E(2500, 50). Then solve the system Ax = b1 and return the 
numeric factorization resulting from that call. Then solve the system Ax = b2 using the 
numeric factorization just computed. The ratio of execution time is printed. Be aware 
that timing results are highly machine dependent. 

#include <imsl.h> 
 
main() 
{ 
        Imsl_f_sparse_elem     *a; 
        Imsl_f_numeric_factor   numeric_factor; 
        float                  *b_1; 
        float                  *b_2; 
        float                  *x_1; 
        float                  *x_2; 
        int                     n; 
        int                     ic; 
        int                     nz; 
        double                  time_1; 
        double                  time_2; 
 
        ic = 50; 
        n = ic*ic; 
 
                        /*  Generate two right hand sides */ 
 
        b_1 = imsl_f_random_uniform (n*sizeof(*b_1), 0); 
        b_2 = imsl_f_random_uniform (n*sizeof(*b_2), 0); 
 
                        /*  Build coefficient matrix a */ 
 
        a = imsl_f_generate_test_coordinate (n, ic, &nz, 
                IMSL_SYMMETRIC_STORAGE, 
                0); 
 
                        /*  Now solve Ax_1 = b_1 and return the numeric 
                            factorization  */ 
 
        time_1 = imsl_ctime (); 
        x_1 = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b_1, 
                IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor, 
                0); 
        time_1 = imsl_ctime () - time_1; 
 
                        /*  Now solve Ax_2 = b_2 given the numeric 
                            factorization  */ 
 
        time_2 = imsl_ctime (); 
        x_2 = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b_2, 
                IMSL_SUPPLY_NUMERIC_FACTOR, &numeric_factor, 
                IMSL_SOLVE_ONLY, 
                0); 
        time_2 = imsl_ctime () - time_2; 
 
        printf("time_2/time_1 = %lf\n", time_2/time_1); 
} 
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Output 
time_2/time_1 = 0.037037 

lin_sol_posdef_coordinate (complex) 
Solves a sparse Hermitian positive definite system of linear equations Ax = b. Using 
optional arguments, any of several related computations can be performed. These extra 
tasks include returning the symbolic factorization of A, returning the numeric 
factorization of A, and computing the solution of Ax = b given either the symbolic or 
numeric factorizations. 

Synopsis 
#include <imsl.h> 
f_complex *imsl_c_lin_sol_posdef_coordinate (int n, int nz, 

Imsl_c_sparse_elem *a, f_complex *b, ..., 0) 

The type d_complex function is imsl_z_lin_sol_posdef_coordinate. 

Required Arguments 

int n   (Input) 
Number of rows in the matrix. 

int nz   (Input) 
Number of nonzeros in the lower triangle of the matrix. 

Imsl_c_sparse_elem *a   (Input) 
Vector of length nz containing the location and value of each nonzero entry in 
lower triangle of the matrix. 

f_complex *b   (Input) 
Vector of length n containing the right-hand side. 

Return Value 
A pointer to the solution x of the sparse Hermitian positive definite linear system Ax = b. 
To release this space, use free. If no solution was computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 

f_complex *imsl_c_lin_sol_posdef_coordinate (int n,  
int nz, Imsl_c_sparse_elem *a, f_complex *b, 
IMSL_RETURN_SYMBOLIC_FACTOR,  
 Imsl_symbolic_factor *sym_factor, 
IMSL_SUPPLY_SYMBOLIC_FACTOR,  
 Imsl_symbolic_factor *sym_factor, 
IMSL_SYMBOLIC_FACTOR_ONLY, 
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IMSL_RETURN_NUMERIC_FACTOR,  
 Imsl_c_numeric_factor *num_factor, 
IMSL_SUPPLY_NUMERIC_FACTOR,  
 Imsl_c_numeric_factor *num_factor, 
IMSL_NUMERIC_FACTOR_ONLY, 
IMSL_SOLVE_ONLY, 
IMSL_MULTIFRONTAL_FACTORIZATION, 
IMSL_RETURN_USER, f_complex x[], 
IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element, 
IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element, 
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros, 
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind,  
 float *values, 
0) 

Optional Arguments 
IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor   (Output) 

A pointer to a structure of type Imsl_symbolic_factor containing, on return, the 
symbolic factorization of the input matrix. 

IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor   (Input) 
A pointer to a structure of type Imsl_symbolic_factor. This structure contains 
the symbolic factorization of the input matrix computed by 
imsl_c_lin_sol_posdef_coordinate with the 
IMSL_RETURN_SYMBOLIC_FACTOR option. 

IMSL_SYMBOLIC_FACTOR_ONLY, 
Compute the symbolic factorization of the input matrix and return. The 
argument b is ignored. 

IMSL_RETURN_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor   (Output) 
A pointer to a structure of type Imsl_c_numeric_factor containing, on return, 
the numeric factorization of the input matrix. 

IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor   (Input) 
A pointer to a structure of type Imsl_c_numeric_factor. This structure contains 
the numeric factorization of the input matrix computed by 
imsl_c_lin_sol_posdef_coordinate with the 
IMSL_RETURN_NUMERIC_FACTOR option. 

IMSL_NUMERIC_FACTOR_ONLY, 
Compute the numeric factorization of the input matrix and return. The 
argument b is ignored. 

IMSL_SOLVE_ONLY, 
Solve Ax = b given the numeric or symbolic factorization of A. This option 
requires the use of either IMSL_SUPPLY_NUMERIC_FACTOR or 
IMSL_SUPPLY_SYMBOLIC_FACTOR. 
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IMSL_MULTIFRONTAL_FACTORIZATION, 
Perform the numeric factorization using a multifrontal technique. By default a 
standard factorization is computed based on a sparse compressed storage 
scheme. 

IMSL_RETURN_USER, f_complex x[]   (Output) 
A user-allocated array of length n containing the solution x. 

IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element   (Output) 
A pointer to a scalar containing the smallest diagonal element that occurred 
during the numeric factorization. This option is valid only if the numeric 
factorization is computed during this call to 
imsl_c_lin_sol_posdef_coordinate. 

IMSL_LARGEST_DIAGONAL_ELEMENT, float *large_element   (Output) 
A pointer to a scalar containing the largest diagonal element that occurred 
during the numeric factorization. This option is valid only if the numeric 
factorization is computed during this call to 
imsl_c_lin_sol_posdef_coordinate. 

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros   (Output) 
A pointer to a scalar containing the total number of nonzeros in the factor. 

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values   (Input) 
Accept the coefficient matrix in compressed sparse column (CSC) format.  
See the “Introduction” section at the beginnning of this manual for a 
discussion of this storage scheme. 

Description 
The function imsl_c_lin_sol_posdef_coordinate solves a system of linear 
algebraic equations having a sparse Hermitian positive definite coefficient matrix A. In 
this function’s default use, a symbolic factorization of a permutation of the coefficient 
matrix is computed first. Then a numerical factorization is performed. The solution of 
the linear system is then found using the numeric factor. 

The symbolic factorization step of the computation consists of determining a minimum 
degree ordering and then setting up a sparse data structure for the Cholesky factor, L. 
This step only requires the “pattern” of the sparse coefficient matrix, i.e., the locations 
of the nonzeros elements but not any of the elements themselves. Thus, the val field in 
the Imsl_c_sparse_elem structure is ignored. If an application generates different 
sparse Hermitian positive definite coefficient matrices that all have the same sparsity 
pattern, then by using IMSL_RETURN_SYMBOLIC_FACTOR and 
IMSL_SUPPLY_SYMBOLIC_FACTOR, the symbolic factorization need only be computed 
once. 

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic 
factor, the numeric factorization produces the entries in L so that 

PAPT = LLT 



 

 
 

Here P is the permutation matrix determined by the minimum degree ordering. 

The numerical factorization can be carried out in one of two ways. By default, the 
standard factorization is performed based on a sparse compressed storage scheme. This 
is fully described in George and Liu (1981). Optionally, a multifrontal technique can be 
used. The multifrontal method requires more storage but will be faster in certain cases. 
The multifrontal factorization is based on the routines in Liu (1987). For a detailed 
description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft 
(1987), Ashcraft et al. (1987), and Liu (1986, 1989). 

If an application requires that several linear systems be solved where the coefficient 
matrix is the same but the right-hand sides change, the options 
IMSL_RETURN_NUMERIC_FACTOR and IMSL_SUPPLY_NUMERIC_FACTOR can be used 
to precompute the Cholesky factor. Then the IMSL_SOLVE_ONLY option can be used to 
efficiently solve all subsequent systems. 

Given the numeric factorization, the solution x is obtained by the following 
calculations: 

Ly1 = Pb 

LTy2 = y1 

x = PTy2 

The permutation information, P, is carried in the numeric factor structure. 

Examples 

Example 1 
As a simple example of default use, consider the following Hermitian positive definite 
matrix 
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Let xT = (1 + i, 2 + 2i, 3 + 3i) so that Ax = (�2 + 2i, 5 +15i, 36 + 28i)T. The number of 
nonzeros in the lower triangle is nz = 5. 

#include <imsl.h> 
 
main() 
{ 
        Imsl_c_sparse_elem a[] = {0, 0, {2.0, 0.0}, 
                                1, 1, {4.0, 0.0}, 
                                2, 2, {10.0, 0.0}, 
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                                1, 0, {-1.0, -1.0}, 
                                2, 1, {1.0, -2.0}}; 
  
        f_complex   b[] = {{-2.0, 2.0}, {5.0, 15.0}, {36.0, 28.0}}; 
        int         n = 3;                                          
        int         nz = 5; 
        f_complex  *x; 
  
        x = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b, 0); 
  
        imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0); 
  
        free (x); 
} 

Output 
  Solution, x, of Ax = b 
1  (         1,         1) 
2  (         2,         2) 
3  (         3,         3) 

Example 2 
Set A = E(2500, 50). Then solve the system Ax = b1 and return the numeric 
factorization resulting from that call. Then solve the system Ax = b2 using the numeric 
factorization just computed. Absolute errors and execution time are printed. 

#include <imsl.h> 
 
main() 
{ 
        Imsl_c_sparse_elem     *a; 
        Imsl_c_numeric_factor   numeric_factor; 
        f_complex               b_1[2500]; 
        f_complex               b_2[2500]; 
        f_complex              *x_1; 
        f_complex              *x_2; 
        int                     n; 
        int                     ic; 
        int                     nz; 
        int                     i; 
        int                     index; 
        double                  time_1; 
        double                  time_2; 
        float                  *rand_vec; 
 
        ic = 50; 
        n = ic*ic; 
        index = 0; 
 
                        /*  Generate two right hand sides */ 
 
      rand_vec = imsl_f_random_uniform (4*n*sizeof(*rand_vec), 0); 
        for (i=0; i<n; i++) { 
                b_1[i].re = rand_vec[index++]; 
                b_1[i].im = rand_vec[index++]; 
                b_2[i].re = rand_vec[index++]; 
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                b_2[i].im = rand_vec[index++]; 
        } 
                        /*  Build coefficient matrix a */ 
 
        a = imsl_c_generate_test_coordinate (n, ic, 
                &nz, 
                IMSL_SYMMETRIC_STORAGE, 
                0); 
 
                        /*  Now solve Ax_1 = b_1 and return the numeric 
                            factorization  */ 
 
        time_1 = imsl_ctime (); 
        x_1 = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b_1, 
                IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor, 
                0); 
        time_1 = imsl_ctime () - time_1; 
 
                        /*  Now solve Ax_2 = b_2 given the numeric 
                            factorization  */ 
 
        time_2 = imsl_ctime (); 
        x_2 = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b_2, 
                IMSL_SUPPLY_NUMERIC_FACTOR, &numeric_factor, 
                IMSL_SOLVE_ONLY, 
                0); 
        time_2 = imsl_ctime () - time_2; 
 
        printf("time_2/time_1 = %lf\n", time_2/time_1); 
} 

Output 
time_2/time_1 = 0.096386 

lin_sol_gen_min_residual 
Solves a linear system Ax = b using the restarted generalized minimum residual 
(GMRES) method. 

Synopsis 

#include <imsl.h> 

float *imsl_f_lin_sol_gen_min_residual (int n, void amultp (float *p, 
float *z), float *b, ..., 0) 

The type double function is imsl_d_lin_sol_gen_min_residual. 

Required Arguments 

int n   (Input) 
Number of rows in the matrix. 
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void amultp (float *p, float *z) 
User-supplied function which computes z = Ap. 

float *b   (Input) 
Vector of length n containing the right-hand side. 

Return Value 
A pointer to the solution x of the linear system Ax = b. To release this space, use free. 
If no solution was computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 

float *imsl_f_lin_sol_gen_min_residual (int n, void amultp (), float *b, 
IMSL_RETURN_USER, float x[], 
IMSL_MAX_ITER, int *maxit, 
IMSL_REL_ERR, float tolerance, 
IMSL_PRECOND, void precond(), 
IMSL_MAX_KRYLOV_SUBSPACE_DIM, int kdmax, 
IMSL_HOUSEHOLDER_REORTHOG, 
IMSL_FCN_W_DATA, void amultp (),  void *data, 
IMSL_PRECOND_W_DATA, void precond(),  void *data, 
 0) 

Optional Arguments 
IMSL_RETURN_USER, float x[]   (Output) 

A user-allocated array of length n containing the solution x. 

IMSL_MAX_ITER, int *maxit   (Input/Output) 
A pointer to an integer, initially set to the maximum number of GMRES 
iterations allowed. On exit, the number of iterations used is returned. 
Default: maxit = 1000 

IMSL_REL_ERR, float tolerance   (Input) 
The algorithm attempts to generate x such that ||b � Ax||2 � �||b||2, where  
� = tolerance. 
Default: tolerance = sqrt(imsl_f_machine(4)) 

IMSL_PRECOND, void precond (float *r, float *z)   (Input) 
User supplied function which sets z = M-1r, where M is the preconditioning 
matrix. 

IMSL_MAX_KRYLOV_SUBSPACE_DIM, int kdmax,   (Input) 
The maximum Krylov subspace dimension, i.e., the maximum allowable 
number of GMRES iterations allowed before restarting. 
Default: kdmax = imsl_i_min(n, 20) 



 

 
 

IMSL_HOUSEHOLDER_REORTHOG, 
Perform orthogonalization by Householder transformations, replacing the 
Gram-Schmidt process. 

IMSL_FCN_W_DATA, void amultp (float *p, float *z, void *data), void *data, 
(Input) 
User supplied function which computes z = Ap, which also accepts a pointer to 
data that is supplied by the user.  data is a pointer to the data to be passed to 
the user-supplied function.  See the Introduction, Passing Data to User-
Supplied Functions at the beginning of this manual for more details. 

IMSL_PRECOND_W_DATA, void precond (float *r, float *z, void *data), void 
*data  (Input) 
User supplied function which sets z = M-1r, where M is the preconditioning 
matrix, which also accepts a pointer to data that is supplied by the user.   data 
is a pointer to the data to be passed to the user-supplied function.  See the 
Introduction, Passing Data to User-Supplied Functions at the beginning of 
this manual for more details. 

Description 
The function imsl_f_lin_sol_gen_min_residual, based on the FORTRAN 
subroutine GMRES by H.F. Walker, solves the linear system  
Ax = b using the GMRES method. This method is described in detail by Saad and 
Schultz (1986) and Walker (1988). 

The GMRES method begins with an approximate solution x0 and an initial residual  
r0 = b � Ax0. At iteration m, a correction zm is determined in the Krylov subspace 

�m (v) = span (v, Av, �, Am-1v) 

v = r0 which solves the least-squares problem 

� � � �
0

min
0( ) 2mz r b A x z

��
� �  

Then at iteration m, xm = x0 + zm. 

Orthogonalization by Householder transformations requires less storage but more 
arithmetic than Gram-Schmidt. However, Walker (1988) reports numerical experiments 
which suggest the Householder approach is more stable, especially as the limits of 
residual reduction are reached. 

Examples 

Example 1 
As an example, consider the following matrix: 
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10 0 0 0 0 0
0 10 3 1 0 0
0 0 15 0 0 0
2 0 0 10 1 0
1 0 0 5 1 3
1 2 0 0 0 6

A
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Let xT = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33, �34, 31)T. The function 
imsl_f_mat_mul_rect_coordinate is used to form the product Ax. 

#include <imsl.h> 
 
void amultp (float*, float*); 
 
main() 
{ 
        float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0}; 
        int n = 6; 
        float *x; 
 
        x = imsl_f_lin_sol_gen_min_residual (n, amultp, b, 
                0); 
 
        imsl_f_write_matrix ("Solution, x, to Ax = b", 1, n, x, 0); 
} 
 
void amultp (float *p, float *z) 
{ 
        Imsl_f_sparse_elem a[] = {0, 0, 10.0, 
                                1, 1, 10.0, 
                                1, 2, -3.0, 
                                1, 3, -1.0, 
                                2, 2, 15.0, 
                                3, 0, -2.0, 
                                3, 3, 10.0, 
                                3, 4, -1.0, 
                                4, 0, -1.0, 
                                4, 3, -5.0, 
                                4, 4, 1.0, 
                                4, 5, -3.0, 
                                5, 0, -1.0, 
                                5, 1, -2.0, 
                                5, 5, 6.0}; 
        int n = 6; 
        int nz = 15; 
  
        imsl_f_mat_mul_rect_coordinate ("A*x", 
                IMSL_A_MATRIX, n, n, nz, a, 
                IMSL_X_VECTOR, n, p, 
                IMSL_RETURN_USER_VECTOR, z, 
                0); 
} 
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Output 
                        Solution, x, to Ax = b 
         1           2           3           4           5           6 
         1           2           3           4           5           6 

Example 2 
In this example, the same system given in the first example is solved. This time a 
preconditioner is provided. The preconditioned matrix is chosen as the diagonal of A.  

#include <imsl.h> 
 
void amultp (float*, float*); 
void precond (float*, float*); 
 
main() 
{ 
        float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0}; 
        int n = 6; 
        float *x; 
        int maxit = 1000; 
 
        x = imsl_f_lin_sol_gen_min_residual (n, amultp, b, 
                IMSL_MAX_ITER, &maxit, 
                IMSL_PRECOND, precond, 
                0); 
 
        imsl_f_write_matrix ("Solution, x, to Ax = b", 1, n, x, 0); 
        printf ("\nNumber of iterations taken = %d\n", maxit); 
} 
 
                        /* Set z = Ap */ 
 
void amultp (float *p, float *z) 
{ 
        static Imsl_f_sparse_elem a[] = {0, 0, 10.0, 
                                1, 1, 10.0, 
                                1, 2, -3.0, 
                                1, 3, -1.0, 
                                2, 2, 15.0, 
                                3, 0, -2.0, 
                                3, 3, 10.0, 
                                3, 4, -1.0, 
                                4, 0, -1.0, 
                                4, 3, -5.0, 
                                4, 4, 1.0, 
                                4, 5, -3.0, 
                                5, 0, -1.0, 
                                5, 1, -2.0, 
                                5, 5, 6.0}; 
        int n = 6; 
        int nz = 15; 
  
        imsl_f_mat_mul_rect_coordinate ("A*x", 
                IMSL_A_MATRIX, n, n, nz, a, 
                IMSL_X_VECTOR, n, p, 
                IMSL_RETURN_USER_VECTOR, z, 
                0); 
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} 
                        /* Solve Mz = r */ 
 
void precond (float *r, float *z) 
{ 
        static float diagonal_inverse[] = 
                        {0.1, 0.1, 1.0/15.0, 0.1, 1.0, 1.0/6.0}; 
        int n = 6; 
        int i; 
 
        for (i=0; i<n; i++) 
                z[i] = diagonal_inverse[i]*r[i];  
} 

Output 
                        Solution, x, to Ax = b 
         1           2           3           4           5           6 
         1           2           3           4           5           6 
 
Number of iterations taken = 5 

lin_sol_def_cg 
Solves a real symmetric definite linear system using a conjugate gradient method. 
Using optional arguments, a preconditioner can be supplied. 

Synopsis 

#include <imsl.h> 

float *imsl_f_lin_sol_def_cg (int n, void amultp ( ), float *b, ..., 0) 

The type double function is imsl_d_lin_sol_def_cg. 

Required Arguments 

int n   (Input) 
Number of rows in the matrix. 

void amultp (float *p, float *z) 
User-supplied function which computes z = Ap. 

float *b   (Input) 
Vector of length n containing the right-hand side. 

Return Value 
A pointer to the solution x of the linear system Ax = b. To release this space, use free. 
If no solution was computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
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float *imsl_f_lin_sol_def_cg (int n, void amultp(), float *b, 
IMSL_RETURN_USER, float x[], 
IMSL_MAX_ITER, int *maxit, 
IMSL_REL_ERR, float relative_error, 
IMSL_PRECOND, void precond(), 
IMSL_JACOBI, float *diagonal, 
IMSL_FCN_W_DATA, void amultp(), void *data, 
IMSL_PRECOND_W_DATA, void precond(), void *data, 
0) 

Optional Arguments 
IMSL_RETURN_USER, float x[]   (Output) 

A user-allocated array of length n containing the solution x. 

IMSL_MAX_ITER, int *maxit   (Input/Output) 
A pointer to an integer, initially set to the maximum number of iterations 
allowed. On exit, the number of iterations used is returned. 

IMSL_REL_ERR, float relative_error   (Input) 
The relative error desired. 
Default: relative_error = sqrt(imsl_f_machine(4)) 

IMSL_PRECOND, void precond (float *r, float *z)   (Input) 
User supplied function which sets z = M-1r, where M is the preconditioning 
matrix.  

IMSL_JACOBI, float diagonal[]   (Input) 
Use the Jacobi preconditioner, i.e. M = diag(A). The user-supplied vector 
diagonal should be set so that diagonal[i] = Ai,i.  

IMSL_FCN_W_DATA, void amultp (float *p, float *z, void *data), void *data, 
(Input) 
User supplied function which computes z = Ap, which also accepts a pointer to 
data that is supplied by the user.  data is a pointer to the data to be passed to 
the user-supplied function.  See the Introduction, Passing Data to User-
Supplied Functions at the beginning of this manual for more details. 

IMSL_PRECOND_W_DATA, void precond (float *r, float *z, void *data), void 
*data, (Input) 
User supplied function which sets z = M-1r, where M is the preconditioning 
matrix, which also accepts a pointer to data that is supplied by the user. data 
is a pointer to the data to be passed to the user-supplied function.   See the 
Introduction, Passing Data to User-Supplied Functions at the beginning of 
this manual for more details. 

 

 



 

 
 

Description 
The function imsl_f_lin_sol_def_cg solves the symmetric definite linear system 
Ax = b using the conjugate gradient method with optional preconditioning. This method 
is described in detail by Golub and Van Loan (1983, Chapter 10), and in Hageman and 
Young (1981, Chapter 7).  

The preconditioning matrix M is a matrix that approximates A, and for which the linear 
system Mz = r is easy to solve. These two properties are in conflict; balancing them is a 
topic of much current research. In the default use of imsl_f_lin_sol_def_cg, M = I. 
If the option IMSL_JACOBI is selected, M is set to the diagonal of A.  

The number of iterations needed depends on the matrix and the error tolerance. As a 
rough guide, 

for 1n n� �itmax �

 

See the references mentioned above for details. 

Let M be the preconditioning matrix, let b, p, r, x, and z be vectors and let � be the 
desired relative error. Then the algorithm used is as follows: 
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Here 
 is an estimate of 
"(G), the largest eigenvalue of the iteration matrix  
G = I �M-1 A. The stopping criterion is based on the result (Hageman and Young 1981, 
pp. 148-151) 
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It is also known that 
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where the Tn are the symmetric, tridiagonal matrices 
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with �k = 1 � �k/�k-1 � 1/�k, �1 = 1 � 1/�1 and 

1/k kB� �
�

� k  

Usually the eigenvalue computation is needed for only a few of the iterations. 

Example 1 
In this example, the solution to a linear system is found. The coefficient matrix is stored 
as a full matrix.  

#include <imsl.h> 
 
static void amultp (float*, float*); 
 
void main() 
{ 
        int n = 3; 
        float b[] = {27.0, -78.0, 64.0}; 
        float *x; 
 
        x = imsl_f_lin_sol_def_cg (n, amultp, b, 0); 
 
        imsl_f_write_matrix ("x", 1, n, x, 0); 
} 
 
static void amultp (float *p, float *z) 
{ 
        static float a[] = {1.0, -3.0, 2.0, 
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                        -3.0, 10.0, -5.0, 
                        2.0, -5.0, 6.0}; 
        int n = 3; 
 
        imsl_f_mat_mul_rect ("A*x",  
                IMSL_A_MATRIX, n, n, a, 
                IMSL_X_VECTOR, n, p, 
                IMSL_RETURN_USER, z, 
                0); 
} 

Output 
                 x 
         1           2           3 
         1          -4           7 

Example 2 
In this example, two different preconditioners are used to find the solution of a linear 
system which occurs in a finite difference solution of Laplace’s equation on a regular  
c � c grid, c = 100. The matrix is A = E (c2, c). For the first solution, select Jacobi 
preconditioning and supply the diagonal, so M = diag (A). The number of iterations 
performed and the maximum absolute error are printed. Next, use a more complicated 
preconditioning matrix, M, consisting of the symmetric tridiagonal part of A. 

Notice that the symmetric positive definite band solver is used to factor M once, and 
subsequently just perform forward and back solves. Again, the number of iterations 
performed and the maximum absolute error are printed. Note the substantial reduction 
in iterations. 

#include <imsl.h> 
 
static void amultp (float*, float*); 
static void precond (float*, float*); 
static Imsl_f_sparse_elem *a; 
static int n = 2500; 
static int c = 50; 
static int nz; 
 
void main() 
{ 
        int maxit = 1000; 
        int i; 
        int index; 
        float *b; 
        float *x; 
        float *mod_five; 
        float *diagonal; 
        float norm; 
 
        n = c*c; 
        mod_five = (float*) malloc (n*sizeof(*mod_five)); 
        diagonal = (float*) malloc (n*sizeof(*diagonal)); 
        b = (float*) malloc (n*sizeof(*b)); 
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                     /* Generate coefficient matrix */ 
 
        a = imsl_f_generate_test_coordinate (n, c, &nz, 0); 
 
                     /* Set a predetermined answer and diagonal */ 
 
        for (i=0; i<n; i++) { 
                mod_five[i] = (float) (i % 5); 
                diagonal[i] = 4.0; 
        } 
 
                     /* Get right hand side */ 
 
        amultp (mod_five, b); 
 
                     /* Solve with jacobi preconditioning */ 
 
        x = imsl_f_lin_sol_def_cg (n, amultp, b, 
                IMSL_MAX_ITER, &maxit,  
                IMSL_JACOBI, diagonal, 
                0); 
 
                     /* Find max absolute error, print results */ 
 
        norm = imsl_f_vector_norm (n, x,  
                IMSL_SECOND_VECTOR, mod_five, 
                IMSL_INF_NORM, &index, 
                0); 
        printf ("iterations = %d, norm = %e\n", maxit, norm); 
        free (x); 
 
                     /* Solve same system, with different preconditioner */ 
 
        x = imsl_f_lin_sol_def_cg (n, amultp, b, 
                IMSL_MAX_ITER, &maxit,  
                IMSL_PRECOND, precond, 
                0); 
 
        norm = imsl_f_vector_norm (n, x,  
                IMSL_SECOND_VECTOR, mod_five, 
                IMSL_INF_NORM, &index, 
                0); 
        printf ("iterations = %d, norm = %e\n", maxit, norm); 
} 
 
                     /*  Set z = Ap */ 
 
static void amultp (float *p, float *z) 
{ 
        imsl_f_mat_mul_rect_coordinate ("A*x",  
                IMSL_A_MATRIX, n, n, nz, a, 
                IMSL_X_VECTOR, n, p, 
                IMSL_RETURN_USER_VECTOR, z, 
                0); 
} 
 
                    /* Solve Mz = r */ 
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static void precond (float *r, float *z) 
{ 
        static float *m; 
        static float *factor; 
        static int first = 1; 
        float *null = (float*) 0; 
 
        if (first) { 
 
                     /* Factor the first time through */ 
 
                m = imsl_f_generate_test_band (n, 1,  
                                              IMSL_SYMMETRIC_STORAGE, 0); 
                imsl_f_lin_sol_posdef_band (n, m, 1, null,  
                        IMSL_FACTOR, &factor, 
                        IMSL_FACTOR_ONLY, 
                        0); 
                first = 1; 
        } 
 
                     /* Perform the forward and back solves */ 
 
        imsl_f_lin_sol_posdef_band (n, m, 1, r, 
                IMSL_FACTOR_USER, factor, 
                IMSL_SOLVE_ONLY,  
                IMSL_RETURN_USER, z, 
                0); 
} 

Output 
iterations = 115, norm = 1.382828e-05 
iterations = 75, norm = 7.319450e-05 

lin_least_squares_gen 
Solves a linear least-squares problem Ax = b. Using optional arguments, the QR 
factorization of A, AP = QR, and the solve step based on this factorization can be 
computed. 

Synopsis 
#include <imsl.h> 
float *imsl_f_lin_least_squares_gen (int m, int n, float a[], float b[], 

�, 0) 

The type double procedure is imsl_d_lin_least_squares_gen. 

Required Arguments 

int m   (Input) 
Number of rows in the matrix. 
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int n   (Input) 
Number of columns in the matrix. 

float a[]   (Input) 
Array of size m � n containing the matrix. 

float b[]   (Input) 
Array of size m containing the right-hand side. 

Return Value 
If no optional arguments are used, function imsl_f_lin_least_squares_gen 
returns a pointer to the solution x of the linear least-squares problem Ax = b. To release 
this space, use free. If no value can be computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float *imsl_f_lin_least_squares_gen (int m, int n, float a[], float b[], 

IMSL_A_COL_DIM, int a_col_dim, 
IMSL_RETURN_USER, float x[], 
IMSL_BASIS, float tol, int *kbasis, 
IMSL_RESIDUAL, float **p_res, 
IMSL_RESIDUAL_USER, float res[], 
IMSL_FACTOR, float **p_qraux, float **p_qr, 
IMSL_FACTOR_USER, float qraux[], float qr[], 
IMSL_FAC_COL_DIM, int qr_col_dim, 
IMSL_Q, float **p_q, 
IMSL_Q_USER, float q[], 
IMSL_Q_COL_DIM, int q_col_dim, 
IMSL_PIVOT, int pvt[], 
IMSL_FACTOR_ONLY, 
IMSL_SOLVE_ONLY, 
0) 

Optional Arguments 
IMSL_A_COL_DIM, int a_col_dim   (Input) 

The column dimension of the array a.  
Default: a_col_dim = n 

IMSL_RETURN_USER, float x[]   (Output) 
A user-allocated array of size n containing the least-squares solution x. If 
IMSL_RETURN_USER is used, the return value of  the function is a pointer to 
the array x. 

IMSL_BASIS, float tol, int *kbasis   (Input, Input/Output) 
tol: Nonnegative tolerance used to determine the subset of columns of A to 
be included in the solution. 

Default: tol = sqrt (imsl_amach(4)) 
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kbasis: Integer containing the number of columns used in the solution. 
kbasis = k if |rk+1,k+1| < |tol|*|r1,1| and |ri,i|� tol*|r1,1| for i = 1, 2, �, k. For 
more information on the use of this option, see “Description” on page 87. 

Default: kbasis = min (m, n) 

IMSL_RESIDUAL, float **p_res   (Output) 
The address of a pointer to an array of size m containing the residual vector 
b � Ax. On return, the necessary space is allocated by the function. Typically,  
float *p_res is declared, and &p_res is used as an argument. 

IMSL_RESIDUAL_USER, float res[]   (Output) 
A user-allocated array of size m containing the residual vector b � Ax. 

IMSL_FACTOR, float **p_qraux, float **p_qr   (Output) 
**p_qraux: The address of a pointer qraux to an array of size n containing 
the scalars �k of the Householder transformations in the first min (m, n) 
positions. On return, the necessary space is allocated by the function. 
Typically,  float *qraux is declared, and &qraux is used as an argument. 
**p_qr: The address of a pointer to an array of size m � n containing the 
Householder transformations that define the decomposition. The strictly 
lower-triangular part of this array contains the information to construct Q, and 
the upper-triangular part contains R. On return, the necessary space is 
allocated by the function. Typically, float *qr is declared, and &qr is used as 
an argument. 

IMSL_FACTOR_USER, float qraux[], float qr[]   (Input /Output) 
qraux[]: A user-allocated array of size n containing the scalars �k of the 
Householder transformations in the first min (m, n) positions. 
qr[]: A user-allocated array of size m � n containing the Householder 
transformations that define the decomposition. The strictly lower-triangular 
part of this array contains the information to construct Q. The upper-triangular 
part contains R. If the data in a is not needed, qr can share the same storage 
locations as a by using a instead of the separate argument qr. 
These parameters are “Input” if IMSL_SOLVE is specified; “Output” otherwise. 

IMSL_FAC_COL_DIM, int qr_col_dim   (Input) 
The column dimension of the array containing QR factorization.  
Default: qr_col_dim = n 

IMSL_Q, float **p_q   (Output) 
The address of a pointer to an array of size m � m containing the orthogonal 
matrix of the factorization. On return, the necessary space is allocated by the 
function. Typically, float *q is declared, and &q is used as an argument. 

IMSL_Q_USER, float q[]   (Output) 
A user-allocated array of size m � m containing the orthogonal matrix Q of the 
QR factorization. 



 

 
 

IMSL_Q_COL_DIM, int q_col_dim   (Input) 
The column dimension of the array containing the Q matrix of the 
factorization.  
Default: q_col_dim = m 

IMSL_PIVOT, int pvt[]   (Input/Output) 
Array of size n containing the desired variable order and usage information. 
The argument is used with  IMSL_FACTOR_ONLY or IMSL_SOLVE_ONLY. 

On input, if pvt [k � 1] > 0, then column k of A is an initial column. If pvt 
[k � 1] = 0, then the column of A is a free column and can be interchanged in 
the column pivoting. If pvt [k � 1] < 0, then column k of A is a final column. 
If all columns are specified as initial (or final) columns, then no pivoting is 
performed. (The permutation matrix P is the identity matrix in this case.) 

On output, pvt [k � 1] contains the index of the column of the original matrix 
that has been interchanged into column k.  

 

Default: pvt [k � 1] = 0, k = 1, �, n 

IMSL_FACTOR_ONLY 
Compute just the QR factorization of the matrix AP with the permutation 
matrix P defined by pvt and by further pivoting involving free columns. If 
IMSL_FACTOR_ONLY is used, the additional arguments IMSL_PIVOT and 
IMSL_FACTOR are required. In that case, the required argument b is ignored, 
and the returned value of the function is NULL. 

IMSL_SOLVE_ONLY 
Compute the solution to the least-squares problem Ax = b given the QR 
factorization previously computed by this function. If IMSL_SOLVE_ONLY is 
used, arguments IMSL_FACTOR, IMSL_PIVOT, and IMSL_BASIS are required, 
and the required argument a is ignored. 

Description 
The function imsl_f_lin_least_squares_gen solves a system of linear least-
squares problems Ax = b with column pivoting. It computes a QR factorization of the 
matrix AP, where P is the permutation matrix defined by the pivoting, and computes the 
smallest integer k satisfying |rk+1, k+1| < |tol|*|r1,1| to the output variable kbasis. 
Householder transformations 

T
k k k kQ l u u Q�� �

 

k = 1, �, min (m � 1, n)are used to compute the factorization. The decomposition is 
computed in the form Q$(m-1, n)�Q1AP = R, so AP = QR where Q = Q1�Q$(m-1, n). 
Since each Householder vector uk has zeros in the first k � 1 entries, it is stored as part of 
column k of qr. The upper-trapezoidal matrix R is stored in the upper-trapezoidal part of 
the first min (m, n) rows of qr. The solution x to the least-squares problem is computed 
by solving the upper-triangular system of linear equations  
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R(1:k, 1:k) y (1:k) = (QTb) (1:k) with k = kbasis. The solution is completed by setting  
y(k + 1 : n) to zero and rearranging the variables, x = Py. 

When IMSL_FACTOR_ONLY is specified, the function computes the QR factorization of 
AP with P defined by the input pvt and by column pivoting among ‘‘free’’ columns. 
Before the factorization, initial columns are moved to the beginning of the array a and 
the final columns to the end. Both initial and final columns are not permuted further 
during the computation. Just the free columns are moved. 

If IMSL_SOLVE_ONLY is specified, then the function computes the least-squares 
solution to Ax = b given the QR factorization previously defined. There are kbasis 
columns used in the solution. Hence, in the case that all columns are free, x is computed 
as described in the default case. 

Examples 

Example 1 
This example illustrates the least-squares solution of four linear equations in three 
unknowns using column pivoting. The problem is equivalent to least-squares quadratic 
polynomial fitting to four data values. Write the polynomial as p(t) = x1 + tx2 + t2x3 and 
the data pairs (ti, bi), ti = 2i, i = 1, 2, 3, 4. A pointer to the solution to Ax = b is returned 
by the function imsl_f_lin_least_squares_gen. 

#include <imsl.h> 
 
float    a[] =  {1.0, 2.0, 4.0, 
                 1.0, 4.0, 16.0, 
                 1.0, 6.0, 36.0, 
                 1.0, 8.0, 64.0}; 
 
float    b[] =  {4.999, 9.001, 12.999, 17.001}; 
 
main() 
{ 
    int           m = 4, n = 3; 
    float         *x; 
                                    /* Solve Ax = b  for  x  */ 
 
    x = imsl_f_lin_least_squares_gen (m, n, a, b, 0); 
 
                                    /* Print x */ 
    imsl_f_write_matrix ("Solution vector", 1, n, x, 0); 
} 

Output 
Solution vector 
    1           2           3 
0.999       2.000       0.000 
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Example 2 
This example uses the same coefficient matrix A as in the initial example. It computes 
the QR factorization of A with column pivoting. The final and free columns are 
specified by pvt and the column pivoting is done only among the free columns. 

#include <imsl.h> 
 
float    a[] =   {1.0, 2.0, 4.0, 
                  1.0, 4.0, 16.0, 
                  1.0, 6.0, 36.0, 
                  1.0, 8.0, 64.0}; 
 
int      pvt[] =  {0, 0, -1}; 
 
main() 
{ 
    int           m = 4, n = 3; 
    float         *x, *b; 
    float         *p_qraux, *p_qr; 
    float         *p_q; 
                                    /* Compute the QR factorization */ 
                                    /* of A with partial column */ 
                                    /* pivoting */ 
    x = imsl_f_lin_least_squares_gen (m, n, a, b,  
                                      IMSL_PIVOT, pvt, 
                                      IMSL_FACTOR, &p_qraux, &p_qr, 
                                      IMSL_Q, &p_q, 
                                      IMSL_FACTOR_ONLY, 
                                      0); 
 
                                    /* Print Q */ 
    imsl_f_write_matrix ("The matrix Q", m, m, p_q, 0); 
 
                                    /* Print R */ 
    imsl_f_write_matrix ("The matrix R", m, n, p_qr, 
                          IMSL_PRINT_UPPER, 
                          0); 
 
                                    /* Print pivots */ 
    imsl_i_write_matrix ("The Pivot Sequence", 1, n, pvt, 0); 
 
} 

Output 
                  The matrix Q 
            1           2           3           4 
1     -0.1826     -0.8165      0.5000     -0.2236 
2     -0.3651     -0.4082     -0.5000      0.6708 
3     -0.5477      0.0000     -0.5000     -0.6708 
4     -0.7303      0.4082      0.5000      0.2236 
  

            The matrix R 
            1           2           3 
1      -10.95       -1.83      -73.03 
2                   -0.82       16.33 
3                                8.00 
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The Pivot Sequence 
     1   2   3 
     2   1   3 

Example 3 
This example computes the QR factorization with column pivoting for the matrix A of 
the initial example. It computes the least-squares solutions to Ax = bi for i = 1, 2, 3. 

#include <imsl.h> 
 
float    a[]   = {1.0, 2.0, 4.0, 
                  1.0, 4.0, 16.0, 
                  1.0, 6.0, 36.0, 
                  1.0, 8.0, 64.0}; 
 
float    b[]   = {4.999, 9.001, 12.999, 17.001, 
                  2.0,   3.142,  5.11,   0.0, 
                  1.34,  8.112,  3.76,  10.99}; 
 
int      pvt[] = {0, 0, 0}; 
 
main() 
{ 
    int           m = 4, n = 3; 
    int           i, k = 3; 
    float         *p_qraux, *p_qr;  
    float         tol = 1.e-4; 
    int           *kbasis; 
    float         *x, *p_res; 
                                    /* Factor A with the given pvt */ 
                                    /* setting all variables to */ 
                                    /* be free */ 
    imsl_f_lin_least_squares_gen (m, n, a, b,  
                              IMSL_BASIS, tol, &kbasis, 
                              IMSL_PIVOT, pvt, 
                              IMSL_FACTOR, &p_qraux, &p_qr, 
                              IMSL_FACTOR_ONLY, 
                              0); 
                                    /* Print some factorization */ 
                                    /* information*/ 
 
    printf("Number of Columns in the base\n%2d", kbasis); 
    imsl_f_write_matrix ("Upper triangular R Matrix", m, n, p_qr,  
                              IMSL_PRINT_UPPER, 
                              0); 
    imsl_i_write_matrix ("The output column order ", 1, n, pvt, 0); 
 
                                    /* Solve Ax = b  for each x  */ 
                                    /* given the factorization */ 
    for ( i = 0; i < k; i++) { 
          x = imsl_f_lin_least_squares_gen (m, n, a, &b[i*m],  
                              IMSL_BASIS, tol, &kbasis, 
                              IMSL_PIVOT, pvt, 
                              IMSL_FACTOR_USER, p_qraux, p_qr, 
                              IMSL_RESIDUAL, &p_res,  
                              IMSL_SOLVE_ONLY, 
                              0); 
                                    /* Print right-hand side, b */ 
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                                    /* and solution, x */ 
          imsl_f_write_matrix ("Right-hand side, b ", 1, m,  
                        &b[i*m], 0); 
          imsl_f_write_matrix ("Solution, x ", 1, n, x, 0); 
                              /* Print residuals, b - Ax */ 
          imsl_f_write_matrix ("Residual, b - Ax ", 1, m, p_res,  
                        0); 
         } 
 
} 

Output 
Number of Columns in the base 
 3  
      Upper triangular R Matrix 
            1           2           3 
1      -75.26      -10.63       -1.59 
2                   -2.65       -1.15 
3                                0.36 
  
The output column order  
        1   2   3 
        3   2   1 
  
              Right-hand side, b  
         1           2           3           4 
         5           9          13          17 
  
           Solution, x  
         1           2           3 
     0.999       2.000       0.000 
  
               Residual, b - Ax  
         1           2           3           4 
   -0.0004      0.0012     -0.0012      0.0004 
 

              Right-hand side, b  
         1           2           3           4 
     2.000       3.142       5.110       0.000 
  
           Solution, x  
         1           2           3 
    -4.244       3.706      -0.391 
  
               Residual, b - Ax  
         1           2           3           4 
     0.395      -1.186       1.186      -0.395 
  

              Right-hand side, b  
         1           2           3           4 
      1.34        8.11        3.76       10.99 
  

 

           Solution, x  
         1           2           3 
    0.4735      0.9437      0.0286 
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               Residual, b - Ax  
         1           2           3           4 
    -1.135       3.406      -3.406       1.135 

Fatal Errors 
IMSL_SINGULAR_TRI_MATRIX The input triangular matrix is singular. The index of 

the first zero diagonal term is #. 

lin_lsq_lin_constraints 
Solves a linear least-squares problem with linear constraints. 

Synopsis 

#include <imsl.h> 

float *imsl_f_lin_lsq_lin_constraints (int nra, int nca, int ncon, float 
a[], float b[], float c[], float bl[], float bu[], int con_type[], 
float xlb[], float xub[], ..., 0) 

The type double function is imsl_d_lin_lsq_lin_constraints. 

Required Arguments 

int nra   (Input) 
Number of least-squares equations. 

int nca   (Input) 
Number of variables. 

int ncon   (Input) 
Number of constraints. 

float a[]   (Input) 
Array of size nra � nca containing the coefficients of the nra least-squares 
equations. 

float b[]   (Input) 
Array of length nra containing the right-hand sides of the least-squares 
equations. 

float c[]   (Input) 
Array of size ncon � nca containing the coefficients of the ncon constraints. 

float bl[]   (Input) 
Array of length ncon containing the lower limit of the general constraints. If 
there is no lower limit on the i-th constraint, then bl[i] will not be referenced. 

float bu[]   (Input) 
Array of length ncon containing the upper limit of the general constraints. If 
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there is no upper limit on the i-th constraint, then bu[i] will not be referenced. 
If there is no range constraint, bl and bu can share the same storage. 

int con_type[]   (Input) 
Array of length ncon indicating the type of constraints exclusive of simple 
bounds, where con_type[i] = 0, 1, 2, 3 indicates =, <=, >= and range 
constraints, respectively.  

float xlb[]   (Input) 
Array of length nca containing the lower bound on the variables. If there is no 
lower bound on the i-th variable, then xlb[i] should be set to 1.0e30. 

float xub[]   (Input) 
Array of length nca containing the upper bound on the variables. If there is no 
lower bound on the i-th variable, then xub[i] should be set to �1.0e30. 

Return Value 
A pointer to the to a vector of length nca containing the approximate solution. To 
release this space, use free. If no solution was computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 

float *imsl_f_lin_lsq_lin_constraints (int nra, int nca, int ncon, float 
a[], float b[], float c[], float bl[], float bu[], int con_type[], 
float xlb[], float xub[], 
IMSL_RETURN_USER, float x[], 
IMSL_RESIDUAL, float **residual, 
IMSL_RESIDUAL_USER, float residual_user[], 
IMSL_PRINT, 
IMSL_MAX_ITER, int max_iter, 
IMSL_REL_FCN_TOL, float rel_tol, 
IMSL_ABS_FCN_TOL, float abs_tol, 
0) 

Optional Arguments 
IMSL_RETURN_USER, float x[]   (Output) 

Store the solution in the user supplied vector x of length nca. 

IMSL_RESIDUAL, float **residual   (Output) 
The address of a pointer to an array containing the residuals b � Ax of the 
least-squares equations at the approximate solution. 

IMSL_RESIDUAL_USER, float residual_user[]   (Output) 
Store the residuals in the user-supplied vector of length nra. 

IMSL_PRINT, 
Debug output flag. Choose this option if more detailed output is desired. 
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IMSL_MAX_ITER, int max_iter   (Input) 
Set the maximum number of add/drop iterations. 
Default: max_iter = 5*max(nra, nca) 

IMSL_REL_FCN_TOL, float rel_tol   (Input) 
Relative rank determination tolerance to be used. 
Default: rel_tol = sqrt(imsl_f_machine(4)) 

IMSL_ABS_FCN_TOL, float abs_tol   (Input) 
Absolute rank determination tolerance to be used. 
Default: abs_tol = sqrt(imsl_f_machine(4)) 

Description 
The function imsl_f_lin_lsq_lin_constraints solves linear least-squares 
problems with linear constraints. These are systems of least-squares equations of the 
form 

Ax � b 

 

subject to 

bl � Cx � bu 

xl � x � xu 

Here A is the coefficient matrix of the least-squares equations, b is the right-hand side, 
and C is the coefficient matrix of the constraints. The vectors bl, bu, xl and xu are the 
lower and upper bounds on the constraints and the variables, respectively. The system 
is solved by defining dependent variables y � Cx and then solving the least-squares 
system with the lower and upper bounds on x and y. The equation Cx � y = 0 is a set of 
equality constraints. These constraints are realized by heavy weighting, i.e., a penalty 
method, Hanson (1986, pp. 826-834). 

Examples 

Example 1 
In this example, the following problem is solved in the least-squares sense: 

3x1 + 2x2 + x3 = 3.3 

4x1 +2x2 + x3 = 2.2 

2x1 + 2x2 + x3 = 1.3 
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x1 + x2 + x3 = 1.0 

Subject to 

x1 = x2 + x3 � 1 

0 � x1 � 0.5 

0 � x2 � 0.5 

0 � x3 � 0.5 

#include <imsl.h> 
 
main() 
{ 
        int     nra = 4; 
        int     nca = 3; 
 
        int     ncon = 1; 
        float  *x; 
        float   a[] = {3.0, 2.0, 1.0, 
                       4.0, 2.0, 1.0, 
                       2.0, 2.0, 1.0, 
                       1.0, 1.0, 1.0}; 
        float   b[] = {3.3, 2.3, 1.3, 1.0}; 
        float   c[] = {1.0, 1.0, 1.0}; 
        float   xlb[] = {0.0, 0.0, 0.0}; 
        float   xub[] = {0.5, 0.5, 0.5}; 
        int     con_type[] = {1}; 
        float   bc[] = {1.0}; 
 
        x = imsl_f_lin_lsq_lin_constraints (nra, nca, ncon, a, b, c, 
                bc, bc, con_type, xlb, xub, 0); 
 
        imsl_f_write_matrix ("Solution", 1, nca, x, 0); 
} 

Output  
             Solution 
         1           2           3 
       0.5         0.3         0.2 

Example 2 
The same problem solved in the first example is solved again. This time residuals of the 
least-squares equations at the approximate solution are returned, and the norm of the 
residual vector is printed. Both the solution and residuals are returned in user-supplied 
space. 

#include <imsl.h> 
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main() 
{ 
        int     nra = 4; 
        int     nca = 3; 
        int     ncon = 1; 
        float   x[3]; 
        float   residual[4]; 
        float   a[] = {3.0, 2.0, 1.0, 
                       4.0, 2.0, 1.0, 
                       2.0, 2.0, 1.0, 
                       1.0, 1.0, 1.0}; 
        float   b[] = {3.3, 2.3, 1.3, 1.0}; 
        float   c[] = {1.0, 1.0, 1.0}; 
        float   xlb[] = {0.0, 0.0, 0.0}; 
        float   xub[] = {0.5, 0.5, 0.5}; 
        int     con_type[] = {1}; 
        float   bc[] = {1.0}; 
 
        imsl_f_lin_lsq_lin_constraints (nra, nca, ncon, a, b, c, 
                bc, bc, con_type, xlb, xub, 
                IMSL_RETURN_USER, x, 
                IMSL_RESIDUAL_USER, residual, 
                0); 
 
        imsl_f_write_matrix ("Solution", 1, nca, x, 0); 
        imsl_f_write_matrix ("Residual", 1, nra, residual, 0); 
        printf ("\n\nNorm of residual = %f\n", 
                 imsl_f_vector_norm (nra, residual, 0)); 
} 
 
 
 

Output 
             Solution 
         1           2           3 
       0.5         0.3         0.2 
  
                   Residual 
         1           2           3           4 
      -1.0         0.5         0.5        -0.0 
  

Norm of residual = 1.224745 

lin_svd_gen 
Computes the SVD, A = USVT, of a real rectangular matrix A. An approximate 
generalized inverse and rank of A also can be computed. 

Synopsis 
#include <imsl.h> 
float *imsl_f_lin_svd_gen (int m, int n, float a[], �, 0) 
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The type double procedure is imsl_d_lin_svd_gen. 

Required Arguments 

int m   (Input) 
Number of rows in the matrix. 

int n   (Input) 
Number of columns in the matrix. 

float a[]   (Input) 
Array of size m � n containing the matrix. 

Return Value 
If no optional arguments are used, imsl_f_lin_svd_gen returns a pointer to an array 
of size min (m, n) containing the ordered singular values of the matrix.  To release this 
space, use free. If no value can be computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float *imsl_f_lin_svd_gen (int m, int n, float a[], 

IMSL_A_COL_DIM, int a_col_dim, 
IMSL_RETURN_USER, float s[], 
IMSL_RANK, float tol, int *rank, 
IMSL_U, float **p_u, 
IMSL_U_USER, float u[], 
IMSL_U_COL_DIM, int u_col_dim, 
IMSL_V, float **p_v, 
IMSL_V_USER, float v[], 
IMSL_V_COL_DIM, int v_col_dim, 
IMSL_INVERSE, float **p_gen_inva, 
IMSL_INVERSE_USER, float gen_inva[], 
IMSL_INV_COL_DIM, int gen_inva_col_dim, 
0) 

Optional Arguments 
IMSL_A_COL_DIM, int a_col_dim   (Input) 

The column dimension of the array a.  
Default: a_col_dim = n 

IMSL_RETURN_USER, float s[]   (Output) 
A user-allocated array of size min (m, n) containing the singular values of A in 
its first min (m, n) positions in nonincreasing order. If IMSL_RETURN_USER is 
used, the return value of imsl_f_lin_svd_gen is s. 

IMSL_RANK, float tol, int *rank   (Input/Output) 
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tol: Scalar containing the tolerance used to determine when a singular value 
is negligible and replaced by the value zero. If tol > 0, then a singular value 
si,i is considered negligible if si,i � tol. If tol < 0, then a singular value  
si,i is considered negligible if si,i � |tol|*||A||¥. In this case, |tol| should be  
an estimate of relative error or uncertainty in the data. 

*rank: Integer containing an estimate of the rank of A. 

IMSL_U, float **p_u   (Output) 
**p_u: The address of a pointer to an array of size m � min (m, n) containing 
the left- singular vectors of A. On return, the necessary space is allocated by 
imsl_f_lin_svd_gen. Typically, float *p_u is declared, and &p_u is used 
as an argument. 

IMSL_U_USER, float u[]   (Output) 
u[]: A user-allocated array of size m � min (m, n)containing the left-singular 
vectors of A. If m � n, the left-singular vectors can be returned using the 
storage locations of the array a. 

IMSL_U_COL_DIM, int u_col_dim   (Input) 
The column dimension of the array containing the left-singular vectors.  
Default: u_col_dim = min (m, n) 

IMSL_V, float **p_v   (Output) 
**p_v: The address of a pointer to an array of size n � min (m, n) containing 
the right singular vectors of A. On return, the necessary space is allocated by 
imsl_f_lin_svd_gen. Typically,  float *p_v is declared, and &p_v is used 
as an argument. 

IMSL_V_USER, float v[]   (Output) 
v[]: A user-allocated array of size n � min (m, n)containing the right-singular 
vectors of A. The right-singular vectors can be returned using the storage 
locations of the array a. Note that the return of the left- and right-singular 
vectors cannot use the storage locations of a simultaneously. 

IMSL_V_COL_DIM, int v_col_dim   (Input) 
The column dimension of the array containing the right-singular vectors.  
Default: v_col_dim = min (m, n) 

IMSL_INVERSE, float **p_gen_inva   (Output) 
The address of a pointer to an array of size n � m containing the generalized 
inverse of the matrix A. On return, the necessary space is allocated by 
imsl_f_lin_svd_gen. Typically, float *p_gen_inva is declared, and 
&p_gen_inva is used as an argument. 

IMSL_INVERSE_USER, float gen_inva[]   (Output) 
A user-allocated array of size n � m containing the general inverse of the 
matrix A. 

IMSL_INV_COL_DIM, int gen_inva_col_dim   (Input) 
The column dimension of the array containing the general inverse of the 



 

 
 

matrix A.  
Default: gen_inva_col_dim = m 

Description 
The function imsl_f_lin_svd_gen computes the singular value decomposition of a 
real matrix A. It first reduces the matrix A to a bidiagonal matrix B by pre- and post-
multiplying Householder transformations. Then, the singular value decomposition of  
B is computed using the implicit-shifted QR algorithm. An estimate of the rank of the 
matrix A is obtained by finding the smallest integer k such that sk,k � tol or 
sk,k � |tol|*||A||¥. Since si+1, i+1 � si,i, it follows that all the si, i satisfy the same 
inequality for i = k, �, min (m, n) � 1. The rank is set to the value k � 1. If A = USVT, 
its generalized inverse is A+ = VS+ UT. Here, 

� �1 1
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Only singular values that are not negligible are reciprocated. If IMSL_INVERSE or 
IMSL_INVERSE_USER is specified, the function first computes the singular value 
decomposition of the matrix A. The generalized inverse is then computed. The function 
imsl_f_lin_svd_gen fails if the QR algorithm does not converge after 30 iterations 
isolating an individual singular value. 

Examples 

Example 1 
This example computes the singular values of a real 6 � 4 matrix. 

#include <imsl.h> 
 
float a[] =   {1.0,  2.0,  1.0,  4.0, 
               3.0,  2.0,  1.0,  3.0, 
               4.0,  3.0,  1.0,  4.0, 
               2.0,  1.0,  3.0,  1.0, 
               1.0,  5.0,  2.0,  2.0, 
               1.0,  2.0,  2.0,  3.0}; 
 
main() 
{ 
    int          m = 6, n = 4; 
    float        *s; 
                              /* Compute singular values */ 
    s = imsl_f_lin_svd_gen (m, n, a, 0); 
                              /* Print singular values */ 
    imsl_f_write_matrix ("Singular values", 1, n, s, 0); 
} 

Output 
          Singular values 
    1           2           3           4 
11.49        3.27        2.65        2.09 
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Example 2 
This example computes the singular value decomposition of the 6 � 4 real matrix A. 
The singular values are returned in the user-provided array. The matrices U and V are 
returned in the space provided by the function imsl_f_lin_svd_gen. 

#include <imsl.h> 
 
float a[] =  {1.0,  2.0,  1.0,  4.0, 
               3.0,  2.0,  1.0,  3.0, 
               4.0,  3.0,  1.0,  4.0, 
               2.0,  1.0,  3.0,  1.0, 
               1.0,  5.0,  2.0,  2.0, 
               1.0,  2.0,  2.0,  3.0}; 
 
main() 
{ 
    int           m = 6, n = 4; 
    float        s[4], *p_u, *p_v; 
                                    /* Compute SVD */ 
    imsl_f_lin_svd_gen (m, n, a, 
                        IMSL_RETURN_USER, s, 
                        IMSL_U, &p_u, 
                        IMSL_V, &p_v, 
                        0); 
                                    /* Print decomposition*/ 
 
    imsl_f_write_matrix ("Singular values, S", 1, n, s, 0); 
    imsl_f_write_matrix ("Left singular vectors, U", m, n, p_u, 0); 
    imsl_f_write_matrix ("Right singular vectors, V", n, n, p_v, 0); 
} 

Output 
              Singular values, S 
         1           2           3           4 
     11.49        3.27        2.65        2.09 
  
            Left singular vectors, U 
            1           2           3           4 
1     -0.3805      0.1197      0.4391     -0.5654 
2     -0.4038      0.3451     -0.0566      0.2148 
3     -0.5451      0.4293      0.0514      0.4321 
4     -0.2648     -0.0683     -0.8839     -0.2153 
5     -0.4463     -0.8168      0.1419      0.3213 
6     -0.3546     -0.1021     -0.0043     -0.5458 
  
            Right singular vectors, V 
            1           2           3           4 
1     -0.4443      0.5555     -0.4354      0.5518 
2     -0.5581     -0.6543      0.2775      0.4283 
3     -0.3244     -0.3514     -0.7321     -0.4851 
4     -0.6212      0.3739      0.4444     -0.5261 

Example 3 
This example computes the rank and generalized inverse of a 3 � 2 matrix A. The rank 
and the 2 � 3 generalized inverse matrix A+ are printed. 
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#include <imsl.h> 
 
float a[] =  {1.0,   0.0, 
               1.0,   1.0, 
             100.0, -50.0}; 
 
main() 
{ 
    int           m = 3, n = 2; 
    float         tol; 
    float         gen_inva[6]; 
    float        *s; 
    int          *rank; 
                                  /* Compute generalized inverse */ 
    tol = 1.e-4; 
    s = imsl_f_lin_svd_gen (m, n, a,  
                            IMSL_RANK, tol, &rank, 
                            IMSL_INVERSE_USER, gen_inva, 
                            IMSL_INV_COL_DIM, m, 
                            0); 
                                  /* Print rank, singular values and  */ 
                                  /* generalized inverse. */ 

 

    printf ("Rank of matrix = %2d", rank); 
 
    imsl_f_write_matrix ("Singular values", 1, n, s, 0); 
 
    imsl_f_write_matrix ("Generalized inverse", n, m, gen_inva,  
                          IMSL_A_COL_DIM, m, 
                          0); 
} 

Output 
Rank of matrix =  2  
    Singular values 
         1           2 
     111.8         1.4 
  
         Generalized inverse 
            1           2           3 
1       0.100       0.300       0.006 
2       0.200       0.600      -0.008 

Warning Errors 
IMSL_SLOWCONVERGENT_MATRIX Convergence cannot be reached after 30 

iterations. 
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lin_svd_gen (complex) 
Computes the SVD, A = USVH, of a complex rectangular matrix A. An approximate 
generalized inverse and rank of A also can be computed. 

Synopsis 
#include <imsl.h> 
f_complex *imsl_c_lin_svd_gen (int m, int n, f_complex a[], �, 0) 

The type d_complex function is imsl_z_lin_svd_gen. 

Required Arguments 

int m   (Input) 
Number of rows in the matrix. 

int n   (Input) 
Number of columns in the matrix. 

f_complex a[]   (Input) 
Array of size m � n containing the matrix. 
 

Return Value 
Using only required arguments, imsl_c_lin_svd_gen returns a pointer to a complex 
array of length min (m, n) containing the singular values of the matrix. To release this 
space, use free. If no value can be computed then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
f_complex *imsl_c_lin_svd_gen (int m, int n, f_complex a[], 

IMSL_A_COL_DIM, int a_col_dim, 
IMSL_RETURN_USER, f_complex s[], 
IMSL_RANK, float tol, int *rank, 
IMSL_U, f_complex **p_u, 
IMSL_U_USER, f_complex u[], 
IMSL_U_COL_DIM, int u_col_dim, 
IMSL_V, f_complex **p_v, 
IMSL_V_USER, f_complex v[], 
IMSL_V_COL_DIM, int v_col_dim, 
IMSL_INVERSE, f_complex **p_gen_inva, 
IMSL_INVERSE_USER, f_complex gen_inva[], 
IMSL_INV_COL_DIM, int gen_inva_col_dim, 
0) 
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Optional Arguments 
IMSL_A_COL_DIM, int a_col_dim   (Input) 

The column dimension of the array a.  
Default: a_col_dim = n 

IMSL_RETURN_USER, f_complex s[]   (Output) 
A user-allocated array of length min (m, n) containing the singular values of A 
in its first min (m, n) positions in nonincreasing order. The complex entries are 
all real. If IMSL_RETURN_USER is used, the return value of 
imsl_c_lin_svd_gen is s. 

IMSL_RANK, float tol, int *rank   (Input/Output) 

tol: Scalar containing the tolerance used to determine when a singular value 
is negligible and replaced by the value zero. If tol > 0, then a singular value 
si,i is considered negligible if si,i � tol. If tol < 0, then a singular value si,i is 
considered negligible if si,i � |tol|*||A||¥. In this case, should be an estimate of 
relative error or uncertainty in the data. 

*rank: Integer containing an estimate of the rank of A. 

IMSL_U, f_complex **p_u   (Output) 
The address of a pointer to an array of size m � min (m, n) containing the left-
singular vectors of A. On return, the necessary space is allocated by 
imsl_c_lin_svd_gen. Typically, f_complex *p_u is declared, and &p_u is 
used as an argument. 

IMSL_U_USER, f_complex u[]   (Output) 
A user-allocated array of size m � min (m, n) containing the left-singular 
vectors of A. If m � n, the left-singular vectors can be returned using the 
storage locations of the array a. 

IMSL_U_COL_DIM, int u_col_dim   (Input) 
The column dimension of the array containing the left-singular vectors.  
Default: u_col_dim = min (m, n) 

IMSL_V, f_complex **p_v   (Output) 
The address of a pointer to an array of size n � min (m, n) containing the  
right-singular vectors of A. On return, the necessary space is allocated by 
imsl_c_lin_svd_gen. Typically,  f_complex *p_v is declared,  
and &p_v is used as an argument. 

IMSL_V_USER, f_complex v[]   (Output) 
A user-allocated array of size n � min (m, n) containing the right-singular 
vectors of A. The right-singular vectors can be returned using the storage 
locations of the array a. Note that the return of the left and right-singular 
vectors cannot use the storage locations of a simultaneously. 

IMSL_V_COL_DIM, int v_col_dim   (Input) 
The column dimension of the array containing the right-singular vectors. 
Default: v_col_dim = min (m, n) 



 

 
 

IMSL_INVERSE, f_complex **p_gen_inva   (Output) 
The address of a pointer to an array of size n � m containing the generalized 
inverse of the matrix A. On return, the necessary space is allocated by 
imsl_c_lin_svd_gen. Typically, f_complex *p_gen_inva is declared, and 
&p_gen_inva is used as an argument. 

IMSL_INVERSE_USER, f_complex gen_inva[]   (Output) 
A user-allocated array of size n � m containing the general inverse of the 
matrix A. 

IMSL_INV_COL_DIM, int gen_inva_col_dim   (Input) 
The column dimension of the array containing the general inverse of the 
matrix A.  
Default: gen_inva_col_dim = m 

Description 
The function imsl_c_lin_svd_gen computes the singular value decomposition of a 
complex matrix A. It first reduces the matrix A to a bidiagonal matrix B by pre- and 
post-multiplying Householder transformations. Then, the singular value decomposition 
of B is computed using the implicit-shifted QR algorithm. An estimate of the rank of the 
matrix A is obtained by finding the smallest integer k such that sk,k � tol or 
sk,k � |tol|*||A||¥. Since si+1,i+1 � si,i, it follows that all the si,i satisfy the same inequality 
for i = k, �, min (m, n) � 1. The rank is set to the value k � 1. If A = USVH, its 
generalized inverse is A+ = VS+ UH. 

 

Here, 
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Only singular values that are not negligible are reciprocated. If IMSL_INVERSE or 
IMSL_INVERSE_USER is specified, the function first computes the singular value 
decomposition of the matrix A. The generalized inverse is then computed. The function 
imsl_c_lin_svd_gen fails if the QR algorithm does not converge after 30 iterations 
isolating an individual singular value. 

Examples 

Example 1 
This example computes the singular values of a 6 � 3 complex matrix. 

#include <imsl.h> 
 main() 
{ 
    int               m = 6, n = 3; 
    f_complex        *s; 
    f_complex  a[] =  {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0}, 
                       {3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0}, 
                       {4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0}, 
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                       {2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0}, 
                       {1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0}, 
                       {1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}}; 
                                    /* Compute singular values */ 
    s = imsl_c_lin_svd_gen (m, n, a, 0); 
                                    /* Print singular values */ 
    imsl_c_write_matrix ("Singular values", 1, n, s, 0); 
} 

Output 
                             Singular values 
                      1                        2                        3 
(     11.77,      0.00)  (      9.30,      0.00)  (      4.99,      0.00) 

Example 2 
This example computes the singular value decomposition of the 6 � 3 complex matrix 
A. The singular values are returned in the user-provided array. The matrices U and V 
are returned in the space provided by the function imsl_c_lin_svd_gen. 

#include <imsl.h> 
 
main() 
{ 
    int           m = 6, n = 3; 
    f_complex     s[3], *p_u, *p_v; 
    f_complex  a[] =  {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0}, 
                       {3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0}, 

 

                       {4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0}, 
                       {2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0}, 
                       {1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0}, 
                       {1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}}; 
                                   /* Compute SVD of a */ 
        imsl_c_lin_svd_gen (m, n, a, 
                           IMSL_RETURN_USER, s,  
                           IMSL_U, &p_u, 
                           IMSL_V, &p_v, 
                           0); 
                                    /* Print decomposition factors */ 
        imsl_c_write_matrix ("Singular values, S", 1, n, s, 0); 
        imsl_c_write_matrix ("Left singular vectors, U", m, n, p_u, 0); 
        imsl_c_write_matrix ("Right singular vectors, V", n, n, p_v, 0); 
 } 

Output 
                           Singular values, S 
                      1                        2                        3 
(     11.77,      0.00)  (      9.30,      0.00)  (      4.99,      0.00) 
  
                          Left singular vectors, U 
                        1                        2                        3 
1 (    0.1968,    0.2186)  (    0.5011,    0.0217)  (   -0.2007,   -0.1003) 
2 (    0.3443,   -0.3542)  (   -0.2933,    0.0248)  (    0.1155,   -0.2338) 
3 (    0.1457,    0.2307)  (   -0.5424,    0.1381)  (   -0.4361,   -0.4407) 
4 (    0.3016,   -0.0844)  (    0.2157,    0.2659)  (   -0.0523,   -0.0894) 
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5 (    0.2283,   -0.6008)  (   -0.1325,    0.1433)  (    0.3152,   -0.0090) 
6 (    0.2876,   -0.0350)  (    0.4377,   -0.0400)  (    0.0458,   -0.6205) 
  
                         Right singular vectors, V 
                        1                        2                        3 
1 (    0.6616,    0.0000)  (   -0.2651,    0.0000)  (   -0.7014,    0.0000) 
2 (    0.7355,    0.0379)  (    0.3850,   -0.0707)  (    0.5482,    0.0624) 
3 (    0.0507,   -0.1317)  (    0.1724,    0.8642)  (   -0.0173,   -0.4509) 

Example 3 
This example computes the rank and generalized inverse of a 6 � 4 matrix A. The rank 
and the 4 � 6 generalized inverse matrix A+ are printed. 

#include <imsl.h> 
main() 
{ 
    int           m = 6, n = 4; 
    int           *rank; 
    float         tol; 
    f_complex     gen_inv[24], *s; 
    f_complex  a[] =  {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0}, {1.0,0.0}, 
                       {3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0}, {0.0,1.0}, 
                       {4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0}, {0.0,0.0}, 
                       {2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0}, {2.0,1.0}, 
                       {1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0}, {1.0,3.1}, 
                       {1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}, {1.4,1.9}}; 
                                   /* Factor a */ 
    tol = 1.e-4; 
    s = imsl_c_lin_svd_gen (m, n, a,  
                            IMSL_RANK, tol, &rank, 
                            IMSL_INVERSE_USER, gen_inv, 
                            IMSL_INV_COL_DIM, m, 
                            0); 
                                    /* Print rank and generalized */ 
                                    /* inverse matrix */ 
 
    printf ("Rank = %2d", rank); 
 
    imsl_c_write_matrix ("Singular values", 1, n, s, 0); 
 
    imsl_c_write_matrix ("Generalized inverse", n, m, gen_inv,  
                          IMSL_A_COL_DIM, m, 0); 
} 

Output 
Rank =  4  
                             Singular values  
                      1                        2                        3 
(     12.13,      0.00)  (      9.53,      0.00)  (      5.67,      0.00) 
  
                      4 
(      1.74,      0.00) 
  
                            Generalized inverse 
                        1                        2                        3 
1 (    0.0266,    0.0164)  (   -0.0185,    0.0453)  (    0.0720,    0.0700) 
2 (    0.0061,    0.0280)  (    0.0820,   -0.1156)  (   -0.0410,   -0.0242) 
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3 (   -0.0019,   -0.0572)  (    0.1174,    0.0812)  (    0.0499,    0.0463) 
4 (    0.0380,    0.0298)  (   -0.0758,   -0.2158)  (    0.0356,   -0.0557) 
  
                        4                        5                        6 
1 (   -0.0220,   -0.0428)  (   -0.0003,   -0.0709)  (    0.0254,    0.1050) 
2 (    0.0959,    0.0885)  (   -0.0187,    0.0287)  (   -0.0218,   -0.1109) 
3 (   -0.0234,    0.1033)  (   -0.0769,    0.0103)  (    0.0810,   -0.1074) 
4 (    0.2918,   -0.0763)  (    0.0881,    0.2070)  (   -0.1531,    0.0814) 

Warning Errors 
IMSL_SLOWCONVERGENT_MATRIX Convergence cannot be reached after 30 

iterations. 

lin_sol_nonnegdef 
Solves a real symmetric nonnegative definite system of linear equations Ax = b. Using 
options, computes a Cholesky factorization of the matrix A, such that A = RTR = LLT. 
Computes the solution to Ax = b given the Cholesky factor. 

Synopsis 
#include <imsl.h> 
float *imsl_f_lin_sol_nonnegdef (int n, float a[], float b[], �, 0) 

The type double function is imsl_d_lin_sol_nonnegdef. 

Required Arguments  
int n   (Input) 

Number of rows and columns in the matrix. 

float a[]   (Input) 
Array of size n � n containing the matrix.  

float b[]   (Input) 
Array of size n containing the right-hand side. 

Return Value 
Using required arguments, imsl_f_lin_sol_nonnegdef returns a pointer to a 
solution x of the linear system. To release this space, use free. If no value can be 
computed, NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float *imsl_f_lin_sol_nonnegdef (int n, float a[], float b[], 

IMSL_RETURN_USER, float x[], 
IMSL_A_COL_DIM, int a_col_dim, 
IMSL_FACTOR, float **p_factor, 
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IMSL_FACTOR_USER, float factor[], 
IMSL_FAC_COL_DIM, int fac_col_dim, 
IMSL_INVERSE, float **p_inva, 
IMSL_INVERSE_USER, float inva[], 
IMSL_INV_COL_DIM, int inv_col_dim, 
IMSL_TOLERANCE, float tol, 
IMSL_FACTOR_ONLY, 
IMSL_SOLVE_ONLY, 
IMSL_INVERSE_ONLY, 
0) 

Optional Arguments 
IMSL_RETURN_USER, float x[]   (Output) 

A user-allocated array of length n containing the solution x. When this option 
is specified, no storage is allocated for the solution, and 
imsl_f_lin_sol_nonnegdef returns a pointer to the array x. 

IMSL_A_COL_DIM, int a_col_dim   (Input) 
The column dimension of the array a. 
Default: a_col_dim = n 

IMSL_FACTOR, float **p_factor   (Output) 
The address of a pointer to an array of size n � n containing the LLT 
factorization of A. When this option is specified, the space for the factor 
matrix is allocated by imsl_f_lin_sol_nonnegdef. The lower-triangular 
part of the factor array contains L, and the upper-triangular part contains LTR. 
Typically, float *p_factor is declared, and &p_factor is used as an 
argument. 

IMSL_FACTOR_USER, float factor[]   (Input/Output) 
A user-allocated array of size n � n containing the LLT factorization of A. The 
lower-triangular part of factor contains L, and the upper-triangular part 
contains LT. If a is not needed, a and factor can be the same storage 
locations. If IMSL_SOLVE is specified, this parameter is input; otherwise, it is 
output. 

IMSL_FAC_COL_DIM, int fac_col_dim   (Input) 
The column dimension of the array containing the LLT factorization. 
Default: fac_col_dim = n 

IMSL_INVERSE, float **p_inva   (Output) 
The address of a pointer to an array of size n � n containing the inverse of A. 
The space for this array is allocated by imsl_f_lin_sol_nonnegdef. 
Typically, float  *p_inva is declared, and &p_inva is used as an argument. 

IMSL_INVERSE_USER, float inva[]   (Output) 
A user-allocated array of size n � n containing the inverse of A. If a is not 
needed, a and factor can be the same storage locations. The storage 
locations for A cannot be the factorization and the inverse of A at the same 
time. 



 

 
 

IMSL_INV_COL_DIM, int inva_col_dim   (Input) 
The column dimension of the array containing the inverse of A. 
Default: inva_col_dim = n 

IMSL_TOLERANCE, float tol   (Input) 
Tolerance used in determining linear dependence. 
Default: tol = 100* imsl_f_machine(4) 
See the documentation for imsl_f_machine in Chapter 12, “Utilities.”  

IMSL_FACTOR_ONLY 
Compute the LLT factorization of A only. The argument b is ignored, and 
either the optional  argument IMSL_FACTOR or IMSL_FACTOR_USER is 
required. 

IMSL_SOLVE_ONLY 
Solve Ax = b using the factorization previously computed by this function. The 
argument a is ignored, and the optional argument IMSL_FACTOR_USER is 
required. 

IMSL_INVERSE_ONLY 
Compute the inverse of A only. The argument b is ignored, and either the 
optional  argument IMSL_INVERSE or  IMSL_INVERSE_USER is required. 

Description 
The function imsl_f_lin_sol_nonnegdef solves a system of linear algebraic 
equations having a symmetric nonnegative definite (positive semidefinite) coefficient 
matrix. It first computes a Cholesky (LLT or RTR) factorization of the coefficient 
matrix A.  

The factorization algorithm is based on the work of Healy (1968) and proceeds 
sequentially by columns. The i-th column is declared to be linearly dependent on the 
first i � 1 columns if  
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where 
 (specified in tol) may be set by the user. When a linear dependence is 
declared, all elements in the i-th row of R (column of L) are set to zero. 

Modifications due to Farebrother and Berry (1974) and Barrett and Healy (1978) for 
checking for matrices that are not nonnegative definite also are incorporated. The 
function imsl_f_lin_sol_nonnegdef declares A to not be nonnegative definite and 
issues an error message if either of the following conditions are satisfied: 
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Healy’s (1968) algorithm and the function imsl_f_lin_sol_nonnegdef permit the 
matrices A and R to occupy the same storage. Barrett and Healy (1978) in their remark 
neglect this fact. The function imsl_f_lin_sol_nonnegdef uses 

1 2
1

i
ijj

r�

�
�  

for aii in the above condition 2 to remedy this problem. 

If an inverse of the matrix A is required and the matrix is not (numerically) positive 
definite, then the resulting inverse is a symmetric g2 inverse of A. For a matrix G to be a 
g2 inverse of a matrix A, G must satisfy conditions 1 and 2 for the Moore-Penrose 
inverse, but generally fail conditions 3 and 4. The four conditions for G to be a Moore-
Penrose inverse of A are as follows: 

1. AGA = A 

2. GAG = G 

3. AG is symmetric 

4. GA is symmetric 

The solution of the linear system Ax = b is computed by solving the factored version of 
the linear system RTRx = b as two successive triangular linear systems. In solving the 
triangular linear systems, if the elements of a row of R are all zero, the corresponding 
element of the solution vector is set to zero. For a detailed description of the algorithm, 
see Section 2 in Sallas and Lionti (1988). 

Examples 

Example 1 
A solution to a system of four linear equations is obtained. Maindonald (1984, pp. 83�86  
and 104�105) discusses the computations for the factorization and solution to this problem. 

#include <imsl.h> 
 
main() 
{ 
    int         n = 4; 
    float       *x; 
    float       a[] = {36.0, 12.0, 30.0,  6.0,  
                       12.0, 20.0,  2.0, 10.0,  
                       30.0,  2.0, 29.0,  1.0,   
                        6.0, 10.0,  1.0, 14.0}; 
    float       b[] = {18.0, 22.0,  7.0, 20.0}; 
 
                                /* Solve Ax = b  for  x  */ 
    x = imsl_f_lin_sol_nonnegdef(n, a, b, 0); 
                                /* Print solution, x, of Ax = b */ 
    imsl_f_write_matrix("Solution, x", 1, n, x, 0); 
} 

110 � lin_sol_nonnegdef IMSL C/Math/Library 

 

 

 



 

 
 

Chapter 1: Linear Systems lin_sol_nonnegdef � 111 

 

 

 

Output 
             Solution, x 
    1           2           3           4 
0.167       0.500       0.000       1.000 

Example 2 
The symmetric nonnegative definite matrix in the initial example is used to compute the 
factorization only in the first call to lin_sol_nonnegdef. The space needed for the 
factor is provided by the user. On the second call, both the LLT factorization and the 
right-hand side vector in the first example are used as the input to compute a solution x. 
It also illustrates another way to obtain the solution array x. 

#include <imsl.h> 
 
main() 
{ 
    int         n = 4,  a_col_dim = 6; 
    float       factor[36], x[5]; 
    float       a[] = {36.0, 12.0, 30.0,  6.0,  
                       12.0, 20.0,  2.0, 10.0,  
                       30.0,  2.0, 29.0,  1.0,  
                        6.0, 10.0,  1.0, 14.0}; 
    float       b[] = {18.0, 22.0,  7.0, 20.0}; 
                                /* Factor A */ 
    imsl_f_lin_sol_nonnegdef(n, a, b, 
                             IMSL_FACTOR_USER, factor, 
                             IMSL_FAC_COL_DIM, a_col_dim, 
                             IMSL_FACTOR_ONLY, 
                             0); 
                                /* NULL is returned in  */ 
                                /* this case.  Another  */ 
                                /* way to obtain the    */ 
                                /* factor is to use the */ 
                                /* IMSL_FACTOR option.  */ 
    imsl_f_write_matrix("factor", n, n, factor,  
                        IMSL_A_COL_DIM, a_col_dim, 
                        0); 
                                /* Get the solution using */ 
                                /* the factorized matrix. */ 
    imsl_f_lin_sol_nonnegdef(n, a, b, 
                             IMSL_FACTOR_USER, factor, 
                             IMSL_FAC_COL_DIM, a_col_dim, 
                             IMSL_RETURN_USER, x, 
                             IMSL_SOLVE_ONLY, 
                             0); 
    imsl_f_write_matrix("Solution, x, of Ax = b", 1, n, x, 0); 
} 

 

Output 
                     factor 
            1           2           3           4 
1           6           2           5           1 
2           2           4          -2           2 
3           5          -2           0           0 
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4           1           2           0           3 
  
            Solution, x, of Ax = b 
         1           2           3           4 
     0.167       0.500       0.000       1.000 

Example 3 
This example uses the IMSL_INVERSE option to compute the symmetric g inverse of 
the symmetric nonnegative matrix in the first example. Maindonald (1984, p. 106) 
discusses the computations for this problem. 

#include <stdio.h> 
#include <imsl.h> 
 
void main() 
{ 
    int         n = 4; 
    float       *p_a_inva, *p_a_inva_a, *p_inva; 
    float       a[] = {36.0, 12.0, 30.0,  6.0, 
                       12.0, 20.0,  2.0, 10.0, 
                       30.0,  2.0, 29.0,  1.0, 
                        6.0, 10.0,  1.0, 14.0}; 
                                /* Get g2_inverse(a) */ 
    imsl_f_lin_sol_nonnegdef(n, a, NULL, 
                             IMSL_INVERSE, &p_inva, 
                             IMSL_INVERSE_ONLY, 
                             0); 
                                /* Form a*g2_inverse(a) */ 
    p_a_inva = imsl_f_mat_mul_rect("A*B", 
                                   IMSL_A_MATRIX, n, n, a, 
                                   IMSL_B_MATRIX, n, n, p_inva, 
                                   0); 
                                /* Form a*g2_inverse(a)*a */ 
    p_a_inva_a = imsl_f_mat_mul_rect("A*B", 
                                     IMSL_A_MATRIX, n, n, p_a_inva, 
                                     IMSL_B_MATRIX, n, n, a, 
                                      0); 
    imsl_f_write_matrix("The g2 inverse of a", n, n, p_inva, 0); 
    imsl_f_write_matrix("a*g2_inverse(a)\nviolates condition 3 of" 
                        " the M-P inverse", n, n, p_a_inva, 0); 
    imsl_f_write_matrix("a = a*g2_inverse(a)*a\ncondition 1 of" 
                        " the M-P inverse", n, n, p_a_inva_a, 0); 
} 

 

Output 
               The g2 inverse of a 
            1           2           3           4 
1      0.0347     -0.0208      0.0000      0.0000 
2     -0.0208      0.0903      0.0000     -0.0556 
3      0.0000      0.0000      0.0000      0.0000 
4      0.0000     -0.0556      0.0000      0.1111 
  
                 a*g2_inverse(a) 
     violates condition 3 of the M-P inverse 
            1           2           3           4 
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1         1.0        -0.0         0.0         0.0 
2         0.0         1.0         0.0         0.0 
3         1.0        -0.5         0.0         0.0 
4         0.0        -0.0         0.0         1.0 
  
              a = a*g2_inverse(a)*a 
         condition 1 of the M-P inverse 
            1           2           3           4 
1          36          12          30           6 
2          12          20           2          10 
3          30           2          29           1 
4           6          10           1          14 

Warning Errors 
IMSL_INCONSISTENT_EQUATIONS_2 The linear system of equations is 

inconsistent. 

IMSL_NOT_NONNEG_DEFINITE The matrix A is not nonnegative definite.
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Chapter 2: Eigensystem Analysis 

Routines 
2.1 Linear Eigensystem Problems 

General Matrices 
Eigenvalues and eigenvectors..................................................... eig_gen 118 
Eigenvalues and eigenvectors.................................... eig_gen (complex) 120 
Real Symmetric Matrices 
Eigenvalues and eigenvectors.....................................................eig_sym 123 
Complex Hermitian Matrices 
Eigenvalues and eigenvectors..................................eig_herm (complex) 126 

2.2 Generalized Eigensystem Problems 
Real Symmetric Matrices and B Positive Definite 
Eigenvalues and eigenvectors...............................................eig_symgen 129 
Real matrices ................................................................................ geneig 132 
Complex matrices......................................................... geneig (complex) 135 

Usage Notes 
An ordinary linear eigensystem problem is represented by the equation Ax = �x where  
A denotes an n � n matrix. The value � is an eigenvalue and x � 0 is the corresponding 
eigenvector. The eigenvector is determined up to a scalar factor. In all functions, we 
have chosen this factor so that x has Euclidean length one, and the component of x of 
largest magnitude is positive. The eigenvalues and corresponding eigenvectors are 
sorted then returned in the order of largest to smallest complex magnitude. If x is a 
complex vector, this component of largest magnitude is scaled to be real and positive. 
The entry where this component occurs can be arbitrary for eigenvectors having 
nonunique maximum magnitude values. 

A generalized linear eigensystem problem is represented by Ax = �Bx where  
A and B are n � n matrices. The value � is a generalized eigenvalue, and x is the 
corresponding generalized eigenvector. The generalized eigenvectors are normalized in 
the same manner as the ordinary eigensystem problem. 



 

 
 

116 � Usage Notes IMSL C/Math/Library 

 

 

 

Error Analysis and Accuracy 
The remarks in this section are for ordinary eigenvalue problems. Except in special 
cases, functions will not return the exact eigenvalue-eigenvector pair for the ordinary 
eigenvalue problem Ax = �x. Typically, the computed pair 

,x ���  

are an exact eigenvector-eigenvalue pair for a "nearby” matrix A + E. Information 
about E is known only in terms of bounds of the form ||E||2 � f (n) ||A||2�. The value of 
f(n) depends on the algorithm, but is typically a small fractional power of n. The 
parameter � is the machine precision. By a theorem due to Bauer and Fike (see Golub 
and Van Loan 1989, p. 342),  

� � � �2
min  for all  in X E A� � � � �� ��  

where �(A) is the set of all eigenvalues of A (called the spectrum of A), X is the matrix of 
eigenvectors, || � ||2 is Euclidean length, and �(X) is the condition number of X defined as 
�(X) = ||X||2||X-1||2. If A is a real symmetric or complex Hermitian matrix, then its 
eigenvector matrix X is respectively orthogonal or unitary. For these matrices, �(X) = 1. 
The accuracy of the computed eigenvalues 

j�
�  

and eigenvectors 

jx�  

can be checked by computing their performance index 	. The performance index is 
defined to be  

2

1
2 2
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j j j
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where � is again the machine precision. 
The performance index 	 is related to the error analysis because 

2 2j j j jEx Ax x�� �
�� � �  

where E is the “nearby” matrix discussed above. 

While the exact value of 	 is precision and data dependent, the performance of an 
eigensystem analysis function is defined as excellent if 	 < 1
 good if 1 � 	 � 100, and 
poor if 	 > 100. This is an arbitrary definition, but large values of 	 can serve as a 
warning that there is a significant error in the calculation. 
If the condition number �(X) of the eigenvector matrix X is large, there can be large 
errors in the eigenvalues even if 	 is small. In particular, it is often difficult to recognize 
near multiple eigenvalues or unstable mathematical problems from numerical results. 
This facet of the eigenvalue problem is often difficult for users to understand. Suppose 
the accuracy of an individual eigenvalue is desired. This can be answered 
approximately by computing the condition number of an individual eigenvalue  
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(see Golub and Van Loan 1989, pp. 344�345). For matrices A, such that the computed 
array of normalized eigenvectors X is invertible, the condition number of �j is  

1T
j je X�

�

�  

the Euclidean length of the j-th row of X-1. Users can choose to compute this matrix 
using function imsl_c_lin_sol_gen in Chapter 1, “Linear Systems.”  An 
approximate bound for the accuracy of a computed eigenvalue is then given by �j �||A||. 
To compute an approximate bound for the relative accuracy of an eigenvalue, divide 
this bound by |�j|. 

Reformulating Generalized Eigenvalue Problems 
The generalized eigenvalue problem Ax = �Bx is often difficult for users to analyze 
because it is frequently ill-conditioned. Occasionally, changes of variables can be 
performed on the given problem to ease this ill-conditioning. Suppose that B is singular, 
but A is nonsingular. Define the reciprocal � = �-1. Then, assuming A is definite, the 
roles of A and B are interchanged so that the reformulated problem Bx = �Ax is solved. 
Those generalized eigenvalues �j = 0 correspond to eigenvalues �j = 
. The remaining 
�j = �j-1. The generalized eigenvectors for �j correspond to those for �j. 
Now suppose that B is nonsingular. The user can solve the ordinary eigenvalue problem 
Cx = �x where C = B-1A. The matrix C is subject to perturbations due to ill-
conditioning and rounding errors when computing B-1A. Computing the condition 
numbers of the eigenvalues for C may, however, be helpful for analyzing the accuracy 
of results for the generalized problem. 
There is another method that users can consider to reduce the generalized problem to an 
alternate ordinary problem. This technique is based on first computing a matrix 
decomposition B = PQ where both P and Q are matrices that are “simple” to invert. 
Then, the given generalized problem is equivalent to the ordinary eigenvalue problem 
Fy = �y. The matrix F = P-1AQ-1 and the unnormalized eigenvectors of the generalized 
problem are given by x = Q-1y. An example of this reformulation is used in the case 
where A and B are real and symmetric, with B positive definite. The function 
imsl_f_eig_symgen (page 129), uses P = RT and Q = R where R is an upper-
triangular matrix obtained from a Cholesky decomposition, B = RTR. The matrix  
F = R-TAR-1 is symmetric and real. Computation of the eigenvalue-eigenvector 
expansion for F is based on function imsl_f_eig_sym (page 123). 
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eig_gen 
Computes the eigenexpansion of a real matrix A. 

Synopsis 
#include <imsl.h> 

f_complex *imsl_f_eig_gen (int n, float *a, �, 0) 

The type d_complex function is imsl_d_eig_gen. 

Required Arguments 

int n   (Input) 
Number of rows and columns in the matrix. 

float *a   (Input) 
An array of size n � n containing the matrix. 

Return Value 
A pointer to the n complex eigenvalues of the matrix. To release this space, use free. 
If no value can be computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
f_complex *imsl_f_eig_gen (int n, float *a,  

IMSL_VECTORS, f_complex **evec,  
IMSL_VECTORS_USER, f_complex evecu[],  
IMSL_RETURN_USER, f_complex evalu[],  
IMSL_A_COL_DIM, int a_col_dim,  
IMSL_EVECU_COL_DIM, int evecu_col_dim,  
0) 

Optional Arguments 
IMSL_VECTORS, f_complex **evec   (Output) 

The address of a pointer to an array of size n � n containing eigenvectors of the 
matrix. On return, the necessary space is allocated by the function. Typically, 
f_complex *evec is declared, and &evec is used as an argument. 

IMSL_VECTORS_USER, f_complex evecu[]   (Output) 
Compute eigenvectors of the matrix. An array of size n � n containing the matrix 
of eigenvectors is returned in the space evecu. 

IMSL_RETURN_USER, f_complex evalu[]   (Output) 
Store the n eigenvalues in the space evalu. 
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IMSL_A_COL_DIM, int a_col_dim   (Input) 
The column dimension of a. 
Default: a_col_dim = n 

IMSL_EVECU_COL_DIM, int evecu_col_dim   (Input) 
The column dimension of evecu. 
Default: evecu_col_dim = n 

Description 
Function imsl_f_eig_gen computes the eigenvalues of a real matrix by a two-phase 
process. The matrix is reduced to upper Hessenberg form by elementary orthogonal or 
Gauss similarity transformations. Then, eigenvalues are computed using a QR or 
combined LR-QR algorithm (Golub and Van Loan 1989, pp. 373�382, and Watkins 
and Elsner 1990). The combined LR-QR algorithm is based on an implementation by 
Jeff Haag and David Watkins. Eigenvectors are then calculated as required. When 
eigenvectors are computed, the QR algorithm is used to compute the eigenexpansion. 
When only eigenvalues are required, the combined LR-QR algorithm is used. 

Examples 

Example 1 
#include <imsl.h> 
 
main() 
{ 
    int         n = 3; 
    float       a[] =  {8.0, -1.0, -5.0, 
                        -4.0,  4.0, -2.0, 
                        18.0, -5.0, -7.0}; 
    f_complex   *eval; 
                                /* Compute eigenvalues of A */ 
    eval = imsl_f_eig_gen (n, a, 0); 
                                /* Print eigenvalues */ 
    imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0); 
} 

Output 

                               Eigenvalues 
                      1                        2                        3 
(         2,         4)  (         2,        -4)  (         1,         0) 

Example 2 
This example is a variation of the first example. Here, the eigenvectors are computed as 
well as the eigenvalues. 

#include <imsl.h>  
 
main() 
{ 
    int         n = 3; 
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    float       a[] =  {8.0, -1.0, -5.0, 
                        -4.0,  4.0, -2.0, 
                        18.0, -5.0, -7.0}; 
    f_complex   *eval; 
    f_complex   *evec; 
                                /* Compute eigenvalues of A */ 
    eval = imsl_f_eig_gen (n, a, 
                           IMSL_VECTORS, &evec, 
                           0); 
                                /* Print eigenvalues and eigenvectors */ 
    imsl_c_write_matrix ("Eigenvalues",  1, n, eval, 0); 
    imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0); 
} 

Output 
                                 Eigenvalues 
                      1                        2                        3 
(         2,         4)  (         2,        -4)  (         1,         0) 
  
                                 Eigenvectors 
                       1                       2                      3 
1  (   0.3162,   0.3162)  (   0.3162,   -0.3162)  (   0.4082,   0.0000) 
2  (   0.0000,   0.6325)  (   0.0000,   -0.6325)  (   0.8165,   0.0000) 
3  (   0.6325,   0.0000)  (   0.6325,    0.0000)  (   0.4082,   0.0000) 

Warning Errors 
IMSL_SLOW_CONVERGENCE_GEN The iteration for an eigenvalue did not converge 

after # iterations. 

eig_gen (complex) 
Computes the eigenexpansion of a complex matrix A. 

Synopsis 
#include <imsl.h> 

f_complex *imsl_c_eig_gen (int n, f_complex *a, �, 0) 

The type d_complex procedure is imsl_z_eig_gen. 

Required Arguments 

int n   (Input) 
Number of rows and columns in the matrix. 

f_complex *a   (Input) 
Array of size n � n containing the matrix. 

Return Value 
A pointer to the n complex eigenvalues of the matrix. To release this space, use free. 
If no value can be computed, then NULL is returned. 
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Synopsis with Optional Arguments 
#include <imsl.h> 
f_complex *imsl_c_eig_gen (int n, f_complex *a,  

IMSL_VECTORS, f_complex **evec,  
IMSL_VECTORS_USER, f_complex evecu[],  
IMSL_RETURN_USER, f_complex evalu[],  
IMSL_A_COL_DIM, int a_col_dim, 
IMSL_EVECU_COL_DIM, int evecu_col_dim, 
0) 

Optional Arguments 
IMSL_VECTORS, f_complex **evec   (Output) 

The address of a pointer to an array of size n � n containing eigenvectors of the 
matrix. On return, the necessary space is allocated by the function. Typically, 
f_complex *evecu is declared, and &evecu is used as an argument. 

IMSL_VECTORS_USER, f_complex evecu[]   (Output) 
Compute eigenvectors of the matrix. An array of size n � n containing the matrix 
of eigenvectors is returned in the space evecu. 

IMSL_RETURN_USER, f_complex evalu[]   (Output) 
Store the n eigenvalues in the space evalu. 

IMSL_A_COL_DIM, int a_col_dim   (Input) 
The column dimension of A. 
Default: a_col_dim = n 

IMSL_EVECU_COL_DIM, int evecu_col_dim   (Input) 
The column dimension of evecu. 
Default: evecu_col_dim = n 

Description 
The function imsl_c_eig_gen computes the eigenvalues of a complex matrix by a 
two-phase process. The matrix is reduced to upper Hessenberg form by elementary 
Gauss transformations. Then, the eigenvalues are computed using an explicitly shifted 
LR algorithm. Eigenvectors are calculated during the iterations for the eigenvalues 
(Martin and Wilkinson 1971). 

Examples 

Example 1 
#include <imsl.h> 
 
main() 
{ 
    int         n = 4; 
    f_complex   a[] =   { {5,9}, {5,5},  {-6,-6}, {-7,-7}, 
                          {3,3}, {6,10}, {-5,-5}, {-6,-6}, 
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                          {2,2}, {3,3},  {-1, 3}, {-5,-5}, 
                          {1,1}, {2,2},  {-3,-3}, { 0, 4} }; 
    f_complex   *eval; 
                                /* Compute eigenvalues */ 
    eval = imsl_c_eig_gen (n, a, 0); 
                                /* Print eigenvalues */ 
    imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0); 
} 

Output 
                               Eigenvalues 
                      1                        2                        3 
(         4,         8)  (         3,         7)  (         2,         6) 
  
                      4 
(         1,         5) 

Example 2 
This example is a variation of the first example. Here, the eigenvectors are computed as 
well as the eigenvalues. 

#include <imsl.h> 
 
main() 
{ 
    int         n = 4; 
    f_complex   a[] =   { {5,9}, {5,5},  {-6,-6}, {-7,-7}, 
                          {3,3}, {6,10}, {-5,-5}, {-6,-6}, 
                          {2,2}, {3,3},  {-1, 3}, {-5,-5}, 
                          {1,1}, {2,2},  {-3,-3}, { 0, 4} }; 
    f_complex   *eval; 
    f_complex   *evec; 
                           /* Compute eigenvalues and eigenvectors */ 
    eval = imsl_c_eig_gen (n, a, 
                           IMSL_VECTORS, &evec, 
                           0); 
                           /* Print eigenvalues and eigenvectors */ 
    imsl_c_write_matrix ("Eigenvalues",  1, n, eval, 0); 
    imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0); 
} 

Output 

                               Eigenvalues 
                      1                        2                        3 
(         4,         8)  (         3,         7)  (         2,         6) 
  
                      4 
(         1,         5) 
  
                                Eigenvectors 
                        1                      2                       3 
1  (   0.5773,   -0.0000)  (   0.5774    0.0000)  (   0.3780,   -0.0000) 
2  (   0.5773,   -0.0000)  (   0.5773,  -0.0000)  (   0.7559,    0.0000) 
3  (   0.5774,    0.0000)  (  -0.0000,  -0.0000)  (   0.3780,    0.0000) 
4  (  -0.0000,   -0.0000)  (   0.5774,   0.0000)  (   0.3780,   -0.0000) 
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                         4 
1  (    0.7559,    0.0000) 
2  (    0.3780,    0.0000) 
3  (    0.3780,    0.0000) 
4  (    0.3780,    0.0000) 

Fatal Errors 
IMSL_SLOW_CONVERGENCE_GEN The iteration for an eigenvalue did not converge 

after # iterations. 

eig_sym 
Computes the eigenexpansion of a real symmetric matrix A. 

Synopsis 
#include <imsl.h> 

float *imsl_f_eig_sym (int n, float *a, �, 0) 

The type double procedure is imsl_d_eig_sym. 

Required Arguments 

int n   (Input) 
Number of rows and columns in the matrix. 

float *a   (Input) 
Array of size n � n containing the symmetric matrix. 

Return Value 
A pointer to the n eigenvalues of the symmetric matrix. To release this space, use free. 
If no value can be computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float *imsl_f_eig_sym (int n, float *a, 

IMSL_VECTORS, float **evec, 
IMSL_VECTORS_USER, float evecu[], 
IMSL_RETURN_USER, float evalu[], 
IMSL_RANGE, float elow, float ehigh, 
IMSL_A_COL_DIM, int a_col_dim, 
IMSL_EVECU_COL_DIM, int evecu_col_dim, 
IMSL_RESULT_NUMBER, int *n_eval, 
0) 
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Optional Arguments 
IMSL_VECTORS, float **evec   (Output) 

The address of a pointer to an array of size n � n containing the eigenvectors of 
the matrix. On return, the necessary space is allocated by the function. Typically, 
float *evec is declared, and &evec is used as an argument. 

IMSL_VECTORS_USER, float evecu[]   (Output) 
Compute eigenvectors of the matrix. An array of size n � n containing the 
orthogonal matrix of eigenvectors is returned in the space evecu. 

IMSL_RETURN_USER, float evalu[]   (Output) 
Store the n eigenvalues in the space evalu. 

IMSL_RANGE, float elow, float ehigh   (Input) 
Return eigenvalues and optionally eigenvectors that lie in the interval with lower 
limit elow and upper limit ehigh. 
Default: (elow, ehigh) = (�
, +
) 

IMSL_A_COL_DIM, int a_col_dim   (Input) 
The column dimension of a. 
Default: a_col_dim = n 

IMSL_EVECU_COL_DIM, int evecu_col_dim   (Input) 
The column dimension of evecu. 
Default: evecu_col_dim = n 

IMSL_RESULT_NUMBER, int *n_eval   (Output) 
The number of output eigenvalues and eigenvectors in the range low, ehigh. 

Description 
The function imsl_f_eig_sym computes the eigenvalues of a symmetric real matrix 
by a two-phase process. The matrix is reduced to tridiagonal form by elementary 
orthogonal similarity transformations. Then, the eigenvalues are computed using a 
rational QR or bisection algorithm. Eigenvectors are calculated as required  
(Parlett 1980, pp. 169�173). 

Examples 

Example 1 
#include <imsl.h> 
 
main() 
{ 
    int         n = 3; 
    float       a[] =   {7.0,  -8.0,  -8.0, 
                        -8.0, -16.0, -18.0, 
                        -8.0, -18.0,  13.0}; 
    float       *eval; 
                                /* Compute eigenvalues */ 
    eval = imsl_f_eig_sym(n, a, 0); 
                                /* Print eigenvalues */ 
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    imsl_f_write_matrix ("Eigenvalues", 1, 3, eval, 0); 
} 

Output 

            Eigenvalues 
         1           2           3 
    -27.90       22.68        9.22 

Example 2 
This example is a variation of the first example. Here, the eigenvectors are computed as 
well as the eigenvalues. 

#include <imsl.h> 
 
main() 
{ 
    int         n = 3; 
    float       a[] =   {7.0,  -8.0,  -8.0, 
                        -8.0, -16.0, -18.0, 
                        -8.0, -18.0,  13.0}; 
    float       *eval; 
    float       *evec; 
                                /* Compute eigenvalues and eigenvectors */ 
    eval = imsl_f_eig_sym(n, a, 
                          IMSL_VECTORS, &evec, 
                          0); 
                                /* Print eigenvalues and eigenvectors */ 
    imsl_f_write_matrix ("Eigenvalues",  1, n, eval, 0); 
    imsl_f_write_matrix ("Eigenvectors", n, n, evec, 0); 
} 

Output 

            Eigenvalues 
         1           2           3 
    -27.90       22.68        9.22 

  

            Eigenvectors 
            1           2           3 
1      0.2945     -0.2722      0.9161 
2      0.8521     -0.3591     -0.3806 
3      0.4326      0.8927      0.1262 

Warning Errors 
IMSL_SLOW_CONVERGENCE_SYM The iteration for the eigenvalue failed to 

converge in 100 iterations before deflating. 

IMSL_SLOW_CONVERGENCE_2 Inverse iteration did not converge. 
Eigenvector is not correct for the specified 
eigenvalue. 

IMSL_LOST_ORTHOGONALITY_2 The eigenvectors have lost orthogonality. 
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IMSL_NO_EIGENVALUES_RETURNED The number of eigenvalues in the specified 
interval exceeds mxeval. The argument 
n_eval contains the number of eigenvalues 
in the interval. No eigenvalues will be 
returned. 

eig_herm (complex) 
Computes the eigenexpansion of a complex Hermitian matrix A. 

Synopsis 
#include <imsl.h> 

float *imsl_c_eig_herm (int n, f_complex *a, �, 0) 

The type double procedure is imsl_d_eig_herm. 

Required Arguments 

int n   (Input) 
Number of rows and columns in the matrix. 

f_complex *a   (Input) 
Array of size n � n containing the matrix. 

Return Value 
A pointer to the n eigenvalues of the matrix. To release this space, use free. If no 
value can be computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float *imsl_c_eig_herm (int n, f_complex *a, 

IMSL_VECTORS, f_complex **evec, 
IMSL_VECTORS_USER, f_complex evecu[], 
IMSL_RETURN_USER, float evalu[], 
IMSL_RANGE, float elow, float ehigh, 
IMSL_A_COL_DIM, int a_col_dim, 
IMSL_EVECU_COL_DIM, int evecu_col_dim, 
IMSL_RESULT_NUMBER, int *n_eval, 
0) 

Optional Arguments 
IMSL_VECTORS, f_complex **evec   (Output) 

The address of a pointer to an array of size n � n containing eigenvectors of the 
matrix. On return, the necessary space is allocated by the function. Typically, 
f_complex *evec is declared, and &evec is used as an argument. 
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IMSL_VECTORS_USER, f_complex evecu[]   (Output) 
Compute eigenvectors of the matrix. An array of size n � n containing the 
unitary matrix of eigenvectors is returned in the space evecu. 

IMSL_RETURN_USER, float evalu[]   (Output) 
Store the n eigenvalues in the space evalu. 

IMSL_RANGE, float elow, float ehigh   (Input) 
Return eigenvalues and optionally eigenvectors that lie in the interval with lower 
limit elow and upper limit ehigh. 
Default: (elow, ehigh) = (�
, +
). 

IMSL_A_COL_DIM, int a_col_dim   (Input) 
The column dimension of A. 
Default: a_col_dim = n 

IMSL_EVECU_COL_DIM, int evecu_col_dim   (Input) 
The column dimension of X. 
Default: evecu_col_dim = n 

IMSL_RESULT_NUMBER, int *n_eval   (Output) 
The number of output eigenvalues and eigenvectors in the range elow, ehigh. 

Description 
The function imsl_c_eig_herm computes the eigenvalues of a complex Hermitian 
matrix by a two-phase process. The matrix is reduced to tridiagonal form by elementary 
orthogonal similarity transformations. Then, the eigenvalues are computed using a 
rational QR or bisection algorithm. Eigenvectors are calculated as required. 

Examples 

Example 1 
#include <imsl.h> 
 
main() 
{ 
    int         n = 3; 
    f_complex   a[] =   { {1,0}, {1,-7}, {0,-1}, 
                          {1,7}, {5,0}, {10,-3}, 
                          {0,1}, {10,3}, {-2,0} }; 
    float       *eval; 
                                    /* Compute eigenvalues */ 
    eval = imsl_c_eig_herm(n, a, 0); 
                                    /* Print eigenvalues */ 
    imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0); 
} 

Output 
            Eigenvalues 
         1           2           3 
     15.38      -10.63       -0.75 
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Example 2 
This example is a variation of the first example. Here, the eigenvectors are computed  
as well as the eigenvalues. 

#include <imsl.h> 
 
main() 
{ 
    int         n = 3; 
    f_complex   a[] =   { {1,0}, {1,-7},  {0,-1}, 
                          {1,7}, {5,0},  {10,-3}, 
                          {0,1}, {10,3}, {-2,0} }; 
    float       *eval; 
    f_complex   *evec; 
                                 /* Compute eigenvalues and eigenvectors */ 
    eval = imsl_c_eig_herm(n, a,  
                           IMSL_VECTORS, &evec, 
                           0); 
                                 /* Print eigenvalues and eigenvectors */ 
    imsl_f_write_matrix ("Eigenvalues",  1, n, eval, 0); 
    imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0); 
} 

Output 

            Eigenvalues 
         1           2           3 
     15.38      -10.63       -0.75 
  
                                Eigenvectors 
                        1                        2                        3 
1  (   0.0631,   -0.4075)  (   -0.0598,   -0.3117)  (    0.8539,    0.0000) 
2  (   0.7703,    0.0000)  (   -0.5939,    0.1841)  (   -0.0313,   -0.1380) 
3  (   0.4668,    0.1366)  (    0.7160,    0.0000)  (    0.0808,   -0.4942) 

Warning Errors 
IMSL_LOST_ORTHOGONALITY The iteration for at least one eigenvector failed to 

converge. Some of the eigenvectors may be 
inaccurate. 

IMSL_NEVAL_MXEVAL_MISMATCH The determined number of eigenvalues in the 
interval (#, #) is #. However, the input value for 
the maximum number of eigenvalues in this 
interval is #. 

Fatal Errors 
IMSL_SLOW_CONVERGENCE_GEN The iteration for the eigenvalues did not 

converge. 

IMSL_HERMITIAN_DIAG_REAL The matrix element A (#, #) = #. The diagonal of 
a Hermitian matrix must be real. 



 

 
 

Chapter 2: Eigensystem Analysis eig_symgen � 129 

 

 

 

eig_symgen 
Computes the generalized eigenexpansion of a system Ax = �Bx. The matrices A and B 
are real and symmetric, and B is positive definite. 

Synopsis 
#include <imsl.h> 

float *imsl_f_eig_symgen (int n, float *a, float *b, �, 0) 

The type double procedure is imsl_d_eig_symgen. 

Required Arguments 

int n   (Input) 
Number of rows and columns in the matrices. 

float *a   (Input) 
Array of size n � n containing the symmetric coefficient matrix A. 

float *b   (Input) 
Array of size n � n containing the positive definite symmetric coefficient matrix 
B. 

Return Value 
A pointer to the n eigenvalues of the symmetric matrix. To release this space, use free. 
If no value can be computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float *imsl_f_eig_symgen (int n, float *a, float *b,  

IMSL_VECTORS, float **evec, 
IMSL_VECTORS_USER, float evecu[], 
IMSL_RETURN_USER, float evalu[], 
IMSL_RANGE, float elow, float ehigh, 
IMSL_A_COL_DIM, int a_col_dim, 
IMSL_B_COL_DIM, int b_col_dim, 
IMSL_EVECU_COL_DIM, int evecu_col_dim, 
0) 

Optional Arguments 
IMSL_VECTORS, float **evec   (Output) 

The address of a pointer to an array of size n � n containing eigenvectors of the 
problem. On return, the necessary space is allocated by the function. Typically, 
float *evec is declared, and &evec is used as an argument. 
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IMSL_VECTORS_USER, float evecu[]   (Output) 
Compute eigenvectors of the matrix. An array of size n � n containing the matrix 
of generalized eigenvectors is returned in the space evecu. 

IMSL_RETURN_USER, float evalu[]   (Output) 
Store the n eigenvalues in the space evalu. 

IMSL_A_COL_DIM, int a_col_dim   (Input) 
The column dimension of A. 
Default: a_col_dim = n 

IMSL_B_COL_DIM, int b_col_dim   (Input) 
The column dimension of B. 
Default: b_col_dim = n 

IMSL_EVECU_COL_DIM, int evecu_col_dim   (Input) 
The column dimension of evecu. 
Default: evecu_col_dim = n 

Description 
The function imsl_f_eig_symgen computes the eigenvalues of a symmetric, positive 
definite eigenvalue problem by a three-phase process (Martin and Wilkinson 1971). 
The matrix B is reduced to factored form using the Cholesky decomposition. These 
factors are used to form a congruence transformation that yields a symmetric real 
matrix whose eigenexpansion is obtained. The problem is then transformed back to the 
original coordinates. Eigenvectors are calculated and transformed as required. 

Examples 

Example 1 
#include <imsl.h> 
 
main() 
{ 
    int         n = 3; 
    float       a[] =   {1.1, 1.2, 1.4, 
                         1.2, 1.3, 1.5, 
                         1.4, 1.5, 1.6}; 
    float       b[] =   {2.0, 1.0, 0.0, 
                         1.0, 2.0, 1.0, 
                         0.0, 1.0, 2.0}; 
    float       *eval; 
                                /* Solve for eigenvalues */ 
    eval = imsl_f_eig_symgen (n, a, b, 0); 
                                /* Print eigenvalues */ 
    imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0); 
} 

Output 
            Eigenvalues 
         1           2           3 
     1.386      -0.058      -0.003 
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Example 2 
This example is a variation of the first example. Here, the eigenvectors are computed as 
well as the eigenvalues. 

#include <imsl.h> 
 
main() 
{ 
    int         n = 3; 
    float       a[] =   {1.1, 1.2, 1.4, 
                         1.2, 1.3, 1.5, 
                         1.4, 1.5, 1.6}; 
    float       b[] =   {2.0, 1.0, 0.0, 
                         1.0, 2.0, 1.0, 
                         0.0, 1.0, 2.0}; 
    float       *eval; 
    float       *evec; 
                               /* Solve for eigenvalues and eigenvectors */ 
    eval = imsl_f_eig_symgen (n, a, b, 
                              IMSL_VECTORS, &evec, 
                              0); 
                               /* Print eigenvalues and eigenvectors */ 
    imsl_f_write_matrix ("Eigenvalues",  1, n, eval, 0); 
    imsl_f_write_matrix ("Eigenvectors", n, n, evec, 0); 
} 

Output 
            Eigenvalues 
         1           2           3 
     1.386      -0.058      -0.003 
  
            Eigenvectors 
            1           2           3 
1      0.6431     -0.1147     -0.6817 
2     -0.0224     -0.6872      0.7266 
3      0.7655      0.7174     -0.0858 

Warning Errors 
IMSL_SLOW_CONVERGENCE_SYM The iteration for an eigenvalue failed to 

converge in 100 iterations before deflating. 

Fatal Errors 
IMSL_SUBMATRIX_NOT_POS_DEFINITE The leading # by # submatrix of the input 

matrix is not positive definite. 

IMSL_MATRIX_B_NOT_POS_DEFINITE Matrix B is not positive definite. 
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geneig 
Computes the generalized eigenexpansion of a system Ax = �Bx, with A and B real. 

Synopsis 

#include <imsl.h> 
void imsl_f_geneig (int n, float *a, float *b, f_complex *alpha, float 

*beta, ..., 0) 

The double analogue is imsl_d_geneig. 

Required Arguments 

int n   (Input) 
Number of rows and columns in A and B. 

float *a  (Input) 
Array of size n � n containing the coefficient matrix A. 

float *b   (Input) 
Array of size n � n containing the coefficient matrix B. 

f_complex *alpha   (Output) 
Vector of size n containing scalars �i. If �i � 0, �i = �i/�i for  
i = 0, �, n � 1 are the eigenvalues of the system. 

float *beta   (Output) 
Vector of size n. 

Synopsis with Optional Arguments 
#include <imsl.h> 
void imsl_f_geneig (int n, float *a, float *b, 

IMSL_VECTORS, f_complex **evec, 
IMSL_VECTORS_USER, f_complex evecu[], 
IMSL_A_COL_DIM, int a_col_dim, 
IMSL_B_COL_DIM, int b_col_dim, 
IMSL_EVECU_COL_DIM, int evecu_col_dim, 
0) 

Optional Arguments 
IMSL_VECTORS, f_complex **evec   (Output) 

The address of a pointer to an array of size n � n containing eigenvectors of the 
problem. Each vector is normalized to have Euclidean length equal to the value 
one. On return, the necessary space is allocated by the function. Typically, 
f_complex *evec is declared, and &evec is used as an argument. 

IMSL_VECTORS_USER, f_complex evecu[]   (Output) 
Compute eigenvectors of the matrix. An array of size n � n containing the matrix 
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of generalized eigenvectors is returned in the space evecu. Each vector is 
normalized to have Euclidean length equal to the value one. 

IMSL_A_COL_DIM, int a_col_dim   (Input) 
The column dimension of A. 
Default: a_col_dim = n 

IMSL_B_COL_DIM, int b_col_dim   (Input) 
The column dimension of B. 
Default: b_col_dim = n. 

IMSL_EVECU_COL_DIM, int evecu_col_dim   (Input) 
The column dimension of evecu. 
Default: evecu_col_dim = n 

Description 
The function imsl_f_geneig uses the QZ algorithm to compute the eigenvalues and 
eigenvectors of the generalized eigensystem Ax = �Bx, where A and B are real matrices 
of order n. The eigenvalues for this problem can be infinite, so � and � are returned 
instead of �. If � is nonzero, � = �/�. 

The first step of the QZ algorithm is to simultaneously reduce A to upper-Hessenberg 
form and B to upper-triangular form. Then, orthogonal transformations are used to 
reduce A to quasi-upper-triangular form while keeping B upper triangular. The 
generalized eigenvalues and eigenvectors for the reduced problem are then computed. 

The function imsl_f_geneig is based on the QZ algorithm due to Moler and Stewart 
(1973), as implemented by the EISPACK routines QZHES, QZIT and QZVAL; see 
Garbow et al. (1977). 

Examples 

Example 1 
In this example, the eigenvalue, �, of system Ax = �Bx is computed, where 

1.0 0.5 0.0 0.5 0.0 0.0
10.0 2.0 0.0  and 3.0 3.0 0.0
5.0 1.0 0.5 4.0 0.5 1.0

A B
� � � �
� � �� � � �
� � � �
� � � �� � � �

 

#include <imsl.h> 
 
main() 
{ 
        int             n = 3; 
        f_complex       alpha[3]; 
        float           beta[3]; 
        int             i; 
        f_complex       eval[3]; 
        float           a[] = {1.0, 0.5, 0.0, 
                              -10.0, 2.0, 0.0, 
                               5.0, 1.0, 0.5}; 
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        float           b[] = {0.5, 0.0, 0.0, 
                               3.0, 3.0, 0.0, 
                               4.0, 0.5, 1.0}; 
 
                                /* Compute eigenvalues */ 
 
        imsl_f_geneig (n, a, b, alpha, beta, 0); 
  
        for (i=0; i<n; i++) 
                if (beta[i] != 0.0)  
                        eval[i] = imsl_c_div(alpha[i], 
                                imsl_cf_convert(beta[i], 0.0)); 
                else 
                        printf ("Infinite eigenvalue\n"); 
 
                                /* Print eigenvalues */ 
 
        imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0); 
} 

Output 
                             Eigenvalues 
                    1                      2                      3 
(     0.833,    1.993)  (    0.833,   -1.993)  (    0.500,    0.000) 

Example 2 
This example finds the eigenvalues and eigenvectors of the same eigensystem given in 
the last example. 

#include <imsl.h> 
  
main() 
{ 
        int             n = 3; 
        f_complex       alpha[3]; 
        float           beta[3]; 
        int             i; 
        f_complex       eval[3]; 
        f_complex      *evec; 
        float           a[] = {1.0, 0.5, 0.0, 
                              -10.0, 2.0, 0.0, 
                               5.0, 1.0, 0.5}; 
        float           b[] = {0.5, 0.0, 0.0, 
                               3.0, 3.0, 0.0, 
                               4.0, 0.5, 1.0}; 
  
        imsl_f_geneig (n, a, b, alpha, beta, 
                IMSL_VECTORS, &evec, 
                0); 
  
        for (i=0; i<n; i++) 
                if (beta[i] != 0.0)  
                        eval[i] = imsl_c_div(alpha[i], 
                                imsl_cf_convert(beta[i], 0.0)); 
                else 
                        printf ("Infinite eigenvalue\n"); 
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                                /* Print eigenvalues */ 
  
        imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0); 
  
                                /* Print eigenvectors */ 
 
        imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0); 
} 

Output 
                               Eigenvalues 
                      1                        2                        3 
(     0.833,     1.993)  (     0.833,    -1.993)  (     0.500,    -0.000) 
  
                                Eigenvectors 
                        1                       2                       3 
1  (    -0.197,    0.150)  (    -0.197,   -0.150)  (   -0.000,     0.000) 
2  (    -0.069,   -0.568)  (    -0.069,    0.568)  (   -0.000,     0.000) 
3  (     0.782,    0.000)  (     0.782,    0.000)  (    1.000,     0.000) 

geneig (complex) 
Computes the generalized eigenexpansion of a system Ax = �Bx, with A and B complex. 

Synopsis 

#include <imsl.h> 
void imsl_c_geneig (int n, f_complex *a, f_complex *b, f_complex *alpha, 

float *beta, ..., 0) 

The double analogue is imsl_z_geneig. 

Required Arguments 

int n   (Input) 
Number of rows and columns in A and B. 

f_complex *a   (Input) 
Array of size n � n containing the coefficient matrix A. 

f_complex *b   (Input) 
Array of size n � n containing the coefficient matrix B 

f_complex *alpha   (Output) 
Vector of size n containing scalars �i. If �i � 0, �i = �i/�i for  
i = 0, �, n � 1 are the eigenvalues of the system. 

f_complex *beta   (Output) 
Vector of size n. 
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Synopsis with Optional Arguments 
#include <imsl.h> 

void imsl_c_geneig (int n, f_complex *a, f_complex *b, f_complex *alpha, 
f_complex *beta 
IMSL_VECTORS, f_complex **evec, 
IMSL_VECTORS_USER, f_complex evecu[], 
IMSL_A_COL_DIM, int a_col_dim, 
IMSL_B_COL_DIM, int b_col_dim, 
IMSL_EVECU_COL_DIM, int evecu_col_dim, 
0) 

Optional Arguments 
IMSL_VECTORS, f_complex **evec  (Output) 

The address of a pointer to an array of size n � n containing eigenvectors of the 
problem. Each vector is normalized to have Euclidean length equal to the value 
one. On return, the necessary space is allocated by the function. Typically, 
f_complex *evec is declared, and &evec is used as an argument. 

IMSL_VECTORS_USER, f_complex evecu[]   (Output) 
Compute eigenvectors of the matrix. An array of size n � n containing the matrix 
of generalized eigenvectors is returned in the space evecu. Each vector is 
normalized to have Euclidean length equal to the value one. 

IMSL_A_COL_DIM, int a_col_dim   (Input) 
The column dimension of A. 
Default: a_col_dim =  

IMSL_B_COL_DIM, int b_col_dim   (Input) 
The column dimension of B. 
Default: b_col_dim = n. 

IMSL_EVECU_COL_DIM, int evecu_col_dim   (Input) 
The column dimension of evecu. 
Default: evecu_col_dim = n. 

Description 
The function imsl_c_geneig uses the QZ algorithm to compute the eigenvalues and 
eigenvectors of the generalized eigensystem Ax = �Bx, where A and B are complex 
matrices of order n. The eigenvalues for this problem can be infinite, so � and � are 
returned instead of �. If � is nonzero, � = �/�. 

The first step of the QZ algorithm is to simultaneously reduce A to upper-Hessenberg 
form and B to upper-triangular form. Then, orthogonal transformations are used to 
reduce A to quasi-upper-triangular form while keeping B upper triangular. The 
generalized eigenvalues and eigenvectors for the reduced problem are then computed. 

The function imsl_c_geneig is based on the QZ algorithm due to Moler and Stewart 
(1973). 
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Examples 

Example 1 
In this example, the eigenvalue, �, of system Ax = �Bx is solved, where 
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10 2 0  and 3 3 3 3
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i i
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#include <imsl.h> 
 
main() 
{ 
        int             n = 3; 
        f_complex       alpha[3]; 
        f_complex       beta[3]; 
        int             i; 
        f_complex       eval[3]; 
        f_complex       zero = {0.0, 0.0}; 
        f_complex       a[] = {{1.0, 0.0}, {0.5, 1.0}, {0.0, 5.0}, 
                               {-10.0, 0.0}, {2.0, 1.0}, {0.0, 0.0}, 
                               {5.0, 1.0}, {1.0, 0.0}, {0.5, 3.0}}; 
        f_complex       b[] = {{0.5, 0.0}, {0.0, 0.0}, {0.0, 0.0}, 
                               {3.0, 3.0}, {3.0, 3.0}, {0.0, 1.0}, 
                               {4.0, 2.0}, {0.5, 1.0}, {1.0, 1.0}}; 
 
                                /* Compute eigenvalues */ 
 
        imsl_c_geneig (n, a, b, alpha, beta, 0); 
 
        for (i=0; i<n; i++) 
                if (!imsl_c_eq(beta[i], zero))  
                        eval[i] = imsl_c_div(alpha[i], beta[i]); 
                else 
                        printf ("Infinite eigenvalue\n"); 
 
                                /* Print eigenvalues */ 
 
        imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0); 
} 

Output 
                               Eigenvalues 
                      1                        2                        3 
(     -8.18,    -25.38)  (      2.18,      0.61)  (      0.12,     -0.39) 

Example 2 
This example finds the eigenvalues and eigenvectors of the same eigensystem given in 
the last example. 

#include <imsl.h> 
  
main() 
{ 
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        int             n = 3; 
        f_complex       alpha[3]; 
        f_complex       beta[3]; 
        int             i; 
        f_complex       eval[3]; 
        f_complex      *evec; 
        f_complex       zero = {0.0, 0.0}; 
        f_complex       a[] = {{1.0, 0.0}, {0.5, 1.0}, {0.0, 5.0}, 
                               {-10.0, 0.0}, {2.0, 1.0}, {0.0, 0.0}, 
                               {5.0, 1.0}, {1.0, 0.0}, {0.5, 3.0}}; 
        f_complex       b[] = {{0.5, 0.0}, {0.0, 0.0}, {0.0, 0.0}, 
                               {3.0, 3.0}, {3.0, 3.0}, {0.0, 1.0}, 
                               {4.0, 2.0}, {0.5, 1.0}, {1.0, 1.0}}; 
  
                                /* Compute eigenvalues and eigenvectors */ 
  
        imsl_c_geneig (n, a, b, alpha, beta, 
                IMSL_VECTORS, & evec, 
                0); 
  
        for (i=0; i<n; i++) 
                if (!imsl_c_eq(beta[i], zero))  
                        eval[i] = imsl_c_div(alpha[i], beta[i]); 
                else 
                        printf ("Infinite eigenvalue\n"); 
  
                                /* Print eigenvalues */ 
  
        imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0); 
  
                                /*Print eigenvectors */ 
  
        imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0); 
} 

Output 
                               Eigenvalues 
                      1                       2                       3 
(     -8.18,   -25.38)  (      2.18,     0.61)  (      0.12,    -0.39) 
  
                                Eigenvectors 
                      1                       2                       3 
1  (   -0.3267,  -0.1245)  (   -0.3007,  -0.2444)  (    0.0371,   0.1518) 
2  (    0.1767,   0.0054)  (    0.8959,   0.0000)  (    0.9577,   0.0000) 
3  (    0.9201,   0.0000)  (   -0.2019,   0.0801)  (   -0.2215,   0.0968) 
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Chapter 3: Interpolation and 
Approximation 

Routines 
3.1 Cubic Spline Interpolation 

Derivative end conditions ................................. cub_spline_interp_e_cnd 145 
Shape preserving ............................................. cub_spline_interp_shape 152 

3.2 Cubic Spline Evaluation and Integration 
Evaluation and differentiation ....................................... cub_spline_value 157 
Integration.................................................................. cub_spline_integral 160 

3.3 Spline Interpolation 
One-dimensional interpolation..............................................spline_interp 161 
Knot sequence given interpolation data ...............................spline_knots 167 
Two-dimensional, tensor-product interpolation ..............spline_2d_interp 171 

3.4 Spline Evaluation and Integration 
One-dimensional evaluation and differentiation ................... spline_value 177 
One-dimensional integration .............................................spline_integral 180 
Two-dimensional evaluation and differentiation ............. spline_2d_value 182 
Two-dimensional integration .......................................spline_2d_integral 186 

3.5 Least-Squares Approximation and Smoothing 
General functions ...............................................user_fcn_least_squares 189 
Splines with fixed knots .......................................... spline_least_squares 193 
Tensor-product splines with fixed knots ........... spline_2d_least_squares 199 
Cubic smoothing spline .............................................cub_spline_smooth 205 
Splines with constraints ....................................... spline_lsq_constrained 209 
Smooth one-dimensional data by error detection.......... smooth_1d_data 216  

3.6 Scattered Data Interpolation 
Akima’s surface-fitting method ................................. scattered_2d_interp 220 

3.7 Scattered Data Least Squares 
Fit using radial-basis functions ...................................radial_scattered_fit 225 
Evaluate radial-basis fit ....................................................radial_evaluate 231 
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Usage Notes 
The majority of the functions in this chapter produce cubic piecewise polynomial or 
general spline functions that either interpolate or approximate given data or support the 
evaluation and integration of these functions. Two major subdivisions of functions are 
provided. The cubic spline functions begin with the prefix “cub_spline_” and use the 
piecewise polynomial representation described below. The spline functions begin with 
the prefix “spline_” and use the B-spline representation described below. Most of the 
spline functions are based on routines in the book by de Boor (1978). 

We provide a few general purpose routines for general least-squares fit to data and a 
routine that produces an interpolant to two-dimensional scattered data. 

Piecewise Polynomials  
A univariate piecewise polynomial (function) p is specified by giving its breakpoint 
sequence � � Rn, the order k (degree k � 1) of its polynomial pieces, and the k � (n � 1) 
matrix c of its local polynomial coefficients. In terms of this information, the piecewise 
polynomial (ppoly) function is given by 
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The breakpoint sequence � is assumed to be strictly increasing, and we extend the ppoly 
function to the entire real axis by extrapolation from the first and last intervals. This 
representation is redundant when the ppoly function is known to be smooth. For 
example, if p is known to be continuous, then we can compute c1,i+1 from the cji as 
follows: 
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For smooth ppoly, we prefer to use the nonredundant representation in terms of the 
“basis” or B-splines, at least when such a function is first to be determined. 

Splines and B-Splines 
B-splines provide a particularly convenient and suitable basis for a given class of 
smooth ppoly functions. Such a class is specified by giving its breakpoint sequence, its 
order k, and the required smoothness across each of the interior breakpoints. The 
corresponding B-spline basis is specified by giving its knot sequence t � RM. The 
specification rule is as follows: If the class is to have all derivatives up to and including 
the j-th derivative continuous across the interior breakpoint �i, then the number  
�i should occur k � j � 1 times in the knot sequence. Assuming that �1 and �n are the 
endpoints of the interval of interest, choose the first k knots equal to �1 and the last  
k knots equal to �n. This can be done because the B-splines are defined to be right 
continuous near �1 and left continuous near �n. 
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When the above construction is completed, a knot sequence t of length M is generated, 
and there are m: = M � k B-splines of order k, for example 
B0, �, Bm-1, spanning the ppoly functions on the interval with the indicated 
smoothness. That is, each ppoly function in this class has a unique representation  

0 0 1 1 1 1m mp a B a B a B
� �

� � � ��  

as a linear combination of B-splines. A B-spline is a particularly compact ppoly 
function. Bi is a nonnegative function that is nonzero only on the interval [ti,ti+k]. More 
precisely, the support of the i-th B-spline is [ti,ti+k]. No ppoly function in the same class 
(other than the zero function) has smaller support (i.e., vanishes on more intervals) than 
a B-spline. This makes B-splines particularly attractive basis functions since the 
influence of any particular B-spline coefficient extends only over a few intervals. When 
it is necessary to emphasize the dependence of the B-spline on its parameters, we will 
use the notation Bi,k,t to denote the i-th B-spline of order k for the knot sequence t. 

Cubic Splines 
Cubic splines are smooth (i.e., C1 or C2), fourth-order ppoly functions. For historical 
and other reasons, cubic splines are the most heavily used ppoly functions. Therefore, 
we provide special functions for their construction and evaluation. These routines use 
the ppoly representation as described above for general ppoly functions (with k = 4). 

We provide two cubic spline interpolation functions: 
imsl_f_cub_spline_interp_e_cnd (page 145) and 
imsl_f_cub_spline_interp_shape (page 152). The function 
imsl_f_cub_spline_interp_e_cnd allows the user to specify various endpoint 
conditions (such as the value of the first or second derivative at the right and left 
points). This means that the natural cubic spline can be obtained using this function by 
setting the second derivative to zero at both endpoints. The function 
imsl_f_cub_spline_interp_shape (page 152) is designed so that the shape of the 
curve matches the shape of the data. In particular, one option of this function preserves 
the convexity of the data while the default attempts to minimize oscillations. 

It is possible that the cubic spline interpolation functions will produce unsatisfactory 
results. For example, the interpolant may not have the shape required by the user, or the 
data may be noisy and require a least-squares fit. The interpolation function 
imsl_f_spline_interp (page 161)  is more flexible, as it allows you to choose the 
knots and order of the spline interpolant. We encourage the user to use this routine and 
exploit the flexibility provided. 

Tensor Product Splines 
The simplest method of obtaining multivariate interpolation and approximation 
functions is to take univariate methods and form a multivariate method via tensor 
products. In the case of two-dimensional spline interpolation, the derivation proceeds as 
follows. Let tx be a knot sequence for splines of order kx, and ty be a knot sequence for 
splines of order ky. Let Nx + kx be the length of tx, and Ny + ky be the length of ty. Then, 
the tensor-product spline has the following form. 
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for which the corresponding univariate interpolation problem can be solved, the tensor-
product interpolation problem finds the coefficients cnm so that 

� � � �
1 1

, , , ,
0 0

y x

x x y y

N N

nm n k i m k j ij
m n

c B x B y f
� �

� �

�� � t t  

This problem can be solved efficiently by repeatedly solving univariate interpolation 
problems as described in de Boor (1978, p. 347). Three-dimensional interpolation can 
be handled in an analogous manner. This chapter provides functions that compute the 
two-dimensional, tensor-product spline coefficients given two-dimensional 
interpolation data (imsl_f_spline_2d_interp (page 171) and that compute the 
two-dimensional, tensor-product spline coefficients for a tensor-product, least-squares 
problem (imsl_f_spline_2d_least_squares (page 199)). In addition, we provide 
evaluation, differentiation, and integration functions for the two-dimensional, tensor-
product spline functions. The relevant functions are imsl_f_spline_2d_value 
(page 182)) and imsl_f_spline_2d_integral (page 186). 

Scattered Data Interpolation 
The IMSL C/Math/Library provides one function, imsl_f_scattered_2d_interp 
(page 220), that returns values of an interpolant to scattered data in the plane. This 
function is based on work by Akima (1978), which uses C1 piecewise quintics on a 
triangular mesh. 

Least Squares 
The IMSL C/Math/Library includes functions for smoothing noisy data. The function 
imsl_f_user_fcn_least_squares (page 189) computes regressions with user-
supplied functions. The function imsl_f_spline_least_squares  (page 193)  
computes a least-squares fit using splines with fixed knots or variable knots. These 
functions produce cubic spline, least-squares fit by default. Optional arguments allow 
the user to choose the order and the knot sequence. IMSL C/Math/Library also includes 
a tensor-product spline regression function (imsl_f_spline_2d_least_squares), 
(page 199),  mentioned above. The function imsl_f_radial_scattered_fit (page 
225) computes an approximation to scattered data in RN using radial-basis functions. 
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In addition to the functions listed above, several functions in Chapter 10, “Statistics and 
Random Number Generation”, provide for polynomial regression and general linear 
regression. 

Smoothing by Cubic Splines 
One ‘‘smoothing spline’’ function is provided. The default action of 
imsl_f_cub_spline_smooth estimates a smoothing parameter by cross-validation 
and then returns the cubic spline that smooths the data. If the user wishes to supply a 
smoothing parameter, then this function returns the appropriate cubic spline. 

Structures for Splines and Piecewise Polynomials 
This optional section includes more details concerning the structures for splines and 
piecewise polynomials. 

A spline may be viewed as a mapping with domain Rd and target Rr, where d and r are 
positive integers. For this version of the IMSL C/Math/Library, only r = 1 is supported. 
Thus, if s is a spline, then for some d and r 

s : Rd � Rr 

This implies that such a spline s must have d knot sequences and orders (one for each 
domain dimension). Thus, associated with s, we have knots and orders 

t0, �, td-1 

k0, �, kd-1 
The precise form of the spline follows: 

s(x) = (s0(x), �, sr-1(x))   x = (x1, �, xd) � Rd 
where the following equation is true. 
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Note that ni is the number of knots in ti minus the order ki. 

We store all the information for a spline in one structure called Imsl_f_spline. (If the 
type is double, then the structure name is Imsl_d_spline, and the float becomes double.) 
The specification for this structure follows: 
 typedef struct { 
    int   domain_dim; 
    int   target_dim; 
    int   *order; 
    int   *num_coef; 
    int   *num_knots; 
    float **knots; 
    float **coef;    
} Imsl_f_spline; 
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Explicitly, if sp is a pointer to Imsl_f_spline, then 

sp-> domain_dim = d 

sp-> target_dim = r 

sp-> order [i] = ki  i = 0, …, d � 1 

sp-> num_coef [i] = mi  i = 0, …, d � 1 

sp-> num_knots [i] = ni + ki  i = 0, …, d � 1 

sp-> knots [i] [j] i
jt� I = 0, …, d � 1 j = 0, …, ni + ki � 1 

sp-> coef [i] [j] i
jc� I = 0, …, r � 1 j = j0 + j1 n0 + … + jd-1 n0…nd-2 

For ppoly functions, we view a ppoly as a mapping with domain Rd and target  
Rr where d and r are positive integers. Thus, if p is a ppoly, then for some d and r the 
following is true. 

p : Rd � Rr 

For this version of the C/Math/Library, only r = 1 is supported. This implies that such a 
ppoly p must have d breakpoint sequences and orders (one for each domain 
dimension). Thus, associated with p, we have breakpoints and orders 

�1, …, �d 

k1, …, kd 

The precise form of the ppoly follows: 

p(x) = (p0(x), …, pr(x)) x = (x1, …, xd) � Rd 

where 
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with 

Lj : = max {1, min {Mj, nj � 1}} 

where MJ is chosen so that 
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Note that nj is the number of breakpoints in �j. 

We store all the information for a ppoly in one structure called Imsl_f_ppoly. (If the 
type is double, then the structure name is Imsl_d_ppoly, and the float becomes double.) 
The following is the specification for this structure. 
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 typedef struct { 
    int   domain_dim; 
    int   target_dim;     
    int   *order; 
    int   *num_coef; 
    int   *num_breakpoints; 
    float **breakpoints; 
    float **coef;    
} Imsl_f_ppoly; 

In particular, if ppoly is a pointer to the structure of type Imsl_f_ppoly, then 

ppoly-> domain_dim = d 

ppoly-> target_dim = r 

ppoly-> order [i] = ki   i = 0, �, d � 1 

ppoly-> num_coef [i] = ki (ni � 1)   i = 0, �, d � 1 

ppoly-> num_breakpoints [i] = ni   i = 0, �, d � 1 

ppoly-> breakpoints [i] [j] i
j��  i = 0, �, d � 1   j = 0, �, ni � 1 

ppoly->coef [i[ [j] 
i
jc� i = 0, �, r � 1j = 0, �, k0(n0 � 1)�kd-1(nd-1 � 1) 

 

cub_spline_interp_e_cnd 
Computes a cubic spline interpolant, specifying various endpoint conditions. The 
default interpolant satisfies the “not-a-knot” condition. 

Synopsis 
#include <imsl.h> 

Imsl_f_ppoly *imsl_f_cub_spline_interp_e_cnd (int ndata, 
float xdata[], float fdata[], �, 0) 

The type Imsl_d_ppoly function is imsl_d_cub_spline_interp_e_cnd. 

Required Arguments 

int ndata   (Input) 
Number of data points. 

float xdata[]   (Input) 
Array with ndata components containing the abscissas of the interpolation 
problem. 

float fdata[]   (Input) 
Array with ndata components containing the ordinates for the interpolation 
problem. 

Return Value 
A pointer to the structure that represents the cubic spline interpolant. If an interpolant 
cannot be computed, then NULL is returned. To release this space, use free. 
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Synopsis with Optional Arguments 
#include <imsl.h> 

Imsl_f_ppoly *imsl_f_cub_spline_interp_e_cnd (int ndata, float xdata[], 
float fdata[], 
IMSL_LEFT, int ileft, float left, 
IMSL_RIGHT, int iright, float right, 
IMSL_PERIODIC, 
0) 

Optional Arguments 
IMSL_LEFT, int ileft, float left   (Input) 

Set the value for the first or second derivative of the interpolant at the left 
endpoint. If ileft = i, then the interpolant s satisfies 

s(i)(xL) = left 

where xL is the leftmost abscissa. The only valid values for ileft are 1 or 2. 

IMSL_RIGHT, int iright, float right   (Input) 
Set the value for the first or second derivative of the interpolant at the right 
endpoint. If iright = i, then the interpolant s satisfies 

s(i)(xR) = right 

where xR is the rightmost abscissa. The only valid values for iright are 1 or 2. 

IMSL_PERIODIC 
Compute the C2 periodic interpolant to the data. That is, we require 

s(i)(xL) = s(i)(xR) i = 0, 1, 2 

where s, xL, and xR are defined above. 

Description 
The function imsl_f_cub_spline_interp_e_cnd computes a C2 cubic spline 
interpolant to a set of data points (xi, fi) for i = 0, �, ndata � 1 = n. The breakpoints of 
the spline are the abscissas. We emphasize here that for all the univariate interpolation 
functions, the abscissas need not be sorted. Endpoint conditions are to be selected by 
the user. The user may specify “not-a-knot” or first derivative or second derivative at 
each endpoint, or C2 periodicity may be requested (see de Boor 1978, Chapter 4). If no 
defaults are selected, then the “not-a-knot” spline interpolant is computed. If the 
IMSL_PERIODIC keyword is selected, then all other keywords are ignored; and a  
C2 periodic interpolant is computed. In this case, if the fdata values at the left and 
right endpoints are not the same, then a warning message is issued; and we set the right 
value equal to the left. If IMSL_LEFT or IMSL_RIGHT are selected (in the absence of 
IMSL_PERIODIC), then the user has the ability to select the values of the first or second 
derivative at either endpoint. The default case (when the keyword is not used) is the 
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“not-a-knot” condition on that endpoint. Thus, when no optional arguments are chosen, 
this function produces the “not-a-knot” interpolant. 

If the data (including the endpoint conditions) arise from the values of a smooth  
(say C4) function f, i.e. fi = f(xi), then the error will behave in a predictable fashion.  
Let � be the breakpoint vector for the above spline interpolant. Then, the maximum 
absolute error satisfies 
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For more details, see de Boor (1978, Chapters 4 and 5). 

The return value for this function is a pointer to the structure Imsl_f_ppoly. The calling 
program must receive this in a pointer Imsl_f_ppoly *ppoly. This structure contains all 
the information to determine the spline (stored as a piecewise polynomial) that is 
computed by this function. For example, the following code sequence evaluates this 
spline at x and returns the value in y 
y = imsl_f_cub_spline_value (x, ppoly, 0) 

The difference between the default (“not-a-knot”) spline and the interpolating cubic 
spline, which has first derivative set to 1 at the left end and the second derivative set to 
�90 at the right end, is illustrated in the following figure. 

 
Figure 3-1   Two Interpolating Splines 



 

 
 

148 � cub_spline_interp_e_cnd IMSL C/Math/Library 

 

 

 

Examples 

Example 1 
In this example, a cubic spline interpolant to a function f is computed. The values of 
this spline are then compared with the exact function values. Since we are using the 
default settings, the interpolant is determined by the “not-a-knot” condition  
(see de Boor 1978). 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA  11 
                                /* Define function */ 
#define F(x)     (float)(sin(15.0*x)) 
 
main() 
{ 
    int                 i; 
    float               fdata[NDATA], xdata[NDATA], x, y; 
    Imsl_f_ppoly        *ppoly; 
                                /* Compute xdata and fdata  */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = (float)i /((float)(NDATA-1)); 
        fdata[i] = F(xdata[i]); 
    } 
                                /* Compute  cubic spline interpolant */ 
    ppoly = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0); 
 
                                /* Print results */ 
    printf("     x         F(x)       Interpolant    Error\n");    
    for (i = 0;  i < 2*NDATA-1;  i++){ 
        x = (float) i /(float)(2*NDATA-2); 
        y = imsl_f_cub_spline_value(x,ppoly,0); 
        printf("  %6.3f  %10.3f   %10.3f   %10.4f\n", x, F(x), y, 
                                                   fabs(F(x)-y)); 
    } 
} 

Output 
    x         F(x)     Interpolant    Error 
0.000       0.000        0.000       0.0000 
0.050       0.682        0.809       0.1270 
0.100       0.997        0.997       0.0000 
0.150       0.778        0.723       0.0552 
0.200       0.141        0.141       0.0000 
0.250      -0.572       -0.549       0.0228 
0.300      -0.978       -0.978       0.0000 
0.350      -0.859       -0.843       0.0162 
0.400      -0.279       -0.279       0.0000 
0.450       0.450        0.441       0.0093 
0.500       0.938        0.938       0.0000 
0.550       0.923        0.903       0.0199 
0.600       0.412        0.412       0.0000 
0.650      -0.320       -0.315       0.0049 
0.700      -0.880       -0.880       0.0000 
0.750      -0.968       -0.938       0.0295 
0.800      -0.537       -0.537       0.0000 
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0.850       0.183        0.148       0.0347 
0.900       0.804        0.804       0.0000 
0.950       0.994        1.086       0.0926 
1.000       0.650        0.650       0.0000 

Example 2 

In this example, a cubic spline interpolant to a function f is computed. The value of the 
derivative at the left endpoint and the value of the second derivative at the right 
endpoint are specified. The values of this spline are then compared with the exact 
function values. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define  NDATA  11 
                                /* Define function */ 
#define F(x)    (float)(sin(15.0*x)) 
 
main() 
{ 
    int              i, ileft, iright; 
    float            left, right, x, y, fdata[NDATA], xdata[NDATA]; 
    Imsl_f_ppoly     *pp; 
                               /* Compute xdata and fdata  */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = (float)(i)/(NDATA-1); 
        fdata[i] = F(xdata[i]); 
    } 
                                /* Specify end conditions */ 
    ileft   = 1; 
    left   = 0.0; 
    iright  = 2; 
    right  =-225.0*sin(15.0); 
                                /* Compute cubic spline interpolant */ 
    pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata, 
                                        IMSL_LEFT,  ileft,  left, 
                                        IMSL_RIGHT, iright, right, 
                                        0); 
                                /* Print results for first half */ 
                                /* of interval */ 
    printf("     x         F(x)       Interpolant    Error\n\n"); 
    for (i=0;  i<NDATA;  i++){ 
        x = (float)(i)/(float)(2*NDATA-2); 
        y = imsl_f_cub_spline_value(x,pp,0); 
        printf("  %6.3f  %10.3f   %10.3f   %10.4f\n", x, F(x), y, 
                                                   fabs(F(x)-y)); 
    } 
} 

Output 
    x         F(x)     Interpolant    Error 
0.000       0.000        0.000       0.0000 
0.050       0.682        0.438       0.2441 
0.100       0.997        0.997       0.0000 
0.150       0.778        0.822       0.0442 
0.200       0.141        0.141       0.0000 
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0.250      -0.572       -0.575       0.0038 
0.300      -0.978       -0.978       0.0000 
0.350      -0.859       -0.836       0.0233 
0.400      -0.279       -0.279       0.0000 
0.450       0.450        0.439       0.0111 
0.500       0.938        0.938       0.0000 

Example 3 
This example computes the natural cubic spline interpolant to a function f by forcing 
the second derivative of the interpolant to be zero at both endpoints. As in the previous 
example, the exact function values are computed with the values of the spline. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define  NDATA  11 
                                /* Define function */ 
#define F(x)    (float)(sin(15.0*x)) 
 
main() 
{ 
    int              i, ileft, iright; 
    float            left, right, x, y, fdata[NDATA],  
                     xdata[NDATA]; 
    Imsl_f_ppoly     *pp; 
                                /* Compute xdata and fdata  */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = (float)(i)/(NDATA-1); 
        fdata[i] = F(xdata[i]); 
    } 
                                /* Specify end conditions  */ 
    ileft   = 2; 
    left   = 0.0; 
    iright  = 2; 
    right  = 0.0; 
                                /* Compute cubic spline interpolant  */ 
    pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata, 
                                        IMSL_LEFT,  ileft,  left, 
                                        IMSL_RIGHT, iright, right, 
                                        0); 
                                /* Print results for first half */ 
                                /* of interval */ 
    printf("     x         F(x)       Interpolant    Error\n\n"); 
    for (i = 0;  i < NDATA;  i++){ 
        x = (float)(i)/(float)(2*NDATA-2); 
        y = imsl_f_cub_spline_value(x,pp,0); 
        printf("  %6.3f  %10.3f   %10.3f   %10.4f\n", x, F(x), y, 
                                                   fabs(F(x)-y)); 
    } 
} 

Output 
    x         F(x)     Interpolant    Error 
0.000       0.000        0.000       0.0000 
0.050       0.682        0.667       0.0150 
0.100       0.997        0.997       0.0000 
0.150       0.778        0.761       0.0172 
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0.200       0.141        0.141       0.0000 
0.250      -0.572       -0.559       0.0126 
0.300      -0.978       -0.978       0.0000 
0.350      -0.859       -0.840       0.0189 
0.400      -0.279       -0.279       0.0000 
0.450       0.450        0.440       0.0098 
0.500       0.938        0.938       0.0000 

Example 4 
This example computes the cubic spline interpolant to a functions, and imposes the 
periodic end conditions s(a) = s(b), s'(a) = s'(b), and s"(a) = s"(b), where a is the 
leftmost abscissa and b is the rightmost abscissa. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define  NDATA  11 
                                /* Define function*/ 
#define F(x)    (float)(sin(x)) 
 
main() 
{ 
    int                 i; 
    float               x, y, twopi, fdata[NDATA], xdata[NDATA]; 
    Imsl_f_ppoly        *pp; 
                               /* Compute xdata and fdata */ 
    twopi = 2.0*imsl_f_constant("pi", 0); 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = twopi*(float)(i)/(NDATA-1); 
        fdata[i] = F(xdata[i]); 
    } 
    fdata[NDATA-1] = fdata[0]; 
                               /* Compute periodic cubic spline */ 
                               /* interpolant */ 
    pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata, 
                                        IMSL_PERIODIC, 
                                        0); 
                               /* Print results for first half */ 
                               /* of interval */ 
    printf("     x         F(x)       Interpolant    Error\n\n");    
    for (i = 0;  i < NDATA;  i++){ 
        x = (twopi/20.)*i; 
        y = imsl_f_cub_spline_value(x, pp, 0); 
        printf("  %6.3f  %10.3f   %10.3f   %10.4f\n",x,F(x), y, 
                                                 fabs(F(x)-y)); 
    } 
} 

Output 
    x         F(x)     Interpolant    Error 
0.000       0.000        0.000       0.0000 
0.314       0.309        0.309       0.0001 
0.628       0.588        0.588       0.0000 
0.942       0.809        0.809       0.0004 
1.257       0.951        0.951       0.0000 
1.571       1.000        1.000       0.0004 
1.885       0.951        0.951       0.0000 



 

 
 

152 � cub_spline_interp_shape IMSL C/Math/Library 

 

 

 

2.199       0.809        0.809       0.0004 
2.513       0.588        0.588       0.0000 
2.827       0.309        0.309       0.0001 
3.142      -0.000       -0.000       0.0000 

Warning Errors 
IMSL_NOT_PERIODIC The data is not periodic. The rightmost fdata 

value is set to the leftmost fdata value. 
Fatal Errors 
IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct. 

cub_spline_interp_shape 
Computes a shape-preserving cubic spline. 

Synopsis 
#include <imsl.h> 
Imsl_f_ppoly *imsl_f_cub_spline_interp_shape (int ndata, float xdata[], 

float fdata[], …, 0) 

The type Imsl_d_ppoly function is imsl_d_cub_spline_interp_shape. 

Required Arguments 

int ndata   (Input) 
Number of data points. 

float xdata[]   (Input) 
Array with ndata components containing the abscissas of the interpolation 
problem. 

float fdata[]   (Input) 
Array with ndata components containing the ordinates for the interpolation 
problem. 

Return Value 
A pointer to the structure that represents the cubic spline interpolant. If an interpolant 
cannot be computed, then NULL is returned. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsl.h> 
Imsl_f_ppoly *imsl_f_cub_spline_interp_shape (int ndata, 

float xdata[], float fdata[],  
IMSL_CONCAVE, 
IMSL_CONCAVE_ITMAX, int itmax, 
0) 
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Optional Arguments 
IMSL_CONCAVE 

This option produces a cubic interpolant that will preserve the concavity of the 
data. 

IMSL_CONCAVE_ITMAX, int itmax   (Input) 
This option allows the user to set the maximum number of iterations of 
Newton’s Method. Default: itmax = 25. 

Description 
The function imsl_f_cub_spline_interp_shape computes a C1 cubic spline 
interpolant to a set of data points(xi, fi) for i = 0, �, ndata � 1 = n. The breakpoints of 
the spline are the abscissas. This computation is based on a method by Akima (1970) to 
combat wiggles in the interpolant. Endpoint conditions are automatically determined by 
the program; see Akima (1970) or de Boor (1978). 

If the optional argument IMSL_CONCAVE is chosen, then this function computes a cubic 
spline interpolant to the data. For ease of explanation, we will assume that xi < xi+1, 
although it is not necessary for the user to sort these data values. If the data are strictly 
convex, then the computed spline is convex, C2, and minimizes the expression 

� �
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x
g ���  

over all convex C1 functions that interpolate the data. In the general case, when the data 
have both convex and concave regions, the convexity of the spline is consistent with the 
data, and the above integral is minimized under the appropriate constraints. For more 
information on this interpolation scheme, refer to Michelli et al. (1985) and Irvine et al. 
(1986). 

One important feature of the splines produced by this function is that it is not possible, 
a priori, to predict the number of breakpoints of the resulting interpolant. In most cases, 
there will be breakpoints at places other than data locations. This function should be 
used when it is important to preserve the convex and concave regions implied by the 
data. 

Both methods are nonlinear, and although the interpolant is a piecewise cubic, cubic 
polynomials are not reproduced. (However, linear polynomials are reproduced.) This 
explains the theoretical error estimate below. 

If the data points arise from the values of a smooth (say C4) function f, i.e. fi = f(xi), 
then the error will behave in a predictable fashion. Let � be the breakpoint vector for 
either of the above spline interpolants. Then, the maximum absolute error satisfies 
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and �m is the last breakpoint. 
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The return value for this function is a pointer of the type Imsl_f_ppoly. The calling 
program must receive this in a pointer Imsl_f_ppoly *ppoly. This structure contains all 
the information to determine the spline (stored as a piecewise polynomial) that is 
computed by this function. For example, the following code sequence evaluates this 
spline at x and returns the value in y.  
y = imsl_f_cub_spline_value (x, ppoly, 0) 

The difference between the convexity-preserving spline and Akima’s spline is 
illustrated in the following figure. Note that the convexity-preserving interpolant 
exhibits linear segments where the convexity constraints are binding. 

 
Figure 3-2   Two Shape-Preserving Splines 

Examples 

Example 1 
In this example, a cubic spline interpolant to a function f is computed. The values of 
this spline are then compared with the exact function values. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define  NDATA  11 
                                /* Define function */ 
#define F(x)    (float)(sin(15.0*x)) 
 
main() 
{ 
    int                 i; 
    float               fdata[NDATA], xdata[NDATA], x, y; 
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    Imsl_f_ppoly        *pp; 
                                /* Compute xdata and fdata */ 
    for (i = 0; i < NDATA; i++) { 
        xdata[i] = (float)(i)/(NDATA-1); 
        fdata[i] = F(xdata[i]); 
    } 
                                /* Compute cubic spline interpolant  */ 
    pp = imsl_f_cub_spline_interp_shape(NDATA, xdata, fdata, 0); 
                                /* Print results */ 
    printf("     x         F(x)       Interpolant    Error\n\n"); 
    for (i = 0;  i < 2*NDATA-1;  i++) { 
        x = (float) i /(float)(2*NDATA-2); 
        y = imsl_f_cub_spline_value(x, pp, 0); 
        printf("  %6.3f  %10.3f   %10.3f   %10.4f\n", x, F(x), y, 
                                                   fabs(F(x)-y)); 
    } 
} 

Output 
  x         F(x)       Interpolant    Error 
0.000       0.000        0.000       0.0000 
0.050       0.682        0.818       0.1360 
0.100       0.997        0.997       0.0000 
0.150       0.778        0.615       0.1635 
0.200       0.141        0.141       0.0000 
0.250      -0.572       -0.478       0.0934 
0.300      -0.978       -0.978       0.0000 
0.350      -0.859       -0.812       0.0464 
0.400      -0.279       -0.279       0.0000 
0.450       0.450        0.386       0.0645 
0.500       0.938        0.938       0.0000 
0.550       0.923        0.854       0.0683 
0.600       0.412        0.412       0.0000 
0.650      -0.320       -0.276       0.0433 
0.700      -0.880       -0.880       0.0000 
0.750      -0.968       -0.889       0.0789 
0.800      -0.537       -0.537       0.0000 
0.850       0.183        0.149       0.0338 
0.900       0.804        0.804       0.0000 
0.950       0.994        0.932       0.0613 
1.000       0.650        0.650       0.0000 

Example 2 
In this example, a cubic spline interpolant to a function f is computed. The values of 
this spline are then compared with the exact function values. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA   11 
                                /* Define function */ 
#define F(x)    (float)(sin(15.0*x)) 
 
main() 
{ 
    int                 i; 
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    float               fdata[NDATA], xdata[NDATA], x, y; 
    Imsl_f_ppoly        *pp; 
                                /* Compute xdata and fdata */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = (float)(i)/(NDATA-1); 
        fdata[i] = F(xdata[i]); 
    } 
                                /* Compute cubic spline interpolant  */ 
    pp = imsl_f_cub_spline_interp_shape(NDATA, xdata, fdata, 
                                        IMSL_CONCAVE, 
                                        0); 
                               /* Print results */ 
    printf("     x         F(x)       Interpolant    Error\n\n");  
    for (i = 0;  i < 2*NDATA-1;  i++){ 
        x = (float) i /(float)(2*NDATA-2); 
        y = imsl_f_cub_spline_value(x, pp, 0); 
        printf("  %6.3f  %10.3f   %10.3f   %10.4f\n", x, F(x), y, 
                                                   fabs(F(x)-y)); 
    } 
} 

Output 
    x         F(x)     Interpolant    Error 
0.000       0.000        0.000       0.0000 
0.050       0.682        0.667       0.0150 
0.100       0.997        0.997       0.0000 
0.150       0.778        0.761       0.0172 
0.200       0.141        0.141       0.0000 
0.250      -0.572       -0.559       0.0126 
0.300      -0.978       -0.978       0.0000 
0.350      -0.859       -0.840       0.0189 
0.400      -0.279       -0.279       0.0000 
0.450       0.450        0.440       0.0098 
0.500       0.938        0.938       0.0000 
0.550       0.923        0.902       0.0208 
0.600       0.412        0.412       0.0000 
0.650      -0.320       -0.311       0.0086 
0.700      -0.880       -0.880       0.0000 
0.750      -0.968       -0.952       0.0156 
0.800      -0.537       -0.537       0.0000 
0.850       0.183        0.200       0.0174 
0.900       0.804        0.804       0.0000 
0.950       0.994        0.892       0.1020 
1.000       0.650        0.650       0.0000 

Warning Errors 
IMSL_MAX_ITERATIONS_REACHED The maximum number of iterations has been 

reached. The best approximation is returned. 

Fatal Errors 
IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct. 
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cub_spline_value 
Computes the value of a cubic spline or the value of one of its derivatives. 

Synopsis 
#include <imsl.h> 
float imsl_f_cub_spline_value (float x, Imsl_f_ppoly *ppoly, �, 0) 

The type double function is imsl_d_cub_spline_value. 

Required Arguments 

float x   (Input) 
Evaluation point for the cubic spline. 

Imsl_f_ppoly *ppoly   (Input) 
Pointer to the piecewise polynomial structure that represents the cubic spline. 

Return Value 
The value of a cubic spline or one of its derivatives at the point x. If no value can be 
computed, then NaN is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float imsl_f_cub_spline_value (float x, Imsl_f_ppoly *ppoly, 

IMSL_DERIV, int deriv,  
IMSL_GRID, int n, float *xvec, float **value, 
IMSL_GRID_USER, int n, float *xvec, float value_user[], 
0) 

Optional Arguments 
IMSL_DERIV, int deriv   (Input) 

Let d = deriv and let s be the cubic spline that is represented by the structure 
*ppoly, then this option produces the d-th derivative of s at x, s(d) (x). 

IMSL_GRID, int n, float *xvec, float **value   (Input/Output) 
The array xvec of length n contains the points at which the cubic spline is to 
be evaluated. The d-th derivative of the spline at the points in xvec is returned 
in value. 

IMSL_GRID_USER, int n, float *xvec, float value_user[]   (Input/Output) 
The array xvec of length n contains the points at which the cubic spline is to 
be evaluated. The d-th derivative of the spline at the points in xvec is returned 
in the user-supplied space value_user. 
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Description 
The function imsl_f_cub_spline_value computes the value of a cubic spline or 
one of its derivatives. The first and last pieces of the cubic spline are extrapolated. As a 
result, the cubic spline structures returned by the cubic spline routines are defined and 
can be evaluated on the entire real line. This routine is based on the routine PPVALU 
by de Boor (1978, p. 89). 

Examples 

Example 1 
In this example, a cubic spline interpolant to a function f is computed. The values of 
this spline are then compared with the exact function values. Since the default settings 
are used, the interpolant is determined by the “not-a-knot” condition (see de Boor 
1978). 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA    11 
                                /* Define function */ 
#define F(x)     (float)(sin(15.0*x)) 
 
main() 
{ 
    int                 i; 
    float               fdata[NDATA], xdata[NDATA], x, y; 
    Imsl_f_ppoly        *pp; 
                                /* Set up a grid */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = (float)i /((float)(NDATA-1)); 
        fdata[i] = F(xdata[i]); 
    } 
                               /* Compute cubic spline interpolant */ 
    pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0); 
                                /* Print results */ 
    printf("     x         F(x)       Interpolant    Error\n");    
    for (i = NDATA/2;  i < 3*NDATA/2;  i++) { 
        x = (float) i /(float)(2*NDATA-2); 
        y = imsl_f_cub_spline_value(x, pp, 0); 
        printf("  %6.3f  %10.3f   %10.3f   %10.4f\n", x, F(x), y, 
                                                   fabs(F(x)-y)); 
    } 
} 

Output 
    x        F(x)      Interpolant    Error 
0.250      -0.572       -0.549       0.0228 
0.300      -0.978       -0.978       0.0000 
0.350      -0.859       -0.843       0.0162 
0.400      -0.279       -0.279       0.0000 
0.450       0.450        0.441       0.0093 
0.500       0.938        0.938       0.0000 
0.550       0.923        0.903       0.0199 
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0.600       0.412        0.412       0.0000 
0.650      -0.320       -0.315       0.0049 
0.700      -0.880       -0.880       0.0000 
0.750      -0.968       -0.938       0.0295 

Example 2 
Recall that in the first example, a cubic spline interpolant to a function f is computed. 
The values of this spline are then compared with the exact function values. This 
example compares the values of the first derivatives. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA    11 
                                /* Define functions */ 
#define F(x)     (float)(sin(15.0*x)) 
#define FP(x)    (float)(15.*cos(15.0*x)) 
 
main() 
{ 
    int                 i; 
    float               fdata[NDATA], xdata[NDATA], x, y; 
    Imsl_f_ppoly        *pp; 
                                /* Set up a grid */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = (float)i /((float)(NDATA-1)); 
        fdata[i] = F(xdata[i]); 
    } 
                                /* Compute cubic spline interpolant */ 
    pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata,fdata, 0); 
                                /* Print results */ 
    printf("     x         FP(x)      Interpolant   Deriv Error\n"); 
    for (i = NDATA/2;  i < 3*NDATA/2;  i++){ 
        x = (float) i /(float)(2*NDATA-2); 
        y = imsl_f_cub_spline_value(x, pp, 
                                    IMSL_DERIV, 1, 
                                    0); 
        printf("  %6.3f  %10.3f   %10.3f   %10.4f\n", x, FP(x), y, 
                                                   fabs(FP(x)-y)); 
        } 
} 

Output 
   x        FP(x)   Interpolant   Deriv Error 
0.250     -12.308      -12.559       0.2510 
0.300      -3.162       -3.218       0.0560 
0.350       7.681        7.796       0.1151 
0.400      14.403       13.919       0.4833 
0.450      13.395       13.530       0.1346 
0.500       5.200        5.007       0.1926 
0.550      -5.786       -5.840       0.0535 
0.600     -13.667      -13.201       0.4660 
0.650     -14.214      -14.393       0.1798 
0.700      -7.133       -6.734       0.3990 
0.750       3.775        3.911       0.1359 
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cub_spline_integral 
Computes the integral of a cubic spline. 

Synopsis 
#include <imsl.h> 
float imsl_f_cub_spline_integral (float a, float b, Imsl_f_ppoly *ppoly) 

The type double function is imsl_d_cub_spline_integral. 

Required Arguments 

float a   (Input) 

float b   (Input) 
Endpoints for integration. 

Imsl_f_ppoly *ppoly   (Input) 
Pointer to the piecewise polynomial structure that represents the cubic spline. 

Return Value 
The integral from a to b of the cubic spline. If no value can be computed, then NaN is 
returned. 

Description 
The function imsl_f_cub_spline_integral computes the integral of a cubic spline 
from a to b. 

� �
b

a
s x dx�  

Example 
In this example, a cubic spline interpolant to a function f is computed. The values of the 
integral of this spline are then compared with the exact integral values. Since the 
default settings are used, the interpolant is determined by the “not-a-knot” condition 
(see de Boor 1978). 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA   21 
                                /* Define function */ 
#define F(x)    (float)(sin(15.0*x)) 
                                /* Integral from 0 to x */ 
#define FI(x)   (float)((1.-cos(15.0*x))/15.) 
 
main() 
{ 
    int                 i; 
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    float               fdata[NDATA], xdata[NDATA], x, y; 
    Imsl_f_ppoly        *pp; 
                                /* Set up a grid */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = (float)i /((float)(NDATA-1)); 
        fdata[i] = F(xdata[i]); 
    } 
                                /* Compute cubic spline interpolant */ 
    pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0); 
                                /* Print results */ 
    printf("     x         FI(x)      Interpolant   Integral Error\n"); 
    for (i = NDATA/2;  i < 3*NDATA/2;  i++){ 
        x = (float) i /(float)(2*NDATA-2); 
        y = imsl_f_cub_spline_integral(0.0, x, pp); 
        printf("  %6.3f  %10.3f   %10.3f   %10.4f\n", x, FI(x), y, 
                                                   fabs(FI(x)-y)); 
        } 
} 

Output 
  x         FI(x)   Interpolant   Integral Error 
0.250       0.121        0.121       0.0001 
0.275       0.104        0.104       0.0001 
0.300       0.081        0.081       0.0001 
0.325       0.056        0.056       0.0001 
0.350       0.033        0.033       0.0001 
0.375       0.014        0.014       0.0002 
0.400       0.003        0.003       0.0002 
0.425       0.000        0.000       0.0002 
0.450       0.007        0.007       0.0002 
0.475       0.022        0.022       0.0001 
0.500       0.044        0.044       0.0001 
0.525       0.068        0.068       0.0001 
0.550       0.092        0.092       0.0001 
0.575       0.113        0.113       0.0001 
0.600       0.127        0.128       0.0001 
0.625       0.133        0.133       0.0001 
0.650       0.130        0.130       0.0001 
0.675       0.118        0.118       0.0001 
0.700       0.098        0.098       0.0001 
0.725       0.075        0.075       0.0001 
0.750       0.050        0.050       0.0001 

spline_interp 
Compute a spline interpolant. 

Synopsis 
#include <imsl.h>  
Imsl_f_spline *imsl_f_spline_interp (int ndata, float xdata[], 

float fdata[], �, 0) 

The type Imsl_d_spline function is imsl_d_spline_interp. 
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Required Arguments 

int ndata   (Input) 
Number of data points. 

float xdata[]   (Input) 
Array with ndata components containing the abscissas of the interpolation 
problem. 

float fdata[]   (Input) 
Array with ndata components containing the ordinates of the interpolation 
problem. 

Return Value 
A pointer to the structure that represents the spline interpolant. If an interpolant cannot 
be computed, then NULL is returned. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsl.h> 
Imsl_f_spline *imsl_f_spline_interp (int ndata, float xdata[], float 

fdata[],  
IMSL_ORDER, int order,  
IMSL_KNOTS, float knots[],  
0) 

Optional Arguments 
IMSL_ORDER, int order   (Input) 

The order of the spline subspace for which the knots are desired. This option 
is used to communicate the order of the spline subspace. 
Default: order = 4, i.e., cubic splines 

IMSL_KNOTS, float knots[]   (Input) 
This option requires the user to provide the knots.  
Default: knots are selected by the function imsl_f_spline_knots using its 
defaults. 

Description 
Given the data points x = xdata, f = fdata, and the number n = ndata of elements in 
xdata and fdata, the default action of imsl_f_spline_interp computes a cubic 
(k = 4) spline interpolant s to the data using the default knot sequence generated by 
imsl_f_spline_knots. 

The optional argument IMSL_ORDER allows the user to choose the order of the spline 
interpolant. The optional argument IMSL_KNOTS allows user specification of knots. 

The function imsl_f_spline_interp is based on the routine SPLINT by de Boor 
(1978, p. 204). 
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First, imsl_f_spline_interp sorts the xdata vector and stores the result in x. The 
elements of the fdata vector are permuted appropriately and stored in f, yielding the 
equivalent data (xi, fi) for i = 0 to n � 1. 

The following preliminary checks are performed on the data. We verify that 

  xi < xi+1  i = 0, …, n � 2 

  ti < ti+k  i = 0, …., n � 1 

  ti < ti+1  i = 0, …, n + k � 2 

The first test checks to see that the abscissas are distinct. The second and third 
inequalities verify that a valid knot sequence has been specified. 
� In order for the interpolation matrix to be nonsingular, we also check  

tk - 1 � xi � tn for i = 0 to n � 1. This first inequality in the last check is necessary 
since the method used to generate the entries of the interpolation matrix requires 
that the k possibly nonzero B-splines at xi, 

Bj-k+1, …, Bj where j satisfies tj � xi < tj+1 

 be well-defined (that is, j � k + 1 	 0). 

General conditions are not known for the exact behavior of the error in spline 
interpolation; however, if t and x are selected properly and the data points arise from 
the values of a smooth (say Ck) function f, i.e. fi = f(xi), then the error will behave in a 
predictable fashion. The maximum absolute error satisfies  

� �

� �

� �1 1
, ,k n k n

kkf s C f
�

�

� �
t t t t

t  

where 

11, , 1
: max i ii k n �

� � �

� �t t
�

t  

For more information on this problem, see de Boor (1978, Chapter 13) and his 
reference. This function can be used in place of the IMSL function 
imsl_f_cub_spline_interp. 

The return value for this function is a pointer of type Imsl_f_spline. The calling 
program must receive this in a pointer Imsl_f_spline *sp. This structure contains all the 
information to determine the spline (stored as a linear combination of B-splines) that is 
computed by this function. For example, the following code sequence evaluates this 
spline at x and returns the value in y. 
y = imsl_f_spline_value (x, sp, 0) 

Three spline interpolants of order 2, 3, and 5 are plotted. These splines use the default 
knots. 
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Figure 3-3   Three Spline Interpolants 

Examples 

Example 1 
In this example, a cubic spline interpolant to a function f is computed. The values of 
this spline are then compared with the exact function values. Since the default settings 
are used, the interpolant is determined by the “not-a-knot” condition (see de Boor 
1978). 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA   11 
                                /* Define function */ 
#define F(x)    (float)(sin(15.0*x)) 
 
main() 
{ 
    int                 i; 
    float               xdata[NDATA], fdata[NDATA], x, y; 
    Imsl_f_spline       *sp; 
                                /* Set up a grid */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = (float)i /((float)(NDATA-1)); 
        fdata[i] = F(xdata[i]); 
    } 
                                /* Compute cubic spline interpolant */ 
    sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0); 
                                /* Print results */ 
    printf("     x         F(x)       Interpolant    Error\n"); 
    for (i = 0;  i < 2*NDATA-1;  i++){ 



 

 
 

Chapter 3: Interpolation and Approximation spline_interp � 165 

 

 

 

        x = (float) i /(float)(2*NDATA-2); 
        y = imsl_f_spline_value(x, sp, 0); 
        printf("  %6.3f  %10.3f   %10.3f   %10.4f\n", x, F(x), y, 
                                                   fabs(F(x)-y)); 
    } 
} 

Output 
    x        F(x)    Interpolant      Error 
0.000       0.000        0.000       0.0000 
0.050       0.682        0.809       0.1270 
0.100       0.997        0.997       0.0000 
0.150       0.778        0.723       0.0552 
0.200       0.141        0.141       0.0000 
0.250      -0.572       -0.549       0.0228 
0.300      -0.978       -0.978       0.0000 
0.350      -0.859       -0.843       0.0162 
0.400      -0.279       -0.279       0.0000 
0.450       0.450        0.441       0.0093 
0.500       0.938        0.938       0.0000 
0.550       0.923        0.903       0.0199 
0.600       0.412        0.412       0.0000 
0.650      -0.320       -0.315       0.0049 
0.700      -0.880       -0.880       0.0000 
0.750      -0.968       -0.938       0.0295 
0.800      -0.537       -0.537       0.0000 
0.850       0.183        0.148       0.0347 
0.900       0.804        0.804       0.0000 
0.950       0.994        1.086       0.0926 
1.000       0.650        0.650       0.0000 

Example 2 
Recall that in the first example, a cubic spline interpolant to a function f is computed. 
The values of this spline are then compared with the exact function values. This 
example chooses to use a quadratic (k = 3) and a quintic k = 6 spline interpolant to the 
data instead of the default values. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA  11 
                                /* Define function */ 
#define F(x)     (float)(sin(15.0*x)) 
 
main() 
{ 
    int                 i, order; 
    float               fdata[NDATA], xdata[NDATA], x, y; 
    Imsl_f_spline       *sp; 
                                /* Set up a grid */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = (float)i /((float)(NDATA-1)); 
        fdata[i] = F(xdata[i]); 
    } 
    for (order =3; order<7; order += 3) { 
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                                /* Compute cubic spline interpolant */ 
        sp = imsl_f_spline_interp (NDATA, xdata, fdata,  
                                   IMSL_ORDER, order, 
                                   0); 
                                /* Print results */ 
        printf("\nThe order of the spline is %d\n", order); 
        printf("     x         F(x)       Interpolant    Error\n");    
        for (i = NDATA/2;  i < 3*NDATA/2;  i++){ 
            x = (float) i /(float)(2*NDATA-2); 
            y = imsl_f_spline_value(x,sp,0); 
            printf("  %6.3f  %10.3f   %10.3f   %10.4f\n", x, F(x), y, 
                                                       fabs(F(x)-y)); 
        } 
    } 
} 

Output 
The order of the spline is 3 
     x         F(x)       Interpolant    Error 
   0.250      -0.572       -0.542       0.0299 
   0.300      -0.978       -0.978       0.0000 
   0.350      -0.859       -0.819       0.0397 
   0.400      -0.279       -0.279       0.0000 
   0.450       0.450        0.429       0.0210 
   0.500       0.938        0.938       0.0000 
   0.550       0.923        0.879       0.0433 
   0.600       0.412        0.412       0.0000 
   0.650      -0.320       -0.305       0.0149 
   0.700      -0.880       -0.880       0.0000 
   0.750      -0.968       -0.922       0.0459 
 

The order of the spline is 6 
     x         F(x)       Interpolant    Error 
   0.250      -0.572       -0.573       0.0016 
   0.300      -0.978       -0.978       0.0000 
   0.350      -0.859       -0.856       0.0031 
   0.400      -0.279       -0.279       0.0000 
   0.450       0.450        0.448       0.0020 
   0.500       0.938        0.938       0.0000 
   0.550       0.923        0.922       0.0003 
   0.600       0.412        0.412       0.0000 
   0.650      -0.320       -0.322       0.0025 
   0.700      -0.880       -0.880       0.0000 
   0.750      -0.968       -0.959       0.0090 

Warning Errors 
IMSL_ILL_COND_INTERP_PROB The interpolation matrix is ill-conditioned. The 

solution might not be accurate. 

Fatal Errors 
IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct. 

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the 
order of the spline. 
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IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing. 

IMSL_KNOT_XDATA_INTERLACING The i-th smallest element of xdata (xi) must 
satisfy ti � xi < ti+order where t is the knot 
sequence. 

IMSL_XDATA_TOO_LARGE The array xdata must satisfy xdatai � tndata, 
for i = 1, �, ndata. 

IMSL_XDATA_TOO_SMALL The array xdata must satisfy xdatai 	 torder-1, 
for i = 1, �, ndata. 

spline_knots 
Computes the knots for a spline interpolant 

Synopsis 
#include <imsl.h>  
float *imsl_f_spline_knots (int ndata, float xdata[], �, 0) 

The type double function is imsl_d_spline_knots. 

Required Arguments 

int ndata   (Input) 
Number of data points. 

float xdata[]   (Input) 
Array with ndata components containing the abscissas of the interpolation 
problem. 

Return Value 
A pointer to the knots. If the knots cannot be computed, then NULL is returned. To 
release this space, use free. 

Synopsis with Optional Arguments 
#include <imsl.h>  
float *imsl_f_spline_knots (int ndata, float xdata[], 

IMSL_ORDER, int order,  
IMSL_OPT,  
IMSL_OPT_ITMAX, int itmax,  
IMSL_RETURN_USER, float knots[],  
0) 
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Optional Arguments 
IMSL_ORDER, int order   (Input) 

The order of the spline subspace for which the knots are desired. This option 
is used to communicate the order of the spline subspace. 
Default: order = 4, i.e., cubic splines 

IMSL_OPT 
This option produces knots that satisfy an optimality criterion. 

IMSL_OPT_ITMAX, int itmax   (Input) 
This option allows the user to set the maximum number of iterations of 
Newton’s method. 
Default: itmax = 10 

IMSL_RETURN_USER, float knots[]   (Output) 
This option requires the user to provide the space for the return knots. For 
example, the user could declare float knots[100]; and pass in knots.  
The return value is then also set to knots. 

Description 
Given the data points x = xdata, the order of the spline k = order, and the number 
n = ndata of elements in xdata, the default action of imsl_f_spline_knots 
returns a pointer to a knot sequence that is appropriate for interpolation of data on x by 
splines of order k (the default order is k = 4). The knot sequence is contained in its first 
n + k positions. If k is even, and we assume that the entries in the input vector x are 
increasing, then the resulting knot sequence t is returned as 

  ti = x0  for i = 0, …, k � 1 

  ti = xi-k/2-1 for i = k, …, n � 1 

  ti = xn-1  for i = n, …, n + k � 1 

There is some discussion concerning this selection of knots in de Boor (1978, p. 211). 
If k is odd, then t is returned as 
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It is not necessary to sort the values in xdata. 

If the option IMSL_OPT is selected, then the knot sequence returned minimizes the 
constant c in the error estimate 

||f � s|| � c|| f (k)|| 
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In the above formula, f is any function in Ck, and s is the spline interpolant to f at the 
abscissas x with knot sequence t. 

The algorithm is based on a routine described in de Boor (1978, p. 204), which in turn 
is based on a theorem of Micchelli et al. (1976). 

Examples 

Example 1 
In this example, knots for a cubic spline are generated and printed. Notice that the knots 
are stacked at the endpoints and that the second and next to last data points are not 
knots. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA  6 
 
main() 
{       
    int         i; 
    float       *knots, xdata[NDATA]; 
 
    for(i = 0;  i < NDATA;  i++) 
        xdata[i] = i; 
    knots = imsl_f_spline_knots(NDATA, xdata, 0); 
    imsl_f_write_matrix("The knots for the cubic spline are:\n",  
                        1, NDATA+4, knots,  
                        IMSL_COL_NUMBER_ZERO, 
                        0); 
} 

Output 
                 The knots for the cubic spline are: 
 
         0           1           2           3           4           5 
         0           0           0           0           2           3 
  
         6           7           8           9 
         5           5           5           5 

Example 2 
This is a continuation of the examples for imsl_f_spline_interp (page 161). 
Recall that in these examples, a cubic spline interpolant to a function f is computed 
first. The values of this spline are then compared with the exact function values. The 
second example uses a quadratic (k = 3) and a quintic (k = 6) spline interpolant to the 
data. Now, instead of using the default knots, select the “optimal” knots as described 
above. Notice that the error is actually worse in this case. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
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#define NDATA   11 
                                /* Define function */ 
#define F(x)    (float)(sin(15.0*x)) 
 
main() 
{ 
    int                 i, order; 
    float               fdata[NDATA], xdata[NDATA], *knots, x, y; 
    Imsl_f_spline       *sp; 
                                /* Set up a grid */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = (float)i /((float)(NDATA-1)); 
        fdata[i] = F(xdata[i]); 
    } 
    for(order = 3;  order < 7;  order += 3) { 
        knots = imsl_f_spline_knots(NDATA, xdata, IMSL_ORDER, order, 
                                    IMSL_OPT, 
                                    0); 
                                /* Compute spline interpolant */ 
        sp = imsl_f_spline_interp (NDATA, xdata,fdata,  
                                   IMSL_ORDER, order, 
                                   IMSL_KNOTS, knots, 
                                   0); 
                                /* Print results */ 
        printf("\nThe order of the spline is %d\n", order); 
        printf("     x         F(x)       Interpolant    Error\n"); 
        for (i = NDATA/2;  i < 3*NDATA/2;  i++) { 
            x = (float) i /(float)(2*NDATA-2); 
            y = imsl_f_spline_value(x, sp, 0); 
            printf("  %6.3f  %10.3f   %10.3f   %10.4f\n", x, F(x), y, 
                                                       fabs(F(x)-y)); 
        } 
    } 
} 

Output 
The order of the spline is 3 
     x         F(x)       Interpolant    Error 
   0.250      -0.572       -0.543       0.0290 
   0.300      -0.978       -0.978       0.0000 
   0.350      -0.859       -0.819       0.0401 
   0.400      -0.279       -0.279       0.0000 
   0.450       0.450        0.429       0.0210 
   0.500       0.938        0.938       0.0000 
   0.550       0.923        0.879       0.0433 
   0.600       0.412        0.412       0.0000 
   0.650      -0.320       -0.305       0.0150 
   0.700      -0.880       -0.880       0.0000 
   0.750      -0.968       -0.920       0.0478 
 
The order of the spline is 6 
     x         F(x)       Interpolant    Error 
   0.250      -0.572       -0.578       0.0061 
   0.300      -0.978       -0.978       0.0000 
   0.350      -0.859       -0.854       0.0054 
   0.400      -0.279       -0.279       0.0000 
   0.450       0.450        0.448       0.0019 
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   0.500       0.938        0.938       0.0000 
   0.550       0.923        0.920       0.0022 
   0.600       0.412        0.412       0.0000 
   0.650      -0.320       -0.317       0.0020 
   0.700      -0.880       -0.880       0.0000 
   0.750      -0.968       -0.966       0.0023 

Warning Errors 
IMSL_NO_CONV_NEWTON Newton’s method iteration did not converge. 

Fatal Errors 
IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct. 

IMSL_ILL_COND_LIN_SYS Interpolation matrix is singular. The xdata 
values may be too close together. 

spline_2d_interp 
Computes a two-dimensional, tensor-product spline interpolant from two-dimensional, 
tensor-product data. 

Synopsis 
#include <imsl.h>  
Imsl_f_spline *imsl_f_spline_2d_interp (int num_xdata, float xdata[], int 

num_ydata, float ydata[], float fdata[], �, 0) 

The type Imsl_d_spline function is imsl_d_spline_2d_interp. 

Required Arguments 

int num_xdata   (Input) 
Number of data points in the X direction. 

float xdata[]   (Input) 
Array with num_xdata components containing the data points in the X 
direction. 

int num_ydata   (Input) 
Number of data points in the Y direction. 

float ydata[]   (Input) 
Array with num_ydata components containing the data points in the Y 
direction. 

float fdata[]   (Input) 
Array of size num_xdata � num_ydata containing the values to be 
interpolated. fdata[i][j] is the value at (xdata[i], ydata[j]). 
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Return Value 
A pointer to the structure that represents the tensor-product spline interpolant. If an 
interpolant cannot be computed, then NULL is returned. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsl.h>  
Imsl_f_spline *imsl_f_spline_2d_interp (int num_xdata, float xdata[], int 

num_ydata, float ydata[], float fdata[],  
IMSL_ORDER, int xorder, int yorder,  
IMSL_KNOTS, float xknots[], float yknots[],  
IMSL_FDATA_COL_DIM, int fdata_col_dim,  
0) 

Optional Arguments 
IMSL_ORDER, int xorder, int yorder   (Input) 

This option is used to communicate the order of the spline subspace. 
Default: xorder, yorder = 4, (i.e., tensor-product cubic splines) 

IMSL_KNOTS, float xknots[], float yknots[]   (Input) 
This option requires the user to provide the knots. The default knots are 
selected by the function imsl_f_spline_knots using its defaults. 

IMSL_FDATA_COL_DIM, int fdata_col_dim   (Input) 
The column dimension of the matrix fdata. 
Default: fdata_col_dim = num_ydata 

Description 
The function imsl_f_spline_2d_interp computes a tensor-product spline 
interpolant. The tensor-product spline interpolant to data {(xi, yj, fij)}, where 
0 � i � nx � 1 and 0 � j � ny � 1 has the form 
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where kx and ky are the orders of the splines. These numbers are defaulted to be 4, but 
can be set to any positive integer using the keyword, IMSL_ORDER. Likewise, tx and ty 
are the corresponding knot sequences (xknots and yknots). These values are 
defaulted to the knots returned by imsl_f_spline_knots. The algorithm requires 
that 

tx(kx � 1) � xi � tx(nx) 0 � i � nx � 1 

ty(ky � 1) � yj � ty(ny � 1) 0 � j � ny � 1 

Tensor-product spline interpolants in two dimensions can be computed quite efficiently 
by solving (repeatedly) two univariate interpolation problems.  
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The computation is motivated by the following observations. It is necessary to solve the 
system of equations 
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note that for each fixed i from 0 to nx � 1, we have ny linear equations in the same 
number of unknowns as can be seen below:  
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Setting 
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note that for each fixed i from 1 to nx � 1, we have ny � 1 linear equations in the same 
number of unknowns as can be seen below: 
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The same matrix appears in all of the equations above:  

� �, , 1 ,
y ym k j yB y m j n� � � � �

� �t  

Thus, only factor this matrix once and then apply this factorization to the nx right-hand 
sides. Once this is done and hmi is computed, then solve for the coefficients cnm using 
the relation  
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for m from 0 to ny � 1, which again involves one factorization and ny solutions to the 
different right-hand sides. The function imsl_f_spline_2d_interp is based on the 
routine SPLI2D by de Boor (1978, p. 347). 

The return value for this function is a pointer to the structure imsl_f_spline. The 
calling program must receive this in a pointer imsl_f_spline *sp. This structure 
contains all the information to determine the spline (stored in B-spline format) that is 
computed by this procedure. For example, the following code sequence evaluates this 
spline at (x,y) and returns the value in z.  
z = imsl_f_spline_2d_value (x, y, sp, 0); 
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Examples 

Example 1 
In this example, a tensor-product spline interpolant to a function f is computed.  
The values of the interpolant and the error on a 4 � 4 grid are displayed. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA           11 
#define OUTDATA          2 
                                /* Define function  */ 
#define F(x, y)          (float)(x*x*x+y*y) 
 
main() 
{ 
    int                 i, j, num_xdata, num_ydata; 
    float               fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA]; 
    float               x, y, z; 
    Imsl_f_spline        *sp; 
                                /* Set up grid  */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = ydata[i] = (float)i / ((float)(NDATA-1)); 
    } 
    for (i = 0;  i < NDATA;  i++) { 
        for (j = 0;  j < NDATA;  j++) { 
            fdata[i][j] = F(xdata[i], ydata[j]); 
        } 
    } 
    num_xdata = num_ydata = NDATA; 
                                /* Compute tensor-product interpolant */ 
    sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,  
                                                       ydata, fdata, 0); 
                                /* Print results */ 
    printf("     x       y        F(x, y)    Interpolant    Error \n"); 
    for (i = 0;  i < OUTDATA;  i++) { 
        x = (float) i / (float) (OUTDATA); 
        for (j = 0;  j < OUTDATA;  j++) { 
            y = (float) j / (float) (OUTDATA); 
            z = imsl_f_spline_2d_value(x, y, sp, 0); 
            printf("  %6.3f  %6.3f  %10.3f   %10.3f   %10.4f\n", 
                   x, y, F(x,y), z, fabs(F(x,y)-z)); 
        } 
    } 
} 

Output 
   x       y       F(x, y)    Interpolant     Error 
0.000   0.000       0.000        0.000       0.0000 
0.000   0.500       0.250        0.250       0.0000 
0.500   0.000       0.125        0.125       0.0000 
0.500   0.500       0.375        0.375       0.0000 

Example 2 
Recall that in the first example, a tensor-product spline interpolant to a function f is 
computed. The values of the interpolant and the error on a 4 � 4 grid are displayed. 
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Notice that the first interpolant with order = 3 does not reproduce the cubic data, 
while the second interpolant with order = 6 does reproduce the data. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA           7 
#define OUTDATA         4 
                                /* Define function  */ 
#define F(x,y)          (float)(x*x*x+y*y) 
 
main() 
{ 
    int                 i, j, num_xdata, num_ydata, order; 
    float               fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA]; 
    float               x, y, z; 
    Imsl_f_spline        *sp; 
                                /* Set up grid  */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = ydata[i] = (float) i / ((float) (NDATA - 1)); 
    } 
    for (i = 0;  i < NDATA;  i++) { 
        for (j = 0; j < NDATA; j++) { 
            fdata[i][j] = F(xdata[i], ydata[j]); 
        } 
    } 
    num_xdata = num_ydata = NDATA; 
 
    for(order = 3;  order < 7;  order += 3) { 
                                /* Compute tensor-product interpolant */ 
        sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata, 
                                                        ydata, fdata,  
                                     IMSL_ORDER, order, order, 
                                     0); 
                                /* Print results */ 
       printf("\nThe order of the spline is %d \n", order); 
       printf("     x       y        F(x, y)    Interpolant    Error\n"); 
       for (i = 0;  i < OUTDATA;  i++) { 
            x = (float) i / (float) (OUTDATA); 
            for (j = 0;  j < OUTDATA;  j++) { 
                y = (float) j / (float) (OUTDATA); 
                z = imsl_f_spline_2d_value(x, y, sp, 0); 
                printf("  %6.3f  %6.3f  %10.3f   %10.3f   %10.4f   \n", 
                       x, y, F(x,y), z, fabs(F(x,y)-z)); 
            } 
        } 
    } 
} 
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Output 
The order of the spline is 3  
     x       y        F(x, y)    Interpolant    Error 
   0.000   0.000       0.000        0.000       0.0000    
   0.000   0.250       0.062        0.063       0.0000    
   0.000   0.500       0.250        0.250       0.0000    
   0.000   0.750       0.562        0.562       0.0000    
   0.250   0.000       0.016        0.016       0.0002    
   0.250   0.250       0.078        0.078       0.0002    
   0.250   0.500       0.266        0.266       0.0002    
   0.250   0.750       0.578        0.578       0.0002    
   0.500   0.000       0.125        0.125       0.0000    
   0.500   0.250       0.188        0.188       0.0000    
   0.500   0.500       0.375        0.375       0.0000    
   0.500   0.750       0.688        0.687       0.0000    
   0.750   0.000       0.422        0.422       0.0002    
   0.750   0.250       0.484        0.484       0.0002    
   0.750   0.500       0.672        0.672       0.0002    
   0.750   0.750       0.984        0.984       0.0002    
 
The order of the spline is 6  
     x       y        F(x, y)    Interpolant    Error 
   0.000   0.000       0.000        0.000       0.0000    
   0.000   0.250       0.062        0.063       0.0000    
   0.000   0.500       0.250        0.250       0.0000    
   0.000   0.750       0.562        0.562       0.0000    
   0.250   0.000       0.016        0.016       0.0000    
   0.250   0.250       0.078        0.078       0.0000    
   0.250   0.500       0.266        0.266       0.0000    
   0.250   0.750       0.578        0.578       0.0000    
   0.500   0.000       0.125        0.125       0.0000    
   0.500   0.250       0.188        0.188       0.0000    
   0.500   0.500       0.375        0.375       0.0000    
   0.500   0.750       0.688        0.688       0.0000    
   0.750   0.000       0.422        0.422       0.0000    
   0.750   0.250       0.484        0.484       0.0000    
   0.750   0.500       0.672        0.672       0.0000    
   0.750   0.750       0.984        0.984       0.0000    

Warning Errors 
IMSL_ILL_COND_INTERP_PROB The interpolation matrix is ill-conditioned. The 

solution might not be accurate. 

Fatal Errors 
IMSL_XDATA_NOT_INCREASING The xdata values must be strictly increasing. 

IMSL_YDATA_NOT_INCREASING The ydata values must be strictly increasing. 

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the 
order of the spline. 

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing. 
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IMSL_KNOT_DATA_INTERLACING The i-th smallest element of the data arrays 
xdata and ydata must satisfy 
ti � datai < ti+order, where t is the knot 
sequence. 

IMSL_DATA_TOO_LARGE The data arrays xdata and ydata must satisfy 
datai � tnum_data, for i = 1, �, num_data.  

IMSL_DATA_TOO_SMALL The data arrays xdata and ydata must satisfy 
datai 	 torder-1, for i = 1, �, num_data.  

spline_value 
Computes the value of a spline or the value of one of its derivatives. 

Synopsis 
#include <imsl.h> 
float imsl_f_spline_value (float x, Imsl_f_spline *sp, �, 0) 

The type double function is imsl_d_spline_value. 

Required Arguments 

float x   (Input) 
Evaluation point for the spline. 

Imsl_f_spline *sp   (Input) 
Pointer to the structure that represents the spline. 

Return Value 
The value of a spline or one of its derivatives at the point x. If no value can be 
computed, NaN is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float imsl_f_spline_value (float x, Imsl_f_spline *sp,  

IMSL_DERIV, int deriv,  
IMSL_GRID, int n, float *xvec, float **value, 
IMSL_GRID_USER, int n, float *xvec, float value_user[], 
0) 

Optional Arguments 
IMSL_DERIV, int deriv   (Input) 

Let d = deriv and let s be the spline that is represented by the structure *sp. 
Then, this option produces the d-th derivative of s at x, s(d) (x). 
Default: deriv = 0 
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IMSL_GRID, int n, float *xvec, float **value   (Input/Output) 
The argument xvec is the array of length n containing the points at which the 
spline is to be evaluated. The d-th derivative of the spline at the points in xvec 
is returned in value. 

IMSL_GRID_USER int n, float *xvec, float value_user[]   (Input/Output) 
The argument xvec is the array of length n containing the points at which the 
spline is to be evaluated. The d-th derivative of the spline at the points in xvec 
is returned in value_user. 

Description 
The function imsl_f_spline_value computes the value of a spline or one of its 
derivatives. This function is based on the routine BVALUE by de Boor (1978, p. 144). 

Examples 

Example 1 
In this example, a cubic spline interpolant to a function f is computed. The values of 
this spline are then compared with the exact function values. Since the default settings 
are used, the interpolant is determined by the “not-a-knot” condition (see de Boor 
1978). 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA   11 
                                /* Define function */ 
#define F(x)    (float)(sin(15.0*x)) 
 
main() 
{ 
    int                 i; 
    float               fdata[NDATA], xdata[NDATA], x, y; 
    Imsl_f_spline       *sp; 
                                /* Set up a grid */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = (float)i /((float)(NDATA-1)); 
        fdata[i] = F(xdata[i]); 
    } 
                                /* Compute cubic spline interpolant */ 
    sp = imsl_f_spline_interp (NDATA, xdata,fdata, 0); 
                                /* Print results */ 
    printf("     x         F(x)       Interpolant    Error\n"); 
    for (i = NDATA/2;  i < 3*NDATA/2;  i++){ 
        x = (float) i /(float)(2*NDATA-2); 
        y = imsl_f_spline_value(x, sp, 0); 
        printf("  %6.3f  %10.3f   %10.3f   %10.4f\n", x, F(x), y, 
                                                   fabs(F(x)-y)); 
    } 
} 
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Output 
   x         F(x)      Interpolant    Error 
0.250      -0.572       -0.549       0.0228 
0.300      -0.978       -0.978       0.0000 
0.350      -0.859       -0.843       0.0162 
0.400      -0.279       -0.279       0.0000 
0.450       0.450        0.441       0.0093 
0.500       0.938        0.938       0.0000 
0.550       0.923        0.903       0.0199 
0.600       0.412        0.412       0.0000 
0.650      -0.320       -0.315       0.0049 
0.700      -0.880       -0.880       0.0000 
0.750      -0.968       -0.938       0.0295 

Example 2 
Recall that in the first example, a cubic spline interpolant to a function f is computed. 
The values of this spline are then compared with the exact function values. This 
example compares the values of the first derivatives. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA   11 
                                /* Define function */ 
#define F(x)    (float)(sin(15.0*x)) 
#define FP(x)   (float)(15.*cos(15.0*x)) 
 
main() 
{ 
    int                 i; 
    float               fdata[NDATA], xdata[NDATA], x, y; 
    Imsl_f_spline        *sp; 
                                /* Set up a grid */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = (float)i /((float)(NDATA-1)); 
        fdata[i] = F(xdata[i]); 
    } 
                                /* Compute cubic spline interpolant */ 
    sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0); 
                                /* Print results */ 
    printf("     x         FP(x)      Interpolant   Deriv Error\n"); 
    for (i = NDATA/2;  i < 3*NDATA/2;  i++) { 
        x = (float) i /(float)(2*NDATA-2); 
        y = imsl_f_spline_value(x, sp, IMSL_DERIV, 1, 0); 
        printf("  %6.3f  %10.3f   %10.3f   %10.4f   \n", x, FP(x), y, 
                                                      fabs(FP(x)-y)); 
    } 
} 

Output 
   x         FP(x)   Interpolant   Deriv Error 
0.250     -12.308      -12.559       0.2510    
0.300      -3.162       -3.218       0.0560    
0.350       7.681        7.796       0.1151    
0.400      14.403       13.919       0.4833    
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0.450      13.395       13.530       0.1346    
0.500       5.200        5.007       0.1926    
0.550      -5.786       -5.840       0.0535    
0.600     -13.667      -13.201       0.4660    
0.650     -14.214      -14.393       0.1798    
0.700      -7.133       -6.734       0.3990    
0.750       3.775        3.911       0.1359    

Fatal Errors 
IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the 

order of the spline. 

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing. 

spline_integral 
Computes the integral of a spline. 

Synopsis 
#include <imsl.h> 
float imsl_f_spline_integral (float a, float b, Imsl_f_spline *sp) 

The type double function is imsl_d_spline_integral. 

Required Arguments 

float a   (Input) 

float b   (Input) 
Endpoints for integration. 

Imsl_f_spline *sp   (Input) 
Pointer to the structure that represents the spline. 

Return Value 
The integral of a spline. If no value can be computed, then NaN is returned. 

Description 
The function imsl_f_spline_integral computes the integral of a spline from a to 
b 

� �
b

a
s x dx�  

This routine uses the identity (22) on page 151 of de Boor (1978). 

Example 
In this example, a cubic spline interpolant to a function f is computed. The values of the 
integral of this spline are then compared with the exact integral values. Since the 



 

 
 

Chapter 3: Interpolation and Approximation spline_integral � 181 

 

 

 

default settings are used, the interpolant is determined by the “not-a-knot” condition 
(see de Boor 1978). 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA    21 
                                /* Define function */ 
#define F(x)     (float)(sin(15.0*x)) 
                                /* Integral from 0 to x */ 
#define FI(x)    (float)((1.-cos(15.0*x))/15.) 
 
main() 
{ 
    int                 i; 
    float               fdata[NDATA], xdata[NDATA], x, y; 
    Imsl_f_spline       *sp; 
                                /* Set up a grid */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = (float)i /((float)(NDATA-1)); 
        fdata[i] = F(xdata[i]); 
    } 
                                /* Compute cubic spline interpolant */ 
    sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0); 
                                /* Print results */ 
    printf("     x         FI(x)      Interpolant   Integral Error\n"); 
    for (i = NDATA/2;  i < 3*NDATA/2;  i++) { 
        x = (float) i /(float)(2*NDATA-2); 
        y = imsl_f_spline_integral(0.0, x, sp); 
        printf("  %6.3f  %10.3f   %10.3f   %10.4f   \n", x, FI(x), y, 
                                                         fabs(FI(x)-y)); 
    } 
} 

Output 
   x        FI(x)    Interpolant  Integral Error 
0.250       0.121        0.121       0.0001    
0.275       0.104        0.104       0.0001    
0.300       0.081        0.081       0.0001    
0.325       0.056        0.056       0.0001    
0.350       0.033        0.033       0.0001    
0.375       0.014        0.014       0.0002    
0.400       0.003        0.003       0.0002    
0.425       0.000        0.000       0.0002    
0.450       0.007        0.007       0.0002    
0.475       0.022        0.022       0.0001    
0.500       0.044        0.044       0.0001    
0.525       0.068        0.068       0.0001    
0.550       0.092        0.092       0.0001    
0.575       0.113        0.113       0.0001    
0.600       0.127        0.128       0.0001    
0.625       0.133        0.133       0.0001    
0.650       0.130        0.130       0.0001    
0.675       0.118        0.118       0.0001    
0.700       0.098        0.098       0.0001    
0.725       0.075        0.075       0.0001    
0.750       0.050        0.050       0.0001    
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Warning Errors 
IMSL_SPLINE_SMLST_ELEMNT The data arrays xdata and ydata must satisfy 

datai � torder-1, for i = 1, �, num_data. 

IMSL_SPLINE_EQUAL_LIMITS The upper and lower endpoints of integration 
are equal. The indefinite integral is zero. 

IMSL_LIMITS_LOWER_TOO_SMALL The left endpoint is less than torder-1. 
Integration occurs only from torder-1 to b. 

IMSL_LIMITS_UPPER_TOO_SMALL The right endpoint is less than torder-1. 
Integration occurs only from torder-1 to a. 

IMSL_LIMITS_UPPER_TOO_BIG The right endpoint is greater than 
tspline_space_dim-1. Integration occurs only from 
a to tspline_space_dim-1. 

IMSL_LIMITS_LOWER_TOO_BIG The left endpoint is greater than 
tspline_space_dim-1. Integration occurs only from 
b to tspline_space_dim-1. 

Fatal Errors 
IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the 

order of the spline. 

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing. 

spline_2d_value 
Computes the value of a tensor-product spline or the value of one of its partial 
derivatives. 

Synopsis 
#include <imsl.h> 
float imsl_f_spline_2d_value (float x, float y, Imsl_f_spline *sp, �, 0) 

The type double function is imsl_d_spline_2d_value. 

Required Arguments 

float x   (Input) 

 

 
float y   (Input) 

The (x, y) coordinates of the evaluation point for the tensor-product spline. 

Imsl_f_spline *sp   (Input) 
Pointer to the structure that represents the spline. 
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Return Value 
The value of a tensor-product spline or one of its derivatives at the point (x, y). 

Synopsis with Optional Arguments 
#include <imsl.h> 
float imsl_f_spline_2d_value (float x, float y, Imsl_f_spline *sp,  

IMSL_DERIV, int x_partial, int y_partial,  
IMSL_GRID, int nx, float *xvec, int ny, float *yvec, 
 float **value, 
IMSL_GRID_USER, int nx, float *xvec, int ny, float *yvec,  float 
value_user[], 
0) 

Optional Arguments 
IMSL_DERIV, int x_partial, int y_partial   (Input) 

Let p = x_partial and q = y_partial, and let s be the spline that is 
represented by the structure *sp, then this option produces the (p, q)-th 
derivative of s at (x, y), s(p,q) (x, y). 
Default: x_partial = y_partial = 0 

IMSL_GRID, int nx, float *xvec, int ny, float *yvec, float **value   
(Input/Output) 
The argument xvec is the array of length nx containing the X coordinates at 
which the spline is to be evaluated. The argument yvec is the array of length 
ny containing the Y coordinates at which the spline is to be evaluated. The 
value of the spline on the nx by ny grid is returned in value. 

IMSL_GRID_USER, int nx, float *xvec, int ny, float *yvec, 
float value_user[]   (Input/Output) 
The argument xvec is the array of length nx containing the X coordinates at 
which the spline is to be evaluated. The argument yvec is the array of length 
ny containing the Y coordinates at which the spline is to be evaluated. The 
value of the spline on the nx by ny grid is returned in the user-supplied space 
value_user. 

Description 
The function imsl_f_spline_2d_value computes the value of a tensor-product 
spline or one of its derivatives. This function is based on the discussion in de Boor 
(1978, pp. 351�353). 

Examples 

Example 1 
In this example, a spline interpolant s to a function f is constructed. Using the procedure 
imsl_f_spline_2d_interp to compute the interpolant, 
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imsl_f_spline_2d_value is employed to compute s(x, y). The values of this partial 
derivative and the error are computed on a 4 � 4 grid and then displayed. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA           11 
#define OUTDATA          2 
                                /* Define function  */ 
#define F(x,y)          (float)(x*x*x+y*y) 
 
main() 
{ 
    int                 i, j, num_xdata, num_ydata; 
    float               fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA]; 
    float               x, y, z; 
    Imsl_f_spline       *sp; 
                                /* Set up grid  */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = ydata[i] = (float) i / ((float) (NDATA - 1)); 
    } 
    for (i = 0;  i < NDATA;  i++) { 
        for (j = 0;  j < NDATA;  j++) { 
            fdata[i][j] = F(xdata[i], ydata[j]); 
        } 
    } 
    num_xdata = num_ydata = NDATA; 
                                /* Compute tensor-product interpolant */ 
    sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata, 
                                                      ydata, fdata, 0); 
                                /* Print results */ 
    printf("     x       y       F(x, y)        Value       Error\n"); 
    for (i = 0;  i < OUTDATA;  i++) { 
        x = (float) (1+i) / (float) (OUTDATA+1); 
        for (j = 0;  j < OUTDATA;  j++) { 
            y = (float) (1+j) / (float) (OUTDATA+1); 
            z = imsl_f_spline_2d_value(x, y, sp, 0); 
            printf("  %6.3f  %6.3f  %10.3f   %10.3f   %10.4f\n", 
                   x, y, F(x,y), z, fabs(F(x,y)-z)); 
        } 
    } 
} 

Output 
    x       y      F(x, y)       Value        Error 
0.333   0.333       0.148        0.148       0.0000 
0.333   0.667       0.481        0.481       0.0000 
0.667   0.333       0.407        0.407       0.0000 
0.667   0.667       0.741        0.741       0.0000 

Example 2 
In this example, a spline interpolant s to a function f is constructed.Using function 
imsl_f_spline_2d_interp to compute the interpolant, then 
imsl_f_spline_2d_value is employed to compute s(2,1) (x, y). The values of this 
partial derivative and the error are computed on a 4 � 4 grid and then displayed. 
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#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA           11 
#define OUTDATA          2 
                                /* Define function  */ 
#define F(x, y)         (float)(x*x*x*y*y) 
#define F21(x,y)        (float)(6.*x*2.*y) 
 
main() 
{ 
    int                 i, j, num_xdata, num_ydata; 
    float               fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA]; 
    float               x, y, z; 
    Imsl_f_spline       *sp; 
                                /* Set up grid  */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = ydata[i] = (float)i / ((float)(NDATA-1)); 
    } 
    for (i = 0;  i < NDATA;  i++) { 
        for (j = 0;  j < NDATA;  j++) { 
            fdata[i][j] = F(xdata[i], ydata[j]); 
        } 
    } 
    num_xdata = num_ydata = NDATA; 
                                /* Compute tensor-product interpolant */ 
    sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata, 
                                                       ydata, fdata, 0); 
                                /* Print results */ 
    printf("     x       y       F21(x, y)   21InterpDeriv   Error\n"); 
    for (i = 0;  i < OUTDATA;  i++) { 
        x = (float) (1+i) / (float) (OUTDATA+1); 
        for (j = 0;  j < OUTDATA;  j++) { 
            y = (float) (1+j) / (float) (OUTDATA+1); 
            z = imsl_f_spline_2d_value(x, y, sp, 
                                       IMSL_DERIV, 2, 1, 
                                       0); 
            printf("  %6.3f  %6.3f  %10.3f   %10.3f   %10.4f\n", 
                   x, y, F21(x, y), z, fabs(F21(x,y)-z)); 
        } 
    } 
} 

Output 
    x       y     F21(x, y)   21InterpDeriv   Error 
0.333   0.333       1.333        1.333       0.0000 
0.333   0.667       2.667        2.667       0.0000 
0.667   0.333       2.667        2.667       0.0000 
0.667   0.667       5.333        5.333       0.0001 

Warning Errors 
IMSL_X_NOT_WITHIN_KNOTS The value of x does not lie within the knot 

sequence. 
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IMSL_Y_NOT_WITHIN_KNOTS The value of y does not lie within the knot 
sequence. 

Fatal Errors 
IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the 

order of the spline. 

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing. 

spline_2d_integral 
Evaluates the integral of a tensor-product spline on a rectangular domain. 

Synopsis 
#include <imsl.h> 
float imsl_f_spline_2d_integral (float a, float b, float c, float d, 

Imsl_f_spline *sp) 

The type double function is imsl_d_spline_2d_integral. 

Required Arguments 

float a   (Input) 

float b   (Input) 
The integration limits for the first variable of the tensor-product spline. 

float c   (Input) 

float d   (Input) 
The integration limits for the second variable of the tensor-product spline. 

Imsl_f_spline *sp   (Input) 
Pointer to the structure that represents the spline. 

Return Value 
The value of the integral of the tensor-product spline over the rectangle  
[a, b] � [c, d]. If no value can be computed, NaN is returned. 

Description 
The function imsl_f_spline_2d_integral computes the integral of a tensor-
product spline. If s is the spline, then this function returns 
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where t0 � x � tr. 
It assumes (for all knot sequences) that the first and last k knots are stacked, that is, 
t0 = … = tk-1 and tn = … = tn+k-1 , where k is the order of the spline in the x or y 
direction. 

Example 
This example integrates a two-dimensional, tensor-product spline over the rectangle  
[0, x] � [0, y]. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA           11 
#define OUTDATA          2 
                                /* Define function  */ 
#define F(x,y)          (float)(x*x*x+y*y) 
                                /* The integral of F from 0 to x */ 
                                /* and 0 to y */ 
#define FI(x,y)         (float)(y*x*x*x*x/4. + x*y*y*y/3.) 
 
main() 
{ 
    int                 i, j, num_xdata, num_ydata; 
    float               fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA]; 
    float               x, y, z; 
    Imsl_f_spline       *sp; 
                                /* Set up grid  */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = ydata[i] = (float) i / ((float)(NDATA-1)); 
    } 
    for (i = 0;  i < NDATA;  i++) { 
        for (j = 0; j < NDATA;  j++) { 
            fdata[i][j] = F(xdata[i],ydata[j]); 
        } 
    } 
    num_xdata = num_ydata = NDATA; 
                                /* Compute tensor-product interpolant */ 
    sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata, 
                                                       ydata, fdata, 0); 
                                /* Print results */ 
    printf("     x       y       FI(x, y)       Integral    Error\n"); 
    for (i = 0;  i < OUTDATA;  i++) { 
        x = (float) (1+i) / (float) (OUTDATA+1); 
        for (j = 0;  j < OUTDATA;  j++) { 
            y = (float) (1+j) / (float) (OUTDATA+1); 
            z = imsl_f_spline_2d_integral(0.0, x, 0.0, y, sp); 
            printf("  %6.3f  %6.3f  %10.3f   %10.3f   %10.4f\n", 
                   x, y, FI(x, y), z, fabs(FI(x,y)-z)); 
        } 
    } 
} 
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Output 
    x       y     FI(x, y)     Integral       Error 
0.333   0.333       0.005        0.005       0.0000 
0.333   0.667       0.035        0.035       0.0000 
0.667   0.333       0.025        0.025       0.0000 
0.667   0.667       0.099        0.099       0.0000 

Warning Errors 
IMSL_SPLINE_LEFT_ENDPT The left endpoint of X integration is not within 

the knot sequence. Integration occurs only 
from torder-1 to b. 

IMSL_SPLINE_RIGHT_ENDPT The right endpoint of X integration is not 
within the knot sequence. Integration occurs 
only from torder-1 to a. 

IMSL_SPLINE_LEFT_ENDPT_1 The left endpoint of X integration is not within 
the knot sequence. Integration occurs only 
from b to  
tspline_space_dim-1. 

IMSL_SPLINE_RIGHT_ENDPT_1 The right endpoint of X integration is not 
within the knot sequence. Integration occurs 
only from a to  
tspline_space_dim-1. 

IMSL_SPLINE_LEFT_ENDPT_2 The left endpoint of Y integration is not within 
the knot sequence. Integration occurs only 
from torder-1 to d. 

IMSL_SPLINE_RIGHT_ENDPT_2 The right endpoint of Y integration is not 
within the knot sequence. Integration occurs 
only from torder-1 to c. 

IMSL_SPLINE_LEFT_ENDPT_3 The left endpoint of Y integration is not within 
the knot sequence. Integration occurs only 
from d to  
tspline_space_dim-1. 

IMSL_SPLINE_RIGHT_ENDPT_3 The right endpoint of Y integration is not 
within the knot sequence. Integration occurs 
only from c to  
tspline_space_dim-1. 

Fatal Errors 
IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the 

order of the spline. 

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing. 
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user_fcn_least_squares 
Computes a least-squares fit using user-supplied functions. 

Synopsis 
#include <imsl.h>  
float *imsl_f_user_fcn_least_squares (float fcn (int k, float x), int 

nbasis, int ndata, float xdata[], float ydata[], �, 0) 

The type double function is imsl_d_user_fcn_least_squares. 

Required Arguments 

float fcn (int k, float x)   (Input) 
User-supplied function that defines the subspace from which the least-squares 
fit is to be performed. The k-th basis function evaluated at x is f(k, x) where 
k = 1, 2, �, nbasis. 

int nbasis   (Input) 
Number of basis functions. 

int ndata   (Input) 
Number of data points. 

float xdata[]   (Input) 
Array with ndata components containing the abscissas of the least-squares 
problem. 

float ydata[]   (Input) 
Array with ndata components containing the ordinates of the least-squares 
problem. 

Return Value 
A pointer to the vector containing the coefficients of the basis functions. If a fit cannot 
be computed, then NULL is returned. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsl.h>  
float *imsl_f_user_fcn_least_squares (), int nbasis, int ndata, float 

xdata[], float ydata[],  
IMSL_RETURN_USER, float coef[],  
IMSL_INTERCEPT, float *intercept,  
IMSL_SSE, float *ssq_err,  
IMSL_WEIGHTS, float weights[],  
IMSL_FCN_W_DATA, float fcn ( ), void *data, 
0) 
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Optional Arguments 
IMSL_RETURN_USER, float coef[]   (Output) 

The coefficients are stored in the user-supplied array. 

IMSL_INTERCEPT, float *intercept   (Output) 
This option adds an intercept to the model. Thus, the least-squares fit is 
computed using the user-supplied basis functions augmented by the constant 
function. The coefficient of the constant function is stored in intercept. 

IMSL_SSE, float *ssq_err   (Output) 
This option returns the error sum of squares. 

IMSL_WEIGHTS, float weights[]   (Input) 
This option requires the user to provide the weights.  
Default: all weights equal one 

IMSL_FCN_W_DATA, fcn (int k, float x, float *data), void *data,   (Input) 
User supplied function that defines the subspace from which the least-squares 
fit is to be performed, which also accepts a pointer to data that is supplied by 
the user.  .data is a pointer to the data to be passed to the user-supplied 
function.  See the Introduction, Passing Data to User-Supplied Functions at 
the beginning of this manual for more details. 

Description 
The function imsl_f_user_fcn_least_squares computes a best least-squares 
approximation to given univariate data of the form  
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where w = weights, n = ndata, x = xdata, and f = ydata. 

If the optional argument IMSL_INTCERCEPT is chosen, then an intercept is placed in 
the model, and the coefficients a, returned by imsl_f_user_fcn_least_squares, 
minimize the error sum of squares as indicated below. 
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Examples 

Example 1 
This example fits the following two functions (indexed by 
): 

1 + sinx + 7 sin3x + 
� 

where � is a random uniform deviate over the range [�1, 1] and 
 is 0 for the first 
function and 1 for the second. These functions are evaluated at 90 equally spaced points 
on the interval [0, 6]. Four basis functions are used: 1, sinx, sin2x, sin3x. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA   90 
                                /* Define function */ 
#define F(x)    (float)(1.+ sin(x)+7.*sin(3.0*x)) 
 
float            fcn(int n, float x); 
 
main() 
{ 
    int         nbasis = 4, i, delta; 
    float       ydata[NDATA], xdata[NDATA], *random, *coef; 
                                /* Generate random numbers */ 
    imsl_random_seed_set(1234567); 
    random = imsl_f_random_uniform(NDATA, 0);  
                                /* Set up data */ 
    for(delta = 0;  delta < 2;  delta++) { 
        for (i = 0; i < NDATA; i++) { 
            xdata[i] = 6.*(float)i /((float)(NDATA-1)); 
            ydata[i] = F(xdata[i]) + (delta)*2.*(random[i]-.5); 
        } 
        coef = imsl_f_user_fcn_least_squares(fcn, nbasis, NDATA, xdata,  
                                                             ydata, 0); 
        printf("\nFor delta = %1d", delta); 
        imsl_f_write_matrix("the computed coefficients are\n", 
                            1, nbasis,  coef, 0); 
    } 
} 
 
 
float fcn(int n, float x) 
{ 
    return  (n == 1) ? 1.0 : sin((n-1)*x); 
} 

Output 
For delta = 0  
        the computed coefficients are 
 
         1           2           3           4 
         1           1          -0           7 
 
For delta = 1  
        the computed coefficients are 
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         1           2           3           4 
     0.979       0.998       0.096       6.839 

Example 2 
Recall that the first example fitted the following two functions (indexed by 
): 

1 + sinx + 7 sin3x + 
� 

where � is a random uniform deviate over the range[�1, 1] , and 
 is 0 for the first 
function and 1 for the second. These functions are evaluated at 90 equally spaced points 
on the interval [0, 6]. Previously, the four basis functions were used: 1, sinx, sin2x, 
sin3x. This example uses the four basis functions: sinx, sin2x, sin3x, sin4x, combined 
with the intercept option. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA   90 
                                /* Define function */ 
#define F(x)     (float)(1.+ sin(x)+7.*sin(3.0*x)) 
 
float            fcn(int n, float x); 
 
main() 
{ 
    int         nbasis = 4, i, delta; 
    float       ydata[NDATA], xdata[NDATA], *random, *coef, intercept; 
                                /* Generate random numbers */ 
    imsl_random_seed_set(1234567); 
    random = imsl_f_random_uniform(NDATA, 0); 
                               /* Set up data */ 
    for(delta = 0;  delta < 2;  delta++){ 
        for (i = 0;  i < NDATA;  i++) { 
            xdata[i] = 6.*(float)i /((float)(NDATA-1)); 
            ydata[i] = F(xdata[i]) + (delta)*2.*(random[i]-.5); 
        } 
        coef = imsl_f_user_fcn_least_squares(fcn, nbasis, NDATA, xdata,  
                                                                 ydata, 
                                             IMSL_INTERCEPT, &intercept, 
                                             0); 
        printf("\nFor delta = %1d\n", delta); 
        printf("The predicted intercept value is  %10.3f\n" ,  
                intercept); 
        imsl_f_write_matrix("the computed coefficients are\n", 
                            1, nbasis,  coef, 0); 
    } 
} 
 
 
float fcn(int n, float x) 
{ 
    return sin(n*x); 
} 
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Output 
For delta = 0 
The predicted intercept value is       1.000 
  
        the computed coefficients are 
 
         1           2           3           4 
         1           0           7          -0 
 
For delta = 1 
The predicted intercept value is       0.978 
  
        the computed coefficients are 
 
         1           2           3           4 
     0.998       0.097       6.841       0.075 

Warning Errors 
IMSL_LINEAR_DEPENDENCE Linear dependence of the basis functions 

exists. One or more components of coef are 
set to zero. 

IMSL_LINEAR_DEPENDENCE_CONST Linear dependence of the constant function 
and basis functions exists. One or more 
components of coef are set to zero. 

Fatal Errors 
IMSL_NEGATIVE_WEIGHTS_2 All weights must be greater than or equal to 

zero. 

spline_least_squares 
Computes a least-squares spline approximation. 

Synopsis 
#include <imsl.h> 
Imsl_f_spline *imsl_f_spline_least_squares (int ndata, float xdata[], 

float fdata[], int spline_space_dim, �, 0) 

The type Imsl_d_spline function is imsl_d_spline_least_squares. 

Required Arguments 

int ndata   (Input) 
Number of data points. 

float xdata[]   (Input) 
Array with ndata components containing the abscissas of the least-squares 
problem. 
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float fdata[]   (Input) 
Array with ndata components containing the ordinates of the least-squares 
problem. 

int spline_space_dim   (Input) 
The linear dimension of the spline subspace. It should be smaller than ndata 
and greater than or equal to order (whose default value is 4). 

Return Value 
A pointer to the structure that represents the spline fit. If a fit cannot be computed, then 
NULL is returned. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsl.h>  
Imsl_f_spline *imsl_f_spline_least_squares (int ndata, float xdata[], 

float fdata[], int spline_space_dim, 
IMSL_SSE, float *sse_err,  
IMSL_WEIGHTS, float weights[],  
IMSL_ORDER, int order,  
IMSL_KNOTS, float knots[],  
IMSL_OPTIMIZE,  
0) 

Optional Arguments 
IMSL_SSE, float *sse   (Output) 

This option places the weighted error sum of squares in the place pointed to by 
sse. 

IMSL_WEIGHTS, float weights[]   (Input) 
This option requires the user to provide the weights. 
Default: all weights equal one. 

IMSL_ORDER, int order   (Input) 
The order of the spline subspace for which the knots are desired. This option 
is used to communicate the order of the spline subspace. 
Default: order = 4, (i.e., cubic splines). 

IMSL_KNOTS, float knots[]   (Input) 
This option requires the user to provide the knots. The user must provide a 
knot sequence of length spline_space_dimension + order. 
Default: an appropriate knot sequence is selected. See below for more details. 

IMSL_OPTIMIZE 
This option optimizes the knot locations, by attempting to minimize the least-
squares error as a function of the knots. The optimal knots are available in the 
returned spline structure. 
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Description 
Let’s make the identifications 

n = ndata 
x = xdata 
f = fdata 
m = spline_space_dim 
k = order 

For convenience, we assume that the sequence x is increasing, although the function 
does not require this. 

By default, k = 4, and the knot sequence we select equally distributes the knots through 
the distinct xi’s. In particular, the m + k knots will be generated in [x1, xn] with k knots 
stacked at each of the extreme values. The interior knots will be equally spaced in the 
interval. 

Once knots t and weights w are determined (and assuming that the option 
IMSL_OPTIMIZE is not chosen), then the function computes the spline least-squares fit 
to the data by minimizing over the linear coefficients aj 
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where the Bj, j = 1, �, m are a (B-spline) basis for the spline subspace. 

The optional argument IMSL_ORDER allows the user to choose the order of the spline 
fit. The optional argument IMSL_KNOTS allows user specification of knots. The 
function imsl_f_spline_least_squares is based on the routine L2APPR by de 
Boor (1978, p. 255). 

If the option IMSL_OPTIMIZE is chosen, then the procedure attempts to find the best 
placement of knots that will minimize the least-squares error to the given data by a 
spline of order k with m coefficients. For this problem to make sense, it is necessary 
that m > k. We then attempt to find the minimum of the functional  
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The technique employed here uses the fact that for a fixed knot sequence t the 
minimization in a is a linear least-squares problem that can be easily solved. Thus, we 
can think of our objective function F as a function of just t by setting  

� � � �min ,
a

G F�t ta  

A Gauss-Seidel (cyclic coordinate) method is then used to reduce the value of the new 
objective function G. In addition to this local method, there is a global heuristic built 
into the algorithm that will be useful if the data arise from a smooth function. This 
heuristic is based on the routine NEWNOT of de Boor (1978, pp. 184 and 258�261). 
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The initial guess, tg, for the knot sequence is either provided by the user or is the 
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In regard to execution speed, this function can be several orders of magnitude slower 
than a simple least-squares fit. 

The return value for this function is a pointer of type Imsl_f_spline. The calling 
program must receive this in a pointer Imsl_f_spline *sp. This structure contains 
all the information to determine the spline (stored in B-spline form) that is computed by 
this function. For example, the following code sequence evaluates this spline a x and 
returns the value in y. 
y = imsl_f_spline_value (x, sp, 0); 

In the figure below two cubic splines are fit to 

x  

Both splines are cubics with the same spline_space_dim = 8. The first spline is 
computed with the default settings, while the second spline is computed by optimizing 
the knot locations using the keyword IMSL_OPTIMIZE. 

 
Figure 3-4   Two Fits to Noisy x  



 

 
 

Chapter 3: Interpolation and Approximation spline_least_squares � 197 

 

 

 

Examples 

Example 1 
This example fits data generated from a trigonometric polynomial  

1 + sinx + 7 sin3x + � 

where � is a random uniform deviate over the range [�1, 1]. The data are obtained by 
evaluating this function at 90 equally spaced points on the interval [0, 6]. This data is 
fitted with a cubic spline with 12 degrees of freedom (eight equally spaced interior 
knots). The error at 10 equally spaced points is printed out. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA   90 
                                /* Define function */ 
#define F(x)    (float)(1.+ sin(x)+7.*sin(3.0*x)) 
 
main() 
{ 
    int                 i, spline_space_dim = 12; 
    float               fdata[NDATA], xdata[NDATA], *random; 
    Imsl_f_spline       *sp; 
                                /* Generate random numbers */ 
    imsl_random_seed_set(123457); 
    random = imsl_f_random_uniform(NDATA, 0); 
                                /* Set up data */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = 6.*(float)i /((float)(NDATA-1)); 
        fdata[i] = F(xdata[i]) + 2.*(random[i]-.5); 
    } 
    sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,  
                                         spline_space_dim, 0); 
    printf("       x         error  \n"); 
    for(i = 0;  i < 10;  i++) { 
        float x, error; 
        x = 6.*i/9.; 
        error = F(x) - imsl_f_spline_value(x, sp, 0); 
        printf("%10.3f  %10.3f\n", x, error); 
    } 
} 

Output 
   x        Error   
0.000      -0.356 
0.667      -0.004 
1.333       0.434 
2.000      -0.069 
2.667      -0.494 
3.333       0.362 
4.000      -0.273 
4.667      -0.247 
5.333       0.303 
6.000       0.578 
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Example 2 
This example continues with the first example in which we fit data generated from the 
trigonometric polynomial 

1 + sinx + 7 sin3x + � 

where � is random uniform deviate over the range [�1, 1]. The data is obtained by 
evaluating this function at 90 equally spaced points on the interval [0, 6]. This data was 
fitted with a cubic spline with 12 degrees of freedom (in this case, the default gives us 
eight equally spaced interior knots) and the error sum of squares was printed. In this 
example, the knot locations are optimized and the error sum of squares is printed. Then, 
the error at 10 equally spaced points is printed. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA   90 
                                /* Define function */ 
#define F(x)        (float)(1.+ sin(x)+7.*sin(3.0*x)) 
 
main() 
{ 
    int                 i, spline_space_dim = 12; 
    float               fdata[NDATA], xdata[NDATA], *random, sse1, sse2; 
    Imsl_f_spline        *sp; 
                                /* Generate random numbers */ 
    imsl_random_seed_set(123457); 
    random = imsl_f_random_uniform(NDATA, 0);  
                                /* Set up data */ 
    for (i = 0; i < NDATA; i++) { 
        xdata[i] = 6.*(float)i /((float)(NDATA-1)); 
        fdata[i] = F(xdata[i]) + 2.*(random[i]-.5); 
    } 
    sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,  
                                                       spline_space_dim, 
                                     IMSL_SSE, &sse1, 
                                     0); 
    sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,  
                                                      spline_space_dim,  
                                     IMSL_OPTIMIZE, 
                                     IMSL_SSE, &sse2, 
                                     0); 
    printf("The error sum of squares before optimizing is %10.1f\n",  
           sse1); 
    printf("The error sum of squares  after optimizing is %10.1f\n\n", 
           sse2); 
    printf("       x         error\n"); 
    for(i = 0; i < 10;  i++){ 
        float   x, error; 
        x = 6.*i/9.; 
        error = F(x) - imsl_f_spline_value(x, sp, 0); 
        printf("%10.3f  %10.3f\n", x, error); 
    } 
} 
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Output 
The error sum of squares before optimizing is       32.6 
The error sum of squares  after optimizing is       27.0 
 
       x         Error 
     0.000      -0.656 
     0.667       0.107 
     1.333       0.055 
     2.000      -0.243 
     2.667      -0.063 
     3.333      -0.015 
     4.000      -0.424 
     4.667      -0.138 
     5.333       0.133 
     6.000       0.494 

Warning Errors 
IMSL_OPT_KNOTS_STACKED_1 The knots found to be optimal are stacked 

more than order. This indicates fewer knots 
will produce the same error sum of squares. 
The knots have been separated slightly. 

Fatal Errors 
IMSL_XDATA_TOO_LARGE The array xdata must satisfy xdatai � tndata, 

for i = 1, �, ndata. 

IMSL_XDATA_TOO_SMALL The array xdata must satisfy  
 xdatai 	 torder-1, for i = 1, �, ndata. 

IMSL_NEGATIVE_WEIGHTS All weights must be greater than or equal to 
zero. 

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the 
order of the spline. 

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing. 

IMSL_OPT_KNOTS_STACKED_2 The knots found to be optimal are stacked 
more than order. This indicates fewer knots 
will produce the same error sum of squares. 

spline_2d_least_squares 
Computes a two-dimensional, tensor-product spline approximant using least squares. 

Synopsis 
#include <imsl.h>  
Imsl_f_spline *imsl_f_spline_2d_least_squares (int num_xdata, float 

xdata[], int num_ydata, float ydata[], float fdata[], int 
x_spline_space_dim, int y_spline_space_dim, �, 0) 
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The type Imsl_d_spline function is imsl_d_spline_2d_least_squares. 

Required Arguments 

int num_xdata   (Input) 
Number of data points in the X direction. 

float xdata[]   (Input) 
Array with num_xdata components containing the data points in the X 
direction. 

int num_ydata   (Input) 
Number of data points in the Y direction. 

float ydata[]   (Input) 
Array with num_ydata components containing the data points in the Y 
direction. 

float fdata[]   (Input) 
Array of size num_xdata � num_ydata containing the values to be 
approximated. fdata[i][j] is the (possibly noisy) value at (xdata[i], 
ydata[j]). 

int x_spline_space_dim   (Input) 
The linear dimension of the spline subspace for the x variable. It should be 
smaller than num_xdata and greater than or equal to xorder (whose default 
value is 4). 

int y_spline_space_dim   (Input) 
The linear dimension of the spline subspace for the y variable. It should be 
smaller than num_ydata and greater than or equal to yorder (whose default 
value is 4). 

Return Value 
A pointer to the structure that represents the tensor-product spline interpolant. If an 
interpolant cannot be computed, then NULL is returned. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsl.h>  
Imsl_f_spline *imsl_f_spline_2d_least_squares (int num_xdata, float 

xdata[], int num_ydata, float ydata[], float fdata[], int 
x_spline_space_dim, int y_spline_space_dim,  
IMSL_SSE, float *sse,  
IMSL_ORDER, int xorder, int yorder,  
IMSL_KNOTS, float xknots[], float yknots[],  
IMSL_FDATA_COL_DIM, int fdata_col_dim,  
IMSL_WEIGHTS, float xweights[], float yweights[],  
0) 
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Optional Arguments 
IMSL_SSE, float *sse   (Output) 

This option places the weighted error sum of squares in the place pointed to by 
sse. 

IMSL_ORDER, int xorder, int yorder   (Input) 
This option is used to communicate the order of the spline subspace. 
Default: xorder, yorder = 4 (i.e., tensor-product cubic splines) 

IMSL_KNOTS, float xknots[], float yknots[]   (Input) 
This option requires the user to provide the knots. 
Default: The default knots are equally spaced in the x and y dimensions. 

IMSL_FDATA_COL_DIM, int fdata_col_dim   (Input) 
The column dimension of fdata. 
Default: fdata_col_dim = num_ydata 

IMSL_WEIGHTS, float xweights[], float yweights[]   (Input) 
This option requires the user to provide the weights for the least-squares fit.  
Default: all weights are equal to 1. 

Description 
The imsl_f_spline_2d_least_squares procedure computes a tensor-product 
spline least-squares approximation to weighted tensor-product data. The input for this 
function consists of data vectors to specify the tensor-product grid for the data, two 
vectors with the weights (optional, the default is 1), the values of the surface on the 
grid, and the specification for the tensor-product spline (optional, a default is chosen). 
The grid is specified by the two vectors x = xdata and y = ydata of length 
n = num_xdata and m = num_ydata, respectively. A two-dimensional array f = fdata 
contains the data values which are to be fit. The two vectors wx = xweights and 
wy = yweights contain the weights for the weighted least-squares problem. The 
information for the approximating tensor-product spline can be provided using the 
keywords IMSL_ORDER and IMSL_KNOTS. This information is contained in 
kx = xorder, tx = xknots, and N = xspline_space_dim for the spline in the first 
variable, and in ky = yorder, ty = yknots and M = y_spline_space_dim for the 
spline in the second variable. 

This function computes coefficients for the tensor-product spline by solving the normal 
equations in tensor-product form as discussed in de Boor (1978, Chapter 17). The 
interested reader might also want to study the paper by Grosse (1980). 

As the computation proceeds, we obtain coefficients c minimizing 
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where the function Bkl is the tensor-product of two B-splines of order kx and ky. 
Specifically, we have 



 

 
 

202 � spline_2d_least_squares IMSL C/Math/Library 

 

 

 

�� � � � �, , , ,,
x x y ykl k k l kB x y B x B y� t t  

The spline 
1 1

0 0

N M

kl kl
k l

c B
� �

� �

��  

and its partial derivatives can be evaluated using imsl_f_spline_2d_value. 

The return value for this function is a pointer to the structure Imsl_f_spline. The  
calling program must receive this in a pointer of type Imsl_f_spline. This structure 
contains all the information to determine the spline that is computed by this  
procedure. For example, the following code sequence evaluates this spline  
(stored in the structure sp at (x, y) and returns the value in v. 
v = imsl_f_spline_2d_value (x, y, sp, 0) 

Examples 

Example 1 
The data for this example comes from the function ex sin (x + y) on the rectangle [0, 3] 
� [0, 5]. This function is sampled on a 50 � 25 grid. Next try to recover it by using 
tensor-product cubic splines. The values of the function ex sin (x + y) are printed on a 
2 � 2 grid and compared with the values of the tensor-product spline least-squares fit. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NXDATA          50 
#define NYDATA          25 
#define OUTDATA          2 
                                /* Define function  */ 
#define F(x,y)          (float)(exp(x)*sin(x+y)) 
 
main() 
{ 
    int                 i, j, num_xdata, num_ydata; 
    float               fdata[NXDATA][NYDATA]; 
    float               xdata[NXDATA], ydata[NYDATA], x, y, z; 
    Imsl_f_spline       *sp; 
                                /* Set up grid  */ 
    for (i = 0;  i < NXDATA;  i++) { 
        xdata[i] = 3.*(float) i / ((float)(NXDATA-1)); 
    } 
    for (i = 0;  i < NYDATA;  i++) { 
        ydata[i] = 5.*(float) i / ((float)(NYDATA-1)); 
    } 
                                /* Compute function values on grid  */ 
    for (i = 0;  i < NXDATA;  i++) { 
        for (j = 0;  j < NYDATA;  j++) { 
            fdata[i][j] = F(xdata[i], ydata[j]); 
        } 
    } 
    num_xdata = NXDATA; 
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    num_ydata = NYDATA; 
                                /* Compute tensor-product interpolant */ 
    sp = imsl_f_spline_2d_least_squares(num_xdata, xdata, num_ydata, 
                                                 ydata, fdata, 5, 7, 0); 
                                /* Print results */ 
    printf("     x       y        F(x, y)   Fitted Values    Error\n"); 
    for (i = 0;  i < OUTDATA;  i++) { 
        x = (float)i / (float)(OUTDATA); 
        for (j = 0;  j < OUTDATA;  j++) { 
            y = (float)j / (float)(OUTDATA); 
            z = imsl_f_spline_2d_value(x, y, sp, 0); 
            printf("  %6.3f  %6.3f  %10.3f   %10.3f   %10.4f\n", 
                              x, y, F(x, y), z, fabs(F(x,y)-z)); 
        } 
 
    } 
} 

Output 
  x      y         F(x, y)   Fitted Values    Error 
0.000   0.000       0.000       -0.020       0.0204 
0.000   0.500       0.479        0.500       0.0208 
0.500   0.000       0.790        0.816       0.0253 
0.500   0.500       1.387        1.384       0.0031 

Example 2 
The same data is used as in the previous example. Optional argument IMSL_SSE is 
used to return the error sum of squares. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NXDATA         50 
#define NYDATA         25 
#define OUTDATA         2 
                                /* Define function  */ 
#define F(x,y)         (float)(exp(x)*sin(x+y)) 
 
main() 
{ 
    int                 i, j, num_xdata, num_ydata; 
    float               fdata[NXDATA][NYDATA]; 
    float               xdata[NXDATA], ydata[NYDATA], x, y, z; 
    Imsl_f_spline       *sp; 
                                /* Set up grid  */ 
    for (i = 0;  i < NXDATA;  i++) { 
        xdata[i] = 3.*(float) i / ((float) (NXDATA - 1)); 
    } 
    for (i = 0;  i < NYDATA;  i++) { 
        ydata[i] = 5.*(float) i / ((float) (NYDATA - 1)); 
    } 
                                /*  Compute function values on grid  */ 
    for (i = 0;  i < NXDATA;  i++) { 
        for (j = 0;  j < NYDATA;  j++) { 
            fdata[i][j] = F(xdata[i], ydata[j]); 
        } 
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    } 
    num_xdata = NXDATA; 
    num_ydata = NYDATA; 
                                /* Compute tensor-product interpolant */ 
    sp = imsl_f_spline_2d_least_squares(num_xdata, xdata, num_ydata, 
                                                    ydata, fdata, 5, 7,  
                                        IMSL_SSE, &x, 
                                        0); 
                                /* Print results */ 
    printf("The error sum of squares is %10.3f\n\n", x); 
    printf("     x       y        F(x, y)   Fitted Values    Error\n"); 
    for (i = 0;  i < OUTDATA;  i++) { 
        x = (float) i / (float) (OUTDATA); 
        for (j = 0;  j < OUTDATA;  j++) { 
            y = (float) j / (float) (OUTDATA); 
            z = imsl_f_spline_2d_value(x, y, sp, 0); 
            printf("  %6.3f  %6.3f  %10.3f   %10.3f   %10.4f\n", 
                               x, y, F(x,y), z, fabs(F(x,y)-z)); 
        } 
    } 
} 

Output 
The error sum of squares is      3.753 
 
    x       y      F(x, y)   Fitted Values    Error 
0.000   0.000       0.000       -0.020       0.0204 
0.000   0.500       0.479        0.500       0.0208 
0.500   0.000       0.790        0.816       0.0253 
0.500   0.500       1.387        1.384       0.0031 

Warning Errors 
IMSL_ILL_COND_LSQ_PROB The least-squares matrix is ill-conditioned. The 

solution might not be accurate. 

IMSL_SPLINE_LOW_ACCURACY There may be less than one digit of accuracy in 
the least-squares fit. Try using a higher 
precision if possible. 

Fatal Errors 
IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the 

order of the spline. 

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing. 

IMSL_SPLINE_LRGST_ELEMNT The data arrays xdata and ydata must satisfy 
datai � tspline_space_dim, for i = 1,  
�, num_data. 

IMSL_SPLINE_SMLST_ELEMNT The data arrays xdata and ydata must satisfy 
datai 	 torder-1, for i = 1, �, num_data. 
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IMSL_NEGATIVE_WEIGHTS All weights must be greater than or equal to 
zero. 

IMSL_DATA_DECREASING The xdata values must be nondecreasing. 

cub_spline_smooth 
Computes a smooth cubic spline approximation to noisy data by using cross-validation 
to estimate the smoothing parameter or by directly choosing the smoothing parameter. 

Synopsis 
#include <imsl.h> 
Imsl_f_ppoly *imsl_f_cub_spline_smooth (int ndata, float xdata[], float 

fdata[], �, 0) 

The type Imsl_d_ppoly function is imsl_d_cub_spline_smooth. 

Required Arguments 

int ndata   (Input) 
Number of data points. 

float xdata[]   (Input) 
Array with ndata components containing the abscissas of the problem. 

float fdata[]   (Input) 
Array with ndata components containing the ordinates of the problem. 

Return Value 
A pointer to the structure that represents the cubic spline. If a smoothed cubic spline 
cannot be computed, then NULL is returned. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsl.h> 
Imsl_f_ppoly *imsl_f_cub_spline_smooth (int ndata, float xdata[], float 

fdata[], 
IMSL_WEIGHTS, float weights[],  
IMSL_SMOOTHING_PAR, float sigma,  
0) 

Optional Arguments 
IMSL_WEIGHTS, float weights[]   (Input) 

This option requires the user to provide the weights.  
Default: all weights are equal to 1. 

IMSL_SMOOTHING_PAR, float sigma   (Input) 
This option sets the smoothing parameter � = sigma explicitly. 
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Description 
The function imsl_f_cub_spline_smooth is designed to produce a C2 cubic spline 
approximation to a data set in which the function values are noisy. This spline is called 
a smoothing spline. 

Consider first the situation when the optional argument IMSL_SMOOTHING_PAR is 
selected. Then, a natural cubic spline with knots at all the data abscissas x = xdata is 
computed, but it does not interpolate the data (xi, fi). The smoothing spline s is the 
unique C2 function which minimizes 

� �
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where w = weights, � = sigma is the smoothing parameter, and n = ndata. 

Recommended values for � depend on the weights w. If an estimate for the standard 
deviation of the error in the value fi is available, then wi should be set to the inverse of 
this value; and the smoothing parameter � should be chosen in the confidence interval 
corresponding to the left side of the above inequality. That is, 

2 2n n n�� � � � n  

The function imsl_f_cub_spline_smooth is based on an algorithm of Reinsch 
(1967). This algorithm is also discussed in de Boor (1978,  
pp. 235�243). 

The default for this function chooses the smoothing parameter � by a statistical 
technique called cross-validation. For more information on this topic, refer to Craven 
and Wahba (1979). 

The return value for this function is a pointer to the structure Imsl_f_ppoly. The calling 
program must receive this in a pointer Imsl_f_ppoly *pp. This structure contains all the 
information to determine the spline (stored as a piecewise polynomial) that is computed 
by this procedure. For example, the following code sequence evaluates this spline at  
x and returns the value in y. 
y = imsl_f_cub_spline_value (x, pp, 0); 

Examples 

Example 1 
In this example, function values are contaminated by adding a small “random” amount 
to the correct values. The function imsl_f_cub_spline_smooth is used to 
approximate the original, uncontaminated data. 

#include <imsl.h> 
#include <stdio.h> 
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#include <math.h> 
 
#define NDATA   90 
                                /* Define function */ 
#define F(x)    (float)(1.+ sin(x)+7.*sin(3.0*x)) 
 
main() 
{ 
    int                 i; 
    float               fdata[NDATA], xdata[NDATA], *random; 
    Imsl_f_ppoly        *pp; 
                                /* Generate random numbers */ 
    imsl_random_seed_set(123457); 
    random = imsl_f_random_uniform(NDATA, 0);  
                                /* Set up data */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = 6.*(float)i /((float)(NDATA-1)); 
        fdata[i] = F(xdata[i]) + .5*(random[i]-.5); 
    } 
    pp = imsl_f_cub_spline_smooth(NDATA, xdata, fdata,  0); 
    printf("       x         error  \n"); 
    for(i = 0;  i < 10;  i++){ 
        float x, error; 
        x = 6.*i/9.; 
        error = F(x) - imsl_f_cub_spline_value(x, pp, 0); 
        printf("%10.3f  %10.3f\n", x, error); 
    } 
} 

Output 
   x        Error   
0.000      -0.201 
0.667       0.070 
1.333      -0.008 
2.000      -0.058 
2.667      -0.025 
3.333       0.076 
4.000      -0.002 
4.667      -0.008 
5.333       0.045 
6.000       0.276 

Example 2 
Recall that in the first example, function values are contaminated by adding a small 
“random” amount to the correct values. Then, imsl_f_cub_spline_smooth is used 
to approximate the original, uncontaminated data. This example explicitly inputs the 
value of the smoothing parameter to be 5. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA   90 
                                /* Define function */ 
#define F(x)    (float)(1.+ sin(x)+7.*sin(3.0*x)) 
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main() 
{ 
    int                 i; 
    float               fdata[NDATA], xdata[NDATA], *random; 
    Imsl_f_ppoly        *pp; 
                                /* Generate random numbers */         
    imsl_random_seed_set(123457); 
    random = imsl_f_random_uniform(NDATA, 0);  
                                /* Set up data */ 
    for (i = 0;  i < NDATA;  i++) { 
        xdata[i] = 6.*(float)i /((float)(NDATA-1)); 
        fdata[i] = F(xdata[i]) + .5*(random[i]-.5); 
    } 
    pp = imsl_f_cub_spline_smooth(NDATA, xdata, fdata,   
                                  IMSL_SMOOTHING_PAR, 5.0,  
                                  0); 
    printf("       x         error  \n"); 
    for(i = 0;  i < 10;  i++){ 
        float  x, error; 
        x = 6.*i/9.; 
        error = F(x) - imsl_f_cub_spline_value(x, pp, 0); 
        printf("%10.3f  %10.3f\n", x, error); 
    } 
} 

Output 
  x         Error   
0.000      -0.593 
0.667       0.230 
1.333      -0.116 
2.000      -0.106 
2.667       0.176 
3.333      -0.071 
4.000      -0.171 
4.667       0.196 
5.333      -0.036 
6.000       0.971 

Warning Errors 
IMSL_MAX_ITERATIONS_REACHED The maximum number of iterations has been 

reached. The best approximation is returned. 

Fatal Errors 
IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct. 

IMSL_NEGATIVE_WEIGHTS All weights must be greater than or equal to 
zero. 
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spline_lsq_constrained 
Computes a least-squares constrained spline approximation. 

Synopsis 
#include <imsl.h>  
Imsl_f_spline *imsl_f_spline_lsq_constrained (int ndata, float xdata[], 

float fdata[], int spline_space_dim, int num_con_pts, 
f_constraint_struct constraints[], �, 0) 

The type Imsl_d_spline function is imsl_d_spline_lsq_constrained. 

Required Arguments 

int ndata   (Input) 
Number of data points. 

float xdata[]   (Input) 
Array with ndata components containing the abscissas of the least-squares 
problem. 

float fdata[]   (Input) 
Array with ndata components containing the ordinates of the least-squares 
problem. 

int spline_space_dim   (Input) 
The linear dimension of the spline subspace. It should be smaller than ndata 
and greater than or equal to order (whose default value is 4). 

int num_con_pts   (Input) 
The number of points in the vector constraints. 

f_constraint_struct constraints[]   (Input) 
A structure containing the abscissas at which the fit is to be constrained, the 
derivative of the spline that is to be constrained, the type of constraints, and 
any lower or upper limits. A description of the structure fields follows: 

Field Description 

xval point at which fit is constrained 
der derivative value of the spline to be constrained 
type types of the general constraints 
bl lower limit of the general constraints 
bu upper limit of the general constraints 

Notes: If you want to constrain the integral of the spline over the closed 
interval (c, d), then set constraints[i].der = constraints 
[i+1].der = �1 and constraints[i].xval = c and 
constraints[i+1].xval = d. For consistency, insist that 
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constraints[i].type = constraints[i+1].type 	 0  and c � d. 
Note that every der must be at least �1. 

constraints [i].type i-th constraint 

1 � � � �id
i ibl f x�  

2 � �id � �i if x b� u  
3 � � � �id

i if x b� l  
4 � �idbl f x� �i i bu� � i  
5 � �i c

bl f t dt� �
d

 
6 � �

d

ic
f t dt bu��  

7 � �
d

ic
f t dt bl��  

8 � �
d

bl f t dt� ��i ic
bu  

20 periodic end conditions 
99 disregard this constraint 

In order to have two point constraints, must have 

constraints[i].type = constraints[i+1].type 

constraints [i]. type i-th constraint 

9 � � � � � � � �1
1

i id d
i ibl f x f x�

�
� � i  

10 � �id � �i if x b� u  
11 � � � � � � � �1

1i i
i id d

if x f x b
�

� � l�  
12 � � � �1i id d

�� � � �1i i ibl f x f x bu
�

� � � i  

Return Value 
A pointer to the structure that represents the spline fit. If a fit cannot be computed, then 
NULL is returned. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsl.h>  
Imsl_f_spline *imsl_f_spline_lsq_constrained (int ndata, float xdata[], 

float fdata[], int spline_space_dim, int num_con_pts, 
f_constraint_struct constraints[], 
IMSL_NHARD, int nhard,  
IMSL_WEIGHTS, float weights[],  
IMSL_ORDER, int order,  
IMSL_KNOTS, float knots[],  
0) 



 

 
 

Chapter 3: Interpolation and Approximation spline_lsq_constrained � 211 

 

 

 

Optional Arguments 
IMSL_NHARD, int nhard   (Output) 

The argument nhard is the number of entries of constraints involved in the 
“hard” constraints. Note that 0 � nhard � num_con_pts. The default, 
nhard = 0, always results in a fit, while setting nhard = num_con_pts forces 
all constraints to be met. The “hard” constraints must be met, or else the 
function signals failure. The “soft” constraints need not be satisfied, but there 
will be an attempt to satisfy the “soft” constraints. The constraints must be 
listed in terms of priority with the most important constraints first. Thus, all of 
the “hard” constraints must precede the “soft” constraints. If infeasibility is 
detected among the “soft” constraints, we satisfy, in order, as many of the 
“soft” constraints as possible. 
Default: nhard = 0 

IMSL_WEIGHTS, float weights[]   (Input) 
This option requires the user to provide the weights. 
Default: all weights equal one 

IMSL_ORDER, int order   (Input) 
The order of the spline subspace for which the knots are desired. This option 
is used to communicate the order of the spline subspace. 
Default: order = 4(i.e., cubic splines) 

IMSL_KNOTS, float knots[]   (Input) 
This option requires the user to provide the knots. The user must provide a 
knot sequence of length spline_space_dimension + order. 
Default: an appropriate knot sequence is selected. See below for more details. 

Description 
The function imsl_f_spline_lsq_constrained produces a constrained, weighted 
least-squares fit to data from a spline subspace. Constraints involving one point, two 
points, or integrals over an interval are allowed. The types of constraints supported by 
the functions are of four types: 

Ep[f] � � � �pj
pf y�  

or � � � � � � � �1

1
p pj j

p pf y f y�

�
� �  

or � �
1p

p

y

y
f t dt�

� �  

or = periodic end conditions 

An interval, Ip (which may be a point, a finite interval, or a semi-infinite interval), is 
associated with each of these constraints. 
The input for this function consists of several items; first, the data set  
(xi, fi) for i = 1, �, N (where N = NDATA), that is the data which is to be fit. Second, we 
have the weights to be used in the least-squares fit (w = WEIGHT, defaulting to 1). The 
vector constraints contains the abscissas of the points involved in specifying the 
constraints, as well as information relating the type of constraints and the constraint 
interval. 
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Let nf denote the number of feasible constraints as described above. Then, the function 
solved the problem 

� �
2

1 1

n m

i j j i
i j

if a B x w
� �

�� �  

subject to 

1
1, ,

m

p j j p f
j

E a B I p n
�

� �
� �� �

� �
� �  

This linearly constrained least-squares problem is treated as a quadratic program and is 
solved by invoking the function imsl_f_quadratic_prog. 

The choice of weights depends on the data uncertainty in the problem. In some cases, 
there is a natural choice for the weights based on the estimates of errors in the data 
points. 

Determining feasibility of linear constraints is a numerically sensitive task. If you 
encounter difficulties, a quick fix would be to widen the constraint intervals Ip. 

Examples 

Example 1 
This is a simple application of imsl_f_lsq_constrained. Data is generated from 
the function 

sin( )
2 2
x x
�  

and contaminated with random noise and fit with cubic splines. The function is 
increasing, so least-squares fit should also be increasing. This is not the case for the 
unconstrained least-squares fit generated by imsl_f_spline_least_squares. Then, 
the derivative is forced to be greater than 0 at num_con_pts = 15 equally spaced 
points and imsl_f_lsq_constrained is called. The resulting curve is monotone. 
The error is printed for the two fits averaged over 100 equally spaced points. 

#include <imsl.h> 
#include <math.h> 
 
#define MXKORD   4 
#define MXNCOF  20 
#define MXNDAT  51 
#define MXNXVL  15 
 
main() 
{ 
    f_constraint_struct constraint[MXNXVL]; 
    int   i, korder, ncoef, ndata, nxval; 
    float *noise, errlsq, errnft, grdsiz, x; 
    float fdata[MXNDAT], xdata[MXNDAT]; 
    Imsl_f_spline *sp, *spls; 
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#define F1(x)    (float)(.5*(x) + sin( .5*(x) )) 
 
    korder = 4; 
    ndata = 15; 
    nxval = 15; 
    ncoef = 8; 
    /* 
     * Compute original xdata and fdata with random noise. 
     */ 
    imsl_random_seed_set (234579); 
    noise = imsl_f_random_uniform (ndata, 0); 
    grdsiz = 10.0; 
    for (i = 0; i < ndata; i++) { 
        xdata[i] = grdsiz * ((float) (i) / (float) (ndata - 1)); 
        fdata[i] = F1 (xdata[i]) + (noise[i] - .5); 
    } 
 
    /* Compute least-squares fit. */ 
 
    spls = imsl_f_spline_least_squares (ndata, xdata, fdata, ncoef, 0); 
    /* 
     * Construct the constraints. 
     */ 
    for (i = 0; i < nxval; i++) { 
        constraint[i].xval = grdsiz * (float)(i) / (float)(nxval - 1); 
        constraint[i].type = 3; 
        constraint[i].der = 1; 
        constraint[i].bl = 0.0; 
    } 
    /* Compute constrained least-squares fit. */ 
    sp = imsl_f_spline_lsq_constrained (ndata, xdata, fdata, ncoef, 
               nxval, constraint, 0); 
    /* 
     * Compute the average error of 100 points in the interval. 
     */ 
    errlsq = 0.0; 
    errnft = 0.0; 
    for (i = 0; i < 100; i++) { 
        x = grdsiz * (float) (i) / 99.0; 
        errnft += fabs (F1 (x) - imsl_f_spline_value(x,sp,0)); 
        errlsq += fabs (F1 (x) - imsl_f_spline_value(x,spls,0)); 
    } 
    /* Print results */ 
    printf (" Average error with spline_least_squares fit:    %8.5f\n", 
              errlsq / 100.0); 
    printf (" Average error with spline_lsq_constrained fit:  %8.5f\n", 
              errnft / 100.0); 
} 

Output 
Average error with spline_least_squares fit:     0.20250 
Average error with spline_lsq_constrained fit:   0.14334 
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Example 2 
Now, try to recover the function 

4

1
1 x�

 

from noisy data. First, try the unconstrained least-squares fit using 
imsl_f_spline_least_squares. Finding that fit somewhat unsatisfactory, several 
constraints are applied using imsl_f_spline_lsq_constrained. First, notice that 
the unconstrained fit oscillates through the true function at both ends of the interval. 
This is common for flat data. To remove this oscillation, the cubic spline is constrained 
to have zero second derivative at the first and last four knots. This forces the cubic 
spline to reduce to a linear polynomial on the first and last three knot intervals. In 
addition, the fit is constrained (called s) as follows: 

s(�7) � 0 

� �
7

7
2.3s x dx

�

��  

s(�7) = s(7) 

Notice that the last constraint was generated using the periodic option (requiring only 
the zero-th derivative to be periodic). The error is printed for the two fits averaged over 
100 equally spaced points. 

#include <imsl.h> 
#include <math.h> 
 
#define KORDER   4 
#define NDATA   51 
#define NXVAL   12 
#define NCOEF   13 
 
main() 
{ 
    f_constraint_struct constraint[NXVAL]; 
    int   i; 
    float *noise, errlsq, errnft, grdsiz, x; 
    float fdata[NDATA], xdata[NDATA], xknot[NDATA+KORDER]; 
    Imsl_f_spline *sp, *spls; 
 
 
#define F1(x)    (float)(1.0/(1.0+x*x*x*x)) 
 
     /* Compute original xdata and fdata with random noise */ 
 
    imsl_random_seed_set (234579); 
    noise = imsl_f_random_uniform (NDATA, 0); 
    grdsiz = 14.0; 
    for (i = 0; i < NDATA; i++) { 
        xdata[i] = grdsiz * ((float)(i)/(float)(NDATA - 1))  
                   - grdsiz/2.0; 
        fdata[i] = F1 (xdata[i]) + 0.125*(noise[i] - .5); 
    } 
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/* Generate knots. */ 
    for (i = 0; i < NCOEF-KORDER+2; i++) { 
        xknot[i+KORDER-1] = grdsiz * ((float)(i)/ 
                            (float)(NCOEF-KORDER+1)) - grdsiz/2.0; 
    } 
    for (i = 0; i < KORDER - 1; i++) { 
        xknot[i] = xknot[KORDER-1]; 
        xknot[i+NCOEF+1] = xknot[NCOEF]; 
    } 
 
    /* Compute spline_least_squares fit */ 
 
    spls = imsl_f_spline_least_squares (NDATA, xdata, fdata, NCOEF,  
                IMSL_KNOTS, xknot, 0); 
 
     /* Construct the constraints for CONFT */ 
 
    for (i = 0; i < 4; i++) { 
        constraint[i].xval = xknot[KORDER+i-1]; 
        constraint[i+4].xval = xknot[NCOEF-3+i]; 
        constraint[i].itype = 1; 
        constraint[i+4].itype = 1; 
        constraint[i].ider = 2; 
        constraint[i+4].ider = 2; 
        constraint[i].bl = 0.0; 
        constraint[i+4].bl = 0.0; 
    } 
    constraint[8].xval = -7.0; 
    constraint[8].itype = 3; 
    constraint[8].ider = 0; 
    constraint[8].bl = 0.0; 
 
    constraint[9].xval = -7.0; 
    constraint[9].itype = 6; 
    constraint[9].bu = 2.3; 
 
    constraint[10].xval = 7.0; 
    constraint[10].itype = 6; 
    constraint[10].bu = 2.3; 
 
    constraint[11].xval = -7.0; 
    constraint[11].itype = 20; 
    constraint[11].ider = 0; 
 
    sp = imsl_f_spline_lsq_constrained (NDATA, xdata, fdata, NCOEF,  
               NXVAL, constraint, IMSL_KNOTS, xknot, 0); 
 
    /* Compute the average error of 100 points in the interval */ 
 
    errlsq = 0.0; 
    errnft = 0.0; 
    for (i = 0; i < 100; i++) { 
        x = grdsiz * (float) (i) / 99.0 - grdsiz/2.0; 
        errnft += fabs (F1 (x) - imsl_f_spline_value(x,sp,0)); 
        errlsq += fabs (F1 (x) - imsl_f_spline_value(x,spls,0)); 
    } 
    /* Print results */ 
    printf (" Average error with BSLSQ fit:  %8.5f\n", 
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              errlsq / 100.0); 
    printf (" Average error with CONFT fit:  %8.5f\n", 
              errnft / 100.0); 
} 

Output 
Average error with BSLSQ fit:   0.01783 
Average error with CONFT fit:   0.01339 

 

smooth_1d_data 
Smooth one-dimensional data by error detection. 

Synopsis 
#include <imsl.h>  
float *imsl_f_smooth_1d_data (int ndata,  
float xdata[], float fdata[], �, 0) 

The type double function is imsl_d_smooth_1d_data. 

Required Arguments 

int ndata   (Input) 
Number of data points. 

float xdata[]   (Input) 
Array with ndata components containing the abscissas of the data points. 

float ydata[]   (Input) 
Array with ndata components containing the ordinates of the data points. 

Return Value 
A pointer to the vector of length ndata containing the smoothed data. 

Synopsis with Optional Arguments 
#include <imsl.h>  
float * imsl_f_smooth_1d_data (int ndata,  

float xdata[], float fdata[], 
IMSL_RETURN_USER, float sdata[],  
IMSL_ITMAX, int itmax,  
IMSL_DISTANCE, float dis,  
IMSL_STOPPING_CRITERION, float sc,  
 0) 
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Optional Arguments 
IMSL_RETURN_USER, float sdata[]   (Output) 

The smoothed data is stored in the user-supplied array. 

IMSL_ITMAX, int itmax   (Input) 
The maximum number of iterations allowed.   
Default:  itmax = 500 

IMSL_DISTANCE, float dis   (Input) 
Proportion of the distance the ordinate in error is moved to its  
interpolating curve. It must be in the range 0.0 to 1.0.  
Default: dis = 1.0 

IMSL_STOPPING_CRITERION, float sc   (Input) 
The stopping criterion.  sc should be greater than or equal to zero. 
Default: sc = 0.0 

Algorithm 
The function  imsl_f_smooth_1d_data is designed to smooth a data set that is 
mildly contaminated with isolated errors. In general, the routine will not work well if 
more than 25% of the data points are in error. The routine imsl_f_smooth_1d_data 
is based on an algorithm of Guerra and Tapia (1974). 

Setting ndata = n, ydata = f, sdata = s and xdata = x, the algorithm proceeds as 
follows. Although the user need not input an ordered xdata sequence, we will assume 
that x is increasing for simplicity. The algorithm first sorts the xdata values into an 
increasing sequence and then continues. A cubic spline interpolant is computed for each 
of the 6-point data sets (initially setting s = f) 

(xj, sj) j = i � 3, …, i + 3 j � i, 

where i = 4, �, n � 3. For each i the interpolant, which we will call Si, is compared 
with the current value of si, and a ‘point energy’ is computed as 

pei = Si(xi) � si 

Setting sc = sc, the algorithm terminates either if itmax iterations have taken place or 
if 

� �3 3 / 6 4, , 3i i ipe sc x x i n
� �

� � � � �  

If the above inequality is violated for any i, then we update the i-th element of s by 
setting si = si + d(pei), where d = dis. Note that neither the first three nor the last three 
data points are changed. Thus, if these points are inaccurate, care must be taken to 
interpret the results. 

The choice of the parameters d, sc and itmax are crucial to the successful usage of this 
subroutine. If the user has specific information about the extent of the contamination, 
then he should choose the parameters as follows: d = 1, sc = 0 and itmax to be the 
number of data points in error. On the other hand, if no such specific information is 
available, then choose d = .5, itmax � 2n, and 
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In any case, we would encourage the user to experiment with these values. 

Example 
We take 91 uniform samples from the function 5 + (5 + t2 sin t)/t on the interval [1, 10]. 
Then, we contaminate 10 of the samples and try to recover the original function values. 
 

#include "imsl.h" 

#include "stdlib.h" 

#include "math.h" 

 

#define NDATA 91 

#define F(X) (X*X*sin((double)(X))+5.0)/X + 5.0 

 

main() 

{ 

  int i, maxit; 

  int isub[10] = {5, 16, 25, 33, 41, 48, 55, 61, 74, 82}; 

  float dis, fdata[NDATA], sc, *sdata=NULL; 

  float xdata[NDATA], s_user[NDATA]; 

  float rnoise[10] = {2.5, -3., -2., 2.5, 3.,  

                      -2., -2.5, 2., -2., 3.}; 

 

  /* Example 1: No specific information available. */ 

  dis = .5; 

  sc = .56; 

  maxit = 182; 

 

  /* Set values for xdata and fdata. */ 

  xdata[0] = 1.; 

  fdata[0] = F(xdata[0]); 

  for (i=1;i<NDATA;i++) { 

    xdata[i] = xdata[i-1]+.1; 

    fdata[i] = F(xdata[i]); 

  } 

 

  /* Contaminate the data. */ 

  for (i=0;i<10;i++) fdata[isub[i]] += rnoise[i]; 

 

  /* Smooth the data. */ 
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  sdata = imsl_f_smooth_1d_data(NDATA, xdata, fdata,  

                                IMSL_DISTANCE, dis, 

                                IMSL_STOPPING_CRITERION, sc,  

                                IMSL_ITMAX, maxit, 

                                0); 

 

  /* Output the result. */ 

  printf("Case A - No specific information available. \n"); 

  printf("   F(X)        F(X)+noise         sdata\n"); 

   

  for (i=0;i<10;i++) printf("%7.3f\t%15.3f\t%15.3f\n",  

                            F(xdata[isub[i]]),  

                            fdata[isub[i]],  

                            sdata[isub[i]]); 

   

  /* Example 2: No specific information is available. */ 

  dis = 1.0; 

  sc = 0.0; 

  maxit = 10; 

   

  /*  

   * A warning message is produced because the maximum 

   * number of iterations is reached.  

   */ 

 

  /* Smooth the data. */ 

sdata = imsl_f_smooth_1d_data(NDATA, xdata, fdata,  

                                IMSL_DISTANCE, dis,  

                                IMSL_STOPPING_CRITERION, sc,  

                                IMSL_ITMAX, maxit, 

                                IMSL_RETURN_USER, s_user, 

                                0); 

 

  /* Output the result. */ 

  printf("Case B - Specific information available. \n"); 

  printf("   F(X)        F(X)+noise         sdata\n"); 

 

  for (i=0;i<10;i++) printf("%7.3f\t%15.3f\t%15.3f\n",  

                            F(xdata[isub[i]]),  

                            fdata[isub[i]],  

                            s_user[isub[i]]); 

} 
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Output 
Case A - No specific information available.  

   F(X)        F(X)+noise         sdata 

  9.830          12.330           9.870 

  8.263           5.263           8.215 

  5.201           3.201           5.168 

  2.223           4.723           2.264 

  1.259           4.259           1.308 

  3.167           1.167           3.138 

  7.167           4.667           7.131 

 10.880          12.880          10.909 

 12.774          10.774          12.708 

  7.594          10.594           7.639 

 

*** WARNING  Error IMSL_ITMAX_EXCEEDED from imsl_f_smooth_1d_data.   

*** Maximum  number of iterations limit "itmax" = 10 exceeded.   

*** The best answer found is returned. 

 

Case B - Specific information available.  

   F(X)        F(X)+noise         sdata 

  9.830          12.330           9.831 

  8.263           5.263           8.262 

  5.201           3.201           5.199 

  2.223           4.723           2.225 

  1.259           4.259           1.261 

  3.167           1.167           3.170 

  7.167           4.667           7.170 

 10.880          12.880          10.878 

 12.774          10.774          12.770 

  7.594          10.594           7.592 

 

scattered_2d_interp 
Computes a smooth bivariate interpolant to scattered data that is locally a quintic 
polynomial in two variables. 

Synopsis 
#include <imsl.h> 
float *imsl_f_scattered_2d_interp (int ndata, float xydata[], float 

fdata[], int nx_out, int ny_out, float x_out[], float y_out[], �, 
0) 
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The type double function is imsl_d_scattered_2d_interp. 

Required Arguments 

int ndata   (Input) 
Number of data points. 

float xydata[]   (Input) 
Array with ndata*2 components containing the data points for the 
interpolation problem. The i-th data point (xi, yi) is stored consecutively in the 
2i and 2i + 1 positions of xydata. 

float fdata[]   (Input) 
Array of size ndata containing the values to be interpolated. 

int nx_out   (Input) 
Number of data points in the x direction for the output grid. 

int ny_out   (Input) 
Number of data points in the y direction for the output grid. 

float x_out[]   (Input) 
Array of length nx_out specifying the x values for the output grid. It must be 
strictly increasing. 

float y_out[]   (Input) 
Array of length ny_out specifying the y values for the output grid. It must be 
strictly increasing. 

Return Value 
A pointer to the nx_out � ny_out grid of values of the interpolant. If no answer can 
be computed, then NULL is returned. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float *imsl_f_scattered_2d_interp (int ndata, float xydata[], float 

fdata[], int nx_out, int ny_out, float x_out[], float y_out[], 
IMSL_RETURN_USER, float surface[], 
IMSL_SUR_COL_DIM, int surface_col_dim,  
0) 

Optional Arguments 
IMSL_RETURN_USER, float surface[]   (Output) 

This option allows the user to provide his own space for the result. In this 
case, the answer will be returned in surface. 

IMSL_SUR_COL_DIM, int surface_col_dim   (Input) 
This option requires the user to provide the column dimension of the two-
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dimensional array surface. 
Default: surface_col_dim = ny_out 

Description 
The function imsl_f_scattered_2d_interp computes a C1 interpolant to scattered 
data in the plane. Given the data points  
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in R3 where n = ndata, imsl_f_scattered_2d_interp returns the values of the 
interpolant s on the user-specified grid. The computation of s is as follows: First the 
Delaunay triangulation of the points 
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is computed. On each triangle T in this triangulation, s has the form  
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Thus, s is a bivariate quintic polynomial on each triangle of the triangulation. In 
addition, we have  

� �, for 0,i i is x y f i n� � � �  

and s is continuously differentiable across the boundaries of neighboring triangles. 
These conditions do not exhaust the freedom implied by the above representation. This 
additional freedom is exploited in an attempt to produce an interpolant that is faithful to 
the global shape properties implied by the data. For more information on this 
procedure, refer to the article by Akima (1978). The output grid is specified by the two 
integer variables nx_out and ny_out that represent the number of grid points in the 
first (second) variable and by two real vectors that represent the first (second) 
coordinates of the grid. 

Examples 

Example 1 
In this example, the interpolant to the linear function (3 + 7x + 2y) is computed from 20 
data points equally spaced on the circle of radius 3. Then the values are printed on a  
3 � 3 grid. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA           20 
#define OUTDATA          3 
                                /* Define function  */ 
#define F(x,y)          (float)(3.+7.*x+2.*y) 
 
#define SURF(I,J)       surf[(J) +(I)*OUTDATA] 
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main() 
{ 
    int                 i, j; 
    float               fdata[NDATA], xydata[2*NDATA], *surf;  
    float               x, y, z, x_out[OUTDATA], y_out[OUTDATA],  pi; 
 
    pi = imsl_f_constant("pi", 0); 
                                /* Set up output grid  */ 
    for (i = 0;  i < OUTDATA;  i++) { 
        x_out[i] = y_out[i] = (float) i / ((float) (OUTDATA - 1)); 
    } 
    for (i = 0;  i < 2*NDATA;  i += 2) { 
        xydata[i]   = 3.*cos(pi*i/NDATA); 
        xydata[i+1] = 3.*sin(pi*i/NDATA); 
        fdata[i/2]  = F(xydata[i], xydata[i+1]); 
    } 
                                /* Compute scattered data interpolant */ 
    surf = imsl_f_scattered_2d_interp (NDATA, xydata, fdata, OUTDATA, 
                                              OUTDATA, x_out, y_out, 0); 
                                /* Print results */ 
    printf("     x       y        F(x, y)    Interpolant    Error\n"); 
    for (i = 0;  i < OUTDATA;  i++) { 
        for (j = 0;  j < OUTDATA;  j++) { 
            x = x_out[i]; 
            y = y_out[j]; 
            z = SURF(i,j); 
            printf("  %6.3f  %6.3f  %10.3f   %10.3f   %10.4f\n", 
                               x, y, F(x,y), z, fabs(F(x,y)-z)); 
        } 
 
    } 
} 

Output 
    x       y      F(x, y)    Interpolant    Error 
0.000   0.000       3.000        3.000       0.0000 
0.000   0.500       4.000        4.000       0.0000 
0.000   1.000       5.000        5.000       0.0000 
0.500   0.000       6.500        6.500       0.0000 
0.500   0.500       7.500        7.500       0.0000 
0.500   1.000       8.500        8.500       0.0000 
1.000   0.000      10.000       10.000       0.0000 
1.000   0.500      11.000       11.000       0.0000 
1.000   1.000      12.000       12.000       0.0000 

Example 2 
Recall that in the first example, the interpolant to the linear function 3 + 7x + 2y is 
computed from 20 data points equally spaced on the circle of radius 3. We then print 
the values on a 3 � 3 grid. This example used the optional arguments to indicate that the 
answer is stored noncontiguously in a two-dimensional array surf with column 
dimension equal to 11. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
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#define NDATA           20 
#define OUTDATA          3 
#define COLDIM          11 
                                /* Define function  */ 
#define F(x,y)          (float)(3.+7.*x+2.*y) 
 
main() 
{ 
    int                 i, j; 
    float               fdata[NDATA], xydata[2*NDATA]; 
    float               surf[OUTDATA][COLDIM]; 
    float               x, y, z, x_out[OUTDATA], y_out[OUTDATA], pi; 
 
    pi = imsl_f_constant("pi", 0); 
                                /* Set up output grid  */ 
    for (i = 0;  i < OUTDATA;  i++) { 
        x_out[i] = y_out[i] = (float) i / ((float) (OUTDATA - 1)); 
    } 
    for (i = 0;  i < 2*NDATA;  i += 2) { 
        xydata[i]   = 3.*cos(pi*i/NDATA); 
        xydata[i+1] = 3.*sin(pi*i/NDATA); 
        fdata[i/2]  = F(xydata[i], xydata[i+1]); 
    } 
                                /* Compute scattered data interpolant */ 
    imsl_f_scattered_2d_interp (NDATA, xydata, fdata, OUTDATA, 
                                                  OUTDATA, x_out, y_out, 
                                IMSL_RETURN_USER, surf, 
                                IMSL_SUR_COL_DIM, COLDIM, 
                                0); 
                                /* Print results */ 
    printf("     x       y        F(x, y)    Interpolant    Error\n"); 
    for (i = 0;  i < OUTDATA;  i++) { 
        for (j = 0;  j < OUTDATA;  j++) { 
            x = x_out[i]; 
            y = y_out[j]; 
            z = surf[i][j]; 
            printf("  %6.3f  %6.3f  %10.3f   %10.3f   %10.4f\n", 
                               x, y, F(x,y), z, fabs(F(x,y)-z)); 
        } 
    } 
} 

Output 
    x       y      F(x, y)    Interpolant    Error 
0.000   0.000       3.000        3.000       0.0000 
0.000   0.500       4.000        4.000       0.0000 
0.000   1.000       5.000        5.000       0.0000 
0.500   0.000       6.500        6.500       0.0000 
0.500   0.500       7.500        7.500       0.0000 
0.500   1.000       8.500        8.500       0.0000 
1.000   0.000      10.000       10.000       0.0000 
1.000   0.500      11.000       11.000       0.0000 
1.000   1.000      12.000       12.000       0.0000 
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Fatal Errors 
IMSL_DUPLICATE_XYDATA_VALUES The two-dimensional data values must be 

distinct. 

IMSL_XOUT_NOT_STRICTLY_INCRSING The vector x_out must be strictly 
increasing. 

IMSL_YOUT_NOT_STRICTLY_INCRSING The vector y_out must be strictly 
increasing. 

radial_scattered_fit 
Computes an approximation to scattered data in Rn for n � 1 using radial-basis 
functions. 

Synopsis 
#include <imsl.h> 
Imsl_f_radial_basis_fit *imsl_f_radial_scattered_fit (int dimension, 

int num_points, float abscissae[], float fdata[], 
int num_centers, �, 0) 

The type Imsl_d_radial_basis_fit function is imsl_d_radial_scattered_fit. 

Required Arguments 

int dimension   (Input) 
Number of dimensions. 

int num_points   (Input) 
The number of data points. 

float abscissae[]   (Input) 
Array of size dimension � num_points containing the abscissae of the data 
points. The argument abscissae[i][j] is the abscissa value of the (i+1)-th 
data point in the (j+1)-th dimension. 

float fdata[]   (Input) 
Array with num_points components containing the ordinates for the 
problem. 

int num_centers   (Input) 
The number of centers to be used when computing the radial-basis fit. The 
argument num_centers should be less than or equal to num_points. 

Return Value 
A pointer to the structure that represents the radial-basis fit. If a fit cannot be computed, 
then NULL is returned. To release this space, use free. 
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Synopsis with Optional Arguments 
#include <imsl.h> 

Imsl_f_radial_basis_fit *imsl_f_radial_scattered_fit (int dimension, int 
num_points, float abscissae[], float fdata[], 
int num_centers, 
IMSL_CENTERS, float centers[], 
IMSL_CENTERS_RATIO, float ratio, 
IMSL_RANDOM_SEED, int seed, 
IMSL_SUPPLY_BASIS, float radial_function(), 
IMSL_SUPPLY_BASIS_W_DATA, float radial_function(), void *data, 
IMSL_SUPPLY_DELTA, float delta, 
IMSL_WEIGHTS, float weights[], 
IMSL_NO_SVD, 
0) 

Optional Arguments 
IMSL_CENTERS   (Input) 

User-supplied centers. See the “Description” (page 227 ) section of this 
function for details. 

IMSL_CENTERS_RATIO, float ratio   (Input) 
The desired ratio of centers placed on an evenly spaced grid to the total 
number of centers. The condition that the same number of centers placed on a 
grid for each dimension must be equal. Thus, the actual number of centers 
placed on a grid is usually less than ratio*num_centers, but will never be 
more than ratio*num_centers. The remaining centers are randomly chosen 
from the set of abscissae given in abscissae. 
Default: ratio = 0.5 

IMSL_RANDOM_SEED, int seed 
The value of the random seed used when determining the random subset of 
abscissae to use as centers. By changing the value of seed on different calls to 
imsl_f_radial_scattered_fit, with the same data set, a different set of 
random centers will be chosen. Setting seed to zero forces the random 
number seed to be based on the system clock, so a possibly different set of 
centers will be chosen each time the program is executed. 
Default: seed = 234579 

IMSL_SUPPLY_BASIS, float radial_function (float distance)   (Input) 
User-supplied function to compute the values of the radial functions. 
Default: Hardy multiquadric 

IMSL_SUPPLY_BASIS_W_DATA, float radial_function (float distance, void 
*data), void *data   (Input) 
User-supplied function to compute the values of the radial functions, which 
also accepts a pointer to data that is supplied by the user.  data is a pointer to 
the data to be passed to the user-supplied function.  See the “Introduction, 
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Passing Data to User-Supplied Functions” at the beginning of this manual for 
more details. 

 
Default: Hardy multiquadric 

IMSL_SUPPLY_DELTA, float delta   (Input) 
The delta used in the default basis function 

� � 2 2r r� �� �  

Default: delta = 1 

IMSL_WEIGHTS, float weights[] 
This option requires the user to provide the weights. 
Default: all weights equal one 

IMSL_NO_SVD 
This option forces the use of a QR decomposition instead of a singular value 
decomposition. This may result in space savings for large problems. 

Description 
The function imsl_f_radial_scattered_fit computed a least-squares fit to 
scattered data in Rd where d = dimension. More precisely, let n = ndata, 
x = abscissae, f = fdata, and d = dimension. Then we have 
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This function computes a function F which approximates the above data in the sense 
that it minimizes the sum-of-squares error 
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where w = weights. Of course, we must restrict the functional form of F. This is done 
as follows: 
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The function � is called the radial function. It maps R1 into R1, only defined for the 
nonnegative reals. For the purpose of this routine, the user-supplied function 

� � � �2 2r r� �� �  

Note that the value of delta is defaulted to 1. It can be set by the user by using the 
keyword IMSL_DELTA. The parameter � is used to scale the problem. Generally choose 
� to be near the minimum spacing of the centers. 

The default basis function is called the Hardy multiquadric, and it is defined as 
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A key feature of this routine is the user’s control over the selection of the basis 
function. 

To obtain the default selection of centers, we first compute the number of centers that 
will be on a grid and how many are on a random subset of the abscissae. Next, we 
compute those centers on a grid. Finally, a random subset of abscissa are obtained 
determining where the centers are placed. Let us examine the selection of centers in 
more detail. 

First, we restrict the computed grid to have the same number of grid values in each of 
the dimension directions. Then, the number of centers placed on a grid, 
num_gridded, is computed as follows: 

	 = (centers_ratio) (num_centers) 


 = �	1/dimension� 

num_gridded = 
dimension 

Note that there are 
 grid values in each of the dimension directions. Then we have 

num_random = (num_centers) � (num_gridded) 

Now we know how many centers will be placed on a grid and how many will be placed 
on a random subset of the abscissae. The gridded centers are computed such that they 
are equally spaced in each of the dimension directions. The last problem is to 
compute a random subset, without replacement, of the abscissa. The selection is based 
on a random seed. The default seed is 234579. The user can change this using the 
optional argument IMSL_RANDOM_SEED. Once the subset is computed, we use the 
abscissae as centers. 

Since the selection of good centers for a specific problem is an unsolved problem at this 
time, we have given the ultimate flexibility to the user. That is, you can select your own 
centers using the keyword IMSL_CENTERS. As a rule of thumb, the centers should be 
interspersed with the abscissae. 

The return value for this function is a pointer to the structure, which contains all the 
information necessary to evaluate the fit. This pointer is then passed to the function 
imsl_f_radial_evaluate to produce values of the fitted function. 

Examples 

Example 1 
This example, generates data from a function and contaminates it with noise on a grid 
of 10 equally spaced points.The fit is evaluated on a finer grid and compared with the 
actual function values. 

#include <imsl.h> 
#include <math.h> 
 
#define NDATA          10  
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#define NUM_CENTERS    5 
#define NOISE_SIZE     0.25 
#define F(x)           ((float)(sin(2*pi*x))) 
 
main () 
{ 
    int        i; 
    int        dim = 1; 
    float      fdata[NDATA]; 
    float      *fdata2; 
    float      xdata[NDATA]; 
    float      xdata2[2*NDATA]; 
    float      pi; 
    float      *noise; 
    Imsl_f_radial_basis_fit   *radial_fit; 
 
    pi = imsl_f_constant ("pi", 0); 
 
    imsl_random_seed_set (234579); 
    noise = imsl_f_random_uniform(NDATA, 0); 
 
/* Set up the sampled data points with noise. */ 
 
    for (i = 0; i <  NDATA; ++i) { 
       xdata[i] = (float)(i)/(float)(NDATA-1); 
       fdata[i] = F(xdata[i]) + NOISE_SIZE*(1.0 - 2.0*noise[i]); 
    } 
/* Compute the radial fit. */ 
 
    radial_fit = imsl_f_radial_scattered_fit (dim, NDATA, xdata, 
                 fdata, NUM_CENTERS, 0); 
     
/* Compare result to the original function at twice as many values as  
   there were original data points. */ 
 
    for (i = 0; i < 2*NDATA; ++i) 
        xdata2[i] = (float)(i/(float)(2*(NDATA-1))); 
/* Evaluate the fit at these new points. */ 
     
    fdata2 = imsl_f_radial_evaluate(2*NDATA, xdata2, radial_fit, 0); 
 
    printf("    I     TRUE       APPROX     ERROR\n"); 
    for (i = 0; i < 2*NDATA; ++i) 
    printf("%5d %10.5f %10.5f %10.5f\n",i+1,F(xdata2[i]), fdata2[i],  
            F(xdata2[i])-fdata2[i]); 
  } 

Output 
 I     TRUE       APPROX     ERROR 
 1    0.00000   -0.08980    0.08980 
 2    0.34202    0.38795   -0.04593 
 3    0.64279    0.75470   -0.11191 
 4    0.86603    0.99915   -0.13312 
 5    0.98481    1.11597   -0.13116 
 6    0.98481    1.10692   -0.12211 
 7    0.86603    0.98183   -0.11580 
 8    0.64279    0.75826   -0.11547 
 9    0.34202    0.46078   -0.11876 
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10   -0.00000    0.11996   -0.11996 
11   -0.34202   -0.23007   -0.11195 
12   -0.64279   -0.55348   -0.08931 
13   -0.86603   -0.81624   -0.04979 
14   -0.98481   -0.98752    0.00271 
15   -0.98481   -1.04276    0.05795 
16   -0.86603   -0.96471    0.09868 
17   -0.64279   -0.74472    0.10193 
18   -0.34202   -0.38203    0.04001 
19    0.00000    0.11600   -0.11600 
20    0.34202    0.73553   -0.39351 

Example 2 
This example generates data from a function and contaminates it with noise.We fit this 
data successively on grids of size 10, 20, �, 100. Now interpolate and print the 2-norm 
of the difference between the interpolated result and actual function values. Note that 
double precision is used for higher accuracy. 

#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define NDATA           100 
#define NUM_CENTERS     100 
#define NRANDOM         200 
#define NOISE_SIZE      1.0 
#define G(x,y)          (exp((y)/2.0)*sin(x) - cos((y)/2.0)) 
 
double radial_function (double r); 
 
main() 
{ 
    int        i; 
    int        ndata; 
    double     *fit; 
    double     ratio; 
    double     fdata[NDATA+1]; 
    double     xydata[2 * NDATA+1]; 
    double     pi; 
    double     *noise; 
    int        num_centers; 
    Imsl_d_radial_basis_fit *radial_struct; 
 
    pi = imsl_d_constant ("pi", 0); 
 
    /* Get the random numbers used for the noise. */ 
 
    imsl_random_seed_set (234579); 
    noise = imsl_d_random_uniform (NRANDOM+1, 0); 
    for (i = 0; i < NRANDOM; ++i) noise[i] = 1.0 - 2.0 * noise[i]; 
    printf("    NDATA          || Error ||_2 \n"); 
 
    for (ndata = 10; ndata <= 100 ; ndata += 10) { 
        num_centers = ndata; 
 
    /* Set up the sampled data points with noise. */ 
        for (i = 0; i < 2 * ndata; i += 2) { 
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            xydata[i] = 3. * (noise[i]); 
            xydata[i + 1] = 3. * (noise[i + 1]); 
            fdata[i / 2] = G(xydata[i], xydata[i + 1]) 
                         + NOISE_SIZE * noise[i]; 
        } 
 
    /* Compute the radial fit. */ 
        ratio = 0.5; 
        radial_struct= imsl_d_radial_scattered_fit (2, ndata, xydata, 
                     fdata, num_centers, 
                     IMSL_CENTERS_RATIO, ratio, 
                     IMSL_SUPPLY_BASIS, radial_function, 
                     0); 
        fit = imsl_d_radial_evaluate (ndata, xydata, radial_struct, 0); 
 
        for (i = 0; i < ndata; ++i) fit[i] -= fdata[i]; 
 
        printf("%8d %17.8f \n", ndata,  
                imsl_d_vector_norm(ndata, fit, 0)); 
    } 
 
} 
 
double radial_function (double r) 
{ 
    return log(1.0+r); 
} 

Output 
NDATA         || Error ||_2  
 10        0.00000000  
 20        0.00000000  
 30        0.00000000  
 40        0.00000000  
 50        0.00000000  
 60        0.00000000  
 70        0.00000000  
 80        0.00000000  
 90        0.00000000  
100        0.00000000  

radial_evaluate 
Evaluates a radial-basis fit. 

Synopsis 
#include <imsl.h> 
float *imsl_f_radial_evaluate (int n, float x[],  

Imsl_d_radial_basis_fit *radial_fit, �, 0) 

The type double function is imsl_d_evaluate. 
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Required Arguments 

int n   (Input) 
The number of points at which the fit will be evaluated. 

float x[]   (Input) 
Array of size (radial_fit � > dimension) � n containing the abscissae of 
the data points at which the fit will be evaluated. The argument x[i][j] is the 
abscissa value of the (i+1)-th data point in the (j+1)-th dimension. 

Imsl_f_radial_basis_fit *radial_fit   (Input) 
A pointer to radial-basis structure to be used for the evaluation.   (Input). 

Return Value 
A pointer to an array of length n containing the values of the radial-basis fit at the 
desired values. If no value can be computed, then NULL is returned. To release this 
space, use free. 

Synopsis with Optional Arguments 
#include <imsl.h> 

float *imsl_f_radial_evaluate (int n, float x[], 
Imsl_f_radial_basis_fit *radial_fit 
IMSL_RETURN_USER, float value[],  
0) 

Optional Arguments 
IMSL_RETURN_USER, value[]   (Input) 

A user-allocated array of length n containing the returned values. 

Description 
The function imsl_f_radial_evaluate evaluates a radial-basis fit from data 
generated by imsl_f_radial_scattered_fit. 

Example 
#include <imsl.h> 
#include <math.h> 
 
#define NDATA          10  
#define NUM_CENTERS    5 
#define NOISE_SIZE     0.25 
#define F(x)           ((float)(sin(2*pi*x))) 
 
main () 
{ 
    int        i; 
    int        dim = 1; 
    float      fdata[NDATA]; 
    float      *fdata2; 
    float      xdata[NDATA]; 
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    float      xdata2[2*NDATA]; 
    float      pi; 
    float      *noise; 
    Imsl_f_radial_basis_fit   *radial_fit; 
 
    pi = imsl_f_constant ("pi", 0); 
 
    imsl_random_seed_set (234579); 
    noise = imsl_f_random_uniform(NDATA, 0); 
 
/* Set up the sampled data points with noise */ 
 
    for (i = 0; i <  NDATA; ++i) { 
       xdata[i] = (float)(i)/(float)(NDATA-1); 
       fdata[i] = F(xdata[i]) + NOISE_SIZE*(1.0 - 2.0*noise[i]); 
    } 
/* Compute the radial fit */ 
 
    radial_fit = imsl_f_radial_scattered_fit (dim, NDATA, xdata, 
                 fdata, NUM_CENTERS, 0); 
     
/* Compare result to the original function at twice as many values as there  
   were original data points */ 
 
    for (i = 0; i < 2*NDATA; ++i) 
        xdata2[i] = (float)(i/(float)(2*(NDATA-1))); 
 
/* Evaluate the fit at these new points */ 
     
    fdata2 = imsl_f_radial_evaluate(2*NDATA, xdata2, radial_fit, 0); 
 
    printf("    I     TRUE       APPROX     ERROR\n"); 
    for (i = 0; i < 2*NDATA; ++i) 
    printf("%5d %10.5f %10.5f %10.5f\n",i+1,F(xdata2[i]), fdata2[i],  
            F(xdata2[i])-fdata2[i]); 
  } 

Output 
 I     TRUE       APPROX     ERROR 
 1    0.00000   -0.08980    0.08980 
 2    0.34202    0.38795   -0.04593 
 3    0.64279    0.75470   -0.11191 
 4    0.86603    0.99915   -0.13312 
 5    0.98481    1.11597   -0.13116 
 6    0.98481    1.10692   -0.12211 
 7    0.86603    0.98183   -0.11580 
 8    0.64279    0.75826   -0.11547 
 9    0.34202    0.46078   -0.11876 
10   -0.00000    0.11996   -0.11996 
11   -0.34202   -0.23007   -0.11195 
12   -0.64279   -0.55348   -0.08931 
13   -0.86603   -0.81624   -0.04979 
14   -0.98481   -0.98752    0.00271 
15   -0.98481   -1.04276    0.05795 
16   -0.86603   -0.96471    0.09868 
17   -0.64279   -0.74472    0.10193 
18   -0.34202   -0.38203    0.04001 
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19    0.00000    0.11600   -0.11600 
20    0.34202    0.73553   -0.39351 
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Chapter 4: Quadrature 

Routines 
4.1 Univariate Quadrature 

Adaptive general-purpose endpoint singularity .....................int_fcn_sing 237 
Adaptive general purpose.............................................................. int_fcn 241 
Adaptive general-purpose points of singularity............... int_fcn_sing_pts 245 
Adaptive weighted algebraic singularities.........................int_fcn_alg_log 249 
Adaptive infinite interval............................................................int_fcn_inf 253 
Adaptive weighted oscillatory (trigonometric) ......................... int_fcn_trig 257 
Adaptive weighted Fourier (trigonometric) ........................ int_fcn_fourier 261 
Cauchy principal value ..................................................... int_fcn_cauchy 265 
Nonadaptive general purpose ......................................... int_fcn_smooth 268 

4.2 Multivariate Quadrature 
Two-dimensional iterated integral ........................................... int_fcn_2d 272 
Iterated integral using product Gauss formulas ......... int_fcn_hyper_rect 276 
Iterated integral using a quasi-Monte Carlo method ............ int_fcn_qmc 279 

4.3 Gauss Quadrature 
Gauss quadrature formulas.......................................... gauss_quad_rule 282 

4.4 Differentiation 
First, second, or third derivative of a function.....................fcn_derivative 286 

Usage Notes 
Univariate Quadrature 

The first nine functions in this chapter are designed to compute approximations to 
integrals of the form 

� � � �
b

c
f x w x dx�  

The weight function w is used to incorporate known singularities (either algebraic or 
logarithmic) or to incorporate oscillations. For general-purpose integration, we 
recommend the use of imsl_f_int_fcn_sing (even if no endpoint singularities are 
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present). If more efficiency is desired, then the use of one of the more specialized 
functions should be considered. These functions are organized as follows: 
� w = 1 

imsl_f_int_fcn_sing 
imsl_f_int_fcn 
imsl_f_int_fcn_sing_pts 
imsl_f_int_fcn_inf 
imsl_f_int_fcn_smooth 

� w(x) = sin�x  or  w(x) = cos�x 

imsl_f_int_fcn_trig (for a finite interval)  

imsl_f_int_fcn_fourier (for an infinite interval)  

� w(x) = (x � a)a(b � x)bln(x � a)ln(b � x) where the ln factors are optional 
imsl_f_int_fcn_alg_log 

� w(x) = 1/(x � c) 
imsl_f_int_fcn_cauchy 

The calling sequences for these functions are very similar. The function to be integrated 
is always fcn, and the lower and upper limits are a and b, respectively. The requested 
absolute error � is err_abs, while the requested relative error � is err_rel. These 
quadrature functions return the estimated answer R. An optional value err_est = E 
estimates the error. These numbers are related as follows: 

� � � � � � � �max{ , }
b b

a a

f x w x dx R E f x w x dx� �� � �� �  

Several of the univariate quadrature functions have arguments of type Imsl_quad, 
which is defined in imsl.h. 

One situation that occasionally arises in univariate quadrature concerns the approximation 
of integrals when only tabular data are given. The functions described above do not directly 
address this question. However, the standard method for handling this problem is first to 
interpolate the data, and then to integrate the interpolant. This can be accomplished by using 
the IMSL spline interpolation functions with one of the spline integration functions, which 
can be found in Chapter 3, “Interpolation and Approximation.” 

Multivariate Quadrature 

Two functions have been included in this chapter that are of use in approximating 
certain multivariate integrals. In particular, the function imsl_f_int_fcn_2d returns 
an approximation to an iterated two-dimensional integral of the form 

� �
� �

� �
,

b h x

a g x
f x y dydx� �  
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The second function, imsl_f_int_fcn_hpyer_rect, returns an approximation to 
the integral of a function of n variables over a hyper-rectangle 

� �
1

1
1 1, ,n

n

b b

n na a
f x x dx dx� �� � �  

When working with two-dimensional tensor-product tabular data, use the IMSL  
spline interpolation function imsl_f_spline_2d_interp, followed by the IMSL 
spline integration function imsl_f_spline_2d_integral described in  
Chapter 3,  “Interpolation and Approximation”. 

Gauss Quadrature 

Before computing Gauss quadratures, you must compute so-called Gauss quadrature 
rules that integrate polynomials of as high degree as possible. These quadrature rules 
can be easily computed using the function imsl_f_gauss_quad_rule, which 
produces the points {wi} for  i = 1, �, N that satisfy 

� � � � � �
1

Nb

i ia
i

f x w x dx f x w
�

���  

for all functions f that are polynomials of degree less than 2N. The weight functions w 
may be selected from the following table. 

w(x) Interval Name 
1 (�1, 1) Legendre 

21/( 1 )x�  (�1, 1) Chebyshev 1st kind 

21 x�  (�1, 1) Chebyshev 2nd kind 

2xe�  (��, �) Hermite 

(1 + x)a (1 � x)b (�1, 1) Jacobi 
x ae x�  (0, �) Generalized Laguerre 

1/cosh (x) (��, �) Hyperbolic cosine 

Where permissible, imsl_f_gauss_quad_rule also computes Gauss-Radau and 
Gauss-Lobatto quadrature rules. 

int_fcn_sing 
Integrates a function, which may have endpoint singularities, using a globally adaptive 
scheme based on Gauss-Kronrod rules. 

Synopsis 
#include <imsl.h>  
float imsl_f_int_fcn_sing (float fcn(), float a, float b, …, 0) 
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The type double function is imsl_d_int_fcn_sing. 

Required Arguments 
float fcn (float x)   (input) 

User-supplied function to be integrated. 
float a   (Input) 

Lower limit of integration. 
float b   (Input) 

Upper limit of integration. 

Return Value 
An estimate of 

� �fcn
b

a
x dx�  

If no value can be computed, NaN is returned. 

Synopsis with Optional Arguments 
#include <imsl.h>  
float imsl_f_int_fcn_sing (float fcn(), float a, float b,  

IMSL_ERR_ABS, float err_abs, 
IMSL_ERR_REL, float err_rel, 
IMSL_ERR_EST, float *err_est,  
IMSL_MAX_SUBINTER, int max_subinter, 
IMSL_N_SUBINTER, int *n_subinter, 
IMSL_N_EVALS, int *n_evals, 
IMSL_FCN_W_DATA, float fcn(), void *data, 
0) 

Optional Arguments 
IMSL_ERR_ABS, float err_abs   (Input) 

Absolute accuracy desired.  
Default: err  _abs ��

where � is the machine precision 
IMSL_ERR_REL, float err_rel   (Input) 

Relative accuracy desired.  
Default: ��r_reler  

where � is the machine precision 
IMSL_ERR_EST, float *err_est   (Output) 

Address to store an estimate of the absolute value of the error. 
IMSL_MAX_SUBINTER, int max_subinter   (Input) 

Number of subintervals allowed.  
Default: max_subinter = 500 
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IMSL_N_SUBINTER, int *n_subinter   (Output) 
Address to store the number of subintervals generated. 

IMSL_N_EVALS, int *n_evals   (Output) 
Address to store the number of evaluations of fcn. 

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input) 
User supplied function to be integrated, which also accepts a pointer to data 
that is supplied by the user.  data is a pointer to the data to be passed to the 
user-supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 

Description 
This function is designed to handle functions with endpoint singularities. However, the 
performance on functions that are well-behaved at the endpoints is also quite good. 

The function imsl_f_int_fcn_sing is a general-purpose integrator that uses a 
globally adaptive scheme in order to reduce the absolute error. It subdivides the interval 
[a, b] and uses a 21-point Gauss-Kronrod rule to estimate the integral over each 
subinterval. The error for each subinterval is estimated by comparison with the 10-point 
Gauss quadrature rule. The subinterval with the largest estimated error is then bisected, 
and the same procedure is applied to both halves. The bisection process is continued 
until either the error criterion is satisfied, roundoff error is detected, the subintervals 
become too small, or the maximum number of subintervals allowed is reached. This 
function uses an extrapolation procedure known as the �-algorithm. 

The function imsl_f_int_fcn_sing is based on the subroutine QAGS by  
Piessens et al. (1983). 

Examples 

Example 1 
The value of 

� �
1 1/ 2

0
ln 4x x dx�

� ��  

is estimated. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
 
main() 
{ 
    float       q, exact; 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_sing (fcn, 0.0, 1.0, 0); 
                                /* Print the result and */ 
                                /*the exact answer */ 
    exact = -4.0; 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
} 
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float fcn(float x) 
{    
    return log(x)/sqrt(x); 
} 

Output 

integral  =     -4.000 
exact     =     -4.000 

Example 2 
The value of 

� �
1 1/ 2

0
ln 4x x dx�

� ��  

is again estimated. The values of the actual and estimated errors are printed as well. 
Note that these numbers are machine dependent. Furthermore, usually the error 
estimate is pessimistic. That is, the actual error is usually smaller than the error estimate 
as is in this example. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
 
main() 
{ 
    float       q, exact, err_est, exact_err; 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_sing (fcn, 0.0, 1.0, 
                             IMSL_ERR_EST, &err_est, 
                             0); 
                                /* Print the result and */  
                                /* the exact answer */ 
    exact = -4.0; 
    exact_err = fabs(exact - q); 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
    printf("error estimate   = %e\nexact error      = %e\n", err_est, 
             exact_err); 
} 
 
float fcn(float x) 
{    
    return log(x)/sqrt(x); 
} 

Output 

integral  =     -4.000 
exact     =     -4.000 
error estimate   = 3.175735e-04 
exact error      = 6.556511e-05 
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Warning Errors 
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested 

tolerance from being achieved, has been 
detected. 

IMSL_PRECISION_DEGRADATION A degradation in precision has been 
detected. 

IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error in the extrapolation table, 
preventing the requested tolerance from 
being achieved, has been detected. 

Fatal Errors 
IMSL_DIVERGENT Integral is probably divergent or slowly 

convergent. 
IMSL_MAX_SUBINTERVALS The maximum number of subintervals 

allowed has been reached. 

int_fcn 
Integrates a function using a globally adaptive scheme based on Gauss-Kronrod rules. 

Synopsis 
#include <imsl.h>  
float imsl_f_int_fcn (float fcn(), float a, float b, �, 0) 

The type double function is imsl_d_int_fcn. 

Required Arguments 
float fcn (float x)   (Input) 

User-supplied function to be integrated. 
float a   (Input) 

Lower limit of integration. 
float b   (Input) 

Upper limit of integration. 

Return Value 
The value of 

� �fcn
b

a
x dx�  

is returned. If no value can be computed, then NaN is returned. 

Synopsis with Optional Arguments 
#include <imsl.h>  
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float imsl_f_int_fcn (float fcn(float x), float a, float b,  
IMSL_RULE, int rule,  
IMSL_ERR_ABS, float err_abs, 
IMSL_ERR_REL, float err_rel, 
IMSL_ERR_EST, float *err_est, 
IMSL_MAX_SUBINTER, int max_subinter, 
IMSL_N_SUBINTER, int *n_subinter, 
IMSL_N_EVALS, int *n_evals, 
IMSL_FCN_W_DATA, float fcn(), void *data, 
0) 

Optional Arguments 
IMSL_RULE, int rule   (Input) 

Choice of quadrature rule. 

rule Gauss-Kronrod Rule 
1   7-15 points 
2 10-21 points 
3 15-31 points 
4 20-41 points 
5 25-51 points 
6 30-61 points 

Default: rule = 1 
IMSL_ERR_ABS, float err_abs   (Input) 

Absolute accuracy desired.  
Default: err  _abs ��

where � is the machine precision 
IMSL_ERR_REL, float err_rel   (Input) 

Relative accuracy desired.  
Default: err  _r ��el

where � is the machine precision 
IMSL_ERR_EST, float *err_est   (Output) 

Address to store an estimate of the absolute value of the error. 
IMSL_MAX_SUBINTER, int max_subinter   (Input) 

Number of subintervals allowed.  
Default: max_subinter = 500 

IMSL_N_SUBINTER, int *n_subinter   (Output) 
Address to store the number of subintervals generated. 

IMSL_N_EVALS, int *n_evals   (Output) 
Address to store the number of evaluations of fcn. 
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IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input) 
User supplied function to be integrated, which also accepts a pointer to data 
that is supplied by the user.  data is a pointer to the data to be passed to the 
user-supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 

Description 
The function imsl_f_int_fcn is a general-purpose integrator that uses a globally 
adaptive scheme to reduce the absolute error. It subdivides the interval [a, b] and uses a 
(2k + 1)-point Gauss-Kronrod rule to estimate the integral over each subinterval. The 
error for each subinterval is estimated by comparison with the k-point Gauss quadrature 
rule. The subinterval with the largest estimated error is then bisected, and the same 
procedure is applied to both halves. The bisection process is continued until either the 
error criterion is satisfied, roundoff error is detected, the subintervals become too small, 
or the maximum number of subintervals allowed is reached. The function 
imsl_f_int_fcn is based on the subroutine QAG by Piessens et al. (1983). 

Should imsl_f_int_fcn fail to produce acceptable results, consider one of the more 
specialized functions documented in this chapter. 

Examples 

Example 1 
The value of 

2 2

0
1xxe dx e� ��  

is computed. Since the integrand is not oscillatory, all of the default values are used. 
The values of the actual and estimated error are machine dependent. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
float           q; 
float           exact; 
 
 main() 
{ 
                    /* evaluate the integral */ 
    q = imsl_f_int_fcn (fcn, 0.0, 2.0, 0); 
                    /* print the result and the exact answer */ 
    exact = exp(2.0) + 1.0; 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
} 
 
float fcn(float x) 
{    
    float y; 
    y =  x *  (exp(x)); 
    return y; 
} 
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Output 

integral  =      8.389 
exact     =      8.389 

Example 2 
The value of 

� �
1

0
sin 1/ x dx�  

is computed. Since the integrand is oscillatory, rule = 6 is used. The exact value is 
0.50406706. The values of the actual and estimated error are machine dependent. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
 
main() 
{ 
float           q, err_est, err_abs= 0.0001, exact = 0.50406706, error; 
 
                    /* intergrate fcn(x) from 0 to 1 */ 
    q = imsl_f_int_fcn (fcn, 0.0, 1.0, 
                        IMSL_ERR_ABS,    err_abs,/* set abs error value*/ 
                        IMSL_RULE,       6,  
                        IMSL_ERR_EST,    &err_est, /* pass in address */ 
                        0); 
    error = q - exact; 
                    /* print the result and the exact answer */ 
    printf(" integral = %10.3f\n    exact = %10.3f\n    error = %10.3f\n ", 
            q, exact , error);     
    printf("   err_est = %g\n", err_est);                   
} 
 
float fcn(float x) 
{ 
                    /* compute sin(1/x), avoiding division by zero */ 
    return      ((x)>1.0e-5) ? sin(1.0/(x)) : 0.0; 
} 

Output 

integral =      0.504 
   exact =      0.504 
   error =      0.000 
   err_est = 0.000170593 

Warning Errors 
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested 

tolerance from being achieved, has been 
detected. 

IMSL_PRECISION_DEGRADATION A degradation in precision has been 
detected. 
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Fatal Errors 
IMSL_MAX_SUBINTERVALS The maximum number of subintervals 

allowed has been reached. 

int_fcn_sing_pts 
Integrates a function with singularity points given. 

Synopsis 
#include <imsl.h>  
float imsl_f_int_fcn_sing_pts (float fcn(), float a, float b, int npoints, 

float points[], �, 0) 

The type double function is imsl_d_int_fcn_sing_pts. 

Required Arguments  
float fcn (float x)   (Input) 

User-supplied function to be integrated. 
float a   (Input) 

Lower limit of integration. 
float b   (Input) 

Upper limit of integration. 
int npoints   (Input) 

The number of singularities of the integrand. 
float points[]   (Input) 

The abscissas of the singularities. These values should be interior to the 
interval [a, b]. 

Return Value 
The value of 

� �fcn
b

a
x dx�  

is returned. If no value can be computed, NaN is returned. 

Synopsis with Optional Arguments 
#include <imsl.h>  
float imsl_f_int_fcn_sing_pts (float fcn(), float a, float b, int npoints, 

float points[], 
IMSL_ERR_ABS, float err_abs, 
IMSL_ERR_REL, float err_rel,  
IMSL_ERR_EST, float *err_est,  
IMSL_MAX_SUBINTER, int max_subinter,  
IMSL_N_SUBINTER, int *n_subinter,  



 

 
 

246 � int_fcn_sing_pts IMSL C/Math/Library 

 

 

 

IMSL_N_EVALS, int *n_evals,  
IMSL_FCN_W_DATA, float fcn(),void *data, 
0) 

Optional Arguments 
IMSL_ERR_ABS, float err_abs   (Input) 

Absolute accuracy desired.  
Default: err  _abs ��

where � is the machine precision 
IMSL_ERR_REL, float err_rel   (Input) 

Relative accuracy desired. 
Default: err  _ ��rel

where � is the machine precision 
IMSL_ERR_EST, float *err_est   (Output) 

Address to store an estimate of the absolute value of the error. 
IMSL_MAX_SUBINTER, int max_subinter   (Input) 

Number of subintervals allowed. 
Default: max_subinter = 500 

IMSL_N_SUBINTER, int *n_subinter   (Output) 
Address to store the number of subintervals generated. 

IMSL_N_EVALS, int *n_evals   (Output) 
Address to store the number of evaluations of fcn. 

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input) 
User supplied function to be integrated, which also accepts a pointer to data 
that is supplied by the user.  data is a pointer to the data to be passed to the 
user-supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 

Description 
The function imsl_f_int_fcn_sing_pts is a special-purpose integrator that uses a 
globally adaptive scheme in order to reduce the absolute error. It subdivides the interval 
[a, b] into npoints + 1 user-supplied subintervals and uses a 21-point Gauss-Kronrod 
rule to estimate the integral over each subinterval. The error for each subinterval is 
estimated by comparison with the 10-point Gauss quadrature rule. The subinterval with 
the largest estimated error is then bisected, and the same procedure is applied to both 
halves. The bisection process is continued until either the error criterion is satisfied, 
roundoff error is detected, the subintervals become too small, or the maximum number 
of subintervals allowed is reached. This function uses an extrapolation procedure 
known as the �-algorithm. 

The function imsl_f_int_fcn_sing_pts is based on the subroutine QAGP by 
Piessens et al. (1983). 
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Examples 

Example 1 
The value of  

� �� �
3 3 2 2

0

77ln 1 2 61ln 2 ln 7 27
4

x x x dx� � � � ��  

is computed. The values of the actual and estimated error are machine dependent. Note 
that this function never evaluates the user-supplied function at the user-supplied 
breakpoints. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
  
main() 
{  
    int         npoints = 2; 
    float       q, exact, points[2]; 
                                /* Set singular points */ 
    points[0] = 1.0; 
    points[1] = sqrt(2.); 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_sing_pts (fcn, 0.0, 3.0, npoints, points, 0); 
                                /* print the result and */ 
                                /* the exact answer */ 
    exact = 61.*log(2.) + (77./4)*log(7.) - 27.; 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
} 
 
float fcn(float x) 
{    
    return  x*x*x*(log(fabs((x*x-1.)*(x*x-2.)))); 
} 

Output 

integral  =     52.741 
exact     =     52.741 

Example 2 
The value of 

� �� �
3 3 2 2

0

77ln 1 2 61ln 2 ln 7 27
4

x x x dx� � � � ��  

is again computed. The values of the actual and estimated error are printed as well. 
Note that these numbers are machine dependent. Furthermore, the error estimate is 
usually pessimistic. That is, the actual error is usually smaller than the error estimate,  
as in this example. The number of function evaluations also are printed. 
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#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
  
main() 
{ 
    int         n_evals, npoints = 2; 
    float       q, exact, err_est, exact_err, points[2]; 
                                /* Set singular points */ 
    points[0] = 1.0;    
    points[1] = sqrt(2.); 
                                /* Evaluate the integral and get the */ 
                                /* error estimate and the number of */ 
                                /* evaluations */ 
    q = imsl_f_int_fcn_sing_pts (fcn, 0.0, 3.0, npoints, points,  
                                 IMSL_ERR_EST, &err_est, 
                                 IMSL_N_EVALS, &n_evals, 
                                 0); 
                                /* Print the result and the */ 
                                /* exact answer */ 
    exact = 61.*log(2.) + (77./4)*log(7.) - 27.; 
    exact_err = fabs(exact - q); 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
    printf("error estimate   = %e\nexact error      = %e\n", err_est, 
             exact_err); 
    printf("The number of function evaluations  =  %d\n", n_evals); 
} 
 
float fcn(float x) 
{    
    return  x*x*x*(log(fabs((x*x-1.)*(x*x-2.)))); 
} 

Output 

integral  =     52.741 
exact     =     52.741 
error estimate   = 1.258850e-04 
exact error      = 3.051758e-05 
The number of function evaluations  =  819 

Warning Errors 
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested 

tolerance from being achieved, has been 
detected. 

IMSL_PRECISION_DEGRADATION A degradation in precision has been 
detected. 

IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error in the extrapolation table, 
preventing the requested tolerance from 
being achieved, has been detected. 
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Fatal Errors 
IMSL_DIVERGENT Integral is probably divergent or slowly 

convergent. 
IMSL_MAX_SUBINTERVALS The maximum number of subintervals 

allowed has been reached. 

int_fcn_alg_log 
Integrates a function with algebraic-logarithmic singularities. 

Synopsis 
#include <imsl.h>  
float imsl_f_int_fcn_alg_log (float fcn(), float a, float b, Imsl_quad 

weight, float alpha, float beta, �, 0) 

The type double function is imsl_d_int_fcn_alg_log. 

Required Arguments 
float fcn (float x)   (Input) 

User-supplied function to be integrated. 
float a   (Input) 

Lower limit of integration. 
float b   (Input) 

Upper limit of integration. 
Imsl_quad weight, float alpha, float beta   (Input) 

These three parameters are used to describe the weight function that may have 
algebraic or logarithmic singularities at the endpoints. The parameter weight 
can take on four values as described below. The parameters alpha = � and 
beta = 	 specify the strength of the singularities at a or b and hence, must be 
greater than �1. 

weight Integration Weight 
IMSL_ALG (x � a)a (b � x)b 
IMSL_ALG_LEFT_LOG (x � a)a (b � x)blog (x � a) 
IMSL_ALG_RIGHT_LOG (x � a)a (b � x)blog (b � x) 
IMSL_ALG_LOG (x � a)a (b � x)blog (x � a) log (b � x) 
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Return Value 
The value of 

� � � �fcn
b

a
x w x dx�  

is returned where w(x) is one of the four weights above. If no value can be computed, 
then NaN is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float imsl_f_int_fcn_alg_log (float fcn(float x), float a, float b,  

Imsl_quad weight, float alpha, float beta,  
IMSL_ERR_ABS, float err_abs,  
IMSL_ERR_REL, float err_rel,  
IMSL_ERR_EST, float *err_est,  
IMSL_MAX_SUBINTER, int max_subinter,  
IMSL_N_SUBINTER, int *n_subinter,  
IMSL_N_EVALS, int *n_evals,  
IMSL_FCN_W_DATA, float fcn(), void *data, 
0) 

Optional Arguments 
IMSL_ERR_ABS, float err_abs   (Input) 

Absolute accuracy desired.  
Default: err  _abs ��

where � is the machine precision 
IMSL_ERR_REL, float err_rel   (Input) 

Relative accuracy desired. 
Default: err  _ ��rel

where � is the machine precision 
IMSL_ERR_EST, float *err_est   (Output) 

Address to store an estimate of the absolute value of the error. 
IMSL_MAX_SUBINTER, int max_subinter   (Input) 

Number of subintervals allowed. 
Default: max_subinter = 500 

IMSL_N_SUBINTER, int *n_subinter   (Output) 
Address to store the number of subintervals generated. 

IMSL_N_EVALS, int *n_evals   (Output) 
Address to store the number of evaluations of fcn. 

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input) 
User supplied function to be integrated, which also accepts a pointer to data 
that is supplied by the user.  data is a pointer to the data to be passed to the 
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user-supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 

Description 
The function imsl_f_int_fcn_alg_log is a special-purpose integrator that uses a 
globally adaptive scheme to reduce the absolute error. It computes integrals whose 
integrands have the special form w(x)f(x) where w(x) is a weight function described 
above. A combination of modified Clenshaw-Curtis and Gauss-Kronrod formulas is 
employed. This function is based on the subroutine QAWS, which is fully documented by 
Piessens et al. (1983). 

Examples 

Example 1 
The value of 

� � � � � �
� �1/ 21

0

3ln 2 4
1 1 ln

9
x x x x dx

�
� � �� �� ��  

is computed. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
  
main() 
{ 
    float       q, exact; 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_alg_log (fcn, 0.0, 1.0, 
                                IMSL_ALG_LEFT_LOG,  1.0, 0.5, 
                                0); 
                                /* Print the result and the */ 
                                /* exact answer */ 
    exact = (3.*log(2.)-4.)/9.; 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
} 
 
float fcn(float x) 
{    
    return  sqrt(1+x); 
} 

Output 

integral  =     -0.213 
exact     =     -0.213 
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Example 2 
The value of 

� � � � � �
� �1/ 21

0

3ln 2 4
1 1 ln

9
x x x x dx

�
� � �� �� ��  

is again computed. The values of the actual and estimated error are printed as well. 
Note that these numbers are machine dependent. Furthermore, the error estimate is 
usually pessimistic. That is, the actual error is usually smaller than the error estimate,  
as in this example. The number of function evaluations also are printed. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
  
main() 
{ 
    int         n_evals; 
    float       q, exact, err_est, exact_err; 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_alg_log (fcn, 0.0, 1.0, 
                                IMSL_ALG_LEFT_LOG, 1.0, 0.5, 
                                IMSL_ERR_EST, &err_est,  
                                IMSL_N_EVALS, &n_evals, 
                                0); 
                                /* Print the result and the */ 
                                /* exact answer */ 
    exact = (3.*log(2.)-4.)/9.; 
    exact_err = fabs(exact - q); 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
    printf("error estimate   = %e\nexact error      = %e\n", err_est, 
             exact_err); 
    printf("The number of function evaluations  =  %d\n", n_evals); 
} 
 
float fcn(float x) 
{    
    return  sqrt(1+x); 
} 

Output 

integral  =     -0.213 
exact     =     -0.213 
error estimate   = 3.725290e-09 
exact error      = 1.490116e-08 
The number of function evaluations  =  50 

Warning Errors 
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested 

tolerance from being achieved, has been 
detected. 
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IMSL_PRECISION_DEGRADATION A degradation in precision has been 
detected. 

Fatal Errors 
IMSL_MAX_SUBINTERVALS The maximum number of subintervals 

allowed has been reached. 

int_fcn_inf 
Integrates a function over an infinite or semi-infinite interval. 

Synopsis 
#include <imsl.h> 
float imsl_f_int_fcn_inf (float fcn(), float bound, Imsl_quad interval, 

�, 0) 

The type double procedure is imsl_d_int_fcn_inf. 

Required Arguments  
float fcn (float x)   (Input) 

User-supplied function to be integrated. 
float bound   (Input) 

Finite limit of integration. This argument is ignored if interval has the value 
IMSL_INF_INF. 

Imsl_quad interval   (Input) 
Flag indicating integration limits. The following settings are allowed: 

interval Integration Limits 
IMSL_INF_BOUND (��, bound) 
IMSL_BOUND_INF (bound, �) 
IMSL_INF_INF (��, �) 

Return Value 
The value of 

� �fcn
b

a
x dx�  

is returned where a and b are appropriate integration limits. If no value can be 
computed, NaN is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float imsl_f_int_fcn_inf (float fcn, float bound, Imsl_quad interval, 

IMSL_ERR_ABS, float err_abs, 
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IMSL_ERR_REL, float err_rel, 
IMSL_ERR_EST, float *err_est, 
IMSL_MAX_SUBINTER, int max_subinter, 
IMSL_N_SUBINTER, int *n_subinter, 
IMSL_N_EVALS, int *n_evals, 
IMSL_FCN_W_DATA, float fcn(), void *data, 
0) 

Optional Arguments 
IMSL_ERR_ABS, float err_abs   (Input) 

Absolute accuracy desired.  
Default: err  _abs ��

where � is the machine precision  
IMSL_ERR_REL, float err_rel   (Input) 

Relative accuracy desired.  
Default: err  _ ��rel

where � is the machine precision 
IMSL_ERR_EST, float *err_est   (Output) 

Address to store an estimate of the absolute value of the error.  
IMSL_MAX_SUBINTER, int max_subinter   (Input) 

Number of subintervals allowed.  
Default: max_subinter = 500  

IMSL_N_SUBINTER, int *n_subinter   (Output) 
Address to store the number of subintervals generated.  

IMSL_N_EVALS, int *n_evals   (Output) 
Address to store the number of evaluations of fcn. 

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input) 
User supplied function to be integrated, which also accepts a pointer to data 
that is supplied by the user.  data is a pointer to the data to be passed to the 
user-supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 

Description 
The function imsl_f_int_fcn_inf is a special-purpose integrator that uses a 
globally adaptive scheme to reduce the absolute error. It initially transforms an infinite 
or semi-infinite interval into the finite interval [0, 1]. It then uses the same strategy as 
the function imsl_f_int_fcn_sing. 

The function imsl_f_int_fcn_inf is based on the subroutine QAGI by Piessens et 
al. (1983). 
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Examples 

Example 1 
The value of 

� �

� �

� �
20

ln ln 10
201 10

x
dx

x

�� �

�

�
�  

is computed. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
  
main() 
{ 
    float       q, exact, pi; 
 
    pi = imsl_f_constant("pi", 0); 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_inf (fcn, 0.0, 
                            IMSL_BOUND_INF, 
                            0);  
                                /* Print the result and the */ 
                                /* exact answer */ 
    exact = -pi*log(10.)/20.; 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
} 
 
float fcn(float x) 
{    
    float       z; 
    z = 10.*x; 
    return  log(x)/(1+ z*z); 
} 

Output 

integral  =     -0.362 
exact     =     -0.362 

Example 2 
The value of 

� �

� �
20

ln 10ln
201 10

x dx
x

�� �

�

�
�  

is again computed. The values of the actual and estimated error are printed as well. 
Note that these numbers are machine dependent. Furthermore, the error estimate is 
usually pessimistic. That is, the actual error is usually smaller than the error estimate,  
as in this example. The number of function evaluations also are printed. 
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#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
  
 main() 
{ 
    int         n_evals; 
    float       q, exact, err_est, exact_err, pi; 
 
    pi = imsl_f_constant("pi", 0); 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_inf (fcn, 0.0, 
                            IMSL_BOUND_INF,  
                            IMSL_ERR_EST, &err_est,  
                            IMSL_N_EVALS, &n_evals, 
                            0);  
                                /* Print the result and the */ 
                                /* exact answer */ 
    exact = -pi*log(10.)/20.; 
    exact_err = fabs(exact - q); 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
    printf("error estimate   = %e\nexact error      = %e\n", err_est, 
             exact_err); 
    printf("The number of function evaluations  =  %d\n", n_evals); 
} 
 
float fcn(float x) 
{    
    float       z; 
    z = 10.*x; 
    return  log(x)/(1+ z*z); 
} 

Output 

integral  =     -0.362 
exact     =     -0.362 
error estimate   = 2.801418e-06 
exact error      = 2.980232e-08 
The number of function evaluations  =  285 

Warning Errors 
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested 

tolerance from being achieved, has been 
detected. 

IMSL_PRECISION_DEGRADATION A degradation in precision has been 
detected. 

IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error in the extrapolation table, 
preventing the requested tolerance from 
being achieved, has been detected. 
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Fatal Errors 
IMSL_DIVERGENT Integral is probably divergent or slowly 

convergent.  
IMSL_MAX_SUBINTERVALS The maximum number of subintervals 

allowed has been reached. 

int_fcn_trig 
Integrates a function containing a sine or a cosine factor. 

Synopsis 
#include <imsl.h> 
float imsl_f_int_fcn_trig (float fcn(), float a, float b, Imsl_quad weight, 

float omega, �, 0) 

The type double function is imsl_d_int_fcn_trig. 

Required Arguments 
float fcn (float x)   (Input) 

User-supplied function to be integrated. 
float a   (Input) 

Lower limit of integration. 
float b   (Input) 

Upper limit of integration. 
Imsl_quad weight and float omega   (Input) 

These two parameters are used to describe the trigonometric weight. The 
parameter weight can take on the two values described below, and the 
parameter omega = � specifies the frequency of the trigonometric weighting 
function. 

weight Integration Weight
IMSL_COS cos (�x) 
IMSL_SIN sin (�x) 

Return Value 
The value of 

� � � �fcn cos
b

a
x x�� dx  

is returned if weight = IMSL_COS. If weight = IMSL_SIN, then the cosine factor is 
replaced with a sine factor. If no value can be computed, NaN is returned. 
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Synopsis with Optional Arguments 
#include <imsl.h>  
float imsl_f_int_fcn_trig (float fcn(), float a, float b, Imsl_quad weight, 

float omega, 
IMSL_ERR_ABS, float err_abs,  
IMSL_ERR_REL, float err_rel,  
IMSL_ERR_EST, float *err_est,  
IMSL_MAX_SUBINTER, int max_subinter,  
IMSL_N_SUBINTER, int *n_subinter,  
IMSL_N_EVALS, int *n_evals,  
IMSL_MAX_MOMENTS, int max_moments,  
IMSL_FCN_W_DATA, float fcn(), void *data, 
0) 

Optional Arguments 
IMSL_ERR_ABS, float err_abs   (Input) 

Absolute accuracy desired.  
Default: err  _abs ��

where � is the machine precision  
IMSL_ERR_REL, float err_rel   (Input) 

Relative accuracy desired. 
Default: err  _ ��rel

where � is the machine precision  
IMSL_ERR_EST, float *err_est   (Output) 

Address to store an estimate of the absolute value of the error. 
IMSL_MAX_SUBINTER, int max_subinter   (Input) 

Number of subintervals allowed. 
Default: max_subinter = 500 

IMSL_N_SUBINTER, int *n_subinter   (Output) 
Address to store the number of subintervals generated. 

IMSL_N_EVALS, int *n_evals   (Output) 
Address to store the number of evaluations of fcn. 

IMSL_MAX_MOMENTS, int max_moments   (Input) 
This is an upper bound on the number of Chebyshev moments that can be 
stored. Increasing (decreasing) this number may increase (decrease) execution 
speed and space used.  

Default: max_moments = 21 
IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input) 

User supplied function to be integrated, which also accepts a pointer to data 
that is supplied by the user.  data is a pointer to the data to be passed to the 
user-supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 
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Description 
The function imsl_f_int_fcn_trig is a special-purpose integrator that uses a 
globally adaptive scheme to reduce the absolute error. It computes integrals whose 
integrands have the special form w(x)f(x) where w(x) is either cos(�x) or sin(�x). 
Depending on the length of the subinterval in relation to the size of �, either a modified 
Clenshaw-Curtis procedure or a Gauss-Kronrod 7
15 rule is employed to approximate 
the integral on a subinterval. This function uses the general strategy of the function 
imsl_f_int_fcn_sing. The function imsl_f_int_fcn_trig is based on the 
subroutine QAWO by Piessens et al. (1983). 

Examples 

Example 1 
The value of 

� � � �
1

0
ln sin 10x x��  

is computed. Notice that we have coded around the singularity at zero. This is 
necessary since this procedure evaluates the integrand at the two endpoints. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
  
main() 
{ 
    float       q, exact, omega; 
 
    omega = 10*imsl_f_constant("pi", 0); 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_trig (fcn, 0.0, 1.0, 
                             IMSL_SIN, omega, 
                             0); 
                                /* Print the result and the */ 
                                /* exact answer */ 
    exact = -.1281316; 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
} 
 
float fcn(float x) 
{    
    return  (x==0.0) ? 0.0 : log(x); 
} 

Output 

integral  =     -0.128 
exact     =     -0.128 
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Example 2 
The value of 

� � � �
1

0
ln sin 10x x��  

is again computed. The values of the actual and estimated error are printed as well. 
Note that these numbers are machine dependent. Furthermore, it is usually the case that 
the error estimate is pessimistic. That is, the actual error is usually smaller than the 
error estimate as is the case in this example. The number of function evaluations are 
also printed. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
  
 main() 
{ 
    int         n_evals; 
    float       q, exact, omega, err_est, exact_err; 
 
    omega = 10*imsl_f_constant("pi", 0); 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_trig (fcn, 0.0, 1.0, 
                             IMSL_SIN, omega, 
                             IMSL_ERR_EST, &err_est,  
                             IMSL_N_EVALS, &n_evals, 
                             0);  
                                /* Print the result and the */ 
                                /* exact answer */ 
    exact = -.1281316; 
    exact_err = fabs(exact - q); 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
    printf("error estimate   = %e\nexact error      = %e\n", err_est, 
             exact_err); 
    printf("The number of function evaluations  =  %d\n", n_evals); 
} 
 
float fcn(float x) 
{    
    return  (x==0.0) ? 0.0 : log(x); 
} 

Output 

integral  =     -0.128 
exact     =     -0.128 
error estimate   = 7.504603e-05 
exact error      = 5.245209e-06 
The number of function evaluations  =  215 
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Warning Errors 
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested 

tolerance from being achieved, has been 
detected. 

IMSL_PRECISION_DEGRADATION A degradation in precision has been 
detected. 

IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error in the extrapolation table, 
preventing the requested tolerance from 
being achieved, has been detected. 

Fatal Errors 
IMSL_DIVERGENT Integral is probably divergent or slowly 

convergent. 
IMSL_MAX_SUBINTERVALS The maximum number of subintervals 

allowed has been reached. 

int_fcn_fourier 
Computes a Fourier sine or cosine transform. 

Synopsis 
#include <imsl.h>  
float imsl_f_int_fcn_fourier (float fcn(), float a, Imsl_quad weight, 

float omega, �, 0) 

The type double function is imsl_d_int_fcn_fourier. 

Required Arguments 
float fcn (float x)   (Input) 

User-supplied function to be integrated. 
float a   (Input) 

Lower limit of integration. The upper limit of integration is �. 
 
Imsl_quad weight and float omega   (Input) 

These two parameters are used to describe the trigonometric weight. The 
parameter weight can take on the two values described below, and the 
parameter omega = � specifies the frequency of the trigonometric weighting 
function. 

weight Integration Weight 
IMSL_COS cos (�x) 
IMSL_SIN sin (�x) 
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Return Value 
The return value is 

� � � �fcn cos
a

x x�

�

�  

if weight = IMSL_COS. If weight = IMSL_SIN, then the cosine factor is replaced 
with a sine factor. If no value can be computed, NaN is returned. 

Synopsis with Optional Arguments 
#include <imsl.h>  
float imsl_f_int_fcn_fourier (float fcn(), float a, Imsl_quad weight, 

float omega, 
IMSL_ERR_ABS, float err_abs,  
IMSL_ERR_EST, float *err_est,  
IMSL_MAX_SUBINTER, int max_subinter,  
IMSL_MAX_CYCLES, int max_cycles,  
IMSL_MAX_MOMENTS, int max_moments,  
IMSL_N_CYCLES, int *n_cycles,  
IMSL_N_EVALS, int *n_evals,  
IMSL_FCN_W_DATA, float fcn(), void *data, 
0) 

Optional Arguments 
IMSL_ERR_ABS, float err_abs   (Input) 

Absolute accuracy desired. 
Default: err  _abs ��

where � is the machine precision 
IMSL_ERR_EST, float *err_est   (Output) 

Address to store an estimate of the absolute value of the error. 
IMSL_MAX_SUBINTER, int max_subinter   (Input) 

Number of subintervals allowed. 
Default: max_subinter = 500 

IMSL_MAX_CYCLES, int max_cycles   (Input) 
Number of cycles allowed. 
Default: max_subinter = 50 

IMSL_MAX_MOMENTS, int max_moments   (Input) 
Number of subintervals allowed in the partition of each cycle. 
Default: max_moments = 21 

IMSL_N_CYCLES, int *n_cycles   (Output) 
Address to store the number of cycles generated. 

IMSL_N_EVALS, int *n_evals   (Output) 
Address to store the number of evaluations of fcn. 
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IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input) 
User supplied function to be integrated, which also accepts a pointer to data 
that is supplied by the user.  data is a pointer to the data to be passed to the 
user-supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 

Description 
The function imsl_f_int_fcn_fourier is a special-purpose integrator that uses a 
globally adaptive scheme to reduce the absolute error. It computes integrals whose 
integrands have the special form w(x)f(x) where w(x) is either cos�x or sin�x. The 
integration interval is always semi-infinite of the form  
[a, �]. These Fourier integrals are approximated by repeated calls to the function 
imsl_f_int_fcn_trig followed by extrapolation. 

The function imsl_f_int_fcn_fourier is based on the subroutine QAWF by 
Piessens et al. (1983). 

Examples 

Example 1 
The value of 

� �1/ 2

0
cos / 2 1x x d�

�
�

��  

is computed. Notice that the integrand is coded to protect for the singularity at zero. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
  
main() 
{ 
    float       q, exact, omega; 
 
    omega = imsl_f_constant("pi",0) / 2.; 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_fourier (fcn, 0.0, 
                                IMSL_COS, omega, 
                                0); 
                                /* Print the result and the */ 
                                /* exact answer */ 
    exact = 1.0; 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
} 
 
float fcn(float x) 
{    
    return  (x==0.) ? 0. : 1./sqrt(x); 
} 
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Output 

integral  =      1.000 
exact     =      1.000 

Example 2 
The value of 

� �1/ 2

0
cos / 2 1x x d�

�
�

��  

is again computed. The values of the actual and estimated error are printed as well. 
Note that these numbers are machine dependent. Furthermore, the error estimate is 
usually pessimistic. That is, the actual error is usually smaller than the error estimate,  
as is the case in this example.The number of function evaluations also are printed. 
Notice that the integrand is coded to protect for the singularity at zero. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
  
main() 
{ 
    int         n_evals; 
    float       q, exact, omega, err_est, exact_err; 
 
    omega = imsl_f_constant("pi",0) / 2.0; 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_fourier (fcn, 0.0, 
                                IMSL_COS, omega,  
                                IMSL_ERR_EST, &err_est,  
                                IMSL_N_EVALS, &n_evals, 
                                0);  
                                /* Print the result and the */ 
                                /* exact answer */ 
    exact = 1.; 
    exact_err = fabs(exact - q); 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
    printf("error estimate   = %e\nexact error      = %e\n", err_est, 
             exact_err); 
    printf("The number of function evaluations  =  %d\n", n_evals); 
} 
 
float fcn(float x) 
{    
    return  (x==0.) ? 0. : 1./sqrt(x); 
} 

Output 

integral  =      1.000 
exact     =      1.000 
error estimate   = 1.803637e-04 
exact error      = 1.013279e-06 
The number of function evaluations  =  405 
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Warning Errors 
IMSL_BAD_INTEGRAND_BEHAVIOR Bad integrand behavior occurred in one or 

more cycles. 
IMSL_EXTRAPOLATION_PROBLEMS Extrapolation table constructed for 

convergence acceleration of the series 
formed by the integral contributions of the 
cycles does not converge to the requested 
accuracy. 

Fatal Errors 
IMSL_MAX_CYCLES Maximum number of cycles allowed has 

been reached. 

int_fcn_cauchy 
Computes integrals of the form 

� �b

a

f x
dx

x c�

�  

in the Cauchy principal value sense. 

Synopsis 
#include <imsl.h> 
float imsl_f_int_fcn_cauchy (float fcn(), float a, float b, float c, �, 0) 

The type double function is imsl_d_int_fcn_cauchy. 

Required Arguments 
float fcn (float x)   (Input) 

User-supplied function to be integrated. 
float a   (Input) 

Lower limit of integration. 
float b   (Input) 

Upper limit of integration. 
float c   (Input) 

Singular point, c must not equal a or b. 

Return Value 
The value of 

� �fcnb

a

x
dx

x c�

�  

is returned. If no value can be computed, NaN is returned. 
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Synopsis with Optional Arguments 
#include <imsl.h> 
float imsl_f_int_fcn_cauchy (float fcn(), float a, float b, float c, 

IMSL_ERR_ABS, float err_abs, 
IMSL_ERR_REL, float err_rel,  
IMSL_ERR_EST, float *err_est,  
IMSL_MAX_SUBINTER, int max_subinter,  
IMSL_N_SUBINTER, int *n_subinter,  
IMSL_N_EVALS, int *n_evals,  
IMSL_FCN_W_DATA, float fcn(), void *data, 
0) 

Optional Arguments 
IMSL_ERR_ABS, float err_abs   (Input) 

Absolute accuracy desired.  
Default: err  _abs ��

where � is the machine precision 
IMSL_ERR_REL, float err_rel   (Input) 

Relative accuracy desired.  
Default: err  _r ��el

where � is the machine precision 
IMSL_ERR_EST, float *err_est   (Output) 

Address to store an estimate of the absolute value of the error. 
IMSL_MAX_SUBINTER, int max_subinter   (Input) 

Number of subintervals allowed. 
Default: max_subinter = 500 

IMSL_N_SUBINTER, int *n_subinter   (Output) 
Address to store the number of subintervals generated. 

IMSL_N_EVALS, int *n_evals   (Output) 
Address to store the number of evaluations of fcn. 

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input) 
User supplied function to be integrated, which also accepts a pointer to data 
that is supplied by the user.  data is a pointer to the data to be passed to the 
user-supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 

Description 
The function imsl_f_int_fcn_cauchy uses a globally adaptive scheme in an 
attempt to reduce the absolute error. It computes integrals whose integrands have the 
special form w(x)f(x) where w(x) = 1
(x � c). If c lies in the interval of integration, then 
the integral is interpreted as a Cauchy principal value. A combination of modified 
Clenshaw-Curtis and Gauss-Kronrod formulas are employed. 
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The function imsl_f_int_fcn_cauchy is an implementation of the subroutine 
QAWC by Piessens et al. (1983). 

Examples 

Example 1 
The Cauchy principal value of 

� �
� �5

31

ln 125 / 6311
185 6

dx
x x�

�

�
�  

is computed. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
 
main() 
{ 
    float       q, exact; 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_cauchy (fcn, -1.0, 5.0, 0.0, 0); 
                                /* Print the result and the */ 
                                /* exact answer */ 
    exact = log(125./631.)/18.; 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
} 
 
float fcn(float x) 
{    
    return  1.0/(5.0*x*x*x+6.0); 
} 

Output 

integral  =     -0.090 
exact     =     -0.090 

Example 2 
The Cauchy principal value of 

� �
� �5

31

ln 125 / 6311
185 6

dx
x x�

�

�
�  

is again computed. The values of the actual and estimated error are printed as well. 
Note that these numbers are machine dependent. Furthermore, the error estimate is 
usually pessimistic. That is, the actual error is usually smaller than the error estimate,  
as is the case in this example. The number of function evaluations also are printed. 

#include <math.h> 
#include <imsl.h> 
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float           fcn(float x); 
  
main() 
{ 
    int         n_evals; 
    float       q, exact, err_est, exact_err; 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_cauchy (fcn, -1.0, 5.0, 0.0,  
                               IMSL_ERR_EST, &err_est,  
                               IMSL_N_EVALS, &n_evals, 
                               0);  
                                /* Print the result and the */ 
                                /* exact answer */ 
    exact = log(125./631.)/18.; 
    exact_err = fabs(exact - q); 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
    printf("error estimate   = %e\nexact error      = %e\n", err_est, 
           exact_err); 
    printf("The number of function evaluations  =  %d\n", n_evals); 
} 
 
float fcn(float x) 
{    
    return  1.0/(5.0*x*x*x+6.0); 
} 

Output 

integral  =     -0.090 
exact     =     -0.090 
error estimate   = 2.160174e-06 
exact error      = 0.000000e+00 
The number of function evaluations  =  215 

Warning Errors 
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested 

tolerance from being achieved, has been 
detected. 

IMSL_PRECISION_DEGRADATION A degradation in precision has been 
detected. 

Fatal Errors 
IMSL_MAX_SUBINTERVALS The maximum number of subintervals 

allowed has been reached. 

int_fcn_smooth 
Integrates a smooth function using a nonadaptive rule. 

Synopsis 
#include <imsl.h>  
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float imsl_f_int_fcn_smooth (float fcn(), float a, float b, �, 0) 

The type double function is imsl_d_int_fcn_smooth. 

Required Arguments 
float fcn (float x)   (Input) 

User-supplied function to be integrated. 
float a   (Input) 

Lower limit of integration. 
float b   (Input) 

Upper limit of integration. 

Return Value 
The value of 

� �fcn
b

a
x dx�  

is returned. If no value can be computed, NaN is returned. 

Synopsis with Optional Arguments 
#include <imsl.h>  
float imsl_f_int_fcn_smooth (float fcn(), float a, float b, 

IMSL_ERR_ABS, float err_abs,  
IMSL_ERR_REL, float err_rel,  
IMSL_ERR_EST, float *err_est,  
IMSL_FCN_W_DATA, float fcn(), void *data, 
0) 

Optional Arguments 
IMSL_ERR_ABS, float err_abs   (Input) 

Absolute accuracy desired. 
Default: err  _abs ��

where � is the machine precision 
IMSL_ERR_REL, float err_rel   (Input) 

Relative accuracy desired. 
Default: e  rr_rel ��

where � is the machine precision 
IMSL_ERR_EST, float *err_est   (Output) 

Address to store an estimate of the absolute value of the error. 
IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input) 

User supplied function to be integrated, which also accepts a pointer to data 
that is supplied by the user.  data is a pointer to the data to be passed to the 
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user-supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 

Description 
The function imsl_f_int_fcn_smooth is designed to integrate smooth functions. It 
implements a nonadaptive quadrature procedure based on nested Paterson rules of 
order 10, 21, 43, and 87. These rules are positive quadrature rules with degree of 
accuracy 19, 31, 64, and 130, respectively. The function imsl_f_int_fcn_smooth 
applies these rules successively, estimating the error, until either the error estimate 
satisfies the user-supplied constraints or the last rule is applied. 

This function is not very robust, but for certain smooth functions it can be efficient. If 
imsl_f_int_fcn_smooth should not perform well, we recommend the use of the 
function imsl_f_int_fcn_sing. 

The function imsl_f_int_fcn_smooth is based on the subroutine QNG by Piessens 
et al. (1983). 

Examples 

Example 1 
The value of 

2 2

0
1xxe dx e� ��  

is computed. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
 
main() 
{ 
    float       q, exact; 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_smooth (fcn, 0., 2., 0); 
                                /* Print the result and the */ 
                                /* exact answer */ 
    exact = exp(2.0) + 1.0; 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
} 
 
float fcn(float x) 
{    
    return  x * exp(x); 
} 

Output 

integral  =      8.389 
exact     =      8.389 
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Example 2 
The value of 

2 2

0
1xxe dx e� ��  

is again computed. The values of the actual and estimated error are printed as well. 
Note that these numbers are machine dependent. Furthermore, the error estimate is 
usually pessimistic. That is, the actual error is usually smaller than the error estimate,  
as is the case in this example. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x); 
 
 main() 
{ 
    float       q, exact, err_est, exact_err; 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_smooth (fcn, 0.0, 2.0, 
                               IMSL_ERR_EST, &err_est, 
                               0); 
                                /* Print the result and the */ 
                                /* exact answer */ 
    exact = exp(2.0) + 1.0; 
    exact_err = fabs(exact - q); 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
    printf("error estimate   = %e\nexact error      = %e\n", err_est, 
             exact_err); 
} 
 
float fcn(float x) 
{    
    return  x * exp(x); 
} 

Output 

integral  =      8.389 
exact     =      8.389 
error estimate   = 5.000267e-05 
exact error      = 9.536743e-07 

Fatal Errors 
IMSL_MAX_STEPS The maximum number of steps allowed have been 

taken. The integrand is too difficult for this routine. 
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int_fcn_2d 
Computes a two-dimensional iterated integral. 

Synopsis 
#include <imsl.h>  
float imsl_f_int_fcn_2d (float fcn(), float a, float b, float gcn (float x), 

float hcn (float x), �, 0) 

The type double function is imsl_d_int_fcn_2d. 

Required Arguments 
float fcn (float x, float y)   (Input) 

User-supplied function to be integrated. 
float a   (Input) 

Lower limit of outer integral. 
float b   (Input) 

Upper limit of outer integral. 
float gcn (float x)   (Input) 

User-supplied function to evaluate the lower limit of the inner integral. 
float hcn (float x)   (Input) 

User-supplied function to evaluate the upper limit of the inner integral. 

Return Value 
The value of 

� �
� �

� �
fcn ,

b hcn x

a gcn x
x y dydx� �  

is returned. If no value can be computed, NaN is returned. 

Synopsis with Optional Arguments 
#include <imsl.h>  
float imsl_f_int_fcn_2d (float fcn(), float a, float b, float gcn (), float 

hcn (), 
IMSL_ERR_ABS, float err_abs,  
IMSL_ERR_REL, float err_rel,  
IMSL_ERR_EST, float *err_est,  
IMSL_MAX_SUBINTER, int max_subinter,  
IMSL_N_SUBINTER, int *n_subinter,  
IMSL_N_EVALS, int *n_evals,  
IMSL_FCN_W_DATA, float fcn(), void *data, 
IMSL_GCN_W_DATA, float gcn(), void *data, 
IMSL_HCN_W_DATA, float hcn(), void *data, 
0) 
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Optional Arguments 
IMSL_ERR_ABS, float err_abs   (Input) 

Absolute accuracy desired.  
Default: err  _abs ��

where � is the machine precision 
IMSL_ERR_REL, float err_rel   (Input) 

Relative accuracy desired.  
Default: e  rr_rel ��

where � is the machine precision 
IMSL_ERR_EST, float *err_est   (Output) 

Address to store an estimate of the absolute value of the error. 
IMSL_MAX_SUBINTER, int max_subinter   (Input) 

Number of subintervals allowed.  
Default: max_subinter = 500 

IMSL_N_SUBINTER, int *n_subinter   (Output) 
Address to store the number of subintervals generated. 

IMSL_N_EVALS, int *n_evals   (Output) 
Address to store the number of evaluations of fcn. 

IMSL_FCN_W_DATA, float fcn (float x, float y, void *data), void *data 
(Input) 
User supplied function to be integrated, which also accepts a pointer to data 
that is supplied by the user.  data is a pointer to the data to be passed to the 
user-supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 

IMSL_GCN_W_DATA, float gcn (float x, void *data), void *data (Input) 
User supplied function to evaluate the lower limit of the inner integral, which 
also accepts a pointer to data that is supplied by the user.  See the 
Introduction, Passing Data to User-Supplied Functions at the beginning of 
this manual for more details. 

IMSL_HCN_W_DATA, float hcn (float x, void *data), void *data (Input) 
User supplied function to evaluate the upper limit of the inner integral, which 
also accepts a pointer to data that is supplied by the user.  data is a pointer to 
the data to be passed to the user-supplied function.  See the Introduction, 
Passing Data to User-Supplied Functions at the beginning of this manual for 
more details. 
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Description 
The function imsl_f_int_fcn_2d approximates the two-dimensional iterated integral  

� �
� �

� �
,

b h x

a g x
f x y dydx� �  

An estimate of the error is returned in err_est. The lower-numbered rules are used for 
less smooth integrands while the higher-order rules are more efficient for smooth 
(oscillatory) integrands. 

Examples 

Example 1 
In this example, compute the value of the integral  

� �
1 3 2

0 1
cosy x y dyd�� � x  

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x, float y), gcn(float x), hcn(float x); 
 
main() 
{ 
    float       q, exact; 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_2d (fcn, 0.0, 1.0, gcn, hcn, 0); 
                    /* print the result and the exact answer */ 
    exact = 0.5*(cos(9.0)+cos(2.0)-cos(10.0)-cos(1.0)); 
    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
} 
 
float fcn(float x, float y) 
{    
    return  y * cos(x+y*y); 
} 
 
float gcn(float x) 
{ 
    return 1.0; 
} 
 
float hcn(float x) 
{ 
    return 3.0; 
} 

Output 

integral  =     -0.514 
exact     =     -0.514 
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Example 2 
In this example, compute the value of the integral 

� �
1 3 2

0 1
cosy x y dyd�� � x  

The values of the actual and estimated error are printed as well. Note that these 
numbers are machine dependent. Furthermore, the error estimate is usually pessimistic. 
That is, the actual error is usually smaller than the error estimate, as is the case in this 
example. The number of function evaluations also are printed. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(float x, float y), gcn(float x), hcn(float x); 
  
main() 
{ 
    int         n_evals; 
    float       q, exact, err_est, exact_err; 
                                /* Evaluate the integral */ 
    q = imsl_f_int_fcn_2d (fcn, 0., 1., gcn, hcn,  
                           IMSL_ERR_EST, &err_est,  
                           IMSL_N_EVALS, &n_evals, 
                           0);  
                                /* Print the result and the */ 
                                /* exact answer */ 
    exact = 0.5*(cos(9.0)+cos(2.0)-cos(10.0)-cos(1.0)); 
    exact_err = fabs(exact - q); 
 

    printf("integral  = %10.3f\nexact     = %10.3f\n", q, exact); 
    printf("error estimate   = %e\nexact error      = %e\n", err_est, 
             exact_err); 
    printf("The number of function evaluations  =  %d\n", n_evals); 
} 
 
float fcn(float x, float y) 
{    
    return  y * cos(x+y*y); 
} 
 
float gcn(float x) 
{ 
    return 1.0; 
} 
 
float hcn(float x) 
{ 
    return 3.0; 
} 
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Output 

integral  =     -0.514 
exact     =     -0.514 
error estimate   = 3.065193e-06 
exact error      = 1.192093e-07 
The number of function evaluations  =  441 

Warning Errors 
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested 

tolerance from being achieved, has been 
detected. 

IMSL_PRECISION_DEGRADATION A degradation in precision has been 
detected. 

Fatal Errors 
IMSL_MAX_SUBINTERVALS The maximum number of subintervals 

allowed has been reached. 

int_fcn_hyper_rect 
Integrate a function on a hyper-rectangle,  

� �
0 1

0 1
0 1 1, ,n

n

b b

n na a 0f x x dx dx�

�

� �� �� � �  

Synopsis 
#include <imsl.h>  
float imsl_f_int_fcn_hyper_rect (float fcn(), int ndim, float a[],  

float b[], �, 0) 

The type double function is imsl_d_int_fcn_hyper_rect. 

Required Arguments 
float fcn (int ndim, float x[])   (Input) 

User-supplied function to be integrated. 
int ndim   (Input) 

The dimension of the hyper-rectangle. 
float a[]   (Input) 

Lower limits of integration. 
float b[]   (Input) 

Upper limits of integration. 

Return Value 
The value of 
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0 1

0 1
0 1 1, ,n

n

b b

n na a
f x x dx dx�

�

� �� �� � �  

is returned. If no value can be computed, then NaN is returned. 

Synopsis with Optional Arguments 
#include <imsl.h>  
float imsl_f_int_fcn_hyper_rect (float fcn(), int ndim, float a[], float 

b[], IMSL_ERR_ABS, float err_abs,  
IMSL_ERR_REL, float err_rel,  
IMSL_ERR_EST, float *err_est,  
IMSL_MAX_EVALS, int max_evals,  
IMSL_FCN_W_DATA, float fcn(), void *data, 
0) 

Optional Arguments 
IMSL_ERR_ABS, float err_abs   (Input) 

Absolute accuracy desired.  
Default: err  _abs ��

where � is the machine precision 
IMSL_ERR_REL, float err_rel   (Input) 

Relative accuracy desired.  
Default: e  rr_rel ��

where � is the machine precision 
IMSL_ERR_EST, float *err_est   (Output) 

Address to store an estimate of the absolute value of the error. 
IMSL_MAX_EVALS, int max_evals   (Input) 

Number of evaluations allowed. 
Default: max_evals = 32n. 

IMSL_FCN_W_DATA, float fcn (int ndim, float x[], void *data), void *data 
(Input) 
User supplied function to be integrated, which also accepts a pointer to data 
that is supplied by the user.  data is a pointer to the data to be passed to the 
user-supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 

Description 
The function imsl_f_int_fcn_hyper_rect approximates the n-dimensional 
iterated integral 

� �
1

0 1
0 1 1, ,n

n

b b

n na a 0f x x dx d�

�

� �� �� � � x  
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An estimate of the error is returned in the optional argument err_est. The 
approximation is achieved by iterated applications of product Gauss formulas. The 
integral is first estimated by a two-point tensor product formula in each direction. Then 
for i = 1, �, n, the function calculates a new estimate by doubling the number of points 
in the i-th direction, then halving the number immediately afterwards if the new 
estimate does not change appreciably. This process is repeated until either one 
complete sweep results in no increase in the number of sample points in any dimension; 
the number of Gauss points in one direction exceeds 256; or the number of function 
evaluations needed to complete a sweep exceeds max_evals. 

Example 
In this example, we compute the integral of 

� �2 2 2
1 2 3x x xe� � �  

on an expanding cube. The values of the error estimates are machine dependent. The 
exact integral over R3 is �3/2. 

#include <math.h> 
#include <imsl.h> 
 
float           fcn(int n, float x[]); 
  
main() 
{ 
    int         i, j, ndim = 3; 
    float       q, limit, a[3], b[3]; 
 
    printf("       integral       limit \n"); 
    limit = pow(imsl_f_constant("pi",0), 1.5); 
                                /* Evaluate the integral */ 
    for (i = 0;  i < 6;  i++) { 
        for (j = 0; j < 3;  j++) { 
            a[j] = -(i+1)/2.; 
            b[j] = (i+1)/2.; 
        } 
        q = imsl_f_int_fcn_hyper_rect (fcn, ndim, a, b, 0); 
                                /* Print the result and the */ 
                                /* limiting answer */ 
        printf("   %10.3f    %10.3f\n", q, limit); 
    } 
} 
 
float fcn(int n, float x[]) 
{    
    float     s; 
    s = x[0]*x[0] + x[1]*x[1] + x[2]*x[2]; 
    return  exp(-s); 
} 
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Output 

integral       limit  
 0.785         5.568 
 3.332         5.568 
 5.021         5.568 
 5.491         5.568 
 5.561         5.568 
 5.568         5.568 

Warning Errors 
IMSL_MAX_EVALS_TOO_LARGE The argument max_evals was set greater than 

28n. 

Fatal Errors 
IMSL_NOT_CONVERGENT The maximum number of function evaluations has 

been reached, and convergence has not been 
attained. 

int_fcn_qmc  
Integrates a function on a hyper-rectangle using a quasi-Monte Carlo method. 

Synopsis 
#include <imsl.h> 
float imsl_f_int_fcn_qmc (float fcn(), int ndim, float a[],  

float b[], �, 0) 

The type double function is imsl_d_int_fcn_qmc. 

Required Arguments 
float fcn (int ndim, float x[])   (Input) 

User-supplied function to be integrated. 
int ndim   (Input) 

The dimension of the hyper-rectangle. 
float a[]   (Input) 

Lower limits of integration. 
float b[]   (Input) 

Upper limits of integration. 

Return Value 
The value of 

� �
0 1

0 1
0 1 1, ,n

n

b b

n na a 0f x x dx dx�

�

� �� �� � �  

is returned. If no value can be computed, then NaN is returned. 
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Synopsis with Optional Arguments 
#include <imsl.h> 
float *imsl_f_int_fcn_qmc (float fcn(), int ndim, float a[], float b[], 
 IMSL_ERR_ABS, float err_abs, 

IMSL_ERR_REL, float err_rel,  
IMSL_ERR_EST, float *err_est, 
IMSL_MAX_EVALS, int max_evals, 
IMSL_BASE, int base, 
IMSL_SKIP, int skip, 
IMSL_FCN_W_DATA, float fcn(), void *data, 
0) 

Optional Arguments 
IMSL_ERR_ABS, float err_abs   (Input) 

Absolute accuracy desired. 
Default: err_abs = 1.0e-4. 

IMSL_ERR_REL, float err_rel   (Input) 
Relative accuracy desired.  
Default: err_abs = 1.0e-4. 

IMSL_ERR_EST, float *err_est   (Output) 
Address to store an estimate of the absolute value of the error. 

IMSL_MAX_EVALS, int max_evals   (Input) 
Number of evaluations allowed. 
Default: No limit. 

IMSL_MAX_EVALS, int max_evals   (Input) 
Number of evaluations allowed. 
Default: No limit. 

IMSL_BASE, int base   (Input) 
The value of IMSL_BASE used to compute the Faure sequence. 

IMSL_SKIP, int skip   (Input) 
The value of IMSL_SKIP used to compute the Faure sequence. 

IMSL_FCN_W_DATA, float fcn (int ndim, float x[], void *data), void *data 
(Input) 
User supplied function to be integrated, which also accepts a pointer to data 
that is supplied by the user.  data is a pointer to the data to be passed to the 
user-supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 

Description 
Integration of functions over hypercubes by direct methods, such as 
imsl_f_fcn_hyper_rect, is practical only for fairly low dimensional hypercubes. 
This is because the amount of work required increases exponential as the dimension 
increases. 
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An alternative to direct methods is Monte Carlo, in which the integral is evaluated as 
the value of the function averaged over a sequence of randomly chosen points. Under 
mild assumptions on the function, this method will converge like 1/n1/2, where n is the 
number of points at which the function is evaluated. 

It is possible to improve on the performance of Monte Carlo by carefully choosing the 
points at which the function is to be evaluated. Randomly distributed points tend to be 
non-uniformly distributed. The alternative to at sequence of random points is a low-
discrepancy sequence. A low-discrepancy sequence is one that is highly uniform. 

This function is based on the low-discrepancy Faure sequence as computed by 
imsl__f_faure_next_point. 

Example 
#include <imsl.h> 
#include <math.h> 
 
float fcn(int ndim, float x[]); 
 
main() 
{ 
    int         k, ndim = 10; 
    float       q, a[10], b[10]; 
 
    for (k = 0;  k < ndim;  k++) { 
        a[k] = 0.0; 
        b[k] = 1.0; 
    } 
  
    q = imsl_f_int_fcn_qmc (fcn, ndim, a, b, 0); 
    printf ("integral=%10.3f\n”, q); 
} 

float fcn (int ndim, float x[]) 
{ 
    int         i, j; 
    float       prod, sum = 0.0, sign = -1.0; 
 
    for (i = 0;  i < ndim;  i++) { 
        prod = 1.0; 
        for (j = 0;  j <= i;  j++) { 
            prod *= x[j]; 
        } 
        sum += sign * prod; 
        sign = -sign; 
    } 
    return sum; 
} 

Output 
 
q = -0.333 
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Fatal Errors 
IMSL_NOT_CONVERGENT The maximum number of function evaluations has 

been reached and convergence has not been 
attained. 

gauss_quad_rule 
Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various 
classical weight functions. 

Synopsis 
#include <imsl.h> 
void imsl_f_gauss_quad_rule (int n, float weights[], float points[], �, 

0) 

The type double procedure is imsl_d_gauss_quad_rule. 

Required Arguments 
int n   (Input) 

Number of quadrature points. 
float weights[]   (Output) 

Array of length n containing the quadrature weights. 
float points[]   (Output) 

Array of length n containing quadrature points. The default action of this 
routine is to produce the Gauss Legendre points and weights. 

Synopsis with Optional Arguments 
#include <imsl.h> 
void imsl_f_gauss_quad_rule (int n, float weights[], float points[], 

IMSL_CHEBYSHEV_FIRST,  
IMSL_CHEBYSHEV_SECOND,  
IMSL_HERMITE,  
IMSL_COSH,  
IMSL_JACOBI, float alpha, float beta,  
IMSL_GEN_LAGUERRE, float alpha,  
IMSL_FIXED_POINT, float a,  
IMSL_TWO_FIXED_POINTS, float a, float b,  
0) 

Optional Arguments 
IMSL_CHEBYSHEV_FIRST 

Compute the Gauss points and weights using the weight function  

21/ 1 x�  
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on the interval (�1, 1). 
IMSL_CHEBYSHEV_SECOND 

Compute the Gauss points and weights using the weight function 

21 x�  

on the interval (�1, 1). 
IMSL_HERMITE 

Compute the Gauss points and weights using the weight function exp (�x2) on 
the interval (��, �). 

IMSL_COSH 
Compute the Gauss points and weights using the weight function 1 
 (cosh (x)) 
on the interval (��, �). 

IMSL_JACOBI, float alpha, float beta   (Input) 
Compute the Gauss points and weights using the weight function  
(1 � x)a (1 + x)b on the interval (�1, 1). 

IMSL_GEN_LAGUERRE, float alpha   (Input) 
Compute the Gauss points and weights using the weight function exp (�x)xa 
on the interval (0, �). 

IMSL_FIXED_POINT, float a   (Input) 
Compute the Gauss-Radau points and weights using the specified weight 
function and the fixed point a. This formula will integrate polynomials of 
degree less than 2n � 1 exactly. 

IMSL_TWO_FIXED_POINTS, float a, float b   (Input) 
Compute the Gauss-Lobatto points and weights using the specified weight 
function and the fixed points a and b. This formula will integrate polynomials 
of degree less than 2n � 2 exactly. 

Description 
The function imsl_f_gauss_quad_rule produces the points and weights for the 
Gauss, Gauss-Radau, or Gauss-Lobatto quadrature formulas for some of the most 
popular weights. The default weight is the weight function identically equal to 1 on the 
interval (�1, 1). In fact, it is slightly more general than this suggests, because the extra 
one or two points that may be specified do not have to lie at the endpoints of the 
interval. This function is a modification of the subroutine GAUSSQUADRULE  
(Golub and Welsch 1969). 

In the default case, the function returns points in x = points and weights in 
w = weights so that 

� � � � � �
1

Nb

i ia
i

f x w x dx f x w
�

���  

for all functions f that are polynomials of degree less than 2n. 



 

 
 

284 � gauss_quad_rule IMSL C/Math/Library 

 

 

 

If the keyword IMSL_FIXED_POINT is specified, then one of the above xi is equal to a. 
Similarly, if the keyword IMSL_TWO_FIXED_POINTS is specified, then two of the 
components of x are equal to a and b. In general, the accuracy of the above quadrature 
formula degrades when n increases. The quadrature rule will integrate all functions f 
that are polynomials of degree less than 2n � F, where F is the number of fixed points. 

Examples 

Example 1 
The three-point Gauss Legendre quadrature points and weights are computed and used 
to approximate the integrals 

1

1
0, , 6ix dx i

�

�� �  

Notice that the integrals are exact for the first six monomials, but that the last 
approximation is in error. In general, the Gauss rules with k points integrate 
polynomials with degree less than 2k exactly. 

#include <math.h> 
#include <imsl.h> 
 
#define  QUADPTS  3 
#define  POWERS   7 
 
main() 
{ 
    int         i, j; 
    float       weights[QUADPTS], points[QUADPTS], s[POWERS]; 
                                /* Produce the Gauss Legendre */ 
                                /* quadrature points */ 
    imsl_f_gauss_quad_rule (QUADPTS, weights, points, 0); 
                                /* integrate the functions */ 
                                /* 1, x, ..., pow(x,POWERS-1) */ 
    for(i = 0;  i < POWERS;  i++) { 
        s[i] = 0.0; 
        for(j = 0;  j < QUADPTS;  j++) { 
            s[i] += weights[j]*imsl_fi_power(points[j], i); 
        } 
    } 
    printf("The integral from -1 to 1 of pow(x, i) is\n"); 
    printf("Function            Quadrature    Exact\n\n"); 
    for(i = 0;  i < POWERS;  i++){ 
        float   z; 
        z = (1-i%2)*2./(i+1.); 
        printf("pow(x, %d)        %10.3f  %10.3f\n", i, s[i], z); 
    } 
} 
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, 6

Output 

The integral from -1 to 1 of pow(x, i) is 
Function            Quadrature    Exact 
 
pow(x, 0)             2.000       2.000 
pow(x, 1)             0.000       0.000 
pow(x, 2)             0.667       0.667 
pow(x, 3)             0.000       0.000 
pow(x, 4)             0.400       0.400 
pow(x, 5)             0.000       0.000 
pow(x, 6)             0.240       0.286 

Example 2 
The three-point Gauss Laguerre quadrature points and weights are computed and used 
to approximate the integrals 

0
! 0,i xx xe dx i i

�
�

� �� �  

Notice that the integrals are exact for the first six monomials, but that the last 
approximation is in error. In general, the Gauss rules with k points integrate 
polynomials with degree less than 2k exactly. 

#include <math.h> 
#include <imsl.h> 
 
#define  QUADPTS  3 
#define  POWERS   7 
 
main() 
{ 
    int         i, j; 
    float       weights[QUADPTS], points[QUADPTS], s[POWERS], z; 
                                /* Produce the Gauss Legendre */ 
                                /* quadrature points */ 
    imsl_f_gauss_quad_rule (QUADPTS, weights, points,  
                            IMSL_GEN_LAGUERRE, 1.0, 

                            0); 
                                /* Integrate the functions */ 
                                /* 1, x, ..., pow(x,POWERS-1) */ 
    for(i = 0;  i < POWERS;  i++) { 
        s[i] = 0.0; 
        for(j = 0;  j < QUADPTS;  j++){ 
            s[i] += weights[j]*imsl_fi_power(points[j], i); 
        } 
    } 
    printf("The integral from 0 to infinity of pow(x, i)*x*exp(x) is\n"); 
    printf("Function            Quadrature    Exact\n\n"); 
    for(z = 1.0, i = 0;  i < POWERS;  i++){ 
        z *= (i+1); 
        printf("pow(x, %d)        %10.3f  %10.3f  \n", i, s[i], z); 
    } 
} 
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Output 

The integral from 0 to infinity of pow(x, i)*x*exp(x) is 
Function            Quadrature    Exact 
 
pow(x, 0)             1.000       1.000   
pow(x, 1)             2.000       2.000   
pow(x, 2)             6.000       6.000   
pow(x, 3)            24.000      24.000   
pow(x, 4)           120.000     120.000   
pow(x, 5)           720.000     720.000   
pow(x, 6)          4896.000    5040.000   

fcn_derivative  
Computes the first, second, or third derivative of a user-supplied function. 

Synopsis 

#include <imsl.h> 
float imsl_f_fcn_derivative (float fcn(), float x, …, 0) 

The type double procedure is imsl_d_fcn_derivative. 

Required Arguments  
float fcn(float x)   (Input) 

User-supplied function whose derivative at x will be computed. 
float x   (Input) 

Point at which the derivative will be evaluated. 

Return Value  
An estimate of the first, second or third derivative of fcn at x. If no value can be 
computed, NaN is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 

float imsl_f_fcn_derivative (float fcn(), float x,  
IMSL_ORDER, int order, 
IMSL_INITIAL_STEPSIZE, float stepize, 
IMSL_RELATIVE_ERROR, float tolerance, 
IMSL_FCN_W_DATA, float fcn(), void *data, 
0) 

Optional Arguments 
IMSL_ORDER, int order   (Input) 

The order of the desired derivative (1, 2 or 3). 
Default: order = 1. 
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IMSL_INITIAL_STEPSIZE, float stepsize   (Input) 
Beginning value used to compute the size of the interval for approximating the 
derivative. Stepsize must be chosen small enough that fcn is defined and 
reasonably smooth in the interval  
(x � 4.0*stepsize, x + 4.0*stepsize), yet large enough to avoid roundoff 
problems. 
Default: stepsize = .01 

IMSL_RELATIVE_ERROR, float tolerance   (Input) 
The relative error desired in the derivative estimate. Convergence is assumed 
when (2/3) |d2 � d1| < tolerance, for two successive derivative estimates,  
d1 and d2. 
Default: tolerance = 4

�  
IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input) 

User supplied function whose derivative at x will be computed, which also 
accepts a pointer to data that is supplied by the user.  data is a pointer to the 
data to be passed to the user-supplied function.  See the Introduction, Passing 
Data to User-Supplied Functions at the beginning of this manual for more 
details. 

Description 
The function imsl_f_fcn_derivative produces an estimate to the first, second, or 
third derivative of a function. The estimate originates from first computing a spline 
interpolant to the input function using value within the interval  
(x � 4.0*stepsize, x + 4.0*stepsize), then differentiating the spline at x. 

Examples 

Example 1 
This example obtains the approximate first derivative of the function  
f(x) = �2sin(3x/2) at the point x = 2. 

#include <imsl.h> 
#include <math.h> 
 
void main() 
{ 
    float fcn(float); 
    float x; 
    float deriv; 
 
    x = 2.0; 
 
    deriv = imsl_f_fcn_derivative(fcn, x, 0); 
    printf ("f’(x) = %7.4f\n", deriv); 
} 
 
float fcn(float x) 
{ 
 



 

 
 

288 � fcn_derivative IMSL C/Math/Library 

 

 

 

    return -2.0*sin(1.5*x); 
} 

Output 

f’(x) =  2.9701 

Example 2 
This example obtains the approximate first, second, and third derivative of the function 
f(x) = �2sin(3x/2) at the point x = 2. 

#include "imsl.h" 
#include <math.h> 
 
void main() 
{ 
        double fcn(double); 
        double x; 
        double tolerance; 
        double deriv; 
 
        x = 2.0; 
 
        deriv = imsl_d_fcn_derivative(fcn, x, 
                0); 
        printf ("f'(x)   = %7.3f, error = %5.2e\n", deriv, 
                fabs(deriv+3.0*cos(1.5*x))); 
 
        deriv = imsl_d_fcn_derivative(fcn, x, 
                IMSL_ORDER, 2, 
                0); 
        printf ("f''(x)  = %7.4f, error = %5.2e\n", deriv, 
                fabs(deriv-4.5*sin(1.5*x))); 
 
        deriv = imsl_d_fcn_derivative(fcn, x, 
                IMSL_ORDER, 3, 
                0); 
        printf ("f'''(x) = %7.4f, error = %5.2e\n", deriv, 
                fabs(deriv-6.75*cos(1.5*x))); 
} 
 
double fcn(double x) 
{ 
        return -2.0*sin(1.5*x); 
} 

Output 

f’(x)   =   2.970, error = 1.11e-07 
f’’(x)  =  0.6350, error = 8.52e-09 
f’’’(x) = -6.6824, error = 1.12e-08 
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Chapter 5: Differential Equations 

Routines 
Runge-Kutta method .....................................................ode_runge_kutta 291 
Adam’s or Gear’s method.............................................ode_adams_gear 297 
Method of lines ...................................................... pde_method_of_lines 304 
Solves a parameterized system of differential equations  
with boundary condiditons at two points .................bvp_finite_difference 321 
Fast Poisson solver ........................................................fast_poisson_2d 332 

Usage Notes 
Ordinary Differential Equations 
An ordinary differential equation is an equation involving one or more dependent 
variables called yi, one independent variable, t, and derivatives of the yi with respect to t. 
In the initial-value problem (IVP), the initial or starting values of the dependent 
variables yi at a known value t = t0 are given. Values of yi(t) for t > t0 or t < t0 are 
required. 
The functions imsl_f_ode_runge_kutta and imsl_f_ode_adams_gear solve the 
IVP for ODEs of the form 

� �1, 1,..., ...i
i Ni

dy
, ,y t y y i N

dt
f� �� �

 
with yi = (t = t0) specified. Here, fi is a user-supplied function that must be evaluated at 
any set of values (t, y1, �, yN), i = 1, �, N. 
This problem statement is abbreviated by writing it as a system of first-order ODEs, 
y(t) = [y1(t), �, yN(t)]T, f(t, y) = [f1(t, y), �, fN(t, y)]T, so that the problem becomes  
y� = f(t, y) with initial values y(t0). 
The system 

� �,dy y f t y
dt

�� �
 

is said to be stiff if some of the eigenvalues of the Jacobian matrix 
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are large and negative. This is frequently the case for differential equations modeling 
the behavior of physical systems, such as chemical reactions proceeding to equilibrium 
where subspecies effectively complete their reactions in different epochs. An alternate 
model concerns discharging capacitors such that different parts of the system have 
widely varying decay rates (or time constants). 
Users typically identify stiff systems by the fact that numerical differential equation 
solvers such as imsl_f_ode_runge_kutta are inefficient, or else completely fail. 
Special methods are often required. The most common inefficiency is that a large 
number of evaluations of f(t, y) (and hence an excessive amount of computer time) are 
required to satisfy the accuracy and stability requirements of the software. In such 
cases, use the IMSL function imsl_f_ode_adams_gear. For more discussion about 
stiff systems, see Gear (1971, Chapter 11) or Shampine and Gear (1979). 

Partial Differential Equations 
The routine imsl_f_pde_method_of_lines, page 304, solves the IVP problem for 
systems of the form 

22
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and subject to the initial conditions 

ui(x, t = t0) = gi(x) 

for i = 1, �, N. Here, fi, gi,  
� � � �, andi i
j j� �

 
are user-supplied, j = 1, 2. 
The routine imsl_f_bvp_finite_difference, page 321, solves the boundary value 
problem (BVP) for systems of the form 

22
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subject to the boundary conditions 
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and subject to the initial conditions 
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for i = 1, �, N. Here, 
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user-supplied.  
In this formulation, p is an optional continuation parameter. It can be useful in solving 
nonlinear problems. When used, p=0 corresponds to an easy-to-solve problem and p=1 
corresponds to the actual problem to be solved.  
The routine imsl_f_fast_poisson_2d, page 332, solves Laplace’s, Poisson’s, or 
Helmholtz’s equation in two dimensions. This routine uses a fast Poisson method to 
solve a PDE of the form  

� �
2 2

2 2 ,u u cu f x y
x y

� �

� �
� � �

 

over a rectangle, subject to boundary conditions on each of the four sides. The scalar 
constant c and the function f are user specified. 

ode_runge_kutta 
Solves an initial-value problem for ordinary differential equations using the  
Runge-Kutta-Verner fifth-order and sixth-order method. 

Synopsis 
#include <imsl.h>  
float imsl_f_ode_runge_kutta_mgr (int task, void **state, �, 0) 
void imsl_f_ode_runge_kutta (int neq, float *t, float tend, float y[], 

void *state, void fcn()) 
The type double functions are imsl_d_ode_runge_kutta_mgr and 

imsl_d_ode_runge_kutta. 

Required Arguments for imsl_ f_ode_runge_kutta_mgr 
int task   (Input) 

This function must be called with task set to IMSL_ODE_INITIALIZE to set 
up for solving an ODE system and with task equal to IMSL_ODE_RESET to 
clean up after it has been solved. These values for task are defined in the 
include file, imsl.h.  
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void **state   (Input/Output) 
The current state of the ODE solution is held in a structure pointed to by 
state. It cannot be directly manipulated. 

Required Arguments for imsl_f_ode_runge_kutta 
int neq   (Input) 

Number of differential equations. 
float *t   (Input/Output) 

Independent variable. On input, t is the initial independent variable value. On 
output, t is replaced by tend, unless error conditions arise. 

float tend   (Input) 
Value of t at which the solution is desired. The value tend may be less than 
the initial value of t. 

float y[]   (Input/Output) 
Array with neq components containing a vector of dependent variables. On 
input, y contains the initial values. On output, y contains the approximate 
solution. 

void *state   (Input/Output) 
The current state of the ODE solution is held in a structure pointed to by 
state. It must be initialized by a call to imsl_f_ode_runge_kutta_mgr. It 
cannot be directly manipulated. 

void fcn (int neq, float t, float *y, float *yprime) 
User-supplied function to evaluate the right-hand side where 
float *yprime   (Output) 
Array with neq components containing the vector y�. This function computes 

yprime � � � �
dy
dt

y f t y,b g
 

and neq, t, and *y are defined immediately preceding this function. 

Synopsis with Optional Arguments 
#include <imsl.h>  
float imsl_f_ode_runge_kutta_mgr (int task, void **state, 

IMSL_TOL, float tol, 
IMSL_HINIT, float hinit, 
IMSL_HMIN, float hmin, 
IMSL_HMAX, float hmax, 
IMSL_MAX_NUMBER_STEPS, int max_steps, 
IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals, 
IMSL_SCALE, float scale, 
IMSL_NORM, int norm, 
IMSL_FLOOR, float floor, 
IMSL_NSTEP, int *nstep, 
IMSL_NFCN, int *nfcn, 
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IMSL_HTRIAL, float *htrial, 
IMSL_FCN_W_DATA, void fcn (), void *data, 
0) 

Optional Arguments 
IMSL_TOL, float tol   (Input) 

Tolerance for error control. An attempt is made to control the norm of the 
local error such that the global error is proportional to tol. 
Default: tol = 100.0*imsl_f_machine(4) 

IMSL_HINIT, float hinit   (Input) 
Initial value for the step size h. Steps are applied in the direction of 
integration.  
Default: hinit = 0.001|tend � t| 

IMSL_HMIN, float hmin   (Input) 
Minimum value for the step size h.  
Default: hmin � 0.0 

IMSL_HMAX, float hmax   (Input) 
Maximum value for the step size h.  
Default: hmax = 2.0 

IMSL_MAX_NUMBER_STEPS, int max_steps   (Input) 
Maximum number of steps allowed.  
Default: max_steps = 500 

IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals   (Input) 
Maximum number of function evaluations allowed.  
Default: max_fcn_evals = No enforced limit 

IMSL_SCALE, float scale   (Input) 
A measure of the scale of the problem, such as an approximation to the 
Jacobian along the trajectory.  
Default: scale = 1 

IMSL_NORM, int norm   (Input) 
Switch determining the error norm. In the following, ei is the absolute value of 
the error estimate for yi. 
 
0 minimum of the absolute error and the relative error, equals  
 the maximum of ei / max (|yi|, 1) for i = 1, �, neq. 
1 absolute error, equals maxiei. 
2 maxi(ei � wi) where wi = max (|yi|, floor). The value of floor  
 is reset using IMSL_FLOOR. 
Default: norm = 0 

IMSL_FLOOR, float floor   (Input) 
This is used with IMSL_NORM. It provides a positive lower bound for the error 
norm option with value 2. 
Default: floor = 1.0 
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IMSL_NSTEP, int *nstep   (Output) 
Returns the number of steps taken. 

IMSL_NFCN, int *nfcn   (Output) 
Returns the number of function evaluations used. 

IMSL_HTRIAL, float *htrial   (Output) 
Returns the current trial step size. 

IMSL_FCN_W_DATA, void fcn (int neq, float t, float *y, float *yprime, void 
*data), void *data, (Input) 
User-supplied function to evaluate the right-hand side, which also accepts a 
pointer to data that is supplied by the user.  data is a pointer to the data to be 
passed to the user-supplied function.  See the Introduction, Passing Data to 
User-Supplied Functions at the beginning of this manual for more details. 

Description 
The function imsl_f_ode_runge_kutta finds an approximation to the solution of a 
system of first-order differential equations of the form 

dy
dt

y f t y� � � ,b g
 

with given initial conditions for y at the starting value for t. The function attempts to 
keep the global error proportional to a user-specified tolerance. The proportionality 
depends on the differential equation and the range of integration. 
The function imsl_f_ode_runge_kutta is efficient for nonstiff systems where the 
evaluations of f(t, y) are not expensive. The code is based on an algorithm designed by 
Hull et al. (1976, 1978). It uses Runge-Kutta formulas of order five and six developed 
by J.H. Verner. 

Examples 

Example 1 
This example solves 

dy
dt

y� �

 
over the interval [0, 1] with the initial condition y(0) = 1. The solution is y(t) = e-t. 
The ODE solver is initialized by a call to imsl_f_ode_runge_kutta_mgr with 
IMSL_ODE_INITIALIZE. This is the simplest use of the solver, so none of the default 
values are changed. The function imsl_f_ode_runge_kutta is then called to 
integrate from t = 0 to t = 1. 

#include <imsl.h> 
#include <math.h> 
 
void        fcn (int neq, float t, float y[], float yprime[]); 
 
main() 
{ 
    int         neq = 1;        /* Number of ode’s */ 
    float       t = 0.0;        /* Initial time */ 
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    float       tend = 1.0;     /* Final time */ 
    float       y[1] = {1.0};   /* Initial condition */ 
    void        *state; 
                                /* Initialize the ODE solver */ 
    imsl_f_ode_runge_kutta_mgr(IMSL_ODE_INITIALIZE, &state, 0);  
                                /* Integrate from t=0 to tend=1 */ 
    imsl_f_ode_runge_kutta (neq, &t, tend, y, state, fcn); 
                                /* Print the solution and error */ 
    printf("y[%f] = %f\n", t, y[0]); 
    printf("Error is: %e\n", exp( (double)(-tend) )-y[0]); 
} 
 
void fcn (int neq, float t, float y[], float yprime[]) 
{ 
    yprime[0] = -y[0]; 
} 

Output 
y[1.000000] = 0.367879 
Error is: -9.149755e-09 

Example 2 
Consider a predator-prey problem with rabbits and foxes. Let r be the density of 
rabbits, and let f be the density of foxes. In the absence of any predator-prey interaction, 
the rabbits would increase at a rate proportional to their number, and the foxes would 
die of starvation at a rate proportional to their number. Mathematically, the model 
without species interaction is approximated by the equation 

r� = 2r 

��= �� 

With species interaction, the rate at which the rabbits are consumed by the foxes is 
assumed to equal the value 2rf. The rate at which the foxes increase, because they are 
consuming the rabbits, is equal to rf. Thus, the model differential equations to be solved 
are 

r� = 2r � 2r� 

�� = �� + r� 

For illustration, the initial conditions are taken to be r(0) = 1 and f(0) = 3. The interval 
of integration is 0 � t � 10. In the program, y[0] = r and y[1] = f. The ODE solver is 
initialized by a call to imsl_f_ode_runge_kutta_mgr. The error tolerance is set to 
0.0005. Absolute error control is selected by setting IMSL_NORM to the value one. We 
also request that nstep be set to the current number of steps in the integration. The 
function imsl_f_ode_runge_kutta is then called in a loop to integrate from t = 0 to 
t = 10 in steps of �t = 1. At each step, the solution is printed. Note that nstep is 
updated even though it is not an argument to this function. Its address has been stored 
within imsl_f_ode_runge_kutta_mgr into the area pointed to by state. The last 
call to imsl_f_ode_runge_kutta_mgr with IMSL_ODE_RESET releases workspace. 
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#include <imsl.h> 
 
void            fcn(int neq, float t, float y[], float yprime[]); 
 
main() 
{ 
    int         neq = 2; 
    float       t = 0.0;            /* Initial time */ 
    float       tend;               /* Final time */ 
    float       y[2] = {1.0, 3.0};  /* Initial conditions */ 
    int         k; 
    int         nstep; 
    void        *state; 
                                /* Initialize the ODE solver */ 
    imsl_f_ode_runge_kutta_mgr(IMSL_ODE_INITIALIZE, &state, 
                               IMSL_TOL,    0.0005, 
                               IMSL_NSTEP,  &nstep, 
                               IMSL_NORM,   1, 
                               0); 
 
    printf("\n Start    End     Density of  Density of    Number of"  ); 
    printf("\n Time     Time      Rabbits     Foxes        Steps\n\n"); 
 
    for (k = 0;   k < 10;   k++) { 
        tend = k + 1; 
        imsl_f_ode_runge_kutta (neq, &t, tend, y, state, fcn); 
        printf("%3d %12.3f %12.3f %12.3f %12d\n", k, t, y[0], y[1], nstep); 
    } 
    imsl_f_ode_runge_kutta_mgr(IMSL_ODE_RESET, &state, 0); 
} 
 
void fcn (int neq, float t, float y[], float yprime[]) 
{ 
                                /* Density change rate for Rabbits: */ 
    yprime[0] = 2*y[0]*(1 - y[1]); 
                                /* Density change rate for Foxes: */ 
    yprime[1] =  -y[1]*(1 - y[0]); 
} 

Output 
Start      End       Density of   Density of      Number of 
Time       Time       Rabbits       Foxes          Steps 
 
 0        1.000        0.078        1.465            4 
 1        2.000        0.085        0.578            6 
 2        3.000        0.292        0.250            7 
 3        4.000        1.449        0.187            8 
 4        5.000        4.046        1.444           11 
 5        6.000        0.176        2.256           15 
 6        7.000        0.066        0.908           18 
 7        8.000        0.148        0.367           20 
 8        9.000        0.655        0.188           21 
 9       10.000        3.157        0.352           23 
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Fatal Errors 
IMSL_ODE_TOO_MANY_EVALS Completion of the next step would make the 

number of function evaluations #, but only # 
evaluations are allowed. 

IMSL_ODE_TOO_MANY_STEPS Maximum number of steps allowed, #, used. The 
problem may be stiff. 

IMSL_ODE_FAIL Unable to satisfy the error requirement. 
“tol” = # may be too small. 

ode_adams_gear 
Solves a stiff initial-value problem for ordinary differential equations using the Adams-
Gear methods. 

Synopsis 
#include <imsl.h> 
float imsl_f_ode_adams_gear_mgr (int task, void **state, �, 0) 
void imsl_f_ode_adams_gear (int neq, float *t, float tend, float y[], 

void *state, void fcn()) 
The type double functions are imsl_d_ode_adams_gear_mgr and 
imsl_d_ode_adams_gear. 

Required Arguments for imsl_f_ode_adams_gear_mgr 
int task   (Input) 

This function must be called with task set to IMSL_ODE_INITIALIZE to set 
up for solving an ODE system and with task equal to IMSL_ODE_RESET to 
clean up after it has been solved. These values for task are defined in the 
included file, imsl.h. 

void **state   (Input/Output) 
The current state of the ODE solution is held in a structure pointed to by 
state. It cannot be directly manipulated. 

Required Arguments for imsl_f_ode_adams_gear 
int neq   (Input) 

Number of differential equations. 
float *t   (Input/Output) 

Independent variable. On input, t is the initial independent variable value. On 
output, t is replaced by tend unless error conditions arise. 

float tend   (Input) 
Value of t at which the solution is desired. The value tend may be less than 
the initial value of t. 
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float y[]   (Input/Output) 
Array with neq components containing a vector of dependent variables. On 
input, y contains the initial values. On output, y contains the approximate 
solution. 

void *state   (Input/Output) 
The current state of the ODE solution is held in a structure pointed to by 
state. It must be initialized by a call to imsl_f_ode_adams_gear_mgr. It 
cannot be directly manipulated. 

void fcn (int neq, float t, float *y, float *yprime) 
User-supplied function to evaluate the right-hand side where 
float *yprime    (Output) 

 Array with neq components containing the vector y�. This function computes 

yprime � � � �
dy
dt

y f t y,b g
 

 and neq, t, and *y are defined immediately preceding this function. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float imsl_f_ode_adams_gear_mgr (int task, void **state, 

IMSL_JACOBIAN, void fcnj (), 
IMSL_METHOD, int method, 
IMSL_MAXORD, int maxord, 
IMSL_MITER, int miter, 
IMSL_TOL, float tol, 
IMSL_HINIT, float hinit, 
IMSL_HMIN, float hmin, 
IMSL_HMAX, float hmax, 
IMSL_MAX_NUMBER_STEPS, int max_steps, 
IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals, 
IMSL_SCALE, float scale, 
IMSL_NORM, int norm, 
IMSL_FLOOR, float floor, 
IMSL_NSTEP, int *nstep, 
IMSL_NFCN, int *nfcn, 
IMSL_NFCNJ, int *nfcnj, 
IMSL_FCN_W_DATA, void fcn (), void *data, 
IMSL_JACOBIAN_W_DATA, void fcn (), void *data, 
0) 

Optional Arguments 
IMSL_JACOBIAN, void fcnj (int neq, float t, float *y, float yprime[],  

float dypdy[]) 
User-supplied function to evaluate the Jacobian matrix where 
float yprime[]   (Input) 
Array with neq components containing the vector y� = f(t, y). 
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float dypdy[]   (Output) 
Array of size neq � neq containing the partial derivatives. Each 
derivative 	y¢i � 	yi is evaluated at the provided (t, y) values and is 
returned in array location dypdy[(i � 1)*n + j � 1]. 
and neq, t, and *y are described in the “Required Arguments” 
section. 

IMSL_METHOD, int method   (Input) 
Choose the class of integration methods. 
1 Use implicit Adams method. 
2 Use backward differentiation formula (BDF) methods. 
Default: method = 2 

IMSL_MAXORD, int maxord   (Input) 
Define the highest order formula to use of implicit Adams type or BDF type.  
The default is the value 12 for Adams formulas and is the value 5 for BDF 
formulas. 

IMSL_MITER, int miter   (Input) 
Choose the method for solving the formula equations. 
1 Use function iteration or successive substitution. 
2 Use chord or modified Newton method and a user-supplied  

Jacobian matrix. 
3 Same as 2 except Jacobian is approximated within the function  

by divided differences. 
Default: miter = 3 

IMSL_TOL, float tol   (Input) 
Tolerance for error control. An attempt is made to control the norm of the 
local error such that the global error is proportional to tol. 
Default: tol = 0.001 

IMSL_HINIT, float hinit   (Input) 
Initial value for the step size h. Steps are applied in the direction of 
integration.  
Default: hinit = 0.001|tend � t| 

IMSL_HMIN, float hmin (Input) 
Minimum value for the step size h.  
Default: hmin = 0.0 

IMSL_HMAX, float hmax (Input) 
Maximum value for the step size h.  
Default: hmax = imsl_amach(2) 

IMSL_MAX_NUMBER_STEPS, int max_steps   (Input) 
Maximum number of steps allowed.  
Default: max_steps = 500 

IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals (Input) 
Maximum number of evaluations of y� allowed. 
Default: max_fcn_evals = No enforced limit 
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IMSL_SCALE, float scale   (Input) 
A measure of the scale of the problem, such as an approximation to the 
Jacobian along the trajectory.  
Default: scale = 1 

IMSL_NORM, int norm   (Input) 
Switch determining the error norm. In the following, ei is the absolute value of 
the error estimate for yi. 

0 minimum of the absolute error and the relative error, equals 
 the maximum of ei � (max (|yi|, 1)) for i = 1, �, neq. 
1 absolute error, equals maxiei. 
2 maxi (ei � wi)where wi = max (|yi|, floor). The value of floor 
 is reset using IMSL_FLOOR. 

 Default: norm = 0. 
IMSL_FLOOR, float floor   (Input) 

This is used with IMSL_NORM. It provides a positive lower bound for the error 
norm option with value 2.  
Default: floor = 1.0 

IMSL_NSTEP, int *nstep   (Output) 
Returns the number of steps taken. 

IMSL_NFCN, int *nfcn   (Output) 
Returns the number of evaluations of y� used. 

IMSL_NFCNJ, int *nfcnj   (Output) 
Returns the number of Jacobian matrix evaluations used. This value will be 
nonzero only if the option IMSL_JACOBIAN is used. 

IMSL_FCN_W_DATA, void fcn (int neq, float t, float *y, float *yprime, void 
*data),  void *data, (Input) 
User-supplied function to evaluate the right-hand side, which also accepts a 
pointer to data that is supplied by the user.  data is a pointer to the data to be 
passed to the user-supplied function.  See the Introduction, Passing Data to 
User-Supplied Functions at the beginning of this manual for more details. 

IMSL_JACOBIAN_W_DATA, void jacobian (int m, int n, float x[], float 
fjac[], int fjac_col_dim, void *data), void *data  (Input) 
User supplied function to compute the Jacobian, which also accepts a pointer 
to data that is supplied by the user.  data is a pointer to the data to be passed 
to the user-supplied function.  See the Introduction, Passing Data to User-
Supplied Functions at the beginning of this manual for more details. 

Description 
The function imsl_f_ode_adams_gear finds an approximation to the solution of a 
system of first-order differential equations of the form 

dy
dt

y f t y� � � ,b g
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with given initial conditions for y at the starting value for t. The function attempts to 
keep the global error proportional to a user-specified tolerance. The proportionality 
depends on the differential equation and the range of integration. 
The code is based on using backward difference formulas not exceeding order five as 
outlined in Gear (1971) and implemented by Hindmarsh (1974). There is an optional 
use of the code that employs implicit Adams formulas. This use is intended for nonstiff 
problems with expensive functions y� = �(t, y). 

Examples 

Example 1 
This is a mildly stiff example problem (F2) from the test set of Enright and Pryce 
(1987): 

y�1 = �y1 � y1y2 + k1y2 
y�2 = �k2y2 + k3 (1 � y2) y1 

y1 (0) = 1 
y2 (0) = 0 

k1 = 294. 
k2 = 3. 
k3 = 0.01020408 

tend = 240. 

The ODE solver is initialized by a call to imsl_f_ode_adams_gear_mgr with  
IMSL_ODE_INITIALIZE. This is the simplest use of the solver, so none of the default 
values are changed. The function imsl_f_ode_adams_gear is then called to integrate 
from t = 0 to t = 240. 

#include <stdio.h> 
#include <imsl.h> 
 
void            fcn (int neq, float t, float y[], float yprime[]); 
 
float           k1 = 294.0;     /* Model data */ 
float           k2 = 3.0; 
float           k3 = 0.01020408; 
 
main() 
{ 
    int         neq = 2;             /* Number of ode’s */ 
    float       t = 0.0;             /* Initial time */ 
    float       tend = 240.0;        /* Final time */ 
    float       y[2] = {1.0, 0.0};   /* Initial condition */ 
    void        *state; 
                                /* Initialize the ODE solver */ 
    imsl_f_ode_adams_gear_mgr(IMSL_ODE_INITIALIZE, &state, 0); 
                                /* Integrate from t=0 to tend=240 */ 
    imsl_f_ode_adams_gear (neq, &t, tend, y, state, fcn); 
                                /* Print the solution */ 
    printf("y[%f] = %f, %f\n", t, y[0], y[1]); 
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} 
 
void fcn (int neq, float t, float y[], float yprime[]) 
{ 
    yprime[0] = -y[0] - y[0]*y[1] + k1*y[1]; 
    yprime[1] = -k2*y[1] + k3*(1.0-y[1])*y[0]; 
} 

Output 
y[240.000000] = 0.392391, 0.001334 

Example 2 
This problem is a stiff example (F5) from the test set of Enright and Pryce (1987). An 
initial step size of h = 10-7 is suggested by these authors. It is necessary to provide for 
more evaluations of y� and for more steps than the default value allows. Both have been 
set to 4000. 

y�1 = k1 (� k2y1y2 + k3y4 � k4y1y3) 
y�2 = �k1k2y1y2 + k5y4 
y�3 = k1 (�k4y1y3 + k6y4) 
y�4 = k1 (k2y1y2 � k3y4 + k4y1y3) 

y1(0) = 3.365 � 10-7 
y2(0) = 8.261 � 10-3 
y3(0) = 1.641 � 10-3 
y4(0) = 9.380 � 10-6 

k1 = 1011 
k2 = 3. 
k3 = 0.0012 
k4 = 9. 
k5 = 2 � 107 
k6 = 0.001 

tend = 100. 

The last call to imsl_f_ode_adams_gear_mgr with IMSL_ODE_RESET releases 
workspace.  

#include <stdio.h> 
#include <imsl.h> 
 
void            fcn (int neq, float t, float y[], float yprime[]); 
 
float           k1  = 1.e11;            /* Model data  */ 
float           k2  = 3.0; 
float           k3  = 0.0012; 
float           k4  = 9.0;                 
float           k5  = 2.e7; 
float           k6  = 0.001; 
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main() 
{ 
    int         neq = 4;                /* Number of ode’s */ 
    float       t = 0.0;                /* Initial time */ 
    float       tend = 100.0;           /* Final time */ 
                                        /* Initial condition */ 
    float       y[4] = {3.365e-7, 8.261e-3, 1.642e-3, 9.380e-6}; 
    void        *state; 
    int         *nfcn; 
                                /* Initialize the ODE solver */ 
    imsl_f_ode_adams_gear_mgr(IMSL_ODE_INITIALIZE, &state, 
                              IMSL_HINIT, 1.e-7, 
                              IMSL_MAX_NUMBER_STEPS, 4000, 
                              IMSL_MAX_NUMBER_FCN_EVALS, 4000, 
                              IMSL_NFCN, &nfcn,  
                              0); 
                                /* Integrate from t=0 to tend=100 */ 
    imsl_f_ode_adams_gear (neq, &t, tend, y, state, fcn); 
                                /* Release workspace and reset */ 
    imsl_f_ode_adams_gear_mgr(IMSL_ODE_RESET, &state, 0); 
                                /* Print the solution */ 
    printf("y[%f] = %f, %f, %f, %f\n", t, y[0], y[1], y[2], y[3]); 
                                /* Print the number of evaluations  
                                   of yprime[] */ 
    printf("Number of yprime[] evaluations: %d\n", nfcn); 
} 
 
void fcn (int neq, float t, float y[], float yprime[]) 
{ 
    yprime[0] =  k1*(-k2*y[0]*y[1]+k3*y[3]-k4*y[0]*y[2]); 
    yprime[1] = -k1*k2*y[0]*y[1] + k5*y[3]; 
    yprime[2] =  k1*(-k4*y[0]*y[2] + k6*y[3]); 
    yprime[3] =  k1*(k2*y[0]*y[1] - k3*y[3] + k4*y[0]*y[2]); 
} 

Output 
y[100.000000] = 0.000000, 0.003352, 0.005586, 0.000009 
Number of yprime[] evaluations: 3630 

Fatal Errors 
IMSL_ODE_TOO_MANY_EVALS Completion of the next step would make the 

number of function evaluations #, but only # are 
allowed. 

IMSL_ODE_TOO_MANY_STEPS Maximum number of steps allowed, # have been 
used. Try increasing the maximum number of 
steps allowed or increase the tolerance. 
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pde_method_of_lines 
Solves a system of partial differential equations of the form ut = f(x, t, u, ux, uxx)  using 
the method of lines. The solution is represented with cubic Hermite polynomials. 

Synopsis 
#include <imsl.h> 
void imsl_f_pde_method_of_lines_mgr (int task, void **state, ..., 0) 
void imsl_f_pde_method_of_lines (int npdes, float *t, float tend, 

int nx, float xbreak[], float y[], void *state, 
void fcn_ut(), void fcn_bc()) 

The type double functions are imsl_d_pde_method_of_lines_mgr and 
imsl_d_pde_method_of_lines. 

Required Arguments for imsl_f_pde_method_of_lines_mgr 
int task   (Input) 

This function must be called with task set to IMSL_PDE_INITIALIZE to set 
up memory and default values prior to solving a problem and with task equal 
to IMSL_PDE_RESET to clean up after it has solved. These values for task are 
defined in the header file imsl.h. 

void **state   (Input/Output) 
The current state of the PDE solution is held in a structure pointed to by 
state. It cannot be directly manipulated. 

Required Arguments for imsl_f_pde_method_of_lines 
int npdes   (Input) 

Number of differential equations. 
float *t   (Input/Output) 

Independent variable. On input, t supplies the initial time, t0. On output, t is set 
to the value to which the integration has been updated. Normally, this new 
value is tend. 

float tend   (Input) 
Value of t = tend at which the solution is desired. 

int nx   (Input) 
Number of mesh points or lines. 

float xbreak[]   (Input) 
Array of length nx containing the breakpoints for the cubic Hermite splines 
used in the x discretization. The points in xbreak must be strictly increasing. 
The values xbreak[0] and xbreak[nx � 1] are the endpoints of the interval. 

float y[]   (Input/Output) 
Array of size npdes by nx containing the solution. The array y contains the 
solution as y[k,i] = uk(x, tend) at x = xbreak[i]. On input, y contains the 
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initial values. It must satisfy the boundary conditions. On output, y contains 
the computed solution. 

void *state   (Input/Output) 
The current state of the PDE solution is held in a structure pointed to by state. 
It must be initialized by a call to imsl_f_pde_method_of_lines_mgr. It 
cannot be directly manipulated. 

void fcn_ut(int npdes, float x, float t, float u[], float ux[], float uxx[], 
float ut[]) 
User-supplied function to evaluate ut. 
int npdes   (Input) 

Number of equations. 
float x   (Input) 

Space variable, x. 
float t   (Input) 

Time variable, t. 
float u[]   (Input) 

Array of length npdes containing the dependent values, u. 
float ux[]   (Input) 

Array of length npdes containing the first derivatives, ux. 
float uxx[]  (Input) 

Array of length npdes containing the second derivative, uxx. 
float ut[]   (Output) 

Array of length npdes containing the computed derivatives ut. 
void fcn_bc(int npdes, float x, float t, float alpha[], float beta[], float 

gammap[]) 
User-supplied function to evaluate the boundary conditions. The boundary 
conditions accepted by imsl_f_pde_method_of_lines are 

k
k k k k

u
u

x
�

�
� �

�
� �

 
Note: Users must supply the values 
k and �k, which determine the 
values �k. Since �k can depend on t values of �k� also are required. 

int npdes   (Input) 
Number of equations. 

float x   (Input) 
Space variable, x. 

float t   (Input) 
Time variable, t. 

float alpha[]   (Output) 
Array of length npdes containing the 
k values. 

float beta[]   (Output) 
Array of length npdes containing the �k values. 
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float gammap[]   (Output) 
Array of length npdes containing the derivatives, 

k
k

d
dt
�

� ��

 

Synopsis with Optional Arguments 
#include <imsl.h> 
void imsl_f_pde_method_of_lines_mgr (int task, void **state, 

IMSL_TOL, float tol, 
IMSL_HINIT, float hinit, 
IMSL_INITIAL_VALUE_DERIVATIVE, float initial_deriv[], 
IMSL_HTRIAL, float *htrial, 
IMSL_FCN_UT_W_DATA, void fcn_ut (), void *data, 
IMSL_FCN_BC_W_DATA, void fcn_bc (), void *data, 
 0) 

Optional Arguments 
IMSL_TOL, float tol  (Input) 

Differential equation error tolerance. An attempt is made to control the local 
error in such a way that the global relative error is proportional to tol. 
Default: tol = 100.0*imsl_f_machine(4) 

IMSL_HINIT, float hinit   (Input) 
Initial step size in the t integration. This value must be nonnegative. If hinit 
is zero, an initial step size of 0.001|tend - t0| will be arbitrarily used. The step 
will be applied in the direction of integration. 
Default: hinit = 0.0 

IMSL_INITIAL_VALUE_DERIVATIVE, float initial_deriv[]   (Input/Output) 
Supply the derivative values ux(x, t0). This derivative information is input as 

� �� �,( ) 0k x t
u
x

�

�
�initial_deriv k,i

 
The array initial_deriv contains the derivative values as output: 

� � � �( ) atk x
u

x x i
x

�

�
� �initial_deriv k,i tend

 
 

Default: Derivatives are computed using cubic spline interpolation 
IMSL_HTRIAL, float *htrial   (Output) 

Return the current trial step size. 
IMSL_UT_FCN_W_DATA, void fcn_ut(int npdes, float x, float t, float u[], 

float ux[], float uxx[], float ut[], void *data), void *data (Input) 
User-supplied function to evaluate ut, which also accepts a pointer to data that 
is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function.  See the Introduction, Passing Data to User-Supplied 
Functions at the beginning of this manual for more details. 
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IMSL_BC_FCN_W_DATA, void fcn_bc(int npdes, float x, float t, float 
alpha[], float beta[], float gammap[], void *data), void *data 
(Input) 
User-supplied function to evaluate the boundary conditions, which also 
accepts a pointer to data that is supplied by the user.  data is a pointer to the 
data to be passed to the user-supplied function.  See the Introduction, Passing 
Data to User-Supplied Functions at the beginning of this manual for more 
details. 

Description 
Let M = npdes, N = nx and xi = xbreaK(I). The routine 
imsl_f_pde_method_of_lines uses the method of lines to solve the partial 
differential equation system 

 
2 2

1 1
1 2 2, , , ... , , ... , , ...k M M

k M
u u u u uf x t u u
t x x x

� �� � � � �
� � �

� � � �� �x�  

with the initial conditions  

uk = uk(x, t)     at t = t0 

and the boundary conditions 

� �
�

�
�k k k

k
k Nu

u
x

x x x x� � � �at  and at  1
 

for k = 1, �, M. 
Cubic Hermite polynomials are used in the x variable approximation so that the trial 
solution is expanded in the series 

� � � � � � � � � �� �, ,
1

ˆ ,k i k i i k
i

N

u x t a t x b t x� �
�

� �� i
 

where 
i(x) and �i(x) are the standard basis functions for the cubic Hermite 
polynomials with the knots x1 < x2 < � < xN. These are piecewise cubic polynomials 
with continuous first derivatives. At the breakpoints, they satisfy 

� � �

� �
�

i l il i l

i
l

i
l i

x x
d
dx

x
d
dx

x

b g b g
b g b g
� �

� �

0

0 l  

According to the collocation method, the coefficients of the approximation are obtained 
so that the trial solution satisfies the differential equation at the two Gaussian points in 
each subinterval, 
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for j = 1, �, N. The collocation approximation to the differential equation is 

� � � �

� � � � � � � � � � � �� �

, ,

1 1ˆ ˆ ˆ ˆ, , , , , , , ,

i k i k
i j i j

k j j M j j M jxx xx

da db
p p

dt dt
f p t u p u p u p u p

� �� �

� � �

 

 
for k = 1, �, M and j = 1, �, 2(N � 1). 
This is a system of 2M(N � 1) ordinary differential equations in 2M N unknown 
coefficient functions, ai,k and bi,k. This system can be written in the matrix�vector form 
as A dc/dt = F (t, y) with c(t0) = c0 where c is a vector of coefficients of length 2M N 
and c0 holds the initial values of the coefficients. The last 2M equations are obtained by 
differentiating the boundary conditions 

� �
�

k
k

k
k kda

dt
db
dt

d
dt

� �
 

for k = 1, �, M. 
The initial conditions uk(x, t0) must satisfy the boundary conditions. Also, the  
�k(t) must be continuous and have a smooth derivative, or the boundary conditions will 
not be properly imposed for t > t0. 
If 
k = �k = 0, it is assumed that no boundary condition is desired for the k-th unknown 
at the left endpoint. A similar comment holds for the right endpoint. Thus, collocation 
is done at the endpoint. This is generally a useful feature for systems of first-order 
partial differential equations. 
If the number of partial differential equations is M = 1 and the number of breakpoints is 
N = 4, then 

A

p p p p
p p p p

p p p p
p p p p

p p p p
p p p p

�

L

N

MMMMMMMMMMM

O

Q

PPPPPPPPPPP

� �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� �

1 1

1 1 1 1 2 1 2 1

1 2 1 2 2 2 2 2

3 3 3 3 4 3 4 3

3 4 3 4 4 4 4 4

5 5 5 5 6 5 6 5

5 6 5 6 6 6 6 6

4 4

b g b g b g b g
b g b g b g b g
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b g b g b g b g
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The vector c is 

c = [a1, b1, a2, b2, a3, b3, a4, b4]T 
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and the right-side F is 

F x f p f p f p f p f p f p x
T

� � �� �1 1 2 3 4 5 6 4b g b g b g b g b g b g b g b g, , , , , , ,
 

If M > 1, then each entry in the above matrix is replaced by an M � M diagonal matrix. 
The element 
1 is replaced by diag(
1,1, �, 
1,M). The elements 
N, �1 and �N are 
handled in the same manner. The 
i(pj) and �i(pj) elements are replaced by 
i(pj)IM and 
�i(pj)IM where IM is the identity matrix of order M. See Madsen and Sincovec (1979) 
for further details about discretization errors and Jacobian matrix structure. 
The input/output array Y contains the values of the ak,i. The initial values of the bk,i are 
obtained by using the IMSL cubic spline routine imsl_f_cub_spline_interp_e_cnd 
(Chapter 3, “Interpolation and Approximation”) to construct functions  

� ,u x tk 0b g
 

such that  
� ,u x t ak i k0b g � i

 
The IMSL routine imsl_f_cub_spline_value , Chapter 3, “Interpolation and 
Approximation” is used to approximate the values  

du
dx

x t bk
i k

�
, ,0b g � i

 
There is an optional use of imsl_f_pde_method_of_lines that allows the user to 
provide the initial values of bk,i. 
The order of matrix A is 2M N and its maximum bandwidth is 6M � 1. The band structure 
of the Jacobian of F with respect to c is the same as the band structure of A. This system 
is solved using a modified version of imsl_f_ode_adams_gear, 297. Some of the 
linear solvers were removed. Numerical Jacobians are used exclusively. The algorithm is 
unchanged. Gear’s BDF method is used as the default because the system is typically stiff. 
Four examples of PDEs are now presented that illustrate how users can interface their 
problems with IMSL PDE solving software. The examples are small and not indicative 
of the complexities that most practitioners will face in their applications. A set of seven 
sample application problems, some of them with more than one equation, is given in 
Sincovec and Madsen (1975). Two further examples are given in Madsen and Sincovec 
(1979). 

Examples 

Example 1 
The normalized linear diffusion PDE, ut = uxx, 0 � x � 1, t > t0, is solved. The initial 
values are t0 = 0, u(x, t0) = u0 = 1. There is a “zero-flux” boundary condition at  
x = 1, namely ux(1, t) = 0, (t > t0). The boundary value of u(0, t) is abruptly changed 
from u0 to the value u1 = 0.1. This transition is completed by t = td = 0.09. 
Due to restrictions in the type of boundary conditions successfully processed by 
imsl_f_pde_method_of_lines, it is necessary to provide the derivative boundary 
value function �� at x = 0 and at x = 1. The function � at x = 0 makes a smooth transition 
from the value u0 at t = t0 to the value u1 at t = td. The transition phase for �� is computed 
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by evaluating a cubic interpolating polynomial. For this purpose, the function subprogram 
imsl_f_cub_spline_value, Chapter 3, Interpolation and Approximation” is used. 
The interpolation is performed as a first step in the user-supplied routine fcn_bc. The 
function and derivative values �(t0) = u0, ��(t0) = 0, �(td) = u1, and ��(td) = 0, are used as 
input to routine imsl_f_cub_spline_interp_e_cnd, to obtain the coefficients 
evaluated by imsl_f_cub_spline_value. Notice that ��(t) = 0, t > td. The evaluation 
routine imsl_f_cub_spline_value will not yield this value so logic in the routine 
fcn_bc assigns ��(t) = 0, t > td. 

 
#include <imsl.h> 
#include <math.h> 
 
main() 
{ 
        void            fcnut(int, float, float, float *, float *, float *, 
                                float *); 
        void            fcnbc(int, float, float, float *, float *,  
                                float *); 
        int             npdes = 1; 
        int             nx = 8; 
        int             i; 
        int             j = 1; 
        int             nstep = 10; 
        float           t = 0.0; 
        float           tend; 
        float           xbreak[8]; 
        float           y[8]; 
        char            title[50]; 
        void           *state; 
 
                        /* Set breakpoints and initial conditions */ 
 
        for (i = 0; i < nx; i++) { 
                xbreak[i] = (float) i / (float) (nx - 1); 
                y[i] = 1.0; 
        } 
 
                        /* Initialize the solver */ 
 
        imsl_f_pde_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state, 
                                       0); 
 
        while (j <= nstep) { 
                tend = (float) j++ / (float) nstep; 
                tend *= tend; 
 
                        /* Solve the problem */ 
 
                imsl_f_pde_method_of_lines(npdes, &t, tend, nx, xbreak, y, 
                                           state, fcnut, fcnbc); 
 
                        /* Print results at current t=tend */ 
 
                sprintf(title, "solution at t = %4.2f\0", t); 
                imsl_f_write_matrix(title, npdes, nx, y, 0); 
        } 



 

 
 

Chapter 5: Differential Equations pde_method_of_lines � 311 

 

 

 

} 
 
void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx, 
        float *ut) 
{ 
                        /* Define the PDE */ 
 
        *ut = *uxx; 
} 
 
void fcnbc(int npdes, float x, float t, float *alpha, float *beta, 
        float *gamp) 
{ 
        static int      ndata; 
        static int      first = 1; 
        static float    delta = 0.09; 
        static float    u0 = 1.0; 
        static float    u1 = 0.1; 
        static float    dfdata[2]; 
        static float    xdata[2]; 
        static float    fdata[2]; 
        static Imsl_f_ppoly *ppoly; 
 
                        /* Compute interpolant first time only */ 
 
        if (first) { 
                first = 0; 
                ndata = 2; 
                xdata[0] = 0.0; 
                xdata[1] = delta; 
                fdata[0] = u0; 
                fdata[1] = u1; 
                dfdata[0] = dfdata[1] = 0.0; 
                ppoly = imsl_f_cub_spline_interp_e_cnd(ndata, xdata, fdata, 
                                IMSL_LEFT, 1, dfdata[0], 
                                IMSL_RIGHT, 1, dfdata[1], 
                        0); 
        } 
 
                        /* Define boundary conditions */ 
 
        if (x == 0.0) { 
 
                        /* These are for x = 0 */ 
 
                *alpha = 1.0; 
                *beta = 0.0; 
                *gamp = 0.0; 
 
                        /* If in the boundary layer, compute 
                           nonzero gamma prime */ 
 
                if (t <= delta) 
                        *gamp = imsl_f_cub_spline_value(t, ppoly, 
                                        IMSL_DERIV, 1, 
                                        0); 
        } else { 
                        /* These are for x = 1 */ 



 

 
 

312 � pde_method_of_lines IMSL C/Math/Library 

 

 

 

 
                *alpha = 0.0; 
                *beta = 1.0; 
                *gamp = 0.0; 
        } 
} 

Output 
                         solution at t = 0.01 
         1           2           3           4           5           6 
     0.969       0.997       1.000       1.000       1.000       1.000 
  
         7           8 
     1.000       1.000 
  
                         solution at t = 0.04 
         1           2           3           4           5           6 
     0.625       0.871       0.962       0.991       0.998       1.000 
          7           8 
     1.000       1.000 
  
                         solution at t = 0.09 
         1           2           3           4           5           6 
    0.1000      0.4602      0.7169      0.8671      0.9436      0.9781 
  
         7           8 
    0.9917      0.9951 
  
                         solution at t = 0.16 
         1           2           3           4           5           6 
    0.1000      0.3130      0.5071      0.6681      0.7893      0.8708 
  
         7           8 
    0.9168      0.9315 
  
                         solution at t = 0.25 
         1           2           3           4           5           6 
    0.1000      0.2567      0.4045      0.5354      0.6428      0.7224 
  
         7           8 
    0.7710      0.7874 
  
                         solution at t = 0.36 
         1           2           3           4           5           6 
    0.1000      0.2176      0.3292      0.4292      0.5125      0.5751 
  
         7           8 
    0.6139      0.6270 
  
                         solution at t = 0.49 
         1           2           3           4           5           6 
    0.1000      0.1852      0.2661      0.3386      0.3992      0.4448 
  
         7           8 
    0.4731      0.4827 
  
                         solution at t = 0.64 
         1           2           3           4           5           6 
    0.1000      0.1588      0.2147      0.2648      0.3066      0.3381 
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         7           8 
    0.3577      0.3643 
  
                         solution at t = 0.81 
         1           2           3           4           5           6 
    0.1000      0.1387      0.1754      0.2083      0.2358      0.2565 
  
         7           8 
    0.2694      0.2738 
  
                         solution at t = 1.00 
         1           2           3           4           5           6 
    0.1000      0.1242      0.1472      0.1678      0.1850      0.1980 
  
         7           8 
    0.2060      0.2087 

Example 2 
Here, Problem C is solved from Sincovec and Madsen (1975). The equation is of 
diffusion-convection type with discontinuous coefficients. This problem illustrates a 
simple method for programming the evaluation routine for the derivative, ut. Note that 
the weak discontinuities at x = 0.5 are not evaluated in the expression for ut. The 
problem is defined as 

u u t x D x u x v x u

x t
t � � �

� �

� � � � � � � �/ / / /

, ,

b gc h b g
0 1 0

x

0

 

D x
x

x
b g � � �

� �
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1 05 1

if 
if 

.
. .  

v x
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x

u x
x
x

u t u t

b g

b g
b g b g

�

� �

� �
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�

�

�
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0
1 0
0 0

0 1 1 0

. .
. .

,

, , ,

if 
if 

 if 
 if  

#include <imsl.h> 
#include <math.h> 
 
main() 
{ 
        void            fcnut(int, float, float, float *, float *, float *, 
                                float *); 
        void            fcnbc(int, float, float, float *, float *,  
                                float *); 
        int             npdes = 1; 
        int             nx = 100; 
        int             i; 
        int             j = 1; 
        int             nstep = 10; 
        float           t = 0.0; 
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        float           tend; 
        float           xbreak[100]; 
        float           y[100]; 
        float           tol, hinit; 
        char            title[50]; 
        void           *state; 
 
                        /* Set breakpoints and initial conditions */ 
 
        for (i = 0; i < nx; i++) { 
                xbreak[i] = (float) i / (float) (nx - 1); 
                y[i] = 0.0; 
        } 
        y[0] = 1.0; 
 
                        /* Initialize the solver */ 
 
        tol = sqrt(imsl_f_machine(4)); 
        hinit = 0.01*tol; 
        imsl_f_pde_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state, 
                                       IMSL_TOL, tol, 
                                       IMSL_HINIT, hinit, 
                                       0); 
 
        while (j <= nstep) { 
                tend = (float) j++ / (float) nstep; 
 
                        /* Solve the problem */ 
 
                imsl_f_pde_method_of_lines(npdes, &t, tend, nx, xbreak, y, 
                                           state, fcnut, fcnbc); 
        } 
                        /* Print results at t=tend */ 
 
                sprintf(title, "solution at t = %4.2f\0", t); 
                imsl_f_write_matrix(title, npdes, nx, y, 0); 
} 
 
void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx, 
        float *ut) 
{ 
                        /* Define the PDE */ 
 
        float v; 
        float d; 
 
 
        if (x <= 0.5) { 
                d = 5.0; 
                v = 1000.0; 
        } 
        else 
                d = v = 1.0; 
 
        ut[0] = d*uxx[0] - v*ux[0]; 
} 
 
void fcnbc(int npdes, float x, float t, float *alpha, float *beta, 
        float *gamp) 
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{ 
        *alpha = 1.0; 
        *beta = 0.0; 
        *gamp = 0.0; 
} 

Output 
                         solution at t = 1.00 
         1           2           3           4           5           6 
     1.000       1.000       1.000       1.000       1.000       1.000 
  
         7           8           9          10          11          12 
     1.000       1.000       1.000       1.000       1.000       1.000 
  
        13          14          15          16          17          18 
     1.000       1.000       1.000       1.000       1.000       1.000 
  
        19          20          21          22          23          24 
     1.000       1.000       1.000       1.000       1.000       1.000 
  
        25          26          27          28          29          30 
     1.000       1.000       1.000       1.000       1.000       1.000 
  
        31          32          33          34          35          36 
     1.000       1.000       1.000       1.000       1.000       1.000 
  
        37          38          39          40          41          42 
     1.000       1.000       1.000       1.000       1.000       1.000 
  
        43          44          45          46          47          48 
     1.000       1.000       1.000       1.000       1.000       1.000 
  
        49          50          51          52          53          54 
     1.000       0.997       0.984       0.969       0.953       0.937 
  
        55          56          57          58          59          60 
     0.921       0.905       0.888       0.872       0.855       0.838 
  
        61          62          63          64          65          66 
     0.821       0.804       0.786       0.769       0.751       0.733 
  
        67          68          69          70          71          72 
     0.715       0.696       0.678       0.659       0.640       0.621 
  
        73          74          75          76          77          78 
     0.602       0.582       0.563       0.543       0.523       0.502 
  
        79          80          81          82          83          84 
     0.482       0.461       0.440       0.419       0.398       0.376 
  
        85          86          87          88          89          90 
     0.354       0.332       0.310       0.288       0.265       0.242 
  
        91          92          93          94          95          96 
     0.219       0.196       0.172       0.148       0.124       0.100 
  
        97          98          99         100 
     0.075       0.050       0.025       0.000 
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Example 3 
In this example, using imsl_f_pde_method_of_lines, the linear normalized 
diffusion PDE ut = uxx is solved but with an optional use that provides values of the 
derivatives, ux, of the initial data. Due to errors in the numerical derivatives computed 
by spline interpolation, more precise derivative values are required when the initial data 
is u(x, 0) = 1 + cos[(2n � 1)�x], n > 1. The boundary conditions are “zero flux” 
conditions ux(0, t) = ux(1, t) = 0 for t > 0. Note that the initial data is compatible with 
these end conditions since the derivative function  

u x
du x

dx
n nx ,

,
sin0

0
2 1 2 1b g b g b g b g� � � � �� �x

 
vanishes at x = 0 and x = 1. 
This optional usage signals that the derivative of the initial data is passed by the user. 
The values u(x, tend) and ux(x, tend) are output at the breakpoints with the optional 
usage. 

 

#include <imsl.h> 
#include <math.h> 
 
main() 
{ 
        void            fcnut(int, float, float, float *, float *, float *, 
                              float *); 
        void            fcnbc(int, float, float, float *, float *, float *); 
        int             npdes = 1; 
        int             nx = 10; 
        int             i; 
        int             j = 1; 
        int             nstep = 10; 
        float           t = 0.0; 
        float           tend = 0.0; 
        float           xbreak[10]; 
        float           y[10], deriv[10]; 
        float           tol, hinit; 
        float           pi, arg; 
        char            title1[50]; 
        char            title2[50]; 
        void           *state; 
 
        pi = imsl_d_constant("pi", 0); 
        arg = 9.0 * pi; 
 
                        /* Set breakpoints and initial conditions */ 
 
        for (i = 0; i < nx; i++) { 
                xbreak[i] = (float) i / (float) (nx - 1); 
                y[i] = 1.0 + cos(arg * xbreak[i]); 
                deriv[i] = -arg * sin(arg * xbreak[i]); 
        } 
 
                        /* Initialize the solver */ 
 
        tol = sqrt(imsl_f_machine(4)); 
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        imsl_f_pde_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state, 
                                       IMSL_TOL, tol, 
                                       IMSL_INITIAL_VALUE_DERIVATIVE, 
                                       deriv, 
                                       0); 
 
        while (j <= nstep) { 
                j++; 
                tend += 0.001; 
 
                        /* Solve the problem */ 
 
                imsl_f_pde_method_of_lines(npdes, &t, tend, nx, xbreak, y, 
                                           state, fcnut, fcnbc); 
 
                        /* Print results at at every other t=tend */ 
 
                if (j % 2) { 
                        sprintf(title1, "\nsolution at t = %5.3f\0", t); 
                        sprintf(title2, "\nderivative at t = %5.3f\0", t); 
                        imsl_f_write_matrix(title1, npdes, nx, y, 0); 
                        imsl_f_write_matrix(title2, npdes, nx, deriv, 0); 
                } 
        } 
 
} 
 
void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx, 
      float *ut) 
{ 
                        /* Define the PDE */ 
 
        ut[0] = uxx[0]; 
} 
 
void fcnbc(int npdes, float x, float t, float *alpha, float *beta, 
      float *gamp) 
{ 
                        /* Define the boundary conditions */ 
 
        alpha[0] = 0.0; 
        beta[0] = 1.0; 
        gamp[0] = 0.0; 
} 

 Output 
                         solution at t = 0.002 
         1           2           3           4           5           6 
     1.233       0.767       1.233       0.767       1.233       0.767 
  
         7           8           9          10 
     1.233       0.767       1.233       0.767 
  
  
                        derivative at t = 0.002 
         1           2           3           4           5           6 
 0.000e+00  -5.172e-07   1.911e-06   1.818e-06  -5.230e-07   2.408e-06 
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         7           8           9          10 
-2.517e-06   3.194e-06  -3.608e-06   2.023e-06 
  
  
                         solution at t = 0.004 
         1           2           3           4           5           6 
     1.053       0.947       1.053       0.947       1.053       0.947 
  
         7           8           9          10 
     1.053       0.947       1.053       0.947 
  
  
                        derivative at t = 0.004 
         1           2           3           4           5           6 
 0.000e+00  -1.332e-06  -9.059e-06  -4.401e-06   5.006e-06  -2.134e-06 
  
         7           8           9          10 
-1.733e-06   4.625e-06   6.741e-07   2.023e-06 
  
 
  
                         solution at t = 0.006 
         1           2           3           4           5           6 
     1.012       0.988       1.012       0.988       1.012       0.988 
  
         7           8           9          10 
     1.012       0.988       1.012       0.988 
  
  
                        derivative at t = 0.006 
         1           2           3           4           5           6 
 0.000e+00  -1.408e-06  -1.018e-06  -6.572e-07  -8.213e-07  -1.151e-06 
  
         7           8           9          10 
 1.051e-06   1.257e-06  -2.920e-07   2.023e-06 
  
  
                         solution at t = 0.008 
         1           2           3           4           5           6 
     1.003       0.997       1.003       0.997       1.003       0.997 
  
         7           8           9          10 
     1.003       0.997       1.003       0.997 
  
  
                        derivative at t = 0.008 
         1           2           3           4           5           6 
 0.000e+00  -1.028e-06   4.270e-06   3.114e-06  -3.085e-06  -1.492e-06 
  
         7           8           9          10 
 2.126e-06  -1.280e-06  -1.541e-06   2.023e-06 
  
  
                         solution at t = 0.010 
         1           2           3           4           5           6 
     1.001       0.999       1.001       0.999       1.001       0.999 
  
         7           8           9          10 
     1.001       0.999       1.001       0.999 
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                        derivative at t = 0.010 
         1           2           3           4           5           6 
 0.000e+00  -7.596e-07   2.819e-07   1.547e-07  -1.469e-06  -9.516e-07 
  
         7           8           9          10 
 2.889e-07   8.956e-08   5.992e-07   2.023e-06 

Example 4 
In this example, consider the linear normalized hyperbolic PDE, utt = uxx, the “vibrating 
string” equation. This naturally leads to a system of first order PDEs. Define a new 
dependent variable ut = v. Then, vt = uxx is the second equation in the system. Take as 
initial data u(x, 0) = sin(�x) and ut(x, 0) = v(x, 0) = 0. The ends of the string are fixed so  
u(0, t) = u(1, t) = v(0, t) = v(1, t) = 0. The exact solution to this problem is  
u(x, t) = sin(�x) cos(�t). Residuals are computed at the output values of t for 0 < t � 2. 
Output is obtained at 200 steps in increments of 0.01. 
Even though the sample code imsl_f_pde_method_of_lines gives satisfactory 
results for this PDE, users should be aware that for nonlinear problems, “shocks” can 
develop in the solution. The appearance of shocks may cause the code to fail in 
unpredictable ways. See Courant and Hilbert (1962), pp 488-490, for an introductory 
discussion of shocks in hyperbolic systems. 

#include <imsl.h> 
#include <math.h> 
 
main() 
{ 
      void            fcnut(int, float, float, float *, float *, float *, 
                            float *); 
      void            fcnbc(int, float, float, float *, float *, float *); 
      int             npdes = 2; 
      int             nx = 10; 
      int             i; 
      int             j = 1; 
      int             nstep = 200; 
      float           t = 0.0; 
      float           tend = 0.0; 
      float           xbreak[20]; 
      float           y[20], deriv[20]; 
      float           tol, hinit; 
      float           pi; 
      float           error[10], erru; 
      void           *state; 
 
      pi = imsl_d_constant("pi", 0); 
 
                      /* Set breakpoints and initial conditions */ 
 
      for (i = 0; i < nx; i++) { 
              xbreak[i] = (float) i / (float) (nx - 1); 
              y[i] = sin(pi * xbreak[i]); 
              y[nx + i] = 0.0; 
              deriv[i] = pi * cos(pi * xbreak[i]); 
              deriv[nx + i] = 0.0; 



 

 
 

320 � pde_method_of_lines IMSL C/Math/Library 

 

 

 

      } 
 
                      /* Initialize the solver */ 
 
      tol = sqrt(imsl_f_machine(4)); 
      imsl_f_pde_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state, 
                                     IMSL_TOL, tol, 
                                     IMSL_INITIAL_VALUE_DERIVATIVE, 
                                     deriv, 
                                     0); 
 
      while (j <= nstep) { 
              j++; 
              tend += 0.01; 
                      /* Solve the problem */ 
 
              imsl_f_pde_method_of_lines(npdes, &t, tend, nx, xbreak, y, 
                                         state, fcnut, fcnbc); 
 
               
                      /* Look at output at steps of 0.01 
                         and compute errors */ 
                
 
              for (i = 0; i < nx; i++) { 
                      error[i] = y[i] - sin(pi * xbreak[i]) * 
                                 cos(pi *tend); 
                      erru = imsl_f_max(erru, fabs(error[i])); 
                } 
        } 
      printf("Maximum error in u(x,t) = %e\n", erru); 
 
} 
 
void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx, 
            float *ut) 
{ 
                      /* Define the PDE */ 
 
        ut[0] = u[1]; 
        ut[1] = uxx[0]; 
} 
 
void fcnbc(int npdes, float x, float t, float *alpha, float *beta, 
      float *gamp) 
{ 
                     /* Define the boundary conditions */ 
 
        alpha[0] = 1.0; 
        beta[0] = 0.0; 
        gamp[0] = 0.0; 
        alpha[1] = 1.0; 
        beta[1] = 0.0; 
        gamp[1] = 0.0; 
} 

Output 
Maximum error in u(x,t) = 6.228203e-04 
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bvp_finite_difference 
Solves a (parameterized) system of differential equations with boundary conditions at 
two points, using a variable order, variable step size finite difference method with 
deferred corrections. 

Synopsis 
#include <imsl.h> 
float *imsl_f_bvp_finite_difference (void fcneq(), void fcnjac(),         

void fcnbc(), int n, int nleft, int ncupbc, float tleft, float tright,  
 int linear, float *nfinal, float *xfinal, float *yfinal, …, 0) 

The type double function is imsl_d_bvp_finite_difference. 

Required Arguments 
void fcneq (int n,  float t,  float y[],  float p,  float dydt[])  (Input) 

User supplied  function to evaluate derivatives. 
int n (Input) 

Number of differential equations 
float t (Input) 

Independent variable, t.  
float y[] (Input) 

Array of size n containing the dependent variable values, y(t).  
float p (Input) 

Continuation parameter, p.  See optional argument 
IMSL_PROBLEM_EMBEDDED. 

float dydt[] (Output) 
Array of size n containing the derivatives y�(t). 

void fcnjac(int n,  float t,  float y[],  float p,  float dypdy[])  (Input) 
User supplied  function to evaluate the Jacobian. 
int n (Input) 

Number of differential equations 
float t (Input) 

Independent variable, t.    
float y[] (Input) 

Array of size n containing the dependent variable values, y(t).  
float p (Input) 

Continuation parameter, p.  See optional argument 
IMSL_PROBLEM_EMBEDDED.    

float dypdy[] (Output) 
n by n array containing the partial derivatives ai,j = 	 fi � 	 yj 
evaluated at (t, y). The values ai�j are returned in  
dypdy[(i-1)*n+(j-1)].  
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void fcnbc(int n,  float yleft[],  float yright[],  float p,  float h[])  (Input) 
User supplied  function to evaluate the boundary conditions. 
int n (Input) 

Number of differential equations.   
float yleft[] (Input) 

Array of size n containing the values of the dependent variable at 
the left endpoint.   

float yright[] (Input) 
Array of size n containing the values of the dependent variable at 
the right endpoint. 

float p (Input) 
Continuation parameter, p.  See optional argument 
IMSL_PROBLEM_EMBEDDED.    

float h[] (Output) 
Array of size n containing the boundary condition residuals. 
The boundary conditions are defined by hi = 0, for i = 0, �, n-1. 
The left endpoint conditions must be defined first, then, the 
conditions involving both endpoints, and finally the right endpoint 
conditions. 

int n  (Input) 
Number of differential equations. 

int nleft  (Input) 
Number of initial conditions.  The value nleft must be greater than or equal 
to zero and less than n. 

int ncupbc  (Input) 
Number of coupled boundary conditions.  The value  
nleft + ncupbc must be greater than zero and less than or equal  
to n.  

float tleft  (Input) 
The left endpoint.   

float tright  (Input) 
The right endpoint.  

int linear  (Input) 
Integer flag to indicate if the differential equations and the boundary 
conditions are linear. Set linear to one if the differential equations and the 
boundary conditions are linear, otherwise set linear to zero. 

int *nfinal  (Output) 
Number of final grid points, including the endpoints.   

float *tfinal   (Output) 
Array of size mxgrid containing the final grid points.  Only the first nfinal 
points are significant. See optional argument IMSL_MAX_SUBINTER for 
definition of mxgrid. 
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float *yfinal   (Output) 
Array of size mxgrid by n containing the values of Y at the points in tfinal. 
See optional argument IMSL_MAX_SUBINTER for definition of mxgrid. 

Synopsis with Optional Arugments 
#include <imsl.h> 
float *imsl_f_bvp_finite_difference (void fcneq(),void fcnjac(), 

void fcnbc(), int n, int nleft, int ncupbc, float tleft, float tright,  
int linear, float *nfinal, float *xfinal[], float *yfinal, 
IMSL_TOL, float tol, 
IMSL_HINIT, int ninit,  float tinit[], float yinit[][], 
IMSL_PRINT, int iprint, 
IMSL_MAX_SUBINTER, int mxgrid, 
IMSL_PROBLEM_EMBEDDED, float pistep,  void fcnpeq(), 
void fcnpbc(), 
IMSL_ERR_EST, float **errest, 
IMSL_ERR_EST_USER, float errest[], 
IMSL_FCN_W_DATA, void fcneq (),void *data, 
IMSL_JACOBIAN_W_DATA, void fcnjac (),void *data, 
IMSL_FCN_BC_W_DATA, void fcnbc (),void *data, 
IMSL_PROBLEM_EMBEDDED_W_DATA, float pistep,(),void *data,   
void fcnpeq(),void fcnpbc(),void *data, 
 0) 

Optional Arguments 
IMSL_TOL, float tol  (Input) 

Relative error control parameter.  The computations stop when  
 

� �, ,

, ,

/ max ,1.0 for all 0, 1, and 0, 1

Here is the estimated error on 
i j i j

i j i j

E y tol i n j ngrid

E y

� � � � �

 

 Default: tol = .001. 
IMSL_HINIT, int ninit, float tinit[], float yinit[][],   (Input) 

Initial gridpoints.  Number of initial grid points, including the endpoints, is 
given by ninit. tinit  is an array of size ninit containing the initial grid 
points.  yinit  is an array size ninit by n containing an initial guess for the 
values of Y at the points in tinit.  
Default: ninit =10, tinit[*] equally spaced in the interval  
[tleft, tright], and yinit[*][*] = 0. 

IMSL_PRINT, int iprint  (Input) 
Parameter indicating the desired output level. 
Iprint Action 
0 No output printed. 
1 Intermediate output is printed. 
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  Default: iprint = 0. 
IMSL_MAX_SUBINTER, int mxgrid  (Input) 

Maximum number of grid points allowed.  
Default: mxgrid = 100  

IMSL_PROBLEM_EMBEDDED, float pistep,  void fcnpeq(), void fcnpbc() 
If this optional argument is supplied, then the routine 
imsl_f_bvp_finite_difference assumes that the user has embedded the 
problem into a one-parameter family of problems: 

y� = y�(t, y, p)  

h(yleft, yright, p) = 0 

 such that for p = 0 the problem is simple. For p = 1, the original problem is 
recovered. The routine imsl_f_bvp_finite_difference automatically 
attempts to increment from p = 0 to p = 1. The value pistep is the beginning 
increment used in this continuation. The increment will usually be changed by 
routine imsl_f_bvp_finite_difference, but an arbitrary minimum of 
0.01 is imposed. 

 The argument p is the initial increment size for p.  The functions fcnpeq and 
fcnpbc are user-supplied functions, and are defined: 
void fcnpeq(int n,  float t,  float y[],  float p,  float dypdp[])  (Input) 

User supplied  function to evaluate the derivative of y� with respect 
to the parameter p. 

 int n (Input) 
Number of differential equations. 

 float t (Input) 
Independent variable, t.  

 float y[] (Input) 
 Array of size n containing the dependent variable values. 

 float p (Input) 
 Continuation parameter, p.   

 float dypdp[] (Output) 
 Array of size n containing the derivative y� with respect to the 
 parameter p at (t, y).  

void fcnpbc(int n,  float yleft[],  float yright[],  float p,  
 float h[])(Input) 
User supplied  function to evaluate the derivative of the boundary 
conditions with respect to the parameter p. 

 int n (Input) 
 Number of differential equations. 
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 float yleft[] (Input) 
 Array of size n containing the values of the dependent variable 
 at the left endpoint.  

 float yright[] (Input) 
 Array of size n containing the values of the dependent variable 
 at the right endpoint. 

 float p (Input) 
 Continuation parameter, p.   

 float h[] (Output) 
 Array of size n containing the derivative of fi with respect to p. 

IMSL_ERR_EST, float **errest  (Output) 
Address of a pointer to an array of size n containing estimated error in y. 

IMSL_ERR_EST_USER, float errest[]  (Output) 
User allocated array of size n containing estimated error in y. 

IMSL_FCN_W_DATA, void fcneq (int n,  float t,  float y[],  float p,  float dydt[],   
void *data) ,void *data, (Input) 
User-supplied function to evaluate derivatives, which also accepts a pointer to 
data that is supplied by the user.  data is a pointer to the data to be passed to 
the user-supplied function.  See the Introduction, Passing Data to User-
Supplied Functions at the beginning of this manual for more details. 

IMSL_JACOBIAN_W_DATA, void fcnjac(int n,  float t,  float y[],  float p,  float 
dypdy[], void *data) ,void *data, (Input) 
User-supplied function to evaluate the Jacobian, which also accepts a pointer 
to data that is supplied by the user.  data is a pointer to the data to be passed to 
the user-supplied function.  See the Introduction, Passing Data to User-
Supplied Functions at the beginning of this manual for more details. 

IMSL_FCN_BC_W_DATA, void fcnbc(int n,  float yleft[],  float yright[],  float 
p,  float h[], void *data) ,void *data, (Input) 
User-supplied function to evaluate the boundary conditions , which also 
accepts a pointer to data that is supplied by the user.  data is a pointer to the 
data to be passed to the user-supplied function.  See the Introduction, Passing 
Data to User-Supplied Functions at the beginning of this manual for more 
details. 

IMSL_PROBLEM_EMBEDDED_W_DATA, float pistep,  void fcnpeq(void *data), 
void fcnpbc(),void *data, (Input) 
Same as optional argument  IMSL_PROBLEM_EMBEDDED, except user-supplied 
functions also accept a pointer to data that is supplied by the user.  data is a 
pointer to the data to be passed to the user-supplied function.  See the 
Introduction, Passing Data to User-Supplied Functions at the beginning of 
this manual for more details. 
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Description 
The routine imsl_f_bvp_finite_difference is based on the subprogram PASVA3 
by M. Lentini and V. Pereyra (see Pereyra 1978). The basic discretization is the 
trapezoidal rule over a nonuniform mesh. This mesh is chosen adaptively, to make the 
local error approximately the same size everywhere. Higher-order discretizations are 
obtained by deferred corrections. Global error estimates are produced to control the 
computation. The resulting nonlinear algebraic system is solved by Newton’s method 
with step control. The linearized system of equations is solved by a special form of 
Gauss elimination that preserves the sparseness. 

Example 1 
This example solves the third-order linear equation 

2 sy y y y��� �� �� � � �

 
subject to the boundary conditions y(0) = y(2�) and y�(0) = y�(2�) = 1. (Its solution is 
y = sin t.) To use imsl_f_bvp_finite_difference, the problem is reduced to a 
system of first-order equations by defining  y� = y, y� = y� and y� = y�. The resulting 
system is 

� �

� � � �

� �

1 22

2 13

3 3 2 1 2

0 1 0

0 2

2 sin 2 1

y y y

y y y y

y y y y t y

�

�

� � �

� � �

� � � � � � �

1 0

0

�

�

 

Note that there is one boundary condition at the left endpoint t = 0 and one boundary 
condition coupling the left and right endpoints. The final boundary condition is at the 
right endpoint. The total number of boundary conditions must be the same as the 
number of equations (in this case 3). 

 
#include <math.h> 
#include "imsl.h" 
 
void fcneqn( int n, float t, float y[], float p, float dydt[]); 
void fcnjac( int n, float t, float y[], float p, float dfdy[]); 
void fcnbc( int n, float yleft[], float yright[], float p, float h[]); 
 
#define MXGRID 100 
#define N 3 
void main() 
{ 
  int n = N; 
  int nleft = 1; 
  int ncupbc = 1; 
  float tleft = 0; 
  float tright; 
  int linear = 1; 
  int nfinal; 
  float tfinal[MXGRID]; 
  float yfinal[MXGRID][N]; 
  float errest[N]; 
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  int i; 
 
  tright = 2.0*imsl_f_constant("pi", 0); 
 
  imsl_f_bvp_finite_difference( fcneqn, fcnjac, fcnbc,  
    n, nleft, ncupbc, tleft, tright, 
    linear, &nfinal, tfinal,  
    (float*)(&yfinal[0][0]),  
    IMSL_ERR_EST_USER, errest,  
    0); 
  printf("           tfinal           y0            y1             y2 \n" ); 
  for( i=0; i<nfinal; i++ ) { 
    printf( "%5d%15.6e%15.6e%15.6e%15.6e\n", i, 
      tfinal[i], yfinal[i][0], yfinal[i][1], yfinal[i][2] ); 
  } 
  printf("Error Estimates     "); 
  printf("%15.6e%15.6e%15.6e\n",errest[0],errest[1],errest[2]); 
  return; 
} 
 
void fcneqn( int n, float t, float y[], float p, float dydt[] ) 
{ 
  dydt[0] = y[1]; 
  dydt[1] = y[2]; 
  dydt[2] = 2*y[2] - y[1] + y[0] + sin(t); 
} 
 
void fcnjac( int n, float t, float y[], float p, float dfdy[] ) 
{ 
  dfdy[0*n+0] = 0;   /* df1/dy1 */ 
  dfdy[1*n+0] = 0;   /* df2/dy1 */ 
  dfdy[2*n+0] = 1;   /* df3/dy1 */ 
  dfdy[0*n+1] = 1;   /* df1/dy2 */ 
  dfdy[1*n+1] = 0;   /* df2/dy2 */ 
  dfdy[2*n+1] = -1;  /* df3/dy2 */ 
  dfdy[0*n+2] = 0;   /* df1/dy3 */ 
  dfdy[1*n+2] = 1;   /* df2/dy3 */ 
  dfdy[2*n+2] = 2;   /* df3/dy3 */ 
} 
 
void fcnbc( int n, float yleft[], float yright[], float p, float h[] ) 
{ 
  h[0] = yleft[1] - 1; 
  h[1] = yleft[0] - yright[0]; 
  h[2] = yright[1] - 1; 
}  

Output 
           tfinal           y0            y1             y2  
    0   0.000000e+00  -1.123446e-04   1.000000e+00   6.245916e-05 
    1   3.490659e-01   3.419106e-01   9.397087e-01  -3.419581e-01 
    2   6.981317e-01   6.426907e-01   7.660918e-01  -6.427230e-01 
    3   1.396263e+00   9.847531e-01   1.737333e-01  -9.847453e-01 
    4   2.094395e+00   8.660527e-01  -4.998748e-01  -8.660057e-01 
    5   2.792527e+00   3.421828e-01  -9.395475e-01  -3.420647e-01 
    6   3.490659e+00  -3.417236e-01  -9.396111e-01   3.418948e-01 
    7   4.188790e+00  -8.656881e-01  -5.000588e-01   8.658734e-01 
    8   4.886922e+00  -9.845795e-01   1.734572e-01   9.847519e-01 
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    9   5.585054e+00  -6.427722e-01   7.658259e-01   6.429526e-01 
   10   5.934120e+00  -3.420819e-01   9.395434e-01   3.423984e-01 
   11   6.283185e+00  -1.123446e-04   1.000000e+00   6.739637e-04 
Error Estimates        2.840487e-04   1.792839e-04   5.587848e-04 

Example 2 
In this example, the following nonlinear problem is solved: 

y� � y� + (1 + sin��t) sin t = 0 

with y(0) = y(�) = 0. Its solution is y = sin t. As in Example 1, this equation is reduced 
to a system of first-order differential equations by defining y� = y and y� = y�. The 
resulting system is  

� �

� � � �

1 2 1

2 1 1
3 2

0 0

1 sin sin 0

y y y

y y t t y �

� � �

� � � � �  

In this problem, there is one boundary condition at the left endpoint and one at the right 
endpoint; there are no coupled boundary conditions.  

 

#include <math.h> 
#include “imsl.h” 
 
void fcneqn(int n, float x, float y[], float p, float dydx[]); 
void fcnjac(int n, float x, float y[], float p, float dfdy[]); 
void fcnbc(int n, float yleft[], float yright[], float p, float h[]); 
 
#define MXGRID 100 
#define NINIT 12 
#define N 2 
 
void main() 
{ 
  int n = N, nleft = 1, ncupbc = 0, linear = 0; 
  int i, nfinal, ninit = NINIT; 
  float tleft = 0, tright; 
  float tinit[NINIT], yinit[N][NINIT]; 
  float tfinal[MXGRID], yfinal[N][MXGRID]; 
  float *errest, step; 
 
  tright = imsl_f_constant("pi", 0); 
  step = (tright-tleft) / (ninit-1); 
 
  for( i=0; i<ninit; i++ ) { 
    tinit[i] = tleft + i*step; 
    yinit[i][0] = 0.4 * (tinit[i]-tleft) * (tright-tinit[i]); 
    yinit[i][1] = 0.4 * (tright+tleft-2*tinit[i]); 
  } 
  imsl_f_bvp_finite_difference(fcneqn, fcnjac, fcnbc,  
          n, nleft, ncupbc, tleft, tright, 
          linear, &nfinal, tfinal, 
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          (float*)(&yfinal[0][0]), 
          IMSL_HINIT, ninit, tinit, yinit, 
          IMSL_ERR_EST, &errest,  
          0); 
  printf("              t             y0            y1\n" ); 
  for( i=0; i<nfinal; i++ ) { 
    printf( "%5d%15.6e%15.6e%15.6e\n", i, tfinal[i], yfinal[i][0], yfinal[i][1]); 
  } 
  printf("Error Estimates     "); 
  printf("%15.6e%15.6e\n",errest[0],errest[1]); 
  return; 
} 
 
void fcneqn(int n, float t, float y[], float p, float dydt[]) 
{ 
  float sx = sin(t); 
  dydt[0] = y[1]; 
  dydt[1] = y[0]*y[0]*y[0] - (sx*sx+1)*sx; 
} 
 
void fcnjac(int n, float t, float y[], float p, float dfdy[]) 
{ 
  dfdy[0*n+0] = 0;            /* df1/dy1 */ 
  dfdy[1*n+0] = 3*y[0]*y[0];  /* df2/dy1 */ 
  dfdy[0*n+1] = 1;            /* df1/dy2 */ 
  dfdy[1*n+1] = 0;            /* df2/dy2 */ 
} 
 
void fcnbc(int n, float yleft[], float yright[], float p, float h[]) 
{ 
  h[0] = yleft[0]; 
  h[1] = yright[0]; 
}  

Output 
              t             y0            y1 
    0   0.000000e+00   0.000000e+00   9.999277e-01 
    1   2.855994e-01   2.817682e-01   9.594315e-01 
    2   5.711987e-01   5.406458e-01   8.412407e-01 
    3   8.567981e-01   7.557380e-01   6.548904e-01 
    4   1.142397e+00   9.096186e-01   4.154530e-01 
    5   1.427997e+00   9.898143e-01   1.423307e-01 
    6   1.713596e+00   9.898143e-01  -1.423308e-01 
    7   1.999195e+00   9.096185e-01  -4.154530e-01 
    8   2.284795e+00   7.557380e-01  -6.548902e-01 
    9   2.570394e+00   5.406460e-01  -8.412405e-01 
   10   2.855994e+00   2.817682e-01  -9.594312e-01 
   11   3.141593e+00   0.000000e+00  -9.999274e-01 
Error Estimates        3.907291e-05   7.124317e-05  
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Example 3 
In this example, the following nonlinear problem is solved: 
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with y(0) = y(1) = �/2. As in the previous examples, this equation is reduced to a system 
of first-order differential equations by defining y� = y and y� = y�. The resulting system 
is 
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The problem is embedded in a family of problems by introducing the parameter p and 
by changing the second differential equation to 

2/3 8

2
3
1

40 1 1

9 2 2
y py t t� � � � �

� � �
� � �
� � �

�
�
�  

At p = 0, the problem is linear; and at p = 1, the original problem is recovered. The 
derivatives 	y�/	p must now be specified in the subroutine fcnpeq. The derivatives 
	f/	p are zero in fcnpbc. 

 
#include <stdio.h> 
#include <math.h> 
#include <imsl.h> 
void fcneqn(int n, float t, float y[], float p, float dydt[]); 
void fcnjac(int n, float t, float y[], float p, float dfdy[]); 
void fcnbc(int n, float yleft[], float yright[], float p, float h[]); 
void fcnpeq(int n, float t, float y[], float p, float dfdp[]); 
void fcnpbc(int n, float yleft[], float yright[], float p, float dhdp[]); 
 
#define MXGRID 45 
#define NINIT 12 
#define N 2 
 
void main() 
{ 
  int n = 2; 
  int nleft = 1; 
  int ncupbc = 0; 
  float tleft = 0; 
  float tright = 1; 
  float pistep = 0.1; 
  int ninit = 5; 
  float tinit[NINIT] = { 0.0, 0.4, 0.5, 0.6, 1.0 }; 
  float yinit[N][NINIT] = { 0.15749,   0.00215, 
           0.0,       0.00215, 
           0.15749,  -0.83995, 
          -0.05745,   0.0, 
           0.05745,   0.83995 }; 
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  int linear = 0; 
  int nfinal; 
  float tfinal[MXGRID]; 
  float yfinal[MXGRID][N]; 
  float *errest; 
  int i; 
 
  imsl_f_bvp_finite_difference( fcneqn, fcnjac, fcnbc, n, nleft,  
  ncupbc, tleft, tright, 
  linear, &nfinal, tfinal, (float*)(&yfinal[0][0]),  
             IMSL_MAX_SUBINTER, MXGRID,  
  IMSL_PROBLEM_EMBEDDED, fcnpeq, fcnpbc, pistep, 
  IMSL_HINIT, ninit, tinit, yinit,  
  IMSL_ERR_EST, &errest,  
  0 ); 
  printf("              t             y0            y1\n" ); 
  for( i=0; i<nfinal; i++ ) { 
    printf("%5d%15.6e%15.6e%15.6e\n", i, tfinal[i], yfinal[i][0], 

 yfinal[i][1]); 
  } 
  printf("Error Estimates     "); 
  printf("%15.6e%15.6e\n",errest[0],errest[1]); 
  return; 
} 
 
 
void fcneqn(int n, float t, float y[], float p, float dydt[]) 
{ 
  float z = t - 0.5; 
  dydt[0] = y[1]; 
  dydt[1] = p*y[0]*y[0]*y[0] + 40./9.*pow(z*z,1./3.) - pow(z,8); 
} 
void fcnjac(int n, float t, float y[], float p, float dfdy[]) 
{ 
  dfdy[0*n+0] = 0;                   /* df0/dy0 */ 
  dfdy[0*n+1] = 1;                   /* df0/dy1 */ 
  dfdy[1*n+0] = 3.*(p)*(y[0]*y[0]);  /* df1/dy0 */ 
  dfdy[1*n+1] = 0;                   /* df1/dy1 */ 
} 
void fcnbc(int n, float yleft[], float yright[], float p, float h[]) 
{ 
  float pi2 = imsl_f_constant("pi", 0)/2.0; 
  h[0] = yleft[0] - pi2; 
  h[1] = yright[0] - pi2; 
} 
void fcnpeq(int n, float t, float y[], float p, float dfdp[]) 
{ 
  dfdp[0] = 0; 
  dfdp[1] = y[0]*y[0]*y[0]; 
} 
void fcnpbc(int n, float yleft[], float yright[], float p, float dhdp[]) 
{ 
  dhdp[0] = 0; 
  dhdp[1] = 0; 
} 
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Output 
 
              t             y0            y1 
    0   0.000000e+00   1.570796e+00  -1.949336e+00 
    1   4.444445e-02   1.490495e+00  -1.669566e+00 
    2   8.888889e-02   1.421951e+00  -1.419465e+00 
    3   1.333333e-01   1.363953e+00  -1.194307e+00 
    4   2.000000e-01   1.294526e+00  -8.958461e-01 
    5   2.666667e-01   1.243628e+00  -6.373191e-01 
    6   3.333334e-01   1.208785e+00  -4.135206e-01 
    7   4.000000e-01   1.187783e+00  -2.219351e-01 
    8   4.250000e-01   1.183038e+00  -1.584200e-01 
    9   4.500000e-01   1.179822e+00  -9.973146e-02 
   10   4.625000e-01   1.178748e+00  -7.233893e-02 
   11   4.750000e-01   1.178007e+00  -4.638249e-02 
   12   4.812500e-01   1.177756e+00  -3.399763e-02 
   13   4.875000e-01   1.177582e+00  -2.205548e-02 
   14   4.937500e-01   1.177480e+00  -1.061177e-02 
   15   5.000000e-01   1.177447e+00  -1.496867e-07 
   16   5.062500e-01   1.177480e+00   1.061153e-02 
   17   5.125000e-01   1.177582e+00   2.205518e-02 
   18   5.187500e-01   1.177756e+00   3.399727e-02 
   19   5.250000e-01   1.178007e+00   4.638219e-02 
   20   5.375000e-01   1.178748e+00   7.233876e-02 
   21   5.500000e-01   1.179822e+00   9.973124e-02 
   22   5.750000e-01   1.183038e+00   1.584199e-01 
   23   6.000000e-01   1.187783e+00   2.219350e-01 
   24   6.666667e-01   1.208786e+00   4.135206e-01 
   25   7.333333e-01   1.243628e+00   6.373190e-01 
   26   8.000000e-01   1.294526e+00   8.958461e-01 
   27   8.666667e-01   1.363953e+00   1.194307e+00 
   28   9.111111e-01   1.421951e+00   1.419465e+00 
   29   9.555556e-01   1.490495e+00   1.669566e+00 
   30   1.000000e+00   1.570796e+00   1.949336e+00 
Error Estimates        3.451270e-06   5.550027e-05 

fast_poisson_2d 
Solves Poisson’s or Helmholtz’s equation on a two-dimensional rectangle using a fast 
Poisson solver based on the HODIE finite-difference scheme on a uniform mesh. 

Synopsis 
#include <imsl.h> 
float *imsl_f_fast_poisson_2d (float rhs_pde(), float rhs_bc(), float 

coeff_u, int nx, int ny, float ax, float bx, float ay, float by, 
Imsl_bc_type bc_type[], ..., 0) 

The type double function is imsl_d_fast_poisson_2d. 

Required Arguments 
float rhs_pde (float x, float y) 

User-supplied function to evaluate the right-hand side of the partial differential 
equation at x and y. 
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float rhs_bc(Imsl_pde_side side, float x, float y) 
User-supplied function to evaluate the right-hand side of the boundary 
conditions, on side side, at x and y. The value of side will be one of the 
following: IMSL_RIGHT, IMSL_BOTTOM, IMSL_LEFT, or IMSL_TOP.  

float coeff_u   (Input) 
Value of the coefficient of u in the differential equation. 

int nx   (Input) 
Number of grid lines in the x-direction. nx must be at least 4. See the 
description section for further restrictions on nx. 

int ny   (Input) 
Number of grid lines in the y-direction. ny must be at least 4. See the 
“Description” section for further restrictions on ny. 

float ax   (Input) 
The value of x along the left side of the domain. 

float bx  (Input) 
The value of x along the right side of the domain. 

float ay   (Input) 
The value of y along the bottom of the domain. 

float by  (Input) 
The value of y along the top of the domain. 

Imsl_bc_type bc_type[4]   (Input) 
Array of size 4 indicating the type of boundary condition on each side of the 
domain or that the solution is periodic. The sides are numbered as follows: 

Side             Location 
IMSL_RIGHT_SIDE(0)  x = bx 
IMSL_BOTTOM_SIDE(1)  y = ay 
IMSL_LEFT_SIDE(2)  x = ax 
IMSL_TOP_SIDE(3)  y = by 
The three possible boundary condition types are as follows: 
Type            Condition 
IMSL_DIRICHLET Value of u is given. 
IMSL_NEUMANN   Value of du/dx is given (on the right or  
    left sides) or du/dy (on the bottom or  
    top of the domain). 
IMSL_PERIODIC  Periodic. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float *imsl_f_fast_poisson_2d (float rhs_pde(), float rhs_bc(), float 

coeff_u, int nx, int ny, float ax, float bx, float ay, float by, 
Imsl_bc_type bc_type[], 
IMSL_RETURN_USER, float u_user[], 
IMSL_ORDER, int order, 
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IMSL_RHS_PDE_W_DATA, float rsh_pde (), void *data, 
IMSL_RHS_BC_W_DATA, float rsh_bc (), void *data, 
 0) 

Optional Arguments 
IMSL_RETURN_USER, float u_user[]   (Output) 

User-supplied array of size nx by ny containing solution at the grid points. 
IMSL_ORDER, int order   (Input) 

Order of accuracy of the finite-difference approximation. It can be either 2 or 4.  
Default: order = 4 

IMSL_RSH_PDE_W_DATA, float rhs_pde (float x, float y,   void *data), void 
*data, (Input) 
User-supplied function to evaluate the right-hand side of the partial differential 
equation at x and y, which also accepts a pointer to data that is supplied by the 
user.  data is a pointer to the data to be passed to the user-supplied function.  
See the Introduction, Passing Data to User-Supplied Functions at the 
beginning of this manual for more details. 

IMSL_RSH_BC_W_DATA, float rhs_bc(Imsl_pde_side side, float x, float y,   void 
*data) , void *data, (Input) 
User-supplied function to evaluate right-hand side of the boundary conditions, 
which also accepts a pointer to data that is supplied by the user.  data is a 
pointer to the data to be passed to the user-supplied function.  See the 
Introduction, Passing Data to User-Supplied Functions at the beginning of 
this manual for more details. 

Description 
Let c = coeff_u, ax = ax, bx = bx, ay = ay, by = by, nx = nx and ny = ny. 
imsl_f_fast_poisson_2d is based on the code HFFT2D by Boisvert (1984). It 
solves the equation 
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on the rectangular domain (ax, bx) � (ay, by) with a user-specified combination of 
Dirichlet (solution prescribed), Neumann (first-derivative prescribed), or periodic 
boundary conditions. The sides are numbered clockwise, starting with the right side. 
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When c = 0 and only Neumann or periodic boundary conditions are prescribed, then 
any constant may be added to the solution to obtain another solution to the problem. In 
this case, the solution of minimum �-norm is returned. 
The solution is computed using either a second-or fourth-order accurate finite-
difference approximation of the continuous equation. The resulting system of linear 
algebraic equations is solved using fast Fourier transform techniques. The algorithm 
relies on the fact that nx � 1 is highly composite (the product of small primes). For 
details of the algorithm, see Boisvert (1984). If nx � 1 is highly composite then the 
execution time of imsl_f_fast_poisson_2d is proportional to nxny log2 nx. If 
evaluations of p(x, y) are inexpensive, then the difference in running time between 
order = 2 and order = 4 is small. 
The grid spacing is the distance between the (uniformly spaced) grid lines. It is given 
by the formulas hx = (bx � ax)/(nx � 1) and hy = (by � ay)/(ny � 1). The grid spacings 
in the x and y directions must be the same, i.e., nx and ny must be such that hx is equal 
to hy. Also, as noted above, nx and ny must be at least 4. To increase the speed of the 
fast Fourier transform, nx � 1 should be the product of small primes. Good choices are 
17, 33, and 65. 
If -coeff_u is nearly equal to an eigenvalue of the Laplacian with homogeneous 
boundary conditions, then the computed solution might have large errors. 

Example 
In this example, the equation 
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with the boundary conditions 
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on the bottom side and 
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on the other three sides is solved. The domain is the rectangle [0, ¼] � [0, ½]. The 
output of imsl_f_fast_poisson_2d is a 17 � 33 table of values. The functions 
imsl_f_spline_2d_value are used to print a different table of values. 

#include <imsl.h> 
#include <math.h> 
 
main() 
{ 
        float           rhs_pde(float, float); 
        float           rhs_bc(Imsl_pde_side, float, float); 
 
        int             nx = 17; 
        int             nxtabl = 5; 
        int             ny = 33; 
        int             nytabl = 5; 
 
        int             i; 
        int             j; 
        Imsl_f_spline  *sp; 
        Imsl_bc_type    bc_type[4]; 
 
        float           ax, ay, bx, by; 
        float           x, y, xdata[17], ydata[33]; 
        float           coefu, *u; 
        float           u_table; 
        float           abs_error; 
 
                        /* Set rectangle size */ 
 
        ax = 0.0; 
        bx = 0.25; 
        ay = 0.0; 
        by = 0.50; 
 
                        /* Set boundary conditions */ 
 
        bc_type[IMSL_RIGHT_SIDE] = IMSL_DIRICHLET_BC; 
        bc_type[IMSL_BOTTOM_SIDE] = IMSL_NEUMANN_BC; 
        bc_type[IMSL_LEFT_SIDE] = IMSL_DIRICHLET_BC; 
        bc_type[IMSL_TOP_SIDE] = IMSL_DIRICHLET_BC; 
 
                        /* Coefficient of u */ 
        coefu = 3.0; 
 
                        /* Solve the PDE */ 
 
        u = imsl_f_fast_poisson_2d(rhs_pde, rhs_bc, coefu, nx, ny, 
                                   ax, bx, ay, by, bc_type, 0); 
 
                        /* Set up for interpolation */ 
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        for (i = 0; i < nx; i++) 
                xdata[i] = ax + (bx - ax) * (float) i / (float) (nx - 1); 
 
        for (i = 0; i < ny; i++) 
                ydata[i] = ay + (by - ay) * (float) i / (float) (ny - 1); 
 
                        /* Compute interpolant */ 
 
        sp = imsl_f_spline_2d_interp(nx, xdata, ny, ydata, u, 0); 
 
        printf("     x          y          u        error\n\n"); 
        for (i = 0; i < nxtabl; i++) 
                for (j = 0; j < nytabl; j++) { 
                        x = ax + (bx - ax) * (float) j / (float) (nxtabl -  
                            1); 
                        y = ay + (by - ay) * (float) i / (float) (nytabl -  
                            1); 
                        u_table = imsl_f_spline_2d_value(x, y, sp, 0); 
                        abs_error = fabs(u_table - sin(x + 2.0 * y) - 
                                         exp(2.0 * x + 3.0 * y)); 
 
                        /* Print computed answer and absolute on 
                           nxtabl by nytabl grid */ 
 
                        printf("  %6.4f     %6.4f     %6.4f     %8.2e\n", 
                               x, y, u_table, abs_error); 
                } 
} 
 
float rhs_pde(float x, float y) 
{ 
                        /* Define the right side of the PDE */ 
 
        return (-2.0 * sin(x + 2.0 * y) + 16.0 * exp(2.0 * x + 3.0 * y)); 
} 
 
float rhs_bc(Imsl_pde_side side, float x, float y) 
{ 
                        /* Define the boundary conditions */ 
 
        if (side == IMSL_BOTTOM_SIDE) 
                return (2.0 * cos(x + 2.0 * y) + 3.0 * exp(2.0 * x + 3.0 * 
                        y)); 
        else 
                return (sin(x + 2.0 * y) + exp(2.0 * x + 3.0 * y)); 
} 

Output 
     x          y          u        error 
  0.0000     0.0000     1.0000     0.00e+00 
  0.0625     0.0000     1.1956     5.12e-06 
  0.1250     0.0000     1.4087     7.19e-06 
  0.1875     0.0000     1.6414     5.10e-06 
  0.2500     0.0000     1.8961     8.67e-08 
  0.0000     0.1250     1.7024     1.73e-07 
  0.0625     0.1250     1.9562     6.39e-06 
  0.1250     0.1250     2.2345     9.50e-06 
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  0.1875     0.1250     2.5407     6.36e-06 
  0.2500     0.1250     2.8783     1.66e-07 
  0.0000     0.2500     2.5964     2.60e-07 
  0.0625     0.2500     2.9322     9.25e-06 
  0.1250     0.2500     3.3034     1.34e-05 
  0.1875     0.2500     3.7148     9.27e-06 
  0.2500     0.2500     4.1720     9.40e-08 
  0.0000     0.3750     3.7619     4.84e-07 
  0.0625     0.3750     4.2163     9.16e-06 
  0.1250     0.3750     4.7226     1.36e-05 
  0.1875     0.3750     5.2878     9.44e-06 
  0.2500     0.3750     5.9199     5.72e-07 
  0.0000     0.5000     5.3232     5.93e-07 
  0.0625     0.5000     5.9520     9.84e-07 
  0.1250     0.5000     6.6569     1.34e-06 
  0.1875     0.5000     7.4483     4.55e-07 
  0.2500     0.5000     8.3380     2.27e-06 
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Chapter 6: Transforms 

Routines 
6.1 Real Trigonometric FFTs 

Real FFT ....................................................................................... fft_real 341 
Real FFT initialization ............................................................. fft_real_init 345 

6.2 Complex Exponential FFTs 
Complex FFT......................................................................... fft_complex 346 
Complex FFT initialization ...............................................fft_complex_init 349 

6.3 Real Sine and Cosine FFTs 
Fourier cosine transform .......................................................... fft_cosine 351 
Fourier cosine transform initialization................................. fft_cosine_init 353 
Fourier sine transform .................................................................. fft_sine 355 
Fourier sine transform initialization.........................................fft_sine_init 357 

6.4 Two-Dimensional FFTs 
Complex two-dimensional FFT........................................ fft_2d_complex 359 

6.5 Convolution and Correlation 
Real convolution/correlation ...................................................convolution 363 
Complex convolution/correlation ...........................convolution (complex) 370 

6.6 Laplace Transform 
Approximate inverse Laplace transform  
of a complex function ...................................................... inverse_laplace 376 

Usage Notes 
Fast Fourier Transforms 
A fast Fourier transform (FFT) is simply a discrete Fourier transform that is computed 
efficiently. Basically, the straightforward method for computing the Fourier transform 
takes approximately n2 operations where n is the number of points in the transform, 
while the FFT (which computes the same values) takes approximately n log n 
operations. The algorithms in this chapter are modeled on the Cooley-Tukey (1965) 
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algorithm. Hence, these functions are most efficient for integers that are highly 
composite; that is, integers that are a product of small primes. 

For the two functions imsl_f_fft_real (page 341) and imsl_c_fft_complex 
(page 346) , there is a corresponding initialization function. Use these functions only 
when repeatedly transforming sequences of the same length. In this situation, the 
initialization function computes the initial setup once; subsequently, the user calls the 
corresponding main function with the appropriate option. This may result in substantial 
computational savings. For more information on the use of these functions, consult the 
documentation under the appropriate function name. 

In addition to the one-dimensional transformations described above, we also provide a 
complex two-dimensional FFT and its inverse. 

Continuous Versus Discrete Fourier Transform 
There is, of course, a close connection between the discrete Fourier transform and the 
continuous Fourier transform. Recall that the continuous Fourier transform is defined 
(Brigham 1974) as  
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If we approximate the last integral using the rectangle rule with spacing h = T � n, we 
have 
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Finally, setting � = j/T for j = 0, �, n � 1 yields 
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where the vector f h = (f(�T/2), �, f( (n � 1)h � T/2)). Thus, after scaling the 
components by (�1)jh, the discrete Fourier transform, as computed in 
imsl_c_fft_complex (with input f h) is related to an approximation of the 
continuous Fourier transform by the above formula. 

If the function f is expressed as a C function, then the continuous Fourier transform 

f̂  
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can be approximated using the IMSL function imsl_f_int_fcn_fourier  
(Chapter 4, “Quadrature”). 

fft_real 
Computes the real discrete Fourier transform of a real sequence. 

Synopsis 
#include <imsl.h> 
float *imsl_f_fft_real (int n, float p[], �, 0) 

The type double function is imsl_d_fft_real. 

Required Arguments 

int n   (Input) 
Length of the sequence to be transformed. 

float p[]   (Input) 
Array with n components containing the periodic sequence. 

Return Value 
A pointer to the transformed sequence. To release this space, use free. If no value can 
be computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h>  
float *imsl_f_fft_real (int n, float p[], 

IMSL_BACKWARD, 
IMSL_PARAMS, float params[], 
IMSL_RETURN_USER, float q[], 
0) 

Optional Arguments 
IMSL_BACKWARD 

Compute the backward transform and return a pointer to the (backward) 
transformed sequence. 

IMSL_PARAMS, float params[]   (Input) 
Pointer returned by a previous call to imsl_f_fft_real_init. If 
imsl_f_fft_real is used repeatedly with the same value of n, then it is 
more efficient to compute these parameters only once. 

IMSL_RETURN_USER, float q[]   (Output) 
Store the result in the user-provided space pointed to by q. Therefore, no 
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storage is allocated for the solution, and imsl_f_fft_real returns q. The 
array q must be at least n long. 

Description 
The function imsl_f_fft_real computes the discrete Fourier transform of a real 
vector of size n. The method used is a variant of the Cooley-Tukey algorithm, which is 
most efficient when n is a product of small prime factors. If n satisfies this condition, 
then the computational effort is proportional to n log n. 

By default, imsl_f_fft_real computes the forward transform. If n is even, then the 
forward transform is 
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If n is odd, qm is defined as above for m from 1 to (n � 1)/2. 

Let f be a real valued function of time. Suppose we sample f at n equally spaced time 
intervals of length � seconds starting at time t0. That is, we have 

pi:= f(t0 + i�) i = 0, 1, …, n � 1 

We will assume that n is odd for the remainder of this discussion. The function 
imsl_f_fft_real treats this sequence as if it were periodic of period n. In particular, 
it assumes that f(t0) = f(t0 + n�). Hence, the period of the function is assumed to be 
T = n�. We can invert the above transform for p as follows: 
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This formula is very revealing. It can be interpreted in the following manner. The 
coefficients q produced by imsl_f_fft_real determine an interpolating 
trigonometric polynomial to the data. That is, if we define 
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then we have  

f(t0 + (i � 1� �) = g(t0 + (i � 1) � 
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Now suppose we want to discover the dominant frequencies, forming the vector P of 
length  (n + 1)/2 as follows: 
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These numbers correspond to the energy in the spectrum of the signal. In particular,  
Pk corresponds to the energy level at frequency  
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Furthermore, note that there are only (n + 1)/2 � T/(2�) resolvable frequencies when  
n observations are taken. This is related to the Nyquist phenomenon, which is induced 
by discrete sampling of a continuous signal. Similar relations hold for the case when  
n is even. 

If the optional argument IMSL_BACKWARD is specified, then the backward transform is 
computed. If n is even, then the backward transform is 
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If n is odd, 
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The backward Fourier transform is the unnormalized inverse of the forward Fourier 
transform. 

The function imsl_f_fft_real is based on the real FFT in FFTPACK, which was 
developed by Paul Swarztrauber at the National Center for Atmospheric Research. 

Examples 

Example 1 
In this example, a pure cosine wave is used as a data vector, and its Fourier series is 
recovered. The Fourier series is a vector with all components zero except at the 
appropriate frequency where it has an n. 

#include <imsl.h> 
#include <math.h> 
#include <stdio.h> 
 
main() 
{ 
    int         k, n = 7; 
    float       two_pi = 2*imsl_f_constant("pi", 0); 
    float       p[8], *q; 
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                                /* Fill q with a pure exponential signal */ 
    for (k = 0;  k < n;  k++)  
        p[k] = cos(k*two_pi/n); 
 
    q = imsl_f_fft_real (n, p, 0); 
 
    printf("        index      p        q\n"); 
    for (k = 0;  k < n;  k++) 
        printf("%11d%10.2f%10.2f\n", k, p[k], q[k]); 
} 

Output 
index      p        q 
  0      1.00      0.00 
  1      0.62      3.50 
  2     -0.22      0.00 
  3     -0.90     -0.00 
  4     -0.90     -0.00 
  5     -0.22      0.00 
  6      0.62     -0.00 

Example 2 
This example computes the Fourier transform of the vector x, where xj = (�1)j for j = 0 to n � 1. 
The backward transform of this vector is now computed by using the optional argument 
IMSL_BACKWARD. Note that s = nx, that is,  
sj = (�1)jn, for j = 0 to n � 1. 

#include <imsl.h> 
#include <stdio.h> 
 
main() 
{ 
    int         k, n = 7; 
    float       *q, *s, x[8]; 
                                /* Fill data vector */ 
    x[0] = 1.0; 
    for (k = 1;  k<n;  k++) 
        x[k] = -x[k-1]; 
                                /* Compute the forward transform of x */ 
    q = imsl_f_fft_real (n, x, 0); 
                               /* Compute the backward transform of x */ 
    s = imsl_f_fft_real (n, q, 
                         IMSL_BACKWARD, 
                         0); 
    printf("        index      x        q        s\n"); 
    for (k = 0;  k < n;  k++) 
        printf("%11d%10.2f%10.2f%10.2f\n", k, x[k], q[k], s[k]); 
} 

Output 
index      x        q        s 
  0      1.00      1.00      7.00 
  1     -1.00      1.00     -7.00 
  2      1.00      0.48      7.00 
  3     -1.00      1.00     -7.00 
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  4      1.00      1.25      7.00 
  5     -1.00      1.00     -7.00 
  6      1.00      4.38      7.00 

fft_real_init 
Computes the parameters for imsl_f_fft_real. 

Synopsis 
#include <imsl.h>  
float *imsl_f_fft_real_init (int n) 

The type double function is imsl_d_fft_real_init. 

Required Arguments 
int n   (Input) 

Length of the sequence to be transformed. 

Return Value 
A pointer to the parameter vector of length 2n + 15 that can then be used by 
imsl_f_fft_real when the optional argument IMSL_PARAMS is specified. To 
release this space, use free. If no value can be computed, then NULL is returned. 

Description 
The function imsl_f_fft_real_init should be used when many calls are to be 
made to imsl_f_fft_real without changing the sequence length n. This function 
computes the parameters that are necessary for the real Fourier transform. 

The function imsl_f_fft_real_init is based on the routine RFFTI in FFTPACK, 
which was developed by Paul Swarztrauber at the National Center for Atmospheric 
Research. 

Example 
This example computes three distinct real FFTs by calling imsl_f_fft_real_ init 
once and then calling imsl_f_fft_real three times. 

#include <imsl.h> 
#include <math.h> 
#include <stdio.h> 
 
main() 
{ 
    int         k, j, n = 7; 
    float       two_pi = 2*imsl_f_constant("pi", 0); 
    float       p[8], *q, *work; 
    work = imsl_f_fft_real_init (n); 
    for (j = 0;  j < 3;  j++){ 
                              /* Fill p with a pure sinusoidal signal */ 
       for (k = 0;  k < n;  k++)  
           p[k] = cos(k*two_pi*j/n); 



 

 
 

346 � fft_complex IMSL C/Math/Library 

 

 

 

 
       q = imsl_f_fft_real (n, p,  
                           IMSL_PARAMS, work, 0); 
 
       printf("        index      p        q\n"); 
       for (k = 0;  k < n;  k++) 
           printf("%11d%10.2f%10.2f\n", k, p[k], q[k]); 
    } 
} 

Output 
index      p        q 
  0      1.00      7.00 
  1      1.00      0.00 
  2      1.00      0.00 
  3      1.00      0.00 
  4      1.00      0.00 
  5      1.00     -0.00 
  6      1.00      0.00 

 index      p        q 
  0      1.00      0.00 
  1      0.62      3.50 
  2     -0.22      0.00 
  3     -0.90     -0.00 
  4     -0.90     -0.00 
  5     -0.22      0.00 
  6      0.62     -0.00 

 index      p        q 
  0      1.00     -0.00 
  1     -0.22      0.00 
  2     -0.90     -0.00 
  3      0.62      3.50 
  4      0.62     -0.00 
  5     -0.90      0.00 
  6     -0.22      0.00 

fft_complex 
Computes the complex discrete Fourier transform of a complex sequence. 

Synopsis 
#include <imsl.h> 
f_complex *imsl_c_fft_complex (int n, f_complex p[], �, 0) 

The type d_complex function is imsl_z_fft_complex. 

Required Arguments 

int n   (Input) 
Length of the sequence to be transformed. 

f_complex p[]   (Input) 
Array with n components containing the periodic sequence. 
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Return Value 
If no optional arguments are used, imsl_c_fft_complex returns a pointer to the 
transformed sequence. To release this space, use free. If no value can be computed, 
then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
f_complex *imsl_c_fft_complex (int n, f_complex p[], 

IMSL_BACKWARD, 
IMSL_PARAMS, float params[], 
IMSL_RETURN_USER, f_complex q[], 
0) 

Optional Arguments 
IMSL_BACKWARD 

Compute the backward transform. 

IMSL_PARAMS, float params[]   (Input) 
Pointer returned by a previous call to imsl_c_fft_complex_init. If 
imsl_c_fft_complex is used repeatedly with the same value of n, then it is 
more efficient to compute these parameters only once. 

IMSL_RETURN_USER, f_complex q[]   (Output) 
Store the result in the user-provided space pointed to by q. Therefore, no 
storage is allocated for the solution, and imsl_c_fft_complex returns q. 
The array q must be of length at least n. 

Description 
The function imsl_c_fft_complex computes the discrete Fourier transform of a real 
vector of size n. The method used is a variant of the Cooley-Tukey algorithm, which is 
most efficient when n is a product of small prime factors. If n satisfies this condition, 
then the computational effort is proportional to n log n. 

By default, imsl_c_fft_complex computes the forward transform below. 
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Note that we can invert the Fourier transform as follows below. 
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This formula reveals the fact that, after properly normalizing the Fourier coefficients, 
you have the coefficients for a trigonometric interpolating polynomial to the data. The 
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function imsl_c_fft_complex is based on the complex FFT in FFTPACK, which 
was developed by Paul Swarztrauber at the National Center for Atmospheric Research. 

If the option IMSL_BACKWARD is selected, then the following computation is 
performed. 
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Furthermore, the relation between the forward and backward transforms is that they are 
unnormalized inverses of each other. That is, the following code fragment begins with a 
vector p and concludes with a vector p2 = np. 
q  = imsl_c_fft_complex(n, p, 0); 

p2 = imsl_c_fft_complex(n, q, IMSL_BACKWARD, 0); 

Examples 

Example 1 
This example inputs a pure exponential data vector and recovers its Fourier series, 
which is a vector with all components zero except at the appropriate frequency where it 
has an n. 

#include <imsl.h> 
#include <math.h> 
#include <stdio.h> 
  
main() 
{ 
    int            k, n = 7; 
    float          two_pi = 2*imsl_f_constant("pi", 0); 
    f_complex      p[8], *q, z; 
                                /* Fill p with a pure exponential signal */ 
    for (k = 0;  k < n;  k++) { 
         z.re = 0.; 
         z.im = k*two_pi/n; 
         p[k] = imsl_c_exp(z); 
     } 
    q = imsl_c_fft_complex (n, p, 0); 
 
    printf("        index    p.re      p.im      q.re      q.im\n"); 
    for (k = 0;  k < n;  k++) 
        printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im,  
                 q[k].re, q[k].im); 
} 

Output 
        index    p.re      p.im      q.re      q.im 
          0      1.00      0.00      0.00     -0.00 
          1      0.62      0.78      7.00      0.00 
          2     -0.22      0.97     -0.00     -0.00 
          3     -0.90      0.43      0.00     -0.00 
          4     -0.90     -0.43      0.00      0.00 
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          5     -0.22     -0.97     -0.00      0.00 
          6      0.62     -0.78      0.00     -0.00 

Example 2 
The backward transform is used to recover the original sequence. Notice that the 
forward transform followed by the backward transform multiplies the entries in the 
original sequence by the length of the sequence. 

#include <imsl.h> 
#include <math.h> 
#include <stdio.h> 
 
main() 
{ 
    int            k, n = 7; 
    float          two_pi = 2*imsl_f_constant("pi", 0); 
    f_complex      p[7], *q, *pp; 
                                /* Fill p with an increasing signal */ 
    for (k = 0;  k < n;  k++) { 
         p[k].re = (float) k; 
         p[k].im = 0.; 
    } 
    q  = imsl_c_fft_complex (n, p, 0); 
    pp = imsl_c_fft_complex (n, q, 
                             IMSL_BACKWARD, 
                             0);  
    printf("        index    p.re      p.im     pp.re     pp.im \n"); 
    for (k = 0;  k < n;  k++) 
        printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im,  
                 pp[k].re , pp[k].im); 
} 

Output 
index    p.re      p.im     pp.re     pp.im  
  0      0.00      0.00      0.00      0.00 
  1      1.00      0.00      7.00      0.00 
  2      2.00      0.00     14.00      0.00 
  3      3.00      0.00     21.00      0.00 
  4      4.00      0.00     28.00      0.00 
  5      5.00      0.00     35.00      0.00 
  6      6.00      0.00     42.00      0.00 

fft_complex_init 
Computes the parameters for imsl_c_fft_complex. 

Synopsis 
#include <imsl.h>  
float *imsl_c_fft_complex_init (int n) 

The type double function is imsl_z_fft_complex_init. 
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Required Arguments 

int n   (Input) 
Length of the sequence to be transformed. 

Return Value 
A pointer to the parameter vector of type float and length 2n + 15 which can then be 
used by imsl_c_fft_complex when the optional argument IMSL_PARAMS is 
specified. To release this space, use free. If no value can be computed, then NULL is 
returned. 

Description 
The routine imsl_c_fft_complex_init should be used when many calls are to be 
made to imsl_c_fft_complex without changing the sequence length n. This routine 
computes constants which are necessary for the real Fourier transform. 

The function imsl_c_fft_complex_init is based on the routine CFFTI in 
FFTPACK, which was developed by Paul Swarztrauber at the National Center for 
Atmospheric Research. 

Example 
This example computes three distinct complex FFTs by calling 
imsl_c_fft_complex_init once, then calling imsl_c_fft_complex 3 times. 

#include <imsl.h> 
#include <math.h> 
#include <stdio.h> 
  
main() 
{ 
    int            k, j, n = 7; 
    float          two_pi = 2*imsl_f_constant("pi", 0), *work; 
    f_complex      p[8], *q, z; 
    work = imsl_c_fft_complex_init (n); 
    for (j = 0;  j < 3;  j++){ 
                                /* Fill p with a pure exponential signal */ 
      for (k = 0;  k < n;  k++) { 
           z.re = 0.; 
           z.im = k*two_pi*j/n; 
           p[k] = imsl_c_exp(z); 
       } 
    q = imsl_c_fft_complex (n, p,  
                           IMSL_PARAMS, work, 0); 
 
    printf("\n        index    p.re      p.im      q.re      q.im\n"); 
    for (k = 0;  k < n;  k++) 
        printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im,  
                 q[k].re, q[k].im); 
    } 
} 
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Output 
index    p.re      p.im      q.re      q.im 
  0      1.00      0.00      7.00      0.00 
  1      1.00      0.00      0.00      0.00 
  2      1.00      0.00      0.00      0.00 
  3      1.00      0.00      0.00      0.00 
  4      1.00      0.00      0.00      0.00 
  5      1.00      0.00      0.00      0.00 
  6      1.00      0.00      0.00      0.00 
 
index    p.re      p.im      q.re      q.im 
  0      1.00      0.00      0.00     -0.00 
  1      0.62      0.78      7.00      0.00 
  2     -0.22      0.97     -0.00     -0.00 
  3     -0.90      0.43      0.00     -0.00 
  4     -0.90     -0.43      0.00      0.00 
  5     -0.22     -0.97     -0.00      0.00 
  6      0.62     -0.78      0.00     -0.00 
 
index    p.re      p.im      q.re      q.im 
  0      1.00      0.00     -0.00     -0.00 
  1     -0.22      0.97      0.00     -0.00 
  2     -0.90     -0.43      7.00      0.00 
  3      0.62     -0.78     -0.00     -0.00 
  4      0.62      0.78      0.00     -0.00 
  5     -0.90      0.43      0.00      0.00 
  6     -0.22     -0.97     -0.00      0.00 

fft_cosine 
Computes the discrete Fourier cosine transformation of an even sequence. 

Synopsis 

#include <imsl.h> 

float *imsl_f_fft_cosine (int n, float p[], …, 0) 

The type double procedure is imsl_d_fft_cosine. 

Required Arguments  

int n   (Input) 
Length of the sequence to be transformed. It must be greater than 1. 

float p[]   (Input) 
Array of size n containing the sequence to be transformed. 

Return Value 
A pointer to the transformed sequence. To release this space, use free. If no solution 
was computed, then NULL is returned. 
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Synopsis with Optional Arguments 
#include <imsl.h> 

float *imsl_f_fft_cosine (int n, float p[], 
IMSL_RETURN_USER, float q[], 
IMSL_PARAMS, float params[], 
0) 

Optional Arguments 
IMSL_RETURN_USER, float q[]   (Output) 

Store the result in the user-provided space pointed to by q. Therefore, no 
storage is allocated for the solution, and imsl_f_fft_cosine returns q. The 
array must be of length n at least. 

IMSL_PARAMS, float params[]   (Input) 
Pointer returned by a previous call to imsl_f_fft_cosine_init. If 
imsl_f_fft_cosine is used repeatedly with the same value of n, then it is 
more efficient to compute these parameters only once. 
Default: Initializing parameters computed each time imsl_f_fft_cosine is 
entered 

Description 
The function imsl_f_fft_cosine computes the discrete Fourier cosine transform of 
a real vector of size N. The method used is a variant of the Cooley-Tukey algorithm, 
which is most efficient when N � 1 is a product of small prime factors. If N satisfies this 
condition, then the computational effort is proportional to N logN. Specifically, given 
an N-vector p, imsl_f_fft_cosine returns in q 

� �
2

0 1
1

2 sin( ) 1
1

N
m

m n N
n

mnq p s s
N

�
�

�

�

� � �

�
� �  

Finally, note that the Fourier cosine transform is its own (unnormalized) inverse. The 
imsl_f_fft_cosine function is based on the sine FFT in FFTPACK. The package 
FFTPACK was developed by Paul Swarztrauber at the National Center for 
Atmospheric Research.  

Example 
This example inputs a pure cosine wave as a data vector and recovers its Fourier cosine 
series, which is a vector with all components zero, except n � 1 at the appropriate 
frequency. 

#include <imsl.h> 
#include <math.h> 
 
main() 
{ 
        int             n = 7; 
        int             i; 
        float           p[7]; 
        float          *q; 
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        float           pi; 
 
        pi = imsl_f_constant("pi", 0); 
 
                                /* Fill p with a pure cosine wave */ 
 
        for (i=0; i<n; i++)  
                p[i] = cos((float)(i)*pi/(float)(n-1)); 
 
        q = imsl_f_fft_cosine (n, p, 0); 
 
        printf ("      index\t   p\t   q\n"); 
        for (i=0; i<n; i++)  
                printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]); 
} 

Output 
      index         p           q 
        0         1.00        -0.00 
        1         0.87         6.00 
        2         0.50         0.00 
        3        -0.00         0.00 
        4        -0.50        -0.00 
        5        -0.87        -0.00 
        6        -1.00        -0.00 

fft_cosine_init 
Computes the parameters needed for imsl_f_fft_cosine. 

Synopsis 

#include <imsl.h> 

float *imsl_f_fft_cosine_init (int n) 

The type double procedure is imsl_d_fft_cosine_init. 

Required Arguments  

int n   (Input) 
Length of the sequence to be transformed. It must be greater than 1. 

Return Value  
A pointer to parameter vector of length (3*n + 15) that can then be used by 
imsl_f_fft_cosine when the optional argument IMSL_PARAMS is specified. To 
release this space, use free. If no solution was computed, then NULL is returned. 

Description 
The function imsl_f_fft_cosine_init should be used when many calls must be 
made to imsl_f_fft_cosine without changing the sequence length n. The function 
imsl_f_fft_cosine_init is based on the routine COSTI in FFTPACK. The 
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package FFTPACK was developed by Paul Swarztrauber at the National Center for 
Atmospheric Research. 

Example 
This example computes three distinct sine FFTs by calling 
imsl_f_fft_cosine_init once, then calling imsl_f_fft_cosine three times. 
The internal parameter initialization in imsl_f_fft_cosine is now skipped. 

#include <imsl.h> 
#include <math.h> 
 
main() 
{ 
        int            n = 7; 
        int            i, k; 
        float          p[7]; 
        float          q[7]; 
        float          pi; 
        float         *params; 
 
        pi = imsl_f_constant("pi", 0); 
 
                                /* Compute parameters for transform of 
                                   length n */ 
 
        params = imsl_f_fft_cosine_init (n); 
 
                                /* Different frequencies of the same 
                                   wave will be transformed */ 
        for (k=0; k<3; k++) { 
                printf("\n"); 
 
                                /* Fill p with a pure cosine wave */ 
 
                for (i=0; i<n; i++)  
                        p[i] = cos((float)((k+1)*i)*pi/(float)(n-1)); 
 
                                /* Compute the transform of p */ 
 
                imsl_f_fft_cosine (n, p, 
                        IMSL_PARAMS, params, 
                        IMSL_RETURN_USER, q, 
                        0); 
 
                printf ("      index\t   p\t   q\n"); 
                for (i=0; i<n; i++)  
                        printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]); 
 
        } 
} 

Output 
      index         p           q 
        0         1.00        -0.00 
        1         0.87         6.00 
        2         0.50         0.00 
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        3        -0.00         0.00 
        4        -0.50        -0.00 
        5        -0.87        -0.00 
        6        -1.00        -0.00 
 
      index         p           q 
        0         1.00         0.00 
        1         0.50        -0.00 
        2        -0.50         6.00 
        3        -1.00         0.00 
        4        -0.50         0.00 
        5         0.50         0.00 
        6         1.00        -0.00 
 
      index         p           q 
        0         1.00        -0.00 
        1        -0.00         0.00 
        2        -1.00        -0.00 
        3         0.00         6.00 
        4         1.00         0.00 
        5        -0.00        -0.00 
        6        -1.00         0.00 

fft_sine 
Computes the discrete Fourier sine transformation of an odd sequence. 

Synopsis 

#include <imsl.h> 

float *imsl_f_fft_sine (int n, float p[], …, 0) 

The type double procedure is imsl_d_fft_sine. 

Required Arguments  

int n   (Input) 
Length of the sequence to be transformed. It must be greater than 1. 

float p[]   (Input) 
Array of size n containing the sequence to be transformed. 

Return Value  
A pointer to the transformed sequence. To release this space, use free. If no solution 
was computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h>  

float *imsl_f_fft_sine (int n, float p[], 
IMSL_RETURN_USER, float q[], 
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IMSL_PARAMS, float params[], 
0) 

Optional Arguments 
IMSL_RETURN_USER, float q[]   (Output) 

Store the result in the user-provided space pointed to by q. Therefore, no 
storage is allocated for the solution, and imsl_f_fft_sine returns q. The 
array must be of length at least n + 1. 

IMSL_PARAMS, float params[]   (Input) 
Pointer returned by a previous call to imsl_f_fft_sine_init. If 
imsl_f_fft_sine is used repeatedly with the same value of n, then it is 
more efficient to compute these parameters only once. 
Default: Initializing parameters computed each time imsl_f_fft_sine is 
entered 

Description 
The function imsl_f_fft_sine computes the discrete Fourier sine transform of a real 
vector of size N. The method used is a variant of the Cooley-Tukey algorithm, which is 
most efficient when N + 1 is a product of small prime factors. If N satisfies this 
condition, then the computational effort is proportional to N logN. Specifically, given 
an N-vector p, imsl_f_fft_sine returns in q 

� �� �1

0

1 1
2 sin

1

N

m n
n

m n
q p

N
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Finally, note that the Fourier sine transform is its own (unnormalized) inverse. The 
function imsl_f_fft_sine is based on the sine FFT in FFTPACK. The package 
FFTPACK was developed by Paul Swarztrauber at the National Center for 
Atmospheric Research.  

Example 
This example inputs a pure sine wave as a data vector and recovers its Fourier sine 
series, which is a vector with all components zero, except n at the appropriate 
frequency. 

#include <imsl.h> 
#include <math.h> 
 
main() 
{ 
        int            n = 7; 
        int            i; 
        float          p[7]; 
        float          *q; 
        float          pi; 
 
        pi = imsl_f_constant("pi", 0); 
 
                        /* fill p with a pure sine wave */ 
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        for (i=0; i<n; i++)  
                p[i] = sin((float)(i+1)*pi/(float)(n+1)); 
 
        q = imsl_f_fft_sine (n, p, 0); 
 
        printf ("      index\t   p\t   q\n"); 
        for (i=0; i<n; i++)  
                printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]); 
} 

Output 
      index      p        q 
       0       0.38     8.00 
       1       0.71     0.00 
       2       0.92     0.00 
       3       1.00     0.00 
       4       0.92     0.00 
       5       0.71     0.00 
       6       0.38     0.00 

fft_sine_init 
Computes the parameters needed for imsl_f_fft_sine. 

Synopsis 

#include <imsl.h> 

float *imsl_f_fft_sine_init (int n) 

The type double procedure is imsl_d_fft_sine_init. 

Required Arguments  

int n   (Input) 
Length of the sequence to be transformed. It must be greater than 1. 

Return Value  
A pointer to parameter vector of length (int) (2.5*n + 15) that can then be used by 
imsl_f_fft_sine when the optional argument IMSL_PARAMS is specified. To release 
this space, use free. If no solution was computed, then NULL is returned. 

Description  
The function imsl_f_fft_sine_init should be used when many calls must be made 
to imsl_f_fft_sine without changing the sequence length n. The function 
imsl_f_fft_sine_init is based on the routine SINTI in FFTPACK. The package 
FFTPACK was developed by Paul Swarztrauber at the National Center for 
Atmospheric Research. 
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Example 
This example computes three distinct sine FFTs by calling imsl_f_fft_sine_init 
once, then calling imsl_f_fft_sine three times. The internal parameter initialization 
in imsl_f_fft_sine is now skipped. 

#include <imsl.h> 
#include <math.h> 
 
main() 
{ 
        int            n = 7; 
        int            i, k; 
        float          p[7]; 
        float          q[8]; 
        float          pi; 
        float         *params; 
 
        pi = imsl_f_constant("pi", 0); 
 
                                /* Compute parameters for transform of 
                                   length n */ 
 
        params = imsl_f_fft_sine_init (n); 
 
                                /* Different frequencies of the same 
                                   wave will be transformed */ 
        for (k=0; k<3; k++) { 
                printf("\n"); 
 
                                /* Fill p with a pure sine wave */ 
 
                for (i=0; i<n; i++)  
                        p[i] = sin((float)((k+1)*(i+1))*pi/(float)(n+1)); 
 
                                /* Compute the transform of p */ 
 
                imsl_f_fft_sine (n, p, 
                        IMSL_PARAMS, params, 
                        IMSL_RETURN_USER, q, 
                        0); 
 
                printf ("      index\t   p\t   q\n"); 
                for (i=0; i<n; i++)  
                        printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]); 
 
        } 
} 

Output 
      index         p           q 
        0         0.38         8.00 
        1         0.71         0.00 
        2         0.92         0.00 
        3         1.00         0.00 
        4         0.92         0.00 
        5         0.71         0.00 
        6         0.38         0.00 
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      index         p           q 
        0         0.71        -0.00 
        1         1.00         8.00 
        2         0.71         0.00 
        3        -0.00        -0.00 
        4        -0.71         0.00 
        5        -1.00        -0.00 
        6        -0.71         0.00 
 
 
      index         p           q 
        0         0.92         0.00 
        1         0.71        -0.00 
        2        -0.38         8.00 
        3        -1.00         0.00 
        4        -0.38         0.00 
        5         0.71         0.00 
        6         0.92         0.00 

fft_2d_complex 
Computes the complex discrete two-dimensional Fourier transform of a complex two-
dimensional array. 

Synopsis 
#include <imsl.h> 
f_complex *imsl_c_fft_2d_complex (int n, int m, f_complex p[], �, 0) 

The type d_complex function is imsl_z_fft_2d_complex. 

Required Arguments 

int n   (Input) 
Number of rows in the two-dimensional transform. 

int m   (Input) 
Number of columns in the two-dimensional transform. 

f_complex p[]   (Input) 
Two-dimensional array of size n � m containing the sequence that is to be 
transformed. 

Return Value 
A pointer to the transformed array. To release this space, use free. If no value can be 
computed, then NULL is returned. 

 

 



 

 
 

360 � fft_2d_complex IMSL C/Math/Library 

 

 

 

Synopsis with Optional Arguments 
#include <imsl.h>  
f_complex *imsl_c_fft_2d_complex (int n, int m, f_complex p[], 

IMSL_P_COL_DIM, int p_col_dim, 
IMSL_BACKWARD, 
IMSL_RETURN_USER, f_complex q[], 
IMSL_Q_COL_DIM, int q_col_dim, 
0) 

Optional Arguments 
IMSL_P_COL_DIM, int p_col_dim   (Input) 

The column dimension of p. 
Default: p_col_dim = m 

IMSL_BACKWARD 
Compute the backward transform. 

IMSL_RETURN_USER, f_complex q[]   (Output) 
Store the result in the user-provided space pointed to by q. Therefore, no 
storage is allocated for the solution, and imsl_c_fft_2d_complex returns 
q. The array must be of length at least n � m. 

IMSL_Q_COL_DIM, int q_col_dim   (Input) 
The column dimension of q. 
Default: q_col_dim = m 

Description 
The function imsl_c_fft_2d_complex computes the discrete Fourier transform of  
a two-dimensional complex array of size n � m. The method used is a variant of the 
Cooley-Tukey algorithm, which is most efficient when both n and m are a product of 
small prime factors. If n and m satisfy this condition, then the computational effort is 
proportional to nm log nm. 

By default, imsl_c_fft_2d_complex computes the forward transform below. 
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Note that we can invert the Fourier transform as follows. 
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This formula reveals the fact that, after properly normalizing the Fourier coefficients, 
you have the coefficients for a trigonometric interpolating polynomial to the data. The 
function imsl_c_fft_2d_complex is based on the complex FFT in FFTPACK, 
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which was developed by Paul Swarztrauber at the National Center for Atmospheric 
Research. 

If the option IMSL_BACKWARD is selected, then the following computation is 
performed. 
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The relation between the forward and backward transforms is that they are 
unnormalized inverses of each other. That is, the following code fragment begins with a 
vector p and concludes with a vector p2 = nmp. 
q  = imsl_c_fft_2d_complex(n, m, p, 0); 

p2 = imsl_c_fft_2d_complex(n, m, q, IMSL_BACKWARD, 0); 

Examples 

Example 1 
This example computes the Fourier transform of the pure frequency input for a 5 � 4 
array 

pst = e2pi2s/5 e2pit 3/4 

for 0 	 n 	 4 and 0 	 m 	 3. The result, p̂ q� , has all zeros except in the [2][3] 
position. 

#include <imsl.h> 
#include <math.h> 
#include <stdio.h> 
  
main() 
{ 
    int            s, t, n = 5, m =4; 
    float          two_pi = 2*imsl_f_constant("pi", 0); 
    f_complex      p[5][4], *q, z, w; 
                             /* Fill p with a pure exponential signal */ 
    for (s = 0;  s < n;  s++) { 
         z.re = 0.; 
         z.im = s*two_pi*2./n; 
         for(t =0; t < m; t++){ 
         w.re = 0.; 
         w.im = t*two_pi*3./m; 
         p[s][t] = imsl_c_mul(imsl_c_exp(z),imsl_c_exp(w)); 
         } 
     } 
    q = imsl_c_fft_2d_complex (n, m, (f_complex*)p, 0); 
                               /* Write the input */ 
    imsl_c_write_matrix ("The input matrix is ", 5, 4,  (f_complex*)p,  
                                  IMSL_ROW_NUMBER_ZERO,  
                                  IMSL_COL_NUMBER_ZERO, 0); 
    imsl_c_write_matrix ("The output matrix is ", 5, 4, q,  
                                  IMSL_ROW_NUMBER_ZERO,  
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                                  IMSL_COL_NUMBER_ZERO, 0);   
} 

Output 
                            The input matrix is  
                        0                        1                        2 
0 (     1.000,     0.000)  (     0.000,    -1.000)  (    -1.000,    -0.000) 
1 (    -0.809,     0.588)  (     0.588,     0.809)  (     0.809,    -0.588) 
2 (     0.309,    -0.951)  (    -0.951,    -0.309)  (    -0.309,     0.951) 
3 (     0.309,     0.951)  (     0.951,    -0.309)  (    -0.309,    -0.951) 
4 (    -0.809,    -0.588)  (    -0.588,     0.809)  (     0.809,     0.588) 
  
                        3 
0 (    -0.000,     1.000) 
1 (    -0.588,    -0.809) 
2 (     0.951,     0.309) 
3 (    -0.951,     0.309) 
4 (     0.588,    -0.809) 
  
                            The output matrix is  
                        0                        1                        2 
0 (        -0,        -0)  (         0,        -0)  (         0,        -0) 
1 (         0,         0)  (         0,        -0)  (        -0,         0) 
2 (        -0,        -0)  (         0,        -0)  (         0,        -0) 
3 (         0,         0)  (         0,        -0)  (        -0,         0) 
4 (        -0,        -0)  (         0,        -0)  (         0,        -0) 
  
                        3 
0 (         0,        -0) 
1 (         0,        -0) 
2 (        20,         0) 
3 (        -0,        -0) 
4 (        -0,        -0) 

Example 2 
This example uses the backward transform to recover the original sequence. Notice that 
the forward transform followed by the backward transform multiplies the entries in the 
original sequence by the product of the lengths of the two dimensions. 

#include <imsl.h> 
#include <math.h> 
#include <stdio.h> 
  
main() 
{ 
    int            s, t, n = 5, m =4; 
    f_complex      p[5][4], *q, *p2; 
                             /* Fill p with a pure exponential signal */ 
    for (s = 0;  s < n;  s++) { 
         for(t =0; t < m; t++){ 
         p[s][t].re = s + 5*t; 
         p[s][t].im = 0.; 
         } 
     }                         /* Forward transform */ 
    q = imsl_c_fft_2d_complex (n, m, (f_complex*)p, 0); 
                               /* Backward transform */ 
    p2 = imsl_c_fft_2d_complex (n, m, q,  
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                                  IMSL_BACKWARD, 0); 
                               /* Write the input */ 
    imsl_c_write_matrix ("The input matrix is ", 5, 4, (f_complex*)p,  
                                  IMSL_ROW_NUMBER_ZERO,  
                                  IMSL_COL_NUMBER_ZERO, 0); 
    imsl_c_write_matrix ("The output matrix is ", 5, 4, p2,  
                                  IMSL_ROW_NUMBER_ZERO,  
                                  IMSL_COL_NUMBER_ZERO, 0);   
} 

Output 
                           The input matrix is  
                        0                        1                        2 
0 (         0,         0)  (         5,         0)  (        10,         0) 
1 (         1,         0)  (         6,         0)  (        11,         0) 
2 (         2,         0)  (         7,         0)  (        12,         0) 
3 (         3,         0)  (         8,         0)  (        13,         0) 
4 (         4,         0)  (         9,         0)  (        14,         0) 
  
                        3 
0 (        15,         0) 
1 (        16,         0) 
2 (        17,         0) 
3 (        18,         0) 
4 (        19,         0) 
  
                           The output matrix is  
                        0                        1                        2 
0 (         0,         0)  (       100,         0)  (       200,         0) 
1 (        20,         0)  (       120,         0)  (       220,         0) 
2 (        40,         0)  (       140,         0)  (       240,         0) 
3 (        60,         0)  (       160,         0)  (       260,         0) 
4 (        80,         0)  (       180,         0)  (       280,         0) 
  
                        3 
0 (       300,         0) 
1 (       320,         0) 
2 (       340,         0) 
3 (       360,         0) 
4 (       380,         0) 

convolution 
Computes the convolution, and optionally, the correlation of two real vectors. 

Synopsis 
#include <imsl.h> 
float *imsl_f_convolution (int nx, float x[], int ny, float y[], int *nz, 

�, 0) 
The type double function is imsl_d_convolution. 
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Required Arguments 
int nx   (Input) 

Length of the vector x. 

float x[]   (Input) 
Real vector of length nx. 

int ny   (Input) 
Length of the vector y. 

float y[]   (Input) 
Real vector of length ny. 

int *nz   (Output) 
Length of the output vector. 

Return Value 
A pointer to an array of length nz containing the convolution of x and y. To release this 
space, use free. If no zeros are computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 

float *imsl_f_convolution (int nx, float x[], int ny, float y[], int *nz, 
IMSL_PERIODIC, 
IMSL_CORRELATION, 
IMSL_FIRST_CALL, 
IMSL_CONTINUE_CALL, 
IMSL_LAST_CALL, 
IMSL_RETURN_USER, float z[], 
IMSL_Z_TRANS, float *zhat, 
0) 

Optional Arguments 
IMSL_PERIODIC 

The input is periodic. 

IMSL_CORRELATION 
Return the correlation of x and y. 

IMSL_FIRST_CALL 
If the function is called multiple times with the same nx and ny, select this 
option on the first call. 

IMSL_CONTINUE_CALL 
If the function is called multiple times with the same nx and ny, select this 
option on intermediate calls. 

IMSL_LAST_CALL 
If the function is called multiple times with the same nx and ny, select this 
option on the final call. 
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IMSL_RETURN_USER, float z[]   (Output) 
User-supplied array of length at least nz containing the convolution or 
correlation of x and y. 

IMSL_Z_TRANS, float zhat[](Output) 
User-supplied array of length at least nz containing on output the discrete 
Fourier transform of z. 

Description 
The function imsl_f_convolution, by default, computes the discrete convolution of 
two sequences x and y. More precisely, let nx be the length of x, and ny denote the 
length of y. If a circular convolution is desired, the optional argument IMSL_PERIODIC 
must be selected. We set 

nz = max {ny, nx}, 

and we pad out the shorter vector with zeros. Then, we compute 

1
1

zn

i i j
j

z x y
� �

�

��  

where the index on x is interpreted as a positive number between 1 and nz, modulo nz. 

The technique used to compute the zi’s is based on the fact that the (complex discrete) 
Fourier transform maps convolution into multiplication. Thus, the Fourier transform of 
z is given by 
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The technique used here to compute the convolution is to take the discrete Fourier 
transform of x and y, multiply the results together component-wise, and then take the 
inverse transform of this product. It is very important to make sure that nz is the product 
of small primes if option IMSL_PERIODIC is selected. If nz is a product of small 
primes, then the computational effort will be proportional to nzlog(nz). If option 
IMSL_PERIODIC is not selected, then a good value is chosen for nz so that the Fourier 
transforms are efficient and nz 
 nx + ny � 1. This will mean that both vectors will be 
padded with zeros. 

We point out that no complex transforms of x or y are taken since both sequences are 
real, and real transforms can simulate the complex transform above. Such a strategy is 
six times faster and requires less space than when using the complex transform. 

Optionally, the function imsl_f_convolution computes the discrete correlation of 
two sequences x and y. More precisely, let n be the length of x and y. If a circular 
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correlation is desired, then option IMSL_PERIODIC must be selected. We set (on 
output) 

nz = n      if IMSL_PERIODIC is chosen 

(nz = 2a3b5g 
 2n � 1)     if IMSL_PERIODIC is not chosen 

where �, �, and 
 are nonnegtive integers yielding the smallest number of the type 
2a3b5g satisfying the inequality. Once nz is determined, we pad out the vectors with 
zeros. Then, we compute 
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where the index on x is interpreted as a positive number between one and nz, modulo nz. 
Note that this means that 

zn kz
�

 

contains the correlation of x(k � 1) with y as k = 0, 1, �, nz�2. Thus, if  
x(k � 1) = y(k) for all k, then we would expect 

znz  

to be the largest component of z. The technique used to compute the zi’s is based on the 
fact that the (complex discrete) Fourier transform maps correlation into multiplication. 
Thus, the Fourier transform of z is given by  

ˆˆ j j jz x y�  

where the following equation is true. 
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Thus, the technique used here to compute the correlation is to take the discrete Fourier 
transform of x and the conjugate of the discrete Fourier transform of y, multiply the 
results together component-wise, and then take the inverse transform of this product. It 
is very important to make sure that nz is the product of small primes if 
IMSL_PERIODIC is selected. If nz is the product of small primes, then the 
computational effort will be proportional to nzlog (nz). If IMSL_PERIODIC is not 
chosen, then a good value is chosen for nz so that the Fourier transforms are efficient 
and nz 
 2n � 1. This will mean that both vectors will be padded with zeros. 

We point out that no complex transforms of x or y are taken since both sequences are 
real, and real transforms can simulate the complex transform above. Such a strategy is 
six times faster and requires less space than when using the complex transform. 
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Examples 

Example 1 
This example computes a nonperiodic convolution. The idea here is that you can 
compute a moving average of the type found in digital filtering using this function. The 
averaging operator in this case is especially simple and is given by averaging five 
consecutive points in the sequence. We try to recover the values of an exponential 
function contaminated by noise. The large error for the last value has to do with the fact 
that the convolution is averaging the zeros in the “pad” rather than the function values. 
Notice that the signal size is 100, but only reports the errors at 10 points. 

#include "imsl.h" 
#include <math.h> 
 
#define NFLTR  5 
#define NY     100 
 
        /* Define function */ 
 
#define F1(A)   exp(A) 
main() 
{ 
    int         i, k, nz; 
    float       fltr[NFLTR], fltrer, origer, total1, total2, twopi,  
                x, y[NY], *z, *noise; 
 
        /* Set up the filter */ 
    for (i = 0; i < NFLTR; i++) fltr[i] = 0.2; 
         
        /* 
         * Set up y-vector for the nonperiodic casE. 
         */ 
 
    twopi = 2.0*imsl_f_constant ("Pi", 0); 
    imsl_random_seed_set(1234579); 
    noise = imsl_f_random_uniform(NY, 0); 
 
    for (i = 0; i < NY; i++) { 
        x = (float)(i) / (NY - 1); 
        y[i] = F1(x) + 0.5 *noise[i]  - 0.25; 
    } 
        /* 
         * Call the convolution routine for the nonperiodic case. 
         */ 
 
    z = imsl_f_convolution(NFLTR, fltr, NY, y, &nz, 0); 
        /* 
         * Call test routines to check z & zhat here. Print results 
         */ 
    printf("\n Nonperiodic Case\n"); 
    printf("        x          F1(x)        Original Error"); 
    printf("   Filtered Error\n");   
 
    total1 = 0.0; 
    total2 = 0.0; 
    for (i = 0; i < NY; i++) { 
        if (i >= NY-2) 
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            k = i - NY + 2; 
        else 
            k = i + 2; 
        x = (float)(i) / (float) (NY - 1); 
        origer = fabs(y[i] - F1(x)); 
        fltrer = fabs(z[i+2] - F1(x)); 
        if ((i % 11) == 0) { 
            printf(" %10.4f%13.4f%18.4f%18.4f\n", 
                    x, F1(x), origer, fltrer); 
        } 
        total1 += origer; 
        total2 += fltrer; 
    } 
    printf(" Average absolute error before filter:%10.5f\n", 
            total1 /  (NY)); 
    printf(" Average absolute error after filter:%11.5f\n", 
            total2 /  (NY)); 
 
} 

Output 
Nonperiodic Case 
        x          F1(x)        Original Error   Filtered Error 
     0.0000       1.0000            0.0811            0.3523 
     0.1111       1.1175            0.0226            0.0754 
     0.2222       1.2488            0.1526            0.0488 
     0.3333       1.3956            0.0959            0.0161 
     0.4444       1.5596            0.1747            0.0276 
     0.5556       1.7429            0.1035            0.0250 
     0.6667       1.9477            0.0402            0.0562 
     0.7778       2.1766            0.0673            0.0835 
     0.8889       2.4324            0.1044            0.0050 
     1.0000       2.7183            0.0154            1.1255 
Average absolute error before filter:   0.12481 
Average absolute error after filter:    0.06785 

Example 2 
This example computes both a periodic correlation between two distinct signals x and y. 
There are 100 equally spaced points on the interval [0, 2�] and f1(x) = sin (x). Define x 
and y as follows: 
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Note that the maximum value of z (the correlation of x with) occurs at i = 25, which 
corresponds to the offset. 

#include "imsl.h" 
#include <math.h> 
 
#define N    100 
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        /* Define function */ 
 
#define F1(A)   sin(A) 
 
main() 
{ 
    int         i, k, nz; 
    float       pi, max, 
                x[N], y[N], *z, xnorm, ynorm; 
 
        /* 
         * Set up y-vector for the nonperiodic case. 
         */ 
 
    pi = imsl_f_constant ("Pi", 0); 
 
    for (i = 0; i < N; i++) { 
        x[i] = F1(2.0*pi*(float)(i) / (N-1)); 
        y[i] = F1(2.0*pi*(float)(i) / (N-1) + pi/2.0); 
    } 
        /* 
         * Call the correlation function for the nonperiodic case. 
         */ 
 
    z = imsl_f_convolution(N, x, N, y, &nz,  
                IMSL_CORRELATION, IMSL_PERIODIC,0); 
 
    xnorm = imsl_f_vector_norm (N, x, 0); 
    ynorm = imsl_f_vector_norm (N, y, 0); 
    for (i = 0; i < N; i++) { 
        z[i] /= xnorm*ynorm; 
    } 
 
    max = z[0]; 
    k = 0; 
    for (i = 1; i < N; i++) { 
        if (max < z[i]) { 
            max = z[i]; 
            k = i; 
        } 
    } 
 
    printf("The element of Z with the largest normalized\n"); 
    printf("value is Z(%2d).\n", k); 
    printf("The normalized value of Z(%2d) is %6.3f\n", k, z[k]); 
     
} 

Output 
The element of Z with the largest normalized 
value is Z(25). 
The normalized value of Z(25) is  1.000 
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convolution (complex) 
Computes the convolution, and optionally, the correlation of two complex vectors. 

Synopsis 
#include <imsl.h> 
f_complex *imsl_c_convolution (int nx, f_complex x[], int ny, f_complex 

y[], int *nz, �, 0) 
The type double function is imsl_d_convolution. 

Required Arguments 

int nx   (Input) 
Length of the vector x. 

f_complex x[]   (Input) 
Real vector of length nx. 

int ny   (Input) 
Length of the vector y. 

f_complex y[]   (Input) 
Real vector of length ny. 

int *nz   (Output) 
Length of the output vector. 

Return Value 
A pointer to an array of length nz containing the convolution of x and y. To release this 
space, use free. If no zeros are computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
f_complex *imsl_c_convolution (int nx, f_complex x[], int ny, f_complex 

y[], int*nz, 
IMSL_PERIODIC, 
IMSL_CORRELATION, 
IMSL_FIRST_CALL, 
IMSL_CONTINUE_CALL, 
IMSL_LAST_CALL, 
IMSL_RETURN_USER, f_complex z[], 
IMSL_Z_TRANS, f_complex *zhat, 
0) 
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Optional Arguments 
IMSL_PERIODIC 

The input is periodic. 

IMSL_CORRELATION 
Return the correlation of x and y. 

IMSL_FIRST_CALL 
If the function is called multiple times with the same nx and ny, select this 
option on the first call. 

IMSL_CONTINUE_CALL 
If the function is called multiple times with the same nx and ny, select this 
option on intermediate calls. 

IMSL_LAST_CALL 
If the function is called multiple times with the same nx and ny, select this 
option on the final call. 

IMSL_RETURN_USER, f_complex z[]   (Output) 
User-supplied array of length at least nz containing the convolution or 
correlation of x and y. 

IMSL_Z_TRANS, f_complex zhat[]   (Output) 
User-supplied array of length at least nz containing on output the discrete 
Fourier transform of z. 

Description 
The function imsl_c_convolution, by default, computes the discrete convolution of 
two sequences x and y. More precisely, let nx be the length of x, and ny denote the 
length of y. If a circular convolution is desired, the optional argument IMSL_PERIODIC 
must be selected. We set 

nz = max {ny, nx} 

and we pad out the shorter vector with zeros. Then, we compute 

1
1

zn

i i j
j

z x y
� �

�

��  

where the index on x is interpreted as a positive number between 1 and nz, modulo nz. 

The technique used to compute the zi’s is based on the fact that the (complex discrete) 
Fourier transform maps convolution into multiplication. Thus, the Fourier transform of 
z is given by 

� � � � � �ˆ ˆẑ n x n y n�  

where the following equation is true. 
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The technique used here to compute the convolution is to take the discrete Fourier 
transform of x and y, multiply the results together component-wise, and then take the 
inverse transform of this product. It is very important to make sure that nz is the product 
of small primes if option IMSL_PERIODIC is selected. If nz is a product of small 
primes, then the computational effort will be proportional to nzlog (nz). If option 
IMSL_PERIODIC is not selected, then a good value is chosen for nz so that the Fourier 
transforms are efficient and nz 
 nx + ny � 1. This will mean that both vectors will be 
padded with zeros. 

Optionally, the function imsl_c_convolution computes the discrete correlation of 
two sequences x and y. More precisely, let n be the length of x and y. If a circular 
correlation is desired, then option IMSL_PERIODIC must be selected.  

We set (on output) 

nz = n      if IMSL_PERIODIC is chosen 

(nz = 2a3b5g 
 2n � 1) if IMSL_PERIODIC is not chosen 

where �, �, and 
 are nonnegative integers yielding the smallest number of the type 
2a3b5g satisfying the inequality. Once nz is determined, we pad out the vectors with 
zeros. Then, we compute 

1
1

zn

i i j
j

jz x y
� �

�

��  

where the index on x is interpreted as a positive number between one and nz, modulo nz. 
Note that this means that 

zn kz
�

 

contains the correlation of x (k � 1) with y as k = 0, 1, �, nz�2. Thus, if  
x(k � 1) = y(k) for all k, then we would expect 

znz�  

to be the largest component of �z. The technique used to compute the zi’s is based on 
the fact that the (complex discrete) Fourier transform maps correlation into 
multiplication.  

Thus, the Fourier transform of z is given by  

ˆˆ j j jz x y�  

where the following equation is true. 
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Thus, the technique used here to compute the correlation is to take the discrete Fourier 
transform of x and the conjugate of the discrete Fourier transform of y, multiply the 
results together component-wise, and then take the inverse transform of this product. It 
is very important to make sure that nz is the product of small primes if 
IMSL_PERIODIC is selected. If nz is the product of small primes, then the 
computational effort will be proportional to nzlog (nz). If IMSL_PERIODIC is not 
chosen, then a good value is chosen for nz so that the Fourier transforms are efficient 
and nz 
 2n � 1. This will mean that both vectors will be padded with zeros. 

No complex transforms of x or y are taken since both sequences are real, and real 
transforms can simulate the complex transform above. Such a strategy is six times faster 
and requires less space than when using the complex transform. 

Examples 

Example 1 
This example computes a nonperiodic convolution. The purpose is to compute a 
moving average of the type found in digital filtering. The averaging operator in this 
case is especially simple and is given by averaging five consecutive points in the 
sequence. We try to recover the values of an exponential function contaminated by 
noise. The large error for the last value has to do with the fact that the convolution is 
averaging the zeros in the “pad” rather than the function values. Notice that the signal 
size is 100, but only report the errors at ten points. 

#include "imsl.h" 
#include <math.h> 
 
#define NFLTR  5 
#define NY     100 
 
#define F1(A)   (imsl_c_mul(imsl_cf_convert(exp(A),0.0), \ 
                           imsl_cf_convert(cos(A),sin(A)) )) 
 
main() 
{ 
    int         i, nz; 
    f_complex   fltr[NFLTR], temp, 
                y[NY], *z; 
    float       x, twopi, total1, total2, *noise, origer, fltrer; 
 
                /* Set up the filter */ 
    for (i = 0; i < NFLTR; i++) fltr[i] = imsl_cf_convert(0.2,0.0); 
         
                /* Set up y-vector for the periodic case */ 
         
    twopi = 2.0*imsl_f_constant ("Pi", 0); 
    imsl_random_seed_set(1234579); 
    noise = imsl_f_random_uniform(2*NY, 0); 
 



 

 
 

374 � convolution (complex) IMSL C/Math/Library 

 

 

 

    for (i = 0; i < NY; i++) { 
        x = (float)(i) / (NY - 1); 
        temp = imsl_cf_convert(0.5*noise[i]-0.25, 0.5*noise[NY+i]-0.25); 
        y[i] = imsl_c_add(F1(x), temp); 
    } 
                /* Call the convolution routine for the periodic case */ 
    z = imsl_c_convolution(NFLTR, fltr, NY, y, &nz, 0); 
         
 
        /* Print results */ 
    printf(" Periodic Case\n"); 
    printf("        x          F1(x)        Original Error"); 
    printf("   Filtered Error\n"); 
         
    total1 = 0.0; 
    total2 = 0.0; 
    for (i = 0; i < NY; i++) { 
        x = (float)(i) / (NY - 1); 
        origer = imsl_c_abs(imsl_c_sub(y[i],F1(x))); 
        fltrer = imsl_c_abs(imsl_c_sub(z[i+2],F1(x))); 
        if ((i % 11) == 0)  
            printf(" %10.4f   (%6.4f,%6.4f) %12.4f %15.4f\n", 
                     x, (F1(x)).re, (F1(x)).im, origer, fltrer); 
                 
            total1 += origer; 
            total2 += fltrer; 
        } 
        printf(" Average absolute error before filter:%10.5f\n", 
                 total1 / (NY)); 
        printf(" Average absolute error after filter:%11.5f\n", 
                 total2 / (NY)); 
} 

Output 
Periodic Case 
        x          F1(x)        Original Error   Filtered Error 
     0.0000   (1.0000,0.0000)       0.1684          0.3524 
     0.1111   (1.1106,0.1239)       0.0582          0.0822 
     0.2222   (1.2181,0.2752)       0.1991          0.1054 
     0.3333   (1.3188,0.4566)       0.1487          0.1001 
     0.4444   (1.4081,0.6706)       0.2381          0.1004 
     0.5556   (1.4808,0.9192)       0.1037          0.0708 
     0.6667   (1.5307,1.2044)       0.1312          0.0904 
     0.7778   (1.5508,1.5273)       0.1695          0.0856 
     0.8889   (1.5331,1.8885)       0.1851          0.0698 
     1.0000   (1.4687,2.2874)       0.2130          1.0760 
Average absolute error before filter:   0.19057 
Average absolute error after filter:    0.10024 

Example 2 
This example computes both a periodic correlation between two distinct signals x and y. 
There are 100 equally spaced points on the interval [0, 2�] and f1 (x) = cos (x) + i sin 
(x). Define x and y as follows: 
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Note that the maximum value of z (the correlation of x with) occurs at i = 25, which 
corresponds to the offset. 

#include "imsl.h" 
#include <math.h> 
 
#define N    100 
 
                 /*  Define function */ 
 
#define F1(A)   imsl_cf_convert(cos(A),sin(A)) 
 
main() 
{ 
    int         i, k, nz; 
    float       zreal[4*N], pi, max, xnorm, ynorm, sumx, sumy; 
    f_complex   x[N], y[N], *z; 
 
                /* Set up y-vector for the nonperiodic case */ 
        
    pi = imsl_f_constant ("Pi", 0); 
 
    for (i = 0; i < N; i++) { 
        x[i] = F1(2.0*pi*(float)(i) / (N-1)); 
        y[i] = F1(2.0*pi*(float)(i) / (N-1) + pi/2.0); 
    } 
                /* Call the correlation function for the  
                   nonperidic case */ 
 
    z = imsl_c_convolution(N, x, N, y, &nz,  
                IMSL_CORRELATION, IMSL_PERIODIC,0); 
 
    sumx = sumy = 0.0; 
    for (i = 0; i < N; i++) { 
        sumx += imsl_c_abs(imsl_c_mul(x[i], x[i])); 
        sumy += imsl_c_abs(imsl_c_mul(y[i], y[i])); 
    } 
    xnorm = sqrt((sumx)); 
    ynorm = sqrt((sumy)); 
    for (i = 0; i < N; i++) { 
        zreal[i] = (z[i].re/(xnorm*ynorm)); 
    } 
 
    max = zreal[0]; 
    k = 0; 
    for (i = 1; i < N; i++) { 
        if (max < zreal[i]) { 
            max = zreal[i]; 
            k = i; 
        } 
    } 
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    printf("The element of Z with the largest normalized\n"); 
    printf("value is Z(%2d).\n", k); 
    printf("The normalized value of Z(%2d) is %6.3f\n", k, zreal[k]); 
     
} 

Output 
The element of Z with the largest normalized 
value is Z(25). 
The normalized value of Z(25) is  1.000 

inverse_laplace  
Computes the inverse Laplace transform of a complex function. 

Synopsis 

#include <imsl.h> 

float *imsl_f_inverse_laplace (f_complex fcn(), float sigma0, int n, float 
t[], …, 0) 

The type double procedure is imsl_d_inverse_laplace. 

Required Arguments 

f_complex fcn(f_complex z)   (Input) 
User-supplied function for which the inverse Laplace transform will be 
computed. 

float sigma0   (Input) 
An estimate for the maximum of the real parts of the singularities of fcn. If 
unknown, set sigma0 = 0.0. 

int n   (Input) 
The number of points at which the inverse Laplace transform is desired. 

float t[]   (Input) 
Array of size n containing the points at which the inverse Laplace transform is 
desired. 

Return Value 
A pointer to the array of length n whose i-th component contains the approximate value 
of the inverse Laplace transform at the point t[i]. To release this space, use free. If no 
solution was computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
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float *imsl_f_inverse_laplace (f_complex fcn(), float sigma0, int n, float 
t[], 
IMSL_RETURN_USER, float x[],  
IMSL_PSEUDO_ACCURACY, float pseudo_accuracy, 
IMSL_FIRST_LAGUERRE_PARAMETER, float sigma, 
IMSL_SECOND_LAGUERRE_PARAMETER, float bvalue, 
IMSL_MAXIMUM_COEFFICIENTS, int mtop, 
IMSL_ERROR_EST, float *error_est, 
IMSL_DISCRETIZATION_ERROR_EST, float *disc_error_est, 
IMSL_TRUNCATION_ERROR_EST, float *trunc_error_est, 
IMSL_CONDITION_ERROR_EST, float *cond_error_est, 
IMSL_DECAY_FUNCTION_COEFFICIENT, float *k, 
IMSL_DECAY_FUNCTION_BASE, float *r, 
IMSL_LOG_LARGEST_COEFFICIENTS,  float *log_largest_coefs, 
IMSL_LOG_SMALLEST_COEFFICIENTS, 
 float *log_smallest_coefs, 
IMSL_UNDER_OVERFLOW_INDICATORS, 
 Imsl_laplace_flow *indicators, 
IMSL_FCN_W_DATA, f_complex fcn ( ), void *data, 
0) 

Optional Arguments 
IMSL_RETURN_USER, float x[]   (Output) 

A user-allocated array of length n containing the approximate value of the 
inverse Laplace transform. 

IMSL_PSEUDO_ACCURACY, float pseudo_accuracy   (Input) 
The required absolute uniform pseudo accuracy for the coefficients and 
inverse Laplace transform values. 

Default: pseudo_accuracy = � , where � is machine epsilon 

IMSL_FIRST_LAGUERRE_PARAMETER, float sigma   (Input) 
The first parameter of the Laguerre expansion. If sigma is not greater than 
sigma0, it is reset to sigma0 + 0.7. 
Default: sigma = sigma0 + 0.7 

IMSL_SECOND_LAGUERRE_PARAMETER, float bvalue   (Input) 
The second parameter of the Laguerre expansion. If bvalue is less than 
2.0*(sigma � sigma0), it is reset to 2.5*(sigma � sigma0). 
Default: bvalue = 2.5*(sigma � sigma0) 

IMSL_MAXIMUM_COEFFICIENTS, int mtop   (Input) 
An upper limit on the number of coefficients to be computed in the Laguerre 
expansion. Argument mtop must be a multiple of four. 
Default: mtop = 1024 

IMSL_ERROR_EST, float *error_est   (Output) 
Overall estimate of the pseudo error, disc_error_est + 
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trunc_error_est + cond_error_est. See the Description section for 
details. 

IMSL_DISCRETIZATION_ERROR_EST, float *disc_error_est   (Output) 
Estimate of the pseudo discretization error. 

IMSL_TRUNCATION_ERROR_EST, float *trunc_error_est   (Output) 
Estimate of the pseudo truncation error. 

IMSL_CONDITION_ERROR_EST, float *cond_error_est   (Output) 
Estimate of the pseudo condition error on the basis of minimal noise levels in 
the function values. 

IMSL_DECAY_FUNCTION_COEFFICIENT, float *k   (Output) 
The coefficient of the decay function. See the Description section for details. 

IMSL_DECAY_FUNCTION_BASE, float *r   (Output) 
The base of the decay function. See the Description section for details. 

IMSL_LOG_LARGEST_COEFFICIENTS, float *log_largest_coefs   (Output) 
The logarithm of the largest coefficient in the decay function. See the 
Description section for details. 

IMSL_LOG_SMALLEST_COEFFICIENTS, float *log_smallest_coefs   (Output) 
The logarithm of the smallest nonzero coefficient in the decay function. 
See the Description section for details. 

IMSL_UNDER_OVERFLOW_INDICATORS, Imsl_laplace_flow **indicators   
(Output) 
The address of a pointer initialized by imsl_f_inverse_laplace to point 
to an array of length n containing the overflow/underflow indicators for the 
computed approximate inverse Laplace transform. For the ith point at which 
the transform is computed, indicators[i] signifies the following: 

indicators [i] Meaning 
IMSL_NORMAL_TERMINATION Normal termination. 
IMSL_TOO_LARGE The value of the inverse Laplace 

transform is too large to be 
representable. This component of the 
result is set to NaN. 

IMSL_TOO_SMALL The value of the inverse Laplace 
transform is found to be too small to 
be representable. This component of 
the result is set to 0.0. 

IMSL_TOO_LARGE_BEFORE_EXPANSION The value of the inverse Laplace 
transform is estimated to be too large, 
even before the series expansion, to be 
representable. This component of the 
result is set to NaN. 
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indicators [i] Meaning 
IMSL_TOO_SMALL_BEFORE_EXPANSON The value of the inverse Laplace 

transform is estimated to be too small, 
even before the series expansion, to be 
representable. This component of the 
result is set to 0.0. 

IMSL_FCN_W_DATA, f_complex fcn(f_complex z, void *data) ,void *data, (Input) 
User supplied function for which the inverse Laplace transform will be 
computed, which also accepts a pointer to data that is supplied by the user.  
data is a pointer to the data to be passed to the user-supplied function.  See 
the Introduction, Passing Data to User-Supplied Functions at the beginning of 
this manual for more details. 

Description 
The function imsl_f_inverse_laplace computes the inverse Laplace transform of 
a complex-valued function. Recall that if f is a function that vanishes on the negative 
real axis, then the Laplace transform of f is defined by 

� �� � � �
0

sxL f s e f x dx
�

�

� �  

It is assumed that for some value of s the integrand is absolutely integrable. 

The computation of the inverse Laplace transform is based on a modification of Weeks’ 
method (see Weeks (1966)) due to Garbow et al. (1988). This method is suitable when f 
has continuous derivatives of all orders on [0, �). In particular, given a complex-valued 
function F(s) = L[f] (s), f can be expanded in a Laguerre series whose coefficients are 
determined by F. This is fully described in Garbow et al. (1988) and Lyness and Giunta 
(1986). 

The algorithm attempts to return approximations g(t) to f(t) satisfying 

� � � �
t

g t f t
e�

�

�

�  

where � = pseudo_accuracy and � = sigma > sigma0. The expression on the left is 
called the pseudo error. An estimate of the pseudo error in available in error_est. 

The first step in the method is to transform F to � where 

� � ( )
1 1 2

b b bz F
z z

� �� �

� �

�  

Then, if f is smooth, it is known that � is analytic in the unit disc of the complex plane 
and hence has a Taylor series expansion 
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which converges for all z whose absolute value is less than the radius of convergence 
Rc. This number is estimated in r, obtained through the optional argument 
IMSL_DECAY_FUNCTION_BASE. Using optional argument 
IMSL_DECAY_FUNCTION_COEFFICIENT, the smallest number K is estimated which 
satisfies 

| |s s

Ka
R

�  

for all R < Rc. 

The coefficients of the Taylor series for � can be used to expand f in a Laguerre series 
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Examples 

Example 1 
This example computes the inverse Laplace transform of the function (s � 1)-2, and 
prints the computed approximation, true transform value, and difference at five points. 
The correct inverse transform is xex. From Abramowitz and Stegun (1964). 

#include <imsl.h> 
#include <math.h> 
 
main() 
{ 
        f_complex f(f_complex); 
        int n = 5; 
        float t[5]; 
        float true_inverse[5]; 
        float relative_diff[5]; 
        int i; 
        float *inverse; 
 
                        /* Initialize t and compute inverse */ 
        for (i=0; i<n; i++) 
                t[i] = (float)i + 0.5; 
 
        inverse = imsl_f_inverse_laplace(f, 1.5, n, t, 0); 
 
                        /* Compute true inverse, relative difference */ 
 
        for (i=0; i<n; i++) { 
                true_inverse[i] = t[i]*exp(t[i]); 
                relative_diff[i] = fabs(inverse[i] - true_inverse[i])/ 
                                   true_inverse[i]; 
        } 
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        printf("\t   t\t\t  f_inv\t\t  true\t\t  diff\n"); 
        for (i=0; i<n; i++) 
                printf ("\t%5.1f\t\t%7.3f\t\t%7.3f\t\t%6.1e\n", t[i], 
                         inverse[i], true_inverse[i], relative_diff[i]); 
 
} 
 
f_complex f(f_complex s) 
{ 
                        /* Return 1/(s-1)**2 */ 
 
        f_complex one = {1.0, 0.0}; 
 
        return (imsl_c_div(one,  
                imsl_c_mul(imsl_c_sub(s, one), imsl_c_sub(s, one)))); 
} 

Output 
          t           f_inv          true          diff 
         0.5          0.824         0.824        1.5e-05 
         1.5          6.722         6.723        1.0e-05 
         2.5         30.456        30.456        5.6e-07 
         3.5        115.906       115.904        1.8e-05 
         4.5        405.054       405.077        5.8e-05 

Example 2 
This example computes the inverse Laplace transform of the function e-1/s/s, and prints 
the computed approximation, true transform value, and difference at five points. 
Additionally, the inverse is returned in user-supplied space, and a required accuracy for 
the inverse transform values is specified. The correct inverse transform is 

� �0 2J x  

From Abramowitz and Stegun (1964). 
#include <imsl.h> 
#include <math.h> 
 
main() 
{ 
        f_complex f(f_complex); 
        int n = 5; 
        int i; 
        float t[5]; 
        float true_inverse[5]; 
        float relative_diff[5]; 
        float inverse[5]; 
        Imsl_laplace_flow *indicators; 
 
                                /* Initialize t and compute inverse */ 
 
        for (i=0; i<n; i++) t[i] = (float)i + 0.5; 
 
        imsl_f_inverse_laplace(f, 0.0, n, t, 
                IMSL_PSEUDO_ACCURACY, 1.0e-6, 
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                IMSL_UNDER_OVERFLOW_INDICATORS, &indicators, 
                IMSL_RETURN_USER, inverse, 
                0); 
                                /* Compute true inverse, relative  
                                   difference */ 
 
        for (i=0; i<n; i++) { 
                true_inverse[i] = imsl_f_bessel_J0(2.0*sqrt(t[i])); 
                relative_diff[i] = fabs((inverse[i] - true_inverse[i])/ 
                                   true_inverse[i]); 
        } 
 
                                /* Print results, noting if any results 
                                   overflowed or underflowed */ 
 
        printf("\t   T\t\t  f_inv\t\t  true\t\t  diff\n"); 
        for (i=0; i<n; i++) 
                if (indicators[i] == IMSL_NORMAL_TERMINATION) 
                        printf ("\t%5.1f\t\t%7.3f\t\t%7.3f\t\t%6.1e\n", 
                                 t[i], 
                               inverse[i], true_inverse[i],  
                               relative_diff[i]); 
                else 
                        printf("Overflow or underflow noted.\n"); 
} 
 
f_complex f(f_complex s) 
{ 
 
                                /* Return (1/s)(exp(-1/s) */ 
 
        f_complex one = {1.0, 0.0}; 
        f_complex s_inverse; 
 
        s_inverse = imsl_c_div(one, s); 
        return (imsl_c_mul(s_inverse, imsl_c_exp(imsl_c_neg(s_inverse)))); 
} 

Output 
          T          f_inv         true         diff 
         0.5         0.559         0.559       2.1e-07 
         1.5        -0.023        -0.023       8.5e-06 
         2.5        -0.310        -0.310       9.6e-08 
         3.5        -0.401        -0.401       7.4e-08 
         4.5        -0.370        -0.370       6.4e-07 
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Chapter 7: Nonlinear Equations 

Routines 
7.1 Zeros of a Polynomial 

Real coefficients using Jenkins-Traub method .......................zeros_poly 384 
Complex coefficients using  
Jenkins-Traub method ...........................................zeros_poly (complex) 386 

7.2 Zeros of a Function 
Real zeros of a real function..................................................... zeros_fcn 388 

7.3 Root of a System of Equations 
Powell’s hybrid method.....................................................zeros_sys_eqn 393 

Usage Notes 
Zeros of a Polynomial 
A polynomial function of degree n can be expressed as follows:  

p(z) = anzn + an-1 zn-1 + … + a1z + a0 

where an � 0. The function imsl_f_zeros_poly finds zeros of a polynomial with real 
coefficients using the Jenkins-Traub method. 

Zeros of a Function 
The function imsl_f_zeros_fcn uses Müller’s method to find the real zeros of a 
real-valued function. 

Root of System of Equations 
A system of equations can be stated as follows:  

fi(x) = 0,  for  i = 1, 2, …, n 
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where x � Rn, and fi : Rn � R.The function imsl_f_zeros_sys_eqn uses a 
modified hybrid method due to M.J.D. Powell to find the zero of a system of nonlinear 
equations.  

zeros_poly 
Finds the zeros of a polynomial with real coefficients using the Jenkins-Traub, three-
stage algorithm. 

Synopsis 
#include <imsl.h> 
f_complex *imsl_f_zeros_poly (int ndeg, float coef[], �, 0) 

The type d_complex function is imsl_d_zeros_poly. 

Required Arguments 

int ndeg   (Input) 
Degree of the polynomial. 

float coef[]   (Input) 
Array with ndeg + 1 components containing the coefficients of the polynomial 
in increasing order by degree. The polynomial is  
coef[n] zn + coef [n � 1] zn-1 + � + coef [0], where n = ndeg. 

Return Value 
A pointer to the complex array of zeros of the polynomial. To release this space, use 
free. If no zeros are computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
f_complex *imsl_f_zeros_poly (int ndeg, float coef[], 

IMSL_RETURN_USER, f_complex root[], 
0) 

Optional Arguments 
IMSL_RETURN_USER, f_complex root[]   (Output) 

Array with ndeg components containing the zeros of the polynomial. 

Description 
The function imsl_f_zeros_poly computes the n zeros of the polynomial 

� � 1
1 1

n n
n n 0p z a z a z a z a�

�

� � � � ��  
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where the coefficients ai for i = 0, 1, �, n are real and n is the degree of the 
polynomial. 

The function imsl_f_zeros_poly uses the Jenkins-Traub, three-stage algorithm 
(Jenkins and Traub 1970; Jenkins 1975). The zeros are computed one at a time for real 
zeros or two at a time for a complex conjugate pair. As the zeros are found, the real 
zero, or quadratic factor, is removed by polynomial deflation. 

Examples 

Example 1 
This example finds the zeros of the third-degree polynomial 

p(z) = z3 � 3z2 + 4z � 2 

where z is a complex variable. 
#include <imsl.h> 
 
#define NDEG    3 
 
main() 
{ 
        f_complex       *zeros; 
        static float    coeff[NDEG + 1] = {-2.0, 4.0, -3.0, 1.0}; 
 
        zeros = imsl_f_zeros_poly(NDEG, coeff, 0); 
 
        imsl_c_write_matrix ("The complex zeros found are", 1, 3,  
            zeros, 0); 
} 

 

Output 
                       The complex zeros found are 
                      1                        2                        3 
(         1,         0)  (         1,         1)  (         1,        -1) 

 

Example 2 
The same problem is solved with the return option. 

#include <imsl.h> 
 
#define NDEG    3 
 
main() 
{ 
        f_complex       zeros[3]; 
        static float    coeff[NDEG + 1] = {-2.0, 4.0, -3.0, 1.0}; 
 
        imsl_f_zeros_poly(NDEG, coeff,  
                          IMSL_RETURN_USER, zeros, 0); 
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        imsl_c_write_matrix ("The complex zeros found are", 1, 3,  
            zeros, 0); 
} 

Output 
  
                       The complex zeros found are 
                      1                        2                        3 
(         1,         0)  (         1,         1)  (         1,        -1) 

Warning Errors 
IMSL_ZERO_COEFF The first several coefficients of the polynomial are 

equal to zero. Several of the last roots will be set to 
machine infinity to compensate for this problem. 

IMSL_FEWER_ZEROS_FOUND Fewer than ndeg zeros were found. The root vector 
will contain the value for machine infinity in the 
locations that do not contain zeros. 

zeros_poly (complex) 
Finds the zeros of a polynomial with complex coefficients using the Jenkins-Traub, 
three-stage algorithm. 

Synopsis 
#include <imsl.h> 
f_complex *imsl_c_zeros_poly (int ndeg, f_complex coef[], �, 0) 

The type d_complex function is imsl_z_zeros_poly. 

Required Arguments 

int ndeg   (Input) 
Degree of the polynomial. 

f_complex coef[]   (Input) 
Array with ndeg + 1 components containing the coefficients of the polynomial 
in increasing order by degree. The degree of the polynomial is  

coef [n] zn + coef [n � 1] zn-1 + � + coef [0] 

where n = ndeg. 

Return Value 
A pointer to the complex array of zeros of the polynomial. To release this space, use 
free. If no zeros are computed, then NULL is returned. 
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Synopsis with Optional Arguments 
#include <imsl.h> 
f_complex *imsl_c_zeros_poly (int ndeg, f_complex coef[], 

IMSL_RETURN_USER, f_complex root[], 
0) 

Optional Arguments 
IMSL_RETURN_USER, f_complex root[]   (Output) 

Array with ndeg components containing the zeros of the polynomial. 

Description 
The function imsl_c_zeros_poly computes the n zeros of the polynomial 

p(z) = anzn + an-1 zn-1 + � + a1z + a0 

where the coefficients ai for i = 0, 1, �, n are complex and n is the degree of the 
polynomial. 

The function imsl_c_zeros_poly uses the Jenkins-Traub, three-stage complex 
algorithm (Jenkins and Traub 1970, 1972). The zeros are computed one at a time in 
roughly increasing order of modulus. As each zero is found, the polynomial is deflated 
to one of lower degree. 

Examples 

Example 1 
This example finds the zeros of the third-degree polynomial 

p(z) = z3 � (3 + 6i) z2 � (8 � 12i) z + 10 

where z is a complex variable. 
#include <imsl.h> 
 
#define NDEG    3 
 
main() 
{ 
        f_complex       *zeros; 
        f_complex coeff[NDEG + 1] = { {10.0, 0.0}, 
                                      {-8.0, 12.0}, 
                                      {-3.0, -6.0}, 
                                      { 1.0, 0.0} }; 
 
        zeros = imsl_c_zeros_poly(NDEG, coeff, 0); 
 
        imsl_c_write_matrix ("The complex zeros found are", 1, 3,  
               zeros, 0); 
} 
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Output 
                       The complex zeros found are 
                      1                        2                        3 
(         1,         1)  (         1,         2)  (         1,         3) 

Example 2 
The same problem is solved with the return option. 

#include <imsl.h> 
 
#define NDEG    3 
 
main() 
{ 
        f_complex       zeros[3]; 
        f_complex coeff[NDEG + 1] = { {10.0, 0.0}, 
                                      {-8.0, 12.0}, 
                                      {-3.0, -6.0}, 
                                      { 1.0, 0.0} }; 
 
        imsl_c_zeros_poly(NDEG, coeff, IMSL_RETURN_USER, zeros, 0); 
 
 
 
        imsl_c_write_matrix ("The complex zeros found are", 1, 3,  
            zeros, 0); 
} 

Output 

                       The complex zeros found are 
                      1                        2                        3 
(         1,         1)  (         1,         2)  (         1,         3) 

Warning Errors 
IMSL_ZERO_COEFF The first several coefficients of the polynomial are 

equal to zero. Several of the last roots will be set to 
machine infinity to compensate for this problem. 

IMSL_FEWER_ZEROS_FOUND Fewer than ndeg zeros were found. The root vector 
will contain the value for machine infinity in the 
locations that do not contain zeros. 

zeros_fcn 
Finds the real zeros of a real function using Müller’s method. 

Synopsis 
#include <imsl.h> 
float *imsl_f_zeros_fcn (float fcn(), �, 0) 

The type double function is imsl_d_zeros_fcn. 
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Required Arguments 

float fcn (float x)   (Input/Output) 
User-supplied function to compute the value of the function of which the zeros 
will be found, where x is the point at which the function is evaluated. 

Return Value 
A pointer to the zeros x of the function. To release this space, use free. If no zeros can 
be found, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float *imsl_f_zeros_fcn (float fcn(),  

IMSL_XGUESS, float xguess[], 
IMSL_NUM_ROOTS, int nroot, 
IMSL_ERR_ABS, float err_abs, 
IMSL_ERR_REL, float err_rel, 
IMSL_ETA, float eta, 
IMSL_EPS, float eps, 
IMSL_MAX_ITN, int max_itn, 
IMSL_RETURN_USER, float x[], 
IMSL_INFO, int **info, 
IMSL_INFO_USER, int info[], 
IMSL_FCN_W_DATA, float fcn ( ), void *data, 
0) 

Optional Arguments 
IMSL_XGUESS, float xguess[]   (Input) 

Array with nroot components containing the initial guesses for the zeros. 
Default: xguess = 0 

IMSL_NUM_ROOTS, int nroot   (Input) 
The number of zeros to be found by imsl_f_zeros_fcn. 
Default: nroot = 1 

IMSL_ERR_ABS, float err_abs   (Input) 
First stopping criterion. A zero xi is accepted if |f(xi)| < err_abs. 
Default: 

err_abs = �  

where e is the machine precision 

IMSL_ERR_REL, float err_rel   (Input) 
Second stopping criterion. A zero xi is accepted if the relative change of two 
successive approximations to xi is less than err_rel. 
Default: 

err_rel = �  
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where � is the machine precision 

IMSL_ETA, float eta   (Input) 
Spread criteria for multiple zeros. If the zero xi has been computed and  
|xi � xj| < eps, where xj is a previously computed zero, then the computation 
is restarted with a guess equal to xi + eta. 
Default: eta = 0.01 

IMSL_EPS, float eps   (Input) 
See eta. 
Default: 

eps = �  

where � is the machine precision 

IMSL_MAX_ITN, int max_itn   (Input) 
The maximum allowable number of iterations per zero. 
Default: max_itn = 100 

IMSL_RETURN_USER, float x[]   (Output) 
Array with nroot components containing the computed zeros. 

IMSL_INFO, int **info   (Output) 
The address of a pointer info to an array of length nroot containing 
convergence information. On return, the necessary space is allocated by 
imsl_f_zeros_fcn. The value info[j � 1] is the number of iterations used 
in finding the j-th zero when convergence is achieved. If convergence is not 
obtained in max_itn iterations, info[j � 1] would be greater than max_itn. 

IMSL_INFO_USER, int info[]   (Output) 
A user-allocated array with nroot components. On return, the value  
info[j � 1] is the number of iterations used in finding the j-th zero when 
convergence is achieved. If convergence is not obtained in max_itn 
iterations, info[j � 1] would be greater than max_itn. 

IMSL_FCN_W_DATA, float fcn (float x, void *data) , void *data (Input) 
User supplied function to compute the value of the function of which the zeros 
will be found, which also accepts a pointer to data that is supplied by the user.  
data is a pointer to the data to be passed to the user-supplied function.   See 
the Introduction, Passing Data to User-Supplied Functions at the beginning of 
this manual for more details. 

Description 
The function imsl_f_zeros_fcn computes n real zeros of a real function f. Given a 
user-supplied function f(x) and an n-vector of initial guesses x1, x2, �, xn, the function 
uses Müller’s method to locate n real zeros of f. The function has two convergence 
criteria: the first requires that 

� �� �m
if x  
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be less than err_abs; the second requires that the relative change of any two 
successive approximations to an xi be less than err_rel. Here, 

� �m
ix  

is the m-th approximation to xi. Let err_abs be denoted by �1 and err_rel be 
denoted by �2. The criteria may be stated mathematically as follows: 

Criterion 1: 
� �� � 1
m

if x ��  

Criterion 2: 
� � � �

� �
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m m
i i

m
i

x x
x

�

�

�

�  

“Convergence” is the satisfaction of either criterion. 

Examples 

Example 1 
This example finds a real zero of the third-degree polynomial  

f(x) = x3 � 3x2 + 3x � 1 

#include <imsl.h> 
 
float           fcn(float x); 
 
main() 
{ 
    float       *x; 
                                /* Solve fcn(x)=0  for  x  */ 
    x = imsl_f_zeros_fcn (fcn, 0); 
                                /* Print x */ 
    imsl_f_write_matrix ("x", 1, 1, x, 0); 
} 
 
float fcn(float x) 
{ 
    return  x * x * x - 3.0 * x * x + 3.0 * x - 1.0; 
} 

Output 
     x 
         1 
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Example 2 
This example finds three real zeros of the third-degree polynomial  

f(x) = x3 + 3x2 � 4x � 6 

with the three initial guesses (4.6, 0.0, �193.3). 
#include <imsl.h> 
 
float           fcn(float x); 
 
main() 
{ 
    float       xguess[ ] =  {4.6, 0.0, -193.3}; 
    int         nroot = 3; 
    float       eps = 1.0e-5; 
    float       err_abs = 1.0e-5; 
    float       err_rel = 1.0e-5; 
    float       eta = 1.0e-2; 
    int         max_itn = 100; 
    float       *x; 
                                /* Solve fcn(x)=0  for  x  */ 
    x = imsl_f_zeros_fcn (fcn, 
                          IMSL_XGUESS, xguess, 
                          IMSL_ERR_REL, err_rel, 
                          IMSL_ERR_ABS, err_abs, 
                          IMSL_ETA, eta, 
                          IMSL_EPS, eps, 
                          IMSL_NUM_ROOTS, nroot, 
                          IMSL_MAX_ITN, max_itn, 
                          0); 
                                /* Print x */ 
    imsl_f_write_matrix ("x", 1, 3, x, 0); 
} 
 
float fcn(float x) 
{ 
    return  x * x * x + 3.0 * x * x - 4.0 * x - 6.0; 
} 

Output 
                 x 
         1           2           3 
     1.646      -1.000      -3.646 

In the following plot, the initial guesses x = 0.0 and x = 4.6 are marked with hollow 
circles, and the solutions are marked with filled circles. The other initial guess  
x = �193.3 does not fit on this plot. 
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Figure 7-1   Plot of x3 + 3x2 � 4x � 6 

Warning Errors 
IMSL_NO_CONVERGE_MAX_ITER Failure to converge within max_itn iterations for 

at least one of the nroot roots. 

zeros_sys_eqn 
Solves a system of n nonlinear equations f(x) = 0 using a modified Powell hybrid 
algorithm. 

Synopsis 
#include <imsl.h> 
float *imsl_f_zeros_sys_eqn (void fcn(), int n, �, 0) 

The type double function is imsl_d_zeros_sys_eqn. 

Required Arguments 

void fcn (int n, float x[], float f[])   (Input/Output) 
User-supplied function to evaluate the system of equations to be solved, where 
n is the size of x and f, x is the point at which the functions are evaluated, and 
f contains the computed function values at the point x. 

int n   (Input) 
The number of equations to be solved and the number of unknowns. 
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Return Value 
A pointer to the vector x that is a solution of the system of equations. To release this 
space, use free. If no solution can be computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float *imsl_f_zeros_sys_eqn (void fcn(), int n, 

IMSL_XGUESS, float xguess[], 
IMSL_JACOBIAN, void jacobian(), 
IMSL_ERR_REL, float err_rel, 
IMSL_MAX_ITN, int max_itn, 
IMSL_RETURN_USER, float x[], 
IMSL_FNORM, float *fnorm, 
IMSL_FCN_W_DATA, void fcn ( ), void *data, 
IMSL_JACOBIAN_W_DATA, void jacobian(), void *data, 
0) 

Optional Arguments 
IMSL_XGUESS, float xguess[]   (Input) 

Array with n components containing the initial estimate of the root. 
Default: xguess = 0 

IMSL_JACOBIAN, void jacobian (int n, float x[], float fjac[])   
(Input/Output) 
User-supplied function to evaluate the Jacobian, where n is the number of 
components in x, x is the point at which the Jacobian is evaluated, and fjac is 
the computed n � n Jacobian matrix at the point x. Note that each derivative  
�fi 	 �xj  should be returned in fjac[(i-1)*n+j-1]. 

IMSL_ERR_REL, float err_rel   (Input) 
Stopping criterion. The root is accepted if the relative error between two 
successive approximations to this root is less than err_rel. 
Default: 

err_rel = �  

where � is the machine precision 

IMSL_MAX_ITN, int max_itn   (Input) 
The maximum allowable number of iterations. 
Default:  max_itn = 200 

IMSL_RETURN_USER, float x[]   (Output) 
Array with n components containing the best estimate of the root found by 
f_zeros_sys_eqn. 

IMSL_FNORM, float *fnorm   (Output) 
Scalar with the value 
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at the point x. 

IMSL_FCN_W_DATA, void fcn (int n, float x[], float f[] , void *data) , void 
*data (Input) 
User supplied function to evaluate the system of equations to be solved, which 
also accepts a pointer to data that is supplied by the user.  data is a pointer to 
the data to be passed to the user-supplied function.  See the Introduction, 
Passing Data to User-Supplied Functions at the beginning of this manual for 
more details. 

IMSL_JACOBIAN_W_DATA, void jacobian (int m, int n, float x[], float 
fjac[], int fjac_col_dim, void *data), void *data  (Input) 
User supplied function to compute the Jacobian, which also accepts a pointer 
to data that is supplied by the user.  data is a pointer to the data to be passed 
to the user-supplied function.  See the Introduction, Passing Data to User-
Supplied Functions at the beginning of this manual for more details. 

Description 
The function imsl_f_zeros_sys_eqn is based on the MINPACK subroutine 
HYBRDJ, which uses a modification of the hybrid algorithm due to M.J.D. Powell. 
This algorithm is a variation of Newton’s method, which takes precautions to avoid 
undesirable large steps or increasing residuals. For further description, see Moré et al. 
(1980). 

Examples 

Example 1 
The following 2 � 2 system of nonlinear equations 

� �

� �

1 1 2

2 2
2 1 2

3

9

f x x x

f x x x

� � �

� � �

 

is solved. 
#include <imsl.h> 
#include <stdio.h> 
 
#define N       2 
 
void            fcn(int, float[], float[]); 
 
void main() 
{ 
    float       *x; 
 
    x = imsl_f_zeros_sys_eqn(fcn, N, 0); 
    imsl_f_write_matrix("The solution to the system is", 1, N, x, 0); 
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} 
 
 
void fcn(int n, float x[], float f[]) 
{ 
    f[0] = x[0] + x[1] - 3.0; 
    f[1] = x[0]*x[0] + x[1] * x[1] - 9.0; 
} 

Output 
The solution to the system is 
            1           2 
            0           3 

Example 2 
The following 3 � 3 system of nonlinear equations 

� �

� � � �

2 2 2
2 1 3

2
3 3 2 2

/ 10

sin 2 7

xf x e x x

f x x x x
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� � �
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is solved with the initial guess (4.0, 4.0, 4.0). 
#include <imsl.h> 
#include <stdio.h> 
#include <math.h> 
 
#define N       3 
 
void            fcn(int, float[], float[]); 
 
void main() 
{ 
    int         maxitn = 100; 
    float       *x, err_rel = 0.0001, fnorm; 
    float       xguess[N] = {4.0, 4.0, 4.0}; 
 
    x = imsl_f_zeros_sys_eqn(fcn, N, 
                             IMSL_ERR_REL, err_rel, 
                             IMSL_MAX_ITN, maxitn, 
                             IMSL_XGUESS, xguess,  
                             IMSL_FNORM, &fnorm, 
                             0); 
    imsl_f_write_matrix("The solution to the system is", 1, N, x, 0); 
    printf("\nwith fnorm = %5.4f\n", fnorm); 
} 
 
 
void fcn(int n, float x[], float f[]) 
{ 
    f[0] = x[0] + exp(x[0] - 1.0) + (x[1] + x[2]) * (x[1] + x[2]) - 27.0; 
    f[1] = exp(x[1] - 2.0) / x[0] + x[2] * x[2] - 10.0; 
    f[2] = x[2] + sin(x[1] - 2.0) + x[1] * x[1] - 7.0;     
} 
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Output 
The solution to the system is 
      1           2           3 
      1           2           3 
 
with fnorm = 0.0000 

Warning Errors 
IMSL_TOO_MANY_FCN_EVALS The number of function evaluations has exceeded 

max_itn. A new initial guess may be tried. 

IMSL_NO_BETTER_POINT Argument err_rel is too small. No further 
improvement in the approximate solution is 
possible. 

IMSL_NO_PROGRESS The iteration has not made good progress. A new 
initial guess may be tried.  
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Appendix B:  Alphabetical Summary 
of Routines 

 

Function Purpose Statement Page 
accr_interest_maturity Evaluates the accrued interest for a security that pays at 

maturity.  
580 

accr_interest_periodic Evaluates the accrued interest for a security that pays 
periodic interest. 

582 

airy_Ai Evaluates the Airy function. 509 
airy_Ai_derivative Evaluates the derivative of the Airy function 511 
airy_Bi Evaluates the Airy function of the second kind. 510 
airy_Bi_derivative Evaluates the derivative of the Airy function of the second 

kind. 
512 

bessel_exp_I0 Evaluates the exponentially scale modified Bessel function of 
the first kind of order zero. 

489 

bessel_exp_I1 Evaluates the exponentially scaled modified Bessel function 
of the first kind of order one. 

491 

bessel_exp_K0 Evaluates the exponentially scaled modified Bessel function 
of the third kind of order zero. 

495 

bessel_exp_K1 Evaluates the exponentially scaled modified Bessel function 
of the third kind of order one. 

497 

bessel_I0 Evaluates the real modified Bessel function of the first kind 
of order zero I0(x). 

487 

bessel_I1 Evaluates the real modified Bessel function of the first kind 
of order one I1(x). 

490 

bessel_Ix Evaluates a sequence of modified Bessel functions of the first 
kind with real order and complex arguments. 

492 

bessel_J0 Evaluates the real Bessel function of the first kind of order 
zero J0(x). 

478 

bessel_J1 Evaluates the real Bessel function of the first kind of order 
one J1(x). 

480 

bessel_Jx Evaluates a sequence of Bessel functions of the first kind 
with real order and complex arguments. 

481 

bessel_K0 Evaluates the real modified Bessel function of the third kind 
of order zero K0(x). 

493 
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Function Purpose Statement Page 
bessel_K1 Evaluates the real modified Bessel function of the third kind 

of order one K1(x). 
496 

bessel_Kx Evaluates a sequence of modified Bessel functions of the 
third kind with real order and complex arguments. 

499 

bessel_Y0 Evaluates the real Bessel function of the second kind of order 
zero Y0(x). 

482 

bessel_Y1 Evaluates the real Bessel function of the second kind of order 
one Y1(x). 

484 

bessel_Yx Evaluates a sequence of Bessel functions of the second kind 
with real order and complex arguments. 

485 

beta Evaluates the real beta function �(x, y). 469 
beta_cdf Evaluates the beta probability distribution function 540 
beta_incomplete Evaluates the real incomplete beta function  

Ix = �x(a, b)/�(a, b). 
472 

beta_inverse_cdf Evaluates the inverse of the beta distribution function. 542 
binomial_cdf Evaluates the binomial distribution function. 536 
bivariate_normal_cdf Evaluates the bivariate normal distribution function. 543 
bond_equivalent_yield Evaluates the bond-equivalent for a Treasury yield. 584 
bounded_least_squares Solves a nonlinear least-squares problem subject to bounds 

on the variables using a modified Levenberg-Marquardt 
algorithm. 

439 

bvp_finite_difference Solves a (parameterized) system of differential equations 
with boundary conditions at two points, using a variable 
order, variable step size finite difference method with 
deferred corrections. 

321 

chi_squared_cdf Evaluates the chi-squared distribution function 524 
chi_squared_inverse_cdf Evaluates the inverse of the chi-squared distribution function. 526 
chi_squared_test Performs a chi-squared goodness-of-fit test 638 
constant Returns the value of various mathematical and physical 

constants. 
719 

constrained_nlp Solves a general nonlinear programming problem using a 
sequential equality constrained quadratic programming 
method. 

447 

convexity Evaluates the convexity for a security.  586 
convolution (complex) Computes the convolution, and optionally, the correlation of 

two complex vectors. 
370 

convolution Computes the convolution, and optionally, the correlation of 
two real vectors. 

363 
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Function Purpose Statement Page 
coupon_days Evaluates the number of days in the coupon period that 

contains the settlement date. 
588 

coupon_number Evaluates the number of coupons payable between the 
settlement date and maturity date.  

589 

covariances Computes the sample variance-covariance or correlation 
matrix. 

646 

ctime Returns the number of CPU seconds used. 709 
cub_spline_integral Computes the integral of a cubic spline. 160 
cub_spline_interp_e_cnd Computes a cubic spline interpolant, specifying various 

endpoint conditions. 
145 

cub_spline_interp_shape Computes a shape-preserving cubic spline. 152 
cub_spline_smooth Computes a smooth cubic spline approximation to noisy data 

by using cross-validation to estimate the smoothing 
parameter or by directly choosing the smoothing parameter. 

205 

cub_spline_value Computes the value of a cubic spline or the value of one of 
its derivatives. 

157 

cumalative_interest Evaluates the cumulative interest paid between two periods. 545 
cumalative_principal Evaluates the cumulative principal paid between two periods. 546 
date_to_days Evaluates the number of days from January 1, 1900, to the 

given date. 
709 

days_before_settlement Evaluates the number of days from the beginning of the 
coupon period to the settlement date. 

591 

days_to_date Gives the date corresponding to the number of days since 
January 1, 1900. 

     711 

days_to_next_coupon Evaluates the number of days from settlement date to the 
next coupon date.  

592 

depreciation_amordegrc Evaluates the depreciation for each accounting period. 
Similar to depreciation_amorlinc.  

594 

depreciation_amorlinc Evaluates the depreciation for each accounting period. 
Similar to depreciation_amordegrc.  

596 

depreciation_db Evaluates the depreciation of an asset for a specified period 
using the fixed-declining balance method. 

548 

depreciation_ddb Evaluates the depreciation of an asset for a specified period 
using the double-declining method. 

550 

depreciation_sln Evaluates the straight line depreciation of an asset for one 
period. 

551 

depreciation_syd Evaluates the sum-of-years digits depreciation of an asset for 
a specified period. 

553 
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Function Purpose Statement Page 
depreciation_vdb Evaluates the depreciation of an asset for any given period, 

including partial periods, using the double-declining balance 
method. 

554 

discount_price Evaluates the price per $100 face value of a discounted 
security. 

597 

discount_rate Evaluates the discount rate for a security. 599 
discount_yield Evaluates the annual yield for a discounted security. 601 
dollar_decimal Converts a dollar price, expressed as a fraction, into a dollar 

price, expressed as a decimal number. 
556 

dollar_fraction Converts a dollar price, expressed as a decimal number, into 
a dollar price, expressed as a fraction. 

557 

duration Evaluates the annual duration of a security with periodic 
interest payment.  

603 

effective_rate Evaluates the effective annual interest rate. 558 
eig_gen (complex) Computes the eigenexpansion of a complex matrix A. 120 
eig_gen Computes the eigenexpansion of a real matrix A 118 
eig_herm (complex) Computes the eigenexpansion of a complex Hermitian matrix 

A. 
126 

eig_sym Computes the eigenexpansion of a real symmetric matrix A. 123 
eig_symgen Computes the generalized eigenexpansion of a system  

Ax = �Bx. A and B are real and symmetric. B is positive 
definite. 

129 

elliptic_integral_E Evaluates the complete elliptic integral of the second kind 
E(x). 

501 

elliptic_integral_K Evaluates the complete elliptic integral of the kind K(x). 500 
elliptic_integral_RC Evaluates an elementary integral from which inverse circular 

functions, logarithms, and inverse hyperbolic functions can 
be computed. 

506 

elliptic_integral_RD Evaluates Carlson’s elliptic integral of the second kind RD(x, 
y, z). 

504 

elliptic_integral_RF Evaluates Carlson’s elliptic integral of the first kind RF(x, y, 
z). 

502 

elliptic_integral_RJ Evaluates Carlson’s elliptic integral of the third kind RJ(x, y, 
z, �). 

505 

erf Evaluates the real error function erf(x). 460 
erf_inverse Evaluates the real inverse error function  

erf-1(x). 
465 

erfc Evaluates the real complementary error function erfc(x). 461 
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Function Purpose Statement Page 
erfc_inverse Evaluates the real inverse complementary error function 

erfc-1(x). 
467 

erfce Evaluates the exponentially scaled complementary error 
function. 

463 

erfe Evaluates a scaled function related to erfc(z) 464 
error_code Gets the code corresponding to the error message from the 

last function called. 
718 

error_options Sets various error handling options. 712 
F_cdf Evaluates the F distribution function. 528 
F_inverse_cdf Evaluates the inverse of the F distribution function. 530 
fast_poisson_2d Solves Poisson’s or Helmholtz’s equation on a two-

dimensional rectangle using a fast Poisson solver based on 
the HODIE finite-difference scheme on a uniform mesh. 

332 

faure_next_point Evaluates a shuffled Faure sequence     687 
fcn_derivative Computes the first, second or third derivative of a user-

supplied function. 
286 

fft_2d_complex Computes the complex discrete two-dimensional Fourier 
transform of a complex two-dimensional array. 

359 

fft_complex Computes the complex discrete Fourier transform of a 
complex sequence. 

346 

fft_complex_init Computes the parameters for imsl_c_fft_complex. 349 
fft_cosine Computes the discrete Fourier cosine transformation of an 

even sequence. 
351 

fft_cosine_init Computes the parameters needed for imsl_f_fft_cosine. 353 
fft_real Computes the real discrete Fourier transform of a real 

sequence. 
341 

fft_real_init Computes the parameters for imsl_f_fft_real 345 
fft_sine Computes the discrete Fourier sine transformation of an odd 

sequence. 
355 

fft_sine_init Computes the parameters needed for imsl_f_fft_sine. 357 
fresnel_integral_C Evaluates the cosine Fresnel integral. 507 
fresnel_integral_S Evaluates the sine Fresnel integral. 508 
future_value Evaluates the future value of an investment. 559 
future_value_schedule Evaluates the future value of an initial principal after 

applying a series of compound interest rates. 
561 

gamma Evaluates the real gamma function �(x). 473 
gamma_cdf Evaluates the gamma distribution function 534 
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Function Purpose Statement Page 
gamma_incomplete Evaluates the incomplete gamma function  

� (a, x). 
476 

gauss_quad_rule Computes a Gauss, Gauss-Radau, or Gauss-Lobatto 
quadrature rule with various classical weight functions. 

282 

geneig (complex) Computes the generalized eigenexpansion of a system  
Ax = �Bx, with A and B complex. 

135 

geneig Computes the generalized eigenexpansion of a system  
Ax = �Bx, with A and B real. 

132 

generate_test_band 
(complex) 

Generates test matrices of class Ec(n, c). 784 

generate_test_band Generates test matrices of class E(n, c). 782 
generate_test_coordinate 
(complex) 

Generates test matrices of class D(n, c) and E(n, c). 791 

generate_test_coordinate Generates test matrices of class D(n, c) and E(n, c). 786 
hypergeometric_cdf Evaluates the hypergeometric distribution function. 537 
int_fcn Integrates a function using a globally adaptive scheme based 

on Gauss-Kronrod rules. 
241 

int_fcn_2d Computes a two-dimensional iterated integral 272 
int_fcn_alg_log Integrates a function with algebraic-logarithmic singularities. 249 
int_fcn_cauchy Computes integrals of the form 

f x
x c

dx
a

b b g
�
z  

in the Cauchy principal value sense. 

265 

int_fcn_fourier Computes a Fourier sine or cosine transform. 261 
int_fcn_hyper_rect Integrates a function on a hyper-rectangle. 276 
int_fcn_inf Integrates a function over an infinite or semi-infinite 

interval. 
253 

int_fcn_qmc Integrates a function on a hyper-rectangle using a quasi-
Monte Carlo method. 

279 

int_fcn_sing Integrates a function, which may have endpoint singularities, 
using a globally adaptive scheme based on Gauss-Kronrod 
rules. 

237 

int_fcn_sing_pts Integrates a function with singularity points given 245 
int_fcn_smooth Integrates a smooth function using a nonadaptive rule. 268 
int_fcn_trig Integrates a function containing a sine or a cosine factor. 257 
interest_payment Evaluates the interest payment for a given period for an 

investment. 
562 

interest_rate_annuity Evaluates the interest rate per period for an annuity. 563 
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Function Purpose Statement Page 
interest_rate_security Evaluates the interest rate for a fully invested security. 605 
internal_rate_of_return Evaluates the internal rate of return for a schedule of cash 

flows. 
565 

internal_rate_schedule Evaluates the internal rate of return for a schedule of cash 
flows that is not necessarily periodic. 

567 

inverse_laplace Computes the inverse Laplace transform of a complex 
function. 

376 

kelvin_bei0 Evaluates the Kelvin function of the first kind, bei, of order 
zero. 

514 

kelvin_bei0_derivative Evaluates the derivative of the Kelvin function of the first 
kind, bei, of order zero. 

518 

kelvin_ber0 Evaluates the Kelvin function of the first kind, ber, of order 
zero. 

513 

kelvin_ber0_derivative Evaluates the derivative of the Kelvin function of the first 
kind, ber, of order zero. 

517 

kelvin_kei0 Evaluates the Kelvin function of the second kind, kei, of 
order zero. 

516 

kelvin_kei0_derivative Evaluates the derivative of the Kelvin function of the second 
kind, kei, of order zero. 

520 

kelvin_ker0 Evaluates the Kelvin function of the second kind, der, of 
order zero. 

515 

kelvin_ker0_derivative Evaluates the derivative of the Kelvin function of the second 
kind, ker, of order zero. 

519 

lin_least_squares_gen Solves a linear least-squares problem Ax = b. 84 
lin_lsq_lin_constraints Solves a linear least squares problem with linear constraints. 92 
lin_prog Solves a linear programming problem using the revised 

simplex algorithm. 
425 

lin_sol_def_cg Solves a real symmetric definite linear system using a 
conjugate gradient method. 

78 

lin_sol_gen (complex) Solves a complex general system of linear equations  
Ax = b. 

11 

lin_sol_gen Solves a real general system of linear equations  
Ax = b. 

4 

lin_sol_gen_band 
(complex) 

Solves a complex general system of linear equations  
Ax = b. 

31 

lin_sol_gen_band Solves a real geeral band system of linear equations Ax=b. 26 
lin_sol_gen_coordinate 
(complex) 

Solves a system of linear equations Ax = b, with sparse 
complex coefficient matrix A. 

54 

lin_sol_gen_coordinate Solves a sparse system of linear equations Ax = b. 44 
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lin_sol_gen_min_residual Solves a linear system Ax = b using the restarted generalized 

minimum residual (GMRES) method. 
73 

lin_sol_nonnegdef Solves a real symmetric nonnegative definite system of 
linear equations Ax = b. 

107 

lin_sol_posdef (complex) Solves a complex Hermitian positive definite system of 
linear equations Ax = b. 

22 

lin_sol_posdef Solves a real symmetric positive definite system of linear 
equations Ax = b. 

17 

lin_sol_posdef_band 
(complex) 

Solves a complex Hermitian positive definite system of 
linear equations Ax = b in band symmetric storage mode. 

39 

lin_sol_posdef_band Solves a real symmetric positive definite system of linear 
equations Ax = b in band symmetric storage mode. 

35 

lin_sol_posdef_coordinate 
(complex) 

Solves a sparse Hermitian positive definite system of linear 
equations Ax = b. 

68 

lin_sol_posdef_coordinate Solves a sparse real symmetric positive definite system of 
linear equations Ax = b. 

62 

lin_svd_gen (complex) Computes the SVD, A = USVH, of a complex rectangular 
matrix A. 

102 

lin_svd_gen Computes the SVD, A = USVT, of a real rectangular matrix 
A. 

96 

log_beta Evaluates the logarithm of the real beta function ln  
� (x, y). 

471 

log_gamma Evaluates the logarithm of the absolute value of the gamma 
function log |�(x)|. 

475 

machine (float) Returns information describing the computer’s floating-point 
arithmetic. 

725 

machine (integer) Returns integer information describing the computer’s 
arithmetic. 

723 

mat_add_band (complex) Adds two band matrices, both in band storage mode,  
C � �A + �B. 

764 

mat_add_band Adds two band matrices, both in band storage mode,  
C � �A + �B. 

760 

mat_add_coordinate 
(complex) 

Performs element-wise addition on two complex matrices 
stored in coordinate format, C � �A + �B. 

771 

mat_add_coordinate Performs element-wise addition of two real matrices stored 
in coordinate format, C � �A + �B. 

   768 

mat_mul_rect (complex) Computes the transpose of a matrix, the conjugate-transpose 
of a matrix, a matrix-vector product, a matrix-matrix 
product, the bilinear form, or any triple product. 

738 
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mat_mul_rect Computes the transpose of a matrix, a matrix-vector product, 

a matrix-matrix product, the bilinear form, or any triple 
product. 

735 

mat_mul_rect_band 
(complex) 

Computes the transpose of a matrix, a matrix-vector product, 
or a matrix-matrix product, all matrices of complex type and 
stored in band form. 

746 

mat_mul_rect_band Computes the transpose of a matrix, a matrix-vector product, 
or a matrix-matrix product, all matrices stored in band form. 

742 

mat_mul_rect_coordinate 
(complex) 

Computes the transpose of a matrix, a matrix-vector product 
or a matrix-matrix product, all matrices stored in sparse 
coordinate form. 

755 

mat_mul_rect_coordinate Computes the transpose of a matrix, a matrix-vector product, 
or a matrix-matrix product, all matrices stored in sparse 
coordinate form. 

751 

matrix_norm Computes various norms of a rectangular matrix. 775 
matrix_norm_band Computes various norms of a matrix stored in band storage 

mode. 
777 

matrix_norm_coordinate Computes various norms of a matrix stored in coordinate 
format. 

779 

min_con_gen_lin Minimizes a general objective function subject to linear 
equality/inequality constraints. 

433 

min_uncon Finds the minimum point of a smooth function f(x) of a 
single variable using only function evaluations. 

401 

min_uncon_deriv Finds the minimum point of a smooth function f(x) of a 
single variable using both function and first derivative 
evaluations. 

405 

min_uncon_multivar Minimizes a function f(x) of n variables using a quasi-
Newton method. 

409 

modified_duration Evaluates the modified Macauley duration of a security. 607 
modified_internal_rate Evaluates the modified internal rate of return for a series of 

periodic cash flows. 
569 

net_present_value Evaluates the net present value of an investment based on a 
series of periodic. 

570 

next_coupon_date Evaluates the next coupon date after the settlement date. 608 
nominal_rate Evaluates the nominal annual interest rate. 571 
nonlin_least_squares Solves a nonlinear least-squares problem using a modified 

Levenberg-Marquardt algorithm. 
416 

normal_cdf Evaluates the standard normal (Gaussian) distribution 
function. 

521 

normal_inverse_cdf Evaluates the inverse of the standard normal (Gaussian) 
distribution function. 

523 
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number_of_periods Evaluates the number of periods for an investment based on 

periodic and constant payment and a constant interest rate. 
573 

ode_adams_gear Solves a stiff initial-value problem for ordinary differential 
equations using the Adams-Gear methods. 

297 

ode_runge_kutta Solves an initial-value problem for ordinary differential 
equations using the Runge-Kutta-Verner fifth-order and 
sixth-order method. 

291 

output_file Sets the output file or the error message output file. 704 
page Sets or retrieve the page width or length. 697 
payment Evaluates the periodic payment for an investment.  574 
pde_method_of_lines Solves a system of partial differential equations of the form 

ut + f(x, t, u, ux, uxx) using the method of lines. 
304 

poisson_cdf Evaluates the Poisson distribution function. 539 
poly_regression Performs a polynomial least-squares regression. 660 
present_value Evaluates the present value of an investment. 576 
present_value_schedule Evaluates the present value for a schedule of cash flows that 

is not necessarily periodic. 
577 

previous_coupon_date Evaluates the previous coupon date before the settlement 
date.  

610 

price Evaluates the price per $100 face value of a security that 
pays periodic interest. 

612 

price_maturity Evaluates the price per $100 face value of a security that 
pays interest at maturity. 

614 

principal_payment Evaluates the payment on the principal for a given period. 579 
quadratic_prog Solves a quadratic programming problem subject to linear 

equality or inequality constraints. 
429 

radial_evaluate Evaluates a radial basis fit. 231 
radial_scattered_fit Computes an approximation to scattered data in Rn for  

n � 2 using radial basis functions. 
225 

random_beta Generates pseudorandom numbers from a beta distribution. 684 
random_exponential Generates pseudorandom numbers from a standard 

exponential distribution. 
685 

random_gamma Generates pseudorandom numbers from a standard gamma 
distribution. 

682 

random_normal Generates pseudorandom numbers from a standard normal 
distribution using an inverse CDF method. 

679 

random_option Selects the uniform (0, 1) multiplicative congruential 
pseudorandom number generator. 

676 
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random_poisson Generates pseudorandom numbers from a Poisson 

distribution. 
680 

random_seed_get Retrieves the current value of the seed used in the IMSL 
random number generators. 

674 

random_seed_set Initializes a random seed for use in the IMSL random 
number generators. 

675 

random_uniform Generates pseudorandom numbers from a uniform (0, 1) 
distribution. 

677 

ranks Computes the ranks, normal scores, or exponential scores for 
a vector of observations. 

667 

received_maturity Evaluates the amount received for a fully invested 
security.  

616 

regression Fits a multiple linear regression model using least squares. 651 
scattered_2d_interp Computes a smooth bivariate interpolant to scattered data 

that is locally a quintic polynomial in two variables. 
220 

simple_statistics Computes basic univariate statistics. 629 
smooth_1d_data Smooth one-dimensional data by error detection 216 
sort (integer) Sorts an integer vector by algebraic value. Optionally, a 

vector can be sorted by absolute value, and a sort 
permutation can be returned. 

     730 

sort Sorts a vector by algebraic value. Optionally, a vector can be 
sorted by absolute value, and a sort permutation can be 
returned. 

728 

spline_2d_integral Evaluates the integral of a tensor-product spline on a 
rectangular domain. 

186 

spline_2d_interp Computes a two-dimensional, tensor-product spline 
interpolant from two-dimensional, tensor-product data. 

171 

spline_2d_least_squares Computes a two-dimensional, tensor-product spline 
approximant using least squares. 

199 

spline_2d_value Computes the value of a tensor-product spline or the value 
of one of its partial derivatives. 

182 

spline_integral Computes the integral of a spline. 180 
spline_interp Computes a spline interpolant. 161 
spline_knots Computes the knots for a spline interpolant. 167 
spline_least_squares Computes a least-squares spline approximation. 193 
spline_lsq_constrained Computes a least-squares constrained spline approximation. 209 
spline_value Computes the value of a spline or the value of one of its 

derivatives. 
177 

t_cdf Evaluates the Student’s t distribution function. 531 
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Function Purpose Statement Page 
t_inverse_cdf Evaluates the inverse of the Student’s t distribution function. 533 
table_oneway Tallies observations into a one-way frequency table. 634 
treasury_bill_price Computes the price per $100 face value for a Treasury bill. 618 
treasury_bill_yield Computes the yield for a Treasury bill. 619 
user_fcn_least_squares Computes a least-squares fit using user-supplied functions. 189 
vector_norm Computes various norms of a vector or the difference of two 

vectors. 
733 

version Returns integer information describing the version of the 
library, license number, operating system, and compiler. 

708 

write_matrix Prints a rectangular matrix (or vector) stored in contiguous 
memory locations. 

691 

write_options Sets or retrieve an option for printing a matrix. 698 
year_fraction Evaluates the year fraction that represents the number of 

whole days between two dates. 
621 

yield_maturity Evaluates the annual yield of a security that pays interest at 
maturity. 

622 

yield_periodic Evaluates the yield of a security that pays periodic interest. 624 
zeros_fcn Finds the real zeros of a real function using Müller’s 

method. 
388 

zeros_poly (complex) Finds the zeros of a polynomial with complex coefficients 
using the Jenkins-Traub three-stage algorithm. 

386 

zeros_poly Finds the zeros of a polynomial with real coefficients using 
the Jenkins-Traub three-stage algorithm. 

384 

zeros_sys_eqn Solves a system of n nonlinear equations f (x) = 0 using a 
modified Powell hybrid algorithm. 

393 
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Index 

A 

Adams-Gear method 297 
Airy functions 509, 510, 511, 512 
algebraic-logarithmic singularities 

249 
ANSI C ix 
approximation 225 
arithmetic 800 

B 

backward differentiation formulas 
300 

band matrices 760, 764 
band storage mode 760, 764, 777 
Bauer and Fike theorem 116 
Bessel functions 478, 480, 481, 482, 

484, 485, 487, 489, 490, 491, 
492, 493, 495, 496, 497, 499 

beta distributions 684 
beta functions 469, 471, 472, 540, 

542 
binomial functions 536 
bivariate functions 543 
Blom scores 667 
bond functions 580, 582, 584, 586, 

588, 589, 591, 592, 594, 596, 
597, 599, 601, 603, 605, 607, 
608, 610, 612, 614, 616, 618, 
619, 621, 622, 624 

boundary conditions 321, 2 

C 

Cauchy principal 265 
chi-squared functions 524, 526 
chi-squared goodness-of-fit test 638 
Cholesky factorization 17, 22, 35, 

39, 107, 130 
column pivoting 87 

complex arithmetic xxiv, 800 
complex general band system 31 
complex Hermitian positive definite 

system 39 
computer’s arithmetic 723 
computer’s floating-point arithmetic 

725 
condition numbers 116 
conjugate gradient method 78 
constrained quadratic programming 

447 
Constrained_nlp 

nonlinear programming 447 
convolution 363, 370 
coordinate format 768, 771, 779 
correlation 363, 370 
correlation matrix 646 
cosine factor 257 
cosine Fresnel integrals 507 
CPU time 709 
cubic Hermite polynomials 304 
cubic spline interpolant 217 
cubic splines 145, 152, 157, 160, 

205 
current value of the seed 674 

D 

data types 800 
dates and days 709, 711 
decay rates 290 
derivatives 286 
differential equations 321, 2 

bvp_finite_difference 321 
discrete Fourier cosine 

transformation 351, 353 
discrete Fourier sine transformation 

355, 357 
distribution functions 521, 523, 524, 

526, 528, 530, 531, 533, 534, 
536, 537, 539, 540, 542, 543 

E 

eigenvalues 115, 116, 117, 118, 120, 
123, 126, 129, 132, 135 

eigenvectors 115, 116, 117, 118, 
120, 123, 126, 129, 132, 135 

elementary functions 800 
elementary integrals 506 
element-wise addition 768, 771 
elliptic integrals 500, 501, 502, 504, 

505 
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equality/inequality constraints 433 
equilibrium 290 
error detection 216 
error functions 460, 461, 465, 467 

complementary 
exponentially scaled 463, 5 

error handling xxiii, 712, 718 
error messages 704 
errors 797 
Euler’s constant 722 
evaluation 157 
even sequence 351 
expected normal scores 667 

F 

factorization 2 
fast Fourier transforms 339, 340, 

341, 345, 346, 349, 359 
Faure 689 
Faure sequence 687 

faure_next_point 687 
financial functions 545, 546, 548, 

550, 551, 553, 554, 556, 557, 
558, 559, 561, 562, 563, 565, 
567, 569, 570, 571, 573, 574, 
576, 577, 579 

Fourier transform 261 

G 

gamma distributions 682 
gamma functions 473, 475, 476, 534 
Gauss quadrature 282 
Gaussian elimination 7, 14 
Gaussian functions 521, 523 
Gauss-Kronrod rules 237, 241 
generalized inverses 3, 99 
GMRES method 73 
Gray code 689 

H 

Harding, L.J. 7 
Healy’s algorithm 110 
Helmholtz’s equation 332 
Hermitian matrices 126 
HODIE finite-difference scheme 332 
Householder’ s method 86, 87, 99, 

104 
hypergeometric functions 537 
hyper-rectangle 276, 279, 687 

I 
ill-conditioning 3 
imsl.h include file x 
infinite interval 253 
initialize random seed 675 
initial-value problems 289, 297 
integration 180, 186, 237, 241, 245, 

249, 253, 257, 261, 265, 268, 
272, 276, 279, 282 

interpolation 142, 145, 152, 161, 
167, 171, 220 

inverse matrix 11, 17, 22 
inversions 2, 4 

J 

Jenkins-Traub algorithm 384, 386 

K 

Kelvin functions 513, 514, 515, 516, 
517, 518, 519, 520 

L 

lack-of-fit test 660 
least squares 142 
least-squares approximation 209 
least-squares fit 84, 139, 189, 193, 

199, 216, 416, 660 
least-squares solutions 3 
Lebesque measure 688 
Levenberg-Marquardt algorithm 416 
linear constraints 92 
linear equations 26, 31, 35, 44, 54, 

62, 68 
linear least squares 3 
linear least-squares problem 92 
linear system solution 2, 4, 107 
loop unrolling and jamming 7 
low-discrepancy 689 
LU factorization 4, 11, 26, 31, 44, 54 

M 

mathematical constants 719 
matrices xii, 2, 4, 7, 11, 14, 17, 22, 

107, 691 
general xii 
Hermitian xiii 
multiplying 735 
rectangular xii 
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symmetric xii 
matrix multiply 738 
matrix transpose 742, 746, 751, 755 
matrix-matrix product 742, 746, 751, 

755 
matrix-vector produce 755 
matrix-vector product 742, 746, 751 
matrix-vector products 735, 738 
memory allocation xx 
method of lines 304 
minimization 399, 400, 401, 405, 

409, 416, 425, 429, 433, 447, 
2 

Müller’s method 388 
multiple right-hand sides 3 

N 

non-ANSI C ix 
nonlinear least squares 416 
nonlinear programming problem 

447, 2 
norms of a vector 733 
numerical ranking 667 

O 

odd sequence 355 
one-way frequency table 634 
order statistics 667 
ordinary differential equations 289, 

291, 297 
output files 704 
overflow xxiii 

P 

page size 697 
partial differential equations 290, 

304 
partial pivoting 11, 13 
Poisson distributions 680 
Poisson functions 539 
Poisson solver 332 
polynomial functions 383 
polynomials 140, 143 
Powell hybrid algorithm 393 
predator-prey model 294 
printing 691, 697, 698 
pseudorandom numbers 685 

Q 

QR factorizations 3, 84 
quadratic programming 429 
quadrature 235, 236, 237 
quasi-Monte Carlo 279, 6 
quasi-Newton method 409 

R 

radial-basis fit 231 
radial-basis functions 225 
random number generation 628, 629 
random numbers 674, 675, 676, 677, 

679, 680, 682, 684 
rank deficiency 3 
real general band system 26 
real symmetric definite linear system 

78 
real symmetric positive definite 

system 35 
rectangular matrix 775 
regression 651, 660 
restarted generalized minimum 

residual method 73 
right-hand side data 4 
Runge-Kutta-Verner method 291 

S 

Savage scores 667 
scattered data 220, 225 
select random number generator 676 
semi-infinite interval 253 
simplex algorithm 425 
sine factor 257 
sine Fresnel integrals 508 
singular value decomposition 3 
singularity 3 
smoothed data 216 
smoothing 205 
sort 728, 730 
sparse Hermitian positive definite 

system 68 
sparse real symmetric positive 

definite system 62 
sparse system 44 
spline interpolant 161, 167, 171 
splines 160 
splines 140, 141, 143, 177, 180, 182, 

186, 193, 199, 209 
standard exponential distributions 

685 
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statistics 629, 646, 651 
Van der Waerden scores 667 
stiff systems 290 
storage modes xii 
SVD factorization 96, 102 
symbolic factorizations 62, 68 

T 

test matrices 782, 784, 786, 791 
Thread Safe xi 

multithreaded application xi 
single-threaded application xi 
threads and error handling 799 

time constants 290 
Tukey scores 667 

U 

uncertainty 4 
underflow xxiii 
uniform mesh 332 
univariate 249 
univariate statistics 629 

V 

variable order 321, 2 
vectors 691 
Verner, J.H. 294 
version 708 

Z 

zero of a system 393 
zeros of a function 388 
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