
C Numerical Library™
User's Guide
VOLUME 1 o f 4 : C Math Library™ [CHAPTERS 1 -7]

V E R S I O N 5 . 5

Visual Numerics, Inc.
Corporate Headquarters
2500 Wilcrest Drive, Ste 200
Houston, Texas 77042-2759
USA

PHONE: 713-784-3131
FAX: 713-781-9260
e-mail: info@vni.com

Visual Numerics
International Ltd.
Centennial Court
Suite 1, North Wing
Easthampstead Road
BRACKNELL BERSHIRE
RG12 1YQ
United Kingdom

PHONE: +44-1-344-45-8700
FAX: +44-1-344-45-8748
e-mail: info@vniuk.co.uk

Visual Numerics SARL
Tour Europe
33 Place des Corolles Cedex
F-92049 Paris La Defense
France

PHONE: +33-1-46-93-94-20
FAX: +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics S. A. de C.V.
Florencia 57 Piso 10-01
Col. Juarez
Mexico D. F. C. P. 06000
Mexico
PHONE: +52-5514-9730 or 9628
FAX: +52-5514-5880

Visual Numerics International GmbH
Zettachring 10
D-70567 Stuttgart
Germany

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Japan, Inc
GOBANCHO HIKARI Building 4th Floor
14 Goban-cho ChIiyoda-KU
Tokyo, 113
JAPAN

PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

Visual Numerics, Inc.
7/F, #510, Chung Hsiao E. Road
Section 5
Taipei, TAIWAN 110
Republic of China

PHONE: (886) 2-727-2255
FAX: (886) 2-727-6798
e-mail: info@vni.com.tw

World Wide Web site: http://www.vni.com

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-Mapo-Dong, Mapo-gu
Seoul 121-050
Korea

PHONE:+82-2-3273-2632 or 2633
FAX: +82-2-3273-2634
e-mail: info@vni.co.kr

COPYRIGHT NOTICE: Copyright 1990-2003, an unpublished work by Visual Numerics, Inc. All rights reserved.

VISUAL NUMERICS, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Visual Numerics, Inc., shall not be liable for errors contained herein or for incidental, consequential, or other indirect
damages in connection with the furnishing, performance, or use of this material.

TRADEMARK NOTICE: IMSL, Visual Numerics, IMSL FORTRAN Numerical Libraries, IMSL Productivity Toolkit, IMSL
Libraries Environment and Installation Assurance Test, C Productivity Tools, FORTRAN Productivity Tools, IMSL C/Math/Library,
IMSL C/Stat/Library, IMSL Fortran 90 MP Library, and IMSL Exponent Graphics are registered trademarks or trademarks of Visual
Numerics, Inc., in the U.S. and other countries. Sun, SunOS, and Solaris are registered trademarks or trademarks of Sun Microsystems,
Inc. SPARC and SPARCompiler are registered trademarks or trademarks of SPARC International, Inc. Silicon Graphics is a registerd
trademark of Silicon Graphics, Inc. IBM, AIX, and RS/6000 are registered trademarks or trademarks of International Business
Machines Corporation. HP is a trademark of Hewlett-Packard. Silicon Graphics and IRIX are registered trademarks or trademarks of
Silicon Graphics, Inc. DEC and AXP are registered trademarks or trademarks of Digital Equipment Corporation. All other trademarks
are the property of their respective owners.

Use of this document is governed by a Visual Numerics Software License Agreement. This document contains confidential and
proprietary information constituting valuable trade secrets. No part of this document may be reproduced or transmitted in any form
without the prior written consent of Visual Numerics.

RESTRICTED RIGHTS LEGEND: This documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by
the U.S. Government is subject to the restrictions set forth in subparagraph (c)(1)(ll) of the Rights in Technical Data and Computer
Software clause at DFAR 252.227-7013, and in subparagraphs (a) through (d) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR Supplement, when applicable. Contractor/Manufacturer is
Visual Numerics, Inc., 2500 Wilcrest Drive, Ste 200, Houston, Texas 77042.

IMSL Fortran and C and Java
Application Development Tools

IMSL C/Math/Library Table of Contents � i

CMath Library /V1- Table of
Contents

Introduction ix

Chapter 1: Linear Systems 1

Chapter 2: Eigensystem Analysis 115

Chapter 3: Interpolation and Approximation 139

Chapter 4: Quadrature 235

Chapter 5: Differential Equations 289

Chapter 6: Transforms 339

Chapter 7: Nonlinear Equations 383

Appendix A: References A-1

Appendix B: Alphabetical Summary of Routines B-1

Index i

Introduction

IMSL C/Math/Library
The IMSL C/Math/Library is a library of C functions useful in scientific
programming. Each function is designed and documented to be used in research
activities as well as by technical specialists. A number of the example programs
also show graphs of resulting output.

Getting Started
To use any of the IMSL C/Math/Library functions, you first must write a program
in C to call the function. Each function conforms to established conventions in
programming and documentation. We give first priority in development to
efficient algorithms, clear documentation, and accurate results. The uniform
design of the functions makes it easy to use more than one function in a given
application. Also, you will find that the design consistency enables you to apply
your experience with one IMSL C/Math/Library function to all other IMSL
functions that you use.

ANSI C vs. Non-ANSI C
All of the examples in this user’s manual conform to ANSI C. If you are not using
ANSI C, you will need to modify your examples in which functions are declared
or in which arrays are initialized as the type float.

The following is an ANSI C program in which a function is declared. The
program estimates the value of the following:

� �
1 1/ 2

0
ln 4x x dx�

� ��

1 #include <math.h>
2 #include <imsl.h>
3
4 float fcn(float x);
5
6 main()
7 {

Introduction IMSL C/Math/Library � ix

x � Getting Started IMSL C/Math/ Library

8 float q, exact;
9 /* evaluate the integral */
10 q = imsl_f_int_fcn_sing (fcn, 0.0, 1.0, 0);
11 /* print the result and the exact answer */
12 exact = -4.0;

13 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
14 }
15
16 float fcn(float x)
17 {
18 return log(x)/sqrt(x);
19 }

If using non-ANSI C, you would need to modify lines 4 and 16 as follows:

4 float fcn(); /* function is not prototyped */
 .
 .
 .
16 float fcn(x) /*Only variable of function defined here */
16a float x; /* Type of variable declared here */

Non-ANSI C does not allow for automatic aggregate initialization, and thus, all
auto arrays that are initialized as type float in ANSI C must be initialized as type
static float in non-ANSI C. The next program contains arrays that are initialized
as type float.

1 #include <imsl.h>
2
3 main()
4 {
5 int n = 3;
6 float *x;
7 float a[] = {1.0, 3.0, 3.0,
8 1.0, 3.0, 4.0,
9 1.0, 4.0, 3.0};
10
11 float b[] = {1.0, 4.0, -1.0};
12 /* Solve Ax = b for x */
13 x = imsl_f_lin_sol_gen (n, a, b, 0);
14 /* Print x */
15 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, 3, x, 0);
16 }

If using non-ANSI C, you would need to modify lines 7 and 11 as follows:

7 static float a[] = {1.0, 3.0, 3.0,
 .
 .
 .
11 static float b[] = {1.0, 4.0, -1.0};

The imsl.h File
The include file <imsl.h> is used in all of the examples in this manual. This file
contains prototypes for all IMSL-defined functions; the spline structures,
Imsl_f_ppoly, Imsl_d_ppoly, Imsl_f_spline, and Imsl_d_spline; enumerated data

Introduction Thread Safe Usage � xi

types, Imsl_quad, Imsl_write_options, Imsl_page_options, Imsl_ode, and
Imsl_error; and the
IMSL-defined data types f_complex (which is the type float complex) and
d_complex (which is the type double complex).

Thread Safe Usage
On systems that support either POSIX threads or WIN32 threads, IMSL
C/Math/Library can be safely called from a multithreaded application. When
IMSL C/Math/Library is used in a multithreaded application, the calling program
must adhere to a few important guidelines. In particular, IMSL C/Math/Library's
implementation of signal handling, error handling, and I/O must be understood.

Signal Handling
When calling C/Math/Library from a multithreaded application it is necessary to
turn C/Math/Library 's signal-handling capability off. This is accomplished by
making a single call to imsl_error_options before any calls are made to
C/Math/Library. For an example of turning off C/Math/Library's internal signal
handling , see “Utilities” chapter, Example 3 of imsl_error_options.

C/Math/Library 's error handling in a multithreaded application behaves similarly
to how it behaves in a single-threaded application. The major difference is that
an error stack exists for each thread calling C/Math/Library functions. The result
of separate error stacks for each thread is greater control of the error handler
options for each thread. Each thread can set its own options for the
C/Math/Library error handler using imsl_error_options. For an example of
setting error handler options for separate threads, see the “Utilities chapter,
Example 3 of imsl_error_options.

Routines that Produce Output
A number of routines in C/Math/Library can be used to produce output. The
function imsl_output_file can be used to control which file the output is
directed. In an application with a single thread of execution, a single call to
imsl_output_file can be used to set the file to which the output will be
directed. In a multithreaded application each thread must call
imsl_output_file to change the default setting of where output will be
directed. See the “Utilities” chapter, Example 2 of imsl_output_file for more
details.

Input Arguments
In a multithreaded application attention must be given to the data sent to
C/Math/Library. Some arguments that may appear to be input-only are

xii � Matrix Storage Modes IMSL C/Math/ Library

temporarily modified during the call and restored before returning to the caller.
Care must be used to avoid usage of the same data space in separate threads
calling functions in C/Math/Library.

Matrix Storage Modes
In this section, the word matrix is used to refer to a mathematical object and the
word array is used to refer to its representation as a C data structure. In the
following list of array types, the IMSL C/Math/Library functions require input
consisting of matrix dimension values and all values for the matrix entries. These
values are stored in
row-major order in the arrays.

Each function processes the input array and typically returns a pointer to a
“result.”
For example, in solving linear algebraic systems, the pointer is to the solution.
For general, real eigenvalue problems, the pointer is to the eigenvalues.
Normally, the input array values are not changed by the functions.

In the IMSL C/Math/Library, an array is a pointer to a contiguous block of data.
They are not pointers to pointers to the rows of the matrix. Typical declarations
are:

 float *a = {1, 2, 3, 4};
 float b[2][2] = {1, 2, 3, 4};
 float c[] = {1, 2, 3, 4};

Note: If you are using non-ANSI C and the variables are of type auto, then the
above declarations would need to be declared as type static float.

General Mode
A general matrix is a square n � n matrix. The data type of a general array can be
float, double, f_complex, or d_complex.

Rectangular Mode
A rectangular matrix is an m � n matrix. The data type of a rectangular array can
be float, double, f_complex, or d_complex.

Symmetric Mode
A symmetric matrix is a square n � n matrix A, such that AT = A. (The matrix AT
is the transpose of A.) The data type of a symmetric array can be float or double.

Hermitian Mode
A Hermitian matrix is a square n � n matrix A, such that

H TA A A� �

The matrix A is the complex conjugate of A, and
H TA A�

is the conjugate transpose of A. For Hermitian matrices AH = A. The data type of
a Hermitian array can be f_complex or d_complex.

Sparse Coordinate Storage Format
Only the nonzero elements of a sparse matrix need to be communicated to a
function. Sparse coordinate storage format stores the value of each matrix entry
along with that entry’s row and column index. The following four non-
homogeneous data structures are defined to support this concept:

 typedef struct {
 int row;
 int col;
 float val;
 } Imsl_f_sparse_elem;

 typedef struct {
 int row;
 int col;
 double val;
 } Imsl_d_sparse_elem;

 typedef struct {
 int row;
 int col;
 f_complex val;
 } Imsl_c_sparse_elem;

 typedef struct {
 int row;
 int col;
 d_complex val;
 } Imsl_z_sparse_elem;

See the “User Errors” section in the “Reference Material” for further detailsSee
the Reference Material at the end of this manual for a discussion of the complex
data types f_complex and d_complex. Note that the only difference in these
structures involves changes in underlying data types. A sparse matrix is passed to
functions that accept sparse coordinate format by forming an array of one of these
data types. The number of elements in that array will be equal to the number of
nonzeros in the sparse matrix.

As an example consider the 6 � 6 matrix:

Introduction Matrix Storage Modes � xiii

2 0 0 0 0 0
0 9 3 1 0 0
0 0 5 0 0 0
2 0 0 7 1 0
1 0 0 5 1 3
1 2 0 0 0 6

A

� �
� �� �� �
� �

� � �
� � �� �
� �� � �
� �
� �� �� �

The matrix A has 15 nonzero elements, and the sparse coordinate representation
would be

row 0 1 1 1 2 3 3 3 4 4 4 4 5 5 5
col 0 1 2 3 2 0 3 4 0 3 4 5 0 1 5
val 2 9 �3 �1 5 �2 �7 �1 �1 �5 1 �3 �1 �2 6

Since this representation does not rely on order, an equivalent form would be

row 5 4 3 0 5 1 2 1 4 3 1 4 3 5 4
col 0 0 0 0 1 1 2 2 3 3 3 4 4 5 5
val �1 �1 �2 2 �2 9 5 �3 �5 �7 �1 1 �1 6 �3

There are different ways this data could be used to initialize an array of type, for
example, Imsl_f_sparse_elem. Consider the following program fragment:

#include <imsl.h>
main()
{
Imsl_f_sparse_elem a[] = {
 {0, 0, 2.0},
 {1, 1, 9.0},
 {1, 2, -3.0},
 {1, 3, -1.0},
 {2, 2, 5.0},
 {3, 0, -2.0},
 {3, 3, -7.0},
 {3, 4, -1.0},
 {4, 0, -1.0},
 {4, 3, -5.0},
 {4, 4, 1.0},
 {4, 5, -3.0},
 {5, 0, -1.0},
 {5, 1, -2.0},
 {5, 5, 6.0} };
Imsl_f_sparse_elem b[15];

 b[0].row = b[0].col = 0; b[0].val = 2.0;
 b[1].row = b[1].col = 1; b[1].val = 9.0;
 b[2].row = 1; b[2].col = 2; b[2].val = -3.0;
 b[3].row = 1; b[3].col = 3; b[3].val = -1.0;
 b[4].row = b[4].col = 2; b[4].val = 5.0;
 b[5].row = 3; b[5].col = 0; b[5].val = -2.0;
 b[6].row = b[6].col = 3; b[6].val = -7.0;
 b[7].row = 3; b[7].col = 4; b[7].val = -1;

xiv � Matrix Storage Modes IMSL C/Math/ Library

 b[8].row = 4; b[8].col = 0; b[8].val = -1.0;
 b[9].row = 4; b[9].col = 3; b[9].val = -5.0;
 b[10].row = b[10].col = 4; b[10].val = 1.0;
 b[11].row = 4; b[11].col = 5; b[11].val = -3.0;
 b[12].row = 5; b[12].col = 0; b[12].val = -1.0;
 b[13].row = 5; b[13] = 1; b[13].val = -2.0;
 b[14].row = b[14].col = 5; b[14].val = 6.0;
}

Both a and b represent the sparse matrix A, and the functions in this module
would produce identical results regardless of which identifier was sent through
the argument list.

A sparse symmetric or Hermitian matrix is a special case, since it is only
necessary to store the diagonal and either the upper or lower triangle. As an
example, consider the
5 � 5 linear system:

� � � �

� � � � � �

� � � � � �

� � � �

4,0 1, 1 0 0
1,1 4,0 1, 1 0
0 1,1 4,0 1, 1
0 0 1,1 4,0

H

� � �
� �

�� ��
� ��
� �
� �� �

The Hermitian and symmetric positive definite system solvers in this library
expect the diagonal and lower triangle to be specified. The sparse coordinate
form for the lower triangle is given by

row 0 1 2 3 1 2 3
col 0 1 2 3 0 1 2
val (4,0) (4,0) (4,0) (4,0) (1,1) (1,1) (1,1)

As before, an equivalent form would be

row 0 1 1 2 2 3 3
col 0 0 1 1 2 2 3
val (4,0) (1,1) (4,0) (1,1) (4,0) (1,1) (4,0)

The following program fragment will initialize both a and b to H.

#include <imsl.h>
main()
{
 Imsl_c_sparse_elem a[] = {
 {0, 0, {4.0, 0.0}},
 {1, 1, {4.0, 0.0}},
 {2, 2, {4.0, 0.0}},
 {3, 3, {4.0, 0.0}},
 {1, 0, {1.0, 1.0}},
 {2, 1, {1.0, 1.0}},
 {3, 2, {1.0, 1.0}}
 }
 Imsl_c_sparse_elem b[7];

Introduction Matrix Storage Modes � xv

 b[0].row = b[0].col = 0;
 b[0].val = imsl_cf_convert (4.0, 0.0);
 b[1].row = 1; b[1].col = 0;
 b[1].val = imsl_cf_convert (1.0, 1.0);
 b[2].row = b[2].col = 1;
 b[2].val = imsl_cf_convert (4.0, 0.0);
 b[3].row = 2; b[3].col = 1;
 b[3].val = imsl_cf_convert (1.0, 1.0);
 b[4].row = b[4].col = 2;
 b[4].val = imsl_cf_convert (4.0, 0.0);
 b[5].row = 3; b[5].col = 2;
 b[5].val = imsl_cf_convert (1.0, 1.0);
 b[6].row = b[6].col = 3;
 b[6].val = imsl_cf_convert (4.0, 0.0);
}

There are some important points to note here. H is not symmetric, but rather
Hermitian. The functions that accept Hermitian data understand this and operate
assuming that

ij ijh h�

The IMSL C/Math/Library cannot take advantage of the symmetry in matrices
that are not positive definite. The implication here is that a symmetric matrix that
happens to be indefinite cannot be stored in this compact symmetric form. Rather,
both upper and lower triangles must be specified and the sparse general solver
called.

Band Storage Format
A band matrix is an M � N matrix with all of its nonzero elements “close” to the
main diagonal. Specifically, values Aij = 0 if i � j > nlca or j � i > nuca. The
integer
m = nlca + nuca + 1 is the total band width. The diagonals, other than the main
diagonal, are called codiagonals. While any M � N matrix is a band matrix, band
storage format is only useful when the number of nonzero codiagonals is much less
than N.

In band storage format, the nlca lower codiagonals and the nuca upper
codiagonals are stored in the rows of an array of size m � N. The elements are
stored in the same column of the array as they are in the matrix. The values Aij
inside the band width are stored in the linear array in positions [(i - j + nuca + 1)
* n + j]. This results in a row-major, one-dimensional mapping from the two-
dimensional notion of the matrix.

For example, consider the 5 � 5 matrix A with 1 lower and 2 upper codiagonals:

xvi � Matrix Storage Modes IMSL C/Math/ Library

0,0 0,1 0,2

1,0 1,1 1,2 1,3

2,1 2,2 2,3 2,4

3,2 3,3 3,4

4,3 4,4

0 0
0

0
0 0
0 0 0

A A A
A A A A

A A A AA
A A A

A A

� �
� �
� �
� ��
� �
� �
� �
� �

In band storage format, the data would be arranged as

0,2 1,3 2,4

0,1 1,2 2,3 3,4

0,0 1,1 2,2 3,3 4,4

1,0 2,1 3,2 4,3

0 0
0

0

A A A
A A A A

A A A A A
A A A A

� �
� �
� �
� �
� �
� �� �

This data would then be stored contiguously, row-major order, in an array of
length 20.

As an example, consider the following tridiagonal matrix:

10 1 0 0 0
5 20 2 0 0
0 6 30 3 0
0 0 7 40 4
0 0 0 8 50

A

� �
� �
� �
� ��
� �
� �
� �� �

The following declaration will store this matrix in band storage format:

 float a[] = {
 0.0, 1.0, 2.0, 3.0, 4.0,
 10.0, 20.0, 30.0, 40.0, 50.0,
 5.0, 6.0, 7.0, 8.0, 0.0};

As in the sparse coordinate representation, there is a space saving symmetric
version of band storage. As an example, look at the following 5 � 5 symmetric
problem:

0,0 0,1 0,2

0,1 1,1 1,2 1,3

0,2 1,2 2,2 2,3 2,4

1,3 2,3 3,3 3,4

2,4 3,4 4,4

0 0
0

0
0 0

A A A
A A A A
A A A A AA

A A A A
A A A

� �
� �
� �
� ��
� �
� �
� �
� �

In band symmetric storage format, the data would be arranged as

0,2 1,3 2,4

0,1 1,2 2,3 3,4

0,0 1,1 2,2 3,3 4,4

0 0
0

A A A
A A A A

A A A A A

� �
� �
� �
� �
� �

Introduction Matrix Storage Modes � xvii

The following Hermitian example illustrates the procedure:

� � � � � �
� � � � � � � �
� � � � � � � � � �

� � � � � � � �
� � � � � �

8,0 1,1 1,1 0 0
1, 1 8,0 1,1 1,1 0
1, 1 1, 1 8,0 1,1 1,1

0 1, 1 1, 1 8,0 1,1
0 0 1, 1 1, 1 8,0

H

� �
� �

�� �
� �� � �
� �

� �� �
� �� �� �

The following program fragments would store H in h, using band symmetric
storage format.

f_complex h[] = {
 {0.0, 0.0}, {0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0},
 {0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0}, {1.0, 1.0},
 {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}, {8.0, 0.0}};

or equivalently

f_complex h[15];
 h[0] = h[1] = h[5] = imsl_cf_convert (0.0, 0.0);
 h[2] = h[3] = h[4] = h[6] = h[7] = h[8] = h[9] =
 imsl_cf_convert (1.0, 1.0);
 h[10] = h[11] = h[12] = h[13] = h[14] =
 imsl_cf_convert (8.0, 0.0);

Choosing Between Banded and Coordinate Forms
It is clear that any matrix can be stored in either sparse coordinate or band format.
The choice depends on the sparsity pattern of the matrix. A matrix with all
nonzero data stored in bands close to the main diagonal would probably be a
good candidate for band format. If nonzero information is scattered more or less
uniformly through the matrix, sparse coordinate format is the best choice. As
extreme examples, consider the following two cases: (1) an n � n matrix with all
elements on the main diagonal and the (0, n � 1) and (n � 1, 0) entries nonzero.
The sparse coordinate vector would be n + 2 units long. An array of length
n(2n � 1) would be required to store the band representation, nearly twice as
much storage as a dense solver might require. Secondly, a tridiagonal matrix with
all diagonal, superdiagonal and subdiagonal entries nonzero. In band format, an
array of length 3n is needed. In sparse coordinate, format a vector of length
3n � 2 is required. But the problem is that, for example, float precision on a
32-bit machine, each of those 3n � 2 units in coordinate format requires three
times as much storage as any of the 3n units needed for band representation. This
is due to carrying the row and column indices in coordinate form. Band storage
evades this requirement by being essentially an ordered list, and defining location
in the original matrix by position in the list.

xviii � Matrix Storage Modes IMSL C/Math/ Library

Compressed Sparse Column (CSC) Format
Functions that accept data in coordinate format can also accept data stored in the
format described in the Users’ Guide for the Harwell-Boeing Sparse Matrix
Collection. The scheme is column oriented, with each column held as a sparse
vector, represented by a list of the row indices of the entries in an integer array
and a list of the corresponding values in a separate float (double, f_complex,
d_complex) array. Data for each column are stored consecutively and in order. A
separate integer array holds the location of the first entry of each column and the
first free location. Only entries in the lower triangle and diagonal are stored for
symmetric and Hermitian matrices. All arrays are based at zero, which is in
contrast to the Harwell-Boeing test suite’s one-based arrays.

As in the Harwell-Boeing Users’ Guide, the storage scheme is illustrated with the
following example: The 5 � 5 matrix

1 3 0 1 0
0 0 2 0 3
2 0 0 0 0
0 4 0 4 0
5 0 5 0 6

� �� �
� ��� �
� �
� �

�� �
� ��� �

would be stored in the arrays colptr (location of first entry), rowind (row
indices), and values (nonzero entries) as follows.

Subscripts 0 1 2 3 4 5 6 7 8 9 10
colptr 0 3 5 7 9 11

rowind 0 4 2 3 0 1 4 0 3 4 1

values 1 5 2 4 �3 �2 �5 �1 �4 6 3

The following program fragment shows the relation between CSC storage format
and coordinate representation:

 k = 0;
 for (i=0; i<n; i++) {
 start = colptr[i];
 stop = colptr[i+1];
 for (j=start; j<stop; j++) {
 a[k].row = rowind[j];
 a[k].col = i;
 a[k++].val = values[j];
 }
 }
 nz =k;

Introduction Matrix Storage Modes � xix

xx � Memory Allocation for Output Arrays IMSL C/Math/ Library

Memory Allocation for Output Arrays
Many functions return a pointer to an array containing the computed answers. If
the function invocation uses the optional arguments

IMSL_RETURN_USER, float a[]

then the computed answers are stored in the user-provided array a, and the
pointer returned by the function is set to point to the user-provided array a. If an
invocation does not use IMSL_RETURN_USER, then the function initializes the
pointer (through a memory allocation request to malloc) and stores the answers
there. (To release this space, free can be used. Both malloc and free are
standard C library functions declared in the header <stdlib.h>.) In this way,
the allocation of space for the computed answers can be made either by the user
or internally by the function.

Similarly, other optional arguments specify whether additional computed output
arrays are allocated by the user or are to be allocated internally by the function.
For example, in many functions in “Linear Systems,” the optional arguments

IMSL_INVERSE_USER, float inva[] (Output)
IMSL_INVERSE, float **p_inva (Output)

specify two mutually exclusive optional arguments. If the first option is chosen,
the inverse of the matrix is stored in the user-provided array inva. In the second
option, float **p_inva refers to the address of a pointer to the inverse. If the
second option is chosen, on return, the pointer is initialized (through a memory
allocation request to malloc), and the inverse of the matrix is stored there.
Typically, float *p_inva is declared, &p_inva is used as an argument to this
function, and free(p_inva) is used to release the space.

Finding the Right Routine
The IMSL C/Math/Library is organized into chapters; each chapter contains
functions with similar computational or analytical capabilities. To locate the right
function for a given problem, you may use either the table of contents located in
each chapter introduction, or the alphabetical “Summary of Functions” at the end
of this manual.

Often the quickest way to use the IMSL C/Math/Library is to find an example
similar to your problem and then mimic the example. Each function in the
document has at least one example demonstrating its application.

Introduction Organization of the Documentation � xxi

Organization of the Documentation
This manual contains a concise description of each function, with at least one
demonstrated example of each function, including sample input and results. You
will find all information pertaining to the IMSL C/Math/Library in this manual.
Moreover, all information pertaining to a particular function is in one place
within a chapter.

Each chapter begins with an introduction followed by a table of contents listing
the functions included in the chapter. Documentation of the functions consists of
the following information:

� Section Name: Usually, the common root for the type float and type double
versions of the function is given.

� Purpose: A statement of the purpose of the function.

� Synopsis: The form for referencing the subprogram with required
arguments listed.

� Required Arguments: A description of the required arguments in the order
of their occurrence, as follows:

Input: Argument must be initialized; it is not changed by the function.

Input/Output: Argument must be initialized; the function returns output through
this argument. The argument cannot be a constant or an expression.

Output: No initialization is necessary. The argument cannot be a constant or an
expression; the function returns output through this argument.

� Return Value: The value returned by the function.

� Synopsis with Optional Arguments: The form for referencing the function
with both required and optional arguments listed.

� Optional Arguments: A description of the optional arguments in the order
of their occurrence.

� Description: A description of the algorithm and references to detailed
information. In many cases, other IMSL functions with similar or
complementary functions are noted.

� Examples: At least one application of this function showing input and
optional arguments.

xxii � Naming Conventions IMSL C/Math/ Library

� Errors: Listing of any errors that may occur with a particular function. A
discussion on error types is given in the “User Errors” section of the
Reference Material. The errors are listed by their type as follows:

Informational Errors: List of informational errors that may occur with the
function.

Alert Errors: List of alert errors that may occur with the function.

Warning Errors: List of warning errors that may occur with the function.

Fatal Errors: List of fatal errors that may occur with the function.

Naming Conventions
Most functions are available in both a type float and a type double version, with
names of the two versions sharing a common root. Some functions also are
available in type int, or the IMSL-defined types f_complex or d_complex
versions. A list of each type and the corresponding prefix of the function name in
which multiple type versions exist follows:

Type Prefix
float imsl_f_

double imsl_d_

int imsl_i_

f_complex imsl_c_

d_complex imsl_z_

The section names for the functions only contain the common root to make
finding the functions easier. For example, the functions imsl_f_lin_sol_gen
and imsl_d_lin_sol_gen can be found in section lin_sol_gen in Chapter 1,
“Linear Systems”.

Where appropriate, the same variable name is used consistently throughout a
chapter in the IMSL C/Math/Library. For example, in the functions for
eigensystem analysis, eval denotes the vector of eigenvalues and n_eval
denotes the number of eigenvalues computed or to be computed.

When writing programs accessing the IMSL C/Math/Library, the user should
choose C names that do not conflict with IMSL external names. The careful user
can avoid any conflicts with IMSL names if, in choosing names, the following
rule is observed:

� Do not choose a name beginning with “imsl_” in any combination of
uppercase or lowercase characters.

Introduction Error Handling, Underflow, Overflow, and Document Examples � xxiii

Error Handling, Underflow, Overflow, and
Document Examples

The functions in the IMSL C/Math/Library attempt to detect and report errors and
invalid input. This error-handling capability provides automatic protection for the
user without requiring the user to make any specific provisions for the treatment
of error conditions. Errors are classified according to severity and are assigned a
code number. By default, errors of moderate or higher severity result in messages
being automatically printed by the function. Moreover, errors of highest severity
cause program execution to stop. The severity level, as well as the general nature
of the error, is designated by an “error type” with symbolic names IMSL_FATAL,
IMSL_WARNING, etc.
See the “User Errors” section in the “Reference Material” for further details.

In general, the IMSL C/Math/Library codes are written so that computations are
not affected by underflow, provided the system (hardware or software) replaces
an underflow with the value zero. Normally, system error messages indicating
underflow can be ignored.

IMSL codes are also written to avoid overflow. A program that produces system
error messages indicating overflow should be examined for programming errors
such as incorrect input data, mismatch of argument types, or improper
dimensions.

In many cases, the documentation for a function points out common pitfalls that
can lead to failure of the algorithm.

Output from document examples can be system dependent and the user’s results
may vary depending upon the system used.

Printing Results
Most functions in the IMSL C/Math/Library do not print any of the results; the
output is returned in C variables. You can print the results yourself.

The IMSL C/Math/Library contains some special functions just for printing
arrays. For example, imsl_f_write_matrix is a convenient function for
printing matrices of type float. See Chapter 11, “Printing Functions,” for detailed
descriptions of these functions.

xxiv � Complex Arithmetic IMSL C/Math/ Library

Complex Arithmetic
Users can perform computations with complex arithmetic by using IMSL
predefined data types. These types are available in two floating-point precisions:

� f_complex for single-precision complex values

� d_complex for double-precision complex values

A description of complex data types and functions is given in the Reference
Material.

Missing Values
Some of the functions in the IMSL C/Math/Library allow the data to contain
missing values. These functions recognize as a missing value the special value
referred to as “not a number,” or NaN. The actual value is different on different
computers, but it can be obtained by reference to the IMSL function
imsl_f_machine, described in Chapter 12, “Utilities.”

The way that missing values are treated depends on the individual function and is
described in the documentation for the function.

Passing Data to User-Supplied Functions
In some cases it may be advantageous to pass problem-specific data to a user-
supplied function through the IMSL C/Math/Library interface. This ability can be
useful if a user-supplied function requires data that is local to the user's calling
function, and the user wants to avoid using global data to allow the user-supplied
function to access the data. Functions in IMSL C/Math/Library that accept user-
supplied functions have an optional argument(s) that will accept an alternative user-
supplied function, along with a pointer to the data, that allows user-specified data
to be passed to the function. The example below demonstrates this feature using the
IMSL C/Math/Library function imsl_f_min_uncon and optional argument
IMSL_FCN_W_DATA.

#include "imsl.h"
#include <math.h>

static float fcn_w_data(float x, void *data_ptr);
static float fcn(float);

void main()
{
 float a = -100.0;

Introduction Passing Data to User-Supplied Functions � xxv

 float b = 100.0;
 float fx, x;
 float usr_data[] = {5.0, 10.0};
 x = imsl_f_min_uncon (fcn, a, b,
 IMSL_FCN_W_DATA, fcn_w_data, usr_data,
 0);
 fx = fcn_w_data(x, (void*)usr_data);

 printf ("The solution is: %8.4f\n", x);
 printf ("The function evaluated at the solution is: %8.4f\n", fx);
}

/*
 * User function that accepts additional data in a (void*) pointer.
 * This (void*) pointer can be cast to any type and dereferenced to
 * get at any sort of data-type or structure that is needed.
 * For example, to get at the data in this example
 * *((float*)data_ptr) contains the value 5.0
 * *((float*)data_ptr+1) contains the value 10.0
 */
static float fcn_w_data(float x, void *data_ptr)
{
 return exp(x) - (*((float*)data_ptr))*x + *((float*)data_ptr+1);
}

/* Dummy function to satisfy C prototypes. */
static float fcn(float x)
{
 return;
}

xxvi � Passing Data to User-Supplied Functions IMSL C/Math/ Library

Chapter 1: Linear Systems Routines � 1

Chapter 1: Linear Systems

Routines
1.1 Linear Equations with Full Matrices

Factor, Solve, and Inverse for General Matrices
Real matrices ... lin_sol_gen 4
Complex matrices.. lin_sol_gen (complex) 11
Factor, Solve, and Inverse for Positive Definite Matrices
Real matrices .. lin_sol_posdef 17
Complex matrices... lin_sol_posdef (complex) 22

1.2 Linear Equations with Band Matrices
Factor and Solve for Band Matrices
Real matrices ... lin_sol_gen_band 26
Complex matrices.. lin_sol_gen_band (complex) 31
Factor and Solve for Positive Definite Matrices Symmetric
Real matrices .. lin_sol_posdef_band 35
Complex matrices................................... lin_sol_posdef_band (complex) 39

1.3 Linear Equations with General Sparse Matrices
Factor and Solve for Sparse Matrices
Real matrices .. lin_sol_gen_coordinate 44
Complex matrices............................... lin_sol_gen_coordinate (complex) 54
Factor and Solve for Positive Definite Matrices
Real matrices ... lin_sol_posdef_coordinate 62
Complex matrices.......................... lin_sol_posdef_coordinate (complex) 68

1.4 Iterative Methods
Restarted generalized minimum
residual (GMRES) method lin_sol_gen_min_residual 73
Conjugate gradient method ... lin_sol_def_cg 78

2 � Usage Notes IMSL C/Math/Library

1.5 Linear Least-squares with Full Matrices
Least-squares and QR decomposition
Least-squares solve, QR decomposition lin_least_squares_gen 84
Linear constraints.. lin_lsq_lin_constraints 92
Singular Value Decompositions (SVD) and Generalized Inverse
Real matrix.. lin_svd_gen 96
Complex matrix .. lin_svd_gen (complex) 102
Factor, Solve, and Generalized Inverse for Positive Semidefinite Matrices
Real matrices .. lin_sol_nonnegdef 107

Usage Notes
Solving Systems of Linear Equations
A square system of linear equations has the form Ax = b, where A is a user-specified
n � n matrix, b is a given right-hand side n vector, and x is the solution n vector. Each
entry of A and b must be specified by the user. The entire vector x is returned as output.

When A is invertible, a unique solution to Ax = b exists. The most commonly used
direct method for solving Ax = b factors the matrix A into a product of triangular
matrices and solves the resulting triangular systems of linear equations. Functions that
use direct methods for solving systems of linear equations all compute the solution to
Ax = b. Thus, if a function with the prefix “imsl_f_lin_sol” is called with the
required arguments, a pointer to x is returned by default. Additional tasks, such as only
factoring the matrix A into a product of triangular matrices, can be done using
keywords.

Matrix Factorizations
In some applications, it is desirable to just factor the n � n matrix A into a product of
two triangular matrices. This can be done by calling the appropriate function for
solving the system of linear equations Ax = b. Suppose that in addition to the solution
x of a linear system of equations Ax = b, the LU factorization of A is desired. Use the
keyword IMSL_FACTOR in the function imsl_f_lin_sol_gen (page 4) to obtain
access to the factorization. If only the factorization is desired, use the keywords
IMSL_FACTOR_ONLY and IMSL_FACTOR.

Besides the basic matrix factorizations, such as LU and LLT, additional matrix
factorizations also are provided. For a real matrix A, its QR factorization can be
computed by the function imsl_f_lin_least_squares_gen (page 84). Functions
for computing the singular value decomposition (SVD) of a matrix are discussed in a
later section.

Matrix Inversions
The inverse of an n � n nonsingular matrix can be obtained by using the keyword
IMSL_INVERSE in functions for solving systems of linear equations. The inverse of a

Chapter 1: Linear Systems Usage Notes � 3

matrix need not be computed if the purpose is to solve one or more systems of linear
equations. Even with multiple right-hand sides, solving a system of linear equations by
computing the inverse and performing matrix multiplication is usually more expensive
than the method discussed in the next section.

Multiple Right-Hand Sides
Consider the case where a system of linear equations has more than one right-hand side
vector. It is most economical to find the solution vectors by first factoring the
coefficient matrix A into products of triangular matrices. Then, the resulting triangular
systems of linear equations are solved for each right-hand side. When A is a real
general matrix, access to the LU factorization of A is computed by using the keywords
IMSL_FACTOR and IMSL_FACTOR_ONLY in function imsl_f_lin_sol_gen (page 4).
The solution xk for the k-th right-hand side vector bk is then found by two triangular
solves, Lyk = bk and Uxk = yk. The keyword IMSL_SOLVE_ONLY in the function
imsl_f_lin_sol_gen is used to solve each right-hand side. These arguments are
found in other functions for solving systems of linear equations.

Least-Squares Solutions and QR Factorizations
Least-squares solutions are usually computed for an over-determined system of linear
equations Am´n x = b, where m > n. A least-squares solution x minimizes the Euclidean
length of the residual vector r = Ax � b. The function
imsl_f_lin_least_squares_gen (page 84) computes a unique least-squares
solution for x when A has full column rank. If A is rank-deficient, then the base
solution for some variables is computed. These variables consist of the resulting
columns after the interchanges. The QR decomposition, with column interchanges or
pivoting, is computed such that AP = QR. Here, Q is orthogonal, R is
upper-trapezoidal with its diagonal elements nonincreasing in magnitude, and P is the
permutation matrix determined by the pivoting. The base solution xB is obtained by
solving R(PT)x = QTb for the base variables. For details, see “Description” in
imsl_f_lin_least_squares_gen (page 84). The QR factorization of a matrix A
such that AP = QR with P specified by the user can be computed using keywords.

Singular Value Decompositions and Generalized Inverses
The SVD of an m � n matrix A is a matrix decomposition A = USVT. With
q = min(m, n), the factors Um´q and Vn´q are orthogonal matrices, and Sq´q is a
nonnegative diagonal matrix with nonincreasing diagonal terms. The function
imsl_f_lin_svd_gen (page 96) computes the singular values of A by default. Using
keywords, part or all of the U and V matrices, an estimate of the rank of A, and the
generalized inverse of A, also can be obtained.

Ill-Conditioning and Singularity
An m � n matrix A is mathematically singular if there is an x � 0 such that Ax = 0. In
this case, the system of linear equations Ax = b does not have a unique solution. On the
other hand, a matrix A is numerically singular if it is “close” to a mathematically

singular matrix. Such problems are called ill-conditioned. If the numerical results with
an ill-conditioned problem are unacceptable, users can either use more accuracy if it is
available (for type float accuracy switch to double) or they can obtain an approximate
solution to the system. One form of approximation can be obtained using the SVD of
A: If q = min(m, n) and

4 � lin_sol_gen IMSL C/Math/Library

v

iv

1 ,
q T
i i i i iA s u
�

��

then the approximate solution is given by the following:

� �1 ,
k T

k i i i ix t b u
�

��

The scalars ti,i are defined below.
1

, ,
,

if 0
0 otherwise

i i i i
i i

s s tol
t

�� � �
� �
�

The user specifies the value of tol. This value determines how “close” the given matrix
is to a singular matrix. Further restrictions may apply to the number of terms in the sum,
k � q. For example, there may be a value of k � q such that the scalars �(bTui)�, i > k are
smaller than the average uncertainty in the right-hand side b. This means that these
scalars can be replaced by zero; and hence, b is replaced by a vector that is within the
stated uncertainty of the problem.

lin_sol_gen
Solves a real general system of linear equations Ax = b. Using optional arguments, any
of several related computations can be performed. These extra tasks include computing
the LU factorization of A using partial pivoting, computing the inverse matrix A-1,
solving ATx = b, or computing the solution of Ax = b given the LU factorization of A.

Synopsis
#include <imsl.h>
float *imsl_f_lin_sol_gen (int n, float a[], float b[], �, 0)

The type double procedure is imsl_d_lin_sol_gen.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

float a[] (Input)
Array of size n � n containing the matrix.

Chapter 1: Linear Systems lin_sol_gen � 5

float b[] (Input)
Array of size n containing the right-hand side.

Return Value
A pointer to the solution x of the linear system Ax = b. To release this space, use free.
If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_sol_gen (int n, float a[], float b[],

IMSL_A_COL_DIM, int a_col_dim,
IMSL_TRANSPOSE,
IMSL_RETURN_USER, float x[],
IMSL_FACTOR, int **p_pvt, float **p_factor,
IMSL_FACTOR_USER, int pvt[], float factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_INVERSE, float **p_inva,
IMSL_INVERSE_USER, float inva[],
IMSL_INV_COL_DIM, int inva_col_dim,
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

The column dimension of the array a.
Default: a_col_dim = n

IMSL_TRANSPOSE
Solve ATx = b.
Default: Solve Ax = b

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, float **p_factor (Output)

p_pvt: The address of a pointer to an array of length n containing the pivot
sequence for the factorization. On return, the necessary space is allocated by
imsl_f_lin_sol_gen. Typically, int *p_pvt is declared, and &p_pvt is
used as an argument.

p_factor: The address of a pointer to an array of size n � n containing the
LU factorization of A with column pivoting. On return, the necessary space is
allocated by imsl_f_lin_sol_gen. The lower-triangular part of this array
contains information necessary to construct L, and the upper-triangular part

6 � lin_sol_gen IMSL C/Math/Library

contains U. Typically, float *p_factor is declared, and &p_factor is used
as an argument.

IMSL_FACTOR_USER, int pvt[], float factor[] (Input/Output)

pvt[]: A user-allocated array of size n containing the pivot sequence for the
factorization.

factor[]: A user-allocated array of size n � n containing the LU
factorization of A. The strictly lower-triangular part of this array contains
information necessary to construct L, and the upper-triangular part contains U.
If A is not needed, factor and a can share the same storage.

These parameters are input if IMSL_SOLVE is specified. They are output
otherwise.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LU factorization of A.
Default: fac_col_dim = n

IMSL_INVERSE, float **p_inva (Output)
The address of a pointer to an array of size n � n containing the inverse of the
matrix A. On return, the necessary space is allocated by
imsl_f_lin_sol_gen. Typically, float *p_inva is declared, and &p_inva
is used as an argument.

IMSL_INVERSE_USER, float inva[] (Output)
A user-allocated array of size n � n containing the inverse of A.

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col_dim = n

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number
of the matrix A. This option cannot be used with the option
IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY
Compute the LU factorization of A with partial pivoting. If
IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER is
required. The argument b is then ignored, and the returned value of
imsl_f_lin_sol_gen is NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LU factorization previously computed by
imsl_f_lin_sol_gen. By default, the solution to Ax = b is pointed to by
imsl_f_lin_sol_gen. If IMSL_SOLVE_ONLY is used, argument
IMSL_FACTOR_USER is required, and the argument a is ignored.

IMSL_INVERSE_ONLY
Compute the inverse of the matrix A. If IMSL_INVERSE_ONLY is used, either

IMSL_INVERSE or IMSL_INVERSE_USER is required. The argument b is then
ignored, and the returned value of imsl_f_lin_sol_gen is NULL.

Description
The function imsl_f_lin_sol_gen solves a system of linear algebraic equations with
a real coefficient matrix A. It first computes the LU factorization of A with partial
pivoting such that L-1A = U. The matrix U is upper triangular, while
L-1A � Pn Ln-1Pn-1 � L1P1A � U. The factors Pi and Li are defined by the partial
pivoting. Each Pi is an interchange of row i with row j � i. Thus, Pi is defined by that
value of j. Every

Chapter 1: Linear Systems lin_sol_gen � 7

i
T

i iL I m e� �

is an elementary elimination matrix. The vector mi is zero in entries 1, �, i. This vector
is stored as column i in the strictly lower-triangular part of the working array containing
the decomposition information.

The factorization efficiency is based on a technique of “loop unrolling and jamming”
by Dr. Leonard J. Harding of the University of Michigan, Ann Arbor, Michigan. The
solution of the linear system is then found by solving two simpler systems, y = L-1b and
x = U-1y. When the solution to the linear system or the inverse of the matrix is sought,
an estimate of the L1 condition number of A is computed using the same algorithm as in
Dongarra et al. (1979). If the estimated condition number is greater than 1	
 (where
 is
the machine precision), a warning message is issued. This indicates that very small
changes in A may produce large changes in the solution x. The function
imsl_f_lin_sol_gen fails if U, the upper triangular part of the factorization, has a
zero diagonal element.

Examples

Example 1
This example solves a system of three linear equations. This is the simplest use of the
function. The equations follow below:

x1 + 3x2 + 3x3 = 1

x1 + 3x2 + 4x3 = 4

x1 + 4x2 + 3x3 = �1
#include <imsl.h>

main()
{
 int n = 3;
 float *x;
 float a[] = {1.0, 3.0, 3.0,
 1.0, 3.0, 4.0,
 1.0, 4.0, 3.0};
 float b[] = {1.0, 4.0, -1.0};
 /* Solve Ax = b for x */

8 � lin_sol_gen IMSL C/Math/Library

 x = imsl_f_lin_sol_gen (n, a, b, 0);
 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, 3, x, 0);
}

Output
Solution, x, of Ax = b
 1 2 3
-2 -2 3

Example 2
This example solves the transpose problem ATx = b and returns the LU factorization of
A with partial pivoting. The same data as the initial example is used, except the solution
x = A-Tb is returned in an array allocated in the main program. The L matrix is returned
in implicit form.

#include <imsl.h>

main()
{
 int n = 3, pvt[3];
 float factor[9];
 float x[3];
 float a[] = {1.0, 3.0, 3.0,
 1.0, 3.0, 4.0,
 1.0, 4.0, 3.0};

 float b[] = {1.0, 4.0, -1.0};
 /* Solve trans(A)*x = b for x */
 imsl_f_lin_sol_gen (n, a, b,
 IMSL_TRANSPOSE,
 IMSL_RETURN_USER, x,
 IMSL_FACTOR_USER, pvt, factor,
 0);

 /* Print x */
 imsl_f_write_matrix ("Solution, x, of trans(A)x = b", 1, n, x, 0);

 /* Print factors and pivot sequence */
 imsl_f_write_matrix ("LU factors of A", n, n, factor, 0);
 imsl_i_write_matrix ("Pivot sequence", 1, n, pvt, 0);
}

Output
Solution, x, of trans(A)x = b
 1 2 3
 4 -4 1

 LU factors of A
 1 2 3
1 1 3 3
2 -1 1 0
3 -1 0 1

Chapter 1: Linear Systems lin_sol_gen � 9

Pivot sequence
 1 2 3
 1 3 3

Example 3
This example computes the inverse of the 3 � 3 matrix A of the initial example and
solves the same linear system. The matrix product C = A-1A is computed and printed.
The function imsl_f_mat_mul_rect is used to compute C. The approximate result
C = I is obtained.

#include <imsl.h>

float a[] = {1.0, 3.0, 3.0,
 1.0, 3.0, 4.0,
 1.0, 4.0, 3.0};

float b[] = {1.0, 4.0, -1.0};

main()
{
 int n = 3;
 float *x;
 float *p_inva;
 float *C;
 /* Solve Ax = b */
 x = imsl_f_lin_sol_gen (n, a, b,
 IMSL_INVERSE, &p_inva,
 0);

 /* Print solution */

 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);

 /* Print input and inverse matrices */
 imsl_f_write_matrix ("Input A", n, n, a, 0);
 imsl_f_write_matrix ("Inverse of A", n, n, p_inva, 0);
 /* Check result and print */
 C = imsl_f_mat_mul_rect("A*B",
 IMSL_A_MATRIX, n, n, p_inva,
 IMSL_B_MATRIX, n, n, a,
 0);
 imsl_f_write_matrix ("Product matrix, inv(A)*A",n,n,C,0);
}

Output
Solution, x, of Ax = b
 1 2 3
 -2 -2 3

 Input A
 1 2 3
1 1 3 3
2 1 3 4

10 � lin_sol_gen IMSL C/Math/Library

3 1 4 3

 Inverse of A
 1 2 3
1 7 -3 -3
2 -1 0 1
3 -1 1 0

 Product matrix, inv(A)*A
 1 2 3
1 1 0 0
2 0 1 0
3 0 0 1

Example 4
This example computes the solution of two systems. Only the right-hand sides differ.
The matrix and first right-hand side are given in the initial example. The second right-
hand side is the vector c = [0.5, 0.3, 0.4]T. The factorization information is computed
with the first solution and is used to compute the second solution. The factorization
work done in the first step is avoided in computing the second solution.

#include <imsl.h>

main()
{
 int n = 3, pvt[3];
 float factor[9];
 float *x,*y;

 float a[] = {1.0, 3.0, 3.0,
 1.0, 3.0, 4.0,
 1.0, 4.0, 3.0};

 float b[] = {1.0, 4.0, -1.0};
 float c[] = {0.5, 0.3, 0.4};

 /* Solve A*x = b for x */
 x = imsl_f_lin_sol_gen (n, a, b,
 IMSL_FACTOR_USER, pvt, factor,
 0);

 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);

 /* Solve for A*y = c for y */
 y = imsl_f_lin_sol_gen (n, a, c,
 IMSL_SOLVE_ONLY,
 IMSL_FACTOR_USER, pvt, factor,
 0);
 imsl_f_write_matrix ("Solution, y, of Ay = c", 1, n, y, 0);

}

Output
Solution, x, of Ax = b
 1 2 3

Chapter 1: Linear Systems lin_sol_gen (complex) � 11

 -2 -2 3

Solution, y, of Ay = c
 1 2 3
 1.4 -0.1 -0.2

Warning Errors
IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of

the reciprocal of its L1 condition number is
“rcond” = #. The solution might not be accurate.

Fatal Errors
IMSL_SINGULAR_MATRIX The input matrix is singular.

lin_sol_gen (complex)
Solves a complex general system of linear equations Ax = b. Using optional arguments,
any of several related computations can be performed. These extra tasks include
computing the LU factorization of A using partial pivoting, computing the inverse
matrix A-1, solving AHx = b, or computing the solution of Ax = b given the LU
factorization of A.

Synopsis
#include <imsl.h>
f_complex *imsl_c_lin_sol_gen (int n, f_complex a[], f_complex b[], �,

0)

The type d_complex procedure is imsl_z_lin_sol_gen.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

f_complex a[] (Input)
Array of size n � n containing the matrix.

f_complex b[] (Input)
Array of length n containing the right-hand side.

Return Value
A pointer to the solution x of the linear system Ax = b. To release this space, use free.
If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

12 � lin_sol_gen (complex) IMSL C/Math/Library

f_complex *imsl_c_lin_sol_gen (int n, f_complex a[], f_complex b[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_TRANSPOSE,
IMSL_RETURN_USER, f_complex x[],
IMSL_FACTOR, int **p_pvt, f_complex **p_factor,
IMSL_FACTOR_USER, int pvt[], f_complex factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_INVERSE, f_complex **p_inva,
IMSL_INVERSE_USER, f_complex inva[],
IMSL_INV_COL_DIM, int inva_col_dim,
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

The column dimension of the array a.
Default: a_col_dim = n

IMSL_TRANSPOSE
Solve AHx = b
Default: Solve Ax = b

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, f_complex **p_factor (Output)

p_pvt: The address of a pointer to an array of length n containing the pivot
sequence for the factorization. On return, the necessary space is allocated by
imsl_c_lin_sol_gen. Typically, int *p_pvt is declared, and &p_pvt is
used as an argument.

p_factor: The address of a pointer to an array of size n � n containing the
LU factorization of A with column pivoting. On return, the necessary space is
allocated by imsl_c_lin_sol_gen. The lower-triangular part of this array
contains information necessary to construct L, and the upper-triangular part
contains U. Typically, f_complex *p_factor is declared, and &p_factor
is used as an argument.

IMSL_FACTOR_USER, int pvt[], f_complex factor[] (Input/Output)

pvt[]: A user-allocated array of size n containing the pivot sequence for the
factorization.

factor[]: A user-allocated array of size n � n containing the LU
factorization of A. The lower-triangular part of this array contains information
necessary to construct L, and the upper-triangular part contains U.

These parameters are input if IMSL_SOLVE is specified. They are output
otherwise. If A is not needed, factor and a can share the same storage.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LU factorization of A.
Default: fac_col_dim = n

IMSL_INVERSE, f_complex **p_inva (Output)
The address of a pointer to an array of size n � n containing the inverse of the
matrix A. On return, the necessary space is allocated by
imsl_c_lin_sol_gen. Typically, f_complex *p_inva is declared, and
&p_inva is used as an argument.

IMSL_INVERSE_USER, f_complex inva[] (Output)
A user-allocated array of size n � n containing the inverse of A.

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col_dim = n

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number
of the matrix A. Do not use this option with IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY
Compute the LU factorization of A with partial pivoting. If
IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER
is required. The argument b is then ignored, and the returned value of
imsl_c_lin_sol_gen is NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LU factorization previously computed by
imsl_c_lin_sol_gen. By default, the solution to Ax = b is pointed to by
imsl_c_lin_sol_gen. If IMSL_SOLVE_ONLY is used, argument
IMSL_FACTOR_USER is required and argument a is ignored.

IMSL_INVERSE_ONLY
Compute the inverse of the matrix A. If IMSL_INVERSE_ONLY is used, either
IMSL_INVERSE or IMSL_INVERSE_USER is required. Argument b is then
ignored, and the returned value of imsl_c_lin_sol_gen is NULL.

Description
The function imsl_c_lin_sol_gen solves a system of linear algebraic equations with
a complex coefficient matrix A. It first computes the LU factorization of A with partial
pivoting such that L-1A = U. The matrix U is upper-triangular, while
L-1A � PnLn-1Pn-1�L1P1A � U. The factors Pi and Li are defined by the partial
pivoting. Each Pi is an interchange of row i with row j � i. Thus, Pi is defined by that
value of j. Every

Chapter 1: Linear Systems lin_sol_gen (complex) � 13

i
T

i iL I m e� �

14 � lin_sol_gen (complex) IMSL C/Math/Library

is an elementary elimination matrix. The vector mi is zero in entries 1, �, i. This vector
is stored in the strictly lower-triangular part of column i of the working array containing
the decomposition information.

The solution of the linear system is then found by solving two simpler systems,
y = L-1b and x = U-1y. When the solution to the linear system or the inverse of the
matrix is computed, an estimate of the L1 condition number of A is computed using the
algorithm as in Dongarra et al. (1979). If the estimated condition number is greater than
1	
 (where
 is the machine precision), a warning message is issued. This indicates that
very small changes in A may produce large changes in the solution x. The function
imsl_c_lin_sol_gen fails if U, the upper-triangular part of the factorization, has a
zero diagonal element.

Examples

Example 1
This example solves a system of three linear equations. The equations are:

(1 + i) x1 + (2 + 3i) x2 + (3 � 3i) x3 = 3 + 5i

(2 + i) x1 + (5 + 3i) x2 + (7 � 5i) x3 = 22 + 10i

(�2 + i) x1 + (�4 + 4i) x2 + (5 + 3i) x3 = �10 + 4i

#include <imsl.h>

f_complex a[] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0},
 {2.0, 1.0}, {5.0, 3.0}, {7.0, -5.0},
 {-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};

f_complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};

main()
{
 int n = 3;
 f_complex *x;
 /* Solve Ax = b for x */
 x = imsl_c_lin_sol_gen (n, a, b, 0);

 /* Print x */
 imsl_c_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}

Output
 Solution, x, of Ax = b
 1 2 3
(1, -1) (2, 4) (3, -0)

Chapter 1: Linear Systems lin_sol_gen (complex) � 15

Example 2
This example solves the conjugate transpose problem AHx = b and returns the
LU factorization of A using partial pivoting. This example differs from the first example
in that the solution array is allocated in the main program.

#include <imsl.h>

f_complex a[] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0},
 {2.0, 1.0}, {5.0, 3.0}, {7.0, -5.0},
 {-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};

f_complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};

main()
{
 int n = 3, pvt[3];
 f_complex factor[9];
 f_complex x[3];
 /* Solve ctrans(A)*x = b for x */
 imsl_c_lin_sol_gen (n, a, b,
 IMSL_TRANSPOSE,
 IMSL_RETURN_USER, x,
 IMSL_FACTOR_USER, pvt, factor,
 0);
 /* Print x */
 imsl_c_write_matrix ("Solution, x, of ctrans(A)x = b", 1, n, x, 0);

 /* Print factors and pivot sequence */
 imsl_c_write_matrix ("LU factors of A", n, n, factor, 0);
 imsl_i_write_matrix ("Pivot sequence", 1, n, pvt, 0);
}

Output
 Solution, x, of ctrans(A)x = b
 1 2 3
(-9.79, 11.23) (2.96, -3.13) (1.85, 2.47)

 LU factors of A
 1 2 3
1 (-2.000, 1.000) (-4.000, 4.000) (5.000, 3.000)
2 (0.600, 0.800) (-1.200, 1.400) (2.200, 0.600)
3 (0.200, 0.600) (-1.118, 0.529) (4.824, 1.294)
Pivot sequence
 1 2 3
 3 3 3

Example 3
This example computes the inverse of the 3 � 3 matrix A in the first example and also
solves the linear system. The product matrix C = A-1A is computed as a check. The
approximate result is C = I.

#include <imsl.h>

f_complex a[] = {{1.0, 1.0}, {2.0, 3.0}, {3.0, -3.0},
 {2.0, 1.0}, {5.0, 3.0}, {7.0, -5.0},

16 � lin_sol_gen (complex) IMSL C/Math/Library

 {-2.0, 1.0}, {-4.0, 4.0}, {5.0, 3.0}};

f_complex b[] = {{3.0, 5.0}, {22.0, 10.0}, {-10.0, 4.0}};

main()
{
 int n = 3;
 f_complex *x;
 f_complex *p_inva;
 f_complex *C;

 /* Solve Ax = b for x */
 x = imsl_c_lin_sol_gen (n, a, b,
 IMSL_INVERSE, &p_inva,
 0);

 /* Print solution */
 imsl_c_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);

 /* Print input and inverse matrices */
 imsl_c_write_matrix ("Input A", n, n, a, 0);
 imsl_c_write_matrix ("Inverse of A", n, n, p_inva, 0);

 /* Check and print result */
 C = imsl_c_mat_mul_rect ("A*B",
 IMSL_A_MATRIX, n,n, p_inva,
 IMSL_B_MATRIX, n,n, a,
 0);
 imsl_c_write_matrix ("Product, inv(A)*A", n, n, C, 0);
}

Output
 Solution, x, of Ax = b
 1 2 3
(1, -1) (2, 4) (3, -0)

 Input A
 1 2 3
1 (1, 1) (2, 3) (3, -3)
2 (2, 1) (5, 3) (7, -5)
3 (-2, 1) (-4, 4) (5, 3)
 Inverse of A
 1 2 3
1 (1.330, 0.594) (-0.151, 0.028) (-0.604, 0.613)
2 (-0.632, -0.538) (0.160, 0.189) (0.142, -0.245)
3 (-0.189, 0.160) (0.193, -0.052) (0.024, 0.042)

 Product, inv(A)*A
 1 2 3
1 (1, -0) (-0, -0) (-0, 0)
2 (0, 0) (1, 0) (0, -0)
3 (-0, -0) (-0, 0) (1, 0)

Chapter 1: Linear Systems lin_sol_posdef � 17

Warning Errors
IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of

the reciprocal of the L1 condition number is “rcond” = #.
The solution might not be accurate.

Fatal Errors
IMSL_SINGULAR_MATRIX The input matrix is singular.

lin_sol_posdef
Solves a real symmetric positive definite system of linear equations Ax = b. Using
optional arguments, any of several related computations can be performed. These extra
tasks include computing the Cholesky factor, L, of A such that A = LLT, computing the
inverse matrix A-1, or computing the solution of Ax = b given the Cholesky factor, L.

Synopsis
#include <imsl.h>
float *imsl_f_lin_sol_posdef (int n, float a[], float b[], �, 0)

The type double procedure is imsl_d_lin_sol_posdef.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

float a[] (Input)
Array of size n � n containing the matrix.

float b[] (Input)
Array of size n containing the right-hand side.

Return Value
A pointer to the solution x of the symmetric positive definite linear system Ax = b.
To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_sol_posdef (int n, float a[], float b[],

IMSL_A_COL_DIM, int a_col_dim,
IMSL_RETURN_USER, float x[],
IMSL_FACTOR, float **p_factor,
IMSL_FACTOR_USER, float factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_INVERSE, float **p_inva,

18 � lin_sol_posdef IMSL C/Math/Library

IMSL_INVERSE_USER, float inva[],
IMSL_INV_COL_DIM, int inv_col_dim,
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

The column dimension of the array a.
Default: a_col_dim = n

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, float **p_factor (Output)
The address of a pointer to an array of size n � n containing the
LLT factorization of A. On return, the necessary space is allocated by
imsl_f_lin_sol_posdef. The lower-triangular part of this array contains
L and the upper-triangular part contains LT. Typically, float *p_factor is
declared, and &p_factor is used as an argument.

IMSL_FACTOR_USER, float factor[] (Input/Output)
A user-allocated array of size n � n containing the LLT factorization of A.
The lower-triangular part of this array contains L, and the upper-triangular part
contains LT. If A is not needed, a and factor can share the same storage.
If IMSL_SOLVE is specified, it is input; otherwise, it is output.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LLT factorization of A.
Default: fac_col_dim = n

IMSL_INVERSE, float **p_inva (Output)
The address of a pointer to an array of size n � n containing the inverse of the
matrix A. On return, the necessary space is allocated by
imsl_f_lin_sol_posdef. Typically, float *p_inva is declared, and
&p_inva is used as an argument.

IMSL_INVERSE_USER, float inva[] (Output)
A user-allocated array of size n � n containing the inverse of A.

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col_dim = n

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number
of the matrix A. Do not use this option with IMSL_SOLVE_ONLY.

Chapter 1: Linear Systems lin_sol_posdef � 19

IMSL_FACTOR_ONLY
Compute the Cholesky factorization LLT of A. If IMSL_FACTOR_ONLY is
used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument
b is then ignored, and the returned value of imsl_f_lin_sol_posdef is
NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LLT factorization previously computed by
imsl_f_lin_sol_posdef. By default, the solution to Ax = b is pointed to
by imsl_f_lin_sol_posdef. If IMSL_SOLVE_ONLY is used, argument
IMSL_FACTOR_USER is required and the argument a is ignored.

IMSL_INVERSE_ONLY
Compute the inverse of the matrix A. If IMSL_INVERSE_ONLY is used, either
IMSL_INVERSE or IMSL_INVERSE_USER is required. The argument b is then
ignored, and the returned value of imsl_f_lin_sol_posdef is NULL.

Description
The function imsl_f_lin_sol_posdef solves a system of linear algebraic equations
having a symmetric positive definite coefficient matrix A. The function first computes
the Cholesky factorization LLT of A. The solution of the linear system is then found by
solving the two simpler systems, y = L-1b and x = L-Ty. When the solution to the linear
system or the inverse of the matrix is sought, an estimate of the L1 condition number of
A is computed using the same algorithm as in Dongarra et al. (1979). If the estimated
condition number is greater than 1/
 (where
 is the machine precision), a warning
message is issued. This indicates that very small changes in A may produce large
changes in the solution x.

The function imsl_f_lin_sol_posdef fails if L, the lower-triangular matrix in the
factorization, has a zero diagonal element.

Examples

Example 1
A system of three linear equations with a symmetric positive definite coefficient matrix
is solved in this example. The equations are listed below:

x1 � 3x2 + 2x3 = 27

�3x1 + 10x2 � 5x3 = �78

2x1 � 5x2 + 6x3 = 64

#include <imsl.h>

main()
{

20 � lin_sol_posdef IMSL C/Math/Library

 int n = 3;
 float *x;
 float a[] = {1.0, -3.0, 2.0,
 -3.0, 10.0, -5.0,
 2.0, -5.0, 6.0};
 float b[] = {27.0, -78.0, 64.0};

 /* Solve Ax = b for x */
 x = imsl_f_lin_sol_posdef (n, a, b, 0);

 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}

Output
Solution, x, of Ax = b
 1 2 3
 1 -4 7

Example 2
This example solves the same system of three linear equations as in the initial example,
but this time returns the LLT factorization of A. The solution x is returned in an array
allocated in the main program.

#include <imsl.h>

main()
{
 int n = 3;
 float x[3], *p_factor;
 float a[] = {1.0, -3.0, 2.0,
 -3.0, 10.0, -5.0,
 2.0, -5.0, 6.0};
 float b[] = {27.0, -78.0, 64.0};

 /* Solve Ax = b for x */
 imsl_f_lin_sol_posdef (n, a, b,
 IMSL_RETURN_USER, x,
 IMSL_FACTOR, &p_factor,
 0);

 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);

 /* Print Cholesky factor of A */
 imsl_f_write_matrix ("Cholesky factor L, and trans(L), of A",
 n, n, p_factor, 0);
}

Output
Solution, x, of Ax = b
1 2 3
1 -4 7

Cholesky factor L, and trans(L), of A

Chapter 1: Linear Systems lin_sol_posdef � 21

 1 2 3
1 1 -3 2
2 -3 1 1
3 2 1 1

Example 3
This example solves the same system as in the initial example, but given the Cholesky
factors of A.

#include <imsl.h>

main()
{
 int n = 3;
 float *x, *a;
 float factor[] = {1.0, -3.0, 2.0,
 -3.0, 1.0, 1.0,
 2.0, 1.0, 1.0};
 float b[] = {27.0, -78.0, 64.0};

 /* Solve Ax = b for x */
 x = imsl_f_lin_sol_posdef (n, a, b,
 IMSL_FACTOR_USER, factor,
 IMSL_SOLVE_ONLY,
 0);

 /* Print x */
 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}

Output
Solution, x, of Ax = b
1 2 3
1 -4 7

Warning Errors
IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of

the reciprocal of its L1 condition number is
“rcond” = #. The solution might not be accurate.

Fatal Errors
IMSL_NONPOSITIVE_MATRIX The leading # by # submatrix of the input matrix is

not positive definite.

IMSL_SINGULAR_MATRIX The input matrix is singular.

IMSL_SINGULAR_TRI_MATRIX The input triangular matrix is singular. The index of
the first zero diagonal element is #.

22 � lin_sol_posdef (complex) IMSL C/Math/Library

lin_sol_posdef (complex)
Solves a complex Hermitian positive definite system of linear equations Ax = b. Using
optional arguments, any of several related computations can be performed. These extra
tasks include computing the Cholesky factor, L, of A such that A = LLH or computing
the solution to Ax = b given the Cholesky factor, L.

Synopsis
#include <imsl.h>
f_complex *imsl_c_lin_sol_posdef (int n, f_complex a[], f_complex b[],

�, 0)

The type d_complex procedure is imsl_z_lin_sol_posdef.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

f_complex a[] (Input)
Array of size n � n containing the matrix.

f_complex b[] (Input)
Array of size n containing the right-hand side.

Return Value
A pointer to the solution x of the Hermitian positive definite linear system Ax = b. To
release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_lin_sol_posdef (int n, f_complex a[], f_complex b[],

IMSL_A_COL_DIM, int a_col_dim,
IMSL_RETURN_USER, f_complex x[],
IMSL_FACTOR, f_complex **p_factor,
IMSL_FACTOR_USER, f_complex factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

The column dimension of the array a.
Default: a_col_dim = n

Chapter 1: Linear Systems lin_sol_posdef (complex) � 23

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of size n containing the solution x.

IMSL_FACTOR, f_complex **p_factor (Output)
The address of a pointer to an array of size n � n containing the
LLH factorization of A. On return, the necessary space is allocated by
imsl_c_lin_sol_posdef. The lower- triangular part of this array contains
L, and the upper-triangular part contains LH. Typically, f_complex
*p_factor is declared, and &p_factor is used as an argument.

IMSL_FACTOR_USER, f_complex factor[] (Input/Output)
A user-allocated array of size n � n containing the LLH factorization of A.
The lower- triangular part of this array contains L, and the upper-triangular
part contains LH. If A is not needed, a and factor can share the same
storage. If IMSL_SOLVE is specified, Factor is input. Otherwise, it is output.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LLH factorization
of A.
Default: fac_col_dim = n

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number
of the matrix A. Do not use this option with IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY
Compute the Cholesky factorization LLH of A. If IMSL_FACTOR_ONLY is
used, either IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument
b is then ignored, and the returned value of imsl_c_lin_sol_posdef is
NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LLH factorization previously computed by
imsl_c_lin_sol_posdef. By default, the solution to Ax = b is pointed to
by imsl_c_lin_sol_posdef. If IMSL_SOLVE_ONLY is used, argument
IMSL_FACTOR_USER is required and argument a is ignored.

Description
The function imsl_c_lin_sol_posdef solves a system of linear algebraic equations
having a Hermitian positive definite coefficient matrix A. The function first computes
the LLH factorization of A. The solution of the linear system is then found by solving
the two simpler systems, y = L-1b and x = L-Hy. When the solution to the linear system
is required, an estimate of the L1 condition number of A is computed using the
algorithm in Dongarra et al. (1979). If the estimated condition number is greater than
1	
 (where
 is the machine precision), a warning message is issued. This indicates that
very small changes in A may produce large changes in the solution x. The function
imsl_c_lin_sol_posdef fails if L, the lower-triangular matrix in the factorization,
has a zero diagonal element.

24 � lin_sol_posdef (complex) IMSL C/Math/Library

Examples

Example 1
A system of five linear equations with a Hermitian positive definite coefficient matrix is
solved in this example. The equations are as follows:

2x1 +(�1 + i)x2 = 1 +5i

(�1 � i)x1 +4x2 + (1 + 2i)x3 = 12 � 6i

(1 � 2i)x2 +10x3 + 4ix4 = 1 � 16i

�4ix3 + 6x4 + (1 + i)x5 = �3 � 3i

(1 � i)x4 + 9x5 = 25 + 16i
#include <imsl.h>

main()
{
 int n = 5;
 f_complex *x;
 f_complex a[] = {
 {2.0,0.0}, {-1.0,1.0},{0.0,0.0}, {0.0,0.0}, {0.0,0.0},
 {-1.0,-1.0},{4.0,0.0}, {1.0,2.0}, {0.0,0.0}, {0.0,0.0},
 {0.0,0.0}, {1.0,-2.0},{10.0,0.0},{0.0,4.0}, {0.0,0.0},
 {0.0,0.0}, {0.0,0.0}, {0.0,-4.0},{6.0,0.0}, {1.0,1.0},
 {0.0,0.0}, {0.0,0.0}, {0.0,0.0}, {1.0,-1.0},{9.0,0.0}
 };

 f_complex b[] = {
 {1.0,5.0}, {12.0,-6.0}, {1.0,-16.0}, {-3.0,-3.0}, {25.0,16.0}
 };
 /* Solve Ax = b for x */
 x = imsl_c_lin_sol_posdef(n, a, b, 0);

 /* Print x */
 imsl_c_write_matrix("Solution, x, of Ax = b", 1, n, x, 0);
}

Output
 Solution, x, of Ax = b
 1 2 3
(2, 1) (3, -0) (-1, -1)

 4 5
(0, -2) (3, 2)

Example 2
This example solves the same system of five linear equations as in the first example.
This time, the LLH factorization of A and the solution x is returned in an array allocated
in the main program.

#include <imsl.h>

main()

Chapter 1: Linear Systems lin_sol_posdef (complex) � 25

{
 int n = 5;
 f_complex x[5], *p_factor;
 f_complex a[] = {
 {2.0,0.0}, {-1.0,1.0},{0.0,0.0}, {0.0,0.0}, {0.0,0.0},
 {-1.0,-1.0},{4.0,0.0}, {1.0,2.0}, {0.0,0.0}, {0.0,0.0},
 {0.0,0.0}, {1.0,-2.0},{10.0,0.0},{0.0,4.0}, {0.0,0.0},
 {0.0,0.0}, {0.0,0.0}, {0.0,-4.0},{6.0,0.0}, {1.0,1.0},
 {0.0,0.0}, {0.0,0.0}, {0.0,0.0}, {1.0,-1.0},{9.0,0.0}
 };
 f_complex b[] = {
 {1.0,5.0}, {12.0,-6.0}, {1.0,-16.0}, {-3.0,-3.0}, {25.0,16.0}
 };
 /* Solve Ax = b for x */
 imsl_c_lin_sol_posdef(n, a, b,
 IMSL_RETURN_USER, x,
 IMSL_FACTOR, &p_factor,
 0);

 /* Print x */
 imsl_c_write_matrix("Solution, x, of Ax = b", 1, n, x, 0);

 /* Print Cholesky factor of A */
 imsl_c_write_matrix("Cholesky factor L, and ctrans(L), of A",
 n, n, p_factor, 0);
}

Output
 Solution, x, of Ax = b
 1 2 3
(2, 1) (3, -0) (-1, -1)

 4 5
(0, -2) (3, 2)

 Cholesky factor L, and ctrans(L), of A
 1 2 3
1 (1.414, 0.000) (-0.707, 0.707) (0.000, -0.000)
2 (-0.707, -0.707) (1.732, 0.000) (0.577, 1.155)
3 (0.000, 0.000) (0.577, -1.155) (2.887, 0.000)
4 (0.000, 0.000) (0.000, 0.000) (0.000, -1.386)
5 (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)

 4 5
1 (0.000, -0.000) (0.000, -0.000)
2 (0.000, -0.000) (0.000, -0.000)
3 (0.000, 1.386) (0.000, -0.000)
4 (2.020, 0.000) (0.495, 0.495)
5 (0.495, -0.495) (2.917, 0.000)

26 � lin_sol_gen_band IMSL C/Math/Library

Warning Errors
IMSL_HERMITIAN_DIAG_REAL_1 The diagonal of a Hermitian matrix must be real.

Its imaginary part is set to zero.

IMSL_HERMITIAN_DIAG_REAL_2 The diagonal of a Hermitian matrix must be real.
The imaginary part will be used as zero in the
algorithm.

IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An
estimate of the reciprocal of its L1condition
number is “rcond” = #. The solution might not
be accurate.

Fatal Errors
IMSL_NONPOSITIVE_MATRIX The leading # by # minor matrix of the input

matrix is not positive definite.

IMSL_HERMITIAN_DIAG_REAL During the factorization the matrix has a large
imaginary component on the diagonal. Thus, it
cannot be positive definite.

IMSL_SINGULAR_TRI_MATRIX The triangular matrix is singular. The index of
the first zero diagonal term is #.

lin_sol_gen_band
Solves a real general band system of linear equations, Ax = b. Using optional arguments,
any of several related computations can be performed. These extra tasks include computing
the LU factorization of A using partial pivoting, solving ATx = b, or computing the solution
of Ax = b given the LU factorization of A.

Synopsis
#include <imsl.h>

float *imsl_f_lin_sol_gen_band (int n, float a[], int nlca, int nuca, float
b[], …, 0)

The type double procedure is imsl_d_lin_sol_gen_band.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

float a[] (Input)
Array of size (nlca + nuca + 1) containing the n � n banded coefficient matrix
in band storage mode.

Chapter 1: Linear Systems lin_sol_gen_band � 27

int nlca (Input)
Number of lower codiagonals in a.

int nuca (Input)
Number of upper codiagonals in a.

float b[] (Input)
Array of size n containing the right-hand side.

Return Value
A pointer to the solution x of the linear system Ax = b. To release this space use free.
If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_lin_sol_gen_band (int n, float a[], int nlca,
int nuca, float b[],
IMSL_TRANSPOSE,
IMSL_RETURN_USER, float x[],
IMSL_FACTOR, int **p_pvt, float **p_factor,
IMSL_FACTOR_USER, int pvt[], float factor[],
IMSL_CONDITION, float *condition,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_BLOCKING_FACTOR, int block_factor,
0)

Optional Arguments
IMSL_TRANSPOSE

Solve ATx = b.
Default: Solve Ax = b.

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, float **p_factor (Output)
p_pvt: The address of a pointer to an array of length n containing the pivot
sequence for the factorization. On return, the necessary space is allocated by
imsl_f_lin_sol_gen_band. Typically, int *p_pvt is declared and
&p_pvt is used as an argument.
p_factor: The address of a pointer to an array of size
(2nlca + nuca + 1) � n containing the LU factorization of A with column
pivoting. On return, the necessary space is allocated by
imsl_f_lin_sol_gen_band. Typically, float *p_factor is declared and
&p_factor is used as an argument.

IMSL_FACTOR_USER, int pvt[], float factor[] (Input/Output)

28 � lin_sol_gen_band IMSL C/Math/Library

pvt[]: A user-allocated array of size n containing the pivot sequence for the
factorization.
factor[]: A user-allocated array of size (2nlca + nuca + 1) � n containing
the LU factorization of A. The strictly lower triangular part of this array
contains information necessary to construct L, and the upper triangular part
contains U. If A is not needed, factor and a can share the first
(nlca + nuca + 1) � n locations.
These parameters are “Input” if IMSL_SOLVE_ONLY is specified. They are
“Output” otherwise.

IMSL_CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number
of the matrix A. This option cannot be used with the option
IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY
Compute the LU factorization of A with partial pivoting. If
IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER
is required. The argument b is then ignored, and the returned value of
imsl_f_lin_sol_gen_band is NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LU factorization previously computed by
imsl_f_lin_sol_gen_band. By default, the solution to Ax = b is pointed to
by imsl_f_lin_sol_gen_band. If IMSL_SOLVE_ONLY is used, argument
IMSL_FACTOR_USER is required and the argument a is ignored.

IMSL_BLOCKING_FACTOR, int block_factor (Input)
The blocking factor. block_factor must be set no larger than 32.
Default: block_factor = 1

Description
The function imsl_f_lin_sol_gen_band solves a system of linear algebraic
equations with a real band matrix A. It first computes the LU factorization of A based
on the blocked LU factorization algorithm given in Du Croz et al. (1990). Level-3
BLAS invocations are replaced with inline loops. The blocking factor block_factor
has the default value of 1, but can be reset to any positive value not exceeding 32.

The solution of the linear system is then found by solving two simpler systems,
y = L-1b and x = U-1y. When the solution to the linear system or the inverse of the
matrix is sought, an estimate of the L1 condition number of A is computed using
Higham’s modifications to Hager’s method, as given in Higham (1988). If the
estimated condition number is greater than 1/
 (where
 is the machine precision), a
warning message is issued. This indicates that very small changes in A may produce
large changes in the solution x. The function imsl_f_lin_sol_gen_band fails if
U, the upper triangular part of the factorization, has a zero diagonal element.

Chapter 1: Linear Systems lin_sol_gen_band � 29

Examples

Example 1
This example demonstrates the simplest use of this function by solving a system of four
linear equations. This is the simplest usage of the function. The equations are as
follows:

2x1 � x2 = 3

�3x1 + x2 � 2x3 = 1

�x3 + 2x4 = 11

2x3 + x4 = �2

#include <imsl.h>

void main ()
{
 int n = 4;
 int nuca = 1;
 int nlca = 1;
 float *x;

 /* Note that a is in band storage mode */

 float a[] = {0.0, -1.0, -2.0, 2.0,
 2.0, 1.0, -1.0, 1.0,
 -3.0, 0.0, 2.0, 0.0};
 float b[] = {3.0, 1.0, 11.0, -2.0};

 x = imsl_f_lin_sol_gen_band (n, a, nlca, nuca, b, 0);

 imsl_f_write_matrix ("Solution x, of Ax = b", 1, n, x, 0);
}

Output
 Solution x, of Ax = b
 1 2 3 4
 2 1 -3 4

Example 2
In this example, the problem Ax = b is solved using the data from the first example.
This time, the factorizations are returned and the problem ATx = b is solved without
recomputing LU.

#include <imsl.h>

void main ()
{

30 � lin_sol_gen_band IMSL C/Math/Library

 int n = 4;
 int nuca = 1;
 int nlca = 1;
 int *pivot;
 float x[4];
 float *factor;

 /* Note that a is in band storage mode */

 float a[] = {0.0, -1.0, -2.0, 2.0,
 2.0, 1.0, -1.0, 1.0,
 -3.0, 0.0, 2.0, 0.0};
 float b[] = {3.0, 1.0, 11.0, -2.0};

 /* Solve Ax = b and return LU */

 imsl_f_lin_sol_gen_band (n, a, nlca, nuca, b,
 IMSL_FACTOR, &pivot, &factor,
 IMSL_RETURN_USER, x,
 0);

 imsl_f_write_matrix ("Solution of Ax = b", 1, n, x, 0);

 /* Use precomputed LU to solve trans(A)x = b */
 /* The original matrix A is not needed */

 imsl_f_lin_sol_gen_band (n, (float*) 0, nlca, nuca, b,
 IMSL_FACTOR_USER, pivot, factor,
 IMSL_SOLVE_ONLY,
 IMSL_TRANSPOSE,
 IMSL_RETURN_USER, x,
 0);

 imsl_f_write_matrix ("Solution of trans(A)x = b", 1, n, x, 0);
}

Output
 Solution of Ax = b
 1 2 3 4
 2 1 -3 4

 Solution of trans(A)x = b
 1 2 3 4
 -6 -5 -1 -0

Warning Errors
IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of

the reciprocal of its L1 condition number is
"rcond" = #. The solution might not be accurate.

Fatal Errors
IMSL_SINGULAR_MATRIX The input matrix is singular.

Chapter 1: Linear Systems lin_sol_gen_band (complex) � 31

lin_sol_gen_band (complex)
Solves a complex general band system of linear equations Ax = b. Using optional
arguments, any of several related computations can be performed. These extra tasks
include computing the LU factorization of A using partial pivoting, solving AHx = b,
or computing the solution of Ax = b given the LU factorization of A.

Synopsis
#include <imsl.h>
f_complex *imsl_c_lin_sol_gen_band (int n, f_complex a[], int nlca,

int nuca, f_complex b[], �, 0)

The type double procedure is imsl_z_lin_sol_gen_band.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

f_complex a[] (Input)
Array of size (nlca + nuca + 1) � n containing the n � n banded coefficient
matrix in band storage mode.

int nlca (Input)
Number of lower codiagonals in a.

int nuca (Input)
Number of upper codiagonals in a.

f_complex b[] (Input)
Array of size n containing the right-hand side.

Return Value
A pointer to the solution x of the linear system Ax = b. To release this space use free.
If no solution was computed, NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_lin_sol_gen_band (int n, f_complex a[],

int nlca, int nuca, f_complex b[],
IMSL_TRANSPOSE,
IMSL_RETURN_USER, f_complex x[],
IMSL_FACTOR, int **p_pvt, f_complex **p_factor,
IMSL_FACTOR_USER, int pvt[], f_complex factor[],
IMSL_CONDITION, float *condition,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

32 � lin_sol_gen_band (complex) IMSL C/Math/Library

Optional Arguments
IMSL_TRANSPOSE

Solve AHx = b
Default: Solve Ax = b.

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_FACTOR, int **p_pvt, f_complex **p_factor (Output)
p_pvt: The address of a pointer to an array of length n containing the pivot
sequence for the factorization. On return, the necessary space is allocated by
imsl_c_lin_sol_gen_band. Typically, int *p_pvt is declared and
&p_pvt is used as an argument.
p_factor: The address of a pointer to an array of size
(2nlca + nuca + 1) � n containing the LU factorization of A with column
pivoting. On return, the necessary space is allocated by
imsl_c_lin_sol_gen_band. Typically, f_complex *p_factor is declared
and &p_factor is used as an argument.

IMSL_FACTOR_USER, int pvt[], f_complex factor[] (Input/Output)
pvt[]: A user-allocated array of size n containing the pivot sequence for the
factorization.
factor[]: A user-allocated array of size (2nlca + nuca + 1) � n containing
the LU factorization of A. If A is not needed, factor and a can share the first
(nlca + nuca + 1) � n locations.
These parameters are “Input” if IMSL_SOLVE_ONLY is specified. They are
“Output” otherwise.

IMSL_CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number
of the matrix A. This option cannot be used with the option
IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY
Compute the LU factorization of A with partial pivoting. If
IMSL_FACTOR_ONLY is used, either IMSL_FACTOR or IMSL_FACTOR_USER
is required. The argument b is then ignored, and the returned value of
imsl_c_lin_sol_gen_band is NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LU factorization previously computed by
imsl_c_lin_sol_gen_band. By default, the solution to Ax = b is pointed to
by imsl_c_lin_sol_gen_band. If IMSL_SOLVE_ONLY is used, argument
IMSL_FACTOR_USER is required and argument a is ignored.

Description
The function imsl_c_lin_sol_gen_band solves a system of linear algebraic
equations with a complex band matrix A. It first computes the LU factorization of A

using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting in that
the pivoting strategy is the same as if each row were scaled to have the same L¥ norm.
The factorization fails if U has a zero diagonal element. This can occur only if
A is singular or very close to a singular matrix.

The solution of the linear system is then found by solving two simpler systems,
y = L-1b and x = U-1y. When the solution to the linear system or the inverse of the matrix
is sought, an estimate of the L1 condition number of A is computed using Higham’s
modifications to Hager’s method, as given in Higham (1988). If the estimated condition
number is greater than 1/
 (where
 is the machine precision), a warning message is
issued. This indicates that very small changes in A may produce large changes in the
solution x. The function imsl_c_lin_sol_gen_band fails if U, the upper triangular
part of the factorization, has a zero diagonal element. The function
imsl_c_lin_sol_gen_band is based on the LINPACK subroutine CGBFA; see
Dongarra et al. (1979). CGBFA uses unscaled partial pivoting.

Examples

Example 1
The following linear system is solved:

Chapter 1: Linear Systems lin_sol_gen_band (complex) � 33

i
i

� �
� �
� �
� �
� �
� �� 	

0

1

2

3

2 3 4 0 0 10 5
6 0.5 3 2 2 0 9.5 5.5

0 1 3 3 4 1 12 12
0 0 2 1 8

xi i
xi i i
xi i
xi i i

� � � �� �� �
� �� �� � � � � �� �� � �
� �� �� � � � �
� �� �

�� � � �� 	 � 	

#include <imsl.h>

void main()
{
 int n = 4;
 int nlca = 1;
 int nuca = 1;
 f_complex *x;

 /* Note that a is in band storage mode */

 f_complex a[] =
 {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
 {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
 {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};

 f_complex b[] =
 {{-10.0, -5.0}, {9.5, 5.5}, {12.0, -12.0}, {0.0, 8.0}};

 x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b, 0);

 imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0);

34 � lin_sol_gen_band (complex) IMSL C/Math/Library

Output
 Solution, x, of Ax = b
1 (3, -0)
2 (-1, 1)
3 (3, 0)
4 (-1, 1)

Example 2
This example solves the problem Ax = b using the data from the first example. This
time, the factorizations are returned and then the problem AHx = b is solved without
recomputing LU.

#include <imsl.h>

#include <stdlib.h>
void main()
{
 int n = 4;
 int nlca = 1;
 int nuca = 1;
 int *pivot;
 f_complex *x;
 f_complex *factor;

 /* Note that a is in band storage mode */

 f_complex a[] =
 {{0.0, 0.0}, {4.0, 0.0}, {-2.0, 2.0}, {-4.0, -1.0},
 {-2.0, -3.0}, {-0.5, 3.0}, {3.0, -3.0}, {1.0, -1.0},
 {6.0, 1.0}, {1.0, 1.0}, {0.0, 2.0}, {0.0, 0.0}};
 f_complex b[] =
 {{-10.0, -5.0}, {9.5, 5.5}, {12.0, -12.0}, {0.0, 8.0}};

 /* Solve Ax = b and return LU */

 x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b,
 IMSL_FACTOR, &pivot, &factor,
 0);

 imsl_c_write_matrix ("solution of Ax = b", n, 1, x, 0);
 free (x);

 /* Use precomputed LU to solve ctrans(A)x = b */

 x = imsl_c_lin_sol_gen_band (n, a, nlca, nuca, b,
 IMSL_FACTOR_USER, pivot, factor,
 IMSL_TRANSPOSE,
 0);

 imsl_c_write_matrix ("solution of ctrans(A)x = b", n, 1, x, 0);
}

Chapter 1: Linear Systems lin_sol_posdef_band � 35

Output
 solution of Ax = b
1 (3, -0)
2 (-1, 1)
3 (3, 0)
4 (-1, 1)

solution of ctrans(A)x = b
1 (5.58, -2.91)
2 (-0.48, -4.67)
3 (-6.19, 7.15)
4 (12.60, 30.20)

Warning Errors
IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of

the reciprocal of its L1 condition number is
“rcond” = #. The solution might not be accurate.

Fatal Errors
IMSL_SINGULAR_MATRIX The input matrix is singular.

lin_sol_posdef_band
Solves a real symmetric positive definite system of linear equations Ax = b in band
symmetric storage mode. Using optional arguments, any of several related computations
can be performed. These extra tasks include computing the RTR Cholesky factorization
of A, computing the solution of Ax = b given the Cholesky factorization of A, or
estimating the L1 condition number of A.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_posdef_band (int n, float a[], int ncoda, float b[],
…, 0)

The type double procedure is imsl_d_lin_sol_posdef_band.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

float a[] (Input)
Array of size (ncoda + 1) � n containing the n � n positive definite band
coefficient matrix in band symmetric storage mode.

int ncoda (Input)
Number of upper codiagonals of the matrix.

36 � lin_sol_posdef_band IMSL C/Math/Library

float b[] (Input)
Array of size n containing the right-hand side.

Return Value
A pointer to the solution x of the linear system Ax = b. To release this space use free.
If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_lin_sol_posdef_band (int n, float a[], int ncoda, float b[],
IMSL_RETURN_USER, float x[],
IMSL_FACTOR, float **p_factor,
IMSL_FACTOR_USER, float factor[],
IMSL_CONDITION, float *cond,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

Optional Arguments
IMSL_RETURN_USER, float x[] (Output)

A user-allocated array of length n containing the solution x.

IMSL_FACTOR, float **p_factor (Output)
The address of a pointer to an array of size (ncoda + 1) � n containing the
LLT factorization of A. On return, the necessary space is allocated by
imsl_f_lin_sol_posdef_band. Typically, float *p_factor is declared
and &p_factor is used as an argument.

IMSL_FACTOR_USER, float factor[] (Input/Output)
A user-allocated array of size (ncoda + 1) � n containing the LLT factorization
of A in band symmetric form. If A is not needed, factor and a can share the
same storage.
These parameters are “Input” if IMSL_SOLVE is specified. They are “Output”
otherwise.

IMSL_CONDITION, float *cond (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number
of the matrix A. This option cannot be used with the option
IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY
Compute the LLT factorization of A. If IMSL_FACTOR_ONLY is used, either
IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then
ignored, and the returned value of imsl_f_lin_sol_posdef_band is NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the LLT factorization previously computed by

imsl_f_lin_sol_posdef_band. By default, the solution to Ax = b is
pointed to by imsl_f_lin_sol_posdef_band. If IMSL_SOLVE_ONLY is
used, argument IMSL_FACTOR_USER is required and the argument a is
ignored.

Description
The function imsl_f_lin_sol_posdef_band solves a system of linear algebraic
equations with a real symmetric positive definite band coefficient matrix A. It computes
the RTR Cholesky factorization of A. R is an upper triangular band matrix.

When the solution to the linear system or the inverse of the matrix is sought, an
estimate of the L1 condition number of A is computed using Higham’s modifications to
Hager’s method, as given in Higham (1988). If the estimated condition number is
greater than 1/
 (where
 is the machine precision), a warning message is issued. This
indicates that very small changes in A may produce large changes in the solution x.

The function imsl_f_lin_sol_posdef_band fails if any submatrix of R is not
positive definite or if R has a zero diagonal element. These errors occur only if A is
very close to a singular matrix or to a matrix which is not positive definite.

The function imsl_f_lin_sol_posdef_band is partially based on the LINPACK
subroutines CPBFA and SPBSL; see Dongarra et al. (1979).

Example 1
Solves a system of linear equations Ax = b, where

2 0 1 0 6
0 4 2 1 11
1 2 7 1 11

0 1 1 3 19

A b

�� � � �
� � �� �
� � �� � �
� � �� � ��
� � �

�
�

� � � �� � � �

#include <imsl.h>

void main()
{
 int n = 4;
 int ncoda = 2;
 float *x;

 /* Note that a is in band storage mode */

 float a[] = {0.0, 0.0, -1.0, 1.0,
 0.0, 0.0, 2.0, -1.0,
 2.0, 4.0, 7.0, 3.0};
 float b[] = {6.0, -11.0, -11.0, 19.0};

 x = imsl_f_lin_sol_posdef_band (n, a, ncoda, b, 0);

 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);
}

Chapter 1: Linear Systems lin_sol_posdef_band � 37

38 � lin_sol_posdef_band IMSL C/Math/Library

Output
 Solution, x, of Ax = b
 1 2 3 4
 4 -6 2 9

Example 2
This example solves the same problem Ax = b given in the first example. The solution
is returned in user-allocated space and an estimate of �1(A) is computed. Additionally,
the RTR factorization is returned. Then, knowing that �1(A) = ||A|| ||A-1||, the condition
number is computed directly and compared to the estimate from Higham’s method.

#include <imsl.h>

void main()
{
 int n = 4;
 int ncoda = 2;
 float a[] = {0.0, 0.0, -1.0, 1.0,
 0.0, 0.0, 2.0, -1.0,
 2.0, 4.0, 7.0, 3.0};
 float b[] = {6.0, -11.0, -11.0, 19.0};
 float x[4];
 float e_i[4];
 float *factor;
 float condition;
 float column_norm;
 float inverse_norm;
 int i;
 int j;

 imsl_f_lin_sol_posdef_band (n, a, ncoda, b,
 IMSL_FACTOR, &factor,
 IMSL_CONDITION, &condition,
 IMSL_RETURN_USER, x,
 0);

 imsl_f_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);

 /* find one norm of inverse */

 inverse_norm = 0.0;
 for (i=0; i<n; i++) {
 for (j=0; j<n; j++) e_i[j] = 0.0;
 e_i[i] = 1.0;

 /* determine one norm of each column of inverse */

 imsl_f_lin_sol_posdef_band (n, a, ncoda, e_i,
 IMSL_FACTOR_USER, factor,
 IMSL_SOLVE_ONLY,
 IMSL_RETURN_USER, x,
 0);
 column_norm = imsl_f_vector_norm (n, x,
 IMSL_ONE_NORM,

Chapter 1: Linear Systems lin_sol_posdef_band (complex) � 39

 0);

 /* the max of the column norms is the norm of
 inv(A) */

 if (inverse_norm < column_norm)
 inverse_norm = column_norm;
 }

 /* by observation, one norm of A is 11 */

 printf ("\nHigham’s condition estimate = %f\n", condition);
 printf ("Direct condition estimate = %f\n",
 11.0*inverse_norm);
}

Output
 Solution, x, of Ax = b
 1 2 3 4
 4 -6 2 9

Higham’s condition estimate = 8.650485
Direct condition estimate = 8.650485

Warning Errors
IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of

the reciprocal of its L1 condition number is
"rcond" = #. The solution might not be accurate.

Fatal Errors
IMSL_NONPOSITIVE_MATRIX The leading # by # submatrix of the input matrix is

not positive definite.

IMSL_SINGULAR_MATRIX The input matrix is singular.

lin_sol_posdef_band (complex)
Solves a complex Hermitian positive definite system of linear equations
Ax = b in band symmetric storage mode. Using optional arguments, any of several
related computations can be performed. These extra tasks include computing the
RHR Cholesky factorization of A, computing the solution of Ax = b given the
Cholesky factorization of A, or estimating the L1 condition number of A.

Synopsis

#include <imsl.h>

f_complex *imsl_c_lin_sol_posdef_band (int n, f_complex a[], int ncoda,
f_complex b[], …, 0)

The type double procedure is imsl_z_lin_sol_posdef_band.

40 � lin_sol_posdef_band (complex) IMSL C/Math/Library

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

f_complex a[] (Input)
Array of size (ncoda + 1) � n containing the n � n positive definite band
coefficient matrix in band symmetric storage mode.

int ncoda (Input)
Number of upper codiagonals of the matrix.

f_complex b[] (Input)
Array of size n containing the right-hand side.

Return Value
A pointer to the solution x of the linear system Ax = b. To release this space use free.
If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

f_complex *imsl_c_lin_sol_posdef_band (int n, f_complex a[], int ncoda,
f_complex b[],
IMSL_RETURN_USER, f_complex x[],
IMSL_FACTOR, f_complex **p_factor,
IMSL_FACTOR_USER, f_complex factor[],
IMSL_CONDITION, float *condition,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

Optional Arguments
IMSL_RETURN_USER, f_complex x[] (Output)

A user-allocated array of length n containing the solution x.

IMSL_FACTOR, f_complex **p_factor (Output)
The address of a pointer to an array of size (ncoda + 1) � n containing the
RHR factorization of A. On return, the necessary space is allocated by
imsl_c_lin_sol_posdef_band. Typically, f_complex *p_factor is
declared and &p_factor is used as an argument.

IMSL_FACTOR_USER, f_complex factor[] (Input/Output)
A user-allocated array of size (ncoda + 1) � n containing the RHR
factorization of A in band symmetric form. If A is not needed, factor and a
can share the same storage.
These parameters are “Input” if IMSL_SOLVE is specified. They are “Output”
otherwise.

IMSL_CONDITION, float *condition (Output)
A pointer to a scalar containing an estimate of the L1 norm condition number
of the matrix A. This option cannot be used with the option
IMSL_SOLVE_ONLY.

IMSL_FACTOR_ONLY
Compute the RHR factorization of A. If IMSL_FACTOR_ONLY is used, either
IMSL_FACTOR or IMSL_FACTOR_USER is required. The argument b is then
ignored, and the returned value of imsl_c_lin_sol_posdef_band is NULL.

IMSL_SOLVE_ONLY
Solve Ax = b given the RHR factorization previously computed by
imsl_c_lin_sol_posdef_band. By default, the solution to Ax = b is
pointed to by imsl_c_lin_sol_posdef_band. If IMSL_SOLVE_ONLY is
used, argument IMSL_FACTOR_USER is required and the argument a is
ignored.

Description
The function imsl_c_lin_sol_posdef_band solves a system of linear algebraic
equations with a real symmetric positive definite band coefficient matrix A. It computes
the RHR Cholesky factorization of A. Argument R is an upper triangular band matrix.

When the solution to the linear system or the inverse of the matrix is sought, an
estimate of the L1 condition number of A is computed using Higham’s modifications to
Hager’s method, as given in Higham (1988). If the estimated condition number is
greater than 1/
 (where
 is the machine precision), a warning message is issued. This
indicates that very small changes in A may produce large changes in the solution x.

The function imsl_c_lin_sol_posdef_band fails if any submatrix of R is not positive
definite or if R has a zero diagonal element. These errors occur only if A is very close to a
singular matrix or to a matrix which is not positive definite.

The function imsl_c_lin_sol_posdef_band is based partially on the LINPACK
subroutines SPBFA and CPBSL; see Dongarra et al. (1979).

Examples

Example 1
Solve a linear system Ax = b where

2 1 0 0 0
1 4 1 2 0 0
0 1 2 10 4 0
0 0 4 6 1
0 0 0 1 9

i
i i

A i i
i i

i

� �� �
� �� � �� �
� �� �
� �

� �� �
� ��� 	

#include <imsl.h>

void main()

Chapter 1: Linear Systems lin_sol_posdef_band (complex) � 41

42 � lin_sol_posdef_band (complex) IMSL C/Math/Library

{
 int n = 5;
 int ncoda = 1;
 f_complex *x;

 /* Note that a is in band storage mode */

 f_complex a[] =
 {{0.0, 0.0}, {-1.0, 1.0}, {1.0, 2.0}, {0.0, 4.0},
 {1.0, 1.0},
 {2.0, 0.0}, {4.0, 0.0}, {10.0, 0.0}, {6.0, 0.0},
 {9.0, 0.0}};
 f_complex b[] =
 {{1.0, 5.0}, {12.0, -6.0}, {1.0, -16.0},{-3.0, -3.0},
 {25.0, 16.0}};

 x = imsl_c_lin_sol_posdef_band (n, a, ncoda, b, 0);

 imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0);
}

Output
 Solution, x, of Ax = b
1 (2, 1)
2 (3, -0)
3 (-1, -1)
4 (0, -2)
5 (3, 2)

Example 2
This example solves the same problem Ax = b given in the first example. The solution
is returned in user-allocated space and an estimate of �1(A) is computed. Additionally,
the RHR factorization is returned. Then, knowing that �1(A) = ||A|| ||A-1||, the condition
number is computed directly and compared to the estimate from Higham’s method.

#include <imsl.h>
#include <math.h>

void main()
{
 int n = 5;
 int ncoda = 1;

 /* Note that a is in band storage mode */

 f_complex a[] =
 {{0.0, 0.0}, {-1.0, 1.0}, {1.0, 2.0}, {0.0, 4.0},
 {1.0, 1.0},
 {2.0, 0.0}, {4.0, 0.0}, {10.0, 0.0}, {6.0, 0.0},
 {9.0, 0.0}};
 f_complex b[] =
 {{1.0, 5.0}, {12.0, -6.0}, {1.0, -16.0},{-3.0, -3.0},
 {25.0, 16.0}};
 f_complex x[5];
 f_complex e_i[5];
 f_complex *factor;
 float condition;

Chapter 1: Linear Systems lin_sol_posdef_band (complex) � 43

 float column_norm;
 float inverse_norm;
 int i;
 int j;

 imsl_c_lin_sol_posdef_band (n, a, ncoda, b,
 IMSL_FACTOR, &factor,
 IMSL_CONDITION, &condition,
 IMSL_RETURN_USER, x,
 0);

 imsl_c_write_matrix ("Solution, x, of Ax = b", 1, n, x, 0);

 /* Find one norm of inverse */

 inverse_norm = 0.0;
 for (i=0; i<n; i++) {
 for (j=0; j<n; j++) e_i[j] = imsl_cf_convert (0.0, 0.0);
 e_i[i] = imsl_cf_convert (1.0, 0.0);

 /* Determine one norm of each column of inverse */

 imsl_c_lin_sol_posdef_band (n, a, ncoda, e_i,
 IMSL_FACTOR_USER, factor,
 IMSL_SOLVE_ONLY,
 IMSL_RETURN_USER, x,
 0);

 column_norm = imsl_c_vector_norm (n, x,
 IMSL_ONE_NORM,
 0);

 /* The max of the column norms is the
 norm of inv(A) */

 if (inverse_norm < column_norm)
 inverse_norm = column_norm;
 }

 /* By observation, one norm of A is 14+sqrt(5) */

 printf ("\nHigham’s condition estimate = %7.4f\n", condition);
 printf ("Direct condition estimate = %7.4f\n",
 (14.0+sqrt(5.0))*inverse_norm);
}

Output
 Solution, x, of Ax = b
 1 2 3
(2, 1) (3, -0) (-1, -1)

 4 5
(0, -2) (3, 2)

Higham’s condition estimate = 19.3777
Direct condition estimate = 19.3777

44 � lin_sol_gen_coordinate IMSL C/Math/Library

Warning Errors
IMSL_ILL_CONDITIONED The input matrix is too ill-conditioned. An estimate of

the reciprocal of its L1 condition number is "rcond" = #.
The solution might not be accurate.

Fatal Errors
IMSL_NONPOSITIVE_MATRIX The leading # by # submatrix of the input matrix is

not positive definite.

IMSL_SINGULAR_MATRIX The input matrix is singular.

lin_sol_gen_coordinate
Solves a sparse system of linear equations Ax = b. Using optional arguments, any of
several related computations can be performed. These extra tasks include returning the
LU factorization of A computing the solution of Ax = b given an LU factorization
setting drop tolerances, and controlling iterative refinement.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_gen_coordinate (int n, int nz, Imsl_f_sparse_elem
*a, float *b, ..., 0)

The type double function is imsl_d_lin_sol_gen_coordinate.

Required Arguments

int n (Input)
Number of rows in the matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_f_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in
the matrix.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value
A pointer to the solution x of the sparse linear system Ax = b. To release this space, use
free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

Chapter 1: Linear Systems lin_sol_gen_coordinate � 45

float *imsl_f_lin_sol_gen_coordinate (int n, int nz, Imsl_f_sparse_elem
*a, float *b,
IMSL_RETURN_SPARSE_LU_FACTOR,
 Imsl_f_sparse_lu_factor *lu_factor,
IMSL_SUPPLY_SPARSE_LU_FACTOR,
 Imsl_f_sparse_lu_factor *lu_factor,
IMSL_FREE_SPARSE_LU_FACTOR,
IMSL_RETURN_SPARSE_LU_IN_COORD,
 Imsl_f_sparse_elem **lu_coordinate,
 int **row_pivots, int **col_pivots,
IMSL_SUPPLY_SPARSE_LU_IN_COORD,
 Imsl_f_sparse_elem *lu_coordinate, int *row_pivots,
 int *col_pivots,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_RETURN_USER, float x[],
IMSL_TRANSPOSE,
IMSL_CONDITION, float *condition,
IMSL_PIVOTING_STRATEGY, Imsl_pivot method,
IMSL_NUM_OF_SEARCH_ROWS, int num_search_row,
IMSL_ITERATIVE_REFINEMENT,
IMSL_DROP_TOLERANCE, float tolerance,
IMSL_HYBRID_FACTORIZATION, float density,
 int order_bound,
IMSL_STABILITY_FACTOR, float s_factor,
IMSL_GROWTH_FACTOR_LIMIT, float gf_limit,
IMSL_GROWTH_FACTOR, float *gf,
IMSL_SMALLEST_PIVOT, float *small_pivot
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind,
 float *values,
IMSL_MEMORY_BLOCK_SIZE, int block_size,
0)

Optional Arguments
IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_f_sparse_lu_factor *lu_factor

(Output)
The address of a structure of type Imsl_f_sparse_lu_factor. The pointers
within the structure are initialized to point to the LU factorization by
imsl_f_lin_sol_gen_coordinate.

IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_f_sparse_lu_factor *lu_factor (Input)
The address of a structure of type Imsl_f_sparse_lu_factor. This structure
contains the LU factorization of the input matrix computed by
imsl_f_lin_sol_gen_coordinate with the
IMSL_RETURN_SPARSE_LU_FACTOR option.

46 � lin_sol_gen_coordinate IMSL C/Math/Library

IMSL_FREE_SPARSE_LU_FACTOR,
Before returning, free the linked list data structure containing the
LU factorization of A. Use this option only if the factors are no longer required.

IMSL_RETURN_SPARSE_LU_IN_COORD,
Imsl_f_sparse_elem **lu_coordinate, int **row_pivots,
int **col_pivots (Output)
The LU factorization is returned in coordinate form. This is more compact
than the internal representation encapsulated in Imsl_f_sparse_lu. The
disadvantage is that during a SOLVE_ONLY call, the internal representation of
the factor must be reconstructed. If however, the factor is to be stored after the
program exits, and loaded again at some subsequent run, the combination of
IMSL_RETURN_LU_IN_COORD and IMSL_SUPPLY_LU_IN_COORD is probably
the best choice, since the factors are in a format that is simple to store and
read.

IMSL_SUPPLY_SPARSE_LU_IN_COORD,
Imsl_f_sparse_elem *lu_coordinate, int *row_pivots,
int *col_pivots (Output)
Supply the LU factorization in coordinate form. See
IMSL_RETURN_SPARSE_LU_IN_COORD for a description.

IMSL_FACTOR_ONLY,
Compute the LU factorization of the input matrix and return. The argument b
is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the LU factorization of A. This option requires the use of
option IMSL_SUPPLY_SPARSE_LU_FACTOR or
IMSL_SUPPLY_SPARSE_LU_IN_COORD.

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_TRANSPOSE,
Solve the problem ATx = b. This option can be used in conjunction with either
of the options that supply the factorization.

IMSL_CONDITION, float *condition,
Estimate the L1 condition number of A and return in the variable condition.

IMSL_PIVOTING_STRATEGY, Imsl_pivot method (Input)
Select the pivoting strategy by setting method to one of the following:
IMSL_ROW_MARKOWITZ, IMSL_COLUMN_MARKOWITZ, or
IMSL_SYMMETRIC_MARKOWITZ.
Default: IMSL_SYMMETRIC_MARKOWITZ.

IMSL_NUM_OF_SEARCH_ROWS, int num_search_row (Input)
The number of rows which have the least number of nonzero elements that
will be searched for a pivot element.
Default: num_search_row = 3

Chapter 1: Linear Systems lin_sol_gen_coordinate � 47

IMSL_ITERATIVE_REFINEMENT,
Select this option if iterative refinement is desired.

IMSL_DROP_TOLERANCE, float tolerance (Input)
Possible fill-in is checked against tolerance. If the absolute value of the new
element is less than tolerance, it will be discarded.
Default: tolerance = 0.0

IMSL_HYBRID_FACTORIZATION, float density, int order_bound,
Enable the function to switch to a dense factorization method when the density
of the active submatrix reaches 0.0 � density � 1.0 and the order of the
active submatrix is less than or equal to order_bound.

IMSL_STABILITY_FACTOR, float s_factor (Input)
The absolute value of the pivot element must be bigger than the largest
element in absolute value in its row divided by s_factor.
Default: s_factor = 10.0

IMSL_GROWTH_FACTOR_LIMIT, float gf_limit (Input)
The computation stops if the growth factor exceeds gf_limit.
Default: gf_limit = 1.0e16

IMSL_GROWTH_FACTOR, float *gf (Output)
Argument gf is calculated as the largest element in absolute value at any stage
of the Gaussian elimination divided by the largest element in absolute value in
A.

IMSL_SMALLEST_PIVOT, float *small_pivot (Output)
A pointer to the value of the pivot element of smallest magnitude that occurred
during the factorization.

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format.
See the main “Introduction” chapter of this manual for a discussion of this
storage scheme.

IMSL_MEMORY_BLOCKSIZE, int blocksize (Input)
If space must be allocated for fill-in, allocate enough space for blocksize
new nonzero elements.
Default: blocksize = nz

Description
The function imsl_f_lin_sol_gen_coordinate (page 44) solves a system of linear
equations Ax = b, where A is sparse. In its default use, it solves the so-called one off
problem, by first performing an LU factorization of A using the improved generalized
symmetric Markowitz pivoting scheme. The factor L is not stored explicitly because the
saxpy operations performed during the elimination are extended to the right-hand side,
along with any row interchanges. Thus, the system Ly = b is solved implicitly. The

48 � lin_sol_gen_coordinate IMSL C/Math/Library

factor U is then passed to a triangular solver which computes the solution x from
Ux = y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually
more efficient to compute the factorization once, and perform multiple forward and
back solves with the various right-hand sides. In this case, the factor L is explicitly
stored and a record of all row as well as column interchanges is made. The solve step
then solves the two triangular systems Ly = b and Ux = y. The user specifies either the
IMSL_RETURN_SPARSE_LU_FACTOR or the IMSL_RETURN_LU_IN_COORD option to
retrieve the factorization, then calls the function subsequently with different right-hand
sides, passing the factorization back in using either
IMSL_SUPPLY_SPARSE_LU_FACTOR or IMSL_SUPPLY_SPARSE_LU_IN_COORD in
conjunction with IMSL_SOLVE_ONLY. If IMSL_RETURN_SPARSE_LU_FACTOR is used,
the final call to imsl_lin_sol_gen_coordinate should include
IMSL_FREE_SPARSE_LU_FACTOR to release the heap used to store L and U.

If the solution to ATx = b is required, specify the option IMSL_TRANSPOSE. This
keyword only alters the forward elimination and back substitution so that the operations
UTy = b and LTx = y are performed to obtain the solution. So, with one call to produce
the factorization, solutions to both Ax = b and ATx = b can be obtained.

The option IMSL_CONDITION is used to calculate and return an estimation of the
L1 condition number of A. The algorithm used is due to Higham. Specification of
IMSL_CONDITION causes a complete L to be computed and stored, even if a one off
problem is being solved. This is due to the fact that Higham’s method requires solution
to problems of the form Az = r and ATz = r.

The default pivoting strategy is symmetric Markowitz. If a row or column oriented
problem is encountered, there may be some reduction in fill-in by selecting either
IMSL_ROW_MARKOWITZ or IMSL_COLUMN_MARKOWITZ. The Markowitz strategy will
search a pre-elected number of row or columns for pivot candidates. The default
number is three, but this can be changed by using IMSL_NUM_OF_SEARCH_ROWS.

The option IMSL_DROP_TOLERANCE can be used to set a tolerance which can reduce
fill-in. This works by preventing any new fill element which has magnitude less than the
specified drop tolerance from being added to the factorization. Since this can introduce
substantial error into the factorization, it is recommended that
IMSL_ITERATIVE_REFINEMENT be used to recover more accuracy in the final
solution. The trade-off is between space savings from the drop tolerance and the extra
time needed in repeated solve steps needed for refinement.

The function imsl_f_lin_sol_gen_coordinate (page 44) provides the option of
switching to a dense factorization method at some point during the decomposition. This
option is enabled by choosing IMSL_HYBRID_FACTORIZATION. One of the two
parameters required by this option, density, specifies a minimum density for the
active submatrix before a format switch will occur. A density of 1.0 indicates complete
fill-in. The other parameter, order_bound, places an upper bound of the order of the
active submatrix which will be converted to dense format. This is used to prevent a
switch from occurring too early, possibly when the O(n3) nature of the dense factoriza-

tion will cause performance degradation. Note that this option can significantly increase
heap storage requirements.

Examples

Example 1
As an example, consider the following matrix:

10 0 0 0 0 0
0 10 3 1 0 0
0 0 15 0 0 0
2 0 0 10 1 0
1 0 0 5 1 3
1 2 0 0 0 6

A

� �
� �� �� �
� �

� � �
� �� �
� �� � �
� �
� �� �� �

Let xT = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33, �34, 31)T. The number of
nonzeros in A is nz = 15.

#include <imsl.h>

#include <stdlib.h>
main()
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};

 float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 int n = 6;
 int nz = 15;
 float *x;

 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b, 0);

 imsl_f_write_matrix ("solution", 1, n, x, 0);

 free (x);
}

Chapter 1: Linear Systems lin_sol_gen_coordinate � 49

50 � lin_sol_gen_coordinate IMSL C/Math/Library

Output
 solution
 1 2 3 4 5 6
 1 2 3 4 5 6

Example 2
This examples sets A = E(1000, 10). A linear system is solved and the LU factorization
returned. Then a second linear system is solved, using the same coefficient matrix A
just factored. Maximum absolute errors and execution time ratios are printed, showing
that forward and back solves take approximately 10 percent of the computation time of
a factor and solve. This ratio can vary greatly, depending on the order of the coefficient
matrix, the initial number of nonzeros, and especially on the amount of fill-in produced
during the elimination. Be aware that timing results are highly machine dependent.

#include <imsl.h>

#include <stdlib.h>
main()
{
 Imsl_f_sparse_elem *a;
 Imsl_f_sparse_lu_factor lu_factor;
 float *b;
 float *x;
 float *mod_five;
 float *mod_ten;
 float error_factor_solve;
 float error_solve;
 double time_factor_solve;
 double time_solve;
 int n = 1000;
 int c = 10;
 int i;
 int nz;
 int index;

 /* Get the coefficient matrix */

 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);

 /* Set two different predetermined solutions */

 mod_five = (float*) malloc (n*sizeof(*mod_five));
 mod_ten = (float*) malloc (n*sizeof(*mod_ten));
 for (i=0; i<n; i++) {
 mod_five[i] = (float) (i % 5);
 mod_ten[i] = (float) (i % 10);
 }

 /* Choose b so that x will approximate mod_five */

 b = imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_five,
 0);

Chapter 1: Linear Systems lin_sol_gen_coordinate � 51

 /* Time the factor/solve */

 time_factor_solve = imsl_ctime();
 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
 0);
 time_factor_solve = imsl_ctime() - time_factor_solve;

 /* Compute max abolute error */

 error_factor_solve = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 free (mod_five);
 free (b);
 free (x);

 /* Get new right hand side -- b = A * mod_ten */

 b = imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_ten,
 0);

 /* Use the previously computed factorization
 to solve Ax = b */

 time_solve = imsl_ctime();
 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_SOLVE_ONLY,
 0);
 time_solve = imsl_ctime() - time_solve;
 error_solve = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_ten,
 IMSL_INF_NORM, &index,
 0);
 free (mod_ten);
 free (b);
 free (x);

 /* Print errors and ratio of execution times */

 printf ("absolute error (factor/solve) = %e\n",
 error_factor_solve);
 printf ("absolute error (solve) = %e\n", error_solve);
 printf ("time_solve/time_factor_solve = %f\n",
 time_solve/time_factor_solve);
}

Output
absolute error (factor/solve) = 9.179115e-05
absolute error (solve) = 2.160072e-04
time_solve/time_factor_solve = 0.093750

52 � lin_sol_gen_coordinate IMSL C/Math/Library

Example 3
This example solves a system Ax = b, where A = E (500, 50). Then, the same system is
solved using a large drop tolerance. Finally, using the factorization just computed, the
same linear system is solved with iterative refinement. Be aware that timing results are
highly machine dependent.

#include <imsl.h>

#include <stdlib.h>

main()
{
 Imsl_f_sparse_elem *a;
 Imsl_f_sparse_lu_factor lu_factor;
 float *b;
 float *x;
 float *mod_five;
 float error_zero_drop_tol;
 float error_nonzero_drop_tol;
 float error_nonzero_drop_tol_IR;
 double time_zero_drop_tol;
 double time_nonzero_drop_tol;
 double time_nonzero_drop_tol_IR;
 int nz_nonzero_drop_tol;
 int nz_zero_drop_tol;
 int n = 500;
 int c = 50;
 int i;
 int nz;
 int index;

 /* Get the coefficient matrix */

 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);
 for (i=0; i<nz; i++) a[i].val *= 0.05;

 /* Set a predetermined solution */

 mod_five = (float*) malloc (n*sizeof(*mod_five));
 for (i=0; i<n; i++)
 mod_five[i] = (float) (i % 5);

 /* Choose b so that x will approximate mod_five */

 b = imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_five,
 0);

 /* Time the factor/solve */

 time_zero_drop_tol = imsl_ctime();
 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_NUM_NONZEROS_IN_FACTOR, &nz_zero_drop_tol,
 0);
 time_zero_drop_tol = imsl_ctime() - time_zero_drop_tol;

 /* Compute max abolute error */

Chapter 1: Linear Systems lin_sol_gen_coordinate � 53

 error_zero_drop_tol = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 free (x);

 /* Solve the same problem, with drop
 tolerance = 0.005 */

 time_nonzero_drop_tol = imsl_ctime();
 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_DROP_TOLERANCE, 0.005,
 IMSL_NUM_NONZEROS_IN_FACTOR, &nz_nonzero_drop_tol,
 0);
 time_nonzero_drop_tol = imsl_ctime() - time_nonzero_drop_tol;

 /* Compute max abolute error */

 error_nonzero_drop_tol = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 free (x);

 /* Solve the same problem with IR, use last
 factorization */

 time_nonzero_drop_tol_IR = imsl_ctime();
 x = imsl_f_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_SOLVE_ONLY,
 IMSL_ITERATIVE_REFINEMENT,
 0);
 time_nonzero_drop_tol_IR = imsl_ctime() - time_nonzero_drop_tol_IR;

 /* Compute max abolute error */

 error_nonzero_drop_tol_IR = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 free (x);
 free (b);

 /* Print errors and ratio of execution times */

 printf ("drop tolerance = 0.0\n");
 printf ("\tabsolute error = %e\n", error_zero_drop_tol);
 printf ("\tfillin = %d\n\n", nz_zero_drop_tol);

 printf ("drop tolerance = 0.005\n");
 printf ("\tabsolute error = %e\n", error_nonzero_drop_tol);
 printf ("\tfillin = %d\n\n", nz_nonzero_drop_tol);

 printf ("drop tolerance = 0.005 (with IR)\n");
 printf ("\tabsolute error = %e\n", error_nonzero_drop_tol_IR);
 printf ("\tfillin = %d\n\n", nz_nonzero_drop_tol);

54 � lin_sol_gen_coordinate (complex) IMSL C/Math/Library

 printf ("time_nonzero_drop_tol/time_zero_drop_tol = %f\n",
 time_nonzero_drop_tol/time_zero_drop_tol);
 printf ("time_nonzero_drop_tol_IR/time_zero_drop_tol = %f\n",
 time_nonzero_drop_tol_IR/time_zero_drop_tol);
}

Output
drop tolerance = 0.0
 absolute error = 3.814697e-06
 fillin = 9530

drop tolerance = 0.005
 absolute error = 2.699481e+00
 fillin = 8656

drop tolerance = 0.005 (with IR)
 absolute error = 1.907349e-06
 fillin = 8656

time_nonzero_drop_tol/time_zero_drop_tol = 1.086957
time_nonzero_drop_tol_IR/time_zero_drop_tol = 0.840580

Notice the absolute error when iterative refinement is not used. Also note that iterative
refinement itself can be quite expensive. In this case, for example, the IR solve took
approximately as much time as the factorization. For this problem the use of a drop
high drop tolerance and iterative refinement was able to reduce fill-in by 10 percent at a
time cost double that of the default usage. In tight memory situations, such a trade-off
may be acceptable. Users should be aware that a drop tolerance can be chosen large
enough, introducing large errors into LU, to prevent convergence of iterative
refinement.

lin_sol_gen_coordinate (complex)
Solves a system of linear equations Ax = b, with sparse complex coefficient matrix A.
Using optional arguments, any of several related computations can be performed. These
extra tasks include returning the LU factorization of A, computing the solution of
Ax = b given an LU factorization, setting drop tolerances, and controlling iterative
refinement.

Synopsis

#include <imsl.h>
f_complex *imsl_c_lin_sol_gen_coordinate (int n, int nz,

Imsl_c_sparse_elem *a, f_complex *b, ..., 0)

The type double function is imsl_z_lin_sol_gen_coordinate.

Chapter 1: Linear Systems lin_sol_gen_coordinate (complex) � 55

Required Arguments

int n (Input)
Number of rows in the matrix.

int nz (Input)
Number of nonzeros in the matrix.

Imsl_c_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in
the matrix.

f_complex *b (Input)
Vector of length n containing the right-hand side.

Return Value
A pointer to the solution x of the sparse linear system Ax = b. To release this space, use
free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_lin_sol_gen_coordinate (int n, int nz,

Imsl_c_sparse_elem *a, f_complex *b,
IMSL_RETURN_SPARSE_LU_FACTOR,
 Imsl_c_sparse_lu_factor *lu_factor,
IMSL_SUPPLY_SPARSE_LU_FACTOR,
 Imsl_c_sparse_lu_factor *lu_factor,
IMSL_FREE_SPARSE_LU_FACTOR,
IMSL_RETURN_SPARSE_LU_IN_COORD,
 Imsl_c_sparse_elem **lu_coordinate,
 int **row_pivots, int **col_pivots,
IMSL_SUPPLY_SPARSE_LU_IN_COORD,
 Imsl_c_sparse_elem *lu_coordinate, int *row_pivots,
 int *col_pivots,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_RETURN_USER, f_complex x[],
IMSL_TRANSPOSE,
IMSL_CONDITION, float *condition,
IMSL_PIVOTING_STRATEGY, Imsl_pivot method,
IMSL_NUM_OF_SEARCH_ROWS, int num_search_row,
IMSL_ITERATIVE_REFINEMENT,
IMSL_DROP_TOLERANCE, float tolerance,
IMSL_HYBRID_FACTORIZATION, float density,
 int order_bound,
IMSL_GROWTH_FACTOR_LIMIT, float gf_limit,
IMSL_GROWTH_FACTOR, float *gf,
IMSL_SMALLEST_PIVOT, float *small_pivot
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,

56 � lin_sol_gen_coordinate (complex) IMSL C/Math/Library

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind,
 f_complex *values,
IMSL_MEMORY_BLOCK_SIZE, int block_size,
0)

Optional Arguments
IMSL_RETURN_SPARSE_LU_FACTOR, Imsl_c_sparse_lu_factor *lu_factor

(Output)
The address of a structure of type Imsl_c_sparse_lu_factor. The pointers
within the structure are initialized to point to the LU factorization by
imsl_c_lin_sol_gen_coordinate.

IMSL_SUPPLY_SPARSE_LU_FACTOR, Imsl_c_sparse_lu_factor *lu_factor
(Input)
The address of a structure of type Imsl_c_sparse_lu_factor. This structure
contains the LU factorization of the input matrix computed by
imsl_c_lin_sol_gen_coordinate with the
IMSL_RETURN_SPARSE_LU_FACTOR option.

IMSL_FREE_SPARSE_LU_FACTOR,
Before returning, free the linked list data structure containing the LU
factorization of A. Use this option only if the factors are no longer required.

IMSL_RETURN_SPARSE_LU_IN_COORD,
Imsl_c_sparse_elem **lu_coordinate, int **row_pivots,
int **col_pivots (Output)
The LU factorization is returned in coordinate form. This is more compact
than the internal representation encapsulated in Imsl_c_sparse_lu. The
disadvantage is that during a SOLVE_ONLY call, the internal representation of
the factor must be reconstructed. If however, the factor is to be stored after the
program exits, and loaded again at some subsequent run, the combination of
IMSL_RETURN_LU_IN_COORD and IMSL_SUPPLY_LU_IN_COORD is probably
the best choice, since the factors are in a format that is simple to store and
read.

IMSL_SUPPLY_SPARSE_LU_IN_COORD, Imsl_c_sparse_elem *lu_coordinate,
int *row_pivots, int *col_pivots (Output)
Supply the LU factorization in coordinate form. See
IMSL_RETURN_SPARSE_LU_IN_COORD for a description.

IMSL_FACTOR_ONLY,
Compute the LU factorization of the input matrix and return. The argument b
is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the LU factorization of A. This option requires the use of
option IMSL_SUPPLY_SPARSE_LU_FACTOR or
IMSL_SUPPLY_SPARSE_LU_IN_COORD.

Chapter 1: Linear Systems lin_sol_gen_coordinate (complex) � 57

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_TRANSPOSE,
Solve the problem ATx = b. This option can be used in conjunction with either
of the options that supply the factorization.

IMSL_CONDITION, float *condition,
Estimate the L1 condition number of A and return in the variable condition.

IMSL_PIVOTING_STRATEGY, Imsl_pivot method (Input)
Select the pivoting strategy by setting method to one of the following:
IMSL_ROW_MARKOWITZ, IMSL_COLUMN_MARKOWITZ, or
IMSL_SYMMETRIC_MARKOWITZ.
Default: IMSL_SYMMETRIC_MARKOWITZ.

IMSL_NUM_OF_SEARCH_ROWS, int num_search_row (Input)
The number of rows which have the least number of nonzero elements that
will be searched for a pivot element.
Default: num_search_row = 3

IMSL_ITERATIVE_REFINEMENT,
Select this option if iterative refinement is desired.

IMSL_DROP_TOLERANCE, float tolerance (Input)
Possible fill-in is checked against tolerance. If the absolute value of the new
element is less than tolerance, it will be discarded.
Default: tolerance = 0.0

IMSL_HYBRID_FACTORIZATION, float density, int order_bound,
Enable the code to switch to a dense factorization method when the density of
the active submatrix reaches 0.0 � density � 1.0 and the order of the active
submatrix is less than or equal to order_bound.

IMSL_GROWTH_FACTOR_LIMIT, float gf_limit (Input)
The computation stops if the growth factor exceeds gf_limit.
Default: gf_limit = 1.e16

IMSL_GROWTH_FACTOR, float *gf (Output)
gf is calculated as the largest element in absolute value at any stage of the
Gaussian elimination divided by the largest element in absolute value in A.

IMSL_SMALLEST_PIVOT, float *small_pivot (Output)
A pointer to the value of the pivot element of smallest magnitude.

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, f_complex *values (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format.
See the main “Introduction” chapter at the beginning of this manual for a
discussion of this storage scheme.

58 � lin_sol_gen_coordinate (complex) IMSL C/Math/Library

IMSL_FACTOR_RESIZE_INCREMENT, int increment (Input)
Supply the number of nonzeros which will be added to the factor if current
allocations are inadequate.
Default: increment = nz

Description
The function imsl_c_lin_sol_gen_coordinate (page 44) solves a system of
linear equations Ax = b, where A is sparse. In its default use, it solves the so-called one
off problem, by first performing an LU factorization of A using the improved
generalized symmetric Markowitz pivoting scheme. The factor L is not stored explicitly
because the saxpy operations performed during the elimination are extended to the
right-hand side, along with any row interchanges. Thus, the system Ly = b is solved
implicitly. The factor U is then passed to a triangular solver which computes the
solution x from Ux = y.

If a sequence of systems Ax = b are to be solved where A is unchanged, it is usually
more efficient to compute the factorization once, and perform multiple forward and
back solves with the various right-hand sides. In this case the factor L is explicitly
stored and a record of all row as well as column interchanges is made. The solve step
then solves the two triangular systems Ly = b and Ux = y. The user specifies either the
IMSL_RETURN_SPARSE_LU_FACTOR or the IMSL_RETURN_LU_IN_COORD option to
retrieve the factorization, then calls the function subsequently with different right-hand
sides, passing the factorization back in using either IMSL_SUPPLY_S-
PARSE_LU_FACTOR or IMSL_SUPPLY_SPARSE_LU_IN_COORD in conjunction with
IMSL_SOLVE_ONLY. If IMSL_RETURN_SPARSE_LU_FACTOR is used, the final call to
imsl_lin_sol_gen_coordinate should include IMSL_FREE_SPARSE_LU_FACTOR
to release the heap used to store L and U.

If the solution to ATx = b is required, specify the option IMSL_TRANSPOSE. This
keyword only alters the forward elimination and back substitution so that the operations
UTy = b and LTx = y are performed to obtain the solution. So, with one call to produce
the factorization, solutions to both Ax = b and ATx = b can be obtained.

The option IMSL_CONDITION is used to calculate and return an estimation of the
L1 condition number of A. The algorithm used is due to Higham. Specification of
IMSL_CONDITION causes a complete L to be computed and stored, even if a one off
problem is being solved. This is due to the fact that Higham’s method requires solution
to problems of the form Az = r and ATz = r.

The default pivoting strategy is symmetric Markowitz. If a row or column oriented
problem is encountered, there may be some reduction in fill-in by selecting either
IMSL_ROW_MARKOWITZ or IMSL_COLUMN_MARKOWITZ. The Markowitz strategy will
search a pre-elected number of row or columns for pivot candidates. The default
number is three, by this can be changed by using IMSL_NUM_OF_SEARCH_ROWS.

The option IMSL_DROP_TOLERANCE can be used to set a tolerance which can reduce
fill-in. This works by preventing any new fill element which has magnitude less than the
specified drop tolerance from being added to the factorization. Since this can introduce
substantial error into the factorization, it is recommended that

IMSL_ITERATIVE_REFINEMENT be used to recover more accuracy in the final
solution. The trade-off is between space savings from the drop tolerance and the extra
time needed in repeated solve steps needed for refinement.

The function imsl_c_lin_sol_gen_coordinate provides the option of switching
to a dense factorization method at some point during the decomposition. This option is
enabled by choosing IMSL_HYBRID_FACTORIZATION. One of the two parameters
required by this option, density, specifies a minimum density for the active submatrix
before a format switch will occur. A density of 1.0 indicates complete fill-in. The other
parameter, order_bound, places an upper bound of the order of the active submatrix
which will be converted to dense format. This is used to prevent a switch from
occurring too early, possibly when the O(n3) nature of the dense factorization will cause
performance degradation. Note that this option can significantly increase heap storage
requirements.

Examples

Example 1
As an example, consider the following matrix:

Chapter 1: Linear Systems lin_sol_gen_coordinate (complex) � 59

i
i

i

10 7 0 0 0 0 0
0 3 2 3 1 2 0 0
0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0
5 4 0 0 5 12 2 7 7
1 12 2 8 0 0 0 3 7

i
i i

i
A

i i
i i
i i

	� �
� �	 � � 	� �
� �	

� � �
� � 	 � 	� �

� �� 	 � 	 � 	
� �
� 	 � 	 	� �� �

Let

xT = (1 + i, 2 + 2i, 3 + 3i, 4 + 4i, 5 + 5i, 6 + 6i)

so that

Ax = (3 + 17i, �19 + 5i, 6 + 18i, � 38 + 32i, �63 + 49i, �57 + 83i)T

#include <imsl.h>

#include <stdlib.h>

main()
{
 static Imsl_c_sparse_elem a[] = {0, 0, {10.0, 7.0},
 1, 1, {3.0, 2.0},
 1, 2, {-3.0, 0.0},
 1, 3, {-1.0, 2.0},
 2, 2, {4.0, 2.0},
 3, 0, {-2.0, -4.0},
 3, 3, {1.0, 6.0},

60 � lin_sol_gen_coordinate (complex) IMSL C/Math/Library

 3, 4, {-1.0, 3.0},
 4, 0, {-5.0, 4.0},
 4, 3, {-5.0, 0.0},
 4, 4, {12.0, 2.0},
 4, 5, {-7.0, 7.0},
 5, 0, {-1.0, 12.0},
 5, 1, {-2.0, 8.0},
 5, 5, {3.0, 7.0}};

 static f_complex b[] = {{3.0, 17.0}, {-19.0, 5.0}, {6.0, 18.0},
 {-38.0, 32.0}, {-63.0, 49.0}, {-57.0, 83.0}};
 int n = 6;
 int nz = 15;
 f_complex *x;

 x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b, 0);

 imsl_c_write_matrix ("solution", n, 1, x, 0);

 free (x);
}

Output
 solution
1 (1, 1)
2 (2, 2)
3 (3, 3)
4 (4, 4)
5 (5, 5)
6 (6, 6)

Example 2
This examples sets A = E (1000, 10). A linear system is solved and the LU factorization
returned. Then a second linear system is solved using the same coefficient matrix A just
factored. Maximum absolute errors and execution time ratios are printed showing that
forward and back solves take a small percentage of the computation time of a factor and
solve. This ratio can vary greatly, depending on the order of the coefficient matrix, the
initial number of nonzeros, and especially on the amount of fill-in produced during the
elimination. Be aware that timing results are highly machine dependent.

#include <imsl.h>

#include <stdlib.h>
main()
{
 Imsl_c_sparse_elem *a;
 Imsl_c_sparse_lu_factor lu_factor;
 f_complex *b;
 f_complex *x;
 f_complex *mod_five;
 f_complex *mod_ten;
 float error_factor_solve;
 float error_solve;
 double time_factor_solve;
 double time_solve;
 int n = 1000;

Chapter 1: Linear Systems lin_sol_gen_coordinate (complex) � 61

 int c = 10;
 int i;
 int nz;
 int index;

 /* Get the coefficient matrix */

 a = imsl_c_generate_test_coordinate (n, c, &nz, 0);

 /* Set two different predetermined solutions */

 mod_five = (f_complex*) malloc (n*sizeof(*mod_five));
 mod_ten = (f_complex*) malloc (n*sizeof(*mod_ten));
 for (i=0; i<n; i++) {
 mod_five[i] = imsl_cf_convert ((float)(i % 5), 0.0);
 mod_ten[i] = imsl_cf_convert ((float)(i % 10), 0.0);
 }

 /* Choose b so that x will approximate mod_five */

 b = imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_five,
 0);

 /* Time the factor/solve */

 time_factor_solve = imsl_ctime();
 x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_RETURN_SPARSE_LU_FACTOR, &lu_factor,
 0);
 time_factor_solve = imsl_ctime() - time_factor_solve;

 /* Compute max abolute error */

 error_factor_solve = imsl_c_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 free (b);
 free (x);

 /* Get new right hand side -- b = A * mod_ten */

 b = imsl_c_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, mod_ten,
 0);

 /* Use the previously computed factorization
 to solve Ax = b */

 time_solve = imsl_ctime();
 x = imsl_c_lin_sol_gen_coordinate (n, nz, a, b,
 IMSL_SUPPLY_SPARSE_LU_FACTOR, &lu_factor,
 IMSL_SOLVE_ONLY,
 0);
 time_solve = imsl_ctime() - time_solve;
 error_solve = imsl_c_vector_norm (n, x,

62 � lin_sol_posdef_coordinate IMSL C/Math/Library

 IMSL_SECOND_VECTOR, mod_ten,
 IMSL_INF_NORM, &index,
 0);
 free (b);
 free (x);

 /* Print errors and ratio of execution times */

 printf ("absolute error (factor/solve) = %e\n",
 error_factor_solve);
 printf ("absolute error (solve) = %e\n", error_solve);
 printf ("time_solve/time_factor_solve = %f\n",
 time_solve/time_factor_solve);
}

Output
absolute error (factor/solve) = 2.389053e-06
absolute error (solve) = 7.656095e-06
time_solve/time_factor_solve = 0.070313

lin_sol_posdef_coordinate
Solves a sparse real symmetric positive definite system of linear equations
Ax = b. Using optional arguments, any of several related computations can be
performed. These extra tasks include returning the symbolic factorization of A,
returning the numeric factorization of A, and computing the solution of Ax = b given
either the symbolic or numeric factorizations.

Synopsis
#include <imsl.h>
float *imsl_f_lin_sol_posdef_coordinate (int n, int nz,

Imsl_f_sparse_elem *a, float *b, ..., 0)

The type double function is imsl_d_lin_sol_posdef_coordinate.

Required Arguments

int n (Input)
Number of rows in the matrix.

int nz (Input)
Number of nonzeros in lower triangle of the matrix.

Imsl_f_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in
the lower triangle of the matrix.

float *b (Input)
Vector of length n containing the right-hand side.

Chapter 1: Linear Systems lin_sol_posdef_coordinate � 63

Return Value
A pointer to the solution x of the sparse symmetric positive definite linear system Ax = b.
To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_sol_posdef_coordinate (int n, int nz,

Imsl_f_sparse_elem *a, float *b,
IMSL_RETURN_SYMBOLIC_FACTOR,
 Imsl_symbolic_factor *sym_factor,
IMSL_SUPPLY_SYMBOLIC_FACTOR,
 Imsl_symbolic_factor *sym_factor,
IMSL_SYMBOLIC_FACTOR_ONLY,
IMSL_RETURN_NUMERIC_FACTOR,
 Imsl_f_numeric_factor *num_factor,

IMSL_SUPPLY_NUMERIC_FACTOR,
 Imsl_f_numeric_factor *num_factor,
IMSL_NUMERIC_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_MULTIFRONTAL_FACTORIZATION,
IMSL_RETURN_USER, float x[],
IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element,
IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element,
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind,
 float *values,
0)

Optional Arguments
IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor (Output)

A pointer to a structure of type Imsl_symbolic_factor containing, on return, the
symbolic factorization of the input matrix.

IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor (Input)
A pointer to a structure of type Imsl_symbolic_factor. This structure contains
the symbolic factorization of the input matrix computed by
imsl_f_lin_sol_posdef_coordinate with the
IMSL_RETURN_SYMBOLIC_FACTOR option.

IMSL_SYMBOLIC_FACTOR_ONLY,
Compute the symbolic factorization of the input matrix and return. The
argument b is ignored.

IMSL_RETURN_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor (Output)
A pointer to a structure of type Imsl_f_numeric_factor containing, on return,
the numeric factorization of the input matrix.

64 � lin_sol_posdef_coordinate IMSL C/Math/Library

IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_f_numeric_factor *num_factor (Input)
A pointer to a structure of type Imsl_f_numeric_factor. This structure contains
the numeric factorization of the input matrix computed by
imsl_f_lin_sol_posdef_coordinate with the
IMSL_RETURN_NUMERIC_FACTOR option.

IMSL_NUMERIC_FACTOR_ONLY,
Compute the numeric factorization of the input matrix and return. The
argument b is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the numeric or symbolic factorization of A. This option
requires the use of either IMSL_SUPPLY_NUMERIC_FACTOR or
IMSL_SUPPLY_SYMBOLIC_FACTOR.

IMSL_MULTIFRONTAL_FACTORIZATION,
Perform the numeric factorization using a multifrontal technique. By default, a
standard factorization is computed based on a sparse compressed storage
scheme.

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred
during the numeric factorization. This option is valid only if the numeric
factorization is computed during this call to
imsl_f_lin_sol_posdef_coordinate.

IMSL_LARGEST_DIAGONAL_ELEMENT, float *large_element (Output)
A pointer to a scalar containing the largest diagonal element that occurred
during the numeric factorization. This option is valid only if the numeric
factorization is computed during this call to
imsl_f_lin_sol_posdef_coordinate.

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format.
See the main “Introduction” main at the beginning of this manual for a
discussion of this storage scheme.

Description
The function imsl_f_lin_sol_posdef_coordinate solves a system of linear
algebraic equations having a sparse symmetric positive definite coefficient matrix A. In
this function’s default usage, a symbolic factorization of a permutation of the
coefficient matrix is computed first. Then a numerical factorization is performed. The
solution of the linear system is then found using the numeric factor.

Chapter 1: Linear Systems lin_sol_posdef_coordinate � 65

The symbolic factorization step of the computation consists of determining a minimum
degree ordering and then setting up a sparse data structure for the Cholesky factor, L. This
step only requires the “pattern” of the sparse coefficient matrix, i.e., the locations of the
nonzeros elements but not any of the elements themselves. Thus, the val field in the
Imsl_f_sparse_elem structure is ignored. If an application generates different sparse
symmetric positive definite coefficient matrices that all have the same sparsity pattern, then
by using IMSL_RETURN_SYMBOLIC_FACTOR and IMSL_SUPPLY_SYMBOLIC_FACTOR,
the symbolic factorization need only be computed once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic
factor, the numeric factorization produces the entries in L so that

PAPT = LLT

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization can be carried out in one of two ways. By default, the
standard factorization is performed based on a sparse compressed storage scheme. This
is fully described in George and Liu (1981). Optionally, a multifrontal technique can be
used. The multifrontal method requires more storage but will be faster in certain cases.
The multifrontal factorization is based on the routines in Liu (1987). For a detailed
description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft
(1987), Ashcraft et al. (1987), and Liu (1986, 1989).

If an application requires that several linear systems be solved where the coefficient
matrix is the same but the right-hand sides change, the options
IMSL_RETURN_NUMERIC_FACTOR and IMSL_SUPPLY_NUMERIC_FACTOR can be used
to precompute the Cholesky factor. Then the IMSL_SOLVE_ONLY option can be used to
efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following
calculations:

Ly1 = Pb

LTy2 = y1

x = PTy2

The permutation information, P, is carried in the numeric factor structure.

Examples

Example 1
As an example consider the 5 � 5 coefficient matrix:

10 0 1 0 2
0 20 0 0 3
1 0 30 4 0
0 0 4 40 5
2 3 0 5 50

a

� �
� �
� �
� ��
� �
� �
� �� �

Let xT = (5, 4, 3, 2, 1) so that Ax = (55, 83, 103, 97, 82)T. The number of nonzeros in
the lower triangle of A is nz = 10. The sparse coordinate form for the lower triangle is
given by the following:

row 0 1 2 2 3 3 4 4 4 4
col 0 1 0 2 2 3 0 1 3 4
val 10 20 1 30 4 40 2 3 5 50

Since this representation is not unique, an equivalent form would be as follows:

row 3 4 4 4 0 1 2 2 3 4
col 3 0 1 3 0 1 0 2 2 4
val 40 2 3 5 10 20 1 30 4 50

#include <imsl.h>

#include <stdlib.h>
main()
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 1, 1, 20.0,
 2, 0, 1.0,
 2, 2, 30.0,
 3, 2, 4.0,
 3, 3, 40.0,
 4, 0, 2.0,
 4, 1, 3.0,
 4, 3, 5.0,
 4, 4, 50.0};

 float b[] = {55.0, 83.0, 103.0, 97.0, 82.0};
 int n = 5;
 int nz = 10;
 float *x;
 x = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b, 0);

 imsl_f_write_matrix ("solution", 1, n, x, 0);

 free (x);
}

Output
 solution
 1 2 3 4 5
 5 4 3 2 1

66 � lin_sol_posdef_coordinate IMSL C/Math/Library

Chapter 1: Linear Systems lin_sol_posdef_coordinate � 67

Example 2
In this example, set A = E(2500, 50). Then solve the system Ax = b1 and return the
numeric factorization resulting from that call. Then solve the system Ax = b2 using the
numeric factorization just computed. The ratio of execution time is printed. Be aware
that timing results are highly machine dependent.

#include <imsl.h>

main()
{
 Imsl_f_sparse_elem *a;
 Imsl_f_numeric_factor numeric_factor;
 float *b_1;
 float *b_2;
 float *x_1;
 float *x_2;
 int n;
 int ic;
 int nz;
 double time_1;
 double time_2;

 ic = 50;
 n = ic*ic;

 /* Generate two right hand sides */

 b_1 = imsl_f_random_uniform (n*sizeof(*b_1), 0);
 b_2 = imsl_f_random_uniform (n*sizeof(*b_2), 0);

 /* Build coefficient matrix a */

 a = imsl_f_generate_test_coordinate (n, ic, &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);

 /* Now solve Ax_1 = b_1 and return the numeric
 factorization */

 time_1 = imsl_ctime ();
 x_1 = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b_1,
 IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor,
 0);
 time_1 = imsl_ctime () - time_1;

 /* Now solve Ax_2 = b_2 given the numeric
 factorization */

 time_2 = imsl_ctime ();
 x_2 = imsl_f_lin_sol_posdef_coordinate (n, nz, a, b_2,
 IMSL_SUPPLY_NUMERIC_FACTOR, &numeric_factor,
 IMSL_SOLVE_ONLY,
 0);
 time_2 = imsl_ctime () - time_2;

 printf("time_2/time_1 = %lf\n", time_2/time_1);
}

68 � lin_sol_posdef_coordinate (complex) IMSL C/Math/Library

Output
time_2/time_1 = 0.037037

lin_sol_posdef_coordinate (complex)
Solves a sparse Hermitian positive definite system of linear equations Ax = b. Using
optional arguments, any of several related computations can be performed. These extra
tasks include returning the symbolic factorization of A, returning the numeric
factorization of A, and computing the solution of Ax = b given either the symbolic or
numeric factorizations.

Synopsis
#include <imsl.h>
f_complex *imsl_c_lin_sol_posdef_coordinate (int n, int nz,

Imsl_c_sparse_elem *a, f_complex *b, ..., 0)

The type d_complex function is imsl_z_lin_sol_posdef_coordinate.

Required Arguments

int n (Input)
Number of rows in the matrix.

int nz (Input)
Number of nonzeros in the lower triangle of the matrix.

Imsl_c_sparse_elem *a (Input)
Vector of length nz containing the location and value of each nonzero entry in
lower triangle of the matrix.

f_complex *b (Input)
Vector of length n containing the right-hand side.

Return Value
A pointer to the solution x of the sparse Hermitian positive definite linear system Ax = b.
To release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

f_complex *imsl_c_lin_sol_posdef_coordinate (int n,
int nz, Imsl_c_sparse_elem *a, f_complex *b,
IMSL_RETURN_SYMBOLIC_FACTOR,
 Imsl_symbolic_factor *sym_factor,
IMSL_SUPPLY_SYMBOLIC_FACTOR,
 Imsl_symbolic_factor *sym_factor,
IMSL_SYMBOLIC_FACTOR_ONLY,

Chapter 1: Linear Systems lin_sol_posdef_coordinate (complex) � 69

IMSL_RETURN_NUMERIC_FACTOR,
 Imsl_c_numeric_factor *num_factor,
IMSL_SUPPLY_NUMERIC_FACTOR,
 Imsl_c_numeric_factor *num_factor,
IMSL_NUMERIC_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_MULTIFRONTAL_FACTORIZATION,
IMSL_RETURN_USER, f_complex x[],
IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element,
IMSL_LARGEST_DIAGONAL_ELEMENT, float *largest_element,
IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros,
IMSL_CSC_FORMAT, int *col_ptr, int *row_ind,
 float *values,
0)

Optional Arguments
IMSL_RETURN_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor (Output)

A pointer to a structure of type Imsl_symbolic_factor containing, on return, the
symbolic factorization of the input matrix.

IMSL_SUPPLY_SYMBOLIC_FACTOR, Imsl_symbolic_factor *sym_factor (Input)
A pointer to a structure of type Imsl_symbolic_factor. This structure contains
the symbolic factorization of the input matrix computed by
imsl_c_lin_sol_posdef_coordinate with the
IMSL_RETURN_SYMBOLIC_FACTOR option.

IMSL_SYMBOLIC_FACTOR_ONLY,
Compute the symbolic factorization of the input matrix and return. The
argument b is ignored.

IMSL_RETURN_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor (Output)
A pointer to a structure of type Imsl_c_numeric_factor containing, on return,
the numeric factorization of the input matrix.

IMSL_SUPPLY_NUMERIC_FACTOR, Imsl_c_numeric_factor *num_factor (Input)
A pointer to a structure of type Imsl_c_numeric_factor. This structure contains
the numeric factorization of the input matrix computed by
imsl_c_lin_sol_posdef_coordinate with the
IMSL_RETURN_NUMERIC_FACTOR option.

IMSL_NUMERIC_FACTOR_ONLY,
Compute the numeric factorization of the input matrix and return. The
argument b is ignored.

IMSL_SOLVE_ONLY,
Solve Ax = b given the numeric or symbolic factorization of A. This option
requires the use of either IMSL_SUPPLY_NUMERIC_FACTOR or
IMSL_SUPPLY_SYMBOLIC_FACTOR.

70 � lin_sol_posdef_coordinate (complex) IMSL C/Math/Library

IMSL_MULTIFRONTAL_FACTORIZATION,
Perform the numeric factorization using a multifrontal technique. By default a
standard factorization is computed based on a sparse compressed storage
scheme.

IMSL_RETURN_USER, f_complex x[] (Output)
A user-allocated array of length n containing the solution x.

IMSL_SMALLEST_DIAGONAL_ELEMENT, float *small_element (Output)
A pointer to a scalar containing the smallest diagonal element that occurred
during the numeric factorization. This option is valid only if the numeric
factorization is computed during this call to
imsl_c_lin_sol_posdef_coordinate.

IMSL_LARGEST_DIAGONAL_ELEMENT, float *large_element (Output)
A pointer to a scalar containing the largest diagonal element that occurred
during the numeric factorization. This option is valid only if the numeric
factorization is computed during this call to
imsl_c_lin_sol_posdef_coordinate.

IMSL_NUM_NONZEROS_IN_FACTOR, int *num_nonzeros (Output)
A pointer to a scalar containing the total number of nonzeros in the factor.

IMSL_CSC_FORMAT, int *col_ptr, int *row_ind, float *values (Input)
Accept the coefficient matrix in compressed sparse column (CSC) format.
See the “Introduction” section at the beginnning of this manual for a
discussion of this storage scheme.

Description
The function imsl_c_lin_sol_posdef_coordinate solves a system of linear
algebraic equations having a sparse Hermitian positive definite coefficient matrix A. In
this function’s default use, a symbolic factorization of a permutation of the coefficient
matrix is computed first. Then a numerical factorization is performed. The solution of
the linear system is then found using the numeric factor.

The symbolic factorization step of the computation consists of determining a minimum
degree ordering and then setting up a sparse data structure for the Cholesky factor, L.
This step only requires the “pattern” of the sparse coefficient matrix, i.e., the locations
of the nonzeros elements but not any of the elements themselves. Thus, the val field in
the Imsl_c_sparse_elem structure is ignored. If an application generates different
sparse Hermitian positive definite coefficient matrices that all have the same sparsity
pattern, then by using IMSL_RETURN_SYMBOLIC_FACTOR and
IMSL_SUPPLY_SYMBOLIC_FACTOR, the symbolic factorization need only be computed
once.

Given the sparse data structure for the Cholesky factor L, as supplied by the symbolic
factor, the numeric factorization produces the entries in L so that

PAPT = LLT

Here P is the permutation matrix determined by the minimum degree ordering.

The numerical factorization can be carried out in one of two ways. By default, the
standard factorization is performed based on a sparse compressed storage scheme. This
is fully described in George and Liu (1981). Optionally, a multifrontal technique can be
used. The multifrontal method requires more storage but will be faster in certain cases.
The multifrontal factorization is based on the routines in Liu (1987). For a detailed
description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft
(1987), Ashcraft et al. (1987), and Liu (1986, 1989).

If an application requires that several linear systems be solved where the coefficient
matrix is the same but the right-hand sides change, the options
IMSL_RETURN_NUMERIC_FACTOR and IMSL_SUPPLY_NUMERIC_FACTOR can be used
to precompute the Cholesky factor. Then the IMSL_SOLVE_ONLY option can be used to
efficiently solve all subsequent systems.

Given the numeric factorization, the solution x is obtained by the following
calculations:

Ly1 = Pb

LTy2 = y1

x = PTy2

The permutation information, P, is carried in the numeric factor structure.

Examples

Example 1
As a simple example of default use, consider the following Hermitian positive definite
matrix

Chapter 1: Linear Systems lin_sol_posdef_coordinate (complex) � 71

2
2 1 0

1 4 1
0 1 2 10

i
A i i

i

� �� �
� �� � � �� �
� ��� 	

Let xT = (1 + i, 2 + 2i, 3 + 3i) so that Ax = (�2 + 2i, 5 +15i, 36 + 28i)T. The number of
nonzeros in the lower triangle is nz = 5.

#include <imsl.h>

main()
{
 Imsl_c_sparse_elem a[] = {0, 0, {2.0, 0.0},
 1, 1, {4.0, 0.0},
 2, 2, {10.0, 0.0},

72 � lin_sol_posdef_coordinate (complex) IMSL C/Math/Library

 1, 0, {-1.0, -1.0},
 2, 1, {1.0, -2.0}};

 f_complex b[] = {{-2.0, 2.0}, {5.0, 15.0}, {36.0, 28.0}};
 int n = 3;
 int nz = 5;
 f_complex *x;

 x = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b, 0);

 imsl_c_write_matrix ("Solution, x, of Ax = b", n, 1, x, 0);

 free (x);
}

Output
 Solution, x, of Ax = b
1 (1, 1)
2 (2, 2)
3 (3, 3)

Example 2
Set A = E(2500, 50). Then solve the system Ax = b1 and return the numeric
factorization resulting from that call. Then solve the system Ax = b2 using the numeric
factorization just computed. Absolute errors and execution time are printed.

#include <imsl.h>

main()
{
 Imsl_c_sparse_elem *a;
 Imsl_c_numeric_factor numeric_factor;
 f_complex b_1[2500];
 f_complex b_2[2500];
 f_complex *x_1;
 f_complex *x_2;
 int n;
 int ic;
 int nz;
 int i;
 int index;
 double time_1;
 double time_2;
 float *rand_vec;

 ic = 50;
 n = ic*ic;
 index = 0;

 /* Generate two right hand sides */

 rand_vec = imsl_f_random_uniform (4*n*sizeof(*rand_vec), 0);
 for (i=0; i<n; i++) {
 b_1[i].re = rand_vec[index++];
 b_1[i].im = rand_vec[index++];
 b_2[i].re = rand_vec[index++];

Chapter 1: Linear Systems lin_sol_gen_min_residual � 73

 b_2[i].im = rand_vec[index++];
 }
 /* Build coefficient matrix a */

 a = imsl_c_generate_test_coordinate (n, ic,
 &nz,
 IMSL_SYMMETRIC_STORAGE,
 0);

 /* Now solve Ax_1 = b_1 and return the numeric
 factorization */

 time_1 = imsl_ctime ();
 x_1 = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b_1,
 IMSL_RETURN_NUMERIC_FACTOR, &numeric_factor,
 0);
 time_1 = imsl_ctime () - time_1;

 /* Now solve Ax_2 = b_2 given the numeric
 factorization */

 time_2 = imsl_ctime ();
 x_2 = imsl_c_lin_sol_posdef_coordinate (n, nz, a, b_2,
 IMSL_SUPPLY_NUMERIC_FACTOR, &numeric_factor,
 IMSL_SOLVE_ONLY,
 0);
 time_2 = imsl_ctime () - time_2;

 printf("time_2/time_1 = %lf\n", time_2/time_1);
}

Output
time_2/time_1 = 0.096386

lin_sol_gen_min_residual
Solves a linear system Ax = b using the restarted generalized minimum residual
(GMRES) method.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_gen_min_residual (int n, void amultp (float *p,
float *z), float *b, ..., 0)

The type double function is imsl_d_lin_sol_gen_min_residual.

Required Arguments

int n (Input)
Number of rows in the matrix.

74 � lin_sol_gen_min_residual IMSL C/Math/Library

void amultp (float *p, float *z)
User-supplied function which computes z = Ap.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value
A pointer to the solution x of the linear system Ax = b. To release this space, use free.
If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_lin_sol_gen_min_residual (int n, void amultp (), float *b,
IMSL_RETURN_USER, float x[],
IMSL_MAX_ITER, int *maxit,
IMSL_REL_ERR, float tolerance,
IMSL_PRECOND, void precond(),
IMSL_MAX_KRYLOV_SUBSPACE_DIM, int kdmax,
IMSL_HOUSEHOLDER_REORTHOG,
IMSL_FCN_W_DATA, void amultp (), void *data,
IMSL_PRECOND_W_DATA, void precond(), void *data,
 0)

Optional Arguments
IMSL_RETURN_USER, float x[] (Output)

A user-allocated array of length n containing the solution x.

IMSL_MAX_ITER, int *maxit (Input/Output)
A pointer to an integer, initially set to the maximum number of GMRES
iterations allowed. On exit, the number of iterations used is returned.
Default: maxit = 1000

IMSL_REL_ERR, float tolerance (Input)
The algorithm attempts to generate x such that ||b � Ax||2 � �||b||2, where
� = tolerance.
Default: tolerance = sqrt(imsl_f_machine(4))

IMSL_PRECOND, void precond (float *r, float *z) (Input)
User supplied function which sets z = M-1r, where M is the preconditioning
matrix.

IMSL_MAX_KRYLOV_SUBSPACE_DIM, int kdmax, (Input)
The maximum Krylov subspace dimension, i.e., the maximum allowable
number of GMRES iterations allowed before restarting.
Default: kdmax = imsl_i_min(n, 20)

IMSL_HOUSEHOLDER_REORTHOG,
Perform orthogonalization by Householder transformations, replacing the
Gram-Schmidt process.

IMSL_FCN_W_DATA, void amultp (float *p, float *z, void *data), void *data,
(Input)
User supplied function which computes z = Ap, which also accepts a pointer to
data that is supplied by the user. data is a pointer to the data to be passed to
the user-supplied function. See the Introduction, Passing Data to User-
Supplied Functions at the beginning of this manual for more details.

IMSL_PRECOND_W_DATA, void precond (float *r, float *z, void *data), void
*data (Input)
User supplied function which sets z = M-1r, where M is the preconditioning
matrix, which also accepts a pointer to data that is supplied by the user. data
is a pointer to the data to be passed to the user-supplied function. See the
Introduction, Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

Description
The function imsl_f_lin_sol_gen_min_residual, based on the FORTRAN
subroutine GMRES by H.F. Walker, solves the linear system
Ax = b using the GMRES method. This method is described in detail by Saad and
Schultz (1986) and Walker (1988).

The GMRES method begins with an approximate solution x0 and an initial residual
r0 = b � Ax0. At iteration m, a correction zm is determined in the Krylov subspace

�m (v) = span (v, Av, �, Am-1v)

v = r0 which solves the least-squares problem

� � � �
0

min
0() 2mz r b A x z

��
� �

Then at iteration m, xm = x0 + zm.

Orthogonalization by Householder transformations requires less storage but more
arithmetic than Gram-Schmidt. However, Walker (1988) reports numerical experiments
which suggest the Householder approach is more stable, especially as the limits of
residual reduction are reached.

Examples

Example 1
As an example, consider the following matrix:

Chapter 1: Linear Systems lin_sol_gen_min_residual � 75

10 0 0 0 0 0
0 10 3 1 0 0
0 0 15 0 0 0
2 0 0 10 1 0
1 0 0 5 1 3
1 2 0 0 0 6

A

� �
� �� �� �
� �

� � �
� �� �
� �� � �
� �
� �� �� �

Let xT = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33, �34, 31)T. The function
imsl_f_mat_mul_rect_coordinate is used to form the product Ax.

#include <imsl.h>

void amultp (float*, float*);

main()
{
 float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 int n = 6;
 float *x;

 x = imsl_f_lin_sol_gen_min_residual (n, amultp, b,
 0);

 imsl_f_write_matrix ("Solution, x, to Ax = b", 1, n, x, 0);
}

void amultp (float *p, float *z)
{
 Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};
 int n = 6;
 int nz = 15;

 imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, p,
 IMSL_RETURN_USER_VECTOR, z,
 0);
}

76 � lin_sol_gen_min_residual IMSL C/Math/Library

Chapter 1: Linear Systems lin_sol_gen_min_residual � 77

Output
 Solution, x, to Ax = b
 1 2 3 4 5 6
 1 2 3 4 5 6

Example 2
In this example, the same system given in the first example is solved. This time a
preconditioner is provided. The preconditioned matrix is chosen as the diagonal of A.

#include <imsl.h>

void amultp (float*, float*);
void precond (float*, float*);

main()
{
 float b[] = {10.0, 7.0, 45.0, 33.0, -34.0, 31.0};
 int n = 6;
 float *x;
 int maxit = 1000;

 x = imsl_f_lin_sol_gen_min_residual (n, amultp, b,
 IMSL_MAX_ITER, &maxit,
 IMSL_PRECOND, precond,
 0);

 imsl_f_write_matrix ("Solution, x, to Ax = b", 1, n, x, 0);
 printf ("\nNumber of iterations taken = %d\n", maxit);
}

 /* Set z = Ap */

void amultp (float *p, float *z)
{
 static Imsl_f_sparse_elem a[] = {0, 0, 10.0,
 1, 1, 10.0,
 1, 2, -3.0,
 1, 3, -1.0,
 2, 2, 15.0,
 3, 0, -2.0,
 3, 3, 10.0,
 3, 4, -1.0,
 4, 0, -1.0,
 4, 3, -5.0,
 4, 4, 1.0,
 4, 5, -3.0,
 5, 0, -1.0,
 5, 1, -2.0,
 5, 5, 6.0};
 int n = 6;
 int nz = 15;

 imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, p,
 IMSL_RETURN_USER_VECTOR, z,
 0);

78 � lin_sol_def_cg IMSL C/Math/Library

}
 /* Solve Mz = r */

void precond (float *r, float *z)
{
 static float diagonal_inverse[] =
 {0.1, 0.1, 1.0/15.0, 0.1, 1.0, 1.0/6.0};
 int n = 6;
 int i;

 for (i=0; i<n; i++)
 z[i] = diagonal_inverse[i]*r[i];
}

Output
 Solution, x, to Ax = b
 1 2 3 4 5 6
 1 2 3 4 5 6

Number of iterations taken = 5

lin_sol_def_cg
Solves a real symmetric definite linear system using a conjugate gradient method.
Using optional arguments, a preconditioner can be supplied.

Synopsis

#include <imsl.h>

float *imsl_f_lin_sol_def_cg (int n, void amultp (), float *b, ..., 0)

The type double function is imsl_d_lin_sol_def_cg.

Required Arguments

int n (Input)
Number of rows in the matrix.

void amultp (float *p, float *z)
User-supplied function which computes z = Ap.

float *b (Input)
Vector of length n containing the right-hand side.

Return Value
A pointer to the solution x of the linear system Ax = b. To release this space, use free.
If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

Chapter 1: Linear Systems lin_sol_def_cg � 79

float *imsl_f_lin_sol_def_cg (int n, void amultp(), float *b,
IMSL_RETURN_USER, float x[],
IMSL_MAX_ITER, int *maxit,
IMSL_REL_ERR, float relative_error,
IMSL_PRECOND, void precond(),
IMSL_JACOBI, float *diagonal,
IMSL_FCN_W_DATA, void amultp(), void *data,
IMSL_PRECOND_W_DATA, void precond(), void *data,
0)

Optional Arguments
IMSL_RETURN_USER, float x[] (Output)

A user-allocated array of length n containing the solution x.

IMSL_MAX_ITER, int *maxit (Input/Output)
A pointer to an integer, initially set to the maximum number of iterations
allowed. On exit, the number of iterations used is returned.

IMSL_REL_ERR, float relative_error (Input)
The relative error desired.
Default: relative_error = sqrt(imsl_f_machine(4))

IMSL_PRECOND, void precond (float *r, float *z) (Input)
User supplied function which sets z = M-1r, where M is the preconditioning
matrix.

IMSL_JACOBI, float diagonal[] (Input)
Use the Jacobi preconditioner, i.e. M = diag(A). The user-supplied vector
diagonal should be set so that diagonal[i] = Ai,i.

IMSL_FCN_W_DATA, void amultp (float *p, float *z, void *data), void *data,
(Input)
User supplied function which computes z = Ap, which also accepts a pointer to
data that is supplied by the user. data is a pointer to the data to be passed to
the user-supplied function. See the Introduction, Passing Data to User-
Supplied Functions at the beginning of this manual for more details.

IMSL_PRECOND_W_DATA, void precond (float *r, float *z, void *data), void
*data, (Input)
User supplied function which sets z = M-1r, where M is the preconditioning
matrix, which also accepts a pointer to data that is supplied by the user. data
is a pointer to the data to be passed to the user-supplied function. See the
Introduction, Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

Description
The function imsl_f_lin_sol_def_cg solves the symmetric definite linear system
Ax = b using the conjugate gradient method with optional preconditioning. This method
is described in detail by Golub and Van Loan (1983, Chapter 10), and in Hageman and
Young (1981, Chapter 7).

The preconditioning matrix M is a matrix that approximates A, and for which the linear
system Mz = r is easy to solve. These two properties are in conflict; balancing them is a
topic of much current research. In the default use of imsl_f_lin_sol_def_cg, M = I.
If the option IMSL_JACOBI is selected, M is set to the diagonal of A.

The number of iterations needed depends on the matrix and the error tolerance. As a
rough guide,

for 1n n� �itmax �

See the references mentioned above for details.

Let M be the preconditioning matrix, let b, p, r, x, and z be vectors and let � be the
desired relative error. Then the algorithm used is as follows:

� � � �

� � � �

� �� �

� �� �

0 0

1

1

1 1

1 1

2 2

2 2

1

for 1, ,

if 1 then
1

else

/

endif

/

if || || 1 || || then

recompute

if || || 1 || ||

k k

k

k k

T T
k k k k k

k k k k

k

T T
k k k k k

k k k k

k k k k

k k

k k

p x
r b Ap

k
z M r

k

p z

z r z r

p z p

z Ap

z z z p

x x p
r r z

z x

z x

�

�

�

�

�

�

�

� �

�

� �

�

� �

� �

� �

�

� �

�

�

�

�

�

�

� �

�

�

� �

� �

� �

� �

itmax�

exit

endif
endfor

80 � lin_sol_def_cg IMSL C/Math/Library

Here
 is an estimate of
"(G), the largest eigenvalue of the iteration matrix
G = I �M-1 A. The stopping criterion is based on the result (Hageman and Young 1981,
pp. 148-151)

� �max

1
1

k kM M

kM M

x x z
x G�

� �� � �
� � �� �� �� ��� �� �x

where
2 T
M

x x M� x

It is also known that

� � � � � �max 1 max 2 max 1T T G� � �� � �� �

where the Tn are the symmetric, tridiagonal matrices

1 2

2 2 3

3 3
nT

� �

� � �

� �

� �
� �
� ��
� �
� �
� �� �

�

� �

with �k = 1 � �k/�k-1 � 1/�k, �1 = 1 � 1/�1 and

1/k kB� �
�

� k

Usually the eigenvalue computation is needed for only a few of the iterations.

Example 1
In this example, the solution to a linear system is found. The coefficient matrix is stored
as a full matrix.

#include <imsl.h>

static void amultp (float*, float*);

void main()
{
 int n = 3;
 float b[] = {27.0, -78.0, 64.0};
 float *x;

 x = imsl_f_lin_sol_def_cg (n, amultp, b, 0);

 imsl_f_write_matrix ("x", 1, n, x, 0);
}

static void amultp (float *p, float *z)
{
 static float a[] = {1.0, -3.0, 2.0,

Chapter 1: Linear Systems lin_sol_def_cg � 81

82 � lin_sol_def_cg IMSL C/Math/Library

 -3.0, 10.0, -5.0,
 2.0, -5.0, 6.0};
 int n = 3;

 imsl_f_mat_mul_rect ("A*x",
 IMSL_A_MATRIX, n, n, a,
 IMSL_X_VECTOR, n, p,
 IMSL_RETURN_USER, z,
 0);
}

Output
 x
 1 2 3
 1 -4 7

Example 2
In this example, two different preconditioners are used to find the solution of a linear
system which occurs in a finite difference solution of Laplace’s equation on a regular
c � c grid, c = 100. The matrix is A = E (c2, c). For the first solution, select Jacobi
preconditioning and supply the diagonal, so M = diag (A). The number of iterations
performed and the maximum absolute error are printed. Next, use a more complicated
preconditioning matrix, M, consisting of the symmetric tridiagonal part of A.

Notice that the symmetric positive definite band solver is used to factor M once, and
subsequently just perform forward and back solves. Again, the number of iterations
performed and the maximum absolute error are printed. Note the substantial reduction
in iterations.

#include <imsl.h>

static void amultp (float*, float*);
static void precond (float*, float*);
static Imsl_f_sparse_elem *a;
static int n = 2500;
static int c = 50;
static int nz;

void main()
{
 int maxit = 1000;
 int i;
 int index;
 float *b;
 float *x;
 float *mod_five;
 float *diagonal;
 float norm;

 n = c*c;
 mod_five = (float*) malloc (n*sizeof(*mod_five));
 diagonal = (float*) malloc (n*sizeof(*diagonal));
 b = (float*) malloc (n*sizeof(*b));

Chapter 1: Linear Systems lin_sol_def_cg � 83

 /* Generate coefficient matrix */

 a = imsl_f_generate_test_coordinate (n, c, &nz, 0);

 /* Set a predetermined answer and diagonal */

 for (i=0; i<n; i++) {
 mod_five[i] = (float) (i % 5);
 diagonal[i] = 4.0;
 }

 /* Get right hand side */

 amultp (mod_five, b);

 /* Solve with jacobi preconditioning */

 x = imsl_f_lin_sol_def_cg (n, amultp, b,
 IMSL_MAX_ITER, &maxit,
 IMSL_JACOBI, diagonal,
 0);

 /* Find max absolute error, print results */

 norm = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 printf ("iterations = %d, norm = %e\n", maxit, norm);
 free (x);

 /* Solve same system, with different preconditioner */

 x = imsl_f_lin_sol_def_cg (n, amultp, b,
 IMSL_MAX_ITER, &maxit,
 IMSL_PRECOND, precond,
 0);

 norm = imsl_f_vector_norm (n, x,
 IMSL_SECOND_VECTOR, mod_five,
 IMSL_INF_NORM, &index,
 0);
 printf ("iterations = %d, norm = %e\n", maxit, norm);
}

 /* Set z = Ap */

static void amultp (float *p, float *z)
{
 imsl_f_mat_mul_rect_coordinate ("A*x",
 IMSL_A_MATRIX, n, n, nz, a,
 IMSL_X_VECTOR, n, p,
 IMSL_RETURN_USER_VECTOR, z,
 0);
}

 /* Solve Mz = r */

84 � lin_least_squares_gen IMSL C/Math/Library

static void precond (float *r, float *z)
{
 static float *m;
 static float *factor;
 static int first = 1;
 float *null = (float*) 0;

 if (first) {

 /* Factor the first time through */

 m = imsl_f_generate_test_band (n, 1,
 IMSL_SYMMETRIC_STORAGE, 0);
 imsl_f_lin_sol_posdef_band (n, m, 1, null,
 IMSL_FACTOR, &factor,
 IMSL_FACTOR_ONLY,
 0);
 first = 1;
 }

 /* Perform the forward and back solves */

 imsl_f_lin_sol_posdef_band (n, m, 1, r,
 IMSL_FACTOR_USER, factor,
 IMSL_SOLVE_ONLY,
 IMSL_RETURN_USER, z,
 0);
}

Output
iterations = 115, norm = 1.382828e-05
iterations = 75, norm = 7.319450e-05

lin_least_squares_gen
Solves a linear least-squares problem Ax = b. Using optional arguments, the QR
factorization of A, AP = QR, and the solve step based on this factorization can be
computed.

Synopsis
#include <imsl.h>
float *imsl_f_lin_least_squares_gen (int m, int n, float a[], float b[],

�, 0)

The type double procedure is imsl_d_lin_least_squares_gen.

Required Arguments

int m (Input)
Number of rows in the matrix.

Chapter 1: Linear Systems lin_least_squares_gen � 85

int n (Input)
Number of columns in the matrix.

float a[] (Input)
Array of size m � n containing the matrix.

float b[] (Input)
Array of size m containing the right-hand side.

Return Value
If no optional arguments are used, function imsl_f_lin_least_squares_gen
returns a pointer to the solution x of the linear least-squares problem Ax = b. To release
this space, use free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_least_squares_gen (int m, int n, float a[], float b[],

IMSL_A_COL_DIM, int a_col_dim,
IMSL_RETURN_USER, float x[],
IMSL_BASIS, float tol, int *kbasis,
IMSL_RESIDUAL, float **p_res,
IMSL_RESIDUAL_USER, float res[],
IMSL_FACTOR, float **p_qraux, float **p_qr,
IMSL_FACTOR_USER, float qraux[], float qr[],
IMSL_FAC_COL_DIM, int qr_col_dim,
IMSL_Q, float **p_q,
IMSL_Q_USER, float q[],
IMSL_Q_COL_DIM, int q_col_dim,
IMSL_PIVOT, int pvt[],
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
0)

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

The column dimension of the array a.
Default: a_col_dim = n

IMSL_RETURN_USER, float x[] (Output)
A user-allocated array of size n containing the least-squares solution x. If
IMSL_RETURN_USER is used, the return value of the function is a pointer to
the array x.

IMSL_BASIS, float tol, int *kbasis (Input, Input/Output)
tol: Nonnegative tolerance used to determine the subset of columns of A to
be included in the solution.

Default: tol = sqrt (imsl_amach(4))

86 � lin_least_squares_gen IMSL C/Math/Library

kbasis: Integer containing the number of columns used in the solution.
kbasis = k if |rk+1,k+1| < |tol|*|r1,1| and |ri,i|� tol*|r1,1| for i = 1, 2, �, k. For
more information on the use of this option, see “Description” on page 87.

Default: kbasis = min (m, n)

IMSL_RESIDUAL, float **p_res (Output)
The address of a pointer to an array of size m containing the residual vector
b � Ax. On return, the necessary space is allocated by the function. Typically,
float *p_res is declared, and &p_res is used as an argument.

IMSL_RESIDUAL_USER, float res[] (Output)
A user-allocated array of size m containing the residual vector b � Ax.

IMSL_FACTOR, float **p_qraux, float **p_qr (Output)
**p_qraux: The address of a pointer qraux to an array of size n containing
the scalars �k of the Householder transformations in the first min (m, n)
positions. On return, the necessary space is allocated by the function.
Typically, float *qraux is declared, and &qraux is used as an argument.
**p_qr: The address of a pointer to an array of size m � n containing the
Householder transformations that define the decomposition. The strictly
lower-triangular part of this array contains the information to construct Q, and
the upper-triangular part contains R. On return, the necessary space is
allocated by the function. Typically, float *qr is declared, and &qr is used as
an argument.

IMSL_FACTOR_USER, float qraux[], float qr[] (Input /Output)
qraux[]: A user-allocated array of size n containing the scalars �k of the
Householder transformations in the first min (m, n) positions.
qr[]: A user-allocated array of size m � n containing the Householder
transformations that define the decomposition. The strictly lower-triangular
part of this array contains the information to construct Q. The upper-triangular
part contains R. If the data in a is not needed, qr can share the same storage
locations as a by using a instead of the separate argument qr.
These parameters are “Input” if IMSL_SOLVE is specified; “Output” otherwise.

IMSL_FAC_COL_DIM, int qr_col_dim (Input)
The column dimension of the array containing QR factorization.
Default: qr_col_dim = n

IMSL_Q, float **p_q (Output)
The address of a pointer to an array of size m � m containing the orthogonal
matrix of the factorization. On return, the necessary space is allocated by the
function. Typically, float *q is declared, and &q is used as an argument.

IMSL_Q_USER, float q[] (Output)
A user-allocated array of size m � m containing the orthogonal matrix Q of the
QR factorization.

IMSL_Q_COL_DIM, int q_col_dim (Input)
The column dimension of the array containing the Q matrix of the
factorization.
Default: q_col_dim = m

IMSL_PIVOT, int pvt[] (Input/Output)
Array of size n containing the desired variable order and usage information.
The argument is used with IMSL_FACTOR_ONLY or IMSL_SOLVE_ONLY.

On input, if pvt [k � 1] > 0, then column k of A is an initial column. If pvt
[k � 1] = 0, then the column of A is a free column and can be interchanged in
the column pivoting. If pvt [k � 1] < 0, then column k of A is a final column.
If all columns are specified as initial (or final) columns, then no pivoting is
performed. (The permutation matrix P is the identity matrix in this case.)

On output, pvt [k � 1] contains the index of the column of the original matrix
that has been interchanged into column k.

Default: pvt [k � 1] = 0, k = 1, �, n

IMSL_FACTOR_ONLY
Compute just the QR factorization of the matrix AP with the permutation
matrix P defined by pvt and by further pivoting involving free columns. If
IMSL_FACTOR_ONLY is used, the additional arguments IMSL_PIVOT and
IMSL_FACTOR are required. In that case, the required argument b is ignored,
and the returned value of the function is NULL.

IMSL_SOLVE_ONLY
Compute the solution to the least-squares problem Ax = b given the QR
factorization previously computed by this function. If IMSL_SOLVE_ONLY is
used, arguments IMSL_FACTOR, IMSL_PIVOT, and IMSL_BASIS are required,
and the required argument a is ignored.

Description
The function imsl_f_lin_least_squares_gen solves a system of linear least-
squares problems Ax = b with column pivoting. It computes a QR factorization of the
matrix AP, where P is the permutation matrix defined by the pivoting, and computes the
smallest integer k satisfying |rk+1, k+1| < |tol|*|r1,1| to the output variable kbasis.
Householder transformations

T
k k k kQ l u u Q�� �

k = 1, �, min (m � 1, n)are used to compute the factorization. The decomposition is
computed in the form Q$(m-1, n)�Q1AP = R, so AP = QR where Q = Q1�Q$(m-1, n).
Since each Householder vector uk has zeros in the first k � 1 entries, it is stored as part of
column k of qr. The upper-trapezoidal matrix R is stored in the upper-trapezoidal part of
the first min (m, n) rows of qr. The solution x to the least-squares problem is computed
by solving the upper-triangular system of linear equations

Chapter 1: Linear Systems lin_least_squares_gen � 87

88 � lin_least_squares_gen IMSL C/Math/Library

R(1:k, 1:k) y (1:k) = (QTb) (1:k) with k = kbasis. The solution is completed by setting
y(k + 1 : n) to zero and rearranging the variables, x = Py.

When IMSL_FACTOR_ONLY is specified, the function computes the QR factorization of
AP with P defined by the input pvt and by column pivoting among ‘‘free’’ columns.
Before the factorization, initial columns are moved to the beginning of the array a and
the final columns to the end. Both initial and final columns are not permuted further
during the computation. Just the free columns are moved.

If IMSL_SOLVE_ONLY is specified, then the function computes the least-squares
solution to Ax = b given the QR factorization previously defined. There are kbasis
columns used in the solution. Hence, in the case that all columns are free, x is computed
as described in the default case.

Examples

Example 1
This example illustrates the least-squares solution of four linear equations in three
unknowns using column pivoting. The problem is equivalent to least-squares quadratic
polynomial fitting to four data values. Write the polynomial as p(t) = x1 + tx2 + t2x3 and
the data pairs (ti, bi), ti = 2i, i = 1, 2, 3, 4. A pointer to the solution to Ax = b is returned
by the function imsl_f_lin_least_squares_gen.

#include <imsl.h>

float a[] = {1.0, 2.0, 4.0,
 1.0, 4.0, 16.0,
 1.0, 6.0, 36.0,
 1.0, 8.0, 64.0};

float b[] = {4.999, 9.001, 12.999, 17.001};

main()
{
 int m = 4, n = 3;
 float *x;
 /* Solve Ax = b for x */

 x = imsl_f_lin_least_squares_gen (m, n, a, b, 0);

 /* Print x */
 imsl_f_write_matrix ("Solution vector", 1, n, x, 0);
}

Output
Solution vector
 1 2 3
0.999 2.000 0.000

Chapter 1: Linear Systems lin_least_squares_gen � 89

Example 2
This example uses the same coefficient matrix A as in the initial example. It computes
the QR factorization of A with column pivoting. The final and free columns are
specified by pvt and the column pivoting is done only among the free columns.

#include <imsl.h>

float a[] = {1.0, 2.0, 4.0,
 1.0, 4.0, 16.0,
 1.0, 6.0, 36.0,
 1.0, 8.0, 64.0};

int pvt[] = {0, 0, -1};

main()
{
 int m = 4, n = 3;
 float *x, *b;
 float *p_qraux, *p_qr;
 float *p_q;
 /* Compute the QR factorization */
 /* of A with partial column */
 /* pivoting */
 x = imsl_f_lin_least_squares_gen (m, n, a, b,
 IMSL_PIVOT, pvt,
 IMSL_FACTOR, &p_qraux, &p_qr,
 IMSL_Q, &p_q,
 IMSL_FACTOR_ONLY,
 0);

 /* Print Q */
 imsl_f_write_matrix ("The matrix Q", m, m, p_q, 0);

 /* Print R */
 imsl_f_write_matrix ("The matrix R", m, n, p_qr,
 IMSL_PRINT_UPPER,
 0);

 /* Print pivots */
 imsl_i_write_matrix ("The Pivot Sequence", 1, n, pvt, 0);

}

Output
 The matrix Q
 1 2 3 4
1 -0.1826 -0.8165 0.5000 -0.2236
2 -0.3651 -0.4082 -0.5000 0.6708
3 -0.5477 0.0000 -0.5000 -0.6708
4 -0.7303 0.4082 0.5000 0.2236

 The matrix R
 1 2 3
1 -10.95 -1.83 -73.03
2 -0.82 16.33
3 8.00

90 � lin_least_squares_gen IMSL C/Math/Library

The Pivot Sequence
 1 2 3
 2 1 3

Example 3
This example computes the QR factorization with column pivoting for the matrix A of
the initial example. It computes the least-squares solutions to Ax = bi for i = 1, 2, 3.

#include <imsl.h>

float a[] = {1.0, 2.0, 4.0,
 1.0, 4.0, 16.0,
 1.0, 6.0, 36.0,
 1.0, 8.0, 64.0};

float b[] = {4.999, 9.001, 12.999, 17.001,
 2.0, 3.142, 5.11, 0.0,
 1.34, 8.112, 3.76, 10.99};

int pvt[] = {0, 0, 0};

main()
{
 int m = 4, n = 3;
 int i, k = 3;
 float *p_qraux, *p_qr;
 float tol = 1.e-4;
 int *kbasis;
 float *x, *p_res;
 /* Factor A with the given pvt */
 /* setting all variables to */
 /* be free */
 imsl_f_lin_least_squares_gen (m, n, a, b,
 IMSL_BASIS, tol, &kbasis,
 IMSL_PIVOT, pvt,
 IMSL_FACTOR, &p_qraux, &p_qr,
 IMSL_FACTOR_ONLY,
 0);
 /* Print some factorization */
 /* information*/

 printf("Number of Columns in the base\n%2d", kbasis);
 imsl_f_write_matrix ("Upper triangular R Matrix", m, n, p_qr,
 IMSL_PRINT_UPPER,
 0);
 imsl_i_write_matrix ("The output column order ", 1, n, pvt, 0);

 /* Solve Ax = b for each x */
 /* given the factorization */
 for (i = 0; i < k; i++) {
 x = imsl_f_lin_least_squares_gen (m, n, a, &b[i*m],
 IMSL_BASIS, tol, &kbasis,
 IMSL_PIVOT, pvt,
 IMSL_FACTOR_USER, p_qraux, p_qr,
 IMSL_RESIDUAL, &p_res,
 IMSL_SOLVE_ONLY,
 0);
 /* Print right-hand side, b */

Chapter 1: Linear Systems lin_least_squares_gen � 91

 /* and solution, x */
 imsl_f_write_matrix ("Right-hand side, b ", 1, m,
 &b[i*m], 0);
 imsl_f_write_matrix ("Solution, x ", 1, n, x, 0);
 /* Print residuals, b - Ax */
 imsl_f_write_matrix ("Residual, b - Ax ", 1, m, p_res,
 0);
 }

}

Output
Number of Columns in the base
 3
 Upper triangular R Matrix
 1 2 3
1 -75.26 -10.63 -1.59
2 -2.65 -1.15
3 0.36

The output column order
 1 2 3
 3 2 1

 Right-hand side, b
 1 2 3 4
 5 9 13 17

 Solution, x
 1 2 3
 0.999 2.000 0.000

 Residual, b - Ax
 1 2 3 4
 -0.0004 0.0012 -0.0012 0.0004

 Right-hand side, b
 1 2 3 4
 2.000 3.142 5.110 0.000

 Solution, x
 1 2 3
 -4.244 3.706 -0.391

 Residual, b - Ax
 1 2 3 4
 0.395 -1.186 1.186 -0.395

 Right-hand side, b
 1 2 3 4
 1.34 8.11 3.76 10.99

 Solution, x
 1 2 3
 0.4735 0.9437 0.0286

92 � lin_lsq_lin_constraints IMSL C/Math/Library

 Residual, b - Ax
 1 2 3 4
 -1.135 3.406 -3.406 1.135

Fatal Errors
IMSL_SINGULAR_TRI_MATRIX The input triangular matrix is singular. The index of

the first zero diagonal term is #.

lin_lsq_lin_constraints
Solves a linear least-squares problem with linear constraints.

Synopsis

#include <imsl.h>

float *imsl_f_lin_lsq_lin_constraints (int nra, int nca, int ncon, float
a[], float b[], float c[], float bl[], float bu[], int con_type[],
float xlb[], float xub[], ..., 0)

The type double function is imsl_d_lin_lsq_lin_constraints.

Required Arguments

int nra (Input)
Number of least-squares equations.

int nca (Input)
Number of variables.

int ncon (Input)
Number of constraints.

float a[] (Input)
Array of size nra � nca containing the coefficients of the nra least-squares
equations.

float b[] (Input)
Array of length nra containing the right-hand sides of the least-squares
equations.

float c[] (Input)
Array of size ncon � nca containing the coefficients of the ncon constraints.

float bl[] (Input)
Array of length ncon containing the lower limit of the general constraints. If
there is no lower limit on the i-th constraint, then bl[i] will not be referenced.

float bu[] (Input)
Array of length ncon containing the upper limit of the general constraints. If

Chapter 1: Linear Systems lin_lsq_lin_constraints � 93

there is no upper limit on the i-th constraint, then bu[i] will not be referenced.
If there is no range constraint, bl and bu can share the same storage.

int con_type[] (Input)
Array of length ncon indicating the type of constraints exclusive of simple
bounds, where con_type[i] = 0, 1, 2, 3 indicates =, <=, >= and range
constraints, respectively.

float xlb[] (Input)
Array of length nca containing the lower bound on the variables. If there is no
lower bound on the i-th variable, then xlb[i] should be set to 1.0e30.

float xub[] (Input)
Array of length nca containing the upper bound on the variables. If there is no
lower bound on the i-th variable, then xub[i] should be set to �1.0e30.

Return Value
A pointer to the to a vector of length nca containing the approximate solution. To
release this space, use free. If no solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_lin_lsq_lin_constraints (int nra, int nca, int ncon, float
a[], float b[], float c[], float bl[], float bu[], int con_type[],
float xlb[], float xub[],
IMSL_RETURN_USER, float x[],
IMSL_RESIDUAL, float **residual,
IMSL_RESIDUAL_USER, float residual_user[],
IMSL_PRINT,
IMSL_MAX_ITER, int max_iter,
IMSL_REL_FCN_TOL, float rel_tol,
IMSL_ABS_FCN_TOL, float abs_tol,
0)

Optional Arguments
IMSL_RETURN_USER, float x[] (Output)

Store the solution in the user supplied vector x of length nca.

IMSL_RESIDUAL, float **residual (Output)
The address of a pointer to an array containing the residuals b � Ax of the
least-squares equations at the approximate solution.

IMSL_RESIDUAL_USER, float residual_user[] (Output)
Store the residuals in the user-supplied vector of length nra.

IMSL_PRINT,
Debug output flag. Choose this option if more detailed output is desired.

94 � lin_lsq_lin_constraints IMSL C/Math/Library

IMSL_MAX_ITER, int max_iter (Input)
Set the maximum number of add/drop iterations.
Default: max_iter = 5*max(nra, nca)

IMSL_REL_FCN_TOL, float rel_tol (Input)
Relative rank determination tolerance to be used.
Default: rel_tol = sqrt(imsl_f_machine(4))

IMSL_ABS_FCN_TOL, float abs_tol (Input)
Absolute rank determination tolerance to be used.
Default: abs_tol = sqrt(imsl_f_machine(4))

Description
The function imsl_f_lin_lsq_lin_constraints solves linear least-squares
problems with linear constraints. These are systems of least-squares equations of the
form

Ax � b

subject to

bl � Cx � bu

xl � x � xu

Here A is the coefficient matrix of the least-squares equations, b is the right-hand side,
and C is the coefficient matrix of the constraints. The vectors bl, bu, xl and xu are the
lower and upper bounds on the constraints and the variables, respectively. The system
is solved by defining dependent variables y � Cx and then solving the least-squares
system with the lower and upper bounds on x and y. The equation Cx � y = 0 is a set of
equality constraints. These constraints are realized by heavy weighting, i.e., a penalty
method, Hanson (1986, pp. 826-834).

Examples

Example 1
In this example, the following problem is solved in the least-squares sense:

3x1 + 2x2 + x3 = 3.3

4x1 +2x2 + x3 = 2.2

2x1 + 2x2 + x3 = 1.3

Chapter 1: Linear Systems lin_lsq_lin_constraints � 95

x1 + x2 + x3 = 1.0

Subject to

x1 = x2 + x3 � 1

0 � x1 � 0.5

0 � x2 � 0.5

0 � x3 � 0.5

#include <imsl.h>

main()
{
 int nra = 4;
 int nca = 3;

 int ncon = 1;
 float *x;
 float a[] = {3.0, 2.0, 1.0,
 4.0, 2.0, 1.0,
 2.0, 2.0, 1.0,
 1.0, 1.0, 1.0};
 float b[] = {3.3, 2.3, 1.3, 1.0};
 float c[] = {1.0, 1.0, 1.0};
 float xlb[] = {0.0, 0.0, 0.0};
 float xub[] = {0.5, 0.5, 0.5};
 int con_type[] = {1};
 float bc[] = {1.0};

 x = imsl_f_lin_lsq_lin_constraints (nra, nca, ncon, a, b, c,
 bc, bc, con_type, xlb, xub, 0);

 imsl_f_write_matrix ("Solution", 1, nca, x, 0);
}

Output
 Solution
 1 2 3
 0.5 0.3 0.2

Example 2
The same problem solved in the first example is solved again. This time residuals of the
least-squares equations at the approximate solution are returned, and the norm of the
residual vector is printed. Both the solution and residuals are returned in user-supplied
space.

#include <imsl.h>

96 � lin_svd_gen IMSL C/Math/Library

main()
{
 int nra = 4;
 int nca = 3;
 int ncon = 1;
 float x[3];
 float residual[4];
 float a[] = {3.0, 2.0, 1.0,
 4.0, 2.0, 1.0,
 2.0, 2.0, 1.0,
 1.0, 1.0, 1.0};
 float b[] = {3.3, 2.3, 1.3, 1.0};
 float c[] = {1.0, 1.0, 1.0};
 float xlb[] = {0.0, 0.0, 0.0};
 float xub[] = {0.5, 0.5, 0.5};
 int con_type[] = {1};
 float bc[] = {1.0};

 imsl_f_lin_lsq_lin_constraints (nra, nca, ncon, a, b, c,
 bc, bc, con_type, xlb, xub,
 IMSL_RETURN_USER, x,
 IMSL_RESIDUAL_USER, residual,
 0);

 imsl_f_write_matrix ("Solution", 1, nca, x, 0);
 imsl_f_write_matrix ("Residual", 1, nra, residual, 0);
 printf ("\n\nNorm of residual = %f\n",
 imsl_f_vector_norm (nra, residual, 0));
}

Output
 Solution
 1 2 3
 0.5 0.3 0.2

 Residual
 1 2 3 4
 -1.0 0.5 0.5 -0.0

Norm of residual = 1.224745

lin_svd_gen
Computes the SVD, A = USVT, of a real rectangular matrix A. An approximate
generalized inverse and rank of A also can be computed.

Synopsis
#include <imsl.h>
float *imsl_f_lin_svd_gen (int m, int n, float a[], �, 0)

Chapter 1: Linear Systems lin_svd_gen � 97

The type double procedure is imsl_d_lin_svd_gen.

Required Arguments

int m (Input)
Number of rows in the matrix.

int n (Input)
Number of columns in the matrix.

float a[] (Input)
Array of size m � n containing the matrix.

Return Value
If no optional arguments are used, imsl_f_lin_svd_gen returns a pointer to an array
of size min (m, n) containing the ordered singular values of the matrix. To release this
space, use free. If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_svd_gen (int m, int n, float a[],

IMSL_A_COL_DIM, int a_col_dim,
IMSL_RETURN_USER, float s[],
IMSL_RANK, float tol, int *rank,
IMSL_U, float **p_u,
IMSL_U_USER, float u[],
IMSL_U_COL_DIM, int u_col_dim,
IMSL_V, float **p_v,
IMSL_V_USER, float v[],
IMSL_V_COL_DIM, int v_col_dim,
IMSL_INVERSE, float **p_gen_inva,
IMSL_INVERSE_USER, float gen_inva[],
IMSL_INV_COL_DIM, int gen_inva_col_dim,
0)

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

The column dimension of the array a.
Default: a_col_dim = n

IMSL_RETURN_USER, float s[] (Output)
A user-allocated array of size min (m, n) containing the singular values of A in
its first min (m, n) positions in nonincreasing order. If IMSL_RETURN_USER is
used, the return value of imsl_f_lin_svd_gen is s.

IMSL_RANK, float tol, int *rank (Input/Output)

98 � lin_svd_gen IMSL C/Math/Library

tol: Scalar containing the tolerance used to determine when a singular value
is negligible and replaced by the value zero. If tol > 0, then a singular value
si,i is considered negligible if si,i � tol. If tol < 0, then a singular value
si,i is considered negligible if si,i � |tol|*||A||¥. In this case, |tol| should be
an estimate of relative error or uncertainty in the data.

*rank: Integer containing an estimate of the rank of A.

IMSL_U, float **p_u (Output)
**p_u: The address of a pointer to an array of size m � min (m, n) containing
the left- singular vectors of A. On return, the necessary space is allocated by
imsl_f_lin_svd_gen. Typically, float *p_u is declared, and &p_u is used
as an argument.

IMSL_U_USER, float u[] (Output)
u[]: A user-allocated array of size m � min (m, n)containing the left-singular
vectors of A. If m � n, the left-singular vectors can be returned using the
storage locations of the array a.

IMSL_U_COL_DIM, int u_col_dim (Input)
The column dimension of the array containing the left-singular vectors.
Default: u_col_dim = min (m, n)

IMSL_V, float **p_v (Output)
**p_v: The address of a pointer to an array of size n � min (m, n) containing
the right singular vectors of A. On return, the necessary space is allocated by
imsl_f_lin_svd_gen. Typically, float *p_v is declared, and &p_v is used
as an argument.

IMSL_V_USER, float v[] (Output)
v[]: A user-allocated array of size n � min (m, n)containing the right-singular
vectors of A. The right-singular vectors can be returned using the storage
locations of the array a. Note that the return of the left- and right-singular
vectors cannot use the storage locations of a simultaneously.

IMSL_V_COL_DIM, int v_col_dim (Input)
The column dimension of the array containing the right-singular vectors.
Default: v_col_dim = min (m, n)

IMSL_INVERSE, float **p_gen_inva (Output)
The address of a pointer to an array of size n � m containing the generalized
inverse of the matrix A. On return, the necessary space is allocated by
imsl_f_lin_svd_gen. Typically, float *p_gen_inva is declared, and
&p_gen_inva is used as an argument.

IMSL_INVERSE_USER, float gen_inva[] (Output)
A user-allocated array of size n � m containing the general inverse of the
matrix A.

IMSL_INV_COL_DIM, int gen_inva_col_dim (Input)
The column dimension of the array containing the general inverse of the

matrix A.
Default: gen_inva_col_dim = m

Description
The function imsl_f_lin_svd_gen computes the singular value decomposition of a
real matrix A. It first reduces the matrix A to a bidiagonal matrix B by pre- and post-
multiplying Householder transformations. Then, the singular value decomposition of
B is computed using the implicit-shifted QR algorithm. An estimate of the rank of the
matrix A is obtained by finding the smallest integer k such that sk,k � tol or
sk,k � |tol|*||A||¥. Since si+1, i+1 � si,i, it follows that all the si, i satisfy the same
inequality for i = k, �, min (m, n) � 1. The rank is set to the value k � 1. If A = USVT,
its generalized inverse is A+ = VS+ UT. Here,

� �1 1
1,1 ,, , ,0, ,0i iS diag s s� � �

� � �

Only singular values that are not negligible are reciprocated. If IMSL_INVERSE or
IMSL_INVERSE_USER is specified, the function first computes the singular value
decomposition of the matrix A. The generalized inverse is then computed. The function
imsl_f_lin_svd_gen fails if the QR algorithm does not converge after 30 iterations
isolating an individual singular value.

Examples

Example 1
This example computes the singular values of a real 6 � 4 matrix.

#include <imsl.h>

float a[] = {1.0, 2.0, 1.0, 4.0,
 3.0, 2.0, 1.0, 3.0,
 4.0, 3.0, 1.0, 4.0,
 2.0, 1.0, 3.0, 1.0,
 1.0, 5.0, 2.0, 2.0,
 1.0, 2.0, 2.0, 3.0};

main()
{
 int m = 6, n = 4;
 float *s;
 /* Compute singular values */
 s = imsl_f_lin_svd_gen (m, n, a, 0);
 /* Print singular values */
 imsl_f_write_matrix ("Singular values", 1, n, s, 0);
}

Output
 Singular values
 1 2 3 4
11.49 3.27 2.65 2.09

Chapter 1: Linear Systems lin_svd_gen � 99

100 � lin_svd_gen IMSL C/Math/Library

Example 2
This example computes the singular value decomposition of the 6 � 4 real matrix A.
The singular values are returned in the user-provided array. The matrices U and V are
returned in the space provided by the function imsl_f_lin_svd_gen.

#include <imsl.h>

float a[] = {1.0, 2.0, 1.0, 4.0,
 3.0, 2.0, 1.0, 3.0,
 4.0, 3.0, 1.0, 4.0,
 2.0, 1.0, 3.0, 1.0,
 1.0, 5.0, 2.0, 2.0,
 1.0, 2.0, 2.0, 3.0};

main()
{
 int m = 6, n = 4;
 float s[4], *p_u, *p_v;
 /* Compute SVD */
 imsl_f_lin_svd_gen (m, n, a,
 IMSL_RETURN_USER, s,
 IMSL_U, &p_u,
 IMSL_V, &p_v,
 0);
 /* Print decomposition*/

 imsl_f_write_matrix ("Singular values, S", 1, n, s, 0);
 imsl_f_write_matrix ("Left singular vectors, U", m, n, p_u, 0);
 imsl_f_write_matrix ("Right singular vectors, V", n, n, p_v, 0);
}

Output
 Singular values, S
 1 2 3 4
 11.49 3.27 2.65 2.09

 Left singular vectors, U
 1 2 3 4
1 -0.3805 0.1197 0.4391 -0.5654
2 -0.4038 0.3451 -0.0566 0.2148
3 -0.5451 0.4293 0.0514 0.4321
4 -0.2648 -0.0683 -0.8839 -0.2153
5 -0.4463 -0.8168 0.1419 0.3213
6 -0.3546 -0.1021 -0.0043 -0.5458

 Right singular vectors, V
 1 2 3 4
1 -0.4443 0.5555 -0.4354 0.5518
2 -0.5581 -0.6543 0.2775 0.4283
3 -0.3244 -0.3514 -0.7321 -0.4851
4 -0.6212 0.3739 0.4444 -0.5261

Example 3
This example computes the rank and generalized inverse of a 3 � 2 matrix A. The rank
and the 2 � 3 generalized inverse matrix A+ are printed.

Chapter 1: Linear Systems lin_svd_gen � 101

#include <imsl.h>

float a[] = {1.0, 0.0,
 1.0, 1.0,
 100.0, -50.0};

main()
{
 int m = 3, n = 2;
 float tol;
 float gen_inva[6];
 float *s;
 int *rank;
 /* Compute generalized inverse */
 tol = 1.e-4;
 s = imsl_f_lin_svd_gen (m, n, a,
 IMSL_RANK, tol, &rank,
 IMSL_INVERSE_USER, gen_inva,
 IMSL_INV_COL_DIM, m,
 0);
 /* Print rank, singular values and */
 /* generalized inverse. */

 printf ("Rank of matrix = %2d", rank);

 imsl_f_write_matrix ("Singular values", 1, n, s, 0);

 imsl_f_write_matrix ("Generalized inverse", n, m, gen_inva,
 IMSL_A_COL_DIM, m,
 0);
}

Output
Rank of matrix = 2
 Singular values
 1 2
 111.8 1.4

 Generalized inverse
 1 2 3
1 0.100 0.300 0.006
2 0.200 0.600 -0.008

Warning Errors
IMSL_SLOWCONVERGENT_MATRIX Convergence cannot be reached after 30

iterations.

102 � lin_svd_gen (complex) IMSL C/Math/Library

lin_svd_gen (complex)
Computes the SVD, A = USVH, of a complex rectangular matrix A. An approximate
generalized inverse and rank of A also can be computed.

Synopsis
#include <imsl.h>
f_complex *imsl_c_lin_svd_gen (int m, int n, f_complex a[], �, 0)

The type d_complex function is imsl_z_lin_svd_gen.

Required Arguments

int m (Input)
Number of rows in the matrix.

int n (Input)
Number of columns in the matrix.

f_complex a[] (Input)
Array of size m � n containing the matrix.

Return Value
Using only required arguments, imsl_c_lin_svd_gen returns a pointer to a complex
array of length min (m, n) containing the singular values of the matrix. To release this
space, use free. If no value can be computed then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_lin_svd_gen (int m, int n, f_complex a[],

IMSL_A_COL_DIM, int a_col_dim,
IMSL_RETURN_USER, f_complex s[],
IMSL_RANK, float tol, int *rank,
IMSL_U, f_complex **p_u,
IMSL_U_USER, f_complex u[],
IMSL_U_COL_DIM, int u_col_dim,
IMSL_V, f_complex **p_v,
IMSL_V_USER, f_complex v[],
IMSL_V_COL_DIM, int v_col_dim,
IMSL_INVERSE, f_complex **p_gen_inva,
IMSL_INVERSE_USER, f_complex gen_inva[],
IMSL_INV_COL_DIM, int gen_inva_col_dim,
0)

Chapter 1: Linear Systems lin_svd_gen (complex) � 103

Optional Arguments
IMSL_A_COL_DIM, int a_col_dim (Input)

The column dimension of the array a.
Default: a_col_dim = n

IMSL_RETURN_USER, f_complex s[] (Output)
A user-allocated array of length min (m, n) containing the singular values of A
in its first min (m, n) positions in nonincreasing order. The complex entries are
all real. If IMSL_RETURN_USER is used, the return value of
imsl_c_lin_svd_gen is s.

IMSL_RANK, float tol, int *rank (Input/Output)

tol: Scalar containing the tolerance used to determine when a singular value
is negligible and replaced by the value zero. If tol > 0, then a singular value
si,i is considered negligible if si,i � tol. If tol < 0, then a singular value si,i is
considered negligible if si,i � |tol|*||A||¥. In this case, should be an estimate of
relative error or uncertainty in the data.

*rank: Integer containing an estimate of the rank of A.

IMSL_U, f_complex **p_u (Output)
The address of a pointer to an array of size m � min (m, n) containing the left-
singular vectors of A. On return, the necessary space is allocated by
imsl_c_lin_svd_gen. Typically, f_complex *p_u is declared, and &p_u is
used as an argument.

IMSL_U_USER, f_complex u[] (Output)
A user-allocated array of size m � min (m, n) containing the left-singular
vectors of A. If m � n, the left-singular vectors can be returned using the
storage locations of the array a.

IMSL_U_COL_DIM, int u_col_dim (Input)
The column dimension of the array containing the left-singular vectors.
Default: u_col_dim = min (m, n)

IMSL_V, f_complex **p_v (Output)
The address of a pointer to an array of size n � min (m, n) containing the
right-singular vectors of A. On return, the necessary space is allocated by
imsl_c_lin_svd_gen. Typically, f_complex *p_v is declared,
and &p_v is used as an argument.

IMSL_V_USER, f_complex v[] (Output)
A user-allocated array of size n � min (m, n) containing the right-singular
vectors of A. The right-singular vectors can be returned using the storage
locations of the array a. Note that the return of the left and right-singular
vectors cannot use the storage locations of a simultaneously.

IMSL_V_COL_DIM, int v_col_dim (Input)
The column dimension of the array containing the right-singular vectors.
Default: v_col_dim = min (m, n)

IMSL_INVERSE, f_complex **p_gen_inva (Output)
The address of a pointer to an array of size n � m containing the generalized
inverse of the matrix A. On return, the necessary space is allocated by
imsl_c_lin_svd_gen. Typically, f_complex *p_gen_inva is declared, and
&p_gen_inva is used as an argument.

IMSL_INVERSE_USER, f_complex gen_inva[] (Output)
A user-allocated array of size n � m containing the general inverse of the
matrix A.

IMSL_INV_COL_DIM, int gen_inva_col_dim (Input)
The column dimension of the array containing the general inverse of the
matrix A.
Default: gen_inva_col_dim = m

Description
The function imsl_c_lin_svd_gen computes the singular value decomposition of a
complex matrix A. It first reduces the matrix A to a bidiagonal matrix B by pre- and
post-multiplying Householder transformations. Then, the singular value decomposition
of B is computed using the implicit-shifted QR algorithm. An estimate of the rank of the
matrix A is obtained by finding the smallest integer k such that sk,k � tol or
sk,k � |tol|*||A||¥. Since si+1,i+1 � si,i, it follows that all the si,i satisfy the same inequality
for i = k, �, min (m, n) � 1. The rank is set to the value k � 1. If A = USVH, its
generalized inverse is A+ = VS+ UH.

Here,

� �1 1
1,1 ,diag , , ,0, ,0i iS s s� � �

� � �

Only singular values that are not negligible are reciprocated. If IMSL_INVERSE or
IMSL_INVERSE_USER is specified, the function first computes the singular value
decomposition of the matrix A. The generalized inverse is then computed. The function
imsl_c_lin_svd_gen fails if the QR algorithm does not converge after 30 iterations
isolating an individual singular value.

Examples

Example 1
This example computes the singular values of a 6 � 3 complex matrix.

#include <imsl.h>
 main()
{
 int m = 6, n = 3;
 f_complex *s;
 f_complex a[] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0},
 {3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0},
 {4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0},

104 � lin_svd_gen (complex) IMSL C/Math/Library

Chapter 1: Linear Systems lin_svd_gen (complex) � 105

 {2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0},
 {1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0},
 {1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}};
 /* Compute singular values */
 s = imsl_c_lin_svd_gen (m, n, a, 0);
 /* Print singular values */
 imsl_c_write_matrix ("Singular values", 1, n, s, 0);
}

Output
 Singular values
 1 2 3
(11.77, 0.00) (9.30, 0.00) (4.99, 0.00)

Example 2
This example computes the singular value decomposition of the 6 � 3 complex matrix
A. The singular values are returned in the user-provided array. The matrices U and V
are returned in the space provided by the function imsl_c_lin_svd_gen.

#include <imsl.h>

main()
{
 int m = 6, n = 3;
 f_complex s[3], *p_u, *p_v;
 f_complex a[] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0},
 {3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0},

 {4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0},
 {2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0},
 {1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0},
 {1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}};
 /* Compute SVD of a */
 imsl_c_lin_svd_gen (m, n, a,
 IMSL_RETURN_USER, s,
 IMSL_U, &p_u,
 IMSL_V, &p_v,
 0);
 /* Print decomposition factors */
 imsl_c_write_matrix ("Singular values, S", 1, n, s, 0);
 imsl_c_write_matrix ("Left singular vectors, U", m, n, p_u, 0);
 imsl_c_write_matrix ("Right singular vectors, V", n, n, p_v, 0);
 }

Output
 Singular values, S
 1 2 3
(11.77, 0.00) (9.30, 0.00) (4.99, 0.00)

 Left singular vectors, U
 1 2 3
1 (0.1968, 0.2186) (0.5011, 0.0217) (-0.2007, -0.1003)
2 (0.3443, -0.3542) (-0.2933, 0.0248) (0.1155, -0.2338)
3 (0.1457, 0.2307) (-0.5424, 0.1381) (-0.4361, -0.4407)
4 (0.3016, -0.0844) (0.2157, 0.2659) (-0.0523, -0.0894)

106 � lin_svd_gen (complex) IMSL C/Math/Library

5 (0.2283, -0.6008) (-0.1325, 0.1433) (0.3152, -0.0090)
6 (0.2876, -0.0350) (0.4377, -0.0400) (0.0458, -0.6205)

 Right singular vectors, V
 1 2 3
1 (0.6616, 0.0000) (-0.2651, 0.0000) (-0.7014, 0.0000)
2 (0.7355, 0.0379) (0.3850, -0.0707) (0.5482, 0.0624)
3 (0.0507, -0.1317) (0.1724, 0.8642) (-0.0173, -0.4509)

Example 3
This example computes the rank and generalized inverse of a 6 � 4 matrix A. The rank
and the 4 � 6 generalized inverse matrix A+ are printed.

#include <imsl.h>
main()
{
 int m = 6, n = 4;
 int *rank;
 float tol;
 f_complex gen_inv[24], *s;
 f_complex a[] = {{1.0, 2.0}, {3.0, 2.0}, {1.0,-4.0}, {1.0,0.0},
 {3.0,-2.0}, {2.0,-4.0}, {1.0, 3.0}, {0.0,1.0},
 {4.0, 3.0}, {-2.0,1.0}, {1.0, 4.0}, {0.0,0.0},
 {2.0,-1.0}, {3.0, 0.0}, {3.0,-1.0}, {2.0,1.0},
 {1.0,-5.0}, {2.0,-5.0}, {2.0, 2.0}, {1.0,3.1},
 {1.0, 2.0}, {4.0,-2.0}, {2.0,-3.0}, {1.4,1.9}};
 /* Factor a */
 tol = 1.e-4;
 s = imsl_c_lin_svd_gen (m, n, a,
 IMSL_RANK, tol, &rank,
 IMSL_INVERSE_USER, gen_inv,
 IMSL_INV_COL_DIM, m,
 0);
 /* Print rank and generalized */
 /* inverse matrix */

 printf ("Rank = %2d", rank);

 imsl_c_write_matrix ("Singular values", 1, n, s, 0);

 imsl_c_write_matrix ("Generalized inverse", n, m, gen_inv,
 IMSL_A_COL_DIM, m, 0);
}

Output
Rank = 4
 Singular values
 1 2 3
(12.13, 0.00) (9.53, 0.00) (5.67, 0.00)

 4
(1.74, 0.00)

 Generalized inverse
 1 2 3
1 (0.0266, 0.0164) (-0.0185, 0.0453) (0.0720, 0.0700)
2 (0.0061, 0.0280) (0.0820, -0.1156) (-0.0410, -0.0242)

Chapter 1: Linear Systems lin_sol_nonnegdef � 107

3 (-0.0019, -0.0572) (0.1174, 0.0812) (0.0499, 0.0463)
4 (0.0380, 0.0298) (-0.0758, -0.2158) (0.0356, -0.0557)

 4 5 6
1 (-0.0220, -0.0428) (-0.0003, -0.0709) (0.0254, 0.1050)
2 (0.0959, 0.0885) (-0.0187, 0.0287) (-0.0218, -0.1109)
3 (-0.0234, 0.1033) (-0.0769, 0.0103) (0.0810, -0.1074)
4 (0.2918, -0.0763) (0.0881, 0.2070) (-0.1531, 0.0814)

Warning Errors
IMSL_SLOWCONVERGENT_MATRIX Convergence cannot be reached after 30

iterations.

lin_sol_nonnegdef
Solves a real symmetric nonnegative definite system of linear equations Ax = b. Using
options, computes a Cholesky factorization of the matrix A, such that A = RTR = LLT.
Computes the solution to Ax = b given the Cholesky factor.

Synopsis
#include <imsl.h>
float *imsl_f_lin_sol_nonnegdef (int n, float a[], float b[], �, 0)

The type double function is imsl_d_lin_sol_nonnegdef.

Required Arguments
int n (Input)

Number of rows and columns in the matrix.

float a[] (Input)
Array of size n � n containing the matrix.

float b[] (Input)
Array of size n containing the right-hand side.

Return Value
Using required arguments, imsl_f_lin_sol_nonnegdef returns a pointer to a
solution x of the linear system. To release this space, use free. If no value can be
computed, NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_lin_sol_nonnegdef (int n, float a[], float b[],

IMSL_RETURN_USER, float x[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_FACTOR, float **p_factor,

108 � lin_sol_nonnegdef IMSL C/Math/Library

IMSL_FACTOR_USER, float factor[],
IMSL_FAC_COL_DIM, int fac_col_dim,
IMSL_INVERSE, float **p_inva,
IMSL_INVERSE_USER, float inva[],
IMSL_INV_COL_DIM, int inv_col_dim,
IMSL_TOLERANCE, float tol,
IMSL_FACTOR_ONLY,
IMSL_SOLVE_ONLY,
IMSL_INVERSE_ONLY,
0)

Optional Arguments
IMSL_RETURN_USER, float x[] (Output)

A user-allocated array of length n containing the solution x. When this option
is specified, no storage is allocated for the solution, and
imsl_f_lin_sol_nonnegdef returns a pointer to the array x.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of the array a.
Default: a_col_dim = n

IMSL_FACTOR, float **p_factor (Output)
The address of a pointer to an array of size n � n containing the LLT
factorization of A. When this option is specified, the space for the factor
matrix is allocated by imsl_f_lin_sol_nonnegdef. The lower-triangular
part of the factor array contains L, and the upper-triangular part contains LTR.
Typically, float *p_factor is declared, and &p_factor is used as an
argument.

IMSL_FACTOR_USER, float factor[] (Input/Output)
A user-allocated array of size n � n containing the LLT factorization of A. The
lower-triangular part of factor contains L, and the upper-triangular part
contains LT. If a is not needed, a and factor can be the same storage
locations. If IMSL_SOLVE is specified, this parameter is input; otherwise, it is
output.

IMSL_FAC_COL_DIM, int fac_col_dim (Input)
The column dimension of the array containing the LLT factorization.
Default: fac_col_dim = n

IMSL_INVERSE, float **p_inva (Output)
The address of a pointer to an array of size n � n containing the inverse of A.
The space for this array is allocated by imsl_f_lin_sol_nonnegdef.
Typically, float *p_inva is declared, and &p_inva is used as an argument.

IMSL_INVERSE_USER, float inva[] (Output)
A user-allocated array of size n � n containing the inverse of A. If a is not
needed, a and factor can be the same storage locations. The storage
locations for A cannot be the factorization and the inverse of A at the same
time.

IMSL_INV_COL_DIM, int inva_col_dim (Input)
The column dimension of the array containing the inverse of A.
Default: inva_col_dim = n

IMSL_TOLERANCE, float tol (Input)
Tolerance used in determining linear dependence.
Default: tol = 100* imsl_f_machine(4)
See the documentation for imsl_f_machine in Chapter 12, “Utilities.”

IMSL_FACTOR_ONLY
Compute the LLT factorization of A only. The argument b is ignored, and
either the optional argument IMSL_FACTOR or IMSL_FACTOR_USER is
required.

IMSL_SOLVE_ONLY
Solve Ax = b using the factorization previously computed by this function. The
argument a is ignored, and the optional argument IMSL_FACTOR_USER is
required.

IMSL_INVERSE_ONLY
Compute the inverse of A only. The argument b is ignored, and either the
optional argument IMSL_INVERSE or IMSL_INVERSE_USER is required.

Description
The function imsl_f_lin_sol_nonnegdef solves a system of linear algebraic
equations having a symmetric nonnegative definite (positive semidefinite) coefficient
matrix. It first computes a Cholesky (LLT or RTR) factorization of the coefficient
matrix A.

The factorization algorithm is based on the work of Healy (1968) and proceeds
sequentially by columns. The i-th column is declared to be linearly dependent on the
first i � 1 columns if

1
2

1

i

ii ji ii
j

a r �

�

�

� �� a

where
 (specified in tol) may be set by the user. When a linear dependence is
declared, all elements in the i-th row of R (column of L) are set to zero.

Modifications due to Farebrother and Berry (1974) and Barrett and Healy (1978) for
checking for matrices that are not nonnegative definite also are incorporated. The
function imsl_f_lin_sol_nonnegdef declares A to not be nonnegative definite and
issues an error message if either of the following conditions are satisfied:

1 2
1

1

1

1.

2. 0 and ,

i
ii ji iij

i

ii ik ji jk ii kk
j

a r a

r a r r a a

�

�

�

�

�

�

� � �

� � �

�

� k i�

Chapter 1: Linear Systems lin_sol_nonnegdef � 109

Healy’s (1968) algorithm and the function imsl_f_lin_sol_nonnegdef permit the
matrices A and R to occupy the same storage. Barrett and Healy (1978) in their remark
neglect this fact. The function imsl_f_lin_sol_nonnegdef uses

1 2
1

i
ijj

r�

�
�

for aii in the above condition 2 to remedy this problem.

If an inverse of the matrix A is required and the matrix is not (numerically) positive
definite, then the resulting inverse is a symmetric g2 inverse of A. For a matrix G to be a
g2 inverse of a matrix A, G must satisfy conditions 1 and 2 for the Moore-Penrose
inverse, but generally fail conditions 3 and 4. The four conditions for G to be a Moore-
Penrose inverse of A are as follows:

1. AGA = A

2. GAG = G

3. AG is symmetric

4. GA is symmetric

The solution of the linear system Ax = b is computed by solving the factored version of
the linear system RTRx = b as two successive triangular linear systems. In solving the
triangular linear systems, if the elements of a row of R are all zero, the corresponding
element of the solution vector is set to zero. For a detailed description of the algorithm,
see Section 2 in Sallas and Lionti (1988).

Examples

Example 1
A solution to a system of four linear equations is obtained. Maindonald (1984, pp. 83�86
and 104�105) discusses the computations for the factorization and solution to this problem.

#include <imsl.h>

main()
{
 int n = 4;
 float *x;
 float a[] = {36.0, 12.0, 30.0, 6.0,
 12.0, 20.0, 2.0, 10.0,
 30.0, 2.0, 29.0, 1.0,
 6.0, 10.0, 1.0, 14.0};
 float b[] = {18.0, 22.0, 7.0, 20.0};

 /* Solve Ax = b for x */
 x = imsl_f_lin_sol_nonnegdef(n, a, b, 0);
 /* Print solution, x, of Ax = b */
 imsl_f_write_matrix("Solution, x", 1, n, x, 0);
}

110 � lin_sol_nonnegdef IMSL C/Math/Library

Chapter 1: Linear Systems lin_sol_nonnegdef � 111

Output
 Solution, x
 1 2 3 4
0.167 0.500 0.000 1.000

Example 2
The symmetric nonnegative definite matrix in the initial example is used to compute the
factorization only in the first call to lin_sol_nonnegdef. The space needed for the
factor is provided by the user. On the second call, both the LLT factorization and the
right-hand side vector in the first example are used as the input to compute a solution x.
It also illustrates another way to obtain the solution array x.

#include <imsl.h>

main()
{
 int n = 4, a_col_dim = 6;
 float factor[36], x[5];
 float a[] = {36.0, 12.0, 30.0, 6.0,
 12.0, 20.0, 2.0, 10.0,
 30.0, 2.0, 29.0, 1.0,
 6.0, 10.0, 1.0, 14.0};
 float b[] = {18.0, 22.0, 7.0, 20.0};
 /* Factor A */
 imsl_f_lin_sol_nonnegdef(n, a, b,
 IMSL_FACTOR_USER, factor,
 IMSL_FAC_COL_DIM, a_col_dim,
 IMSL_FACTOR_ONLY,
 0);
 /* NULL is returned in */
 /* this case. Another */
 /* way to obtain the */
 /* factor is to use the */
 /* IMSL_FACTOR option. */
 imsl_f_write_matrix("factor", n, n, factor,
 IMSL_A_COL_DIM, a_col_dim,
 0);
 /* Get the solution using */
 /* the factorized matrix. */
 imsl_f_lin_sol_nonnegdef(n, a, b,
 IMSL_FACTOR_USER, factor,
 IMSL_FAC_COL_DIM, a_col_dim,
 IMSL_RETURN_USER, x,
 IMSL_SOLVE_ONLY,
 0);
 imsl_f_write_matrix("Solution, x, of Ax = b", 1, n, x, 0);
}

Output
 factor
 1 2 3 4
1 6 2 5 1
2 2 4 -2 2
3 5 -2 0 0

112 � lin_sol_nonnegdef IMSL C/Math/Library

4 1 2 0 3

 Solution, x, of Ax = b
 1 2 3 4
 0.167 0.500 0.000 1.000

Example 3
This example uses the IMSL_INVERSE option to compute the symmetric g inverse of
the symmetric nonnegative matrix in the first example. Maindonald (1984, p. 106)
discusses the computations for this problem.

#include <stdio.h>
#include <imsl.h>

void main()
{
 int n = 4;
 float *p_a_inva, *p_a_inva_a, *p_inva;
 float a[] = {36.0, 12.0, 30.0, 6.0,
 12.0, 20.0, 2.0, 10.0,
 30.0, 2.0, 29.0, 1.0,
 6.0, 10.0, 1.0, 14.0};
 /* Get g2_inverse(a) */
 imsl_f_lin_sol_nonnegdef(n, a, NULL,
 IMSL_INVERSE, &p_inva,
 IMSL_INVERSE_ONLY,
 0);
 /* Form a*g2_inverse(a) */
 p_a_inva = imsl_f_mat_mul_rect("A*B",
 IMSL_A_MATRIX, n, n, a,
 IMSL_B_MATRIX, n, n, p_inva,
 0);
 /* Form a*g2_inverse(a)*a */
 p_a_inva_a = imsl_f_mat_mul_rect("A*B",
 IMSL_A_MATRIX, n, n, p_a_inva,
 IMSL_B_MATRIX, n, n, a,
 0);
 imsl_f_write_matrix("The g2 inverse of a", n, n, p_inva, 0);
 imsl_f_write_matrix("a*g2_inverse(a)\nviolates condition 3 of"
 " the M-P inverse", n, n, p_a_inva, 0);
 imsl_f_write_matrix("a = a*g2_inverse(a)*a\ncondition 1 of"
 " the M-P inverse", n, n, p_a_inva_a, 0);
}

Output
 The g2 inverse of a
 1 2 3 4
1 0.0347 -0.0208 0.0000 0.0000
2 -0.0208 0.0903 0.0000 -0.0556
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 -0.0556 0.0000 0.1111

 a*g2_inverse(a)
 violates condition 3 of the M-P inverse
 1 2 3 4

Chapter 1: Linear Systems lin_sol_nonnegdef � 113

1 1.0 -0.0 0.0 0.0
2 0.0 1.0 0.0 0.0
3 1.0 -0.5 0.0 0.0
4 0.0 -0.0 0.0 1.0

 a = a*g2_inverse(a)*a
 condition 1 of the M-P inverse
 1 2 3 4
1 36 12 30 6
2 12 20 2 10
3 30 2 29 1
4 6 10 1 14

Warning Errors
IMSL_INCONSISTENT_EQUATIONS_2 The linear system of equations is

inconsistent.

IMSL_NOT_NONNEG_DEFINITE The matrix A is not nonnegative definite.

114 � lin_sol_nonnegdef IMSL C/Math/Library

Chapter 2: Eigensystem Analysis Routines � 115

Chapter 2: Eigensystem Analysis

Routines
2.1 Linear Eigensystem Problems

General Matrices
Eigenvalues and eigenvectors... eig_gen 118
Eigenvalues and eigenvectors.................................... eig_gen (complex) 120
Real Symmetric Matrices
Eigenvalues and eigenvectors...eig_sym 123
Complex Hermitian Matrices
Eigenvalues and eigenvectors..................................eig_herm (complex) 126

2.2 Generalized Eigensystem Problems
Real Symmetric Matrices and B Positive Definite
Eigenvalues and eigenvectors...eig_symgen 129
Real matrices .. geneig 132
Complex matrices... geneig (complex) 135

Usage Notes
An ordinary linear eigensystem problem is represented by the equation Ax = �x where
A denotes an n � n matrix. The value � is an eigenvalue and x � 0 is the corresponding
eigenvector. The eigenvector is determined up to a scalar factor. In all functions, we
have chosen this factor so that x has Euclidean length one, and the component of x of
largest magnitude is positive. The eigenvalues and corresponding eigenvectors are
sorted then returned in the order of largest to smallest complex magnitude. If x is a
complex vector, this component of largest magnitude is scaled to be real and positive.
The entry where this component occurs can be arbitrary for eigenvectors having
nonunique maximum magnitude values.

A generalized linear eigensystem problem is represented by Ax = �Bx where
A and B are n � n matrices. The value � is a generalized eigenvalue, and x is the
corresponding generalized eigenvector. The generalized eigenvectors are normalized in
the same manner as the ordinary eigensystem problem.

116 � Usage Notes IMSL C/Math/Library

Error Analysis and Accuracy
The remarks in this section are for ordinary eigenvalue problems. Except in special
cases, functions will not return the exact eigenvalue-eigenvector pair for the ordinary
eigenvalue problem Ax = �x. Typically, the computed pair

,x ���

are an exact eigenvector-eigenvalue pair for a "nearby” matrix A + E. Information
about E is known only in terms of bounds of the form ||E||2 � f (n) ||A||2�. The value of
f(n) depends on the algorithm, but is typically a small fractional power of n. The
parameter � is the machine precision. By a theorem due to Bauer and Fike (see Golub
and Van Loan 1989, p. 342),

� � � �2
min for all in X E A� � � � �� ��

where �(A) is the set of all eigenvalues of A (called the spectrum of A), X is the matrix of
eigenvectors, || � ||2 is Euclidean length, and �(X) is the condition number of X defined as
�(X) = ||X||2||X-1||2. If A is a real symmetric or complex Hermitian matrix, then its
eigenvector matrix X is respectively orthogonal or unitary. For these matrices, �(X) = 1.
The accuracy of the computed eigenvalues

j�
�

and eigenvectors

jx�

can be checked by computing their performance index 	. The performance index is
defined to be

2

1
2 2

max
j j j

j n
j

Ax x

n A x

�

�
�� �

�

�

�� �

�

where � is again the machine precision.
The performance index 	 is related to the error analysis because

2 2j j j jEx Ax x�� �
�� � �

where E is the “nearby” matrix discussed above.

While the exact value of 	 is precision and data dependent, the performance of an
eigensystem analysis function is defined as excellent if 	 < 1
 good if 1 � 	 � 100, and
poor if 	 > 100. This is an arbitrary definition, but large values of 	 can serve as a
warning that there is a significant error in the calculation.
If the condition number �(X) of the eigenvector matrix X is large, there can be large
errors in the eigenvalues even if 	 is small. In particular, it is often difficult to recognize
near multiple eigenvalues or unstable mathematical problems from numerical results.
This facet of the eigenvalue problem is often difficult for users to understand. Suppose
the accuracy of an individual eigenvalue is desired. This can be answered
approximately by computing the condition number of an individual eigenvalue

Chapter 2: Eigensystem Analysis Usage Notes � 117

(see Golub and Van Loan 1989, pp. 344�345). For matrices A, such that the computed
array of normalized eigenvectors X is invertible, the condition number of �j is

1T
j je X�

�

�

the Euclidean length of the j-th row of X-1. Users can choose to compute this matrix
using function imsl_c_lin_sol_gen in Chapter 1, “Linear Systems.” An
approximate bound for the accuracy of a computed eigenvalue is then given by �j �||A||.
To compute an approximate bound for the relative accuracy of an eigenvalue, divide
this bound by |�j|.

Reformulating Generalized Eigenvalue Problems
The generalized eigenvalue problem Ax = �Bx is often difficult for users to analyze
because it is frequently ill-conditioned. Occasionally, changes of variables can be
performed on the given problem to ease this ill-conditioning. Suppose that B is singular,
but A is nonsingular. Define the reciprocal � = �-1. Then, assuming A is definite, the
roles of A and B are interchanged so that the reformulated problem Bx = �Ax is solved.
Those generalized eigenvalues �j = 0 correspond to eigenvalues �j =
. The remaining
�j = �j-1. The generalized eigenvectors for �j correspond to those for �j.
Now suppose that B is nonsingular. The user can solve the ordinary eigenvalue problem
Cx = �x where C = B-1A. The matrix C is subject to perturbations due to ill-
conditioning and rounding errors when computing B-1A. Computing the condition
numbers of the eigenvalues for C may, however, be helpful for analyzing the accuracy
of results for the generalized problem.
There is another method that users can consider to reduce the generalized problem to an
alternate ordinary problem. This technique is based on first computing a matrix
decomposition B = PQ where both P and Q are matrices that are “simple” to invert.
Then, the given generalized problem is equivalent to the ordinary eigenvalue problem
Fy = �y. The matrix F = P-1AQ-1 and the unnormalized eigenvectors of the generalized
problem are given by x = Q-1y. An example of this reformulation is used in the case
where A and B are real and symmetric, with B positive definite. The function
imsl_f_eig_symgen (page 129), uses P = RT and Q = R where R is an upper-
triangular matrix obtained from a Cholesky decomposition, B = RTR. The matrix
F = R-TAR-1 is symmetric and real. Computation of the eigenvalue-eigenvector
expansion for F is based on function imsl_f_eig_sym (page 123).

118 � eig_gen IMSL C/Math/Library

eig_gen
Computes the eigenexpansion of a real matrix A.

Synopsis
#include <imsl.h>

f_complex *imsl_f_eig_gen (int n, float *a, �, 0)

The type d_complex function is imsl_d_eig_gen.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

float *a (Input)
An array of size n � n containing the matrix.

Return Value
A pointer to the n complex eigenvalues of the matrix. To release this space, use free.
If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_f_eig_gen (int n, float *a,

IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_RETURN_USER, f_complex evalu[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments
IMSL_VECTORS, f_complex **evec (Output)

The address of a pointer to an array of size n � n containing eigenvectors of the
matrix. On return, the necessary space is allocated by the function. Typically,
f_complex *evec is declared, and &evec is used as an argument.

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n � n containing the matrix
of eigenvectors is returned in the space evecu.

IMSL_RETURN_USER, f_complex evalu[] (Output)
Store the n eigenvalues in the space evalu.

Chapter 2: Eigensystem Analysis eig_gen � 119

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of a.
Default: a_col_dim = n

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n

Description
Function imsl_f_eig_gen computes the eigenvalues of a real matrix by a two-phase
process. The matrix is reduced to upper Hessenberg form by elementary orthogonal or
Gauss similarity transformations. Then, eigenvalues are computed using a QR or
combined LR-QR algorithm (Golub and Van Loan 1989, pp. 373�382, and Watkins
and Elsner 1990). The combined LR-QR algorithm is based on an implementation by
Jeff Haag and David Watkins. Eigenvectors are then calculated as required. When
eigenvectors are computed, the QR algorithm is used to compute the eigenexpansion.
When only eigenvalues are required, the combined LR-QR algorithm is used.

Examples

Example 1
#include <imsl.h>

main()
{
 int n = 3;
 float a[] = {8.0, -1.0, -5.0,
 -4.0, 4.0, -2.0,
 18.0, -5.0, -7.0};
 f_complex *eval;
 /* Compute eigenvalues of A */
 eval = imsl_f_eig_gen (n, a, 0);
 /* Print eigenvalues */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output

 Eigenvalues
 1 2 3
(2, 4) (2, -4) (1, 0)

Example 2
This example is a variation of the first example. Here, the eigenvectors are computed as
well as the eigenvalues.

#include <imsl.h>

main()
{
 int n = 3;

120 � eig_gen (complex) IMSL C/Math/Library

 float a[] = {8.0, -1.0, -5.0,
 -4.0, 4.0, -2.0,
 18.0, -5.0, -7.0};
 f_complex *eval;
 f_complex *evec;
 /* Compute eigenvalues of A */
 eval = imsl_f_eig_gen (n, a,
 IMSL_VECTORS, &evec,
 0);
 /* Print eigenvalues and eigenvectors */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output
 Eigenvalues
 1 2 3
(2, 4) (2, -4) (1, 0)

 Eigenvectors
 1 2 3
1 (0.3162, 0.3162) (0.3162, -0.3162) (0.4082, 0.0000)
2 (0.0000, 0.6325) (0.0000, -0.6325) (0.8165, 0.0000)
3 (0.6325, 0.0000) (0.6325, 0.0000) (0.4082, 0.0000)

Warning Errors
IMSL_SLOW_CONVERGENCE_GEN The iteration for an eigenvalue did not converge

after # iterations.

eig_gen (complex)
Computes the eigenexpansion of a complex matrix A.

Synopsis
#include <imsl.h>

f_complex *imsl_c_eig_gen (int n, f_complex *a, �, 0)

The type d_complex procedure is imsl_z_eig_gen.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

f_complex *a (Input)
Array of size n � n containing the matrix.

Return Value
A pointer to the n complex eigenvalues of the matrix. To release this space, use free.
If no value can be computed, then NULL is returned.

Chapter 2: Eigensystem Analysis eig_gen (complex) � 121

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_eig_gen (int n, f_complex *a,

IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_RETURN_USER, f_complex evalu[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments
IMSL_VECTORS, f_complex **evec (Output)

The address of a pointer to an array of size n � n containing eigenvectors of the
matrix. On return, the necessary space is allocated by the function. Typically,
f_complex *evecu is declared, and &evecu is used as an argument.

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n � n containing the matrix
of eigenvectors is returned in the space evecu.

IMSL_RETURN_USER, f_complex evalu[] (Output)
Store the n eigenvalues in the space evalu.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = n

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n

Description
The function imsl_c_eig_gen computes the eigenvalues of a complex matrix by a
two-phase process. The matrix is reduced to upper Hessenberg form by elementary
Gauss transformations. Then, the eigenvalues are computed using an explicitly shifted
LR algorithm. Eigenvectors are calculated during the iterations for the eigenvalues
(Martin and Wilkinson 1971).

Examples

Example 1
#include <imsl.h>

main()
{
 int n = 4;
 f_complex a[] = { {5,9}, {5,5}, {-6,-6}, {-7,-7},
 {3,3}, {6,10}, {-5,-5}, {-6,-6},

122 � eig_gen (complex) IMSL C/Math/Library

 {2,2}, {3,3}, {-1, 3}, {-5,-5},
 {1,1}, {2,2}, {-3,-3}, { 0, 4} };
 f_complex *eval;
 /* Compute eigenvalues */
 eval = imsl_c_eig_gen (n, a, 0);
 /* Print eigenvalues */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output
 Eigenvalues
 1 2 3
(4, 8) (3, 7) (2, 6)

 4
(1, 5)

Example 2
This example is a variation of the first example. Here, the eigenvectors are computed as
well as the eigenvalues.

#include <imsl.h>

main()
{
 int n = 4;
 f_complex a[] = { {5,9}, {5,5}, {-6,-6}, {-7,-7},
 {3,3}, {6,10}, {-5,-5}, {-6,-6},
 {2,2}, {3,3}, {-1, 3}, {-5,-5},
 {1,1}, {2,2}, {-3,-3}, { 0, 4} };
 f_complex *eval;
 f_complex *evec;
 /* Compute eigenvalues and eigenvectors */
 eval = imsl_c_eig_gen (n, a,
 IMSL_VECTORS, &evec,
 0);
 /* Print eigenvalues and eigenvectors */
 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output

 Eigenvalues
 1 2 3
(4, 8) (3, 7) (2, 6)

 4
(1, 5)

 Eigenvectors
 1 2 3
1 (0.5773, -0.0000) (0.5774 0.0000) (0.3780, -0.0000)
2 (0.5773, -0.0000) (0.5773, -0.0000) (0.7559, 0.0000)
3 (0.5774, 0.0000) (-0.0000, -0.0000) (0.3780, 0.0000)
4 (-0.0000, -0.0000) (0.5774, 0.0000) (0.3780, -0.0000)

Chapter 2: Eigensystem Analysis eig_sym � 123

 4
1 (0.7559, 0.0000)
2 (0.3780, 0.0000)
3 (0.3780, 0.0000)
4 (0.3780, 0.0000)

Fatal Errors
IMSL_SLOW_CONVERGENCE_GEN The iteration for an eigenvalue did not converge

after # iterations.

eig_sym
Computes the eigenexpansion of a real symmetric matrix A.

Synopsis
#include <imsl.h>

float *imsl_f_eig_sym (int n, float *a, �, 0)

The type double procedure is imsl_d_eig_sym.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

float *a (Input)
Array of size n � n containing the symmetric matrix.

Return Value
A pointer to the n eigenvalues of the symmetric matrix. To release this space, use free.
If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_eig_sym (int n, float *a,

IMSL_VECTORS, float **evec,
IMSL_VECTORS_USER, float evecu[],
IMSL_RETURN_USER, float evalu[],
IMSL_RANGE, float elow, float ehigh,
IMSL_A_COL_DIM, int a_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
IMSL_RESULT_NUMBER, int *n_eval,
0)

124 � eig_sym IMSL C/Math/Library

Optional Arguments
IMSL_VECTORS, float **evec (Output)

The address of a pointer to an array of size n � n containing the eigenvectors of
the matrix. On return, the necessary space is allocated by the function. Typically,
float *evec is declared, and &evec is used as an argument.

IMSL_VECTORS_USER, float evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n � n containing the
orthogonal matrix of eigenvectors is returned in the space evecu.

IMSL_RETURN_USER, float evalu[] (Output)
Store the n eigenvalues in the space evalu.

IMSL_RANGE, float elow, float ehigh (Input)
Return eigenvalues and optionally eigenvectors that lie in the interval with lower
limit elow and upper limit ehigh.
Default: (elow, ehigh) = (�
, +
)

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of a.
Default: a_col_dim = n

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n

IMSL_RESULT_NUMBER, int *n_eval (Output)
The number of output eigenvalues and eigenvectors in the range low, ehigh.

Description
The function imsl_f_eig_sym computes the eigenvalues of a symmetric real matrix
by a two-phase process. The matrix is reduced to tridiagonal form by elementary
orthogonal similarity transformations. Then, the eigenvalues are computed using a
rational QR or bisection algorithm. Eigenvectors are calculated as required
(Parlett 1980, pp. 169�173).

Examples

Example 1
#include <imsl.h>

main()
{
 int n = 3;
 float a[] = {7.0, -8.0, -8.0,
 -8.0, -16.0, -18.0,
 -8.0, -18.0, 13.0};
 float *eval;
 /* Compute eigenvalues */
 eval = imsl_f_eig_sym(n, a, 0);
 /* Print eigenvalues */

Chapter 2: Eigensystem Analysis eig_sym � 125

 imsl_f_write_matrix ("Eigenvalues", 1, 3, eval, 0);
}

Output

 Eigenvalues
 1 2 3
 -27.90 22.68 9.22

Example 2
This example is a variation of the first example. Here, the eigenvectors are computed as
well as the eigenvalues.

#include <imsl.h>

main()
{
 int n = 3;
 float a[] = {7.0, -8.0, -8.0,
 -8.0, -16.0, -18.0,
 -8.0, -18.0, 13.0};
 float *eval;
 float *evec;
 /* Compute eigenvalues and eigenvectors */
 eval = imsl_f_eig_sym(n, a,
 IMSL_VECTORS, &evec,
 0);
 /* Print eigenvalues and eigenvectors */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_f_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output

 Eigenvalues
 1 2 3
 -27.90 22.68 9.22

 Eigenvectors
 1 2 3
1 0.2945 -0.2722 0.9161
2 0.8521 -0.3591 -0.3806
3 0.4326 0.8927 0.1262

Warning Errors
IMSL_SLOW_CONVERGENCE_SYM The iteration for the eigenvalue failed to

converge in 100 iterations before deflating.

IMSL_SLOW_CONVERGENCE_2 Inverse iteration did not converge.
Eigenvector is not correct for the specified
eigenvalue.

IMSL_LOST_ORTHOGONALITY_2 The eigenvectors have lost orthogonality.

126 � eig_herm (complex) IMSL C/Math/Library

IMSL_NO_EIGENVALUES_RETURNED The number of eigenvalues in the specified
interval exceeds mxeval. The argument
n_eval contains the number of eigenvalues
in the interval. No eigenvalues will be
returned.

eig_herm (complex)
Computes the eigenexpansion of a complex Hermitian matrix A.

Synopsis
#include <imsl.h>

float *imsl_c_eig_herm (int n, f_complex *a, �, 0)

The type double procedure is imsl_d_eig_herm.

Required Arguments

int n (Input)
Number of rows and columns in the matrix.

f_complex *a (Input)
Array of size n � n containing the matrix.

Return Value
A pointer to the n eigenvalues of the matrix. To release this space, use free. If no
value can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_c_eig_herm (int n, f_complex *a,

IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_RETURN_USER, float evalu[],
IMSL_RANGE, float elow, float ehigh,
IMSL_A_COL_DIM, int a_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
IMSL_RESULT_NUMBER, int *n_eval,
0)

Optional Arguments
IMSL_VECTORS, f_complex **evec (Output)

The address of a pointer to an array of size n � n containing eigenvectors of the
matrix. On return, the necessary space is allocated by the function. Typically,
f_complex *evec is declared, and &evec is used as an argument.

Chapter 2: Eigensystem Analysis eig_herm (complex) � 127

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n � n containing the
unitary matrix of eigenvectors is returned in the space evecu.

IMSL_RETURN_USER, float evalu[] (Output)
Store the n eigenvalues in the space evalu.

IMSL_RANGE, float elow, float ehigh (Input)
Return eigenvalues and optionally eigenvectors that lie in the interval with lower
limit elow and upper limit ehigh.
Default: (elow, ehigh) = (�
, +
).

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = n

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of X.
Default: evecu_col_dim = n

IMSL_RESULT_NUMBER, int *n_eval (Output)
The number of output eigenvalues and eigenvectors in the range elow, ehigh.

Description
The function imsl_c_eig_herm computes the eigenvalues of a complex Hermitian
matrix by a two-phase process. The matrix is reduced to tridiagonal form by elementary
orthogonal similarity transformations. Then, the eigenvalues are computed using a
rational QR or bisection algorithm. Eigenvectors are calculated as required.

Examples

Example 1
#include <imsl.h>

main()
{
 int n = 3;
 f_complex a[] = { {1,0}, {1,-7}, {0,-1},
 {1,7}, {5,0}, {10,-3},
 {0,1}, {10,3}, {-2,0} };
 float *eval;
 /* Compute eigenvalues */
 eval = imsl_c_eig_herm(n, a, 0);
 /* Print eigenvalues */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output
 Eigenvalues
 1 2 3
 15.38 -10.63 -0.75

128 � eig_herm (complex) IMSL C/Math/Library

Example 2
This example is a variation of the first example. Here, the eigenvectors are computed
as well as the eigenvalues.

#include <imsl.h>

main()
{
 int n = 3;
 f_complex a[] = { {1,0}, {1,-7}, {0,-1},
 {1,7}, {5,0}, {10,-3},
 {0,1}, {10,3}, {-2,0} };
 float *eval;
 f_complex *evec;
 /* Compute eigenvalues and eigenvectors */
 eval = imsl_c_eig_herm(n, a,
 IMSL_VECTORS, &evec,
 0);
 /* Print eigenvalues and eigenvectors */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output

 Eigenvalues
 1 2 3
 15.38 -10.63 -0.75

 Eigenvectors
 1 2 3
1 (0.0631, -0.4075) (-0.0598, -0.3117) (0.8539, 0.0000)
2 (0.7703, 0.0000) (-0.5939, 0.1841) (-0.0313, -0.1380)
3 (0.4668, 0.1366) (0.7160, 0.0000) (0.0808, -0.4942)

Warning Errors
IMSL_LOST_ORTHOGONALITY The iteration for at least one eigenvector failed to

converge. Some of the eigenvectors may be
inaccurate.

IMSL_NEVAL_MXEVAL_MISMATCH The determined number of eigenvalues in the
interval (#, #) is #. However, the input value for
the maximum number of eigenvalues in this
interval is #.

Fatal Errors
IMSL_SLOW_CONVERGENCE_GEN The iteration for the eigenvalues did not

converge.

IMSL_HERMITIAN_DIAG_REAL The matrix element A (#, #) = #. The diagonal of
a Hermitian matrix must be real.

Chapter 2: Eigensystem Analysis eig_symgen � 129

eig_symgen
Computes the generalized eigenexpansion of a system Ax = �Bx. The matrices A and B
are real and symmetric, and B is positive definite.

Synopsis
#include <imsl.h>

float *imsl_f_eig_symgen (int n, float *a, float *b, �, 0)

The type double procedure is imsl_d_eig_symgen.

Required Arguments

int n (Input)
Number of rows and columns in the matrices.

float *a (Input)
Array of size n � n containing the symmetric coefficient matrix A.

float *b (Input)
Array of size n � n containing the positive definite symmetric coefficient matrix
B.

Return Value
A pointer to the n eigenvalues of the symmetric matrix. To release this space, use free.
If no value can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_eig_symgen (int n, float *a, float *b,

IMSL_VECTORS, float **evec,
IMSL_VECTORS_USER, float evecu[],
IMSL_RETURN_USER, float evalu[],
IMSL_RANGE, float elow, float ehigh,
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_COL_DIM, int b_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments
IMSL_VECTORS, float **evec (Output)

The address of a pointer to an array of size n � n containing eigenvectors of the
problem. On return, the necessary space is allocated by the function. Typically,
float *evec is declared, and &evec is used as an argument.

130 � eig_symgen IMSL C/Math/Library

IMSL_VECTORS_USER, float evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n � n containing the matrix
of generalized eigenvectors is returned in the space evecu.

IMSL_RETURN_USER, float evalu[] (Output)
Store the n eigenvalues in the space evalu.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = n

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = n

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n

Description
The function imsl_f_eig_symgen computes the eigenvalues of a symmetric, positive
definite eigenvalue problem by a three-phase process (Martin and Wilkinson 1971).
The matrix B is reduced to factored form using the Cholesky decomposition. These
factors are used to form a congruence transformation that yields a symmetric real
matrix whose eigenexpansion is obtained. The problem is then transformed back to the
original coordinates. Eigenvectors are calculated and transformed as required.

Examples

Example 1
#include <imsl.h>

main()
{
 int n = 3;
 float a[] = {1.1, 1.2, 1.4,
 1.2, 1.3, 1.5,
 1.4, 1.5, 1.6};
 float b[] = {2.0, 1.0, 0.0,
 1.0, 2.0, 1.0,
 0.0, 1.0, 2.0};
 float *eval;
 /* Solve for eigenvalues */
 eval = imsl_f_eig_symgen (n, a, b, 0);
 /* Print eigenvalues */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output
 Eigenvalues
 1 2 3
 1.386 -0.058 -0.003

Chapter 2: Eigensystem Analysis eig_symgen � 131

Example 2
This example is a variation of the first example. Here, the eigenvectors are computed as
well as the eigenvalues.

#include <imsl.h>

main()
{
 int n = 3;
 float a[] = {1.1, 1.2, 1.4,
 1.2, 1.3, 1.5,
 1.4, 1.5, 1.6};
 float b[] = {2.0, 1.0, 0.0,
 1.0, 2.0, 1.0,
 0.0, 1.0, 2.0};
 float *eval;
 float *evec;
 /* Solve for eigenvalues and eigenvectors */
 eval = imsl_f_eig_symgen (n, a, b,
 IMSL_VECTORS, &evec,
 0);
 /* Print eigenvalues and eigenvectors */
 imsl_f_write_matrix ("Eigenvalues", 1, n, eval, 0);
 imsl_f_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output
 Eigenvalues
 1 2 3
 1.386 -0.058 -0.003

 Eigenvectors
 1 2 3
1 0.6431 -0.1147 -0.6817
2 -0.0224 -0.6872 0.7266
3 0.7655 0.7174 -0.0858

Warning Errors
IMSL_SLOW_CONVERGENCE_SYM The iteration for an eigenvalue failed to

converge in 100 iterations before deflating.

Fatal Errors
IMSL_SUBMATRIX_NOT_POS_DEFINITE The leading # by # submatrix of the input

matrix is not positive definite.

IMSL_MATRIX_B_NOT_POS_DEFINITE Matrix B is not positive definite.

132 � geneig IMSL C/Math/Library

geneig
Computes the generalized eigenexpansion of a system Ax = �Bx, with A and B real.

Synopsis

#include <imsl.h>
void imsl_f_geneig (int n, float *a, float *b, f_complex *alpha, float

*beta, ..., 0)

The double analogue is imsl_d_geneig.

Required Arguments

int n (Input)
Number of rows and columns in A and B.

float *a (Input)
Array of size n � n containing the coefficient matrix A.

float *b (Input)
Array of size n � n containing the coefficient matrix B.

f_complex *alpha (Output)
Vector of size n containing scalars �i. If �i � 0, �i = �i/�i for
i = 0, �, n � 1 are the eigenvalues of the system.

float *beta (Output)
Vector of size n.

Synopsis with Optional Arguments
#include <imsl.h>
void imsl_f_geneig (int n, float *a, float *b,

IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_COL_DIM, int b_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments
IMSL_VECTORS, f_complex **evec (Output)

The address of a pointer to an array of size n � n containing eigenvectors of the
problem. Each vector is normalized to have Euclidean length equal to the value
one. On return, the necessary space is allocated by the function. Typically,
f_complex *evec is declared, and &evec is used as an argument.

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n � n containing the matrix

Chapter 2: Eigensystem Analysis geneig � 133

of generalized eigenvectors is returned in the space evecu. Each vector is
normalized to have Euclidean length equal to the value one.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim = n

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = n.

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n

Description
The function imsl_f_geneig uses the QZ algorithm to compute the eigenvalues and
eigenvectors of the generalized eigensystem Ax = �Bx, where A and B are real matrices
of order n. The eigenvalues for this problem can be infinite, so � and � are returned
instead of �. If � is nonzero, � = �/�.

The first step of the QZ algorithm is to simultaneously reduce A to upper-Hessenberg
form and B to upper-triangular form. Then, orthogonal transformations are used to
reduce A to quasi-upper-triangular form while keeping B upper triangular. The
generalized eigenvalues and eigenvectors for the reduced problem are then computed.

The function imsl_f_geneig is based on the QZ algorithm due to Moler and Stewart
(1973), as implemented by the EISPACK routines QZHES, QZIT and QZVAL; see
Garbow et al. (1977).

Examples

Example 1
In this example, the eigenvalue, �, of system Ax = �Bx is computed, where

1.0 0.5 0.0 0.5 0.0 0.0
10.0 2.0 0.0 and 3.0 3.0 0.0
5.0 1.0 0.5 4.0 0.5 1.0

A B
� � � �
� � �� � � �
� � � �
� � � �� � � �

#include <imsl.h>

main()
{
 int n = 3;
 f_complex alpha[3];
 float beta[3];
 int i;
 f_complex eval[3];
 float a[] = {1.0, 0.5, 0.0,
 -10.0, 2.0, 0.0,
 5.0, 1.0, 0.5};

134 � geneig IMSL C/Math/Library

 float b[] = {0.5, 0.0, 0.0,
 3.0, 3.0, 0.0,
 4.0, 0.5, 1.0};

 /* Compute eigenvalues */

 imsl_f_geneig (n, a, b, alpha, beta, 0);

 for (i=0; i<n; i++)
 if (beta[i] != 0.0)
 eval[i] = imsl_c_div(alpha[i],
 imsl_cf_convert(beta[i], 0.0));
 else
 printf ("Infinite eigenvalue\n");

 /* Print eigenvalues */

 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output
 Eigenvalues
 1 2 3
(0.833, 1.993) (0.833, -1.993) (0.500, 0.000)

Example 2
This example finds the eigenvalues and eigenvectors of the same eigensystem given in
the last example.

#include <imsl.h>

main()
{
 int n = 3;
 f_complex alpha[3];
 float beta[3];
 int i;
 f_complex eval[3];
 f_complex *evec;
 float a[] = {1.0, 0.5, 0.0,
 -10.0, 2.0, 0.0,
 5.0, 1.0, 0.5};
 float b[] = {0.5, 0.0, 0.0,
 3.0, 3.0, 0.0,
 4.0, 0.5, 1.0};

 imsl_f_geneig (n, a, b, alpha, beta,
 IMSL_VECTORS, &evec,
 0);

 for (i=0; i<n; i++)
 if (beta[i] != 0.0)
 eval[i] = imsl_c_div(alpha[i],
 imsl_cf_convert(beta[i], 0.0));
 else
 printf ("Infinite eigenvalue\n");

Chapter 2: Eigensystem Analysis geneig (complex) � 135

 /* Print eigenvalues */

 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);

 /* Print eigenvectors */

 imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output
 Eigenvalues
 1 2 3
(0.833, 1.993) (0.833, -1.993) (0.500, -0.000)

 Eigenvectors
 1 2 3
1 (-0.197, 0.150) (-0.197, -0.150) (-0.000, 0.000)
2 (-0.069, -0.568) (-0.069, 0.568) (-0.000, 0.000)
3 (0.782, 0.000) (0.782, 0.000) (1.000, 0.000)

geneig (complex)
Computes the generalized eigenexpansion of a system Ax = �Bx, with A and B complex.

Synopsis

#include <imsl.h>
void imsl_c_geneig (int n, f_complex *a, f_complex *b, f_complex *alpha,

float *beta, ..., 0)

The double analogue is imsl_z_geneig.

Required Arguments

int n (Input)
Number of rows and columns in A and B.

f_complex *a (Input)
Array of size n � n containing the coefficient matrix A.

f_complex *b (Input)
Array of size n � n containing the coefficient matrix B

f_complex *alpha (Output)
Vector of size n containing scalars �i. If �i � 0, �i = �i/�i for
i = 0, �, n � 1 are the eigenvalues of the system.

f_complex *beta (Output)
Vector of size n.

136 � geneig (complex) IMSL C/Math/Library

Synopsis with Optional Arguments
#include <imsl.h>

void imsl_c_geneig (int n, f_complex *a, f_complex *b, f_complex *alpha,
f_complex *beta
IMSL_VECTORS, f_complex **evec,
IMSL_VECTORS_USER, f_complex evecu[],
IMSL_A_COL_DIM, int a_col_dim,
IMSL_B_COL_DIM, int b_col_dim,
IMSL_EVECU_COL_DIM, int evecu_col_dim,
0)

Optional Arguments
IMSL_VECTORS, f_complex **evec (Output)

The address of a pointer to an array of size n � n containing eigenvectors of the
problem. Each vector is normalized to have Euclidean length equal to the value
one. On return, the necessary space is allocated by the function. Typically,
f_complex *evec is declared, and &evec is used as an argument.

IMSL_VECTORS_USER, f_complex evecu[] (Output)
Compute eigenvectors of the matrix. An array of size n � n containing the matrix
of generalized eigenvectors is returned in the space evecu. Each vector is
normalized to have Euclidean length equal to the value one.

IMSL_A_COL_DIM, int a_col_dim (Input)
The column dimension of A.
Default: a_col_dim =

IMSL_B_COL_DIM, int b_col_dim (Input)
The column dimension of B.
Default: b_col_dim = n.

IMSL_EVECU_COL_DIM, int evecu_col_dim (Input)
The column dimension of evecu.
Default: evecu_col_dim = n.

Description
The function imsl_c_geneig uses the QZ algorithm to compute the eigenvalues and
eigenvectors of the generalized eigensystem Ax = �Bx, where A and B are complex
matrices of order n. The eigenvalues for this problem can be infinite, so � and � are
returned instead of �. If � is nonzero, � = �/�.

The first step of the QZ algorithm is to simultaneously reduce A to upper-Hessenberg
form and B to upper-triangular form. Then, orthogonal transformations are used to
reduce A to quasi-upper-triangular form while keeping B upper triangular. The
generalized eigenvalues and eigenvectors for the reduced problem are then computed.

The function imsl_c_geneig is based on the QZ algorithm due to Moler and Stewart
(1973).

Chapter 2: Eigensystem Analysis geneig (complex) � 137

Examples

Example 1
In this example, the eigenvalue, �, of system Ax = �Bx is solved, where

1 0.5 5 0.5 0 0
10 2 0 and 3 3 3 3

5 1 0.5 3 4 2 0.5 1

i i
A i B i i

i i i

�� � �
� � �� � � � � �� � �
� � �� � � �� 	 �

i
i i

�
�
�
�� 	

#include <imsl.h>

main()
{
 int n = 3;
 f_complex alpha[3];
 f_complex beta[3];
 int i;
 f_complex eval[3];
 f_complex zero = {0.0, 0.0};
 f_complex a[] = {{1.0, 0.0}, {0.5, 1.0}, {0.0, 5.0},
 {-10.0, 0.0}, {2.0, 1.0}, {0.0, 0.0},
 {5.0, 1.0}, {1.0, 0.0}, {0.5, 3.0}};
 f_complex b[] = {{0.5, 0.0}, {0.0, 0.0}, {0.0, 0.0},
 {3.0, 3.0}, {3.0, 3.0}, {0.0, 1.0},
 {4.0, 2.0}, {0.5, 1.0}, {1.0, 1.0}};

 /* Compute eigenvalues */

 imsl_c_geneig (n, a, b, alpha, beta, 0);

 for (i=0; i<n; i++)
 if (!imsl_c_eq(beta[i], zero))
 eval[i] = imsl_c_div(alpha[i], beta[i]);
 else
 printf ("Infinite eigenvalue\n");

 /* Print eigenvalues */

 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);
}

Output
 Eigenvalues
 1 2 3
(-8.18, -25.38) (2.18, 0.61) (0.12, -0.39)

Example 2
This example finds the eigenvalues and eigenvectors of the same eigensystem given in
the last example.

#include <imsl.h>

main()
{

138 � geneig (complex) IMSL C/Math/Library

 int n = 3;
 f_complex alpha[3];
 f_complex beta[3];
 int i;
 f_complex eval[3];
 f_complex *evec;
 f_complex zero = {0.0, 0.0};
 f_complex a[] = {{1.0, 0.0}, {0.5, 1.0}, {0.0, 5.0},
 {-10.0, 0.0}, {2.0, 1.0}, {0.0, 0.0},
 {5.0, 1.0}, {1.0, 0.0}, {0.5, 3.0}};
 f_complex b[] = {{0.5, 0.0}, {0.0, 0.0}, {0.0, 0.0},
 {3.0, 3.0}, {3.0, 3.0}, {0.0, 1.0},
 {4.0, 2.0}, {0.5, 1.0}, {1.0, 1.0}};

 /* Compute eigenvalues and eigenvectors */

 imsl_c_geneig (n, a, b, alpha, beta,
 IMSL_VECTORS, & evec,
 0);

 for (i=0; i<n; i++)
 if (!imsl_c_eq(beta[i], zero))
 eval[i] = imsl_c_div(alpha[i], beta[i]);
 else
 printf ("Infinite eigenvalue\n");

 /* Print eigenvalues */

 imsl_c_write_matrix ("Eigenvalues", 1, n, eval, 0);

 /*Print eigenvectors */

 imsl_c_write_matrix ("Eigenvectors", n, n, evec, 0);
}

Output
 Eigenvalues
 1 2 3
(-8.18, -25.38) (2.18, 0.61) (0.12, -0.39)

 Eigenvectors
 1 2 3
1 (-0.3267, -0.1245) (-0.3007, -0.2444) (0.0371, 0.1518)
2 (0.1767, 0.0054) (0.8959, 0.0000) (0.9577, 0.0000)
3 (0.9201, 0.0000) (-0.2019, 0.0801) (-0.2215, 0.0968)

Chapter 3: Interpolation and Approximation Routines � 139

Chapter 3: Interpolation and
Approximation

Routines
3.1 Cubic Spline Interpolation

Derivative end conditions cub_spline_interp_e_cnd 145
Shape preserving ... cub_spline_interp_shape 152

3.2 Cubic Spline Evaluation and Integration
Evaluation and differentiation cub_spline_value 157
Integration.. cub_spline_integral 160

3.3 Spline Interpolation
One-dimensional interpolation..spline_interp 161
Knot sequence given interpolation dataspline_knots 167
Two-dimensional, tensor-product interpolationspline_2d_interp 171

3.4 Spline Evaluation and Integration
One-dimensional evaluation and differentiation spline_value 177
One-dimensional integration ...spline_integral 180
Two-dimensional evaluation and differentiation spline_2d_value 182
Two-dimensional integrationspline_2d_integral 186

3.5 Least-Squares Approximation and Smoothing
General functions ...user_fcn_least_squares 189
Splines with fixed knots .. spline_least_squares 193
Tensor-product splines with fixed knots spline_2d_least_squares 199
Cubic smoothing spline ...cub_spline_smooth 205
Splines with constraints spline_lsq_constrained 209
Smooth one-dimensional data by error detection.......... smooth_1d_data 216

3.6 Scattered Data Interpolation
Akima’s surface-fitting method scattered_2d_interp 220

3.7 Scattered Data Least Squares
Fit using radial-basis functionsradial_scattered_fit 225
Evaluate radial-basis fit ..radial_evaluate 231

140 � Usage Notes IMSL C/Math/Library

Usage Notes
The majority of the functions in this chapter produce cubic piecewise polynomial or
general spline functions that either interpolate or approximate given data or support the
evaluation and integration of these functions. Two major subdivisions of functions are
provided. The cubic spline functions begin with the prefix “cub_spline_” and use the
piecewise polynomial representation described below. The spline functions begin with
the prefix “spline_” and use the B-spline representation described below. Most of the
spline functions are based on routines in the book by de Boor (1978).

We provide a few general purpose routines for general least-squares fit to data and a
routine that produces an interpolant to two-dimensional scattered data.

Piecewise Polynomials
A univariate piecewise polynomial (function) p is specified by giving its breakpoint
sequence � � Rn, the order k (degree k � 1) of its polynomial pieces, and the k � (n � 1)
matrix c of its local polynomial coefficients. In terms of this information, the piecewise
polynomial (ppoly) function is given by

� �
� �

� �

1

1
1

for
1 !

jk
i

ji i
j

x
p x c x

j
�

� �

�

�

�

�
� �

�
� i�

The breakpoint sequence � is assumed to be strictly increasing, and we extend the ppoly
function to the entire real axis by extrapolation from the first and last intervals. This
representation is redundant when the ppoly function is known to be smooth. For
example, if p is known to be continuous, then we can compute c1,i+1 from the cji as
follows:

� �
� �

� �

1
1

1, 1 1
1 1 !

jk
i i

i i ji
j

c p c
j

� �
�

�

�

� �

�

�

� �

�

�

For smooth ppoly, we prefer to use the nonredundant representation in terms of the
“basis” or B-splines, at least when such a function is first to be determined.

Splines and B-Splines
B-splines provide a particularly convenient and suitable basis for a given class of
smooth ppoly functions. Such a class is specified by giving its breakpoint sequence, its
order k, and the required smoothness across each of the interior breakpoints. The
corresponding B-spline basis is specified by giving its knot sequence t � RM. The
specification rule is as follows: If the class is to have all derivatives up to and including
the j-th derivative continuous across the interior breakpoint �i, then the number
�i should occur k � j � 1 times in the knot sequence. Assuming that �1 and �n are the
endpoints of the interval of interest, choose the first k knots equal to �1 and the last
k knots equal to �n. This can be done because the B-splines are defined to be right
continuous near �1 and left continuous near �n.

Chapter 3: Interpolation and Approximation Usage Notes � 141

When the above construction is completed, a knot sequence t of length M is generated,
and there are m: = M � k B-splines of order k, for example
B0, �, Bm-1, spanning the ppoly functions on the interval with the indicated
smoothness. That is, each ppoly function in this class has a unique representation

0 0 1 1 1 1m mp a B a B a B
� �

� � � ��

as a linear combination of B-splines. A B-spline is a particularly compact ppoly
function. Bi is a nonnegative function that is nonzero only on the interval [ti,ti+k]. More
precisely, the support of the i-th B-spline is [ti,ti+k]. No ppoly function in the same class
(other than the zero function) has smaller support (i.e., vanishes on more intervals) than
a B-spline. This makes B-splines particularly attractive basis functions since the
influence of any particular B-spline coefficient extends only over a few intervals. When
it is necessary to emphasize the dependence of the B-spline on its parameters, we will
use the notation Bi,k,t to denote the i-th B-spline of order k for the knot sequence t.

Cubic Splines
Cubic splines are smooth (i.e., C1 or C2), fourth-order ppoly functions. For historical
and other reasons, cubic splines are the most heavily used ppoly functions. Therefore,
we provide special functions for their construction and evaluation. These routines use
the ppoly representation as described above for general ppoly functions (with k = 4).

We provide two cubic spline interpolation functions:
imsl_f_cub_spline_interp_e_cnd (page 145) and
imsl_f_cub_spline_interp_shape (page 152). The function
imsl_f_cub_spline_interp_e_cnd allows the user to specify various endpoint
conditions (such as the value of the first or second derivative at the right and left
points). This means that the natural cubic spline can be obtained using this function by
setting the second derivative to zero at both endpoints. The function
imsl_f_cub_spline_interp_shape (page 152) is designed so that the shape of the
curve matches the shape of the data. In particular, one option of this function preserves
the convexity of the data while the default attempts to minimize oscillations.

It is possible that the cubic spline interpolation functions will produce unsatisfactory
results. For example, the interpolant may not have the shape required by the user, or the
data may be noisy and require a least-squares fit. The interpolation function
imsl_f_spline_interp (page 161) is more flexible, as it allows you to choose the
knots and order of the spline interpolant. We encourage the user to use this routine and
exploit the flexibility provided.

Tensor Product Splines
The simplest method of obtaining multivariate interpolation and approximation
functions is to take univariate methods and form a multivariate method via tensor
products. In the case of two-dimensional spline interpolation, the derivation proceeds as
follows. Let tx be a knot sequence for splines of order kx, and ty be a knot sequence for
splines of order ky. Let Nx + kx be the length of tx, and Ny + ky be the length of ty. Then,
the tensor-product spline has the following form.

142 � Usage Notes IMSL C/Math/Library

� � � �
1 1

, , , ,
0 0

y x

x x y y

N N

nm n k m k
m n

c B x B y
� �

� �

� � t t

Given two sets of points

� � 1
xN

i i
x

�

and

� � 1
yN

i i
y

�

for which the corresponding univariate interpolation problem can be solved, the tensor-
product interpolation problem finds the coefficients cnm so that

� � � �
1 1

, , , ,
0 0

y x

x x y y

N N

nm n k i m k j ij
m n

c B x B y f
� �

� �

�� � t t

This problem can be solved efficiently by repeatedly solving univariate interpolation
problems as described in de Boor (1978, p. 347). Three-dimensional interpolation can
be handled in an analogous manner. This chapter provides functions that compute the
two-dimensional, tensor-product spline coefficients given two-dimensional
interpolation data (imsl_f_spline_2d_interp (page 171) and that compute the
two-dimensional, tensor-product spline coefficients for a tensor-product, least-squares
problem (imsl_f_spline_2d_least_squares (page 199)). In addition, we provide
evaluation, differentiation, and integration functions for the two-dimensional, tensor-
product spline functions. The relevant functions are imsl_f_spline_2d_value
(page 182)) and imsl_f_spline_2d_integral (page 186).

Scattered Data Interpolation
The IMSL C/Math/Library provides one function, imsl_f_scattered_2d_interp
(page 220), that returns values of an interpolant to scattered data in the plane. This
function is based on work by Akima (1978), which uses C1 piecewise quintics on a
triangular mesh.

Least Squares
The IMSL C/Math/Library includes functions for smoothing noisy data. The function
imsl_f_user_fcn_least_squares (page 189) computes regressions with user-
supplied functions. The function imsl_f_spline_least_squares (page 193)
computes a least-squares fit using splines with fixed knots or variable knots. These
functions produce cubic spline, least-squares fit by default. Optional arguments allow
the user to choose the order and the knot sequence. IMSL C/Math/Library also includes
a tensor-product spline regression function (imsl_f_spline_2d_least_squares),
(page 199), mentioned above. The function imsl_f_radial_scattered_fit (page
225) computes an approximation to scattered data in RN using radial-basis functions.

Chapter 3: Interpolation and Approximation Usage Notes � 143

In addition to the functions listed above, several functions in Chapter 10, “Statistics and
Random Number Generation”, provide for polynomial regression and general linear
regression.

Smoothing by Cubic Splines
One ‘‘smoothing spline’’ function is provided. The default action of
imsl_f_cub_spline_smooth estimates a smoothing parameter by cross-validation
and then returns the cubic spline that smooths the data. If the user wishes to supply a
smoothing parameter, then this function returns the appropriate cubic spline.

Structures for Splines and Piecewise Polynomials
This optional section includes more details concerning the structures for splines and
piecewise polynomials.

A spline may be viewed as a mapping with domain Rd and target Rr, where d and r are
positive integers. For this version of the IMSL C/Math/Library, only r = 1 is supported.
Thus, if s is a spline, then for some d and r

s : Rd � Rr

This implies that such a spline s must have d knot sequences and orders (one for each
domain dimension). Thus, associated with s, we have knots and orders

t0, �, td-1

k0, �, kd-1
The precise form of the spline follows:

s(x) = (s0(x), �, sr-1(x)) x = (x1, �, xd) � Rd
where the following equation is true.

� �
1 0

0 1
0 1 0 0 1 1

1 0

1 1

, , , , , ,
0 0

:
d

d
d d d

d

n n
i

i j j j k j k
j j

s x c B B
�

�

�
� �

�

� �

� �

� � � t t�

�

�

Note that ni is the number of knots in ti minus the order ki.

We store all the information for a spline in one structure called Imsl_f_spline. (If the
type is double, then the structure name is Imsl_d_spline, and the float becomes double.)
The specification for this structure follows:
 typedef struct {
 int domain_dim;
 int target_dim;
 int *order;
 int *num_coef;
 int *num_knots;
 float **knots;
 float **coef;
} Imsl_f_spline;

144 � Usage Notes IMSL C/Math/Library

Explicitly, if sp is a pointer to Imsl_f_spline, then

sp-> domain_dim = d

sp-> target_dim = r

sp-> order [i] = ki i = 0, …, d � 1

sp-> num_coef [i] = mi i = 0, …, d � 1

sp-> num_knots [i] = ni + ki i = 0, …, d � 1

sp-> knots [i] [j] i
jt� I = 0, …, d � 1 j = 0, …, ni + ki � 1

sp-> coef [i] [j] i
jc� I = 0, …, r � 1 j = j0 + j1 n0 + … + jd-1 n0…nd-2

For ppoly functions, we view a ppoly as a mapping with domain Rd and target
Rr where d and r are positive integers. Thus, if p is a ppoly, then for some d and r the
following is true.

p : Rd � Rr

For this version of the C/Math/Library, only r = 1 is supported. This implies that such a
ppoly p must have d breakpoint sequences and orders (one for each domain
dimension). Thus, associated with p, we have breakpoints and orders

�1, …, �d

k1, …, kd

The precise form of the ppoly follows:

p(x) = (p0(x), …, pr(x)) x = (x1, …, xd) � Rd

where

� �
� � � �1 1

1
1

1

11 1
1

, , , , ,
0 0 1

:
! !

d
d d

d
d

d

ldk k
dL Li

i L L l l
l l d

x x
p x c

l l

� �� �

� �

� �

�� �
� �

� �

with

Lj : = max {1, min {Mj, nj � 1}}

where MJ is chosen so that

1 1, ,j j
j j

jM M
x j� �

�
� � � � d

with

0 1 and
j

j j
n� �

�
� �� � �

Note that nj is the number of breakpoints in �j.

We store all the information for a ppoly in one structure called Imsl_f_ppoly. (If the
type is double, then the structure name is Imsl_d_ppoly, and the float becomes double.)
The following is the specification for this structure.

Chapter 3: Interpolation and Approximation cub_spline_interp_e_cnd � 145

 typedef struct {
 int domain_dim;
 int target_dim;
 int *order;
 int *num_coef;
 int *num_breakpoints;
 float **breakpoints;
 float **coef;
} Imsl_f_ppoly;

In particular, if ppoly is a pointer to the structure of type Imsl_f_ppoly, then

ppoly-> domain_dim = d

ppoly-> target_dim = r

ppoly-> order [i] = ki i = 0, �, d � 1

ppoly-> num_coef [i] = ki (ni � 1) i = 0, �, d � 1

ppoly-> num_breakpoints [i] = ni i = 0, �, d � 1

ppoly-> breakpoints [i] [j] i
j�� i = 0, �, d � 1 j = 0, �, ni � 1

ppoly->coef [i[[j]
i
jc� i = 0, �, r � 1j = 0, �, k0(n0 � 1)�kd-1(nd-1 � 1)

cub_spline_interp_e_cnd
Computes a cubic spline interpolant, specifying various endpoint conditions. The
default interpolant satisfies the “not-a-knot” condition.

Synopsis
#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_interp_e_cnd (int ndata,
float xdata[], float fdata[], �, 0)

The type Imsl_d_ppoly function is imsl_d_cub_spline_interp_e_cnd.

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the interpolation
problem.

float fdata[] (Input)
Array with ndata components containing the ordinates for the interpolation
problem.

Return Value
A pointer to the structure that represents the cubic spline interpolant. If an interpolant
cannot be computed, then NULL is returned. To release this space, use free.

146 � cub_spline_interp_e_cnd IMSL C/Math/Library

Synopsis with Optional Arguments
#include <imsl.h>

Imsl_f_ppoly *imsl_f_cub_spline_interp_e_cnd (int ndata, float xdata[],
float fdata[],
IMSL_LEFT, int ileft, float left,
IMSL_RIGHT, int iright, float right,
IMSL_PERIODIC,
0)

Optional Arguments
IMSL_LEFT, int ileft, float left (Input)

Set the value for the first or second derivative of the interpolant at the left
endpoint. If ileft = i, then the interpolant s satisfies

s(i)(xL) = left

where xL is the leftmost abscissa. The only valid values for ileft are 1 or 2.

IMSL_RIGHT, int iright, float right (Input)
Set the value for the first or second derivative of the interpolant at the right
endpoint. If iright = i, then the interpolant s satisfies

s(i)(xR) = right

where xR is the rightmost abscissa. The only valid values for iright are 1 or 2.

IMSL_PERIODIC
Compute the C2 periodic interpolant to the data. That is, we require

s(i)(xL) = s(i)(xR) i = 0, 1, 2

where s, xL, and xR are defined above.

Description
The function imsl_f_cub_spline_interp_e_cnd computes a C2 cubic spline
interpolant to a set of data points (xi, fi) for i = 0, �, ndata � 1 = n. The breakpoints of
the spline are the abscissas. We emphasize here that for all the univariate interpolation
functions, the abscissas need not be sorted. Endpoint conditions are to be selected by
the user. The user may specify “not-a-knot” or first derivative or second derivative at
each endpoint, or C2 periodicity may be requested (see de Boor 1978, Chapter 4). If no
defaults are selected, then the “not-a-knot” spline interpolant is computed. If the
IMSL_PERIODIC keyword is selected, then all other keywords are ignored; and a
C2 periodic interpolant is computed. In this case, if the fdata values at the left and
right endpoints are not the same, then a warning message is issued; and we set the right
value equal to the left. If IMSL_LEFT or IMSL_RIGHT are selected (in the absence of
IMSL_PERIODIC), then the user has the ability to select the values of the first or second
derivative at either endpoint. The default case (when the keyword is not used) is the

Chapter 3: Interpolation and Approximation cub_spline_interp_e_cnd � 147

“not-a-knot” condition on that endpoint. Thus, when no optional arguments are chosen,
this function produces the “not-a-knot” interpolant.

If the data (including the endpoint conditions) arise from the values of a smooth
(say C4) function f, i.e. fi = f(xi), then the error will behave in a predictable fashion.
Let � be the breakpoint vector for the above spline interpolant. Then, the maximum
absolute error satisfies

� �

� �

� �0 0

44
, ,n n

f s C f
� � � �

�� �

where

10, , 1
: max i ii n

� �
�

� �

� �

�

�

For more details, see de Boor (1978, Chapters 4 and 5).

The return value for this function is a pointer to the structure Imsl_f_ppoly. The calling
program must receive this in a pointer Imsl_f_ppoly *ppoly. This structure contains all
the information to determine the spline (stored as a piecewise polynomial) that is
computed by this function. For example, the following code sequence evaluates this
spline at x and returns the value in y
y = imsl_f_cub_spline_value (x, ppoly, 0)

The difference between the default (“not-a-knot”) spline and the interpolating cubic
spline, which has first derivative set to 1 at the left end and the second derivative set to
�90 at the right end, is illustrated in the following figure.

Figure 3-1 Two Interpolating Splines

148 � cub_spline_interp_e_cnd IMSL C/Math/Library

Examples

Example 1
In this example, a cubic spline interpolant to a function f is computed. The values of
this spline are then compared with the exact function values. Since we are using the
default settings, the interpolant is determined by the “not-a-knot” condition
(see de Boor 1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *ppoly;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 ppoly = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);

 /* Print results */
 printf(" x F(x) Interpolant Error\n");
 for (i = 0; i < 2*NDATA-1; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x,ppoly,0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output
 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.809 0.1270
0.100 0.997 0.997 0.0000
0.150 0.778 0.723 0.0552
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.549 0.0228
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.843 0.0162
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.441 0.0093
0.500 0.938 0.938 0.0000
0.550 0.923 0.903 0.0199
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.315 0.0049
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.938 0.0295
0.800 -0.537 -0.537 0.0000

Chapter 3: Interpolation and Approximation cub_spline_interp_e_cnd � 149

0.850 0.183 0.148 0.0347
0.900 0.804 0.804 0.0000
0.950 0.994 1.086 0.0926
1.000 0.650 0.650 0.0000

Example 2

In this example, a cubic spline interpolant to a function f is computed. The value of the
derivative at the left endpoint and the value of the second derivative at the right
endpoint are specified. The values of this spline are then compared with the exact
function values.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i, ileft, iright;
 float left, right, x, y, fdata[NDATA], xdata[NDATA];
 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 /* Specify end conditions */
 ileft = 1;
 left = 0.0;
 iright = 2;
 right =-225.0*sin(15.0);
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata,
 IMSL_LEFT, ileft, left,
 IMSL_RIGHT, iright, right,
 0);
 /* Print results for first half */
 /* of interval */
 printf(" x F(x) Interpolant Error\n\n");
 for (i=0; i<NDATA; i++){
 x = (float)(i)/(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x,pp,0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output
 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.438 0.2441
0.100 0.997 0.997 0.0000
0.150 0.778 0.822 0.0442
0.200 0.141 0.141 0.0000

150 � cub_spline_interp_e_cnd IMSL C/Math/Library

0.250 -0.572 -0.575 0.0038
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.836 0.0233
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.439 0.0111
0.500 0.938 0.938 0.0000

Example 3
This example computes the natural cubic spline interpolant to a function f by forcing
the second derivative of the interpolant to be zero at both endpoints. As in the previous
example, the exact function values are computed with the values of the spline.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i, ileft, iright;
 float left, right, x, y, fdata[NDATA],
 xdata[NDATA];
 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 /* Specify end conditions */
 ileft = 2;
 left = 0.0;
 iright = 2;
 right = 0.0;
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata,
 IMSL_LEFT, ileft, left,
 IMSL_RIGHT, iright, right,
 0);
 /* Print results for first half */
 /* of interval */
 printf(" x F(x) Interpolant Error\n\n");
 for (i = 0; i < NDATA; i++){
 x = (float)(i)/(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x,pp,0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output
 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.667 0.0150
0.100 0.997 0.997 0.0000
0.150 0.778 0.761 0.0172

Chapter 3: Interpolation and Approximation cub_spline_interp_e_cnd � 151

0.200 0.141 0.141 0.0000
0.250 -0.572 -0.559 0.0126
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.840 0.0189
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.440 0.0098
0.500 0.938 0.938 0.0000

Example 4
This example computes the cubic spline interpolant to a functions, and imposes the
periodic end conditions s(a) = s(b), s'(a) = s'(b), and s"(a) = s"(b), where a is the
leftmost abscissa and b is the rightmost abscissa.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function*/
#define F(x) (float)(sin(x))

main()
{
 int i;
 float x, y, twopi, fdata[NDATA], xdata[NDATA];
 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 twopi = 2.0*imsl_f_constant("pi", 0);
 for (i = 0; i < NDATA; i++) {
 xdata[i] = twopi*(float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 fdata[NDATA-1] = fdata[0];
 /* Compute periodic cubic spline */
 /* interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd(NDATA, xdata, fdata,
 IMSL_PERIODIC,
 0);
 /* Print results for first half */
 /* of interval */
 printf(" x F(x) Interpolant Error\n\n");
 for (i = 0; i < NDATA; i++){
 x = (twopi/20.)*i;
 y = imsl_f_cub_spline_value(x, pp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n",x,F(x), y,
 fabs(F(x)-y));
 }
}

Output
 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.314 0.309 0.309 0.0001
0.628 0.588 0.588 0.0000
0.942 0.809 0.809 0.0004
1.257 0.951 0.951 0.0000
1.571 1.000 1.000 0.0004
1.885 0.951 0.951 0.0000

152 � cub_spline_interp_shape IMSL C/Math/Library

2.199 0.809 0.809 0.0004
2.513 0.588 0.588 0.0000
2.827 0.309 0.309 0.0001
3.142 -0.000 -0.000 0.0000

Warning Errors
IMSL_NOT_PERIODIC The data is not periodic. The rightmost fdata

value is set to the leftmost fdata value.
Fatal Errors
IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.

cub_spline_interp_shape
Computes a shape-preserving cubic spline.

Synopsis
#include <imsl.h>
Imsl_f_ppoly *imsl_f_cub_spline_interp_shape (int ndata, float xdata[],

float fdata[], …, 0)

The type Imsl_d_ppoly function is imsl_d_cub_spline_interp_shape.

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the interpolation
problem.

float fdata[] (Input)
Array with ndata components containing the ordinates for the interpolation
problem.

Return Value
A pointer to the structure that represents the cubic spline interpolant. If an interpolant
cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments
#include <imsl.h>
Imsl_f_ppoly *imsl_f_cub_spline_interp_shape (int ndata,

float xdata[], float fdata[],
IMSL_CONCAVE,
IMSL_CONCAVE_ITMAX, int itmax,
0)

Chapter 3: Interpolation and Approximation cub_spline_interp_shape � 153

Optional Arguments
IMSL_CONCAVE

This option produces a cubic interpolant that will preserve the concavity of the
data.

IMSL_CONCAVE_ITMAX, int itmax (Input)
This option allows the user to set the maximum number of iterations of
Newton’s Method. Default: itmax = 25.

Description
The function imsl_f_cub_spline_interp_shape computes a C1 cubic spline
interpolant to a set of data points(xi, fi) for i = 0, �, ndata � 1 = n. The breakpoints of
the spline are the abscissas. This computation is based on a method by Akima (1970) to
combat wiggles in the interpolant. Endpoint conditions are automatically determined by
the program; see Akima (1970) or de Boor (1978).

If the optional argument IMSL_CONCAVE is chosen, then this function computes a cubic
spline interpolant to the data. For ease of explanation, we will assume that xi < xi+1,
although it is not necessary for the user to sort these data values. If the data are strictly
convex, then the computed spline is convex, C2, and minimizes the expression

� �
1

2
nx

x
g ���

over all convex C1 functions that interpolate the data. In the general case, when the data
have both convex and concave regions, the convexity of the spline is consistent with the
data, and the above integral is minimized under the appropriate constraints. For more
information on this interpolation scheme, refer to Michelli et al. (1985) and Irvine et al.
(1986).

One important feature of the splines produced by this function is that it is not possible,
a priori, to predict the number of breakpoints of the resulting interpolant. In most cases,
there will be breakpoints at places other than data locations. This function should be
used when it is important to preserve the convex and concave regions implied by the
data.

Both methods are nonlinear, and although the interpolant is a piecewise cubic, cubic
polynomials are not reproduced. (However, linear polynomials are reproduced.) This
explains the theoretical error estimate below.

If the data points arise from the values of a smooth (say C4) function f, i.e. fi = f(xi),
then the error will behave in a predictable fashion. Let � be the breakpoint vector for
either of the above spline interpolants. Then, the maximum absolute error satisfies

� �

� �

� �0 0

22
, ,m m

f s C f
� � � �

�� �

where
10, , 1

: max i ii m
� �

�
� �

� �
�

�

and �m is the last breakpoint.

154 � cub_spline_interp_shape IMSL C/Math/Library

The return value for this function is a pointer of the type Imsl_f_ppoly. The calling
program must receive this in a pointer Imsl_f_ppoly *ppoly. This structure contains all
the information to determine the spline (stored as a piecewise polynomial) that is
computed by this function. For example, the following code sequence evaluates this
spline at x and returns the value in y.
y = imsl_f_cub_spline_value (x, ppoly, 0)

The difference between the convexity-preserving spline and Akima’s spline is
illustrated in the following figure. Note that the convexity-preserving interpolant
exhibits linear segments where the convexity constraints are binding.

Figure 3-2 Two Shape-Preserving Splines

Examples

Example 1
In this example, a cubic spline interpolant to a function f is computed. The values of
this spline are then compared with the exact function values.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;

Chapter 3: Interpolation and Approximation cub_spline_interp_shape � 155

 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_shape(NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x F(x) Interpolant Error\n\n");
 for (i = 0; i < 2*NDATA-1; i++) {
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x, pp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output
 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.818 0.1360
0.100 0.997 0.997 0.0000
0.150 0.778 0.615 0.1635
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.478 0.0934
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.812 0.0464
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.386 0.0645
0.500 0.938 0.938 0.0000
0.550 0.923 0.854 0.0683
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.276 0.0433
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.889 0.0789
0.800 -0.537 -0.537 0.0000
0.850 0.183 0.149 0.0338
0.900 0.804 0.804 0.0000
0.950 0.994 0.932 0.0613
1.000 0.650 0.650 0.0000

Example 2
In this example, a cubic spline interpolant to a function f is computed. The values of
this spline are then compared with the exact function values.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i;

156 � cub_spline_interp_shape IMSL C/Math/Library

 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *pp;
 /* Compute xdata and fdata */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)(i)/(NDATA-1);
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_shape(NDATA, xdata, fdata,
 IMSL_CONCAVE,
 0);
 /* Print results */
 printf(" x F(x) Interpolant Error\n\n");
 for (i = 0; i < 2*NDATA-1; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x, pp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output
 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.667 0.0150
0.100 0.997 0.997 0.0000
0.150 0.778 0.761 0.0172
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.559 0.0126
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.840 0.0189
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.440 0.0098
0.500 0.938 0.938 0.0000
0.550 0.923 0.902 0.0208
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.311 0.0086
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.952 0.0156
0.800 -0.537 -0.537 0.0000
0.850 0.183 0.200 0.0174
0.900 0.804 0.804 0.0000
0.950 0.994 0.892 0.1020
1.000 0.650 0.650 0.0000

Warning Errors
IMSL_MAX_ITERATIONS_REACHED The maximum number of iterations has been

reached. The best approximation is returned.

Fatal Errors
IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.

Chapter 3: Interpolation and Approximation cub_spline_value � 157

cub_spline_value
Computes the value of a cubic spline or the value of one of its derivatives.

Synopsis
#include <imsl.h>
float imsl_f_cub_spline_value (float x, Imsl_f_ppoly *ppoly, �, 0)

The type double function is imsl_d_cub_spline_value.

Required Arguments

float x (Input)
Evaluation point for the cubic spline.

Imsl_f_ppoly *ppoly (Input)
Pointer to the piecewise polynomial structure that represents the cubic spline.

Return Value
The value of a cubic spline or one of its derivatives at the point x. If no value can be
computed, then NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_cub_spline_value (float x, Imsl_f_ppoly *ppoly,

IMSL_DERIV, int deriv,
IMSL_GRID, int n, float *xvec, float **value,
IMSL_GRID_USER, int n, float *xvec, float value_user[],
0)

Optional Arguments
IMSL_DERIV, int deriv (Input)

Let d = deriv and let s be the cubic spline that is represented by the structure
*ppoly, then this option produces the d-th derivative of s at x, s(d) (x).

IMSL_GRID, int n, float *xvec, float **value (Input/Output)
The array xvec of length n contains the points at which the cubic spline is to
be evaluated. The d-th derivative of the spline at the points in xvec is returned
in value.

IMSL_GRID_USER, int n, float *xvec, float value_user[] (Input/Output)
The array xvec of length n contains the points at which the cubic spline is to
be evaluated. The d-th derivative of the spline at the points in xvec is returned
in the user-supplied space value_user.

158 � cub_spline_value IMSL C/Math/Library

Description
The function imsl_f_cub_spline_value computes the value of a cubic spline or
one of its derivatives. The first and last pieces of the cubic spline are extrapolated. As a
result, the cubic spline structures returned by the cubic spline routines are defined and
can be evaluated on the entire real line. This routine is based on the routine PPVALU
by de Boor (1978, p. 89).

Examples

Example 1
In this example, a cubic spline interpolant to a function f is computed. The values of
this spline are then compared with the exact function values. Since the default settings
are used, the interpolant is determined by the “not-a-knot” condition (see de Boor
1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *pp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x F(x) Interpolant Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++) {
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x, pp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output
 x F(x) Interpolant Error
0.250 -0.572 -0.549 0.0228
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.843 0.0162
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.441 0.0093
0.500 0.938 0.938 0.0000
0.550 0.923 0.903 0.0199

Chapter 3: Interpolation and Approximation cub_spline_value � 159

0.600 0.412 0.412 0.0000
0.650 -0.320 -0.315 0.0049
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.938 0.0295

Example 2
Recall that in the first example, a cubic spline interpolant to a function f is computed.
The values of this spline are then compared with the exact function values. This
example compares the values of the first derivatives.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define functions */
#define F(x) (float)(sin(15.0*x))
#define FP(x) (float)(15.*cos(15.0*x))

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *pp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata,fdata, 0);
 /* Print results */
 printf(" x FP(x) Interpolant Deriv Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_value(x, pp,
 IMSL_DERIV, 1,
 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, FP(x), y,
 fabs(FP(x)-y));
 }
}

Output
 x FP(x) Interpolant Deriv Error
0.250 -12.308 -12.559 0.2510
0.300 -3.162 -3.218 0.0560
0.350 7.681 7.796 0.1151
0.400 14.403 13.919 0.4833
0.450 13.395 13.530 0.1346
0.500 5.200 5.007 0.1926
0.550 -5.786 -5.840 0.0535
0.600 -13.667 -13.201 0.4660
0.650 -14.214 -14.393 0.1798
0.700 -7.133 -6.734 0.3990
0.750 3.775 3.911 0.1359

160 � cub_spline_integral IMSL C/Math/Library

cub_spline_integral
Computes the integral of a cubic spline.

Synopsis
#include <imsl.h>
float imsl_f_cub_spline_integral (float a, float b, Imsl_f_ppoly *ppoly)

The type double function is imsl_d_cub_spline_integral.

Required Arguments

float a (Input)

float b (Input)
Endpoints for integration.

Imsl_f_ppoly *ppoly (Input)
Pointer to the piecewise polynomial structure that represents the cubic spline.

Return Value
The integral from a to b of the cubic spline. If no value can be computed, then NaN is
returned.

Description
The function imsl_f_cub_spline_integral computes the integral of a cubic spline
from a to b.

� �
b

a
s x dx�

Example
In this example, a cubic spline interpolant to a function f is computed. The values of the
integral of this spline are then compared with the exact integral values. Since the
default settings are used, the interpolant is determined by the “not-a-knot” condition
(see de Boor 1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 21
 /* Define function */
#define F(x) (float)(sin(15.0*x))
 /* Integral from 0 to x */
#define FI(x) (float)((1.-cos(15.0*x))/15.)

main()
{
 int i;

Chapter 3: Interpolation and Approximation spline_interp � 161

 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_ppoly *pp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 pp = imsl_f_cub_spline_interp_e_cnd (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x FI(x) Interpolant Integral Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_cub_spline_integral(0.0, x, pp);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, FI(x), y,
 fabs(FI(x)-y));
 }
}

Output
 x FI(x) Interpolant Integral Error
0.250 0.121 0.121 0.0001
0.275 0.104 0.104 0.0001
0.300 0.081 0.081 0.0001
0.325 0.056 0.056 0.0001
0.350 0.033 0.033 0.0001
0.375 0.014 0.014 0.0002
0.400 0.003 0.003 0.0002
0.425 0.000 0.000 0.0002
0.450 0.007 0.007 0.0002
0.475 0.022 0.022 0.0001
0.500 0.044 0.044 0.0001
0.525 0.068 0.068 0.0001
0.550 0.092 0.092 0.0001
0.575 0.113 0.113 0.0001
0.600 0.127 0.128 0.0001
0.625 0.133 0.133 0.0001
0.650 0.130 0.130 0.0001
0.675 0.118 0.118 0.0001
0.700 0.098 0.098 0.0001
0.725 0.075 0.075 0.0001
0.750 0.050 0.050 0.0001

spline_interp
Compute a spline interpolant.

Synopsis
#include <imsl.h>
Imsl_f_spline *imsl_f_spline_interp (int ndata, float xdata[],

float fdata[], �, 0)

The type Imsl_d_spline function is imsl_d_spline_interp.

162 � spline_interp IMSL C/Math/Library

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the interpolation
problem.

float fdata[] (Input)
Array with ndata components containing the ordinates of the interpolation
problem.

Return Value
A pointer to the structure that represents the spline interpolant. If an interpolant cannot
be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments
#include <imsl.h>
Imsl_f_spline *imsl_f_spline_interp (int ndata, float xdata[], float

fdata[],
IMSL_ORDER, int order,
IMSL_KNOTS, float knots[],
0)

Optional Arguments
IMSL_ORDER, int order (Input)

The order of the spline subspace for which the knots are desired. This option
is used to communicate the order of the spline subspace.
Default: order = 4, i.e., cubic splines

IMSL_KNOTS, float knots[] (Input)
This option requires the user to provide the knots.
Default: knots are selected by the function imsl_f_spline_knots using its
defaults.

Description
Given the data points x = xdata, f = fdata, and the number n = ndata of elements in
xdata and fdata, the default action of imsl_f_spline_interp computes a cubic
(k = 4) spline interpolant s to the data using the default knot sequence generated by
imsl_f_spline_knots.

The optional argument IMSL_ORDER allows the user to choose the order of the spline
interpolant. The optional argument IMSL_KNOTS allows user specification of knots.

The function imsl_f_spline_interp is based on the routine SPLINT by de Boor
(1978, p. 204).

Chapter 3: Interpolation and Approximation spline_interp � 163

First, imsl_f_spline_interp sorts the xdata vector and stores the result in x. The
elements of the fdata vector are permuted appropriately and stored in f, yielding the
equivalent data (xi, fi) for i = 0 to n � 1.

The following preliminary checks are performed on the data. We verify that

 xi < xi+1 i = 0, …, n � 2

 ti < ti+k i = 0, …., n � 1

 ti < ti+1 i = 0, …, n + k � 2

The first test checks to see that the abscissas are distinct. The second and third
inequalities verify that a valid knot sequence has been specified.
� In order for the interpolation matrix to be nonsingular, we also check

tk - 1 � xi � tn for i = 0 to n � 1. This first inequality in the last check is necessary
since the method used to generate the entries of the interpolation matrix requires
that the k possibly nonzero B-splines at xi,

Bj-k+1, …, Bj where j satisfies tj � xi < tj+1

 be well-defined (that is, j � k + 1 	 0).

General conditions are not known for the exact behavior of the error in spline
interpolation; however, if t and x are selected properly and the data points arise from
the values of a smooth (say Ck) function f, i.e. fi = f(xi), then the error will behave in a
predictable fashion. The maximum absolute error satisfies

� �

� �

� �1 1
, ,k n k n

kkf s C f
�

�

� �
t t t t

t

where

11, , 1
: max i ii k n �

� � �

� �t t
�

t

For more information on this problem, see de Boor (1978, Chapter 13) and his
reference. This function can be used in place of the IMSL function
imsl_f_cub_spline_interp.

The return value for this function is a pointer of type Imsl_f_spline. The calling
program must receive this in a pointer Imsl_f_spline *sp. This structure contains all the
information to determine the spline (stored as a linear combination of B-splines) that is
computed by this function. For example, the following code sequence evaluates this
spline at x and returns the value in y.
y = imsl_f_spline_value (x, sp, 0)

Three spline interpolants of order 2, 3, and 5 are plotted. These splines use the default
knots.

164 � spline_interp IMSL C/Math/Library

Figure 3-3 Three Spline Interpolants

Examples

Example 1
In this example, a cubic spline interpolant to a function f is computed. The values of
this spline are then compared with the exact function values. Since the default settings
are used, the interpolant is determined by the “not-a-knot” condition (see de Boor
1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i;
 float xdata[NDATA], fdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x F(x) Interpolant Error\n");
 for (i = 0; i < 2*NDATA-1; i++){

Chapter 3: Interpolation and Approximation spline_interp � 165

 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_value(x, sp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Output
 x F(x) Interpolant Error
0.000 0.000 0.000 0.0000
0.050 0.682 0.809 0.1270
0.100 0.997 0.997 0.0000
0.150 0.778 0.723 0.0552
0.200 0.141 0.141 0.0000
0.250 -0.572 -0.549 0.0228
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.843 0.0162
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.441 0.0093
0.500 0.938 0.938 0.0000
0.550 0.923 0.903 0.0199
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.315 0.0049
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.938 0.0295
0.800 -0.537 -0.537 0.0000
0.850 0.183 0.148 0.0347
0.900 0.804 0.804 0.0000
0.950 0.994 1.086 0.0926
1.000 0.650 0.650 0.0000

Example 2
Recall that in the first example, a cubic spline interpolant to a function f is computed.
The values of this spline are then compared with the exact function values. This
example chooses to use a quadratic (k = 3) and a quintic k = 6 spline interpolant to the
data instead of the default values.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i, order;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 for (order =3; order<7; order += 3) {

166 � spline_interp IMSL C/Math/Library

 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata, fdata,
 IMSL_ORDER, order,
 0);
 /* Print results */
 printf("\nThe order of the spline is %d\n", order);
 printf(" x F(x) Interpolant Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_value(x,sp,0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
 }
}

Output
The order of the spline is 3
 x F(x) Interpolant Error
 0.250 -0.572 -0.542 0.0299
 0.300 -0.978 -0.978 0.0000
 0.350 -0.859 -0.819 0.0397
 0.400 -0.279 -0.279 0.0000
 0.450 0.450 0.429 0.0210
 0.500 0.938 0.938 0.0000
 0.550 0.923 0.879 0.0433
 0.600 0.412 0.412 0.0000
 0.650 -0.320 -0.305 0.0149
 0.700 -0.880 -0.880 0.0000
 0.750 -0.968 -0.922 0.0459

The order of the spline is 6
 x F(x) Interpolant Error
 0.250 -0.572 -0.573 0.0016
 0.300 -0.978 -0.978 0.0000
 0.350 -0.859 -0.856 0.0031
 0.400 -0.279 -0.279 0.0000
 0.450 0.450 0.448 0.0020
 0.500 0.938 0.938 0.0000
 0.550 0.923 0.922 0.0003
 0.600 0.412 0.412 0.0000
 0.650 -0.320 -0.322 0.0025
 0.700 -0.880 -0.880 0.0000
 0.750 -0.968 -0.959 0.0090

Warning Errors
IMSL_ILL_COND_INTERP_PROB The interpolation matrix is ill-conditioned. The

solution might not be accurate.

Fatal Errors
IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the
order of the spline.

Chapter 3: Interpolation and Approximation spline_knots � 167

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

IMSL_KNOT_XDATA_INTERLACING The i-th smallest element of xdata (xi) must
satisfy ti � xi < ti+order where t is the knot
sequence.

IMSL_XDATA_TOO_LARGE The array xdata must satisfy xdatai � tndata,
for i = 1, �, ndata.

IMSL_XDATA_TOO_SMALL The array xdata must satisfy xdatai 	 torder-1,
for i = 1, �, ndata.

spline_knots
Computes the knots for a spline interpolant

Synopsis
#include <imsl.h>
float *imsl_f_spline_knots (int ndata, float xdata[], �, 0)

The type double function is imsl_d_spline_knots.

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the interpolation
problem.

Return Value
A pointer to the knots. If the knots cannot be computed, then NULL is returned. To
release this space, use free.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_spline_knots (int ndata, float xdata[],

IMSL_ORDER, int order,
IMSL_OPT,
IMSL_OPT_ITMAX, int itmax,
IMSL_RETURN_USER, float knots[],
0)

168 � spline_knots IMSL C/Math/Library

Optional Arguments
IMSL_ORDER, int order (Input)

The order of the spline subspace for which the knots are desired. This option
is used to communicate the order of the spline subspace.
Default: order = 4, i.e., cubic splines

IMSL_OPT
This option produces knots that satisfy an optimality criterion.

IMSL_OPT_ITMAX, int itmax (Input)
This option allows the user to set the maximum number of iterations of
Newton’s method.
Default: itmax = 10

IMSL_RETURN_USER, float knots[] (Output)
This option requires the user to provide the space for the return knots. For
example, the user could declare float knots[100]; and pass in knots.
The return value is then also set to knots.

Description
Given the data points x = xdata, the order of the spline k = order, and the number
n = ndata of elements in xdata, the default action of imsl_f_spline_knots
returns a pointer to a knot sequence that is appropriate for interpolation of data on x by
splines of order k (the default order is k = 4). The knot sequence is contained in its first
n + k positions. If k is even, and we assume that the entries in the input vector x are
increasing, then the resulting knot sequence t is returned as

 ti = x0 for i = 0, …, k � 1

 ti = xi-k/2-1 for i = k, …, n � 1

 ti = xn-1 for i = n, …, n + k � 1

There is some discussion concerning this selection of knots in de Boor (1978, p. 211).
If k is odd, then t is returned as

0

1 21 1
2 2

1

for 0, , 1
() / 2 for , , 1

for , , 1

i

i k ki i

i n

x i
x x i k n

x i

� �

� � � �

�

� �

� � � �

� �

t
t

t

�

�

�

k

n n k

�

� �

It is not necessary to sort the values in xdata.

If the option IMSL_OPT is selected, then the knot sequence returned minimizes the
constant c in the error estimate

||f � s|| � c|| f (k)||

Chapter 3: Interpolation and Approximation spline_knots � 169

In the above formula, f is any function in Ck, and s is the spline interpolant to f at the
abscissas x with knot sequence t.

The algorithm is based on a routine described in de Boor (1978, p. 204), which in turn
is based on a theorem of Micchelli et al. (1976).

Examples

Example 1
In this example, knots for a cubic spline are generated and printed. Notice that the knots
are stacked at the endpoints and that the second and next to last data points are not
knots.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 6

main()
{
 int i;
 float *knots, xdata[NDATA];

 for(i = 0; i < NDATA; i++)
 xdata[i] = i;
 knots = imsl_f_spline_knots(NDATA, xdata, 0);
 imsl_f_write_matrix("The knots for the cubic spline are:\n",
 1, NDATA+4, knots,
 IMSL_COL_NUMBER_ZERO,
 0);
}

Output
 The knots for the cubic spline are:

 0 1 2 3 4 5
 0 0 0 0 2 3

 6 7 8 9
 5 5 5 5

Example 2
This is a continuation of the examples for imsl_f_spline_interp (page 161).
Recall that in these examples, a cubic spline interpolant to a function f is computed
first. The values of this spline are then compared with the exact function values. The
second example uses a quadratic (k = 3) and a quintic (k = 6) spline interpolant to the
data. Now, instead of using the default knots, select the “optimal” knots as described
above. Notice that the error is actually worse in this case.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

170 � spline_knots IMSL C/Math/Library

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i, order;
 float fdata[NDATA], xdata[NDATA], *knots, x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 for(order = 3; order < 7; order += 3) {
 knots = imsl_f_spline_knots(NDATA, xdata, IMSL_ORDER, order,
 IMSL_OPT,
 0);
 /* Compute spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata,fdata,
 IMSL_ORDER, order,
 IMSL_KNOTS, knots,
 0);
 /* Print results */
 printf("\nThe order of the spline is %d\n", order);
 printf(" x F(x) Interpolant Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++) {
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_value(x, sp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
 }
}

Output
The order of the spline is 3
 x F(x) Interpolant Error
 0.250 -0.572 -0.543 0.0290
 0.300 -0.978 -0.978 0.0000
 0.350 -0.859 -0.819 0.0401
 0.400 -0.279 -0.279 0.0000
 0.450 0.450 0.429 0.0210
 0.500 0.938 0.938 0.0000
 0.550 0.923 0.879 0.0433
 0.600 0.412 0.412 0.0000
 0.650 -0.320 -0.305 0.0150
 0.700 -0.880 -0.880 0.0000
 0.750 -0.968 -0.920 0.0478

The order of the spline is 6
 x F(x) Interpolant Error
 0.250 -0.572 -0.578 0.0061
 0.300 -0.978 -0.978 0.0000
 0.350 -0.859 -0.854 0.0054
 0.400 -0.279 -0.279 0.0000
 0.450 0.450 0.448 0.0019

Chapter 3: Interpolation and Approximation spline_2d_interp � 171

 0.500 0.938 0.938 0.0000
 0.550 0.923 0.920 0.0022
 0.600 0.412 0.412 0.0000
 0.650 -0.320 -0.317 0.0020
 0.700 -0.880 -0.880 0.0000
 0.750 -0.968 -0.966 0.0023

Warning Errors
IMSL_NO_CONV_NEWTON Newton’s method iteration did not converge.

Fatal Errors
IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.

IMSL_ILL_COND_LIN_SYS Interpolation matrix is singular. The xdata
values may be too close together.

spline_2d_interp
Computes a two-dimensional, tensor-product spline interpolant from two-dimensional,
tensor-product data.

Synopsis
#include <imsl.h>
Imsl_f_spline *imsl_f_spline_2d_interp (int num_xdata, float xdata[], int

num_ydata, float ydata[], float fdata[], �, 0)

The type Imsl_d_spline function is imsl_d_spline_2d_interp.

Required Arguments

int num_xdata (Input)
Number of data points in the X direction.

float xdata[] (Input)
Array with num_xdata components containing the data points in the X
direction.

int num_ydata (Input)
Number of data points in the Y direction.

float ydata[] (Input)
Array with num_ydata components containing the data points in the Y
direction.

float fdata[] (Input)
Array of size num_xdata � num_ydata containing the values to be
interpolated. fdata[i][j] is the value at (xdata[i], ydata[j]).

172 � spline_2d_interp IMSL C/Math/Library

Return Value
A pointer to the structure that represents the tensor-product spline interpolant. If an
interpolant cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments
#include <imsl.h>
Imsl_f_spline *imsl_f_spline_2d_interp (int num_xdata, float xdata[], int

num_ydata, float ydata[], float fdata[],
IMSL_ORDER, int xorder, int yorder,
IMSL_KNOTS, float xknots[], float yknots[],
IMSL_FDATA_COL_DIM, int fdata_col_dim,
0)

Optional Arguments
IMSL_ORDER, int xorder, int yorder (Input)

This option is used to communicate the order of the spline subspace.
Default: xorder, yorder = 4, (i.e., tensor-product cubic splines)

IMSL_KNOTS, float xknots[], float yknots[] (Input)
This option requires the user to provide the knots. The default knots are
selected by the function imsl_f_spline_knots using its defaults.

IMSL_FDATA_COL_DIM, int fdata_col_dim (Input)
The column dimension of the matrix fdata.
Default: fdata_col_dim = num_ydata

Description
The function imsl_f_spline_2d_interp computes a tensor-product spline
interpolant. The tensor-product spline interpolant to data {(xi, yj, fij)}, where
0 � i � nx � 1 and 0 � j � ny � 1 has the form

� � � �
1 1

, , , ,
0 0

y x

x x y y

n n

nm n k m k
m n

c B x B y
� �

� �

�� t t

where kx and ky are the orders of the splines. These numbers are defaulted to be 4, but
can be set to any positive integer using the keyword, IMSL_ORDER. Likewise, tx and ty
are the corresponding knot sequences (xknots and yknots). These values are
defaulted to the knots returned by imsl_f_spline_knots. The algorithm requires
that

tx(kx � 1) � xi � tx(nx) 0 � i � nx � 1

ty(ky � 1) � yj � ty(ny � 1) 0 � j � ny � 1

Tensor-product spline interpolants in two dimensions can be computed quite efficiently
by solving (repeatedly) two univariate interpolation problems.

Chapter 3: Interpolation and Approximation spline_2d_interp � 173

x

x

1

The computation is motivated by the following observations. It is necessary to solve the
system of equations

� � � �
1 1

, , , ,
0 0

y x

x x y y

n n

nm n k i m k j ij
m n

c B x B y f
� �

� �

��� t t

Setting

� �
1

, ,0
x

x x

n
mi nm n k in

h c B�

�

�� t

note that for each fixed i from 0 to nx � 1, we have ny linear equations in the same
number of unknowns as can be seen below:

� �
1

, ,
0

y

y y

n

mi m k i ij
m

h B y f
�

�

�� t

� � � �
1 1

, , , ,
0 0

y x

x x y y

n n

nm n k i m k j ij
m n

c B x B y f
� �

� �

��� t t

Setting

� �
1

, ,0
x

x x

n
mi nm n k in

h c B�

�

�� t

note that for each fixed i from 1 to nx � 1, we have ny � 1 linear equations in the same
number of unknowns as can be seen below:

� �
1

, ,
0

y

y y

n

mi m k i ij
m

h B y f
�

�

�� t

The same matrix appears in all of the equations above:

� �, , 1 ,
y ym k j yB y m j n� � � � �

� �t

Thus, only factor this matrix once and then apply this factorization to the nx right-hand
sides. Once this is done and hmi is computed, then solve for the coefficients cnm using
the relation

� �
1

, ,
0

x

x x

n

nm n k i mi
n

c B x h
�

�

�� t

for m from 0 to ny � 1, which again involves one factorization and ny solutions to the
different right-hand sides. The function imsl_f_spline_2d_interp is based on the
routine SPLI2D by de Boor (1978, p. 347).

The return value for this function is a pointer to the structure imsl_f_spline. The
calling program must receive this in a pointer imsl_f_spline *sp. This structure
contains all the information to determine the spline (stored in B-spline format) that is
computed by this procedure. For example, the following code sequence evaluates this
spline at (x,y) and returns the value in z.
z = imsl_f_spline_2d_value (x, y, sp, 0);

174 � spline_2d_interp IMSL C/Math/Library

Examples

Example 1
In this example, a tensor-product spline interpolant to a function f is computed.
The values of the interpolant and the error on a 4 � 4 grid are displayed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
#define OUTDATA 2
 /* Define function */
#define F(x, y) (float)(x*x*x+y*y)

main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float)i / ((float)(NDATA-1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
 ydata, fdata, 0);
 /* Print results */
 printf(" x y F(x, y) Interpolant Error \n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) i / (float) (OUTDATA);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) j / (float) (OUTDATA);
 z = imsl_f_spline_2d_value(x, y, sp, 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
 }
}

Output
 x y F(x, y) Interpolant Error
0.000 0.000 0.000 0.000 0.0000
0.000 0.500 0.250 0.250 0.0000
0.500 0.000 0.125 0.125 0.0000
0.500 0.500 0.375 0.375 0.0000

Example 2
Recall that in the first example, a tensor-product spline interpolant to a function f is
computed. The values of the interpolant and the error on a 4 � 4 grid are displayed.

Chapter 3: Interpolation and Approximation spline_2d_interp � 175

Notice that the first interpolant with order = 3 does not reproduce the cubic data,
while the second interpolant with order = 6 does reproduce the data.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 7
#define OUTDATA 4
 /* Define function */
#define F(x,y) (float)(x*x*x+y*y)

main()
{
 int i, j, num_xdata, num_ydata, order;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float) i / ((float) (NDATA - 1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;

 for(order = 3; order < 7; order += 3) {
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
 ydata, fdata,
 IMSL_ORDER, order, order,
 0);
 /* Print results */
 printf("\nThe order of the spline is %d \n", order);
 printf(" x y F(x, y) Interpolant Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) i / (float) (OUTDATA);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) j / (float) (OUTDATA);
 z = imsl_f_spline_2d_value(x, y, sp, 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f \n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
 }
 }
}

176 � spline_2d_interp IMSL C/Math/Library

Output
The order of the spline is 3
 x y F(x, y) Interpolant Error
 0.000 0.000 0.000 0.000 0.0000
 0.000 0.250 0.062 0.063 0.0000
 0.000 0.500 0.250 0.250 0.0000
 0.000 0.750 0.562 0.562 0.0000
 0.250 0.000 0.016 0.016 0.0002
 0.250 0.250 0.078 0.078 0.0002
 0.250 0.500 0.266 0.266 0.0002
 0.250 0.750 0.578 0.578 0.0002
 0.500 0.000 0.125 0.125 0.0000
 0.500 0.250 0.188 0.188 0.0000
 0.500 0.500 0.375 0.375 0.0000
 0.500 0.750 0.688 0.687 0.0000
 0.750 0.000 0.422 0.422 0.0002
 0.750 0.250 0.484 0.484 0.0002
 0.750 0.500 0.672 0.672 0.0002
 0.750 0.750 0.984 0.984 0.0002

The order of the spline is 6
 x y F(x, y) Interpolant Error
 0.000 0.000 0.000 0.000 0.0000
 0.000 0.250 0.062 0.063 0.0000
 0.000 0.500 0.250 0.250 0.0000
 0.000 0.750 0.562 0.562 0.0000
 0.250 0.000 0.016 0.016 0.0000
 0.250 0.250 0.078 0.078 0.0000
 0.250 0.500 0.266 0.266 0.0000
 0.250 0.750 0.578 0.578 0.0000
 0.500 0.000 0.125 0.125 0.0000
 0.500 0.250 0.188 0.188 0.0000
 0.500 0.500 0.375 0.375 0.0000
 0.500 0.750 0.688 0.688 0.0000
 0.750 0.000 0.422 0.422 0.0000
 0.750 0.250 0.484 0.484 0.0000
 0.750 0.500 0.672 0.672 0.0000
 0.750 0.750 0.984 0.984 0.0000

Warning Errors
IMSL_ILL_COND_INTERP_PROB The interpolation matrix is ill-conditioned. The

solution might not be accurate.

Fatal Errors
IMSL_XDATA_NOT_INCREASING The xdata values must be strictly increasing.

IMSL_YDATA_NOT_INCREASING The ydata values must be strictly increasing.

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the
order of the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

Chapter 3: Interpolation and Approximation spline_value � 177

IMSL_KNOT_DATA_INTERLACING The i-th smallest element of the data arrays
xdata and ydata must satisfy
ti � datai < ti+order, where t is the knot
sequence.

IMSL_DATA_TOO_LARGE The data arrays xdata and ydata must satisfy
datai � tnum_data, for i = 1, �, num_data.

IMSL_DATA_TOO_SMALL The data arrays xdata and ydata must satisfy
datai 	 torder-1, for i = 1, �, num_data.

spline_value
Computes the value of a spline or the value of one of its derivatives.

Synopsis
#include <imsl.h>
float imsl_f_spline_value (float x, Imsl_f_spline *sp, �, 0)

The type double function is imsl_d_spline_value.

Required Arguments

float x (Input)
Evaluation point for the spline.

Imsl_f_spline *sp (Input)
Pointer to the structure that represents the spline.

Return Value
The value of a spline or one of its derivatives at the point x. If no value can be
computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_spline_value (float x, Imsl_f_spline *sp,

IMSL_DERIV, int deriv,
IMSL_GRID, int n, float *xvec, float **value,
IMSL_GRID_USER, int n, float *xvec, float value_user[],
0)

Optional Arguments
IMSL_DERIV, int deriv (Input)

Let d = deriv and let s be the spline that is represented by the structure *sp.
Then, this option produces the d-th derivative of s at x, s(d) (x).
Default: deriv = 0

178 � spline_value IMSL C/Math/Library

IMSL_GRID, int n, float *xvec, float **value (Input/Output)
The argument xvec is the array of length n containing the points at which the
spline is to be evaluated. The d-th derivative of the spline at the points in xvec
is returned in value.

IMSL_GRID_USER int n, float *xvec, float value_user[] (Input/Output)
The argument xvec is the array of length n containing the points at which the
spline is to be evaluated. The d-th derivative of the spline at the points in xvec
is returned in value_user.

Description
The function imsl_f_spline_value computes the value of a spline or one of its
derivatives. This function is based on the routine BVALUE by de Boor (1978, p. 144).

Examples

Example 1
In this example, a cubic spline interpolant to a function f is computed. The values of
this spline are then compared with the exact function values. Since the default settings
are used, the interpolant is determined by the “not-a-knot” condition (see de Boor
1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata,fdata, 0);
 /* Print results */
 printf(" x F(x) Interpolant Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++){
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_value(x, sp, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f\n", x, F(x), y,
 fabs(F(x)-y));
 }
}

Chapter 3: Interpolation and Approximation spline_value � 179

Output
 x F(x) Interpolant Error
0.250 -0.572 -0.549 0.0228
0.300 -0.978 -0.978 0.0000
0.350 -0.859 -0.843 0.0162
0.400 -0.279 -0.279 0.0000
0.450 0.450 0.441 0.0093
0.500 0.938 0.938 0.0000
0.550 0.923 0.903 0.0199
0.600 0.412 0.412 0.0000
0.650 -0.320 -0.315 0.0049
0.700 -0.880 -0.880 0.0000
0.750 -0.968 -0.938 0.0295

Example 2
Recall that in the first example, a cubic spline interpolant to a function f is computed.
The values of this spline are then compared with the exact function values. This
example compares the values of the first derivatives.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
 /* Define function */
#define F(x) (float)(sin(15.0*x))
#define FP(x) (float)(15.*cos(15.0*x))

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x FP(x) Interpolant Deriv Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++) {
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_value(x, sp, IMSL_DERIV, 1, 0);
 printf(" %6.3f %10.3f %10.3f %10.4f \n", x, FP(x), y,
 fabs(FP(x)-y));
 }
}

Output
 x FP(x) Interpolant Deriv Error
0.250 -12.308 -12.559 0.2510
0.300 -3.162 -3.218 0.0560
0.350 7.681 7.796 0.1151
0.400 14.403 13.919 0.4833

180 � spline_integral IMSL C/Math/Library

0.450 13.395 13.530 0.1346
0.500 5.200 5.007 0.1926
0.550 -5.786 -5.840 0.0535
0.600 -13.667 -13.201 0.4660
0.650 -14.214 -14.393 0.1798
0.700 -7.133 -6.734 0.3990
0.750 3.775 3.911 0.1359

Fatal Errors
IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the

order of the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

spline_integral
Computes the integral of a spline.

Synopsis
#include <imsl.h>
float imsl_f_spline_integral (float a, float b, Imsl_f_spline *sp)

The type double function is imsl_d_spline_integral.

Required Arguments

float a (Input)

float b (Input)
Endpoints for integration.

Imsl_f_spline *sp (Input)
Pointer to the structure that represents the spline.

Return Value
The integral of a spline. If no value can be computed, then NaN is returned.

Description
The function imsl_f_spline_integral computes the integral of a spline from a to
b

� �
b

a
s x dx�

This routine uses the identity (22) on page 151 of de Boor (1978).

Example
In this example, a cubic spline interpolant to a function f is computed. The values of the
integral of this spline are then compared with the exact integral values. Since the

Chapter 3: Interpolation and Approximation spline_integral � 181

default settings are used, the interpolant is determined by the “not-a-knot” condition
(see de Boor 1978).

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 21
 /* Define function */
#define F(x) (float)(sin(15.0*x))
 /* Integral from 0 to x */
#define FI(x) (float)((1.-cos(15.0*x))/15.)

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], x, y;
 Imsl_f_spline *sp;
 /* Set up a grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = (float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]);
 }
 /* Compute cubic spline interpolant */
 sp = imsl_f_spline_interp (NDATA, xdata, fdata, 0);
 /* Print results */
 printf(" x FI(x) Interpolant Integral Error\n");
 for (i = NDATA/2; i < 3*NDATA/2; i++) {
 x = (float) i /(float)(2*NDATA-2);
 y = imsl_f_spline_integral(0.0, x, sp);
 printf(" %6.3f %10.3f %10.3f %10.4f \n", x, FI(x), y,
 fabs(FI(x)-y));
 }
}

Output
 x FI(x) Interpolant Integral Error
0.250 0.121 0.121 0.0001
0.275 0.104 0.104 0.0001
0.300 0.081 0.081 0.0001
0.325 0.056 0.056 0.0001
0.350 0.033 0.033 0.0001
0.375 0.014 0.014 0.0002
0.400 0.003 0.003 0.0002
0.425 0.000 0.000 0.0002
0.450 0.007 0.007 0.0002
0.475 0.022 0.022 0.0001
0.500 0.044 0.044 0.0001
0.525 0.068 0.068 0.0001
0.550 0.092 0.092 0.0001
0.575 0.113 0.113 0.0001
0.600 0.127 0.128 0.0001
0.625 0.133 0.133 0.0001
0.650 0.130 0.130 0.0001
0.675 0.118 0.118 0.0001
0.700 0.098 0.098 0.0001
0.725 0.075 0.075 0.0001
0.750 0.050 0.050 0.0001

182 � spline_2d_value IMSL C/Math/Library

Warning Errors
IMSL_SPLINE_SMLST_ELEMNT The data arrays xdata and ydata must satisfy

datai � torder-1, for i = 1, �, num_data.

IMSL_SPLINE_EQUAL_LIMITS The upper and lower endpoints of integration
are equal. The indefinite integral is zero.

IMSL_LIMITS_LOWER_TOO_SMALL The left endpoint is less than torder-1.
Integration occurs only from torder-1 to b.

IMSL_LIMITS_UPPER_TOO_SMALL The right endpoint is less than torder-1.
Integration occurs only from torder-1 to a.

IMSL_LIMITS_UPPER_TOO_BIG The right endpoint is greater than
tspline_space_dim-1. Integration occurs only from
a to tspline_space_dim-1.

IMSL_LIMITS_LOWER_TOO_BIG The left endpoint is greater than
tspline_space_dim-1. Integration occurs only from
b to tspline_space_dim-1.

Fatal Errors
IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the

order of the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

spline_2d_value
Computes the value of a tensor-product spline or the value of one of its partial
derivatives.

Synopsis
#include <imsl.h>
float imsl_f_spline_2d_value (float x, float y, Imsl_f_spline *sp, �, 0)

The type double function is imsl_d_spline_2d_value.

Required Arguments

float x (Input)

float y (Input)

The (x, y) coordinates of the evaluation point for the tensor-product spline.

Imsl_f_spline *sp (Input)
Pointer to the structure that represents the spline.

Chapter 3: Interpolation and Approximation spline_2d_value � 183

Return Value
The value of a tensor-product spline or one of its derivatives at the point (x, y).

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_spline_2d_value (float x, float y, Imsl_f_spline *sp,

IMSL_DERIV, int x_partial, int y_partial,
IMSL_GRID, int nx, float *xvec, int ny, float *yvec,
 float **value,
IMSL_GRID_USER, int nx, float *xvec, int ny, float *yvec, float
value_user[],
0)

Optional Arguments
IMSL_DERIV, int x_partial, int y_partial (Input)

Let p = x_partial and q = y_partial, and let s be the spline that is
represented by the structure *sp, then this option produces the (p, q)-th
derivative of s at (x, y), s(p,q) (x, y).
Default: x_partial = y_partial = 0

IMSL_GRID, int nx, float *xvec, int ny, float *yvec, float **value
(Input/Output)
The argument xvec is the array of length nx containing the X coordinates at
which the spline is to be evaluated. The argument yvec is the array of length
ny containing the Y coordinates at which the spline is to be evaluated. The
value of the spline on the nx by ny grid is returned in value.

IMSL_GRID_USER, int nx, float *xvec, int ny, float *yvec,
float value_user[] (Input/Output)
The argument xvec is the array of length nx containing the X coordinates at
which the spline is to be evaluated. The argument yvec is the array of length
ny containing the Y coordinates at which the spline is to be evaluated. The
value of the spline on the nx by ny grid is returned in the user-supplied space
value_user.

Description
The function imsl_f_spline_2d_value computes the value of a tensor-product
spline or one of its derivatives. This function is based on the discussion in de Boor
(1978, pp. 351�353).

Examples

Example 1
In this example, a spline interpolant s to a function f is constructed. Using the procedure
imsl_f_spline_2d_interp to compute the interpolant,

184 � spline_2d_value IMSL C/Math/Library

imsl_f_spline_2d_value is employed to compute s(x, y). The values of this partial
derivative and the error are computed on a 4 � 4 grid and then displayed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
#define OUTDATA 2
 /* Define function */
#define F(x,y) (float)(x*x*x+y*y)

main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float) i / ((float) (NDATA - 1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
 ydata, fdata, 0);
 /* Print results */
 printf(" x y F(x, y) Value Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) (1+i) / (float) (OUTDATA+1);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) (1+j) / (float) (OUTDATA+1);
 z = imsl_f_spline_2d_value(x, y, sp, 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
 }
}

Output
 x y F(x, y) Value Error
0.333 0.333 0.148 0.148 0.0000
0.333 0.667 0.481 0.481 0.0000
0.667 0.333 0.407 0.407 0.0000
0.667 0.667 0.741 0.741 0.0000

Example 2
In this example, a spline interpolant s to a function f is constructed.Using function
imsl_f_spline_2d_interp to compute the interpolant, then
imsl_f_spline_2d_value is employed to compute s(2,1) (x, y). The values of this
partial derivative and the error are computed on a 4 � 4 grid and then displayed.

Chapter 3: Interpolation and Approximation spline_2d_value � 185

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
#define OUTDATA 2
 /* Define function */
#define F(x, y) (float)(x*x*x*y*y)
#define F21(x,y) (float)(6.*x*2.*y)

main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float)i / ((float)(NDATA-1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
 ydata, fdata, 0);
 /* Print results */
 printf(" x y F21(x, y) 21InterpDeriv Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) (1+i) / (float) (OUTDATA+1);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) (1+j) / (float) (OUTDATA+1);
 z = imsl_f_spline_2d_value(x, y, sp,
 IMSL_DERIV, 2, 1,
 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F21(x, y), z, fabs(F21(x,y)-z));
 }
 }
}

Output
 x y F21(x, y) 21InterpDeriv Error
0.333 0.333 1.333 1.333 0.0000
0.333 0.667 2.667 2.667 0.0000
0.667 0.333 2.667 2.667 0.0000
0.667 0.667 5.333 5.333 0.0001

Warning Errors
IMSL_X_NOT_WITHIN_KNOTS The value of x does not lie within the knot

sequence.

186 � spline_2d_integral IMSL C/Math/Library

IMSL_Y_NOT_WITHIN_KNOTS The value of y does not lie within the knot
sequence.

Fatal Errors
IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the

order of the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

spline_2d_integral
Evaluates the integral of a tensor-product spline on a rectangular domain.

Synopsis
#include <imsl.h>
float imsl_f_spline_2d_integral (float a, float b, float c, float d,

Imsl_f_spline *sp)

The type double function is imsl_d_spline_2d_integral.

Required Arguments

float a (Input)

float b (Input)
The integration limits for the first variable of the tensor-product spline.

float c (Input)

float d (Input)
The integration limits for the second variable of the tensor-product spline.

Imsl_f_spline *sp (Input)
Pointer to the structure that represents the spline.

Return Value
The value of the integral of the tensor-product spline over the rectangle
[a, b] � [c, d]. If no value can be computed, NaN is returned.

Description
The function imsl_f_spline_2d_integral computes the integral of a tensor-
product spline. If s is the spline, then this function returns

� �,
b d

a c
s x y dydx� �

This function uses the (univariate integration) identity (22) in de Boor (1978, p. 151)

� � � �
0

1 1

, ,
0 0 0

n r ix j k j
i i k j i k

i i j
1B d B

k
� � � �

�

�

�

� � �

�� �
� � �

� �
� � ��

-

t

t t
x

Chapter 3: Interpolation and Approximation spline_2d_integral � 187

where t0 � x � tr.
It assumes (for all knot sequences) that the first and last k knots are stacked, that is,
t0 = … = tk-1 and tn = … = tn+k-1 , where k is the order of the spline in the x or y
direction.

Example
This example integrates a two-dimensional, tensor-product spline over the rectangle
[0, x] � [0, y].

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 11
#define OUTDATA 2
 /* Define function */
#define F(x,y) (float)(x*x*x+y*y)
 /* The integral of F from 0 to x */
 /* and 0 to y */
#define FI(x,y) (float)(y*x*x*x*x/4. + x*y*y*y/3.)

main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NDATA][NDATA], xdata[NDATA], ydata[NDATA];
 float x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = ydata[i] = (float) i / ((float)(NDATA-1));
 }
 for (i = 0; i < NDATA; i++) {
 for (j = 0; j < NDATA; j++) {
 fdata[i][j] = F(xdata[i],ydata[j]);
 }
 }
 num_xdata = num_ydata = NDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_interp(num_xdata, xdata, num_ydata,
 ydata, fdata, 0);
 /* Print results */
 printf(" x y FI(x, y) Integral Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) (1+i) / (float) (OUTDATA+1);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) (1+j) / (float) (OUTDATA+1);
 z = imsl_f_spline_2d_integral(0.0, x, 0.0, y, sp);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, FI(x, y), z, fabs(FI(x,y)-z));
 }
 }
}

188 � spline_2d_integral IMSL C/Math/Library

Output
 x y FI(x, y) Integral Error
0.333 0.333 0.005 0.005 0.0000
0.333 0.667 0.035 0.035 0.0000
0.667 0.333 0.025 0.025 0.0000
0.667 0.667 0.099 0.099 0.0000

Warning Errors
IMSL_SPLINE_LEFT_ENDPT The left endpoint of X integration is not within

the knot sequence. Integration occurs only
from torder-1 to b.

IMSL_SPLINE_RIGHT_ENDPT The right endpoint of X integration is not
within the knot sequence. Integration occurs
only from torder-1 to a.

IMSL_SPLINE_LEFT_ENDPT_1 The left endpoint of X integration is not within
the knot sequence. Integration occurs only
from b to
tspline_space_dim-1.

IMSL_SPLINE_RIGHT_ENDPT_1 The right endpoint of X integration is not
within the knot sequence. Integration occurs
only from a to
tspline_space_dim-1.

IMSL_SPLINE_LEFT_ENDPT_2 The left endpoint of Y integration is not within
the knot sequence. Integration occurs only
from torder-1 to d.

IMSL_SPLINE_RIGHT_ENDPT_2 The right endpoint of Y integration is not
within the knot sequence. Integration occurs
only from torder-1 to c.

IMSL_SPLINE_LEFT_ENDPT_3 The left endpoint of Y integration is not within
the knot sequence. Integration occurs only
from d to
tspline_space_dim-1.

IMSL_SPLINE_RIGHT_ENDPT_3 The right endpoint of Y integration is not
within the knot sequence. Integration occurs
only from c to
tspline_space_dim-1.

Fatal Errors
IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the

order of the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

Chapter 3: Interpolation and Approximation user_fcn_least_squares � 189

user_fcn_least_squares
Computes a least-squares fit using user-supplied functions.

Synopsis
#include <imsl.h>
float *imsl_f_user_fcn_least_squares (float fcn (int k, float x), int

nbasis, int ndata, float xdata[], float ydata[], �, 0)

The type double function is imsl_d_user_fcn_least_squares.

Required Arguments

float fcn (int k, float x) (Input)
User-supplied function that defines the subspace from which the least-squares
fit is to be performed. The k-th basis function evaluated at x is f(k, x) where
k = 1, 2, �, nbasis.

int nbasis (Input)
Number of basis functions.

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the least-squares
problem.

float ydata[] (Input)
Array with ndata components containing the ordinates of the least-squares
problem.

Return Value
A pointer to the vector containing the coefficients of the basis functions. If a fit cannot
be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_user_fcn_least_squares (), int nbasis, int ndata, float

xdata[], float ydata[],
IMSL_RETURN_USER, float coef[],
IMSL_INTERCEPT, float *intercept,
IMSL_SSE, float *ssq_err,
IMSL_WEIGHTS, float weights[],
IMSL_FCN_W_DATA, float fcn (), void *data,
0)

190 � user_fcn_least_squares IMSL C/Math/Library

Optional Arguments
IMSL_RETURN_USER, float coef[] (Output)

The coefficients are stored in the user-supplied array.

IMSL_INTERCEPT, float *intercept (Output)
This option adds an intercept to the model. Thus, the least-squares fit is
computed using the user-supplied basis functions augmented by the constant
function. The coefficient of the constant function is stored in intercept.

IMSL_SSE, float *ssq_err (Output)
This option returns the error sum of squares.

IMSL_WEIGHTS, float weights[] (Input)
This option requires the user to provide the weights.
Default: all weights equal one

IMSL_FCN_W_DATA, fcn (int k, float x, float *data), void *data, (Input)
User supplied function that defines the subspace from which the least-squares
fit is to be performed, which also accepts a pointer to data that is supplied by
the user. .data is a pointer to the data to be passed to the user-supplied
function. See the Introduction, Passing Data to User-Supplied Functions at
the beginning of this manual for more details.

Description
The function imsl_f_user_fcn_least_squares computes a best least-squares
approximation to given univariate data of the form

� �� �
1

0
,

n
i i i

x f
�

�

by M basis functions

� �
1

M

j j
F

�

(where M = nbasis). In particular, the default for this function returns the coefficients
a which minimize

� �
2

1

1
0 1

n M

i i j j i
i j

w f a F x
�

�

� �

� �
�� �

� �
� �

where w = weights, n = ndata, x = xdata, and f = ydata.

If the optional argument IMSL_INTCERCEPT is chosen, then an intercept is placed in
the model, and the coefficients a, returned by imsl_f_user_fcn_least_squares,
minimize the error sum of squares as indicated below.

� �
2

1

1
0 1

intercept
n M

i i j j i
i j

w f a F x
�

�

� �

� �
� �� �

� �
� �

Chapter 3: Interpolation and Approximation user_fcn_least_squares � 191

Examples

Example 1
This example fits the following two functions (indexed by
):

1 + sinx + 7 sin3x +
�

where � is a random uniform deviate over the range [�1, 1] and
 is 0 for the first
function and 1 for the second. These functions are evaluated at 90 equally spaced points
on the interval [0, 6]. Four basis functions are used: 1, sinx, sin2x, sin3x.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))

float fcn(int n, float x);

main()
{
 int nbasis = 4, i, delta;
 float ydata[NDATA], xdata[NDATA], *random, *coef;
 /* Generate random numbers */
 imsl_random_seed_set(1234567);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for(delta = 0; delta < 2; delta++) {
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 ydata[i] = F(xdata[i]) + (delta)*2.*(random[i]-.5);
 }
 coef = imsl_f_user_fcn_least_squares(fcn, nbasis, NDATA, xdata,
 ydata, 0);
 printf("\nFor delta = %1d", delta);
 imsl_f_write_matrix("the computed coefficients are\n",
 1, nbasis, coef, 0);
 }
}

float fcn(int n, float x)
{
 return (n == 1) ? 1.0 : sin((n-1)*x);
}

Output
For delta = 0
 the computed coefficients are

 1 2 3 4
 1 1 -0 7

For delta = 1
 the computed coefficients are

192 � user_fcn_least_squares IMSL C/Math/Library

 1 2 3 4
 0.979 0.998 0.096 6.839

Example 2
Recall that the first example fitted the following two functions (indexed by
):

1 + sinx + 7 sin3x +
�

where � is a random uniform deviate over the range[�1, 1] , and
 is 0 for the first
function and 1 for the second. These functions are evaluated at 90 equally spaced points
on the interval [0, 6]. Previously, the four basis functions were used: 1, sinx, sin2x,
sin3x. This example uses the four basis functions: sinx, sin2x, sin3x, sin4x, combined
with the intercept option.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))

float fcn(int n, float x);

main()
{
 int nbasis = 4, i, delta;
 float ydata[NDATA], xdata[NDATA], *random, *coef, intercept;
 /* Generate random numbers */
 imsl_random_seed_set(1234567);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for(delta = 0; delta < 2; delta++){
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 ydata[i] = F(xdata[i]) + (delta)*2.*(random[i]-.5);
 }
 coef = imsl_f_user_fcn_least_squares(fcn, nbasis, NDATA, xdata,
 ydata,
 IMSL_INTERCEPT, &intercept,
 0);
 printf("\nFor delta = %1d\n", delta);
 printf("The predicted intercept value is %10.3f\n" ,
 intercept);
 imsl_f_write_matrix("the computed coefficients are\n",
 1, nbasis, coef, 0);
 }
}

float fcn(int n, float x)
{
 return sin(n*x);
}

Chapter 3: Interpolation and Approximation spline_least_squares � 193

Output
For delta = 0
The predicted intercept value is 1.000

 the computed coefficients are

 1 2 3 4
 1 0 7 -0

For delta = 1
The predicted intercept value is 0.978

 the computed coefficients are

 1 2 3 4
 0.998 0.097 6.841 0.075

Warning Errors
IMSL_LINEAR_DEPENDENCE Linear dependence of the basis functions

exists. One or more components of coef are
set to zero.

IMSL_LINEAR_DEPENDENCE_CONST Linear dependence of the constant function
and basis functions exists. One or more
components of coef are set to zero.

Fatal Errors
IMSL_NEGATIVE_WEIGHTS_2 All weights must be greater than or equal to

zero.

spline_least_squares
Computes a least-squares spline approximation.

Synopsis
#include <imsl.h>
Imsl_f_spline *imsl_f_spline_least_squares (int ndata, float xdata[],

float fdata[], int spline_space_dim, �, 0)

The type Imsl_d_spline function is imsl_d_spline_least_squares.

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the least-squares
problem.

194 � spline_least_squares IMSL C/Math/Library

float fdata[] (Input)
Array with ndata components containing the ordinates of the least-squares
problem.

int spline_space_dim (Input)
The linear dimension of the spline subspace. It should be smaller than ndata
and greater than or equal to order (whose default value is 4).

Return Value
A pointer to the structure that represents the spline fit. If a fit cannot be computed, then
NULL is returned. To release this space, use free.

Synopsis with Optional Arguments
#include <imsl.h>
Imsl_f_spline *imsl_f_spline_least_squares (int ndata, float xdata[],

float fdata[], int spline_space_dim,
IMSL_SSE, float *sse_err,
IMSL_WEIGHTS, float weights[],
IMSL_ORDER, int order,
IMSL_KNOTS, float knots[],
IMSL_OPTIMIZE,
0)

Optional Arguments
IMSL_SSE, float *sse (Output)

This option places the weighted error sum of squares in the place pointed to by
sse.

IMSL_WEIGHTS, float weights[] (Input)
This option requires the user to provide the weights.
Default: all weights equal one.

IMSL_ORDER, int order (Input)
The order of the spline subspace for which the knots are desired. This option
is used to communicate the order of the spline subspace.
Default: order = 4, (i.e., cubic splines).

IMSL_KNOTS, float knots[] (Input)
This option requires the user to provide the knots. The user must provide a
knot sequence of length spline_space_dimension + order.
Default: an appropriate knot sequence is selected. See below for more details.

IMSL_OPTIMIZE
This option optimizes the knot locations, by attempting to minimize the least-
squares error as a function of the knots. The optimal knots are available in the
returned spline structure.

Chapter 3: Interpolation and Approximation spline_least_squares � 195

Description
Let’s make the identifications

n = ndata
x = xdata
f = fdata
m = spline_space_dim
k = order

For convenience, we assume that the sequence x is increasing, although the function
does not require this.

By default, k = 4, and the knot sequence we select equally distributes the knots through
the distinct xi’s. In particular, the m + k knots will be generated in [x1, xn] with k knots
stacked at each of the extreme values. The interior knots will be equally spaced in the
interval.

Once knots t and weights w are determined (and assuming that the option
IMSL_OPTIMIZE is not chosen), then the function computes the spline least-squares fit
to the data by minimizing over the linear coefficients aj

� �
2

1

0 1

n m

i i j j i
i j

w f a B x
�

� �

� �
�� �

� �
� �

where the Bj, j = 1, �, m are a (B-spline) basis for the spline subspace.

The optional argument IMSL_ORDER allows the user to choose the order of the spline
fit. The optional argument IMSL_KNOTS allows user specification of knots. The
function imsl_f_spline_least_squares is based on the routine L2APPR by de
Boor (1978, p. 255).

If the option IMSL_OPTIMIZE is chosen, then the procedure attempts to find the best
placement of knots that will minimize the least-squares error to the given data by a
spline of order k with m coefficients. For this problem to make sense, it is necessary
that m > k. We then attempt to find the minimum of the functional

� � � �
1 1

, ,
0 0

,
n m

i i j j k i
i j

F a w f a B x
� �

� �

� �
� �� �

� �
� � tt

The technique employed here uses the fact that for a fixed knot sequence t the
minimization in a is a linear least-squares problem that can be easily solved. Thus, we
can think of our objective function F as a function of just t by setting

� � � �min ,
a

G F�t ta

A Gauss-Seidel (cyclic coordinate) method is then used to reduce the value of the new
objective function G. In addition to this local method, there is a global heuristic built
into the algorithm that will be useful if the data arise from a smooth function. This
heuristic is based on the routine NEWNOT of de Boor (1978, pp. 184 and 258�261).

196 � spline_least_squares IMSL C/Math/Library

M�

�

The initial guess, tg, for the knot sequence is either provided by the user or is the
default. This guess must be a valid knot sequence for splines of order k with

0 1 1 1, ,g g g g
k i m m kx i

� �
� � � � � � �-t t t t� �

with tg nondecreasing, and

for 0, , 1g g
i i k i m

�
� �t t �

In regard to execution speed, this function can be several orders of magnitude slower
than a simple least-squares fit.

The return value for this function is a pointer of type Imsl_f_spline. The calling
program must receive this in a pointer Imsl_f_spline *sp. This structure contains
all the information to determine the spline (stored in B-spline form) that is computed by
this function. For example, the following code sequence evaluates this spline a x and
returns the value in y.
y = imsl_f_spline_value (x, sp, 0);

In the figure below two cubic splines are fit to

x

Both splines are cubics with the same spline_space_dim = 8. The first spline is
computed with the default settings, while the second spline is computed by optimizing
the knot locations using the keyword IMSL_OPTIMIZE.

Figure 3-4 Two Fits to Noisy x

Chapter 3: Interpolation and Approximation spline_least_squares � 197

Examples

Example 1
This example fits data generated from a trigonometric polynomial

1 + sinx + 7 sin3x + �

where � is a random uniform deviate over the range [�1, 1]. The data are obtained by
evaluating this function at 90 equally spaced points on the interval [0, 6]. This data is
fitted with a cubic spline with 12 degrees of freedom (eight equally spaced interior
knots). The error at 10 equally spaced points is printed out.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))

main()
{
 int i, spline_space_dim = 12;
 float fdata[NDATA], xdata[NDATA], *random;
 Imsl_f_spline *sp;
 /* Generate random numbers */
 imsl_random_seed_set(123457);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]) + 2.*(random[i]-.5);
 }
 sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,
 spline_space_dim, 0);
 printf(" x error \n");
 for(i = 0; i < 10; i++) {
 float x, error;
 x = 6.*i/9.;
 error = F(x) - imsl_f_spline_value(x, sp, 0);
 printf("%10.3f %10.3f\n", x, error);
 }
}

Output
 x Error
0.000 -0.356
0.667 -0.004
1.333 0.434
2.000 -0.069
2.667 -0.494
3.333 0.362
4.000 -0.273
4.667 -0.247
5.333 0.303
6.000 0.578

198 � spline_least_squares IMSL C/Math/Library

Example 2
This example continues with the first example in which we fit data generated from the
trigonometric polynomial

1 + sinx + 7 sin3x + �

where � is random uniform deviate over the range [�1, 1]. The data is obtained by
evaluating this function at 90 equally spaced points on the interval [0, 6]. This data was
fitted with a cubic spline with 12 degrees of freedom (in this case, the default gives us
eight equally spaced interior knots) and the error sum of squares was printed. In this
example, the knot locations are optimized and the error sum of squares is printed. Then,
the error at 10 equally spaced points is printed.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))

main()
{
 int i, spline_space_dim = 12;
 float fdata[NDATA], xdata[NDATA], *random, sse1, sse2;
 Imsl_f_spline *sp;
 /* Generate random numbers */
 imsl_random_seed_set(123457);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]) + 2.*(random[i]-.5);
 }
 sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,
 spline_space_dim,
 IMSL_SSE, &sse1,
 0);
 sp = imsl_f_spline_least_squares(NDATA, xdata, fdata,
 spline_space_dim,
 IMSL_OPTIMIZE,
 IMSL_SSE, &sse2,
 0);
 printf("The error sum of squares before optimizing is %10.1f\n",
 sse1);
 printf("The error sum of squares after optimizing is %10.1f\n\n",
 sse2);
 printf(" x error\n");
 for(i = 0; i < 10; i++){
 float x, error;
 x = 6.*i/9.;
 error = F(x) - imsl_f_spline_value(x, sp, 0);
 printf("%10.3f %10.3f\n", x, error);
 }
}

Chapter 3: Interpolation and Approximation spline_2d_least_squares � 199

Output
The error sum of squares before optimizing is 32.6
The error sum of squares after optimizing is 27.0

 x Error
 0.000 -0.656
 0.667 0.107
 1.333 0.055
 2.000 -0.243
 2.667 -0.063
 3.333 -0.015
 4.000 -0.424
 4.667 -0.138
 5.333 0.133
 6.000 0.494

Warning Errors
IMSL_OPT_KNOTS_STACKED_1 The knots found to be optimal are stacked

more than order. This indicates fewer knots
will produce the same error sum of squares.
The knots have been separated slightly.

Fatal Errors
IMSL_XDATA_TOO_LARGE The array xdata must satisfy xdatai � tndata,

for i = 1, �, ndata.

IMSL_XDATA_TOO_SMALL The array xdata must satisfy
 xdatai 	 torder-1, for i = 1, �, ndata.

IMSL_NEGATIVE_WEIGHTS All weights must be greater than or equal to
zero.

IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the
order of the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

IMSL_OPT_KNOTS_STACKED_2 The knots found to be optimal are stacked
more than order. This indicates fewer knots
will produce the same error sum of squares.

spline_2d_least_squares
Computes a two-dimensional, tensor-product spline approximant using least squares.

Synopsis
#include <imsl.h>
Imsl_f_spline *imsl_f_spline_2d_least_squares (int num_xdata, float

xdata[], int num_ydata, float ydata[], float fdata[], int
x_spline_space_dim, int y_spline_space_dim, �, 0)

200 � spline_2d_least_squares IMSL C/Math/Library

The type Imsl_d_spline function is imsl_d_spline_2d_least_squares.

Required Arguments

int num_xdata (Input)
Number of data points in the X direction.

float xdata[] (Input)
Array with num_xdata components containing the data points in the X
direction.

int num_ydata (Input)
Number of data points in the Y direction.

float ydata[] (Input)
Array with num_ydata components containing the data points in the Y
direction.

float fdata[] (Input)
Array of size num_xdata � num_ydata containing the values to be
approximated. fdata[i][j] is the (possibly noisy) value at (xdata[i],
ydata[j]).

int x_spline_space_dim (Input)
The linear dimension of the spline subspace for the x variable. It should be
smaller than num_xdata and greater than or equal to xorder (whose default
value is 4).

int y_spline_space_dim (Input)
The linear dimension of the spline subspace for the y variable. It should be
smaller than num_ydata and greater than or equal to yorder (whose default
value is 4).

Return Value
A pointer to the structure that represents the tensor-product spline interpolant. If an
interpolant cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments
#include <imsl.h>
Imsl_f_spline *imsl_f_spline_2d_least_squares (int num_xdata, float

xdata[], int num_ydata, float ydata[], float fdata[], int
x_spline_space_dim, int y_spline_space_dim,
IMSL_SSE, float *sse,
IMSL_ORDER, int xorder, int yorder,
IMSL_KNOTS, float xknots[], float yknots[],
IMSL_FDATA_COL_DIM, int fdata_col_dim,
IMSL_WEIGHTS, float xweights[], float yweights[],
0)

Chapter 3: Interpolation and Approximation spline_2d_least_squares � 201

Optional Arguments
IMSL_SSE, float *sse (Output)

This option places the weighted error sum of squares in the place pointed to by
sse.

IMSL_ORDER, int xorder, int yorder (Input)
This option is used to communicate the order of the spline subspace.
Default: xorder, yorder = 4 (i.e., tensor-product cubic splines)

IMSL_KNOTS, float xknots[], float yknots[] (Input)
This option requires the user to provide the knots.
Default: The default knots are equally spaced in the x and y dimensions.

IMSL_FDATA_COL_DIM, int fdata_col_dim (Input)
The column dimension of fdata.
Default: fdata_col_dim = num_ydata

IMSL_WEIGHTS, float xweights[], float yweights[] (Input)
This option requires the user to provide the weights for the least-squares fit.
Default: all weights are equal to 1.

Description
The imsl_f_spline_2d_least_squares procedure computes a tensor-product
spline least-squares approximation to weighted tensor-product data. The input for this
function consists of data vectors to specify the tensor-product grid for the data, two
vectors with the weights (optional, the default is 1), the values of the surface on the
grid, and the specification for the tensor-product spline (optional, a default is chosen).
The grid is specified by the two vectors x = xdata and y = ydata of length
n = num_xdata and m = num_ydata, respectively. A two-dimensional array f = fdata
contains the data values which are to be fit. The two vectors wx = xweights and
wy = yweights contain the weights for the weighted least-squares problem. The
information for the approximating tensor-product spline can be provided using the
keywords IMSL_ORDER and IMSL_KNOTS. This information is contained in
kx = xorder, tx = xknots, and N = xspline_space_dim for the spline in the first
variable, and in ky = yorder, ty = yknots and M = y_spline_space_dim for the
spline in the second variable.

This function computes coefficients for the tensor-product spline by solving the normal
equations in tensor-product form as discussed in de Boor (1978, Chapter 17). The
interested reader might also want to study the paper by Grosse (1980).

As the computation proceeds, we obtain coefficients c minimizing

� � � � � �
21 1 1 1

0 0 0 0
,

n m N M

x y kl kl i i ij
i j k l

w i w j c B x y f
� � � �

� � � �

� �
�� �

� �
�� ��

where the function Bkl is the tensor-product of two B-splines of order kx and ky.
Specifically, we have

202 � spline_2d_least_squares IMSL C/Math/Library

�� � � � �, , , ,,
x x y ykl k k l kB x y B x B y� t t

The spline
1 1

0 0

N M

kl kl
k l

c B
� �

� �

��

and its partial derivatives can be evaluated using imsl_f_spline_2d_value.

The return value for this function is a pointer to the structure Imsl_f_spline. The
calling program must receive this in a pointer of type Imsl_f_spline. This structure
contains all the information to determine the spline that is computed by this
procedure. For example, the following code sequence evaluates this spline
(stored in the structure sp at (x, y) and returns the value in v.
v = imsl_f_spline_2d_value (x, y, sp, 0)

Examples

Example 1
The data for this example comes from the function ex sin (x + y) on the rectangle [0, 3]
� [0, 5]. This function is sampled on a 50 � 25 grid. Next try to recover it by using
tensor-product cubic splines. The values of the function ex sin (x + y) are printed on a
2 � 2 grid and compared with the values of the tensor-product spline least-squares fit.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NXDATA 50
#define NYDATA 25
#define OUTDATA 2
 /* Define function */
#define F(x,y) (float)(exp(x)*sin(x+y))

main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NXDATA][NYDATA];
 float xdata[NXDATA], ydata[NYDATA], x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NXDATA; i++) {
 xdata[i] = 3.*(float) i / ((float)(NXDATA-1));
 }
 for (i = 0; i < NYDATA; i++) {
 ydata[i] = 5.*(float) i / ((float)(NYDATA-1));
 }
 /* Compute function values on grid */
 for (i = 0; i < NXDATA; i++) {
 for (j = 0; j < NYDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }
 }
 num_xdata = NXDATA;

Chapter 3: Interpolation and Approximation spline_2d_least_squares � 203

 num_ydata = NYDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_least_squares(num_xdata, xdata, num_ydata,
 ydata, fdata, 5, 7, 0);
 /* Print results */
 printf(" x y F(x, y) Fitted Values Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float)i / (float)(OUTDATA);
 for (j = 0; j < OUTDATA; j++) {
 y = (float)j / (float)(OUTDATA);
 z = imsl_f_spline_2d_value(x, y, sp, 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x, y), z, fabs(F(x,y)-z));
 }

 }
}

Output
 x y F(x, y) Fitted Values Error
0.000 0.000 0.000 -0.020 0.0204
0.000 0.500 0.479 0.500 0.0208
0.500 0.000 0.790 0.816 0.0253
0.500 0.500 1.387 1.384 0.0031

Example 2
The same data is used as in the previous example. Optional argument IMSL_SSE is
used to return the error sum of squares.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NXDATA 50
#define NYDATA 25
#define OUTDATA 2
 /* Define function */
#define F(x,y) (float)(exp(x)*sin(x+y))

main()
{
 int i, j, num_xdata, num_ydata;
 float fdata[NXDATA][NYDATA];
 float xdata[NXDATA], ydata[NYDATA], x, y, z;
 Imsl_f_spline *sp;
 /* Set up grid */
 for (i = 0; i < NXDATA; i++) {
 xdata[i] = 3.*(float) i / ((float) (NXDATA - 1));
 }
 for (i = 0; i < NYDATA; i++) {
 ydata[i] = 5.*(float) i / ((float) (NYDATA - 1));
 }
 /* Compute function values on grid */
 for (i = 0; i < NXDATA; i++) {
 for (j = 0; j < NYDATA; j++) {
 fdata[i][j] = F(xdata[i], ydata[j]);
 }

204 � spline_2d_least_squares IMSL C/Math/Library

 }
 num_xdata = NXDATA;
 num_ydata = NYDATA;
 /* Compute tensor-product interpolant */
 sp = imsl_f_spline_2d_least_squares(num_xdata, xdata, num_ydata,
 ydata, fdata, 5, 7,
 IMSL_SSE, &x,
 0);
 /* Print results */
 printf("The error sum of squares is %10.3f\n\n", x);
 printf(" x y F(x, y) Fitted Values Error\n");
 for (i = 0; i < OUTDATA; i++) {
 x = (float) i / (float) (OUTDATA);
 for (j = 0; j < OUTDATA; j++) {
 y = (float) j / (float) (OUTDATA);
 z = imsl_f_spline_2d_value(x, y, sp, 0);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
 }
}

Output
The error sum of squares is 3.753

 x y F(x, y) Fitted Values Error
0.000 0.000 0.000 -0.020 0.0204
0.000 0.500 0.479 0.500 0.0208
0.500 0.000 0.790 0.816 0.0253
0.500 0.500 1.387 1.384 0.0031

Warning Errors
IMSL_ILL_COND_LSQ_PROB The least-squares matrix is ill-conditioned. The

solution might not be accurate.

IMSL_SPLINE_LOW_ACCURACY There may be less than one digit of accuracy in
the least-squares fit. Try using a higher
precision if possible.

Fatal Errors
IMSL_KNOT_MULTIPLICITY Multiplicity of the knots cannot exceed the

order of the spline.

IMSL_KNOT_NOT_INCREASING The knots must be nondecreasing.

IMSL_SPLINE_LRGST_ELEMNT The data arrays xdata and ydata must satisfy
datai � tspline_space_dim, for i = 1,
�, num_data.

IMSL_SPLINE_SMLST_ELEMNT The data arrays xdata and ydata must satisfy
datai 	 torder-1, for i = 1, �, num_data.

Chapter 3: Interpolation and Approximation cub_spline_smooth � 205

IMSL_NEGATIVE_WEIGHTS All weights must be greater than or equal to
zero.

IMSL_DATA_DECREASING The xdata values must be nondecreasing.

cub_spline_smooth
Computes a smooth cubic spline approximation to noisy data by using cross-validation
to estimate the smoothing parameter or by directly choosing the smoothing parameter.

Synopsis
#include <imsl.h>
Imsl_f_ppoly *imsl_f_cub_spline_smooth (int ndata, float xdata[], float

fdata[], �, 0)

The type Imsl_d_ppoly function is imsl_d_cub_spline_smooth.

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the problem.

float fdata[] (Input)
Array with ndata components containing the ordinates of the problem.

Return Value
A pointer to the structure that represents the cubic spline. If a smoothed cubic spline
cannot be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments
#include <imsl.h>
Imsl_f_ppoly *imsl_f_cub_spline_smooth (int ndata, float xdata[], float

fdata[],
IMSL_WEIGHTS, float weights[],
IMSL_SMOOTHING_PAR, float sigma,
0)

Optional Arguments
IMSL_WEIGHTS, float weights[] (Input)

This option requires the user to provide the weights.
Default: all weights are equal to 1.

IMSL_SMOOTHING_PAR, float sigma (Input)
This option sets the smoothing parameter � = sigma explicitly.

206 � cub_spline_smooth IMSL C/Math/Library

Description
The function imsl_f_cub_spline_smooth is designed to produce a C2 cubic spline
approximation to a data set in which the function values are noisy. This spline is called
a smoothing spline.

Consider first the situation when the optional argument IMSL_SMOOTHING_PAR is
selected. Then, a natural cubic spline with knots at all the data abscissas x = xdata is
computed, but it does not interpolate the data (xi, fi). The smoothing spline s is the
unique C2 function which minimizes

� �
2

b

a

s x dx���

subject to the constraint

� �� �
21

0

n

i i i
i

s x f w �

�

�

� ��

where w = weights, � = sigma is the smoothing parameter, and n = ndata.

Recommended values for � depend on the weights w. If an estimate for the standard
deviation of the error in the value fi is available, then wi should be set to the inverse of
this value; and the smoothing parameter � should be chosen in the confidence interval
corresponding to the left side of the above inequality. That is,

2 2n n n�� � � � n

The function imsl_f_cub_spline_smooth is based on an algorithm of Reinsch
(1967). This algorithm is also discussed in de Boor (1978,
pp. 235�243).

The default for this function chooses the smoothing parameter � by a statistical
technique called cross-validation. For more information on this topic, refer to Craven
and Wahba (1979).

The return value for this function is a pointer to the structure Imsl_f_ppoly. The calling
program must receive this in a pointer Imsl_f_ppoly *pp. This structure contains all the
information to determine the spline (stored as a piecewise polynomial) that is computed
by this procedure. For example, the following code sequence evaluates this spline at
x and returns the value in y.
y = imsl_f_cub_spline_value (x, pp, 0);

Examples

Example 1
In this example, function values are contaminated by adding a small “random” amount
to the correct values. The function imsl_f_cub_spline_smooth is used to
approximate the original, uncontaminated data.

#include <imsl.h>
#include <stdio.h>

Chapter 3: Interpolation and Approximation cub_spline_smooth � 207

#include <math.h>

#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], *random;
 Imsl_f_ppoly *pp;
 /* Generate random numbers */
 imsl_random_seed_set(123457);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]) + .5*(random[i]-.5);
 }
 pp = imsl_f_cub_spline_smooth(NDATA, xdata, fdata, 0);
 printf(" x error \n");
 for(i = 0; i < 10; i++){
 float x, error;
 x = 6.*i/9.;
 error = F(x) - imsl_f_cub_spline_value(x, pp, 0);
 printf("%10.3f %10.3f\n", x, error);
 }
}

Output
 x Error
0.000 -0.201
0.667 0.070
1.333 -0.008
2.000 -0.058
2.667 -0.025
3.333 0.076
4.000 -0.002
4.667 -0.008
5.333 0.045
6.000 0.276

Example 2
Recall that in the first example, function values are contaminated by adding a small
“random” amount to the correct values. Then, imsl_f_cub_spline_smooth is used
to approximate the original, uncontaminated data. This example explicitly inputs the
value of the smoothing parameter to be 5.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 90
 /* Define function */
#define F(x) (float)(1.+ sin(x)+7.*sin(3.0*x))

208 � cub_spline_smooth IMSL C/Math/Library

main()
{
 int i;
 float fdata[NDATA], xdata[NDATA], *random;
 Imsl_f_ppoly *pp;
 /* Generate random numbers */
 imsl_random_seed_set(123457);
 random = imsl_f_random_uniform(NDATA, 0);
 /* Set up data */
 for (i = 0; i < NDATA; i++) {
 xdata[i] = 6.*(float)i /((float)(NDATA-1));
 fdata[i] = F(xdata[i]) + .5*(random[i]-.5);
 }
 pp = imsl_f_cub_spline_smooth(NDATA, xdata, fdata,
 IMSL_SMOOTHING_PAR, 5.0,
 0);
 printf(" x error \n");
 for(i = 0; i < 10; i++){
 float x, error;
 x = 6.*i/9.;
 error = F(x) - imsl_f_cub_spline_value(x, pp, 0);
 printf("%10.3f %10.3f\n", x, error);
 }
}

Output
 x Error
0.000 -0.593
0.667 0.230
1.333 -0.116
2.000 -0.106
2.667 0.176
3.333 -0.071
4.000 -0.171
4.667 0.196
5.333 -0.036
6.000 0.971

Warning Errors
IMSL_MAX_ITERATIONS_REACHED The maximum number of iterations has been

reached. The best approximation is returned.

Fatal Errors
IMSL_DUPLICATE_XDATA_VALUES The xdata values must be distinct.

IMSL_NEGATIVE_WEIGHTS All weights must be greater than or equal to
zero.

Chapter 3: Interpolation and Approximation spline_lsq_constrained � 209

spline_lsq_constrained
Computes a least-squares constrained spline approximation.

Synopsis
#include <imsl.h>
Imsl_f_spline *imsl_f_spline_lsq_constrained (int ndata, float xdata[],

float fdata[], int spline_space_dim, int num_con_pts,
f_constraint_struct constraints[], �, 0)

The type Imsl_d_spline function is imsl_d_spline_lsq_constrained.

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the least-squares
problem.

float fdata[] (Input)
Array with ndata components containing the ordinates of the least-squares
problem.

int spline_space_dim (Input)
The linear dimension of the spline subspace. It should be smaller than ndata
and greater than or equal to order (whose default value is 4).

int num_con_pts (Input)
The number of points in the vector constraints.

f_constraint_struct constraints[] (Input)
A structure containing the abscissas at which the fit is to be constrained, the
derivative of the spline that is to be constrained, the type of constraints, and
any lower or upper limits. A description of the structure fields follows:

Field Description

xval point at which fit is constrained
der derivative value of the spline to be constrained
type types of the general constraints
bl lower limit of the general constraints
bu upper limit of the general constraints

Notes: If you want to constrain the integral of the spline over the closed
interval (c, d), then set constraints[i].der = constraints
[i+1].der = �1 and constraints[i].xval = c and
constraints[i+1].xval = d. For consistency, insist that

210 � spline_lsq_constrained IMSL C/Math/Library

constraints[i].type = constraints[i+1].type 	 0 and c � d.
Note that every der must be at least �1.

constraints [i].type i-th constraint

1 � � � �id
i ibl f x�

2 � �id � �i if x b� u
3 � � � �id

i if x b� l
4 � �idbl f x� �i i bu� � i
5 � �i c

bl f t dt� �
d

6 � �

d

ic
f t dt bu��

7 � �
d

ic
f t dt bl��

8 � �
d

bl f t dt� ��i ic
bu

20 periodic end conditions
99 disregard this constraint

In order to have two point constraints, must have

constraints[i].type = constraints[i+1].type

constraints [i]. type i-th constraint

9 � � � � � � � �1
1

i id d
i ibl f x f x�

�
� � i

10 � �id � �i if x b� u
11 � � � � � � � �1

1i i
i id d

if x f x b
�

� � l�
12 � � � �1i id d

�� � � �1i i ibl f x f x bu
�

� � � i

Return Value
A pointer to the structure that represents the spline fit. If a fit cannot be computed, then
NULL is returned. To release this space, use free.

Synopsis with Optional Arguments
#include <imsl.h>
Imsl_f_spline *imsl_f_spline_lsq_constrained (int ndata, float xdata[],

float fdata[], int spline_space_dim, int num_con_pts,
f_constraint_struct constraints[],
IMSL_NHARD, int nhard,
IMSL_WEIGHTS, float weights[],
IMSL_ORDER, int order,
IMSL_KNOTS, float knots[],
0)

Chapter 3: Interpolation and Approximation spline_lsq_constrained � 211

Optional Arguments
IMSL_NHARD, int nhard (Output)

The argument nhard is the number of entries of constraints involved in the
“hard” constraints. Note that 0 � nhard � num_con_pts. The default,
nhard = 0, always results in a fit, while setting nhard = num_con_pts forces
all constraints to be met. The “hard” constraints must be met, or else the
function signals failure. The “soft” constraints need not be satisfied, but there
will be an attempt to satisfy the “soft” constraints. The constraints must be
listed in terms of priority with the most important constraints first. Thus, all of
the “hard” constraints must precede the “soft” constraints. If infeasibility is
detected among the “soft” constraints, we satisfy, in order, as many of the
“soft” constraints as possible.
Default: nhard = 0

IMSL_WEIGHTS, float weights[] (Input)
This option requires the user to provide the weights.
Default: all weights equal one

IMSL_ORDER, int order (Input)
The order of the spline subspace for which the knots are desired. This option
is used to communicate the order of the spline subspace.
Default: order = 4(i.e., cubic splines)

IMSL_KNOTS, float knots[] (Input)
This option requires the user to provide the knots. The user must provide a
knot sequence of length spline_space_dimension + order.
Default: an appropriate knot sequence is selected. See below for more details.

Description
The function imsl_f_spline_lsq_constrained produces a constrained, weighted
least-squares fit to data from a spline subspace. Constraints involving one point, two
points, or integrals over an interval are allowed. The types of constraints supported by
the functions are of four types:

Ep[f] � � � �pj
pf y�

or � � � � � � � �1

1
p pj j

p pf y f y�

�
� �

or � �
1p

p

y

y
f t dt�

� �

or = periodic end conditions

An interval, Ip (which may be a point, a finite interval, or a semi-infinite interval), is
associated with each of these constraints.
The input for this function consists of several items; first, the data set
(xi, fi) for i = 1, �, N (where N = NDATA), that is the data which is to be fit. Second, we
have the weights to be used in the least-squares fit (w = WEIGHT, defaulting to 1). The
vector constraints contains the abscissas of the points involved in specifying the
constraints, as well as information relating the type of constraints and the constraint
interval.

212 � spline_lsq_constrained IMSL C/Math/Library

Let nf denote the number of feasible constraints as described above. Then, the function
solved the problem

� �
2

1 1

n m

i j j i
i j

if a B x w
� �

�� �

subject to

1
1, ,

m

p j j p f
j

E a B I p n
�

� �
� �� �

� �
� �

This linearly constrained least-squares problem is treated as a quadratic program and is
solved by invoking the function imsl_f_quadratic_prog.

The choice of weights depends on the data uncertainty in the problem. In some cases,
there is a natural choice for the weights based on the estimates of errors in the data
points.

Determining feasibility of linear constraints is a numerically sensitive task. If you
encounter difficulties, a quick fix would be to widen the constraint intervals Ip.

Examples

Example 1
This is a simple application of imsl_f_lsq_constrained. Data is generated from
the function

sin()
2 2
x x
�

and contaminated with random noise and fit with cubic splines. The function is
increasing, so least-squares fit should also be increasing. This is not the case for the
unconstrained least-squares fit generated by imsl_f_spline_least_squares. Then,
the derivative is forced to be greater than 0 at num_con_pts = 15 equally spaced
points and imsl_f_lsq_constrained is called. The resulting curve is monotone.
The error is printed for the two fits averaged over 100 equally spaced points.

#include <imsl.h>
#include <math.h>

#define MXKORD 4
#define MXNCOF 20
#define MXNDAT 51
#define MXNXVL 15

main()
{
 f_constraint_struct constraint[MXNXVL];
 int i, korder, ncoef, ndata, nxval;
 float *noise, errlsq, errnft, grdsiz, x;
 float fdata[MXNDAT], xdata[MXNDAT];
 Imsl_f_spline *sp, *spls;

Chapter 3: Interpolation and Approximation spline_lsq_constrained � 213

#define F1(x) (float)(.5*(x) + sin(.5*(x)))

 korder = 4;
 ndata = 15;
 nxval = 15;
 ncoef = 8;
 /*
 * Compute original xdata and fdata with random noise.
 */
 imsl_random_seed_set (234579);
 noise = imsl_f_random_uniform (ndata, 0);
 grdsiz = 10.0;
 for (i = 0; i < ndata; i++) {
 xdata[i] = grdsiz * ((float) (i) / (float) (ndata - 1));
 fdata[i] = F1 (xdata[i]) + (noise[i] - .5);
 }

 /* Compute least-squares fit. */

 spls = imsl_f_spline_least_squares (ndata, xdata, fdata, ncoef, 0);
 /*
 * Construct the constraints.
 */
 for (i = 0; i < nxval; i++) {
 constraint[i].xval = grdsiz * (float)(i) / (float)(nxval - 1);
 constraint[i].type = 3;
 constraint[i].der = 1;
 constraint[i].bl = 0.0;
 }
 /* Compute constrained least-squares fit. */
 sp = imsl_f_spline_lsq_constrained (ndata, xdata, fdata, ncoef,
 nxval, constraint, 0);
 /*
 * Compute the average error of 100 points in the interval.
 */
 errlsq = 0.0;
 errnft = 0.0;
 for (i = 0; i < 100; i++) {
 x = grdsiz * (float) (i) / 99.0;
 errnft += fabs (F1 (x) - imsl_f_spline_value(x,sp,0));
 errlsq += fabs (F1 (x) - imsl_f_spline_value(x,spls,0));
 }
 /* Print results */
 printf (" Average error with spline_least_squares fit: %8.5f\n",
 errlsq / 100.0);
 printf (" Average error with spline_lsq_constrained fit: %8.5f\n",
 errnft / 100.0);
}

Output
Average error with spline_least_squares fit: 0.20250
Average error with spline_lsq_constrained fit: 0.14334

214 � spline_lsq_constrained IMSL C/Math/Library

Example 2
Now, try to recover the function

4

1
1 x�

from noisy data. First, try the unconstrained least-squares fit using
imsl_f_spline_least_squares. Finding that fit somewhat unsatisfactory, several
constraints are applied using imsl_f_spline_lsq_constrained. First, notice that
the unconstrained fit oscillates through the true function at both ends of the interval.
This is common for flat data. To remove this oscillation, the cubic spline is constrained
to have zero second derivative at the first and last four knots. This forces the cubic
spline to reduce to a linear polynomial on the first and last three knot intervals. In
addition, the fit is constrained (called s) as follows:

s(�7) � 0

� �
7

7
2.3s x dx

�

��

s(�7) = s(7)

Notice that the last constraint was generated using the periodic option (requiring only
the zero-th derivative to be periodic). The error is printed for the two fits averaged over
100 equally spaced points.

#include <imsl.h>
#include <math.h>

#define KORDER 4
#define NDATA 51
#define NXVAL 12
#define NCOEF 13

main()
{
 f_constraint_struct constraint[NXVAL];
 int i;
 float *noise, errlsq, errnft, grdsiz, x;
 float fdata[NDATA], xdata[NDATA], xknot[NDATA+KORDER];
 Imsl_f_spline *sp, *spls;

#define F1(x) (float)(1.0/(1.0+x*x*x*x))

 /* Compute original xdata and fdata with random noise */

 imsl_random_seed_set (234579);
 noise = imsl_f_random_uniform (NDATA, 0);
 grdsiz = 14.0;
 for (i = 0; i < NDATA; i++) {
 xdata[i] = grdsiz * ((float)(i)/(float)(NDATA - 1))
 - grdsiz/2.0;
 fdata[i] = F1 (xdata[i]) + 0.125*(noise[i] - .5);
 }

Chapter 3: Interpolation and Approximation spline_lsq_constrained � 215

/* Generate knots. */
 for (i = 0; i < NCOEF-KORDER+2; i++) {
 xknot[i+KORDER-1] = grdsiz * ((float)(i)/
 (float)(NCOEF-KORDER+1)) - grdsiz/2.0;
 }
 for (i = 0; i < KORDER - 1; i++) {
 xknot[i] = xknot[KORDER-1];
 xknot[i+NCOEF+1] = xknot[NCOEF];
 }

 /* Compute spline_least_squares fit */

 spls = imsl_f_spline_least_squares (NDATA, xdata, fdata, NCOEF,
 IMSL_KNOTS, xknot, 0);

 /* Construct the constraints for CONFT */

 for (i = 0; i < 4; i++) {
 constraint[i].xval = xknot[KORDER+i-1];
 constraint[i+4].xval = xknot[NCOEF-3+i];
 constraint[i].itype = 1;
 constraint[i+4].itype = 1;
 constraint[i].ider = 2;
 constraint[i+4].ider = 2;
 constraint[i].bl = 0.0;
 constraint[i+4].bl = 0.0;
 }
 constraint[8].xval = -7.0;
 constraint[8].itype = 3;
 constraint[8].ider = 0;
 constraint[8].bl = 0.0;

 constraint[9].xval = -7.0;
 constraint[9].itype = 6;
 constraint[9].bu = 2.3;

 constraint[10].xval = 7.0;
 constraint[10].itype = 6;
 constraint[10].bu = 2.3;

 constraint[11].xval = -7.0;
 constraint[11].itype = 20;
 constraint[11].ider = 0;

 sp = imsl_f_spline_lsq_constrained (NDATA, xdata, fdata, NCOEF,
 NXVAL, constraint, IMSL_KNOTS, xknot, 0);

 /* Compute the average error of 100 points in the interval */

 errlsq = 0.0;
 errnft = 0.0;
 for (i = 0; i < 100; i++) {
 x = grdsiz * (float) (i) / 99.0 - grdsiz/2.0;
 errnft += fabs (F1 (x) - imsl_f_spline_value(x,sp,0));
 errlsq += fabs (F1 (x) - imsl_f_spline_value(x,spls,0));
 }
 /* Print results */
 printf (" Average error with BSLSQ fit: %8.5f\n",

216 � smooth_1d_data IMSL C/Math/Library

 errlsq / 100.0);
 printf (" Average error with CONFT fit: %8.5f\n",
 errnft / 100.0);
}

Output
Average error with BSLSQ fit: 0.01783
Average error with CONFT fit: 0.01339

smooth_1d_data
Smooth one-dimensional data by error detection.

Synopsis
#include <imsl.h>
float *imsl_f_smooth_1d_data (int ndata,
float xdata[], float fdata[], �, 0)

The type double function is imsl_d_smooth_1d_data.

Required Arguments

int ndata (Input)
Number of data points.

float xdata[] (Input)
Array with ndata components containing the abscissas of the data points.

float ydata[] (Input)
Array with ndata components containing the ordinates of the data points.

Return Value
A pointer to the vector of length ndata containing the smoothed data.

Synopsis with Optional Arguments
#include <imsl.h>
float * imsl_f_smooth_1d_data (int ndata,

float xdata[], float fdata[],
IMSL_RETURN_USER, float sdata[],
IMSL_ITMAX, int itmax,
IMSL_DISTANCE, float dis,
IMSL_STOPPING_CRITERION, float sc,
 0)

Chapter 3: Interpolation and Approximation smooth_1d_data � 217

Optional Arguments
IMSL_RETURN_USER, float sdata[] (Output)

The smoothed data is stored in the user-supplied array.

IMSL_ITMAX, int itmax (Input)
The maximum number of iterations allowed.
Default: itmax = 500

IMSL_DISTANCE, float dis (Input)
Proportion of the distance the ordinate in error is moved to its
interpolating curve. It must be in the range 0.0 to 1.0.
Default: dis = 1.0

IMSL_STOPPING_CRITERION, float sc (Input)
The stopping criterion. sc should be greater than or equal to zero.
Default: sc = 0.0

Algorithm
The function imsl_f_smooth_1d_data is designed to smooth a data set that is
mildly contaminated with isolated errors. In general, the routine will not work well if
more than 25% of the data points are in error. The routine imsl_f_smooth_1d_data
is based on an algorithm of Guerra and Tapia (1974).

Setting ndata = n, ydata = f, sdata = s and xdata = x, the algorithm proceeds as
follows. Although the user need not input an ordered xdata sequence, we will assume
that x is increasing for simplicity. The algorithm first sorts the xdata values into an
increasing sequence and then continues. A cubic spline interpolant is computed for each
of the 6-point data sets (initially setting s = f)

(xj, sj) j = i � 3, …, i + 3 j � i,

where i = 4, �, n � 3. For each i the interpolant, which we will call Si, is compared
with the current value of si, and a ‘point energy’ is computed as

pei = Si(xi) � si

Setting sc = sc, the algorithm terminates either if itmax iterations have taken place or
if

� �3 3 / 6 4, , 3i i ipe sc x x i n
� �

� � � � �

If the above inequality is violated for any i, then we update the i-th element of s by
setting si = si + d(pei), where d = dis. Note that neither the first three nor the last three
data points are changed. Thus, if these points are inaccurate, care must be taken to
interpret the results.

The choice of the parameters d, sc and itmax are crucial to the successful usage of this
subroutine. If the user has specific information about the extent of the contamination,
then he should choose the parameters as follows: d = 1, sc = 0 and itmax to be the
number of data points in error. On the other hand, if no such specific information is
available, then choose d = .5, itmax � 2n, and

218 � smooth_1d_data IMSL C/Math/Library

� �1

max min.5
n

s ssc
x x

�

�

�

In any case, we would encourage the user to experiment with these values.

Example
We take 91 uniform samples from the function 5 + (5 + t2 sin t)/t on the interval [1, 10].
Then, we contaminate 10 of the samples and try to recover the original function values.

#include "imsl.h"

#include "stdlib.h"

#include "math.h"

#define NDATA 91

#define F(X) (X*X*sin((double)(X))+5.0)/X + 5.0

main()

{

 int i, maxit;

 int isub[10] = {5, 16, 25, 33, 41, 48, 55, 61, 74, 82};

 float dis, fdata[NDATA], sc, *sdata=NULL;

 float xdata[NDATA], s_user[NDATA];

 float rnoise[10] = {2.5, -3., -2., 2.5, 3.,

 -2., -2.5, 2., -2., 3.};

 /* Example 1: No specific information available. */

 dis = .5;

 sc = .56;

 maxit = 182;

 /* Set values for xdata and fdata. */

 xdata[0] = 1.;

 fdata[0] = F(xdata[0]);

 for (i=1;i<NDATA;i++) {

 xdata[i] = xdata[i-1]+.1;

 fdata[i] = F(xdata[i]);

 }

 /* Contaminate the data. */

 for (i=0;i<10;i++) fdata[isub[i]] += rnoise[i];

 /* Smooth the data. */

Chapter 3: Interpolation and Approximation smooth_1d_data � 219

 sdata = imsl_f_smooth_1d_data(NDATA, xdata, fdata,

 IMSL_DISTANCE, dis,

 IMSL_STOPPING_CRITERION, sc,

 IMSL_ITMAX, maxit,

 0);

 /* Output the result. */

 printf("Case A - No specific information available. \n");

 printf(" F(X) F(X)+noise sdata\n");

 for (i=0;i<10;i++) printf("%7.3f\t%15.3f\t%15.3f\n",

 F(xdata[isub[i]]),

 fdata[isub[i]],

 sdata[isub[i]]);

 /* Example 2: No specific information is available. */

 dis = 1.0;

 sc = 0.0;

 maxit = 10;

 /*

 * A warning message is produced because the maximum

 * number of iterations is reached.

 */

 /* Smooth the data. */

sdata = imsl_f_smooth_1d_data(NDATA, xdata, fdata,

 IMSL_DISTANCE, dis,

 IMSL_STOPPING_CRITERION, sc,

 IMSL_ITMAX, maxit,

 IMSL_RETURN_USER, s_user,

 0);

 /* Output the result. */

 printf("Case B - Specific information available. \n");

 printf(" F(X) F(X)+noise sdata\n");

 for (i=0;i<10;i++) printf("%7.3f\t%15.3f\t%15.3f\n",

 F(xdata[isub[i]]),

 fdata[isub[i]],

 s_user[isub[i]]);

}

220 � scattered_2d_interp IMSL C/Math/Library

Output
Case A - No specific information available.

 F(X) F(X)+noise sdata

 9.830 12.330 9.870

 8.263 5.263 8.215

 5.201 3.201 5.168

 2.223 4.723 2.264

 1.259 4.259 1.308

 3.167 1.167 3.138

 7.167 4.667 7.131

 10.880 12.880 10.909

 12.774 10.774 12.708

 7.594 10.594 7.639

*** WARNING Error IMSL_ITMAX_EXCEEDED from imsl_f_smooth_1d_data.

*** Maximum number of iterations limit "itmax" = 10 exceeded.

*** The best answer found is returned.

Case B - Specific information available.

 F(X) F(X)+noise sdata

 9.830 12.330 9.831

 8.263 5.263 8.262

 5.201 3.201 5.199

 2.223 4.723 2.225

 1.259 4.259 1.261

 3.167 1.167 3.170

 7.167 4.667 7.170

 10.880 12.880 10.878

 12.774 10.774 12.770

 7.594 10.594 7.592

scattered_2d_interp
Computes a smooth bivariate interpolant to scattered data that is locally a quintic
polynomial in two variables.

Synopsis
#include <imsl.h>
float *imsl_f_scattered_2d_interp (int ndata, float xydata[], float

fdata[], int nx_out, int ny_out, float x_out[], float y_out[], �,
0)

Chapter 3: Interpolation and Approximation scattered_2d_interp � 221

The type double function is imsl_d_scattered_2d_interp.

Required Arguments

int ndata (Input)
Number of data points.

float xydata[] (Input)
Array with ndata*2 components containing the data points for the
interpolation problem. The i-th data point (xi, yi) is stored consecutively in the
2i and 2i + 1 positions of xydata.

float fdata[] (Input)
Array of size ndata containing the values to be interpolated.

int nx_out (Input)
Number of data points in the x direction for the output grid.

int ny_out (Input)
Number of data points in the y direction for the output grid.

float x_out[] (Input)
Array of length nx_out specifying the x values for the output grid. It must be
strictly increasing.

float y_out[] (Input)
Array of length ny_out specifying the y values for the output grid. It must be
strictly increasing.

Return Value
A pointer to the nx_out � ny_out grid of values of the interpolant. If no answer can
be computed, then NULL is returned. To release this space, use free.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_scattered_2d_interp (int ndata, float xydata[], float

fdata[], int nx_out, int ny_out, float x_out[], float y_out[],
IMSL_RETURN_USER, float surface[],
IMSL_SUR_COL_DIM, int surface_col_dim,
0)

Optional Arguments
IMSL_RETURN_USER, float surface[] (Output)

This option allows the user to provide his own space for the result. In this
case, the answer will be returned in surface.

IMSL_SUR_COL_DIM, int surface_col_dim (Input)
This option requires the user to provide the column dimension of the two-

222 � scattered_2d_interp IMSL C/Math/Library

dimensional array surface.
Default: surface_col_dim = ny_out

Description
The function imsl_f_scattered_2d_interp computes a C1 interpolant to scattered
data in the plane. Given the data points

� �� �
1

0
, ,

n
i i i i

x y f
�

�

in R3 where n = ndata, imsl_f_scattered_2d_interp returns the values of the
interpolant s on the user-specified grid. The computation of s is as follows: First the
Delaunay triangulation of the points

� �� �
1

0
,

n
i i i

x y
�

�

is computed. On each triangle T in this triangulation, s has the form

� �
5

, ,T m n
mn

m n
s x y c x y x y T

� �

� �� �

, 1

Thus, s is a bivariate quintic polynomial on each triangle of the triangulation. In
addition, we have

� �, for 0,i i is x y f i n� � � �

and s is continuously differentiable across the boundaries of neighboring triangles.
These conditions do not exhaust the freedom implied by the above representation. This
additional freedom is exploited in an attempt to produce an interpolant that is faithful to
the global shape properties implied by the data. For more information on this
procedure, refer to the article by Akima (1978). The output grid is specified by the two
integer variables nx_out and ny_out that represent the number of grid points in the
first (second) variable and by two real vectors that represent the first (second)
coordinates of the grid.

Examples

Example 1
In this example, the interpolant to the linear function (3 + 7x + 2y) is computed from 20
data points equally spaced on the circle of radius 3. Then the values are printed on a
3 � 3 grid.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 20
#define OUTDATA 3
 /* Define function */
#define F(x,y) (float)(3.+7.*x+2.*y)

#define SURF(I,J) surf[(J) +(I)*OUTDATA]

Chapter 3: Interpolation and Approximation scattered_2d_interp � 223

main()
{
 int i, j;
 float fdata[NDATA], xydata[2*NDATA], *surf;
 float x, y, z, x_out[OUTDATA], y_out[OUTDATA], pi;

 pi = imsl_f_constant("pi", 0);
 /* Set up output grid */
 for (i = 0; i < OUTDATA; i++) {
 x_out[i] = y_out[i] = (float) i / ((float) (OUTDATA - 1));
 }
 for (i = 0; i < 2*NDATA; i += 2) {
 xydata[i] = 3.*cos(pi*i/NDATA);
 xydata[i+1] = 3.*sin(pi*i/NDATA);
 fdata[i/2] = F(xydata[i], xydata[i+1]);
 }
 /* Compute scattered data interpolant */
 surf = imsl_f_scattered_2d_interp (NDATA, xydata, fdata, OUTDATA,
 OUTDATA, x_out, y_out, 0);
 /* Print results */
 printf(" x y F(x, y) Interpolant Error\n");
 for (i = 0; i < OUTDATA; i++) {
 for (j = 0; j < OUTDATA; j++) {
 x = x_out[i];
 y = y_out[j];
 z = SURF(i,j);
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }

 }
}

Output
 x y F(x, y) Interpolant Error
0.000 0.000 3.000 3.000 0.0000
0.000 0.500 4.000 4.000 0.0000
0.000 1.000 5.000 5.000 0.0000
0.500 0.000 6.500 6.500 0.0000
0.500 0.500 7.500 7.500 0.0000
0.500 1.000 8.500 8.500 0.0000
1.000 0.000 10.000 10.000 0.0000
1.000 0.500 11.000 11.000 0.0000
1.000 1.000 12.000 12.000 0.0000

Example 2
Recall that in the first example, the interpolant to the linear function 3 + 7x + 2y is
computed from 20 data points equally spaced on the circle of radius 3. We then print
the values on a 3 � 3 grid. This example used the optional arguments to indicate that the
answer is stored noncontiguously in a two-dimensional array surf with column
dimension equal to 11.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

224 � scattered_2d_interp IMSL C/Math/Library

#define NDATA 20
#define OUTDATA 3
#define COLDIM 11
 /* Define function */
#define F(x,y) (float)(3.+7.*x+2.*y)

main()
{
 int i, j;
 float fdata[NDATA], xydata[2*NDATA];
 float surf[OUTDATA][COLDIM];
 float x, y, z, x_out[OUTDATA], y_out[OUTDATA], pi;

 pi = imsl_f_constant("pi", 0);
 /* Set up output grid */
 for (i = 0; i < OUTDATA; i++) {
 x_out[i] = y_out[i] = (float) i / ((float) (OUTDATA - 1));
 }
 for (i = 0; i < 2*NDATA; i += 2) {
 xydata[i] = 3.*cos(pi*i/NDATA);
 xydata[i+1] = 3.*sin(pi*i/NDATA);
 fdata[i/2] = F(xydata[i], xydata[i+1]);
 }
 /* Compute scattered data interpolant */
 imsl_f_scattered_2d_interp (NDATA, xydata, fdata, OUTDATA,
 OUTDATA, x_out, y_out,
 IMSL_RETURN_USER, surf,
 IMSL_SUR_COL_DIM, COLDIM,
 0);
 /* Print results */
 printf(" x y F(x, y) Interpolant Error\n");
 for (i = 0; i < OUTDATA; i++) {
 for (j = 0; j < OUTDATA; j++) {
 x = x_out[i];
 y = y_out[j];
 z = surf[i][j];
 printf(" %6.3f %6.3f %10.3f %10.3f %10.4f\n",
 x, y, F(x,y), z, fabs(F(x,y)-z));
 }
 }
}

Output
 x y F(x, y) Interpolant Error
0.000 0.000 3.000 3.000 0.0000
0.000 0.500 4.000 4.000 0.0000
0.000 1.000 5.000 5.000 0.0000
0.500 0.000 6.500 6.500 0.0000
0.500 0.500 7.500 7.500 0.0000
0.500 1.000 8.500 8.500 0.0000
1.000 0.000 10.000 10.000 0.0000
1.000 0.500 11.000 11.000 0.0000
1.000 1.000 12.000 12.000 0.0000

Chapter 3: Interpolation and Approximation radial_scattered_fit � 225

Fatal Errors
IMSL_DUPLICATE_XYDATA_VALUES The two-dimensional data values must be

distinct.

IMSL_XOUT_NOT_STRICTLY_INCRSING The vector x_out must be strictly
increasing.

IMSL_YOUT_NOT_STRICTLY_INCRSING The vector y_out must be strictly
increasing.

radial_scattered_fit
Computes an approximation to scattered data in Rn for n � 1 using radial-basis
functions.

Synopsis
#include <imsl.h>
Imsl_f_radial_basis_fit *imsl_f_radial_scattered_fit (int dimension,

int num_points, float abscissae[], float fdata[],
int num_centers, �, 0)

The type Imsl_d_radial_basis_fit function is imsl_d_radial_scattered_fit.

Required Arguments

int dimension (Input)
Number of dimensions.

int num_points (Input)
The number of data points.

float abscissae[] (Input)
Array of size dimension � num_points containing the abscissae of the data
points. The argument abscissae[i][j] is the abscissa value of the (i+1)-th
data point in the (j+1)-th dimension.

float fdata[] (Input)
Array with num_points components containing the ordinates for the
problem.

int num_centers (Input)
The number of centers to be used when computing the radial-basis fit. The
argument num_centers should be less than or equal to num_points.

Return Value
A pointer to the structure that represents the radial-basis fit. If a fit cannot be computed,
then NULL is returned. To release this space, use free.

226 � radial_scattered_fit IMSL C/Math/Library

Synopsis with Optional Arguments
#include <imsl.h>

Imsl_f_radial_basis_fit *imsl_f_radial_scattered_fit (int dimension, int
num_points, float abscissae[], float fdata[],
int num_centers,
IMSL_CENTERS, float centers[],
IMSL_CENTERS_RATIO, float ratio,
IMSL_RANDOM_SEED, int seed,
IMSL_SUPPLY_BASIS, float radial_function(),
IMSL_SUPPLY_BASIS_W_DATA, float radial_function(), void *data,
IMSL_SUPPLY_DELTA, float delta,
IMSL_WEIGHTS, float weights[],
IMSL_NO_SVD,
0)

Optional Arguments
IMSL_CENTERS (Input)

User-supplied centers. See the “Description” (page 227) section of this
function for details.

IMSL_CENTERS_RATIO, float ratio (Input)
The desired ratio of centers placed on an evenly spaced grid to the total
number of centers. The condition that the same number of centers placed on a
grid for each dimension must be equal. Thus, the actual number of centers
placed on a grid is usually less than ratio*num_centers, but will never be
more than ratio*num_centers. The remaining centers are randomly chosen
from the set of abscissae given in abscissae.
Default: ratio = 0.5

IMSL_RANDOM_SEED, int seed
The value of the random seed used when determining the random subset of
abscissae to use as centers. By changing the value of seed on different calls to
imsl_f_radial_scattered_fit, with the same data set, a different set of
random centers will be chosen. Setting seed to zero forces the random
number seed to be based on the system clock, so a possibly different set of
centers will be chosen each time the program is executed.
Default: seed = 234579

IMSL_SUPPLY_BASIS, float radial_function (float distance) (Input)
User-supplied function to compute the values of the radial functions.
Default: Hardy multiquadric

IMSL_SUPPLY_BASIS_W_DATA, float radial_function (float distance, void
*data), void *data (Input)
User-supplied function to compute the values of the radial functions, which
also accepts a pointer to data that is supplied by the user. data is a pointer to
the data to be passed to the user-supplied function. See the “Introduction,

Chapter 3: Interpolation and Approximation radial_scattered_fit � 227

Passing Data to User-Supplied Functions” at the beginning of this manual for
more details.

Default: Hardy multiquadric

IMSL_SUPPLY_DELTA, float delta (Input)
The delta used in the default basis function

� � 2 2r r� �� �

Default: delta = 1

IMSL_WEIGHTS, float weights[]
This option requires the user to provide the weights.
Default: all weights equal one

IMSL_NO_SVD
This option forces the use of a QR decomposition instead of a singular value
decomposition. This may result in space savings for large problems.

Description
The function imsl_f_radial_scattered_fit computed a least-squares fit to
scattered data in Rd where d = dimension. More precisely, let n = ndata,
x = abscissae, f = fdata, and d = dimension. Then we have

0 1
0 1, , , ,n d

nx x f f�

�

� �R R� �

1

This function computes a function F which approximates the above data in the sense
that it minimizes the sum-of-squares error

� �� �
1 2

0

n
i

i i
i

w F x f
�

�

��

where w = weights. Of course, we must restrict the functional form of F. This is done
as follows:

� �
1 2 2

0
:

k

j j
j

F x x c� � �
�

�

� �
� �� �

� 	
� �

The function � is called the radial function. It maps R1 into R1, only defined for the
nonnegative reals. For the purpose of this routine, the user-supplied function

� � � �2 2r r� �� �

Note that the value of delta is defaulted to 1. It can be set by the user by using the
keyword IMSL_DELTA. The parameter � is used to scale the problem. Generally choose
� to be near the minimum spacing of the centers.

The default basis function is called the Hardy multiquadric, and it is defined as

228 � radial_scattered_fit IMSL C/Math/Library

� � � �2 2r r� �� �

A key feature of this routine is the user’s control over the selection of the basis
function.

To obtain the default selection of centers, we first compute the number of centers that
will be on a grid and how many are on a random subset of the abscissae. Next, we
compute those centers on a grid. Finally, a random subset of abscissa are obtained
determining where the centers are placed. Let us examine the selection of centers in
more detail.

First, we restrict the computed grid to have the same number of grid values in each of
the dimension directions. Then, the number of centers placed on a grid,
num_gridded, is computed as follows:

	 = (centers_ratio) (num_centers)

 = �	1/dimension�

num_gridded =
dimension

Note that there are
 grid values in each of the dimension directions. Then we have

num_random = (num_centers) � (num_gridded)

Now we know how many centers will be placed on a grid and how many will be placed
on a random subset of the abscissae. The gridded centers are computed such that they
are equally spaced in each of the dimension directions. The last problem is to
compute a random subset, without replacement, of the abscissa. The selection is based
on a random seed. The default seed is 234579. The user can change this using the
optional argument IMSL_RANDOM_SEED. Once the subset is computed, we use the
abscissae as centers.

Since the selection of good centers for a specific problem is an unsolved problem at this
time, we have given the ultimate flexibility to the user. That is, you can select your own
centers using the keyword IMSL_CENTERS. As a rule of thumb, the centers should be
interspersed with the abscissae.

The return value for this function is a pointer to the structure, which contains all the
information necessary to evaluate the fit. This pointer is then passed to the function
imsl_f_radial_evaluate to produce values of the fitted function.

Examples

Example 1
This example, generates data from a function and contaminates it with noise on a grid
of 10 equally spaced points.The fit is evaluated on a finer grid and compared with the
actual function values.

#include <imsl.h>
#include <math.h>

#define NDATA 10

Chapter 3: Interpolation and Approximation radial_scattered_fit � 229

#define NUM_CENTERS 5
#define NOISE_SIZE 0.25
#define F(x) ((float)(sin(2*pi*x)))

main ()
{
 int i;
 int dim = 1;
 float fdata[NDATA];
 float *fdata2;
 float xdata[NDATA];
 float xdata2[2*NDATA];
 float pi;
 float *noise;
 Imsl_f_radial_basis_fit *radial_fit;

 pi = imsl_f_constant ("pi", 0);

 imsl_random_seed_set (234579);
 noise = imsl_f_random_uniform(NDATA, 0);

/* Set up the sampled data points with noise. */

 for (i = 0; i < NDATA; ++i) {
 xdata[i] = (float)(i)/(float)(NDATA-1);
 fdata[i] = F(xdata[i]) + NOISE_SIZE*(1.0 - 2.0*noise[i]);
 }
/* Compute the radial fit. */

 radial_fit = imsl_f_radial_scattered_fit (dim, NDATA, xdata,
 fdata, NUM_CENTERS, 0);

/* Compare result to the original function at twice as many values as
 there were original data points. */

 for (i = 0; i < 2*NDATA; ++i)
 xdata2[i] = (float)(i/(float)(2*(NDATA-1)));
/* Evaluate the fit at these new points. */

 fdata2 = imsl_f_radial_evaluate(2*NDATA, xdata2, radial_fit, 0);

 printf(" I TRUE APPROX ERROR\n");
 for (i = 0; i < 2*NDATA; ++i)
 printf("%5d %10.5f %10.5f %10.5f\n",i+1,F(xdata2[i]), fdata2[i],
 F(xdata2[i])-fdata2[i]);
 }

Output
 I TRUE APPROX ERROR
 1 0.00000 -0.08980 0.08980
 2 0.34202 0.38795 -0.04593
 3 0.64279 0.75470 -0.11191
 4 0.86603 0.99915 -0.13312
 5 0.98481 1.11597 -0.13116
 6 0.98481 1.10692 -0.12211
 7 0.86603 0.98183 -0.11580
 8 0.64279 0.75826 -0.11547
 9 0.34202 0.46078 -0.11876

230 � radial_scattered_fit IMSL C/Math/Library

10 -0.00000 0.11996 -0.11996
11 -0.34202 -0.23007 -0.11195
12 -0.64279 -0.55348 -0.08931
13 -0.86603 -0.81624 -0.04979
14 -0.98481 -0.98752 0.00271
15 -0.98481 -1.04276 0.05795
16 -0.86603 -0.96471 0.09868
17 -0.64279 -0.74472 0.10193
18 -0.34202 -0.38203 0.04001
19 0.00000 0.11600 -0.11600
20 0.34202 0.73553 -0.39351

Example 2
This example generates data from a function and contaminates it with noise.We fit this
data successively on grids of size 10, 20, �, 100. Now interpolate and print the 2-norm
of the difference between the interpolated result and actual function values. Note that
double precision is used for higher accuracy.

#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define NDATA 100
#define NUM_CENTERS 100
#define NRANDOM 200
#define NOISE_SIZE 1.0
#define G(x,y) (exp((y)/2.0)*sin(x) - cos((y)/2.0))

double radial_function (double r);

main()
{
 int i;
 int ndata;
 double *fit;
 double ratio;
 double fdata[NDATA+1];
 double xydata[2 * NDATA+1];
 double pi;
 double *noise;
 int num_centers;
 Imsl_d_radial_basis_fit *radial_struct;

 pi = imsl_d_constant ("pi", 0);

 /* Get the random numbers used for the noise. */

 imsl_random_seed_set (234579);
 noise = imsl_d_random_uniform (NRANDOM+1, 0);
 for (i = 0; i < NRANDOM; ++i) noise[i] = 1.0 - 2.0 * noise[i];
 printf(" NDATA || Error ||_2 \n");

 for (ndata = 10; ndata <= 100 ; ndata += 10) {
 num_centers = ndata;

 /* Set up the sampled data points with noise. */
 for (i = 0; i < 2 * ndata; i += 2) {

Chapter 3: Interpolation and Approximation radial_evaluate � 231

 xydata[i] = 3. * (noise[i]);
 xydata[i + 1] = 3. * (noise[i + 1]);
 fdata[i / 2] = G(xydata[i], xydata[i + 1])
 + NOISE_SIZE * noise[i];
 }

 /* Compute the radial fit. */
 ratio = 0.5;
 radial_struct= imsl_d_radial_scattered_fit (2, ndata, xydata,
 fdata, num_centers,
 IMSL_CENTERS_RATIO, ratio,
 IMSL_SUPPLY_BASIS, radial_function,
 0);
 fit = imsl_d_radial_evaluate (ndata, xydata, radial_struct, 0);

 for (i = 0; i < ndata; ++i) fit[i] -= fdata[i];

 printf("%8d %17.8f \n", ndata,
 imsl_d_vector_norm(ndata, fit, 0));
 }

}

double radial_function (double r)
{
 return log(1.0+r);
}

Output
NDATA || Error ||_2
 10 0.00000000
 20 0.00000000
 30 0.00000000
 40 0.00000000
 50 0.00000000
 60 0.00000000
 70 0.00000000
 80 0.00000000
 90 0.00000000
100 0.00000000

radial_evaluate
Evaluates a radial-basis fit.

Synopsis
#include <imsl.h>
float *imsl_f_radial_evaluate (int n, float x[],

Imsl_d_radial_basis_fit *radial_fit, �, 0)

The type double function is imsl_d_evaluate.

232 � radial_evaluate IMSL C/Math/Library

Required Arguments

int n (Input)
The number of points at which the fit will be evaluated.

float x[] (Input)
Array of size (radial_fit � > dimension) � n containing the abscissae of
the data points at which the fit will be evaluated. The argument x[i][j] is the
abscissa value of the (i+1)-th data point in the (j+1)-th dimension.

Imsl_f_radial_basis_fit *radial_fit (Input)
A pointer to radial-basis structure to be used for the evaluation. (Input).

Return Value
A pointer to an array of length n containing the values of the radial-basis fit at the
desired values. If no value can be computed, then NULL is returned. To release this
space, use free.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_radial_evaluate (int n, float x[],
Imsl_f_radial_basis_fit *radial_fit
IMSL_RETURN_USER, float value[],
0)

Optional Arguments
IMSL_RETURN_USER, value[] (Input)

A user-allocated array of length n containing the returned values.

Description
The function imsl_f_radial_evaluate evaluates a radial-basis fit from data
generated by imsl_f_radial_scattered_fit.

Example
#include <imsl.h>
#include <math.h>

#define NDATA 10
#define NUM_CENTERS 5
#define NOISE_SIZE 0.25
#define F(x) ((float)(sin(2*pi*x)))

main ()
{
 int i;
 int dim = 1;
 float fdata[NDATA];
 float *fdata2;
 float xdata[NDATA];

Chapter 3: Interpolation and Approximation radial_evaluate � 233

 float xdata2[2*NDATA];
 float pi;
 float *noise;
 Imsl_f_radial_basis_fit *radial_fit;

 pi = imsl_f_constant ("pi", 0);

 imsl_random_seed_set (234579);
 noise = imsl_f_random_uniform(NDATA, 0);

/* Set up the sampled data points with noise */

 for (i = 0; i < NDATA; ++i) {
 xdata[i] = (float)(i)/(float)(NDATA-1);
 fdata[i] = F(xdata[i]) + NOISE_SIZE*(1.0 - 2.0*noise[i]);
 }
/* Compute the radial fit */

 radial_fit = imsl_f_radial_scattered_fit (dim, NDATA, xdata,
 fdata, NUM_CENTERS, 0);

/* Compare result to the original function at twice as many values as there
 were original data points */

 for (i = 0; i < 2*NDATA; ++i)
 xdata2[i] = (float)(i/(float)(2*(NDATA-1)));

/* Evaluate the fit at these new points */

 fdata2 = imsl_f_radial_evaluate(2*NDATA, xdata2, radial_fit, 0);

 printf(" I TRUE APPROX ERROR\n");
 for (i = 0; i < 2*NDATA; ++i)
 printf("%5d %10.5f %10.5f %10.5f\n",i+1,F(xdata2[i]), fdata2[i],
 F(xdata2[i])-fdata2[i]);
 }

Output
 I TRUE APPROX ERROR
 1 0.00000 -0.08980 0.08980
 2 0.34202 0.38795 -0.04593
 3 0.64279 0.75470 -0.11191
 4 0.86603 0.99915 -0.13312
 5 0.98481 1.11597 -0.13116
 6 0.98481 1.10692 -0.12211
 7 0.86603 0.98183 -0.11580
 8 0.64279 0.75826 -0.11547
 9 0.34202 0.46078 -0.11876
10 -0.00000 0.11996 -0.11996
11 -0.34202 -0.23007 -0.11195
12 -0.64279 -0.55348 -0.08931
13 -0.86603 -0.81624 -0.04979
14 -0.98481 -0.98752 0.00271
15 -0.98481 -1.04276 0.05795
16 -0.86603 -0.96471 0.09868
17 -0.64279 -0.74472 0.10193
18 -0.34202 -0.38203 0.04001

234 � radial_evaluate IMSL C/Math/Library

19 0.00000 0.11600 -0.11600
20 0.34202 0.73553 -0.39351

Chapter 4: Quadrature Routines � 235

Chapter 4: Quadrature

Routines
4.1 Univariate Quadrature

Adaptive general-purpose endpoint singularityint_fcn_sing 237
Adaptive general purpose.. int_fcn 241
Adaptive general-purpose points of singularity............... int_fcn_sing_pts 245
Adaptive weighted algebraic singularities.........................int_fcn_alg_log 249
Adaptive infinite interval..int_fcn_inf 253
Adaptive weighted oscillatory (trigonometric) int_fcn_trig 257
Adaptive weighted Fourier (trigonometric) int_fcn_fourier 261
Cauchy principal value ... int_fcn_cauchy 265
Nonadaptive general purpose ... int_fcn_smooth 268

4.2 Multivariate Quadrature
Two-dimensional iterated integral ... int_fcn_2d 272
Iterated integral using product Gauss formulas int_fcn_hyper_rect 276
Iterated integral using a quasi-Monte Carlo method int_fcn_qmc 279

4.3 Gauss Quadrature
Gauss quadrature formulas.. gauss_quad_rule 282

4.4 Differentiation
First, second, or third derivative of a function.....................fcn_derivative 286

Usage Notes
Univariate Quadrature

The first nine functions in this chapter are designed to compute approximations to
integrals of the form

� � � �
b

c
f x w x dx�

The weight function w is used to incorporate known singularities (either algebraic or
logarithmic) or to incorporate oscillations. For general-purpose integration, we
recommend the use of imsl_f_int_fcn_sing (even if no endpoint singularities are

236 � Usage Notes IMSL C/Math/Library

present). If more efficiency is desired, then the use of one of the more specialized
functions should be considered. These functions are organized as follows:
� w = 1

imsl_f_int_fcn_sing
imsl_f_int_fcn
imsl_f_int_fcn_sing_pts
imsl_f_int_fcn_inf
imsl_f_int_fcn_smooth

� w(x) = sin�x or w(x) = cos�x

imsl_f_int_fcn_trig (for a finite interval)

imsl_f_int_fcn_fourier (for an infinite interval)

� w(x) = (x � a)a(b � x)bln(x � a)ln(b � x) where the ln factors are optional
imsl_f_int_fcn_alg_log

� w(x) = 1/(x � c)
imsl_f_int_fcn_cauchy

The calling sequences for these functions are very similar. The function to be integrated
is always fcn, and the lower and upper limits are a and b, respectively. The requested
absolute error � is err_abs, while the requested relative error � is err_rel. These
quadrature functions return the estimated answer R. An optional value err_est = E
estimates the error. These numbers are related as follows:

� � � � � � � �max{ , }
b b

a a

f x w x dx R E f x w x dx� �� � �� �

Several of the univariate quadrature functions have arguments of type Imsl_quad,
which is defined in imsl.h.

One situation that occasionally arises in univariate quadrature concerns the approximation
of integrals when only tabular data are given. The functions described above do not directly
address this question. However, the standard method for handling this problem is first to
interpolate the data, and then to integrate the interpolant. This can be accomplished by using
the IMSL spline interpolation functions with one of the spline integration functions, which
can be found in Chapter 3, “Interpolation and Approximation.”

Multivariate Quadrature

Two functions have been included in this chapter that are of use in approximating
certain multivariate integrals. In particular, the function imsl_f_int_fcn_2d returns
an approximation to an iterated two-dimensional integral of the form

� �
� �

� �
,

b h x

a g x
f x y dydx� �

Chapter 4: Quadrature int_fcn_sing � 237

The second function, imsl_f_int_fcn_hpyer_rect, returns an approximation to
the integral of a function of n variables over a hyper-rectangle

� �
1

1
1 1, ,n

n

b b

n na a
f x x dx dx� �� � �

When working with two-dimensional tensor-product tabular data, use the IMSL
spline interpolation function imsl_f_spline_2d_interp, followed by the IMSL
spline integration function imsl_f_spline_2d_integral described in
Chapter 3, “Interpolation and Approximation”.

Gauss Quadrature

Before computing Gauss quadratures, you must compute so-called Gauss quadrature
rules that integrate polynomials of as high degree as possible. These quadrature rules
can be easily computed using the function imsl_f_gauss_quad_rule, which
produces the points {wi} for i = 1, �, N that satisfy

� � � � � �
1

Nb

i ia
i

f x w x dx f x w
�

���

for all functions f that are polynomials of degree less than 2N. The weight functions w
may be selected from the following table.

w(x) Interval Name
1 (�1, 1) Legendre

21/(1)x� (�1, 1) Chebyshev 1st kind

21 x� (�1, 1) Chebyshev 2nd kind

2xe� (��, �) Hermite

(1 + x)a (1 � x)b (�1, 1) Jacobi
x ae x� (0, �) Generalized Laguerre

1/cosh (x) (��, �) Hyperbolic cosine

Where permissible, imsl_f_gauss_quad_rule also computes Gauss-Radau and
Gauss-Lobatto quadrature rules.

int_fcn_sing
Integrates a function, which may have endpoint singularities, using a globally adaptive
scheme based on Gauss-Kronrod rules.

Synopsis
#include <imsl.h>
float imsl_f_int_fcn_sing (float fcn(), float a, float b, …, 0)

238 � int_fcn_sing IMSL C/Math/Library

The type double function is imsl_d_int_fcn_sing.

Required Arguments
float fcn (float x) (input)

User-supplied function to be integrated.
float a (Input)

Lower limit of integration.
float b (Input)

Upper limit of integration.

Return Value
An estimate of

� �fcn
b

a
x dx�

If no value can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_sing (float fcn(), float a, float b,

IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: err _abs ��

where � is the machine precision
IMSL_ERR_REL, float err_rel (Input)

Relative accuracy desired.
Default: ��r_reler

where � is the machine precision
IMSL_ERR_EST, float *err_est (Output)

Address to store an estimate of the absolute value of the error.
IMSL_MAX_SUBINTER, int max_subinter (Input)

Number of subintervals allowed.
Default: max_subinter = 500

Chapter 4: Quadrature int_fcn_sing � 239

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the
user-supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

Description
This function is designed to handle functions with endpoint singularities. However, the
performance on functions that are well-behaved at the endpoints is also quite good.

The function imsl_f_int_fcn_sing is a general-purpose integrator that uses a
globally adaptive scheme in order to reduce the absolute error. It subdivides the interval
[a, b] and uses a 21-point Gauss-Kronrod rule to estimate the integral over each
subinterval. The error for each subinterval is estimated by comparison with the 10-point
Gauss quadrature rule. The subinterval with the largest estimated error is then bisected,
and the same procedure is applied to both halves. The bisection process is continued
until either the error criterion is satisfied, roundoff error is detected, the subintervals
become too small, or the maximum number of subintervals allowed is reached. This
function uses an extrapolation procedure known as the �-algorithm.

The function imsl_f_int_fcn_sing is based on the subroutine QAGS by
Piessens et al. (1983).

Examples

Example 1
The value of

� �
1 1/ 2

0
ln 4x x dx�

� ��

is estimated.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 float q, exact;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_sing (fcn, 0.0, 1.0, 0);
 /* Print the result and */
 /*the exact answer */
 exact = -4.0;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

240 � int_fcn_sing IMSL C/Math/Library

float fcn(float x)
{
 return log(x)/sqrt(x);
}

Output

integral = -4.000
exact = -4.000

Example 2
The value of

� �
1 1/ 2

0
ln 4x x dx�

� ��

is again estimated. The values of the actual and estimated errors are printed as well.
Note that these numbers are machine dependent. Furthermore, usually the error
estimate is pessimistic. That is, the actual error is usually smaller than the error estimate
as is in this example.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 float q, exact, err_est, exact_err;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_sing (fcn, 0.0, 1.0,
 IMSL_ERR_EST, &err_est,
 0);
 /* Print the result and */
 /* the exact answer */
 exact = -4.0;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
}

float fcn(float x)
{
 return log(x)/sqrt(x);
}

Output

integral = -4.000
exact = -4.000
error estimate = 3.175735e-04
exact error = 6.556511e-05

Chapter 4: Quadrature int_fcn � 241

Warning Errors
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested

tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error in the extrapolation table,
preventing the requested tolerance from
being achieved, has been detected.

Fatal Errors
IMSL_DIVERGENT Integral is probably divergent or slowly

convergent.
IMSL_MAX_SUBINTERVALS The maximum number of subintervals

allowed has been reached.

int_fcn
Integrates a function using a globally adaptive scheme based on Gauss-Kronrod rules.

Synopsis
#include <imsl.h>
float imsl_f_int_fcn (float fcn(), float a, float b, �, 0)

The type double function is imsl_d_int_fcn.

Required Arguments
float fcn (float x) (Input)

User-supplied function to be integrated.
float a (Input)

Lower limit of integration.
float b (Input)

Upper limit of integration.

Return Value
The value of

� �fcn
b

a
x dx�

is returned. If no value can be computed, then NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>

242 � int_fcn IMSL C/Math/Library

float imsl_f_int_fcn (float fcn(float x), float a, float b,
IMSL_RULE, int rule,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_RULE, int rule (Input)

Choice of quadrature rule.

rule Gauss-Kronrod Rule
1 7-15 points
2 10-21 points
3 15-31 points
4 20-41 points
5 25-51 points
6 30-61 points

Default: rule = 1
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: err _abs ��

where � is the machine precision
IMSL_ERR_REL, float err_rel (Input)

Relative accuracy desired.
Default: err _r ��el

where � is the machine precision
IMSL_ERR_EST, float *err_est (Output)

Address to store an estimate of the absolute value of the error.
IMSL_MAX_SUBINTER, int max_subinter (Input)

Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

Chapter 4: Quadrature int_fcn � 243

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the
user-supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

Description
The function imsl_f_int_fcn is a general-purpose integrator that uses a globally
adaptive scheme to reduce the absolute error. It subdivides the interval [a, b] and uses a
(2k + 1)-point Gauss-Kronrod rule to estimate the integral over each subinterval. The
error for each subinterval is estimated by comparison with the k-point Gauss quadrature
rule. The subinterval with the largest estimated error is then bisected, and the same
procedure is applied to both halves. The bisection process is continued until either the
error criterion is satisfied, roundoff error is detected, the subintervals become too small,
or the maximum number of subintervals allowed is reached. The function
imsl_f_int_fcn is based on the subroutine QAG by Piessens et al. (1983).

Should imsl_f_int_fcn fail to produce acceptable results, consider one of the more
specialized functions documented in this chapter.

Examples

Example 1
The value of

2 2

0
1xxe dx e� ��

is computed. Since the integrand is not oscillatory, all of the default values are used.
The values of the actual and estimated error are machine dependent.

#include <math.h>
#include <imsl.h>

float fcn(float x);
float q;
float exact;

 main()
{
 /* evaluate the integral */
 q = imsl_f_int_fcn (fcn, 0.0, 2.0, 0);
 /* print the result and the exact answer */
 exact = exp(2.0) + 1.0;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 float y;
 y = x * (exp(x));
 return y;
}

244 � int_fcn IMSL C/Math/Library

Output

integral = 8.389
exact = 8.389

Example 2
The value of

� �
1

0
sin 1/ x dx�

is computed. Since the integrand is oscillatory, rule = 6 is used. The exact value is
0.50406706. The values of the actual and estimated error are machine dependent.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
float q, err_est, err_abs= 0.0001, exact = 0.50406706, error;

 /* intergrate fcn(x) from 0 to 1 */
 q = imsl_f_int_fcn (fcn, 0.0, 1.0,
 IMSL_ERR_ABS, err_abs,/* set abs error value*/
 IMSL_RULE, 6,
 IMSL_ERR_EST, &err_est, /* pass in address */
 0);
 error = q - exact;
 /* print the result and the exact answer */
 printf(" integral = %10.3f\n exact = %10.3f\n error = %10.3f\n ",
 q, exact , error);
 printf(" err_est = %g\n", err_est);
}

float fcn(float x)
{
 /* compute sin(1/x), avoiding division by zero */
 return ((x)>1.0e-5) ? sin(1.0/(x)) : 0.0;
}

Output

integral = 0.504
 exact = 0.504
 error = 0.000
 err_est = 0.000170593

Warning Errors
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested

tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

Chapter 4: Quadrature int_fcn_sing_pts � 245

Fatal Errors
IMSL_MAX_SUBINTERVALS The maximum number of subintervals

allowed has been reached.

int_fcn_sing_pts
Integrates a function with singularity points given.

Synopsis
#include <imsl.h>
float imsl_f_int_fcn_sing_pts (float fcn(), float a, float b, int npoints,

float points[], �, 0)

The type double function is imsl_d_int_fcn_sing_pts.

Required Arguments
float fcn (float x) (Input)

User-supplied function to be integrated.
float a (Input)

Lower limit of integration.
float b (Input)

Upper limit of integration.
int npoints (Input)

The number of singularities of the integrand.
float points[] (Input)

The abscissas of the singularities. These values should be interior to the
interval [a, b].

Return Value
The value of

� �fcn
b

a
x dx�

is returned. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_sing_pts (float fcn(), float a, float b, int npoints,

float points[],
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,

246 � int_fcn_sing_pts IMSL C/Math/Library

IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(),void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: err _abs ��

where � is the machine precision
IMSL_ERR_REL, float err_rel (Input)

Relative accuracy desired.
Default: err _ ��rel

where � is the machine precision
IMSL_ERR_EST, float *err_est (Output)

Address to store an estimate of the absolute value of the error.
IMSL_MAX_SUBINTER, int max_subinter (Input)

Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the
user-supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

Description
The function imsl_f_int_fcn_sing_pts is a special-purpose integrator that uses a
globally adaptive scheme in order to reduce the absolute error. It subdivides the interval
[a, b] into npoints + 1 user-supplied subintervals and uses a 21-point Gauss-Kronrod
rule to estimate the integral over each subinterval. The error for each subinterval is
estimated by comparison with the 10-point Gauss quadrature rule. The subinterval with
the largest estimated error is then bisected, and the same procedure is applied to both
halves. The bisection process is continued until either the error criterion is satisfied,
roundoff error is detected, the subintervals become too small, or the maximum number
of subintervals allowed is reached. This function uses an extrapolation procedure
known as the �-algorithm.

The function imsl_f_int_fcn_sing_pts is based on the subroutine QAGP by
Piessens et al. (1983).

Chapter 4: Quadrature int_fcn_sing_pts � 247

Examples

Example 1
The value of

� �� �
3 3 2 2

0

77ln 1 2 61ln 2 ln 7 27
4

x x x dx� � � � ��

is computed. The values of the actual and estimated error are machine dependent. Note
that this function never evaluates the user-supplied function at the user-supplied
breakpoints.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 int npoints = 2;
 float q, exact, points[2];
 /* Set singular points */
 points[0] = 1.0;
 points[1] = sqrt(2.);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_sing_pts (fcn, 0.0, 3.0, npoints, points, 0);
 /* print the result and */
 /* the exact answer */
 exact = 61.*log(2.) + (77./4)*log(7.) - 27.;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 return x*x*x*(log(fabs((x*x-1.)*(x*x-2.))));
}

Output

integral = 52.741
exact = 52.741

Example 2
The value of

� �� �
3 3 2 2

0

77ln 1 2 61ln 2 ln 7 27
4

x x x dx� � � � ��

is again computed. The values of the actual and estimated error are printed as well.
Note that these numbers are machine dependent. Furthermore, the error estimate is
usually pessimistic. That is, the actual error is usually smaller than the error estimate,
as in this example. The number of function evaluations also are printed.

248 � int_fcn_sing_pts IMSL C/Math/Library

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 int n_evals, npoints = 2;
 float q, exact, err_est, exact_err, points[2];
 /* Set singular points */
 points[0] = 1.0;
 points[1] = sqrt(2.);
 /* Evaluate the integral and get the */
 /* error estimate and the number of */
 /* evaluations */
 q = imsl_f_int_fcn_sing_pts (fcn, 0.0, 3.0, npoints, points,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = 61.*log(2.) + (77./4)*log(7.) - 27.;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x)
{
 return x*x*x*(log(fabs((x*x-1.)*(x*x-2.))));
}

Output

integral = 52.741
exact = 52.741
error estimate = 1.258850e-04
exact error = 3.051758e-05
The number of function evaluations = 819

Warning Errors
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested

tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error in the extrapolation table,
preventing the requested tolerance from
being achieved, has been detected.

Chapter 4: Quadrature int_fcn_alg_log � 249

Fatal Errors
IMSL_DIVERGENT Integral is probably divergent or slowly

convergent.
IMSL_MAX_SUBINTERVALS The maximum number of subintervals

allowed has been reached.

int_fcn_alg_log
Integrates a function with algebraic-logarithmic singularities.

Synopsis
#include <imsl.h>
float imsl_f_int_fcn_alg_log (float fcn(), float a, float b, Imsl_quad

weight, float alpha, float beta, �, 0)

The type double function is imsl_d_int_fcn_alg_log.

Required Arguments
float fcn (float x) (Input)

User-supplied function to be integrated.
float a (Input)

Lower limit of integration.
float b (Input)

Upper limit of integration.
Imsl_quad weight, float alpha, float beta (Input)

These three parameters are used to describe the weight function that may have
algebraic or logarithmic singularities at the endpoints. The parameter weight
can take on four values as described below. The parameters alpha = � and
beta = 	 specify the strength of the singularities at a or b and hence, must be
greater than �1.

weight Integration Weight
IMSL_ALG (x � a)a (b � x)b
IMSL_ALG_LEFT_LOG (x � a)a (b � x)blog (x � a)
IMSL_ALG_RIGHT_LOG (x � a)a (b � x)blog (b � x)
IMSL_ALG_LOG (x � a)a (b � x)blog (x � a) log (b � x)

250 � int_fcn_alg_log IMSL C/Math/Library

Return Value
The value of

� � � �fcn
b

a
x w x dx�

is returned where w(x) is one of the four weights above. If no value can be computed,
then NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_alg_log (float fcn(float x), float a, float b,

Imsl_quad weight, float alpha, float beta,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: err _abs ��

where � is the machine precision
IMSL_ERR_REL, float err_rel (Input)

Relative accuracy desired.
Default: err _ ��rel

where � is the machine precision
IMSL_ERR_EST, float *err_est (Output)

Address to store an estimate of the absolute value of the error.
IMSL_MAX_SUBINTER, int max_subinter (Input)

Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the

Chapter 4: Quadrature int_fcn_alg_log � 251

user-supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

Description
The function imsl_f_int_fcn_alg_log is a special-purpose integrator that uses a
globally adaptive scheme to reduce the absolute error. It computes integrals whose
integrands have the special form w(x)f(x) where w(x) is a weight function described
above. A combination of modified Clenshaw-Curtis and Gauss-Kronrod formulas is
employed. This function is based on the subroutine QAWS, which is fully documented by
Piessens et al. (1983).

Examples

Example 1
The value of

� � � � � �
� �1/ 21

0

3ln 2 4
1 1 ln

9
x x x x dx

�
� � �� �� ��

is computed.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 float q, exact;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_alg_log (fcn, 0.0, 1.0,
 IMSL_ALG_LEFT_LOG, 1.0, 0.5,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = (3.*log(2.)-4.)/9.;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 return sqrt(1+x);
}

Output

integral = -0.213
exact = -0.213

252 � int_fcn_alg_log IMSL C/Math/Library

Example 2
The value of

� � � � � �
� �1/ 21

0

3ln 2 4
1 1 ln

9
x x x x dx

�
� � �� �� ��

is again computed. The values of the actual and estimated error are printed as well.
Note that these numbers are machine dependent. Furthermore, the error estimate is
usually pessimistic. That is, the actual error is usually smaller than the error estimate,
as in this example. The number of function evaluations also are printed.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 int n_evals;
 float q, exact, err_est, exact_err;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_alg_log (fcn, 0.0, 1.0,
 IMSL_ALG_LEFT_LOG, 1.0, 0.5,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = (3.*log(2.)-4.)/9.;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x)
{
 return sqrt(1+x);
}

Output

integral = -0.213
exact = -0.213
error estimate = 3.725290e-09
exact error = 1.490116e-08
The number of function evaluations = 50

Warning Errors
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested

tolerance from being achieved, has been
detected.

Chapter 4: Quadrature int_fcn_inf � 253

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

Fatal Errors
IMSL_MAX_SUBINTERVALS The maximum number of subintervals

allowed has been reached.

int_fcn_inf
Integrates a function over an infinite or semi-infinite interval.

Synopsis
#include <imsl.h>
float imsl_f_int_fcn_inf (float fcn(), float bound, Imsl_quad interval,

�, 0)

The type double procedure is imsl_d_int_fcn_inf.

Required Arguments
float fcn (float x) (Input)

User-supplied function to be integrated.
float bound (Input)

Finite limit of integration. This argument is ignored if interval has the value
IMSL_INF_INF.

Imsl_quad interval (Input)
Flag indicating integration limits. The following settings are allowed:

interval Integration Limits
IMSL_INF_BOUND (��, bound)
IMSL_BOUND_INF (bound, �)
IMSL_INF_INF (��, �)

Return Value
The value of

� �fcn
b

a
x dx�

is returned where a and b are appropriate integration limits. If no value can be
computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_inf (float fcn, float bound, Imsl_quad interval,

IMSL_ERR_ABS, float err_abs,

254 � int_fcn_inf IMSL C/Math/Library

IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: err _abs ��

where � is the machine precision
IMSL_ERR_REL, float err_rel (Input)

Relative accuracy desired.
Default: err _ ��rel

where � is the machine precision
IMSL_ERR_EST, float *err_est (Output)

Address to store an estimate of the absolute value of the error.
IMSL_MAX_SUBINTER, int max_subinter (Input)

Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the
user-supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

Description
The function imsl_f_int_fcn_inf is a special-purpose integrator that uses a
globally adaptive scheme to reduce the absolute error. It initially transforms an infinite
or semi-infinite interval into the finite interval [0, 1]. It then uses the same strategy as
the function imsl_f_int_fcn_sing.

The function imsl_f_int_fcn_inf is based on the subroutine QAGI by Piessens et
al. (1983).

Chapter 4: Quadrature int_fcn_inf � 255

Examples

Example 1
The value of

� �

� �

� �
20

ln ln 10
201 10

x
dx

x

�� �

�

�
�

is computed.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 float q, exact, pi;

 pi = imsl_f_constant("pi", 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_inf (fcn, 0.0,
 IMSL_BOUND_INF,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = -pi*log(10.)/20.;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 float z;
 z = 10.*x;
 return log(x)/(1+ z*z);
}

Output

integral = -0.362
exact = -0.362

Example 2
The value of

� �

� �
20

ln 10ln
201 10

x dx
x

�� �

�

�
�

is again computed. The values of the actual and estimated error are printed as well.
Note that these numbers are machine dependent. Furthermore, the error estimate is
usually pessimistic. That is, the actual error is usually smaller than the error estimate,
as in this example. The number of function evaluations also are printed.

256 � int_fcn_inf IMSL C/Math/Library

#include <math.h>
#include <imsl.h>

float fcn(float x);

 main()
{
 int n_evals;
 float q, exact, err_est, exact_err, pi;

 pi = imsl_f_constant("pi", 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_inf (fcn, 0.0,
 IMSL_BOUND_INF,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = -pi*log(10.)/20.;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x)
{
 float z;
 z = 10.*x;
 return log(x)/(1+ z*z);
}

Output

integral = -0.362
exact = -0.362
error estimate = 2.801418e-06
exact error = 2.980232e-08
The number of function evaluations = 285

Warning Errors
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested

tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error in the extrapolation table,
preventing the requested tolerance from
being achieved, has been detected.

Chapter 4: Quadrature int_fcn_trig � 257

Fatal Errors
IMSL_DIVERGENT Integral is probably divergent or slowly

convergent.
IMSL_MAX_SUBINTERVALS The maximum number of subintervals

allowed has been reached.

int_fcn_trig
Integrates a function containing a sine or a cosine factor.

Synopsis
#include <imsl.h>
float imsl_f_int_fcn_trig (float fcn(), float a, float b, Imsl_quad weight,

float omega, �, 0)

The type double function is imsl_d_int_fcn_trig.

Required Arguments
float fcn (float x) (Input)

User-supplied function to be integrated.
float a (Input)

Lower limit of integration.
float b (Input)

Upper limit of integration.
Imsl_quad weight and float omega (Input)

These two parameters are used to describe the trigonometric weight. The
parameter weight can take on the two values described below, and the
parameter omega = � specifies the frequency of the trigonometric weighting
function.

weight Integration Weight
IMSL_COS cos (�x)
IMSL_SIN sin (�x)

Return Value
The value of

� � � �fcn cos
b

a
x x�� dx

is returned if weight = IMSL_COS. If weight = IMSL_SIN, then the cosine factor is
replaced with a sine factor. If no value can be computed, NaN is returned.

258 � int_fcn_trig IMSL C/Math/Library

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_trig (float fcn(), float a, float b, Imsl_quad weight,

float omega,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_MAX_MOMENTS, int max_moments,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: err _abs ��

where � is the machine precision
IMSL_ERR_REL, float err_rel (Input)

Relative accuracy desired.
Default: err _ ��rel

where � is the machine precision
IMSL_ERR_EST, float *err_est (Output)

Address to store an estimate of the absolute value of the error.
IMSL_MAX_SUBINTER, int max_subinter (Input)

Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

IMSL_MAX_MOMENTS, int max_moments (Input)
This is an upper bound on the number of Chebyshev moments that can be
stored. Increasing (decreasing) this number may increase (decrease) execution
speed and space used.

Default: max_moments = 21
IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)

User supplied function to be integrated, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the
user-supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

Chapter 4: Quadrature int_fcn_trig � 259

dx

Description
The function imsl_f_int_fcn_trig is a special-purpose integrator that uses a
globally adaptive scheme to reduce the absolute error. It computes integrals whose
integrands have the special form w(x)f(x) where w(x) is either cos(�x) or sin(�x).
Depending on the length of the subinterval in relation to the size of �, either a modified
Clenshaw-Curtis procedure or a Gauss-Kronrod 7
15 rule is employed to approximate
the integral on a subinterval. This function uses the general strategy of the function
imsl_f_int_fcn_sing. The function imsl_f_int_fcn_trig is based on the
subroutine QAWO by Piessens et al. (1983).

Examples

Example 1
The value of

� � � �
1

0
ln sin 10x x��

is computed. Notice that we have coded around the singularity at zero. This is
necessary since this procedure evaluates the integrand at the two endpoints.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 float q, exact, omega;

 omega = 10*imsl_f_constant("pi", 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_trig (fcn, 0.0, 1.0,
 IMSL_SIN, omega,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = -.1281316;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 return (x==0.0) ? 0.0 : log(x);
}

Output

integral = -0.128
exact = -0.128

260 � int_fcn_trig IMSL C/Math/Library

dx

Example 2
The value of

� � � �
1

0
ln sin 10x x��

is again computed. The values of the actual and estimated error are printed as well.
Note that these numbers are machine dependent. Furthermore, it is usually the case that
the error estimate is pessimistic. That is, the actual error is usually smaller than the
error estimate as is the case in this example. The number of function evaluations are
also printed.

#include <math.h>
#include <imsl.h>

float fcn(float x);

 main()
{
 int n_evals;
 float q, exact, omega, err_est, exact_err;

 omega = 10*imsl_f_constant("pi", 0);
 /* Evaluate the integral */
 q = imsl_f_int_fcn_trig (fcn, 0.0, 1.0,
 IMSL_SIN, omega,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = -.1281316;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x)
{
 return (x==0.0) ? 0.0 : log(x);
}

Output

integral = -0.128
exact = -0.128
error estimate = 7.504603e-05
exact error = 5.245209e-06
The number of function evaluations = 215

Chapter 4: Quadrature int_fcn_fourier � 261

Warning Errors
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested

tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

IMSL_EXTRAPOLATION_ROUNDOFF Roundoff error in the extrapolation table,
preventing the requested tolerance from
being achieved, has been detected.

Fatal Errors
IMSL_DIVERGENT Integral is probably divergent or slowly

convergent.
IMSL_MAX_SUBINTERVALS The maximum number of subintervals

allowed has been reached.

int_fcn_fourier
Computes a Fourier sine or cosine transform.

Synopsis
#include <imsl.h>
float imsl_f_int_fcn_fourier (float fcn(), float a, Imsl_quad weight,

float omega, �, 0)

The type double function is imsl_d_int_fcn_fourier.

Required Arguments
float fcn (float x) (Input)

User-supplied function to be integrated.
float a (Input)

Lower limit of integration. The upper limit of integration is �.

Imsl_quad weight and float omega (Input)

These two parameters are used to describe the trigonometric weight. The
parameter weight can take on the two values described below, and the
parameter omega = � specifies the frequency of the trigonometric weighting
function.

weight Integration Weight
IMSL_COS cos (�x)
IMSL_SIN sin (�x)

262 � int_fcn_fourier IMSL C/Math/Library

dx

Return Value
The return value is

� � � �fcn cos
a

x x�

�

�

if weight = IMSL_COS. If weight = IMSL_SIN, then the cosine factor is replaced
with a sine factor. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_fourier (float fcn(), float a, Imsl_quad weight,

float omega,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_MAX_CYCLES, int max_cycles,
IMSL_MAX_MOMENTS, int max_moments,
IMSL_N_CYCLES, int *n_cycles,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: err _abs ��

where � is the machine precision
IMSL_ERR_EST, float *err_est (Output)

Address to store an estimate of the absolute value of the error.
IMSL_MAX_SUBINTER, int max_subinter (Input)

Number of subintervals allowed.
Default: max_subinter = 500

IMSL_MAX_CYCLES, int max_cycles (Input)
Number of cycles allowed.
Default: max_subinter = 50

IMSL_MAX_MOMENTS, int max_moments (Input)
Number of subintervals allowed in the partition of each cycle.
Default: max_moments = 21

IMSL_N_CYCLES, int *n_cycles (Output)
Address to store the number of cycles generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

Chapter 4: Quadrature int_fcn_fourier � 263

x

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the
user-supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

Description
The function imsl_f_int_fcn_fourier is a special-purpose integrator that uses a
globally adaptive scheme to reduce the absolute error. It computes integrals whose
integrands have the special form w(x)f(x) where w(x) is either cos�x or sin�x. The
integration interval is always semi-infinite of the form
[a, �]. These Fourier integrals are approximated by repeated calls to the function
imsl_f_int_fcn_trig followed by extrapolation.

The function imsl_f_int_fcn_fourier is based on the subroutine QAWF by
Piessens et al. (1983).

Examples

Example 1
The value of

� �1/ 2

0
cos / 2 1x x d�

�
�

��

is computed. Notice that the integrand is coded to protect for the singularity at zero.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 float q, exact, omega;

 omega = imsl_f_constant("pi",0) / 2.;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_fourier (fcn, 0.0,
 IMSL_COS, omega,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = 1.0;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 return (x==0.) ? 0. : 1./sqrt(x);
}

264 � int_fcn_fourier IMSL C/Math/Library

x

Output

integral = 1.000
exact = 1.000

Example 2
The value of

� �1/ 2

0
cos / 2 1x x d�

�
�

��

is again computed. The values of the actual and estimated error are printed as well.
Note that these numbers are machine dependent. Furthermore, the error estimate is
usually pessimistic. That is, the actual error is usually smaller than the error estimate,
as is the case in this example.The number of function evaluations also are printed.
Notice that the integrand is coded to protect for the singularity at zero.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 int n_evals;
 float q, exact, omega, err_est, exact_err;

 omega = imsl_f_constant("pi",0) / 2.0;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_fourier (fcn, 0.0,
 IMSL_COS, omega,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = 1.;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x)
{
 return (x==0.) ? 0. : 1./sqrt(x);
}

Output

integral = 1.000
exact = 1.000
error estimate = 1.803637e-04
exact error = 1.013279e-06
The number of function evaluations = 405

Chapter 4: Quadrature int_fcn_cauchy � 265

Warning Errors
IMSL_BAD_INTEGRAND_BEHAVIOR Bad integrand behavior occurred in one or

more cycles.
IMSL_EXTRAPOLATION_PROBLEMS Extrapolation table constructed for

convergence acceleration of the series
formed by the integral contributions of the
cycles does not converge to the requested
accuracy.

Fatal Errors
IMSL_MAX_CYCLES Maximum number of cycles allowed has

been reached.

int_fcn_cauchy
Computes integrals of the form

� �b

a

f x
dx

x c�

�

in the Cauchy principal value sense.

Synopsis
#include <imsl.h>
float imsl_f_int_fcn_cauchy (float fcn(), float a, float b, float c, �, 0)

The type double function is imsl_d_int_fcn_cauchy.

Required Arguments
float fcn (float x) (Input)

User-supplied function to be integrated.
float a (Input)

Lower limit of integration.
float b (Input)

Upper limit of integration.
float c (Input)

Singular point, c must not equal a or b.

Return Value
The value of

� �fcnb

a

x
dx

x c�

�

is returned. If no value can be computed, NaN is returned.

266 � int_fcn_cauchy IMSL C/Math/Library

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_cauchy (float fcn(), float a, float b, float c,

IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: err _abs ��

where � is the machine precision
IMSL_ERR_REL, float err_rel (Input)

Relative accuracy desired.
Default: err _r ��el

where � is the machine precision
IMSL_ERR_EST, float *err_est (Output)

Address to store an estimate of the absolute value of the error.
IMSL_MAX_SUBINTER, int max_subinter (Input)

Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)
User supplied function to be integrated, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the
user-supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

Description
The function imsl_f_int_fcn_cauchy uses a globally adaptive scheme in an
attempt to reduce the absolute error. It computes integrals whose integrands have the
special form w(x)f(x) where w(x) = 1
(x � c). If c lies in the interval of integration, then
the integral is interpreted as a Cauchy principal value. A combination of modified
Clenshaw-Curtis and Gauss-Kronrod formulas are employed.

Chapter 4: Quadrature int_fcn_cauchy � 267

The function imsl_f_int_fcn_cauchy is an implementation of the subroutine
QAWC by Piessens et al. (1983).

Examples

Example 1
The Cauchy principal value of

� �
� �5

31

ln 125 / 6311
185 6

dx
x x�

�

�
�

is computed.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 float q, exact;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_cauchy (fcn, -1.0, 5.0, 0.0, 0);
 /* Print the result and the */
 /* exact answer */
 exact = log(125./631.)/18.;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 return 1.0/(5.0*x*x*x+6.0);
}

Output

integral = -0.090
exact = -0.090

Example 2
The Cauchy principal value of

� �
� �5

31

ln 125 / 6311
185 6

dx
x x�

�

�
�

is again computed. The values of the actual and estimated error are printed as well.
Note that these numbers are machine dependent. Furthermore, the error estimate is
usually pessimistic. That is, the actual error is usually smaller than the error estimate,
as is the case in this example. The number of function evaluations also are printed.

#include <math.h>
#include <imsl.h>

268 � int_fcn_smooth IMSL C/Math/Library

float fcn(float x);

main()
{
 int n_evals;
 float q, exact, err_est, exact_err;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_cauchy (fcn, -1.0, 5.0, 0.0,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = log(125./631.)/18.;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x)
{
 return 1.0/(5.0*x*x*x+6.0);
}

Output

integral = -0.090
exact = -0.090
error estimate = 2.160174e-06
exact error = 0.000000e+00
The number of function evaluations = 215

Warning Errors
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested

tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

Fatal Errors
IMSL_MAX_SUBINTERVALS The maximum number of subintervals

allowed has been reached.

int_fcn_smooth
Integrates a smooth function using a nonadaptive rule.

Synopsis
#include <imsl.h>

Chapter 4: Quadrature int_fcn_smooth � 269

float imsl_f_int_fcn_smooth (float fcn(), float a, float b, �, 0)

The type double function is imsl_d_int_fcn_smooth.

Required Arguments
float fcn (float x) (Input)

User-supplied function to be integrated.
float a (Input)

Lower limit of integration.
float b (Input)

Upper limit of integration.

Return Value
The value of

� �fcn
b

a
x dx�

is returned. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_smooth (float fcn(), float a, float b,

IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: err _abs ��

where � is the machine precision
IMSL_ERR_REL, float err_rel (Input)

Relative accuracy desired.
Default: e rr_rel ��

where � is the machine precision
IMSL_ERR_EST, float *err_est (Output)

Address to store an estimate of the absolute value of the error.
IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)

User supplied function to be integrated, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the

270 � int_fcn_smooth IMSL C/Math/Library

user-supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

Description
The function imsl_f_int_fcn_smooth is designed to integrate smooth functions. It
implements a nonadaptive quadrature procedure based on nested Paterson rules of
order 10, 21, 43, and 87. These rules are positive quadrature rules with degree of
accuracy 19, 31, 64, and 130, respectively. The function imsl_f_int_fcn_smooth
applies these rules successively, estimating the error, until either the error estimate
satisfies the user-supplied constraints or the last rule is applied.

This function is not very robust, but for certain smooth functions it can be efficient. If
imsl_f_int_fcn_smooth should not perform well, we recommend the use of the
function imsl_f_int_fcn_sing.

The function imsl_f_int_fcn_smooth is based on the subroutine QNG by Piessens
et al. (1983).

Examples

Example 1
The value of

2 2

0
1xxe dx e� ��

is computed.

#include <math.h>
#include <imsl.h>

float fcn(float x);

main()
{
 float q, exact;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_smooth (fcn, 0., 2., 0);
 /* Print the result and the */
 /* exact answer */
 exact = exp(2.0) + 1.0;
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x)
{
 return x * exp(x);
}

Output

integral = 8.389
exact = 8.389

Chapter 4: Quadrature int_fcn_smooth � 271

Example 2
The value of

2 2

0
1xxe dx e� ��

is again computed. The values of the actual and estimated error are printed as well.
Note that these numbers are machine dependent. Furthermore, the error estimate is
usually pessimistic. That is, the actual error is usually smaller than the error estimate,
as is the case in this example.

#include <math.h>
#include <imsl.h>

float fcn(float x);

 main()
{
 float q, exact, err_est, exact_err;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_smooth (fcn, 0.0, 2.0,
 IMSL_ERR_EST, &err_est,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = exp(2.0) + 1.0;
 exact_err = fabs(exact - q);
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
}

float fcn(float x)
{
 return x * exp(x);
}

Output

integral = 8.389
exact = 8.389
error estimate = 5.000267e-05
exact error = 9.536743e-07

Fatal Errors
IMSL_MAX_STEPS The maximum number of steps allowed have been

taken. The integrand is too difficult for this routine.

272 � int_fcn_2d IMSL C/Math/Library

int_fcn_2d
Computes a two-dimensional iterated integral.

Synopsis
#include <imsl.h>
float imsl_f_int_fcn_2d (float fcn(), float a, float b, float gcn (float x),

float hcn (float x), �, 0)

The type double function is imsl_d_int_fcn_2d.

Required Arguments
float fcn (float x, float y) (Input)

User-supplied function to be integrated.
float a (Input)

Lower limit of outer integral.
float b (Input)

Upper limit of outer integral.
float gcn (float x) (Input)

User-supplied function to evaluate the lower limit of the inner integral.
float hcn (float x) (Input)

User-supplied function to evaluate the upper limit of the inner integral.

Return Value
The value of

� �
� �

� �
fcn ,

b hcn x

a gcn x
x y dydx� �

is returned. If no value can be computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_2d (float fcn(), float a, float b, float gcn (), float

hcn (),
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_SUBINTER, int max_subinter,
IMSL_N_SUBINTER, int *n_subinter,
IMSL_N_EVALS, int *n_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
IMSL_GCN_W_DATA, float gcn(), void *data,
IMSL_HCN_W_DATA, float hcn(), void *data,
0)

Chapter 4: Quadrature int_fcn_2d � 273

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: err _abs ��

where � is the machine precision
IMSL_ERR_REL, float err_rel (Input)

Relative accuracy desired.
Default: e rr_rel ��

where � is the machine precision
IMSL_ERR_EST, float *err_est (Output)

Address to store an estimate of the absolute value of the error.
IMSL_MAX_SUBINTER, int max_subinter (Input)

Number of subintervals allowed.
Default: max_subinter = 500

IMSL_N_SUBINTER, int *n_subinter (Output)
Address to store the number of subintervals generated.

IMSL_N_EVALS, int *n_evals (Output)
Address to store the number of evaluations of fcn.

IMSL_FCN_W_DATA, float fcn (float x, float y, void *data), void *data
(Input)
User supplied function to be integrated, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the
user-supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

IMSL_GCN_W_DATA, float gcn (float x, void *data), void *data (Input)
User supplied function to evaluate the lower limit of the inner integral, which
also accepts a pointer to data that is supplied by the user. See the
Introduction, Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

IMSL_HCN_W_DATA, float hcn (float x, void *data), void *data (Input)
User supplied function to evaluate the upper limit of the inner integral, which
also accepts a pointer to data that is supplied by the user. data is a pointer to
the data to be passed to the user-supplied function. See the Introduction,
Passing Data to User-Supplied Functions at the beginning of this manual for
more details.

274 � int_fcn_2d IMSL C/Math/Library

Description
The function imsl_f_int_fcn_2d approximates the two-dimensional iterated integral

� �
� �

� �
,

b h x

a g x
f x y dydx� �

An estimate of the error is returned in err_est. The lower-numbered rules are used for
less smooth integrands while the higher-order rules are more efficient for smooth
(oscillatory) integrands.

Examples

Example 1
In this example, compute the value of the integral

� �
1 3 2

0 1
cosy x y dyd�� � x

#include <math.h>
#include <imsl.h>

float fcn(float x, float y), gcn(float x), hcn(float x);

main()
{
 float q, exact;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_2d (fcn, 0.0, 1.0, gcn, hcn, 0);
 /* print the result and the exact answer */
 exact = 0.5*(cos(9.0)+cos(2.0)-cos(10.0)-cos(1.0));
 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
}

float fcn(float x, float y)
{
 return y * cos(x+y*y);
}

float gcn(float x)
{
 return 1.0;
}

float hcn(float x)
{
 return 3.0;
}

Output

integral = -0.514
exact = -0.514

Chapter 4: Quadrature int_fcn_2d � 275

Example 2
In this example, compute the value of the integral

� �
1 3 2

0 1
cosy x y dyd�� � x

The values of the actual and estimated error are printed as well. Note that these
numbers are machine dependent. Furthermore, the error estimate is usually pessimistic.
That is, the actual error is usually smaller than the error estimate, as is the case in this
example. The number of function evaluations also are printed.

#include <math.h>
#include <imsl.h>

float fcn(float x, float y), gcn(float x), hcn(float x);

main()
{
 int n_evals;
 float q, exact, err_est, exact_err;
 /* Evaluate the integral */
 q = imsl_f_int_fcn_2d (fcn, 0., 1., gcn, hcn,
 IMSL_ERR_EST, &err_est,
 IMSL_N_EVALS, &n_evals,
 0);
 /* Print the result and the */
 /* exact answer */
 exact = 0.5*(cos(9.0)+cos(2.0)-cos(10.0)-cos(1.0));
 exact_err = fabs(exact - q);

 printf("integral = %10.3f\nexact = %10.3f\n", q, exact);
 printf("error estimate = %e\nexact error = %e\n", err_est,
 exact_err);
 printf("The number of function evaluations = %d\n", n_evals);
}

float fcn(float x, float y)
{
 return y * cos(x+y*y);
}

float gcn(float x)
{
 return 1.0;
}

float hcn(float x)
{
 return 3.0;
}

276 � int_fcn_hyper_rect IMSL C/Math/Library

Output

integral = -0.514
exact = -0.514
error estimate = 3.065193e-06
exact error = 1.192093e-07
The number of function evaluations = 441

Warning Errors
IMSL_ROUNDOFF_CONTAMINATION Roundoff error, preventing the requested

tolerance from being achieved, has been
detected.

IMSL_PRECISION_DEGRADATION A degradation in precision has been
detected.

Fatal Errors
IMSL_MAX_SUBINTERVALS The maximum number of subintervals

allowed has been reached.

int_fcn_hyper_rect
Integrate a function on a hyper-rectangle,

� �
0 1

0 1
0 1 1, ,n

n

b b

n na a 0f x x dx dx�

�

� �� �� � �

Synopsis
#include <imsl.h>
float imsl_f_int_fcn_hyper_rect (float fcn(), int ndim, float a[],

float b[], �, 0)

The type double function is imsl_d_int_fcn_hyper_rect.

Required Arguments
float fcn (int ndim, float x[]) (Input)

User-supplied function to be integrated.
int ndim (Input)

The dimension of the hyper-rectangle.
float a[] (Input)

Lower limits of integration.
float b[] (Input)

Upper limits of integration.

Return Value
The value of

Chapter 4: Quadrature int_fcn_hyper_rect � 277

0� �
0 1

0 1
0 1 1, ,n

n

b b

n na a
f x x dx dx�

�

� �� �� � �

is returned. If no value can be computed, then NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_int_fcn_hyper_rect (float fcn(), int ndim, float a[], float

b[], IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_EVALS, int max_evals,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: err _abs ��

where � is the machine precision
IMSL_ERR_REL, float err_rel (Input)

Relative accuracy desired.
Default: e rr_rel ��

where � is the machine precision
IMSL_ERR_EST, float *err_est (Output)

Address to store an estimate of the absolute value of the error.
IMSL_MAX_EVALS, int max_evals (Input)

Number of evaluations allowed.
Default: max_evals = 32n.

IMSL_FCN_W_DATA, float fcn (int ndim, float x[], void *data), void *data
(Input)
User supplied function to be integrated, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the
user-supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

Description
The function imsl_f_int_fcn_hyper_rect approximates the n-dimensional
iterated integral

� �
1

0 1
0 1 1, ,n

n

b b

n na a 0f x x dx d�

�

� �� �� � � x

278 � int_fcn_hyper_rect IMSL C/Math/Library

An estimate of the error is returned in the optional argument err_est. The
approximation is achieved by iterated applications of product Gauss formulas. The
integral is first estimated by a two-point tensor product formula in each direction. Then
for i = 1, �, n, the function calculates a new estimate by doubling the number of points
in the i-th direction, then halving the number immediately afterwards if the new
estimate does not change appreciably. This process is repeated until either one
complete sweep results in no increase in the number of sample points in any dimension;
the number of Gauss points in one direction exceeds 256; or the number of function
evaluations needed to complete a sweep exceeds max_evals.

Example
In this example, we compute the integral of

� �2 2 2
1 2 3x x xe� � �

on an expanding cube. The values of the error estimates are machine dependent. The
exact integral over R3 is �3/2.

#include <math.h>
#include <imsl.h>

float fcn(int n, float x[]);

main()
{
 int i, j, ndim = 3;
 float q, limit, a[3], b[3];

 printf(" integral limit \n");
 limit = pow(imsl_f_constant("pi",0), 1.5);
 /* Evaluate the integral */
 for (i = 0; i < 6; i++) {
 for (j = 0; j < 3; j++) {
 a[j] = -(i+1)/2.;
 b[j] = (i+1)/2.;
 }
 q = imsl_f_int_fcn_hyper_rect (fcn, ndim, a, b, 0);
 /* Print the result and the */
 /* limiting answer */
 printf(" %10.3f %10.3f\n", q, limit);
 }
}

float fcn(int n, float x[])
{
 float s;
 s = x[0]*x[0] + x[1]*x[1] + x[2]*x[2];
 return exp(-s);
}

Chapter 4: Quadrature int_fcn_qmc � 279

Output

integral limit
 0.785 5.568
 3.332 5.568
 5.021 5.568
 5.491 5.568
 5.561 5.568
 5.568 5.568

Warning Errors
IMSL_MAX_EVALS_TOO_LARGE The argument max_evals was set greater than

28n.

Fatal Errors
IMSL_NOT_CONVERGENT The maximum number of function evaluations has

been reached, and convergence has not been
attained.

int_fcn_qmc
Integrates a function on a hyper-rectangle using a quasi-Monte Carlo method.

Synopsis
#include <imsl.h>
float imsl_f_int_fcn_qmc (float fcn(), int ndim, float a[],

float b[], �, 0)

The type double function is imsl_d_int_fcn_qmc.

Required Arguments
float fcn (int ndim, float x[]) (Input)

User-supplied function to be integrated.
int ndim (Input)

The dimension of the hyper-rectangle.
float a[] (Input)

Lower limits of integration.
float b[] (Input)

Upper limits of integration.

Return Value
The value of

� �
0 1

0 1
0 1 1, ,n

n

b b

n na a 0f x x dx dx�

�

� �� �� � �

is returned. If no value can be computed, then NaN is returned.

280 � int_fcn_qmc IMSL C/Math/Library

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_int_fcn_qmc (float fcn(), int ndim, float a[], float b[],
 IMSL_ERR_ABS, float err_abs,

IMSL_ERR_REL, float err_rel,
IMSL_ERR_EST, float *err_est,
IMSL_MAX_EVALS, int max_evals,
IMSL_BASE, int base,
IMSL_SKIP, int skip,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ERR_ABS, float err_abs (Input)

Absolute accuracy desired.
Default: err_abs = 1.0e-4.

IMSL_ERR_REL, float err_rel (Input)
Relative accuracy desired.
Default: err_abs = 1.0e-4.

IMSL_ERR_EST, float *err_est (Output)
Address to store an estimate of the absolute value of the error.

IMSL_MAX_EVALS, int max_evals (Input)
Number of evaluations allowed.
Default: No limit.

IMSL_MAX_EVALS, int max_evals (Input)
Number of evaluations allowed.
Default: No limit.

IMSL_BASE, int base (Input)
The value of IMSL_BASE used to compute the Faure sequence.

IMSL_SKIP, int skip (Input)
The value of IMSL_SKIP used to compute the Faure sequence.

IMSL_FCN_W_DATA, float fcn (int ndim, float x[], void *data), void *data
(Input)
User supplied function to be integrated, which also accepts a pointer to data
that is supplied by the user. data is a pointer to the data to be passed to the
user-supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

Description
Integration of functions over hypercubes by direct methods, such as
imsl_f_fcn_hyper_rect, is practical only for fairly low dimensional hypercubes.
This is because the amount of work required increases exponential as the dimension
increases.

Chapter 4: Quadrature int_fcn_qmc � 281

An alternative to direct methods is Monte Carlo, in which the integral is evaluated as
the value of the function averaged over a sequence of randomly chosen points. Under
mild assumptions on the function, this method will converge like 1/n1/2, where n is the
number of points at which the function is evaluated.

It is possible to improve on the performance of Monte Carlo by carefully choosing the
points at which the function is to be evaluated. Randomly distributed points tend to be
non-uniformly distributed. The alternative to at sequence of random points is a low-
discrepancy sequence. A low-discrepancy sequence is one that is highly uniform.

This function is based on the low-discrepancy Faure sequence as computed by
imsl__f_faure_next_point.

Example
#include <imsl.h>
#include <math.h>

float fcn(int ndim, float x[]);

main()
{
 int k, ndim = 10;
 float q, a[10], b[10];

 for (k = 0; k < ndim; k++) {
 a[k] = 0.0;
 b[k] = 1.0;
 }

 q = imsl_f_int_fcn_qmc (fcn, ndim, a, b, 0);
 printf ("integral=%10.3f\n”, q);
}

float fcn (int ndim, float x[])
{
 int i, j;
 float prod, sum = 0.0, sign = -1.0;

 for (i = 0; i < ndim; i++) {
 prod = 1.0;
 for (j = 0; j <= i; j++) {
 prod *= x[j];
 }
 sum += sign * prod;
 sign = -sign;
 }
 return sum;
}

Output

q = -0.333

282 � gauss_quad_rule IMSL C/Math/Library

Fatal Errors
IMSL_NOT_CONVERGENT The maximum number of function evaluations has

been reached and convergence has not been
attained.

gauss_quad_rule
Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various
classical weight functions.

Synopsis
#include <imsl.h>
void imsl_f_gauss_quad_rule (int n, float weights[], float points[], �,

0)

The type double procedure is imsl_d_gauss_quad_rule.

Required Arguments
int n (Input)

Number of quadrature points.
float weights[] (Output)

Array of length n containing the quadrature weights.
float points[] (Output)

Array of length n containing quadrature points. The default action of this
routine is to produce the Gauss Legendre points and weights.

Synopsis with Optional Arguments
#include <imsl.h>
void imsl_f_gauss_quad_rule (int n, float weights[], float points[],

IMSL_CHEBYSHEV_FIRST,
IMSL_CHEBYSHEV_SECOND,
IMSL_HERMITE,
IMSL_COSH,
IMSL_JACOBI, float alpha, float beta,
IMSL_GEN_LAGUERRE, float alpha,
IMSL_FIXED_POINT, float a,
IMSL_TWO_FIXED_POINTS, float a, float b,
0)

Optional Arguments
IMSL_CHEBYSHEV_FIRST

Compute the Gauss points and weights using the weight function

21/ 1 x�

Chapter 4: Quadrature gauss_quad_rule � 283

on the interval (�1, 1).
IMSL_CHEBYSHEV_SECOND

Compute the Gauss points and weights using the weight function

21 x�

on the interval (�1, 1).
IMSL_HERMITE

Compute the Gauss points and weights using the weight function exp (�x2) on
the interval (��, �).

IMSL_COSH
Compute the Gauss points and weights using the weight function 1
 (cosh (x))
on the interval (��, �).

IMSL_JACOBI, float alpha, float beta (Input)
Compute the Gauss points and weights using the weight function
(1 � x)a (1 + x)b on the interval (�1, 1).

IMSL_GEN_LAGUERRE, float alpha (Input)
Compute the Gauss points and weights using the weight function exp (�x)xa
on the interval (0, �).

IMSL_FIXED_POINT, float a (Input)
Compute the Gauss-Radau points and weights using the specified weight
function and the fixed point a. This formula will integrate polynomials of
degree less than 2n � 1 exactly.

IMSL_TWO_FIXED_POINTS, float a, float b (Input)
Compute the Gauss-Lobatto points and weights using the specified weight
function and the fixed points a and b. This formula will integrate polynomials
of degree less than 2n � 2 exactly.

Description
The function imsl_f_gauss_quad_rule produces the points and weights for the
Gauss, Gauss-Radau, or Gauss-Lobatto quadrature formulas for some of the most
popular weights. The default weight is the weight function identically equal to 1 on the
interval (�1, 1). In fact, it is slightly more general than this suggests, because the extra
one or two points that may be specified do not have to lie at the endpoints of the
interval. This function is a modification of the subroutine GAUSSQUADRULE
(Golub and Welsch 1969).

In the default case, the function returns points in x = points and weights in
w = weights so that

� � � � � �
1

Nb

i ia
i

f x w x dx f x w
�

���

for all functions f that are polynomials of degree less than 2n.

284 � gauss_quad_rule IMSL C/Math/Library

If the keyword IMSL_FIXED_POINT is specified, then one of the above xi is equal to a.
Similarly, if the keyword IMSL_TWO_FIXED_POINTS is specified, then two of the
components of x are equal to a and b. In general, the accuracy of the above quadrature
formula degrades when n increases. The quadrature rule will integrate all functions f
that are polynomials of degree less than 2n � F, where F is the number of fixed points.

Examples

Example 1
The three-point Gauss Legendre quadrature points and weights are computed and used
to approximate the integrals

1

1
0, , 6ix dx i

�

�� �

Notice that the integrals are exact for the first six monomials, but that the last
approximation is in error. In general, the Gauss rules with k points integrate
polynomials with degree less than 2k exactly.

#include <math.h>
#include <imsl.h>

#define QUADPTS 3
#define POWERS 7

main()
{
 int i, j;
 float weights[QUADPTS], points[QUADPTS], s[POWERS];
 /* Produce the Gauss Legendre */
 /* quadrature points */
 imsl_f_gauss_quad_rule (QUADPTS, weights, points, 0);
 /* integrate the functions */
 /* 1, x, ..., pow(x,POWERS-1) */
 for(i = 0; i < POWERS; i++) {
 s[i] = 0.0;
 for(j = 0; j < QUADPTS; j++) {
 s[i] += weights[j]*imsl_fi_power(points[j], i);
 }
 }
 printf("The integral from -1 to 1 of pow(x, i) is\n");
 printf("Function Quadrature Exact\n\n");
 for(i = 0; i < POWERS; i++){
 float z;
 z = (1-i%2)*2./(i+1.);
 printf("pow(x, %d) %10.3f %10.3f\n", i, s[i], z);
 }
}

Chapter 4: Quadrature gauss_quad_rule � 285

, 6

Output

The integral from -1 to 1 of pow(x, i) is
Function Quadrature Exact

pow(x, 0) 2.000 2.000
pow(x, 1) 0.000 0.000
pow(x, 2) 0.667 0.667
pow(x, 3) 0.000 0.000
pow(x, 4) 0.400 0.400
pow(x, 5) 0.000 0.000
pow(x, 6) 0.240 0.286

Example 2
The three-point Gauss Laguerre quadrature points and weights are computed and used
to approximate the integrals

0
! 0,i xx xe dx i i

�
�

� �� �

Notice that the integrals are exact for the first six monomials, but that the last
approximation is in error. In general, the Gauss rules with k points integrate
polynomials with degree less than 2k exactly.

#include <math.h>
#include <imsl.h>

#define QUADPTS 3
#define POWERS 7

main()
{
 int i, j;
 float weights[QUADPTS], points[QUADPTS], s[POWERS], z;
 /* Produce the Gauss Legendre */
 /* quadrature points */
 imsl_f_gauss_quad_rule (QUADPTS, weights, points,
 IMSL_GEN_LAGUERRE, 1.0,

 0);
 /* Integrate the functions */
 /* 1, x, ..., pow(x,POWERS-1) */
 for(i = 0; i < POWERS; i++) {
 s[i] = 0.0;
 for(j = 0; j < QUADPTS; j++){
 s[i] += weights[j]*imsl_fi_power(points[j], i);
 }
 }
 printf("The integral from 0 to infinity of pow(x, i)*x*exp(x) is\n");
 printf("Function Quadrature Exact\n\n");
 for(z = 1.0, i = 0; i < POWERS; i++){
 z *= (i+1);
 printf("pow(x, %d) %10.3f %10.3f \n", i, s[i], z);
 }
}

286 � fcn_derivative IMSL C/Math/Library

Output

The integral from 0 to infinity of pow(x, i)*x*exp(x) is
Function Quadrature Exact

pow(x, 0) 1.000 1.000
pow(x, 1) 2.000 2.000
pow(x, 2) 6.000 6.000
pow(x, 3) 24.000 24.000
pow(x, 4) 120.000 120.000
pow(x, 5) 720.000 720.000
pow(x, 6) 4896.000 5040.000

fcn_derivative
Computes the first, second, or third derivative of a user-supplied function.

Synopsis

#include <imsl.h>
float imsl_f_fcn_derivative (float fcn(), float x, …, 0)

The type double procedure is imsl_d_fcn_derivative.

Required Arguments
float fcn(float x) (Input)

User-supplied function whose derivative at x will be computed.
float x (Input)

Point at which the derivative will be evaluated.

Return Value
An estimate of the first, second or third derivative of fcn at x. If no value can be
computed, NaN is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float imsl_f_fcn_derivative (float fcn(), float x,
IMSL_ORDER, int order,
IMSL_INITIAL_STEPSIZE, float stepize,
IMSL_RELATIVE_ERROR, float tolerance,
IMSL_FCN_W_DATA, float fcn(), void *data,
0)

Optional Arguments
IMSL_ORDER, int order (Input)

The order of the desired derivative (1, 2 or 3).
Default: order = 1.

Chapter 4: Quadrature fcn_derivative � 287

IMSL_INITIAL_STEPSIZE, float stepsize (Input)
Beginning value used to compute the size of the interval for approximating the
derivative. Stepsize must be chosen small enough that fcn is defined and
reasonably smooth in the interval
(x � 4.0*stepsize, x + 4.0*stepsize), yet large enough to avoid roundoff
problems.
Default: stepsize = .01

IMSL_RELATIVE_ERROR, float tolerance (Input)
The relative error desired in the derivative estimate. Convergence is assumed
when (2/3) |d2 � d1| < tolerance, for two successive derivative estimates,
d1 and d2.
Default: tolerance = 4

�
IMSL_FCN_W_DATA, float fcn (float x, void *data), void *data (Input)

User supplied function whose derivative at x will be computed, which also
accepts a pointer to data that is supplied by the user. data is a pointer to the
data to be passed to the user-supplied function. See the Introduction, Passing
Data to User-Supplied Functions at the beginning of this manual for more
details.

Description
The function imsl_f_fcn_derivative produces an estimate to the first, second, or
third derivative of a function. The estimate originates from first computing a spline
interpolant to the input function using value within the interval
(x � 4.0*stepsize, x + 4.0*stepsize), then differentiating the spline at x.

Examples

Example 1
This example obtains the approximate first derivative of the function
f(x) = �2sin(3x/2) at the point x = 2.

#include <imsl.h>
#include <math.h>

void main()
{
 float fcn(float);
 float x;
 float deriv;

 x = 2.0;

 deriv = imsl_f_fcn_derivative(fcn, x, 0);
 printf ("f’(x) = %7.4f\n", deriv);
}

float fcn(float x)
{

288 � fcn_derivative IMSL C/Math/Library

 return -2.0*sin(1.5*x);
}

Output

f’(x) = 2.9701

Example 2
This example obtains the approximate first, second, and third derivative of the function
f(x) = �2sin(3x/2) at the point x = 2.

#include "imsl.h"
#include <math.h>

void main()
{
 double fcn(double);
 double x;
 double tolerance;
 double deriv;

 x = 2.0;

 deriv = imsl_d_fcn_derivative(fcn, x,
 0);
 printf ("f'(x) = %7.3f, error = %5.2e\n", deriv,
 fabs(deriv+3.0*cos(1.5*x)));

 deriv = imsl_d_fcn_derivative(fcn, x,
 IMSL_ORDER, 2,
 0);
 printf ("f''(x) = %7.4f, error = %5.2e\n", deriv,
 fabs(deriv-4.5*sin(1.5*x)));

 deriv = imsl_d_fcn_derivative(fcn, x,
 IMSL_ORDER, 3,
 0);
 printf ("f'''(x) = %7.4f, error = %5.2e\n", deriv,
 fabs(deriv-6.75*cos(1.5*x)));
}

double fcn(double x)
{
 return -2.0*sin(1.5*x);
}

Output

f’(x) = 2.970, error = 1.11e-07
f’’(x) = 0.6350, error = 8.52e-09
f’’’(x) = -6.6824, error = 1.12e-08

Chapter 5: Differential Equations Routines � 289

Chapter 5: Differential Equations

Routines
Runge-Kutta method ...ode_runge_kutta 291
Adam’s or Gear’s method...ode_adams_gear 297
Method of lines .. pde_method_of_lines 304
Solves a parameterized system of differential equations
with boundary condiditons at two pointsbvp_finite_difference 321
Fast Poisson solver ..fast_poisson_2d 332

Usage Notes
Ordinary Differential Equations
An ordinary differential equation is an equation involving one or more dependent
variables called yi, one independent variable, t, and derivatives of the yi with respect to t.
In the initial-value problem (IVP), the initial or starting values of the dependent
variables yi at a known value t = t0 are given. Values of yi(t) for t > t0 or t < t0 are
required.
The functions imsl_f_ode_runge_kutta and imsl_f_ode_adams_gear solve the
IVP for ODEs of the form

� �1, 1,..., ...i
i Ni

dy
, ,y t y y i N

dt
f� �� �

with yi = (t = t0) specified. Here, fi is a user-supplied function that must be evaluated at
any set of values (t, y1, �, yN), i = 1, �, N.
This problem statement is abbreviated by writing it as a system of first-order ODEs,
y(t) = [y1(t), �, yN(t)]T, f(t, y) = [f1(t, y), �, fN(t, y)]T, so that the problem becomes
y� = f(t, y) with initial values y(t0).
The system

� �,dy y f t y
dt

�� �

is said to be stiff if some of the eigenvalues of the Jacobian matrix

290 � Usage Notes IMSL C/Math/Library

� �/i jy y�� �

are large and negative. This is frequently the case for differential equations modeling
the behavior of physical systems, such as chemical reactions proceeding to equilibrium
where subspecies effectively complete their reactions in different epochs. An alternate
model concerns discharging capacitors such that different parts of the system have
widely varying decay rates (or time constants).
Users typically identify stiff systems by the fact that numerical differential equation
solvers such as imsl_f_ode_runge_kutta are inefficient, or else completely fail.
Special methods are often required. The most common inefficiency is that a large
number of evaluations of f(t, y) (and hence an excessive amount of computer time) are
required to satisfy the accuracy and stability requirements of the software. In such
cases, use the IMSL function imsl_f_ode_adams_gear. For more discussion about
stiff systems, see Gear (1971, Chapter 11) or Shampine and Gear (1979).

Partial Differential Equations
The routine imsl_f_pde_method_of_lines, page 304, solves the IVP problem for
systems of the form

22
1 1

1 2 2, , , , , , , , , ,i N
i N

u uu u
f x t u u

t x x x
� �� �

� � � �

� �
� � �

� �
� � �

Nu
x

�

�

subject to the boundary conditions

� � � � � � � � � �

� � � � � � � � � �

1 1

2 2

i i i
i

i i i
i

u
u a a t

x
u

u b b t
x

�
� � �

�

�
� � �

�

� �

� �

1

2

and subject to the initial conditions

ui(x, t = t0) = gi(x)

for i = 1, �, N. Here, fi, gi,
� � � �, andi i
j j� �

are user-supplied, j = 1, 2.
The routine imsl_f_bvp_finite_difference, page 321, solves the boundary value
problem (BVP) for systems of the form

22
1 1

1 2 2, , , , , , , , , ,i N
i N

u uu u
f x t u u

t x x x
� �� �

� � � �

� �
� � �

� �
� � �

Nu
x

�

�

subject to the boundary conditions
22

1 1
1 2 2, , , , , , , , , ,i N

i N
u uu u

f x t u u
t x x x

� �� �

� � � �

� �
� � �

� �
� � �

Nu
x

�

�

Chapter 5: Differential Equations ode_runge_kutta � 291

22
1 1

1 2 2, , , , , , , , , ,i N
i N

u uu u
f x t u u

t x x x
� �� �

� � � �

� �
� � �

� �
� � �

Nu
x

�

�

and subject to the initial conditions
22

1 1
1 2 2, , , , , , , , , ,i N

i N
u uu u

f x t u u
t x x x

� �� �

� � � �

� �
� � �

� �
� � �

Nu
x

�

�

for i = 1, �, N. Here,
22

1 1
1 2 2, , , , , , , , , ,i N

i N
u uu u

f x t u u
t x x x

� �� �

� � � �

� �
� � �

� �
� � �

Nu
x

�

�
are

user-supplied.
In this formulation, p is an optional continuation parameter. It can be useful in solving
nonlinear problems. When used, p=0 corresponds to an easy-to-solve problem and p=1
corresponds to the actual problem to be solved.
The routine imsl_f_fast_poisson_2d, page 332, solves Laplace’s, Poisson’s, or
Helmholtz’s equation in two dimensions. This routine uses a fast Poisson method to
solve a PDE of the form

� �
2 2

2 2 ,u u cu f x y
x y

� �

� �
� � �

over a rectangle, subject to boundary conditions on each of the four sides. The scalar
constant c and the function f are user specified.

ode_runge_kutta
Solves an initial-value problem for ordinary differential equations using the
Runge-Kutta-Verner fifth-order and sixth-order method.

Synopsis
#include <imsl.h>
float imsl_f_ode_runge_kutta_mgr (int task, void **state, �, 0)
void imsl_f_ode_runge_kutta (int neq, float *t, float tend, float y[],

void *state, void fcn())
The type double functions are imsl_d_ode_runge_kutta_mgr and

imsl_d_ode_runge_kutta.

Required Arguments for imsl_ f_ode_runge_kutta_mgr
int task (Input)

This function must be called with task set to IMSL_ODE_INITIALIZE to set
up for solving an ODE system and with task equal to IMSL_ODE_RESET to
clean up after it has been solved. These values for task are defined in the
include file, imsl.h.

292 � ode_runge_kutta IMSL C/Math/Library

void **state (Input/Output)
The current state of the ODE solution is held in a structure pointed to by
state. It cannot be directly manipulated.

Required Arguments for imsl_f_ode_runge_kutta
int neq (Input)

Number of differential equations.
float *t (Input/Output)

Independent variable. On input, t is the initial independent variable value. On
output, t is replaced by tend, unless error conditions arise.

float tend (Input)
Value of t at which the solution is desired. The value tend may be less than
the initial value of t.

float y[] (Input/Output)
Array with neq components containing a vector of dependent variables. On
input, y contains the initial values. On output, y contains the approximate
solution.

void *state (Input/Output)
The current state of the ODE solution is held in a structure pointed to by
state. It must be initialized by a call to imsl_f_ode_runge_kutta_mgr. It
cannot be directly manipulated.

void fcn (int neq, float t, float *y, float *yprime)
User-supplied function to evaluate the right-hand side where
float *yprime (Output)
Array with neq components containing the vector y�. This function computes

yprime � � � �
dy
dt

y f t y,b g

and neq, t, and *y are defined immediately preceding this function.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_ode_runge_kutta_mgr (int task, void **state,

IMSL_TOL, float tol,
IMSL_HINIT, float hinit,
IMSL_HMIN, float hmin,
IMSL_HMAX, float hmax,
IMSL_MAX_NUMBER_STEPS, int max_steps,
IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals,
IMSL_SCALE, float scale,
IMSL_NORM, int norm,
IMSL_FLOOR, float floor,
IMSL_NSTEP, int *nstep,
IMSL_NFCN, int *nfcn,

Chapter 5: Differential Equations ode_runge_kutta � 293

IMSL_HTRIAL, float *htrial,
IMSL_FCN_W_DATA, void fcn (), void *data,
0)

Optional Arguments
IMSL_TOL, float tol (Input)

Tolerance for error control. An attempt is made to control the norm of the
local error such that the global error is proportional to tol.
Default: tol = 100.0*imsl_f_machine(4)

IMSL_HINIT, float hinit (Input)
Initial value for the step size h. Steps are applied in the direction of
integration.
Default: hinit = 0.001|tend � t|

IMSL_HMIN, float hmin (Input)
Minimum value for the step size h.
Default: hmin � 0.0

IMSL_HMAX, float hmax (Input)
Maximum value for the step size h.
Default: hmax = 2.0

IMSL_MAX_NUMBER_STEPS, int max_steps (Input)
Maximum number of steps allowed.
Default: max_steps = 500

IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals (Input)
Maximum number of function evaluations allowed.
Default: max_fcn_evals = No enforced limit

IMSL_SCALE, float scale (Input)
A measure of the scale of the problem, such as an approximation to the
Jacobian along the trajectory.
Default: scale = 1

IMSL_NORM, int norm (Input)
Switch determining the error norm. In the following, ei is the absolute value of
the error estimate for yi.

0 minimum of the absolute error and the relative error, equals
 the maximum of ei / max (|yi|, 1) for i = 1, �, neq.
1 absolute error, equals maxiei.
2 maxi(ei � wi) where wi = max (|yi|, floor). The value of floor
 is reset using IMSL_FLOOR.
Default: norm = 0

IMSL_FLOOR, float floor (Input)
This is used with IMSL_NORM. It provides a positive lower bound for the error
norm option with value 2.
Default: floor = 1.0

294 � ode_runge_kutta IMSL C/Math/Library

IMSL_NSTEP, int *nstep (Output)
Returns the number of steps taken.

IMSL_NFCN, int *nfcn (Output)
Returns the number of function evaluations used.

IMSL_HTRIAL, float *htrial (Output)
Returns the current trial step size.

IMSL_FCN_W_DATA, void fcn (int neq, float t, float *y, float *yprime, void
*data), void *data, (Input)
User-supplied function to evaluate the right-hand side, which also accepts a
pointer to data that is supplied by the user. data is a pointer to the data to be
passed to the user-supplied function. See the Introduction, Passing Data to
User-Supplied Functions at the beginning of this manual for more details.

Description
The function imsl_f_ode_runge_kutta finds an approximation to the solution of a
system of first-order differential equations of the form

dy
dt

y f t y� � � ,b g

with given initial conditions for y at the starting value for t. The function attempts to
keep the global error proportional to a user-specified tolerance. The proportionality
depends on the differential equation and the range of integration.
The function imsl_f_ode_runge_kutta is efficient for nonstiff systems where the
evaluations of f(t, y) are not expensive. The code is based on an algorithm designed by
Hull et al. (1976, 1978). It uses Runge-Kutta formulas of order five and six developed
by J.H. Verner.

Examples

Example 1
This example solves

dy
dt

y� �

over the interval [0, 1] with the initial condition y(0) = 1. The solution is y(t) = e-t.
The ODE solver is initialized by a call to imsl_f_ode_runge_kutta_mgr with
IMSL_ODE_INITIALIZE. This is the simplest use of the solver, so none of the default
values are changed. The function imsl_f_ode_runge_kutta is then called to
integrate from t = 0 to t = 1.

#include <imsl.h>
#include <math.h>

void fcn (int neq, float t, float y[], float yprime[]);

main()
{
 int neq = 1; /* Number of ode’s */
 float t = 0.0; /* Initial time */

Chapter 5: Differential Equations ode_runge_kutta � 295

 float tend = 1.0; /* Final time */
 float y[1] = {1.0}; /* Initial condition */
 void *state;
 /* Initialize the ODE solver */
 imsl_f_ode_runge_kutta_mgr(IMSL_ODE_INITIALIZE, &state, 0);
 /* Integrate from t=0 to tend=1 */
 imsl_f_ode_runge_kutta (neq, &t, tend, y, state, fcn);
 /* Print the solution and error */
 printf("y[%f] = %f\n", t, y[0]);
 printf("Error is: %e\n", exp((double)(-tend))-y[0]);
}

void fcn (int neq, float t, float y[], float yprime[])
{
 yprime[0] = -y[0];
}

Output
y[1.000000] = 0.367879
Error is: -9.149755e-09

Example 2
Consider a predator-prey problem with rabbits and foxes. Let r be the density of
rabbits, and let f be the density of foxes. In the absence of any predator-prey interaction,
the rabbits would increase at a rate proportional to their number, and the foxes would
die of starvation at a rate proportional to their number. Mathematically, the model
without species interaction is approximated by the equation

r� = 2r

��= ��

With species interaction, the rate at which the rabbits are consumed by the foxes is
assumed to equal the value 2rf. The rate at which the foxes increase, because they are
consuming the rabbits, is equal to rf. Thus, the model differential equations to be solved
are

r� = 2r � 2r�

�� = �� + r�

For illustration, the initial conditions are taken to be r(0) = 1 and f(0) = 3. The interval
of integration is 0 � t � 10. In the program, y[0] = r and y[1] = f. The ODE solver is
initialized by a call to imsl_f_ode_runge_kutta_mgr. The error tolerance is set to
0.0005. Absolute error control is selected by setting IMSL_NORM to the value one. We
also request that nstep be set to the current number of steps in the integration. The
function imsl_f_ode_runge_kutta is then called in a loop to integrate from t = 0 to
t = 10 in steps of �t = 1. At each step, the solution is printed. Note that nstep is
updated even though it is not an argument to this function. Its address has been stored
within imsl_f_ode_runge_kutta_mgr into the area pointed to by state. The last
call to imsl_f_ode_runge_kutta_mgr with IMSL_ODE_RESET releases workspace.

296 � ode_runge_kutta IMSL C/Math/Library

#include <imsl.h>

void fcn(int neq, float t, float y[], float yprime[]);

main()
{
 int neq = 2;
 float t = 0.0; /* Initial time */
 float tend; /* Final time */
 float y[2] = {1.0, 3.0}; /* Initial conditions */
 int k;
 int nstep;
 void *state;
 /* Initialize the ODE solver */
 imsl_f_ode_runge_kutta_mgr(IMSL_ODE_INITIALIZE, &state,
 IMSL_TOL, 0.0005,
 IMSL_NSTEP, &nstep,
 IMSL_NORM, 1,
 0);

 printf("\n Start End Density of Density of Number of");
 printf("\n Time Time Rabbits Foxes Steps\n\n");

 for (k = 0; k < 10; k++) {
 tend = k + 1;
 imsl_f_ode_runge_kutta (neq, &t, tend, y, state, fcn);
 printf("%3d %12.3f %12.3f %12.3f %12d\n", k, t, y[0], y[1], nstep);
 }
 imsl_f_ode_runge_kutta_mgr(IMSL_ODE_RESET, &state, 0);
}

void fcn (int neq, float t, float y[], float yprime[])
{
 /* Density change rate for Rabbits: */
 yprime[0] = 2*y[0]*(1 - y[1]);
 /* Density change rate for Foxes: */
 yprime[1] = -y[1]*(1 - y[0]);
}

Output
Start End Density of Density of Number of
Time Time Rabbits Foxes Steps

 0 1.000 0.078 1.465 4
 1 2.000 0.085 0.578 6
 2 3.000 0.292 0.250 7
 3 4.000 1.449 0.187 8
 4 5.000 4.046 1.444 11
 5 6.000 0.176 2.256 15
 6 7.000 0.066 0.908 18
 7 8.000 0.148 0.367 20
 8 9.000 0.655 0.188 21
 9 10.000 3.157 0.352 23

Chapter 5: Differential Equations ode_adams_gear � 297

Fatal Errors
IMSL_ODE_TOO_MANY_EVALS Completion of the next step would make the

number of function evaluations #, but only #
evaluations are allowed.

IMSL_ODE_TOO_MANY_STEPS Maximum number of steps allowed, #, used. The
problem may be stiff.

IMSL_ODE_FAIL Unable to satisfy the error requirement.
“tol” = # may be too small.

ode_adams_gear
Solves a stiff initial-value problem for ordinary differential equations using the Adams-
Gear methods.

Synopsis
#include <imsl.h>
float imsl_f_ode_adams_gear_mgr (int task, void **state, �, 0)
void imsl_f_ode_adams_gear (int neq, float *t, float tend, float y[],

void *state, void fcn())
The type double functions are imsl_d_ode_adams_gear_mgr and
imsl_d_ode_adams_gear.

Required Arguments for imsl_f_ode_adams_gear_mgr
int task (Input)

This function must be called with task set to IMSL_ODE_INITIALIZE to set
up for solving an ODE system and with task equal to IMSL_ODE_RESET to
clean up after it has been solved. These values for task are defined in the
included file, imsl.h.

void **state (Input/Output)
The current state of the ODE solution is held in a structure pointed to by
state. It cannot be directly manipulated.

Required Arguments for imsl_f_ode_adams_gear
int neq (Input)

Number of differential equations.
float *t (Input/Output)

Independent variable. On input, t is the initial independent variable value. On
output, t is replaced by tend unless error conditions arise.

float tend (Input)
Value of t at which the solution is desired. The value tend may be less than
the initial value of t.

298 � ode_adams_gear IMSL C/Math/Library

float y[] (Input/Output)
Array with neq components containing a vector of dependent variables. On
input, y contains the initial values. On output, y contains the approximate
solution.

void *state (Input/Output)
The current state of the ODE solution is held in a structure pointed to by
state. It must be initialized by a call to imsl_f_ode_adams_gear_mgr. It
cannot be directly manipulated.

void fcn (int neq, float t, float *y, float *yprime)
User-supplied function to evaluate the right-hand side where
float *yprime (Output)

 Array with neq components containing the vector y�. This function computes

yprime � � � �
dy
dt

y f t y,b g

 and neq, t, and *y are defined immediately preceding this function.

Synopsis with Optional Arguments
#include <imsl.h>
float imsl_f_ode_adams_gear_mgr (int task, void **state,

IMSL_JACOBIAN, void fcnj (),
IMSL_METHOD, int method,
IMSL_MAXORD, int maxord,
IMSL_MITER, int miter,
IMSL_TOL, float tol,
IMSL_HINIT, float hinit,
IMSL_HMIN, float hmin,
IMSL_HMAX, float hmax,
IMSL_MAX_NUMBER_STEPS, int max_steps,
IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals,
IMSL_SCALE, float scale,
IMSL_NORM, int norm,
IMSL_FLOOR, float floor,
IMSL_NSTEP, int *nstep,
IMSL_NFCN, int *nfcn,
IMSL_NFCNJ, int *nfcnj,
IMSL_FCN_W_DATA, void fcn (), void *data,
IMSL_JACOBIAN_W_DATA, void fcn (), void *data,
0)

Optional Arguments
IMSL_JACOBIAN, void fcnj (int neq, float t, float *y, float yprime[],

float dypdy[])
User-supplied function to evaluate the Jacobian matrix where
float yprime[] (Input)
Array with neq components containing the vector y� = f(t, y).

Chapter 5: Differential Equations ode_adams_gear � 299

float dypdy[] (Output)
Array of size neq � neq containing the partial derivatives. Each
derivative 	y¢i � 	yi is evaluated at the provided (t, y) values and is
returned in array location dypdy[(i � 1)*n + j � 1].
and neq, t, and *y are described in the “Required Arguments”
section.

IMSL_METHOD, int method (Input)
Choose the class of integration methods.
1 Use implicit Adams method.
2 Use backward differentiation formula (BDF) methods.
Default: method = 2

IMSL_MAXORD, int maxord (Input)
Define the highest order formula to use of implicit Adams type or BDF type.
The default is the value 12 for Adams formulas and is the value 5 for BDF
formulas.

IMSL_MITER, int miter (Input)
Choose the method for solving the formula equations.
1 Use function iteration or successive substitution.
2 Use chord or modified Newton method and a user-supplied

Jacobian matrix.
3 Same as 2 except Jacobian is approximated within the function

by divided differences.
Default: miter = 3

IMSL_TOL, float tol (Input)
Tolerance for error control. An attempt is made to control the norm of the
local error such that the global error is proportional to tol.
Default: tol = 0.001

IMSL_HINIT, float hinit (Input)
Initial value for the step size h. Steps are applied in the direction of
integration.
Default: hinit = 0.001|tend � t|

IMSL_HMIN, float hmin (Input)
Minimum value for the step size h.
Default: hmin = 0.0

IMSL_HMAX, float hmax (Input)
Maximum value for the step size h.
Default: hmax = imsl_amach(2)

IMSL_MAX_NUMBER_STEPS, int max_steps (Input)
Maximum number of steps allowed.
Default: max_steps = 500

IMSL_MAX_NUMBER_FCN_EVALS, int max_fcn_evals (Input)
Maximum number of evaluations of y� allowed.
Default: max_fcn_evals = No enforced limit

300 � ode_adams_gear IMSL C/Math/Library

IMSL_SCALE, float scale (Input)
A measure of the scale of the problem, such as an approximation to the
Jacobian along the trajectory.
Default: scale = 1

IMSL_NORM, int norm (Input)
Switch determining the error norm. In the following, ei is the absolute value of
the error estimate for yi.

0 minimum of the absolute error and the relative error, equals
 the maximum of ei � (max (|yi|, 1)) for i = 1, �, neq.
1 absolute error, equals maxiei.
2 maxi (ei � wi)where wi = max (|yi|, floor). The value of floor
 is reset using IMSL_FLOOR.

 Default: norm = 0.
IMSL_FLOOR, float floor (Input)

This is used with IMSL_NORM. It provides a positive lower bound for the error
norm option with value 2.
Default: floor = 1.0

IMSL_NSTEP, int *nstep (Output)
Returns the number of steps taken.

IMSL_NFCN, int *nfcn (Output)
Returns the number of evaluations of y� used.

IMSL_NFCNJ, int *nfcnj (Output)
Returns the number of Jacobian matrix evaluations used. This value will be
nonzero only if the option IMSL_JACOBIAN is used.

IMSL_FCN_W_DATA, void fcn (int neq, float t, float *y, float *yprime, void
*data), void *data, (Input)
User-supplied function to evaluate the right-hand side, which also accepts a
pointer to data that is supplied by the user. data is a pointer to the data to be
passed to the user-supplied function. See the Introduction, Passing Data to
User-Supplied Functions at the beginning of this manual for more details.

IMSL_JACOBIAN_W_DATA, void jacobian (int m, int n, float x[], float
fjac[], int fjac_col_dim, void *data), void *data (Input)
User supplied function to compute the Jacobian, which also accepts a pointer
to data that is supplied by the user. data is a pointer to the data to be passed
to the user-supplied function. See the Introduction, Passing Data to User-
Supplied Functions at the beginning of this manual for more details.

Description
The function imsl_f_ode_adams_gear finds an approximation to the solution of a
system of first-order differential equations of the form

dy
dt

y f t y� � � ,b g

Chapter 5: Differential Equations ode_adams_gear � 301

with given initial conditions for y at the starting value for t. The function attempts to
keep the global error proportional to a user-specified tolerance. The proportionality
depends on the differential equation and the range of integration.
The code is based on using backward difference formulas not exceeding order five as
outlined in Gear (1971) and implemented by Hindmarsh (1974). There is an optional
use of the code that employs implicit Adams formulas. This use is intended for nonstiff
problems with expensive functions y� = �(t, y).

Examples

Example 1
This is a mildly stiff example problem (F2) from the test set of Enright and Pryce
(1987):

y�1 = �y1 � y1y2 + k1y2
y�2 = �k2y2 + k3 (1 � y2) y1

y1 (0) = 1
y2 (0) = 0

k1 = 294.
k2 = 3.
k3 = 0.01020408

tend = 240.

The ODE solver is initialized by a call to imsl_f_ode_adams_gear_mgr with
IMSL_ODE_INITIALIZE. This is the simplest use of the solver, so none of the default
values are changed. The function imsl_f_ode_adams_gear is then called to integrate
from t = 0 to t = 240.

#include <stdio.h>
#include <imsl.h>

void fcn (int neq, float t, float y[], float yprime[]);

float k1 = 294.0; /* Model data */
float k2 = 3.0;
float k3 = 0.01020408;

main()
{
 int neq = 2; /* Number of ode’s */
 float t = 0.0; /* Initial time */
 float tend = 240.0; /* Final time */
 float y[2] = {1.0, 0.0}; /* Initial condition */
 void *state;
 /* Initialize the ODE solver */
 imsl_f_ode_adams_gear_mgr(IMSL_ODE_INITIALIZE, &state, 0);
 /* Integrate from t=0 to tend=240 */
 imsl_f_ode_adams_gear (neq, &t, tend, y, state, fcn);
 /* Print the solution */
 printf("y[%f] = %f, %f\n", t, y[0], y[1]);

302 � ode_adams_gear IMSL C/Math/Library

}

void fcn (int neq, float t, float y[], float yprime[])
{
 yprime[0] = -y[0] - y[0]*y[1] + k1*y[1];
 yprime[1] = -k2*y[1] + k3*(1.0-y[1])*y[0];
}

Output
y[240.000000] = 0.392391, 0.001334

Example 2
This problem is a stiff example (F5) from the test set of Enright and Pryce (1987). An
initial step size of h = 10-7 is suggested by these authors. It is necessary to provide for
more evaluations of y� and for more steps than the default value allows. Both have been
set to 4000.

y�1 = k1 (� k2y1y2 + k3y4 � k4y1y3)
y�2 = �k1k2y1y2 + k5y4
y�3 = k1 (�k4y1y3 + k6y4)
y�4 = k1 (k2y1y2 � k3y4 + k4y1y3)

y1(0) = 3.365 � 10-7
y2(0) = 8.261 � 10-3
y3(0) = 1.641 � 10-3
y4(0) = 9.380 � 10-6

k1 = 1011
k2 = 3.
k3 = 0.0012
k4 = 9.
k5 = 2 � 107
k6 = 0.001

tend = 100.

The last call to imsl_f_ode_adams_gear_mgr with IMSL_ODE_RESET releases
workspace.

#include <stdio.h>
#include <imsl.h>

void fcn (int neq, float t, float y[], float yprime[]);

float k1 = 1.e11; /* Model data */
float k2 = 3.0;
float k3 = 0.0012;
float k4 = 9.0;
float k5 = 2.e7;
float k6 = 0.001;

Chapter 5: Differential Equations ode_adams_gear � 303

main()
{
 int neq = 4; /* Number of ode’s */
 float t = 0.0; /* Initial time */
 float tend = 100.0; /* Final time */
 /* Initial condition */
 float y[4] = {3.365e-7, 8.261e-3, 1.642e-3, 9.380e-6};
 void *state;
 int *nfcn;
 /* Initialize the ODE solver */
 imsl_f_ode_adams_gear_mgr(IMSL_ODE_INITIALIZE, &state,
 IMSL_HINIT, 1.e-7,
 IMSL_MAX_NUMBER_STEPS, 4000,
 IMSL_MAX_NUMBER_FCN_EVALS, 4000,
 IMSL_NFCN, &nfcn,
 0);
 /* Integrate from t=0 to tend=100 */
 imsl_f_ode_adams_gear (neq, &t, tend, y, state, fcn);
 /* Release workspace and reset */
 imsl_f_ode_adams_gear_mgr(IMSL_ODE_RESET, &state, 0);
 /* Print the solution */
 printf("y[%f] = %f, %f, %f, %f\n", t, y[0], y[1], y[2], y[3]);
 /* Print the number of evaluations
 of yprime[] */
 printf("Number of yprime[] evaluations: %d\n", nfcn);
}

void fcn (int neq, float t, float y[], float yprime[])
{
 yprime[0] = k1*(-k2*y[0]*y[1]+k3*y[3]-k4*y[0]*y[2]);
 yprime[1] = -k1*k2*y[0]*y[1] + k5*y[3];
 yprime[2] = k1*(-k4*y[0]*y[2] + k6*y[3]);
 yprime[3] = k1*(k2*y[0]*y[1] - k3*y[3] + k4*y[0]*y[2]);
}

Output
y[100.000000] = 0.000000, 0.003352, 0.005586, 0.000009
Number of yprime[] evaluations: 3630

Fatal Errors
IMSL_ODE_TOO_MANY_EVALS Completion of the next step would make the

number of function evaluations #, but only # are
allowed.

IMSL_ODE_TOO_MANY_STEPS Maximum number of steps allowed, # have been
used. Try increasing the maximum number of
steps allowed or increase the tolerance.

304 � pde_method_of_lines IMSL C/Math/Library

pde_method_of_lines
Solves a system of partial differential equations of the form ut = f(x, t, u, ux, uxx) using
the method of lines. The solution is represented with cubic Hermite polynomials.

Synopsis
#include <imsl.h>
void imsl_f_pde_method_of_lines_mgr (int task, void **state, ..., 0)
void imsl_f_pde_method_of_lines (int npdes, float *t, float tend,

int nx, float xbreak[], float y[], void *state,
void fcn_ut(), void fcn_bc())

The type double functions are imsl_d_pde_method_of_lines_mgr and
imsl_d_pde_method_of_lines.

Required Arguments for imsl_f_pde_method_of_lines_mgr
int task (Input)

This function must be called with task set to IMSL_PDE_INITIALIZE to set
up memory and default values prior to solving a problem and with task equal
to IMSL_PDE_RESET to clean up after it has solved. These values for task are
defined in the header file imsl.h.

void **state (Input/Output)
The current state of the PDE solution is held in a structure pointed to by
state. It cannot be directly manipulated.

Required Arguments for imsl_f_pde_method_of_lines
int npdes (Input)

Number of differential equations.
float *t (Input/Output)

Independent variable. On input, t supplies the initial time, t0. On output, t is set
to the value to which the integration has been updated. Normally, this new
value is tend.

float tend (Input)
Value of t = tend at which the solution is desired.

int nx (Input)
Number of mesh points or lines.

float xbreak[] (Input)
Array of length nx containing the breakpoints for the cubic Hermite splines
used in the x discretization. The points in xbreak must be strictly increasing.
The values xbreak[0] and xbreak[nx � 1] are the endpoints of the interval.

float y[] (Input/Output)
Array of size npdes by nx containing the solution. The array y contains the
solution as y[k,i] = uk(x, tend) at x = xbreak[i]. On input, y contains the

Chapter 5: Differential Equations pde_method_of_lines � 305

initial values. It must satisfy the boundary conditions. On output, y contains
the computed solution.

void *state (Input/Output)
The current state of the PDE solution is held in a structure pointed to by state.
It must be initialized by a call to imsl_f_pde_method_of_lines_mgr. It
cannot be directly manipulated.

void fcn_ut(int npdes, float x, float t, float u[], float ux[], float uxx[],
float ut[])
User-supplied function to evaluate ut.
int npdes (Input)

Number of equations.
float x (Input)

Space variable, x.
float t (Input)

Time variable, t.
float u[] (Input)

Array of length npdes containing the dependent values, u.
float ux[] (Input)

Array of length npdes containing the first derivatives, ux.
float uxx[] (Input)

Array of length npdes containing the second derivative, uxx.
float ut[] (Output)

Array of length npdes containing the computed derivatives ut.
void fcn_bc(int npdes, float x, float t, float alpha[], float beta[], float

gammap[])
User-supplied function to evaluate the boundary conditions. The boundary
conditions accepted by imsl_f_pde_method_of_lines are

k
k k k k

u
u

x
�

�
� �

�
� �

Note: Users must supply the values
k and �k, which determine the
values �k. Since �k can depend on t values of �k� also are required.

int npdes (Input)
Number of equations.

float x (Input)
Space variable, x.

float t (Input)
Time variable, t.

float alpha[] (Output)
Array of length npdes containing the
k values.

float beta[] (Output)
Array of length npdes containing the �k values.

306 � pde_method_of_lines IMSL C/Math/Library

float gammap[] (Output)
Array of length npdes containing the derivatives,

k
k

d
dt
�

� ��

Synopsis with Optional Arguments
#include <imsl.h>
void imsl_f_pde_method_of_lines_mgr (int task, void **state,

IMSL_TOL, float tol,
IMSL_HINIT, float hinit,
IMSL_INITIAL_VALUE_DERIVATIVE, float initial_deriv[],
IMSL_HTRIAL, float *htrial,
IMSL_FCN_UT_W_DATA, void fcn_ut (), void *data,
IMSL_FCN_BC_W_DATA, void fcn_bc (), void *data,
 0)

Optional Arguments
IMSL_TOL, float tol (Input)

Differential equation error tolerance. An attempt is made to control the local
error in such a way that the global relative error is proportional to tol.
Default: tol = 100.0*imsl_f_machine(4)

IMSL_HINIT, float hinit (Input)
Initial step size in the t integration. This value must be nonnegative. If hinit
is zero, an initial step size of 0.001|tend - t0| will be arbitrarily used. The step
will be applied in the direction of integration.
Default: hinit = 0.0

IMSL_INITIAL_VALUE_DERIVATIVE, float initial_deriv[] (Input/Output)
Supply the derivative values ux(x, t0). This derivative information is input as

� �� �,() 0k x t
u
x

�

�
�initial_deriv k,i

The array initial_deriv contains the derivative values as output:

� � � �() atk x
u

x x i
x

�

�
� �initial_deriv k,i tend

Default: Derivatives are computed using cubic spline interpolation
IMSL_HTRIAL, float *htrial (Output)

Return the current trial step size.
IMSL_UT_FCN_W_DATA, void fcn_ut(int npdes, float x, float t, float u[],

float ux[], float uxx[], float ut[], void *data), void *data (Input)
User-supplied function to evaluate ut, which also accepts a pointer to data that
is supplied by the user. data is a pointer to the data to be passed to the user-
supplied function. See the Introduction, Passing Data to User-Supplied
Functions at the beginning of this manual for more details.

Chapter 5: Differential Equations pde_method_of_lines � 307

IMSL_BC_FCN_W_DATA, void fcn_bc(int npdes, float x, float t, float
alpha[], float beta[], float gammap[], void *data), void *data
(Input)
User-supplied function to evaluate the boundary conditions, which also
accepts a pointer to data that is supplied by the user. data is a pointer to the
data to be passed to the user-supplied function. See the Introduction, Passing
Data to User-Supplied Functions at the beginning of this manual for more
details.

Description
Let M = npdes, N = nx and xi = xbreaK(I). The routine
imsl_f_pde_method_of_lines uses the method of lines to solve the partial
differential equation system

2 2

1 1
1 2 2, , , ... , , ... , , ...k M M

k M
u u u u uf x t u u
t x x x

� �� � � � �
� � �

� � � �� �x�

with the initial conditions

uk = uk(x, t) at t = t0

and the boundary conditions

� �
�

�
�k k k

k
k Nu

u
x

x x x x� � � �at and at 1

for k = 1, �, M.
Cubic Hermite polynomials are used in the x variable approximation so that the trial
solution is expanded in the series

� � � � � � � � � �� �, ,
1

ˆ ,k i k i i k
i

N

u x t a t x b t x� �
�

� �� i

where
i(x) and �i(x) are the standard basis functions for the cubic Hermite
polynomials with the knots x1 < x2 < � < xN. These are piecewise cubic polynomials
with continuous first derivatives. At the breakpoints, they satisfy

� � �

� �
�

i l il i l

i
l

i
l i

x x
d
dx

x
d
dx

x

b g b g
b g b g
� �

� �

0

0 l

According to the collocation method, the coefficients of the approximation are obtained
so that the trial solution satisfies the differential equation at the two Gaussian points in
each subinterval,

308 � pde_method_of_lines IMSL C/Math/Library

p x x x

p x x x

j j j

j j j

2 1 1

2 1

3 3
6

3 3
6

� �

�

� �

�

�

� �

�

�

d i

d i

j

j

for j = 1, �, N. The collocation approximation to the differential equation is

� � � �

� � � � � � � � � � � �� �

, ,

1 1ˆ ˆ ˆ ˆ, , , , , , , ,

i k i k
i j i j

k j j M j j M jxx xx

da db
p p

dt dt
f p t u p u p u p u p

� �� �

� � �

for k = 1, �, M and j = 1, �, 2(N � 1).
This is a system of 2M(N � 1) ordinary differential equations in 2M N unknown
coefficient functions, ai,k and bi,k. This system can be written in the matrix�vector form
as A dc/dt = F (t, y) with c(t0) = c0 where c is a vector of coefficients of length 2M N
and c0 holds the initial values of the coefficients. The last 2M equations are obtained by
differentiating the boundary conditions

� �
�

k
k

k
k kda

dt
db
dt

d
dt

� �

for k = 1, �, M.
The initial conditions uk(x, t0) must satisfy the boundary conditions. Also, the
�k(t) must be continuous and have a smooth derivative, or the boundary conditions will
not be properly imposed for t > t0.
If
k = �k = 0, it is assumed that no boundary condition is desired for the k-th unknown
at the left endpoint. A similar comment holds for the right endpoint. Thus, collocation
is done at the endpoint. This is generally a useful feature for systems of first-order
partial differential equations.
If the number of partial differential equations is M = 1 and the number of breakpoints is
N = 4, then

A

p p p p
p p p p

p p p p
p p p p

p p p p
p p p p

�

L

N

MMMMMMMMMMM

O

Q

PPPPPPPPPPP

� �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� �

1 1

1 1 1 1 2 1 2 1

1 2 1 2 2 2 2 2

3 3 3 3 4 3 4 3

3 4 3 4 4 4 4 4

5 5 5 5 6 5 6 5

5 6 5 6 6 6 6 6

4 4

b g b g b g b g
b g b g b g b g

b g b g b g b g
b g b g b g b g

b g b g b g b g
b g b g b g b g

The vector c is

c = [a1, b1, a2, b2, a3, b3, a4, b4]T

Chapter 5: Differential Equations pde_method_of_lines � 309

and the right-side F is

F x f p f p f p f p f p f p x
T

� � �� �1 1 2 3 4 5 6 4b g b g b g b g b g b g b g b g, , , , , , ,

If M > 1, then each entry in the above matrix is replaced by an M � M diagonal matrix.
The element
1 is replaced by diag(
1,1, �,
1,M). The elements
N, �1 and �N are
handled in the same manner. The
i(pj) and �i(pj) elements are replaced by
i(pj)IM and
�i(pj)IM where IM is the identity matrix of order M. See Madsen and Sincovec (1979)
for further details about discretization errors and Jacobian matrix structure.
The input/output array Y contains the values of the ak,i. The initial values of the bk,i are
obtained by using the IMSL cubic spline routine imsl_f_cub_spline_interp_e_cnd
(Chapter 3, “Interpolation and Approximation”) to construct functions

� ,u x tk 0b g

such that
� ,u x t ak i k0b g � i

The IMSL routine imsl_f_cub_spline_value , Chapter 3, “Interpolation and
Approximation” is used to approximate the values

du
dx

x t bk
i k

�
, ,0b g � i

There is an optional use of imsl_f_pde_method_of_lines that allows the user to
provide the initial values of bk,i.
The order of matrix A is 2M N and its maximum bandwidth is 6M � 1. The band structure
of the Jacobian of F with respect to c is the same as the band structure of A. This system
is solved using a modified version of imsl_f_ode_adams_gear, 297. Some of the
linear solvers were removed. Numerical Jacobians are used exclusively. The algorithm is
unchanged. Gear’s BDF method is used as the default because the system is typically stiff.
Four examples of PDEs are now presented that illustrate how users can interface their
problems with IMSL PDE solving software. The examples are small and not indicative
of the complexities that most practitioners will face in their applications. A set of seven
sample application problems, some of them with more than one equation, is given in
Sincovec and Madsen (1975). Two further examples are given in Madsen and Sincovec
(1979).

Examples

Example 1
The normalized linear diffusion PDE, ut = uxx, 0 � x � 1, t > t0, is solved. The initial
values are t0 = 0, u(x, t0) = u0 = 1. There is a “zero-flux” boundary condition at
x = 1, namely ux(1, t) = 0, (t > t0). The boundary value of u(0, t) is abruptly changed
from u0 to the value u1 = 0.1. This transition is completed by t = td = 0.09.
Due to restrictions in the type of boundary conditions successfully processed by
imsl_f_pde_method_of_lines, it is necessary to provide the derivative boundary
value function �� at x = 0 and at x = 1. The function � at x = 0 makes a smooth transition
from the value u0 at t = t0 to the value u1 at t = td. The transition phase for �� is computed

310 � pde_method_of_lines IMSL C/Math/Library

by evaluating a cubic interpolating polynomial. For this purpose, the function subprogram
imsl_f_cub_spline_value, Chapter 3, Interpolation and Approximation” is used.
The interpolation is performed as a first step in the user-supplied routine fcn_bc. The
function and derivative values �(t0) = u0, ��(t0) = 0, �(td) = u1, and ��(td) = 0, are used as
input to routine imsl_f_cub_spline_interp_e_cnd, to obtain the coefficients
evaluated by imsl_f_cub_spline_value. Notice that ��(t) = 0, t > td. The evaluation
routine imsl_f_cub_spline_value will not yield this value so logic in the routine
fcn_bc assigns ��(t) = 0, t > td.

#include <imsl.h>
#include <math.h>

main()
{
 void fcnut(int, float, float, float *, float *, float *,
 float *);
 void fcnbc(int, float, float, float *, float *,
 float *);
 int npdes = 1;
 int nx = 8;
 int i;
 int j = 1;
 int nstep = 10;
 float t = 0.0;
 float tend;
 float xbreak[8];
 float y[8];
 char title[50];
 void *state;

 /* Set breakpoints and initial conditions */

 for (i = 0; i < nx; i++) {
 xbreak[i] = (float) i / (float) (nx - 1);
 y[i] = 1.0;
 }

 /* Initialize the solver */

 imsl_f_pde_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
 0);

 while (j <= nstep) {
 tend = (float) j++ / (float) nstep;
 tend *= tend;

 /* Solve the problem */

 imsl_f_pde_method_of_lines(npdes, &t, tend, nx, xbreak, y,
 state, fcnut, fcnbc);

 /* Print results at current t=tend */

 sprintf(title, "solution at t = %4.2f\0", t);
 imsl_f_write_matrix(title, npdes, nx, y, 0);
 }

Chapter 5: Differential Equations pde_method_of_lines � 311

}

void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx,
 float *ut)
{
 /* Define the PDE */

 *ut = *uxx;
}

void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
 float *gamp)
{
 static int ndata;
 static int first = 1;
 static float delta = 0.09;
 static float u0 = 1.0;
 static float u1 = 0.1;
 static float dfdata[2];
 static float xdata[2];
 static float fdata[2];
 static Imsl_f_ppoly *ppoly;

 /* Compute interpolant first time only */

 if (first) {
 first = 0;
 ndata = 2;
 xdata[0] = 0.0;
 xdata[1] = delta;
 fdata[0] = u0;
 fdata[1] = u1;
 dfdata[0] = dfdata[1] = 0.0;
 ppoly = imsl_f_cub_spline_interp_e_cnd(ndata, xdata, fdata,
 IMSL_LEFT, 1, dfdata[0],
 IMSL_RIGHT, 1, dfdata[1],
 0);
 }

 /* Define boundary conditions */

 if (x == 0.0) {

 /* These are for x = 0 */

 *alpha = 1.0;
 *beta = 0.0;
 *gamp = 0.0;

 /* If in the boundary layer, compute
 nonzero gamma prime */

 if (t <= delta)
 *gamp = imsl_f_cub_spline_value(t, ppoly,
 IMSL_DERIV, 1,
 0);
 } else {
 /* These are for x = 1 */

312 � pde_method_of_lines IMSL C/Math/Library

 *alpha = 0.0;
 *beta = 1.0;
 *gamp = 0.0;
 }
}

Output
 solution at t = 0.01
 1 2 3 4 5 6
 0.969 0.997 1.000 1.000 1.000 1.000

 7 8
 1.000 1.000

 solution at t = 0.04
 1 2 3 4 5 6
 0.625 0.871 0.962 0.991 0.998 1.000
 7 8
 1.000 1.000

 solution at t = 0.09
 1 2 3 4 5 6
 0.1000 0.4602 0.7169 0.8671 0.9436 0.9781

 7 8
 0.9917 0.9951

 solution at t = 0.16
 1 2 3 4 5 6
 0.1000 0.3130 0.5071 0.6681 0.7893 0.8708

 7 8
 0.9168 0.9315

 solution at t = 0.25
 1 2 3 4 5 6
 0.1000 0.2567 0.4045 0.5354 0.6428 0.7224

 7 8
 0.7710 0.7874

 solution at t = 0.36
 1 2 3 4 5 6
 0.1000 0.2176 0.3292 0.4292 0.5125 0.5751

 7 8
 0.6139 0.6270

 solution at t = 0.49
 1 2 3 4 5 6
 0.1000 0.1852 0.2661 0.3386 0.3992 0.4448

 7 8
 0.4731 0.4827

 solution at t = 0.64
 1 2 3 4 5 6
 0.1000 0.1588 0.2147 0.2648 0.3066 0.3381

Chapter 5: Differential Equations pde_method_of_lines � 313

 7 8
 0.3577 0.3643

 solution at t = 0.81
 1 2 3 4 5 6
 0.1000 0.1387 0.1754 0.2083 0.2358 0.2565

 7 8
 0.2694 0.2738

 solution at t = 1.00
 1 2 3 4 5 6
 0.1000 0.1242 0.1472 0.1678 0.1850 0.1980

 7 8
 0.2060 0.2087

Example 2
Here, Problem C is solved from Sincovec and Madsen (1975). The equation is of
diffusion-convection type with discontinuous coefficients. This problem illustrates a
simple method for programming the evaluation routine for the derivative, ut. Note that
the weak discontinuities at x = 0.5 are not evaluated in the expression for ut. The
problem is defined as

u u t x D x u x v x u

x t
t � � �

� �

� � � � � � � �/ / / /

, ,

b gc h b g
0 1 0

x

0

D x
x

x
b g � � �

� �

RST
5 0 05
1 05 1

if
if

.
. .

v x
x

x

u x
x
x

u t u t

b g

b g
b g b g

�

� �

� �

RST
�

�

�

RST
� �

1000 0 0 05
1 05 10

0
1 0
0 0

0 1 1 0

. .
. .

,

, , ,

if
if

 if
 if

#include <imsl.h>
#include <math.h>

main()
{
 void fcnut(int, float, float, float *, float *, float *,
 float *);
 void fcnbc(int, float, float, float *, float *,
 float *);
 int npdes = 1;
 int nx = 100;
 int i;
 int j = 1;
 int nstep = 10;
 float t = 0.0;

314 � pde_method_of_lines IMSL C/Math/Library

 float tend;
 float xbreak[100];
 float y[100];
 float tol, hinit;
 char title[50];
 void *state;

 /* Set breakpoints and initial conditions */

 for (i = 0; i < nx; i++) {
 xbreak[i] = (float) i / (float) (nx - 1);
 y[i] = 0.0;
 }
 y[0] = 1.0;

 /* Initialize the solver */

 tol = sqrt(imsl_f_machine(4));
 hinit = 0.01*tol;
 imsl_f_pde_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
 IMSL_TOL, tol,
 IMSL_HINIT, hinit,
 0);

 while (j <= nstep) {
 tend = (float) j++ / (float) nstep;

 /* Solve the problem */

 imsl_f_pde_method_of_lines(npdes, &t, tend, nx, xbreak, y,
 state, fcnut, fcnbc);
 }
 /* Print results at t=tend */

 sprintf(title, "solution at t = %4.2f\0", t);
 imsl_f_write_matrix(title, npdes, nx, y, 0);
}

void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx,
 float *ut)
{
 /* Define the PDE */

 float v;
 float d;

 if (x <= 0.5) {
 d = 5.0;
 v = 1000.0;
 }
 else
 d = v = 1.0;

 ut[0] = d*uxx[0] - v*ux[0];
}

void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
 float *gamp)

Chapter 5: Differential Equations pde_method_of_lines � 315

{
 *alpha = 1.0;
 *beta = 0.0;
 *gamp = 0.0;
}

Output
 solution at t = 1.00
 1 2 3 4 5 6
 1.000 1.000 1.000 1.000 1.000 1.000

 7 8 9 10 11 12
 1.000 1.000 1.000 1.000 1.000 1.000

 13 14 15 16 17 18
 1.000 1.000 1.000 1.000 1.000 1.000

 19 20 21 22 23 24
 1.000 1.000 1.000 1.000 1.000 1.000

 25 26 27 28 29 30
 1.000 1.000 1.000 1.000 1.000 1.000

 31 32 33 34 35 36
 1.000 1.000 1.000 1.000 1.000 1.000

 37 38 39 40 41 42
 1.000 1.000 1.000 1.000 1.000 1.000

 43 44 45 46 47 48
 1.000 1.000 1.000 1.000 1.000 1.000

 49 50 51 52 53 54
 1.000 0.997 0.984 0.969 0.953 0.937

 55 56 57 58 59 60
 0.921 0.905 0.888 0.872 0.855 0.838

 61 62 63 64 65 66
 0.821 0.804 0.786 0.769 0.751 0.733

 67 68 69 70 71 72
 0.715 0.696 0.678 0.659 0.640 0.621

 73 74 75 76 77 78
 0.602 0.582 0.563 0.543 0.523 0.502

 79 80 81 82 83 84
 0.482 0.461 0.440 0.419 0.398 0.376

 85 86 87 88 89 90
 0.354 0.332 0.310 0.288 0.265 0.242

 91 92 93 94 95 96
 0.219 0.196 0.172 0.148 0.124 0.100

 97 98 99 100
 0.075 0.050 0.025 0.000

316 � pde_method_of_lines IMSL C/Math/Library

Example 3
In this example, using imsl_f_pde_method_of_lines, the linear normalized
diffusion PDE ut = uxx is solved but with an optional use that provides values of the
derivatives, ux, of the initial data. Due to errors in the numerical derivatives computed
by spline interpolation, more precise derivative values are required when the initial data
is u(x, 0) = 1 + cos[(2n � 1)�x], n > 1. The boundary conditions are “zero flux”
conditions ux(0, t) = ux(1, t) = 0 for t > 0. Note that the initial data is compatible with
these end conditions since the derivative function

u x
du x

dx
n nx ,

,
sin0

0
2 1 2 1b g b g b g b g� � � � �� �x

vanishes at x = 0 and x = 1.
This optional usage signals that the derivative of the initial data is passed by the user.
The values u(x, tend) and ux(x, tend) are output at the breakpoints with the optional
usage.

#include <imsl.h>
#include <math.h>

main()
{
 void fcnut(int, float, float, float *, float *, float *,
 float *);
 void fcnbc(int, float, float, float *, float *, float *);
 int npdes = 1;
 int nx = 10;
 int i;
 int j = 1;
 int nstep = 10;
 float t = 0.0;
 float tend = 0.0;
 float xbreak[10];
 float y[10], deriv[10];
 float tol, hinit;
 float pi, arg;
 char title1[50];
 char title2[50];
 void *state;

 pi = imsl_d_constant("pi", 0);
 arg = 9.0 * pi;

 /* Set breakpoints and initial conditions */

 for (i = 0; i < nx; i++) {
 xbreak[i] = (float) i / (float) (nx - 1);
 y[i] = 1.0 + cos(arg * xbreak[i]);
 deriv[i] = -arg * sin(arg * xbreak[i]);
 }

 /* Initialize the solver */

 tol = sqrt(imsl_f_machine(4));

Chapter 5: Differential Equations pde_method_of_lines � 317

 imsl_f_pde_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
 IMSL_TOL, tol,
 IMSL_INITIAL_VALUE_DERIVATIVE,
 deriv,
 0);

 while (j <= nstep) {
 j++;
 tend += 0.001;

 /* Solve the problem */

 imsl_f_pde_method_of_lines(npdes, &t, tend, nx, xbreak, y,
 state, fcnut, fcnbc);

 /* Print results at at every other t=tend */

 if (j % 2) {
 sprintf(title1, "\nsolution at t = %5.3f\0", t);
 sprintf(title2, "\nderivative at t = %5.3f\0", t);
 imsl_f_write_matrix(title1, npdes, nx, y, 0);
 imsl_f_write_matrix(title2, npdes, nx, deriv, 0);
 }
 }

}

void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx,
 float *ut)
{
 /* Define the PDE */

 ut[0] = uxx[0];
}

void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
 float *gamp)
{
 /* Define the boundary conditions */

 alpha[0] = 0.0;
 beta[0] = 1.0;
 gamp[0] = 0.0;
}

 Output
 solution at t = 0.002
 1 2 3 4 5 6
 1.233 0.767 1.233 0.767 1.233 0.767

 7 8 9 10
 1.233 0.767 1.233 0.767

 derivative at t = 0.002
 1 2 3 4 5 6
 0.000e+00 -5.172e-07 1.911e-06 1.818e-06 -5.230e-07 2.408e-06

318 � pde_method_of_lines IMSL C/Math/Library

 7 8 9 10
-2.517e-06 3.194e-06 -3.608e-06 2.023e-06

 solution at t = 0.004
 1 2 3 4 5 6
 1.053 0.947 1.053 0.947 1.053 0.947

 7 8 9 10
 1.053 0.947 1.053 0.947

 derivative at t = 0.004
 1 2 3 4 5 6
 0.000e+00 -1.332e-06 -9.059e-06 -4.401e-06 5.006e-06 -2.134e-06

 7 8 9 10
-1.733e-06 4.625e-06 6.741e-07 2.023e-06

 solution at t = 0.006
 1 2 3 4 5 6
 1.012 0.988 1.012 0.988 1.012 0.988

 7 8 9 10
 1.012 0.988 1.012 0.988

 derivative at t = 0.006
 1 2 3 4 5 6
 0.000e+00 -1.408e-06 -1.018e-06 -6.572e-07 -8.213e-07 -1.151e-06

 7 8 9 10
 1.051e-06 1.257e-06 -2.920e-07 2.023e-06

 solution at t = 0.008
 1 2 3 4 5 6
 1.003 0.997 1.003 0.997 1.003 0.997

 7 8 9 10
 1.003 0.997 1.003 0.997

 derivative at t = 0.008
 1 2 3 4 5 6
 0.000e+00 -1.028e-06 4.270e-06 3.114e-06 -3.085e-06 -1.492e-06

 7 8 9 10
 2.126e-06 -1.280e-06 -1.541e-06 2.023e-06

 solution at t = 0.010
 1 2 3 4 5 6
 1.001 0.999 1.001 0.999 1.001 0.999

 7 8 9 10
 1.001 0.999 1.001 0.999

Chapter 5: Differential Equations pde_method_of_lines � 319

 derivative at t = 0.010
 1 2 3 4 5 6
 0.000e+00 -7.596e-07 2.819e-07 1.547e-07 -1.469e-06 -9.516e-07

 7 8 9 10
 2.889e-07 8.956e-08 5.992e-07 2.023e-06

Example 4
In this example, consider the linear normalized hyperbolic PDE, utt = uxx, the “vibrating
string” equation. This naturally leads to a system of first order PDEs. Define a new
dependent variable ut = v. Then, vt = uxx is the second equation in the system. Take as
initial data u(x, 0) = sin(�x) and ut(x, 0) = v(x, 0) = 0. The ends of the string are fixed so
u(0, t) = u(1, t) = v(0, t) = v(1, t) = 0. The exact solution to this problem is
u(x, t) = sin(�x) cos(�t). Residuals are computed at the output values of t for 0 < t � 2.
Output is obtained at 200 steps in increments of 0.01.
Even though the sample code imsl_f_pde_method_of_lines gives satisfactory
results for this PDE, users should be aware that for nonlinear problems, “shocks” can
develop in the solution. The appearance of shocks may cause the code to fail in
unpredictable ways. See Courant and Hilbert (1962), pp 488-490, for an introductory
discussion of shocks in hyperbolic systems.

#include <imsl.h>
#include <math.h>

main()
{
 void fcnut(int, float, float, float *, float *, float *,
 float *);
 void fcnbc(int, float, float, float *, float *, float *);
 int npdes = 2;
 int nx = 10;
 int i;
 int j = 1;
 int nstep = 200;
 float t = 0.0;
 float tend = 0.0;
 float xbreak[20];
 float y[20], deriv[20];
 float tol, hinit;
 float pi;
 float error[10], erru;
 void *state;

 pi = imsl_d_constant("pi", 0);

 /* Set breakpoints and initial conditions */

 for (i = 0; i < nx; i++) {
 xbreak[i] = (float) i / (float) (nx - 1);
 y[i] = sin(pi * xbreak[i]);
 y[nx + i] = 0.0;
 deriv[i] = pi * cos(pi * xbreak[i]);
 deriv[nx + i] = 0.0;

320 � pde_method_of_lines IMSL C/Math/Library

 }

 /* Initialize the solver */

 tol = sqrt(imsl_f_machine(4));
 imsl_f_pde_method_of_lines_mgr(IMSL_PDE_INITIALIZE, &state,
 IMSL_TOL, tol,
 IMSL_INITIAL_VALUE_DERIVATIVE,
 deriv,
 0);

 while (j <= nstep) {
 j++;
 tend += 0.01;
 /* Solve the problem */

 imsl_f_pde_method_of_lines(npdes, &t, tend, nx, xbreak, y,
 state, fcnut, fcnbc);

 /* Look at output at steps of 0.01
 and compute errors */

 for (i = 0; i < nx; i++) {
 error[i] = y[i] - sin(pi * xbreak[i]) *
 cos(pi *tend);
 erru = imsl_f_max(erru, fabs(error[i]));
 }
 }
 printf("Maximum error in u(x,t) = %e\n", erru);

}

void fcnut(int npdes, float x, float t, float *u, float *ux, float *uxx,
 float *ut)
{
 /* Define the PDE */

 ut[0] = u[1];
 ut[1] = uxx[0];
}

void fcnbc(int npdes, float x, float t, float *alpha, float *beta,
 float *gamp)
{
 /* Define the boundary conditions */

 alpha[0] = 1.0;
 beta[0] = 0.0;
 gamp[0] = 0.0;
 alpha[1] = 1.0;
 beta[1] = 0.0;
 gamp[1] = 0.0;
}

Output
Maximum error in u(x,t) = 6.228203e-04

Chapter 5: Differential Equations bvp_finite_difference � 321

bvp_finite_difference
Solves a (parameterized) system of differential equations with boundary conditions at
two points, using a variable order, variable step size finite difference method with
deferred corrections.

Synopsis
#include <imsl.h>
float *imsl_f_bvp_finite_difference (void fcneq(), void fcnjac(),

void fcnbc(), int n, int nleft, int ncupbc, float tleft, float tright,
 int linear, float *nfinal, float *xfinal, float *yfinal, …, 0)

The type double function is imsl_d_bvp_finite_difference.

Required Arguments
void fcneq (int n, float t, float y[], float p, float dydt[]) (Input)

User supplied function to evaluate derivatives.
int n (Input)

Number of differential equations
float t (Input)

Independent variable, t.
float y[] (Input)

Array of size n containing the dependent variable values, y(t).
float p (Input)

Continuation parameter, p. See optional argument
IMSL_PROBLEM_EMBEDDED.

float dydt[] (Output)
Array of size n containing the derivatives y�(t).

void fcnjac(int n, float t, float y[], float p, float dypdy[]) (Input)
User supplied function to evaluate the Jacobian.
int n (Input)

Number of differential equations
float t (Input)

Independent variable, t.
float y[] (Input)

Array of size n containing the dependent variable values, y(t).
float p (Input)

Continuation parameter, p. See optional argument
IMSL_PROBLEM_EMBEDDED.

float dypdy[] (Output)
n by n array containing the partial derivatives ai,j = 	 fi � 	 yj
evaluated at (t, y). The values ai�j are returned in
dypdy[(i-1)*n+(j-1)].

322 � bvp_finite_difference IMSL C/Math/Library

void fcnbc(int n, float yleft[], float yright[], float p, float h[]) (Input)
User supplied function to evaluate the boundary conditions.
int n (Input)

Number of differential equations.
float yleft[] (Input)

Array of size n containing the values of the dependent variable at
the left endpoint.

float yright[] (Input)
Array of size n containing the values of the dependent variable at
the right endpoint.

float p (Input)
Continuation parameter, p. See optional argument
IMSL_PROBLEM_EMBEDDED.

float h[] (Output)
Array of size n containing the boundary condition residuals.
The boundary conditions are defined by hi = 0, for i = 0, �, n-1.
The left endpoint conditions must be defined first, then, the
conditions involving both endpoints, and finally the right endpoint
conditions.

int n (Input)
Number of differential equations.

int nleft (Input)
Number of initial conditions. The value nleft must be greater than or equal
to zero and less than n.

int ncupbc (Input)
Number of coupled boundary conditions. The value
nleft + ncupbc must be greater than zero and less than or equal
to n.

float tleft (Input)
The left endpoint.

float tright (Input)
The right endpoint.

int linear (Input)
Integer flag to indicate if the differential equations and the boundary
conditions are linear. Set linear to one if the differential equations and the
boundary conditions are linear, otherwise set linear to zero.

int *nfinal (Output)
Number of final grid points, including the endpoints.

float *tfinal (Output)
Array of size mxgrid containing the final grid points. Only the first nfinal
points are significant. See optional argument IMSL_MAX_SUBINTER for
definition of mxgrid.

Chapter 5: Differential Equations bvp_finite_difference � 323

float *yfinal (Output)
Array of size mxgrid by n containing the values of Y at the points in tfinal.
See optional argument IMSL_MAX_SUBINTER for definition of mxgrid.

Synopsis with Optional Arugments
#include <imsl.h>
float *imsl_f_bvp_finite_difference (void fcneq(),void fcnjac(),

void fcnbc(), int n, int nleft, int ncupbc, float tleft, float tright,
int linear, float *nfinal, float *xfinal[], float *yfinal,
IMSL_TOL, float tol,
IMSL_HINIT, int ninit, float tinit[], float yinit[][],
IMSL_PRINT, int iprint,
IMSL_MAX_SUBINTER, int mxgrid,
IMSL_PROBLEM_EMBEDDED, float pistep, void fcnpeq(),
void fcnpbc(),
IMSL_ERR_EST, float **errest,
IMSL_ERR_EST_USER, float errest[],
IMSL_FCN_W_DATA, void fcneq (),void *data,
IMSL_JACOBIAN_W_DATA, void fcnjac (),void *data,
IMSL_FCN_BC_W_DATA, void fcnbc (),void *data,
IMSL_PROBLEM_EMBEDDED_W_DATA, float pistep,(),void *data,
void fcnpeq(),void fcnpbc(),void *data,
 0)

Optional Arguments
IMSL_TOL, float tol (Input)

Relative error control parameter. The computations stop when

� �, ,

, ,

/ max ,1.0 for all 0, 1, and 0, 1

Here is the estimated error on
i j i j

i j i j

E y tol i n j ngrid

E y

� � � � �

 Default: tol = .001.
IMSL_HINIT, int ninit, float tinit[], float yinit[][], (Input)

Initial gridpoints. Number of initial grid points, including the endpoints, is
given by ninit. tinit is an array of size ninit containing the initial grid
points. yinit is an array size ninit by n containing an initial guess for the
values of Y at the points in tinit.
Default: ninit =10, tinit[*] equally spaced in the interval
[tleft, tright], and yinit[*][*] = 0.

IMSL_PRINT, int iprint (Input)
Parameter indicating the desired output level.
Iprint Action
0 No output printed.
1 Intermediate output is printed.

324 � bvp_finite_difference IMSL C/Math/Library

 Default: iprint = 0.
IMSL_MAX_SUBINTER, int mxgrid (Input)

Maximum number of grid points allowed.
Default: mxgrid = 100

IMSL_PROBLEM_EMBEDDED, float pistep, void fcnpeq(), void fcnpbc()
If this optional argument is supplied, then the routine
imsl_f_bvp_finite_difference assumes that the user has embedded the
problem into a one-parameter family of problems:

y� = y�(t, y, p)

h(yleft, yright, p) = 0

 such that for p = 0 the problem is simple. For p = 1, the original problem is
recovered. The routine imsl_f_bvp_finite_difference automatically
attempts to increment from p = 0 to p = 1. The value pistep is the beginning
increment used in this continuation. The increment will usually be changed by
routine imsl_f_bvp_finite_difference, but an arbitrary minimum of
0.01 is imposed.

 The argument p is the initial increment size for p. The functions fcnpeq and
fcnpbc are user-supplied functions, and are defined:
void fcnpeq(int n, float t, float y[], float p, float dypdp[]) (Input)

User supplied function to evaluate the derivative of y� with respect
to the parameter p.

 int n (Input)
Number of differential equations.

 float t (Input)
Independent variable, t.

 float y[] (Input)
 Array of size n containing the dependent variable values.

 float p (Input)
 Continuation parameter, p.

 float dypdp[] (Output)
 Array of size n containing the derivative y� with respect to the
 parameter p at (t, y).

void fcnpbc(int n, float yleft[], float yright[], float p,
 float h[])(Input)
User supplied function to evaluate the derivative of the boundary
conditions with respect to the parameter p.

 int n (Input)
 Number of differential equations.

Chapter 5: Differential Equations bvp_finite_difference � 325

 float yleft[] (Input)
 Array of size n containing the values of the dependent variable
 at the left endpoint.

 float yright[] (Input)
 Array of size n containing the values of the dependent variable
 at the right endpoint.

 float p (Input)
 Continuation parameter, p.

 float h[] (Output)
 Array of size n containing the derivative of fi with respect to p.

IMSL_ERR_EST, float **errest (Output)
Address of a pointer to an array of size n containing estimated error in y.

IMSL_ERR_EST_USER, float errest[] (Output)
User allocated array of size n containing estimated error in y.

IMSL_FCN_W_DATA, void fcneq (int n, float t, float y[], float p, float dydt[],
void *data) ,void *data, (Input)
User-supplied function to evaluate derivatives, which also accepts a pointer to
data that is supplied by the user. data is a pointer to the data to be passed to
the user-supplied function. See the Introduction, Passing Data to User-
Supplied Functions at the beginning of this manual for more details.

IMSL_JACOBIAN_W_DATA, void fcnjac(int n, float t, float y[], float p, float
dypdy[], void *data) ,void *data, (Input)
User-supplied function to evaluate the Jacobian, which also accepts a pointer
to data that is supplied by the user. data is a pointer to the data to be passed to
the user-supplied function. See the Introduction, Passing Data to User-
Supplied Functions at the beginning of this manual for more details.

IMSL_FCN_BC_W_DATA, void fcnbc(int n, float yleft[], float yright[], float
p, float h[], void *data) ,void *data, (Input)
User-supplied function to evaluate the boundary conditions , which also
accepts a pointer to data that is supplied by the user. data is a pointer to the
data to be passed to the user-supplied function. See the Introduction, Passing
Data to User-Supplied Functions at the beginning of this manual for more
details.

IMSL_PROBLEM_EMBEDDED_W_DATA, float pistep, void fcnpeq(void *data),
void fcnpbc(),void *data, (Input)
Same as optional argument IMSL_PROBLEM_EMBEDDED, except user-supplied
functions also accept a pointer to data that is supplied by the user. data is a
pointer to the data to be passed to the user-supplied function. See the
Introduction, Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

326 � bvp_finite_difference IMSL C/Math/Library

in t

Description
The routine imsl_f_bvp_finite_difference is based on the subprogram PASVA3
by M. Lentini and V. Pereyra (see Pereyra 1978). The basic discretization is the
trapezoidal rule over a nonuniform mesh. This mesh is chosen adaptively, to make the
local error approximately the same size everywhere. Higher-order discretizations are
obtained by deferred corrections. Global error estimates are produced to control the
computation. The resulting nonlinear algebraic system is solved by Newton’s method
with step control. The linearized system of equations is solved by a special form of
Gauss elimination that preserves the sparseness.

Example 1
This example solves the third-order linear equation

2 sy y y y��� �� �� � � �

subject to the boundary conditions y(0) = y(2�) and y�(0) = y�(2�) = 1. (Its solution is
y = sin t.) To use imsl_f_bvp_finite_difference, the problem is reduced to a
system of first-order equations by defining y� = y, y� = y� and y� = y�. The resulting
system is

� �

� � � �

� �

1 22

2 13

3 3 2 1 2

0 1 0

0 2

2 sin 2 1

y y y

y y y y

y y y y t y

�

�

� � �

� � �

� � � � � � �

1 0

0

�

�

Note that there is one boundary condition at the left endpoint t = 0 and one boundary
condition coupling the left and right endpoints. The final boundary condition is at the
right endpoint. The total number of boundary conditions must be the same as the
number of equations (in this case 3).

#include <math.h>
#include "imsl.h"

void fcneqn(int n, float t, float y[], float p, float dydt[]);
void fcnjac(int n, float t, float y[], float p, float dfdy[]);
void fcnbc(int n, float yleft[], float yright[], float p, float h[]);

#define MXGRID 100
#define N 3
void main()
{
 int n = N;
 int nleft = 1;
 int ncupbc = 1;
 float tleft = 0;
 float tright;
 int linear = 1;
 int nfinal;
 float tfinal[MXGRID];
 float yfinal[MXGRID][N];
 float errest[N];

Chapter 5: Differential Equations bvp_finite_difference � 327

 int i;

 tright = 2.0*imsl_f_constant("pi", 0);

 imsl_f_bvp_finite_difference(fcneqn, fcnjac, fcnbc,
 n, nleft, ncupbc, tleft, tright,
 linear, &nfinal, tfinal,
 (float*)(&yfinal[0][0]),
 IMSL_ERR_EST_USER, errest,
 0);
 printf(" tfinal y0 y1 y2 \n");
 for(i=0; i<nfinal; i++) {
 printf("%5d%15.6e%15.6e%15.6e%15.6e\n", i,
 tfinal[i], yfinal[i][0], yfinal[i][1], yfinal[i][2]);
 }
 printf("Error Estimates ");
 printf("%15.6e%15.6e%15.6e\n",errest[0],errest[1],errest[2]);
 return;
}

void fcneqn(int n, float t, float y[], float p, float dydt[])
{
 dydt[0] = y[1];
 dydt[1] = y[2];
 dydt[2] = 2*y[2] - y[1] + y[0] + sin(t);
}

void fcnjac(int n, float t, float y[], float p, float dfdy[])
{
 dfdy[0*n+0] = 0; /* df1/dy1 */
 dfdy[1*n+0] = 0; /* df2/dy1 */
 dfdy[2*n+0] = 1; /* df3/dy1 */
 dfdy[0*n+1] = 1; /* df1/dy2 */
 dfdy[1*n+1] = 0; /* df2/dy2 */
 dfdy[2*n+1] = -1; /* df3/dy2 */
 dfdy[0*n+2] = 0; /* df1/dy3 */
 dfdy[1*n+2] = 1; /* df2/dy3 */
 dfdy[2*n+2] = 2; /* df3/dy3 */
}

void fcnbc(int n, float yleft[], float yright[], float p, float h[])
{
 h[0] = yleft[1] - 1;
 h[1] = yleft[0] - yright[0];
 h[2] = yright[1] - 1;
}

Output
 tfinal y0 y1 y2
 0 0.000000e+00 -1.123446e-04 1.000000e+00 6.245916e-05
 1 3.490659e-01 3.419106e-01 9.397087e-01 -3.419581e-01
 2 6.981317e-01 6.426907e-01 7.660918e-01 -6.427230e-01
 3 1.396263e+00 9.847531e-01 1.737333e-01 -9.847453e-01
 4 2.094395e+00 8.660527e-01 -4.998748e-01 -8.660057e-01
 5 2.792527e+00 3.421828e-01 -9.395475e-01 -3.420647e-01
 6 3.490659e+00 -3.417236e-01 -9.396111e-01 3.418948e-01
 7 4.188790e+00 -8.656881e-01 -5.000588e-01 8.658734e-01
 8 4.886922e+00 -9.845795e-01 1.734572e-01 9.847519e-01

328 � bvp_finite_difference IMSL C/Math/Library

 9 5.585054e+00 -6.427722e-01 7.658259e-01 6.429526e-01
 10 5.934120e+00 -3.420819e-01 9.395434e-01 3.423984e-01
 11 6.283185e+00 -1.123446e-04 1.000000e+00 6.739637e-04
Error Estimates 2.840487e-04 1.792839e-04 5.587848e-04

Example 2
In this example, the following nonlinear problem is solved:

y� � y� + (1 + sin��t) sin t = 0

with y(0) = y(�) = 0. Its solution is y = sin t. As in Example 1, this equation is reduced
to a system of first-order differential equations by defining y� = y and y� = y�. The
resulting system is

� �

� � � �

1 2 1

2 1 1
3 2

0 0

1 sin sin 0

y y y

y y t t y �

� � �

� � � � �

In this problem, there is one boundary condition at the left endpoint and one at the right
endpoint; there are no coupled boundary conditions.

#include <math.h>
#include “imsl.h”

void fcneqn(int n, float x, float y[], float p, float dydx[]);
void fcnjac(int n, float x, float y[], float p, float dfdy[]);
void fcnbc(int n, float yleft[], float yright[], float p, float h[]);

#define MXGRID 100
#define NINIT 12
#define N 2

void main()
{
 int n = N, nleft = 1, ncupbc = 0, linear = 0;
 int i, nfinal, ninit = NINIT;
 float tleft = 0, tright;
 float tinit[NINIT], yinit[N][NINIT];
 float tfinal[MXGRID], yfinal[N][MXGRID];
 float *errest, step;

 tright = imsl_f_constant("pi", 0);
 step = (tright-tleft) / (ninit-1);

 for(i=0; i<ninit; i++) {
 tinit[i] = tleft + i*step;
 yinit[i][0] = 0.4 * (tinit[i]-tleft) * (tright-tinit[i]);
 yinit[i][1] = 0.4 * (tright+tleft-2*tinit[i]);
 }
 imsl_f_bvp_finite_difference(fcneqn, fcnjac, fcnbc,
 n, nleft, ncupbc, tleft, tright,
 linear, &nfinal, tfinal,

Chapter 5: Differential Equations bvp_finite_difference � 329

 (float*)(&yfinal[0][0]),
 IMSL_HINIT, ninit, tinit, yinit,
 IMSL_ERR_EST, &errest,
 0);
 printf(" t y0 y1\n");
 for(i=0; i<nfinal; i++) {
 printf("%5d%15.6e%15.6e%15.6e\n", i, tfinal[i], yfinal[i][0], yfinal[i][1]);
 }
 printf("Error Estimates ");
 printf("%15.6e%15.6e\n",errest[0],errest[1]);
 return;
}

void fcneqn(int n, float t, float y[], float p, float dydt[])
{
 float sx = sin(t);
 dydt[0] = y[1];
 dydt[1] = y[0]*y[0]*y[0] - (sx*sx+1)*sx;
}

void fcnjac(int n, float t, float y[], float p, float dfdy[])
{
 dfdy[0*n+0] = 0; /* df1/dy1 */
 dfdy[1*n+0] = 3*y[0]*y[0]; /* df2/dy1 */
 dfdy[0*n+1] = 1; /* df1/dy2 */
 dfdy[1*n+1] = 0; /* df2/dy2 */
}

void fcnbc(int n, float yleft[], float yright[], float p, float h[])
{
 h[0] = yleft[0];
 h[1] = yright[0];
}

Output
 t y0 y1
 0 0.000000e+00 0.000000e+00 9.999277e-01
 1 2.855994e-01 2.817682e-01 9.594315e-01
 2 5.711987e-01 5.406458e-01 8.412407e-01
 3 8.567981e-01 7.557380e-01 6.548904e-01
 4 1.142397e+00 9.096186e-01 4.154530e-01
 5 1.427997e+00 9.898143e-01 1.423307e-01
 6 1.713596e+00 9.898143e-01 -1.423308e-01
 7 1.999195e+00 9.096185e-01 -4.154530e-01
 8 2.284795e+00 7.557380e-01 -6.548902e-01
 9 2.570394e+00 5.406460e-01 -8.412405e-01
 10 2.855994e+00 2.817682e-01 -9.594312e-01
 11 3.141593e+00 0.000000e+00 -9.999274e-01
Error Estimates 3.907291e-05 7.124317e-05

330 � bvp_finite_difference IMSL C/Math/Library

Example 3
In this example, the following nonlinear problem is solved:

2/3 8
3 40 1 1

9 2 2
y y t t�� � � � � �

� � �
� � �
� � �

�
�
�

with y(0) = y(1) = �/2. As in the previous examples, this equation is reduced to a system
of first-order differential equations by defining y� = y and y� = y�. The resulting system
is

� �

� �

1 2 1

2/3 8

2 1
3
1

0 /

40 1 1
1 /

9 2 2

y y y

y y t t y

�

�

� � �

� � � � � � �
� � � �
� � � �
� � � �

2

2

The problem is embedded in a family of problems by introducing the parameter p and
by changing the second differential equation to

2/3 8

2
3
1

40 1 1

9 2 2
y py t t� � � � �

� � �
� � �
� � �

�
�
�

At p = 0, the problem is linear; and at p = 1, the original problem is recovered. The
derivatives 	y�/	p must now be specified in the subroutine fcnpeq. The derivatives
	f/	p are zero in fcnpbc.

#include <stdio.h>
#include <math.h>
#include <imsl.h>
void fcneqn(int n, float t, float y[], float p, float dydt[]);
void fcnjac(int n, float t, float y[], float p, float dfdy[]);
void fcnbc(int n, float yleft[], float yright[], float p, float h[]);
void fcnpeq(int n, float t, float y[], float p, float dfdp[]);
void fcnpbc(int n, float yleft[], float yright[], float p, float dhdp[]);

#define MXGRID 45
#define NINIT 12
#define N 2

void main()
{
 int n = 2;
 int nleft = 1;
 int ncupbc = 0;
 float tleft = 0;
 float tright = 1;
 float pistep = 0.1;
 int ninit = 5;
 float tinit[NINIT] = { 0.0, 0.4, 0.5, 0.6, 1.0 };
 float yinit[N][NINIT] = { 0.15749, 0.00215,
 0.0, 0.00215,
 0.15749, -0.83995,
 -0.05745, 0.0,
 0.05745, 0.83995 };

Chapter 5: Differential Equations bvp_finite_difference � 331

 int linear = 0;
 int nfinal;
 float tfinal[MXGRID];
 float yfinal[MXGRID][N];
 float *errest;
 int i;

 imsl_f_bvp_finite_difference(fcneqn, fcnjac, fcnbc, n, nleft,
 ncupbc, tleft, tright,
 linear, &nfinal, tfinal, (float*)(&yfinal[0][0]),
 IMSL_MAX_SUBINTER, MXGRID,
 IMSL_PROBLEM_EMBEDDED, fcnpeq, fcnpbc, pistep,
 IMSL_HINIT, ninit, tinit, yinit,
 IMSL_ERR_EST, &errest,
 0);
 printf(" t y0 y1\n");
 for(i=0; i<nfinal; i++) {
 printf("%5d%15.6e%15.6e%15.6e\n", i, tfinal[i], yfinal[i][0],

 yfinal[i][1]);
 }
 printf("Error Estimates ");
 printf("%15.6e%15.6e\n",errest[0],errest[1]);
 return;
}

void fcneqn(int n, float t, float y[], float p, float dydt[])
{
 float z = t - 0.5;
 dydt[0] = y[1];
 dydt[1] = p*y[0]*y[0]*y[0] + 40./9.*pow(z*z,1./3.) - pow(z,8);
}
void fcnjac(int n, float t, float y[], float p, float dfdy[])
{
 dfdy[0*n+0] = 0; /* df0/dy0 */
 dfdy[0*n+1] = 1; /* df0/dy1 */
 dfdy[1*n+0] = 3.*(p)*(y[0]*y[0]); /* df1/dy0 */
 dfdy[1*n+1] = 0; /* df1/dy1 */
}
void fcnbc(int n, float yleft[], float yright[], float p, float h[])
{
 float pi2 = imsl_f_constant("pi", 0)/2.0;
 h[0] = yleft[0] - pi2;
 h[1] = yright[0] - pi2;
}
void fcnpeq(int n, float t, float y[], float p, float dfdp[])
{
 dfdp[0] = 0;
 dfdp[1] = y[0]*y[0]*y[0];
}
void fcnpbc(int n, float yleft[], float yright[], float p, float dhdp[])
{
 dhdp[0] = 0;
 dhdp[1] = 0;
}

332 � fast_poisson_2d IMSL C/Math/Library

Output

 t y0 y1
 0 0.000000e+00 1.570796e+00 -1.949336e+00
 1 4.444445e-02 1.490495e+00 -1.669566e+00
 2 8.888889e-02 1.421951e+00 -1.419465e+00
 3 1.333333e-01 1.363953e+00 -1.194307e+00
 4 2.000000e-01 1.294526e+00 -8.958461e-01
 5 2.666667e-01 1.243628e+00 -6.373191e-01
 6 3.333334e-01 1.208785e+00 -4.135206e-01
 7 4.000000e-01 1.187783e+00 -2.219351e-01
 8 4.250000e-01 1.183038e+00 -1.584200e-01
 9 4.500000e-01 1.179822e+00 -9.973146e-02
 10 4.625000e-01 1.178748e+00 -7.233893e-02
 11 4.750000e-01 1.178007e+00 -4.638249e-02
 12 4.812500e-01 1.177756e+00 -3.399763e-02
 13 4.875000e-01 1.177582e+00 -2.205548e-02
 14 4.937500e-01 1.177480e+00 -1.061177e-02
 15 5.000000e-01 1.177447e+00 -1.496867e-07
 16 5.062500e-01 1.177480e+00 1.061153e-02
 17 5.125000e-01 1.177582e+00 2.205518e-02
 18 5.187500e-01 1.177756e+00 3.399727e-02
 19 5.250000e-01 1.178007e+00 4.638219e-02
 20 5.375000e-01 1.178748e+00 7.233876e-02
 21 5.500000e-01 1.179822e+00 9.973124e-02
 22 5.750000e-01 1.183038e+00 1.584199e-01
 23 6.000000e-01 1.187783e+00 2.219350e-01
 24 6.666667e-01 1.208786e+00 4.135206e-01
 25 7.333333e-01 1.243628e+00 6.373190e-01
 26 8.000000e-01 1.294526e+00 8.958461e-01
 27 8.666667e-01 1.363953e+00 1.194307e+00
 28 9.111111e-01 1.421951e+00 1.419465e+00
 29 9.555556e-01 1.490495e+00 1.669566e+00
 30 1.000000e+00 1.570796e+00 1.949336e+00
Error Estimates 3.451270e-06 5.550027e-05

fast_poisson_2d
Solves Poisson’s or Helmholtz’s equation on a two-dimensional rectangle using a fast
Poisson solver based on the HODIE finite-difference scheme on a uniform mesh.

Synopsis
#include <imsl.h>
float *imsl_f_fast_poisson_2d (float rhs_pde(), float rhs_bc(), float

coeff_u, int nx, int ny, float ax, float bx, float ay, float by,
Imsl_bc_type bc_type[], ..., 0)

The type double function is imsl_d_fast_poisson_2d.

Required Arguments
float rhs_pde (float x, float y)

User-supplied function to evaluate the right-hand side of the partial differential
equation at x and y.

Chapter 5: Differential Equations fast_poisson_2d � 333

float rhs_bc(Imsl_pde_side side, float x, float y)
User-supplied function to evaluate the right-hand side of the boundary
conditions, on side side, at x and y. The value of side will be one of the
following: IMSL_RIGHT, IMSL_BOTTOM, IMSL_LEFT, or IMSL_TOP.

float coeff_u (Input)
Value of the coefficient of u in the differential equation.

int nx (Input)
Number of grid lines in the x-direction. nx must be at least 4. See the
description section for further restrictions on nx.

int ny (Input)
Number of grid lines in the y-direction. ny must be at least 4. See the
“Description” section for further restrictions on ny.

float ax (Input)
The value of x along the left side of the domain.

float bx (Input)
The value of x along the right side of the domain.

float ay (Input)
The value of y along the bottom of the domain.

float by (Input)
The value of y along the top of the domain.

Imsl_bc_type bc_type[4] (Input)
Array of size 4 indicating the type of boundary condition on each side of the
domain or that the solution is periodic. The sides are numbered as follows:

Side Location
IMSL_RIGHT_SIDE(0) x = bx
IMSL_BOTTOM_SIDE(1) y = ay
IMSL_LEFT_SIDE(2) x = ax
IMSL_TOP_SIDE(3) y = by
The three possible boundary condition types are as follows:
Type Condition
IMSL_DIRICHLET Value of u is given.
IMSL_NEUMANN Value of du/dx is given (on the right or
 left sides) or du/dy (on the bottom or
 top of the domain).
IMSL_PERIODIC Periodic.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_fast_poisson_2d (float rhs_pde(), float rhs_bc(), float

coeff_u, int nx, int ny, float ax, float bx, float ay, float by,
Imsl_bc_type bc_type[],
IMSL_RETURN_USER, float u_user[],
IMSL_ORDER, int order,

334 � fast_poisson_2d IMSL C/Math/Library

IMSL_RHS_PDE_W_DATA, float rsh_pde (), void *data,
IMSL_RHS_BC_W_DATA, float rsh_bc (), void *data,
 0)

Optional Arguments
IMSL_RETURN_USER, float u_user[] (Output)

User-supplied array of size nx by ny containing solution at the grid points.
IMSL_ORDER, int order (Input)

Order of accuracy of the finite-difference approximation. It can be either 2 or 4.
Default: order = 4

IMSL_RSH_PDE_W_DATA, float rhs_pde (float x, float y, void *data), void
*data, (Input)
User-supplied function to evaluate the right-hand side of the partial differential
equation at x and y, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function.
See the Introduction, Passing Data to User-Supplied Functions at the
beginning of this manual for more details.

IMSL_RSH_BC_W_DATA, float rhs_bc(Imsl_pde_side side, float x, float y, void
*data) , void *data, (Input)
User-supplied function to evaluate right-hand side of the boundary conditions,
which also accepts a pointer to data that is supplied by the user. data is a
pointer to the data to be passed to the user-supplied function. See the
Introduction, Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

Description
Let c = coeff_u, ax = ax, bx = bx, ay = ay, by = by, nx = nx and ny = ny.
imsl_f_fast_poisson_2d is based on the code HFFT2D by Boisvert (1984). It
solves the equation

�

�

�

�

2

2

2

2
u

x
u

y
cu p� � �

on the rectangular domain (ax, bx) � (ay, by) with a user-specified combination of
Dirichlet (solution prescribed), Neumann (first-derivative prescribed), or periodic
boundary conditions. The sides are numbered clockwise, starting with the right side.

Chapter 5: Differential Equations fast_poisson_2d � 335

by

y

Side 4

Side 2

Side 3 Side 1

a y
xa bx

x

When c = 0 and only Neumann or periodic boundary conditions are prescribed, then
any constant may be added to the solution to obtain another solution to the problem. In
this case, the solution of minimum �-norm is returned.
The solution is computed using either a second-or fourth-order accurate finite-
difference approximation of the continuous equation. The resulting system of linear
algebraic equations is solved using fast Fourier transform techniques. The algorithm
relies on the fact that nx � 1 is highly composite (the product of small primes). For
details of the algorithm, see Boisvert (1984). If nx � 1 is highly composite then the
execution time of imsl_f_fast_poisson_2d is proportional to nxny log2 nx. If
evaluations of p(x, y) are inexpensive, then the difference in running time between
order = 2 and order = 4 is small.
The grid spacing is the distance between the (uniformly spaced) grid lines. It is given
by the formulas hx = (bx � ax)/(nx � 1) and hy = (by � ay)/(ny � 1). The grid spacings
in the x and y directions must be the same, i.e., nx and ny must be such that hx is equal
to hy. Also, as noted above, nx and ny must be at least 4. To increase the speed of the
fast Fourier transform, nx � 1 should be the product of small primes. Good choices are
17, 33, and 65.
If -coeff_u is nearly equal to an eigenvalue of the Laplacian with homogeneous
boundary conditions, then the computed solution might have large errors.

Example
In this example, the equation

�

�

�

�

2

2

2

2
2 33 2 2 16u

x
u

y
u x y e x y

� � � � � �
�sinb g

with the boundary conditions

336 � fast_poisson_2d IMSL C/Math/Library

�

�

u
y

x y e x y
� � �

�2 2 3 2 3cosb g

on the bottom side and

� � 2 32sin x yx yu e �

�� �

on the other three sides is solved. The domain is the rectangle [0, ¼] � [0, ½]. The
output of imsl_f_fast_poisson_2d is a 17 � 33 table of values. The functions
imsl_f_spline_2d_value are used to print a different table of values.

#include <imsl.h>
#include <math.h>

main()
{
 float rhs_pde(float, float);
 float rhs_bc(Imsl_pde_side, float, float);

 int nx = 17;
 int nxtabl = 5;
 int ny = 33;
 int nytabl = 5;

 int i;
 int j;
 Imsl_f_spline *sp;
 Imsl_bc_type bc_type[4];

 float ax, ay, bx, by;
 float x, y, xdata[17], ydata[33];
 float coefu, *u;
 float u_table;
 float abs_error;

 /* Set rectangle size */

 ax = 0.0;
 bx = 0.25;
 ay = 0.0;
 by = 0.50;

 /* Set boundary conditions */

 bc_type[IMSL_RIGHT_SIDE] = IMSL_DIRICHLET_BC;
 bc_type[IMSL_BOTTOM_SIDE] = IMSL_NEUMANN_BC;
 bc_type[IMSL_LEFT_SIDE] = IMSL_DIRICHLET_BC;
 bc_type[IMSL_TOP_SIDE] = IMSL_DIRICHLET_BC;

 /* Coefficient of u */
 coefu = 3.0;

 /* Solve the PDE */

 u = imsl_f_fast_poisson_2d(rhs_pde, rhs_bc, coefu, nx, ny,
 ax, bx, ay, by, bc_type, 0);

 /* Set up for interpolation */

Chapter 5: Differential Equations fast_poisson_2d � 337

 for (i = 0; i < nx; i++)
 xdata[i] = ax + (bx - ax) * (float) i / (float) (nx - 1);

 for (i = 0; i < ny; i++)
 ydata[i] = ay + (by - ay) * (float) i / (float) (ny - 1);

 /* Compute interpolant */

 sp = imsl_f_spline_2d_interp(nx, xdata, ny, ydata, u, 0);

 printf(" x y u error\n\n");
 for (i = 0; i < nxtabl; i++)
 for (j = 0; j < nytabl; j++) {
 x = ax + (bx - ax) * (float) j / (float) (nxtabl -
 1);
 y = ay + (by - ay) * (float) i / (float) (nytabl -
 1);
 u_table = imsl_f_spline_2d_value(x, y, sp, 0);
 abs_error = fabs(u_table - sin(x + 2.0 * y) -
 exp(2.0 * x + 3.0 * y));

 /* Print computed answer and absolute on
 nxtabl by nytabl grid */

 printf(" %6.4f %6.4f %6.4f %8.2e\n",
 x, y, u_table, abs_error);
 }
}

float rhs_pde(float x, float y)
{
 /* Define the right side of the PDE */

 return (-2.0 * sin(x + 2.0 * y) + 16.0 * exp(2.0 * x + 3.0 * y));
}

float rhs_bc(Imsl_pde_side side, float x, float y)
{
 /* Define the boundary conditions */

 if (side == IMSL_BOTTOM_SIDE)
 return (2.0 * cos(x + 2.0 * y) + 3.0 * exp(2.0 * x + 3.0 *
 y));
 else
 return (sin(x + 2.0 * y) + exp(2.0 * x + 3.0 * y));
}

Output
 x y u error
 0.0000 0.0000 1.0000 0.00e+00
 0.0625 0.0000 1.1956 5.12e-06
 0.1250 0.0000 1.4087 7.19e-06
 0.1875 0.0000 1.6414 5.10e-06
 0.2500 0.0000 1.8961 8.67e-08
 0.0000 0.1250 1.7024 1.73e-07
 0.0625 0.1250 1.9562 6.39e-06
 0.1250 0.1250 2.2345 9.50e-06

338 � fast_poisson_2d IMSL C/Math/Library

 0.1875 0.1250 2.5407 6.36e-06
 0.2500 0.1250 2.8783 1.66e-07
 0.0000 0.2500 2.5964 2.60e-07
 0.0625 0.2500 2.9322 9.25e-06
 0.1250 0.2500 3.3034 1.34e-05
 0.1875 0.2500 3.7148 9.27e-06
 0.2500 0.2500 4.1720 9.40e-08
 0.0000 0.3750 3.7619 4.84e-07
 0.0625 0.3750 4.2163 9.16e-06
 0.1250 0.3750 4.7226 1.36e-05
 0.1875 0.3750 5.2878 9.44e-06
 0.2500 0.3750 5.9199 5.72e-07
 0.0000 0.5000 5.3232 5.93e-07
 0.0625 0.5000 5.9520 9.84e-07
 0.1250 0.5000 6.6569 1.34e-06
 0.1875 0.5000 7.4483 4.55e-07
 0.2500 0.5000 8.3380 2.27e-06

Chapter 6: Transforms Routines � 339

Chapter 6: Transforms

Routines
6.1 Real Trigonometric FFTs

Real FFT ... fft_real 341
Real FFT initialization ... fft_real_init 345

6.2 Complex Exponential FFTs
Complex FFT... fft_complex 346
Complex FFT initialization ...fft_complex_init 349

6.3 Real Sine and Cosine FFTs
Fourier cosine transform .. fft_cosine 351
Fourier cosine transform initialization................................. fft_cosine_init 353
Fourier sine transform .. fft_sine 355
Fourier sine transform initialization...fft_sine_init 357

6.4 Two-Dimensional FFTs
Complex two-dimensional FFT.. fft_2d_complex 359

6.5 Convolution and Correlation
Real convolution/correlation ...convolution 363
Complex convolution/correlationconvolution (complex) 370

6.6 Laplace Transform
Approximate inverse Laplace transform
of a complex function .. inverse_laplace 376

Usage Notes
Fast Fourier Transforms
A fast Fourier transform (FFT) is simply a discrete Fourier transform that is computed
efficiently. Basically, the straightforward method for computing the Fourier transform
takes approximately n2 operations where n is the number of points in the transform,
while the FFT (which computes the same values) takes approximately n log n
operations. The algorithms in this chapter are modeled on the Cooley-Tukey (1965)

340 � Usage Notes IMSL C/Math/Library

algorithm. Hence, these functions are most efficient for integers that are highly
composite; that is, integers that are a product of small primes.

For the two functions imsl_f_fft_real (page 341) and imsl_c_fft_complex
(page 346) , there is a corresponding initialization function. Use these functions only
when repeatedly transforming sequences of the same length. In this situation, the
initialization function computes the initial setup once; subsequently, the user calls the
corresponding main function with the appropriate option. This may result in substantial
computational savings. For more information on the use of these functions, consult the
documentation under the appropriate function name.

In addition to the one-dimensional transformations described above, we also provide a
complex two-dimensional FFT and its inverse.

Continuous Versus Discrete Fourier Transform
There is, of course, a close connection between the discrete Fourier transform and the
continuous Fourier transform. Recall that the continuous Fourier transform is defined
(Brigham 1974) as

� � � �� � � � 2ˆ i tf f f t e � �

� �

�
�

��

� � � � dt

We begin by making the following approximation:

� � � �

� � � �

� �

/ 2 2

/ 2

2 / 2

0

2

0

ˆ

/ 2

/ 2

T i t

T

T i t T

Ti T i t

f f t e dt

f t T e dt

e f t T e

� �

� �

� � � �

�
�

�

� �

�

�

� �

� �

�

�

� dt

If we approximate the last integral using the rectangle rule with spacing h = T � n, we
have

� � � �
1

2

0

ˆ / 2
n

i T i kh

k
f e h e f kh T� � � �

�

�

�

�

� ��

Finally, setting � = j/T for j = 0, �, n � 1 yields

� � � � � �
1 1

2 / 2 /

0 0

ˆ / / 2 1
n n

jij ijk n ijk n h
k

k k
f j T e h e f kh T e f� � �

� �

� �

� �

� � � �� �

where the vector f h = (f(�T/2), �, f((n � 1)h � T/2)). Thus, after scaling the
components by (�1)jh, the discrete Fourier transform, as computed in
imsl_c_fft_complex (with input f h) is related to an approximation of the
continuous Fourier transform by the above formula.

If the function f is expressed as a C function, then the continuous Fourier transform

f̂

Chapter 6: Transforms fft_real � 341

can be approximated using the IMSL function imsl_f_int_fcn_fourier
(Chapter 4, “Quadrature”).

fft_real
Computes the real discrete Fourier transform of a real sequence.

Synopsis
#include <imsl.h>
float *imsl_f_fft_real (int n, float p[], �, 0)

The type double function is imsl_d_fft_real.

Required Arguments

int n (Input)
Length of the sequence to be transformed.

float p[] (Input)
Array with n components containing the periodic sequence.

Return Value
A pointer to the transformed sequence. To release this space, use free. If no value can
be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_fft_real (int n, float p[],

IMSL_BACKWARD,
IMSL_PARAMS, float params[],
IMSL_RETURN_USER, float q[],
0)

Optional Arguments
IMSL_BACKWARD

Compute the backward transform and return a pointer to the (backward)
transformed sequence.

IMSL_PARAMS, float params[] (Input)
Pointer returned by a previous call to imsl_f_fft_real_init. If
imsl_f_fft_real is used repeatedly with the same value of n, then it is
more efficient to compute these parameters only once.

IMSL_RETURN_USER, float q[] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no

342 � fft_real IMSL C/Math/Library

storage is allocated for the solution, and imsl_f_fft_real returns q. The
array q must be at least n long.

Description
The function imsl_f_fft_real computes the discrete Fourier transform of a real
vector of size n. The method used is a variant of the Cooley-Tukey algorithm, which is
most efficient when n is a product of small prime factors. If n satisfies this condition,
then the computational effort is proportional to n log n.

By default, imsl_f_fft_real computes the forward transform. If n is even, then the
forward transform is

1

2 1
0

1

2 2
0

1

0
0

2cos 1, , / 2

2sin 1, , / 2 1

n

m k
k

n

m k
k

n

k
k

kmq p m n
n

kmq p m n
n

q p

�

�

�

�

�

�

�

�

�

�

� �

� � � �

�

�

�

�

�

�

If n is odd, qm is defined as above for m from 1 to (n � 1)/2.

Let f be a real valued function of time. Suppose we sample f at n equally spaced time
intervals of length � seconds starting at time t0. That is, we have

pi:= f(t0 + i�) i = 0, 1, …, n � 1

We will assume that n is odd for the remainder of this discussion. The function
imsl_f_fft_real treats this sequence as if it were periodic of period n. In particular,
it assumes that f(t0) = f(t0 + n�). Hence, the period of the function is assumed to be
T = n�. We can invert the above transform for p as follows:

� � � �3 / 2 3 / 2

0 2 1 2 2
0 0

1 22 cos 2 sin
n n

m k k
k k

km kmp q q q
n n

� �
� �

� �

� �

� �
� � �� �

� �� 	
� �

2
n

This formula is very revealing. It can be interpreted in the following manner. The
coefficients q produced by imsl_f_fft_real determine an interpolating
trigonometric polynomial to the data. That is, if we define

� �
� � � � � � � �

� � � � � � � �

3 / 2 3 / 2
0 0

0 2 1 2 2
0 0

3 / 2 3 / 2
0 0

0 2 1 2 2
0 0

2 21 2 cos 2 sin

2 21 2 cos 2 sin

n n

k k
k k

n n

k k
k k

k t t k t t
g t q q q

n n

k t t k t t
q q q

n T

� �

� �

� �

� �

� �

� �

� �

� �

� �� �
� � �� �

� �� �	

� �� �
� � �� �

� �	

� �

� �

n

T

then we have

f(t0 + (i � 1� �) = g(t0 + (i � 1) �

Chapter 6: Transforms fft_real � 343

Now suppose we want to discover the dominant frequencies, forming the vector P of
length (n + 1)/2 as follows:

� �

0 0

2 2
2 2 2 1

:

: 1, 2,k k k

P q

P q q k n
� �

�

� � � ��, 1 / 2

These numbers correspond to the energy in the spectrum of the signal. In particular,
Pk corresponds to the energy level at frequency

10,1, ,
2

k k nk
T n

�
� �

�
�

Furthermore, note that there are only (n + 1)/2 � T/(2�) resolvable frequencies when
n observations are taken. This is related to the Nyquist phenomenon, which is induced
by discrete sampling of a continuous signal. Similar relations hold for the case when
n is even.

If the optional argument IMSL_BACKWARD is specified, then the backward transform is
computed. If n is even, then the backward transform is

� �
/ 2 1 / 2 2

0 1 2 1 2 2
0 0

2 21 2 cos 2 sin
n n

m
m n k k

k k

km kmq p p p p
n n
� �

� �

� � �

� �

� � � � �� �

If n is odd,
� � � �3 / 2 3 / 2

0 2 1 2 2
0 0

2 22 cos 2 sin
n n

m k k
k k

km kmq p p p
n n
� �

� �

� �

� �

� � �� �

The backward Fourier transform is the unnormalized inverse of the forward Fourier
transform.

The function imsl_f_fft_real is based on the real FFT in FFTPACK, which was
developed by Paul Swarztrauber at the National Center for Atmospheric Research.

Examples

Example 1
In this example, a pure cosine wave is used as a data vector, and its Fourier series is
recovered. The Fourier series is a vector with all components zero except at the
appropriate frequency where it has an n.

#include <imsl.h>
#include <math.h>
#include <stdio.h>

main()
{
 int k, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0);
 float p[8], *q;

344 � fft_real IMSL C/Math/Library

 /* Fill q with a pure exponential signal */
 for (k = 0; k < n; k++)
 p[k] = cos(k*two_pi/n);

 q = imsl_f_fft_real (n, p, 0);

 printf(" index p q\n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f\n", k, p[k], q[k]);
}

Output
index p q
 0 1.00 0.00
 1 0.62 3.50
 2 -0.22 0.00
 3 -0.90 -0.00
 4 -0.90 -0.00
 5 -0.22 0.00
 6 0.62 -0.00

Example 2
This example computes the Fourier transform of the vector x, where xj = (�1)j for j = 0 to n � 1.
The backward transform of this vector is now computed by using the optional argument
IMSL_BACKWARD. Note that s = nx, that is,
sj = (�1)jn, for j = 0 to n � 1.

#include <imsl.h>
#include <stdio.h>

main()
{
 int k, n = 7;
 float *q, *s, x[8];
 /* Fill data vector */
 x[0] = 1.0;
 for (k = 1; k<n; k++)
 x[k] = -x[k-1];
 /* Compute the forward transform of x */
 q = imsl_f_fft_real (n, x, 0);
 /* Compute the backward transform of x */
 s = imsl_f_fft_real (n, q,
 IMSL_BACKWARD,
 0);
 printf(" index x q s\n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f%10.2f\n", k, x[k], q[k], s[k]);
}

Output
index x q s
 0 1.00 1.00 7.00
 1 -1.00 1.00 -7.00
 2 1.00 0.48 7.00
 3 -1.00 1.00 -7.00

Chapter 6: Transforms fft_real_init � 345

 4 1.00 1.25 7.00
 5 -1.00 1.00 -7.00
 6 1.00 4.38 7.00

fft_real_init
Computes the parameters for imsl_f_fft_real.

Synopsis
#include <imsl.h>
float *imsl_f_fft_real_init (int n)

The type double function is imsl_d_fft_real_init.

Required Arguments
int n (Input)

Length of the sequence to be transformed.

Return Value
A pointer to the parameter vector of length 2n + 15 that can then be used by
imsl_f_fft_real when the optional argument IMSL_PARAMS is specified. To
release this space, use free. If no value can be computed, then NULL is returned.

Description
The function imsl_f_fft_real_init should be used when many calls are to be
made to imsl_f_fft_real without changing the sequence length n. This function
computes the parameters that are necessary for the real Fourier transform.

The function imsl_f_fft_real_init is based on the routine RFFTI in FFTPACK,
which was developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

Example
This example computes three distinct real FFTs by calling imsl_f_fft_real_ init
once and then calling imsl_f_fft_real three times.

#include <imsl.h>
#include <math.h>
#include <stdio.h>

main()
{
 int k, j, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0);
 float p[8], *q, *work;
 work = imsl_f_fft_real_init (n);
 for (j = 0; j < 3; j++){
 /* Fill p with a pure sinusoidal signal */
 for (k = 0; k < n; k++)
 p[k] = cos(k*two_pi*j/n);

346 � fft_complex IMSL C/Math/Library

 q = imsl_f_fft_real (n, p,
 IMSL_PARAMS, work, 0);

 printf(" index p q\n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f\n", k, p[k], q[k]);
 }
}

Output
index p q
 0 1.00 7.00
 1 1.00 0.00
 2 1.00 0.00
 3 1.00 0.00
 4 1.00 0.00
 5 1.00 -0.00
 6 1.00 0.00

 index p q
 0 1.00 0.00
 1 0.62 3.50
 2 -0.22 0.00
 3 -0.90 -0.00
 4 -0.90 -0.00
 5 -0.22 0.00
 6 0.62 -0.00

 index p q
 0 1.00 -0.00
 1 -0.22 0.00
 2 -0.90 -0.00
 3 0.62 3.50
 4 0.62 -0.00
 5 -0.90 0.00
 6 -0.22 0.00

fft_complex
Computes the complex discrete Fourier transform of a complex sequence.

Synopsis
#include <imsl.h>
f_complex *imsl_c_fft_complex (int n, f_complex p[], �, 0)

The type d_complex function is imsl_z_fft_complex.

Required Arguments

int n (Input)
Length of the sequence to be transformed.

f_complex p[] (Input)
Array with n components containing the periodic sequence.

Chapter 6: Transforms fft_complex � 347

/

Return Value
If no optional arguments are used, imsl_c_fft_complex returns a pointer to the
transformed sequence. To release this space, use free. If no value can be computed,
then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_fft_complex (int n, f_complex p[],

IMSL_BACKWARD,
IMSL_PARAMS, float params[],
IMSL_RETURN_USER, f_complex q[],
0)

Optional Arguments
IMSL_BACKWARD

Compute the backward transform.

IMSL_PARAMS, float params[] (Input)
Pointer returned by a previous call to imsl_c_fft_complex_init. If
imsl_c_fft_complex is used repeatedly with the same value of n, then it is
more efficient to compute these parameters only once.

IMSL_RETURN_USER, f_complex q[] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no
storage is allocated for the solution, and imsl_c_fft_complex returns q.
The array q must be of length at least n.

Description
The function imsl_c_fft_complex computes the discrete Fourier transform of a real
vector of size n. The method used is a variant of the Cooley-Tukey algorithm, which is
most efficient when n is a product of small prime factors. If n satisfies this condition,
then the computational effort is proportional to n log n.

By default, imsl_c_fft_complex computes the forward transform below.
1

2 /

0

n
imj n

j m
m

q p e �

�

�

�

��

Note that we can invert the Fourier transform as follows below.
1

1 2

0

n
ijm n

m n j
j

p q e �

�

�

� �

This formula reveals the fact that, after properly normalizing the Fourier coefficients,
you have the coefficients for a trigonometric interpolating polynomial to the data. The

348 � fft_complex IMSL C/Math/Library

function imsl_c_fft_complex is based on the complex FFT in FFTPACK, which
was developed by Paul Swarztrauber at the National Center for Atmospheric Research.

If the option IMSL_BACKWARD is selected, then the following computation is
performed.

1
2 /

0

n
imj n

j m
m

q p e �

�

�

��

Furthermore, the relation between the forward and backward transforms is that they are
unnormalized inverses of each other. That is, the following code fragment begins with a
vector p and concludes with a vector p2 = np.
q = imsl_c_fft_complex(n, p, 0);

p2 = imsl_c_fft_complex(n, q, IMSL_BACKWARD, 0);

Examples

Example 1
This example inputs a pure exponential data vector and recovers its Fourier series,
which is a vector with all components zero except at the appropriate frequency where it
has an n.

#include <imsl.h>
#include <math.h>
#include <stdio.h>

main()
{
 int k, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0);
 f_complex p[8], *q, z;
 /* Fill p with a pure exponential signal */
 for (k = 0; k < n; k++) {
 z.re = 0.;
 z.im = k*two_pi/n;
 p[k] = imsl_c_exp(z);
 }
 q = imsl_c_fft_complex (n, p, 0);

 printf(" index p.re p.im q.re q.im\n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im,
 q[k].re, q[k].im);
}

Output
 index p.re p.im q.re q.im
 0 1.00 0.00 0.00 -0.00
 1 0.62 0.78 7.00 0.00
 2 -0.22 0.97 -0.00 -0.00
 3 -0.90 0.43 0.00 -0.00
 4 -0.90 -0.43 0.00 0.00

Chapter 6: Transforms fft_complex_init � 349

 5 -0.22 -0.97 -0.00 0.00
 6 0.62 -0.78 0.00 -0.00

Example 2
The backward transform is used to recover the original sequence. Notice that the
forward transform followed by the backward transform multiplies the entries in the
original sequence by the length of the sequence.

#include <imsl.h>
#include <math.h>
#include <stdio.h>

main()
{
 int k, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0);
 f_complex p[7], *q, *pp;
 /* Fill p with an increasing signal */
 for (k = 0; k < n; k++) {
 p[k].re = (float) k;
 p[k].im = 0.;
 }
 q = imsl_c_fft_complex (n, p, 0);
 pp = imsl_c_fft_complex (n, q,
 IMSL_BACKWARD,
 0);
 printf(" index p.re p.im pp.re pp.im \n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im,
 pp[k].re , pp[k].im);
}

Output
index p.re p.im pp.re pp.im
 0 0.00 0.00 0.00 0.00
 1 1.00 0.00 7.00 0.00
 2 2.00 0.00 14.00 0.00
 3 3.00 0.00 21.00 0.00
 4 4.00 0.00 28.00 0.00
 5 5.00 0.00 35.00 0.00
 6 6.00 0.00 42.00 0.00

fft_complex_init
Computes the parameters for imsl_c_fft_complex.

Synopsis
#include <imsl.h>
float *imsl_c_fft_complex_init (int n)

The type double function is imsl_z_fft_complex_init.

350 � fft_complex_init IMSL C/Math/Library

Required Arguments

int n (Input)
Length of the sequence to be transformed.

Return Value
A pointer to the parameter vector of type float and length 2n + 15 which can then be
used by imsl_c_fft_complex when the optional argument IMSL_PARAMS is
specified. To release this space, use free. If no value can be computed, then NULL is
returned.

Description
The routine imsl_c_fft_complex_init should be used when many calls are to be
made to imsl_c_fft_complex without changing the sequence length n. This routine
computes constants which are necessary for the real Fourier transform.

The function imsl_c_fft_complex_init is based on the routine CFFTI in
FFTPACK, which was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Example
This example computes three distinct complex FFTs by calling
imsl_c_fft_complex_init once, then calling imsl_c_fft_complex 3 times.

#include <imsl.h>
#include <math.h>
#include <stdio.h>

main()
{
 int k, j, n = 7;
 float two_pi = 2*imsl_f_constant("pi", 0), *work;
 f_complex p[8], *q, z;
 work = imsl_c_fft_complex_init (n);
 for (j = 0; j < 3; j++){
 /* Fill p with a pure exponential signal */
 for (k = 0; k < n; k++) {
 z.re = 0.;
 z.im = k*two_pi*j/n;
 p[k] = imsl_c_exp(z);
 }
 q = imsl_c_fft_complex (n, p,
 IMSL_PARAMS, work, 0);

 printf("\n index p.re p.im q.re q.im\n");
 for (k = 0; k < n; k++)
 printf("%11d%10.2f%10.2f%10.2f%10.2f\n", k, p[k].re, p[k].im,
 q[k].re, q[k].im);
 }
}

Chapter 6: Transforms fft_cosine � 351

Output
index p.re p.im q.re q.im
 0 1.00 0.00 7.00 0.00
 1 1.00 0.00 0.00 0.00
 2 1.00 0.00 0.00 0.00
 3 1.00 0.00 0.00 0.00
 4 1.00 0.00 0.00 0.00
 5 1.00 0.00 0.00 0.00
 6 1.00 0.00 0.00 0.00

index p.re p.im q.re q.im
 0 1.00 0.00 0.00 -0.00
 1 0.62 0.78 7.00 0.00
 2 -0.22 0.97 -0.00 -0.00
 3 -0.90 0.43 0.00 -0.00
 4 -0.90 -0.43 0.00 0.00
 5 -0.22 -0.97 -0.00 0.00
 6 0.62 -0.78 0.00 -0.00

index p.re p.im q.re q.im
 0 1.00 0.00 -0.00 -0.00
 1 -0.22 0.97 0.00 -0.00
 2 -0.90 -0.43 7.00 0.00
 3 0.62 -0.78 -0.00 -0.00
 4 0.62 0.78 0.00 -0.00
 5 -0.90 0.43 0.00 0.00
 6 -0.22 -0.97 -0.00 0.00

fft_cosine
Computes the discrete Fourier cosine transformation of an even sequence.

Synopsis

#include <imsl.h>

float *imsl_f_fft_cosine (int n, float p[], …, 0)

The type double procedure is imsl_d_fft_cosine.

Required Arguments

int n (Input)
Length of the sequence to be transformed. It must be greater than 1.

float p[] (Input)
Array of size n containing the sequence to be transformed.

Return Value
A pointer to the transformed sequence. To release this space, use free. If no solution
was computed, then NULL is returned.

352 � fft_cosine IMSL C/Math/Library

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_fft_cosine (int n, float p[],
IMSL_RETURN_USER, float q[],
IMSL_PARAMS, float params[],
0)

Optional Arguments
IMSL_RETURN_USER, float q[] (Output)

Store the result in the user-provided space pointed to by q. Therefore, no
storage is allocated for the solution, and imsl_f_fft_cosine returns q. The
array must be of length n at least.

IMSL_PARAMS, float params[] (Input)
Pointer returned by a previous call to imsl_f_fft_cosine_init. If
imsl_f_fft_cosine is used repeatedly with the same value of n, then it is
more efficient to compute these parameters only once.
Default: Initializing parameters computed each time imsl_f_fft_cosine is
entered

Description
The function imsl_f_fft_cosine computes the discrete Fourier cosine transform of
a real vector of size N. The method used is a variant of the Cooley-Tukey algorithm,
which is most efficient when N � 1 is a product of small prime factors. If N satisfies this
condition, then the computational effort is proportional to N logN. Specifically, given
an N-vector p, imsl_f_fft_cosine returns in q

� �
2

0 1
1

2 sin() 1
1

N
m

m n N
n

mnq p s s
N

�
�

�

�

� � �

�
� �

Finally, note that the Fourier cosine transform is its own (unnormalized) inverse. The
imsl_f_fft_cosine function is based on the sine FFT in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Example
This example inputs a pure cosine wave as a data vector and recovers its Fourier cosine
series, which is a vector with all components zero, except n � 1 at the appropriate
frequency.

#include <imsl.h>
#include <math.h>

main()
{
 int n = 7;
 int i;
 float p[7];
 float *q;

Chapter 6: Transforms fft_cosine_init � 353

 float pi;

 pi = imsl_f_constant("pi", 0);

 /* Fill p with a pure cosine wave */

 for (i=0; i<n; i++)
 p[i] = cos((float)(i)*pi/(float)(n-1));

 q = imsl_f_fft_cosine (n, p, 0);

 printf (" index\t p\t q\n");
 for (i=0; i<n; i++)
 printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]);
}

Output
 index p q
 0 1.00 -0.00
 1 0.87 6.00
 2 0.50 0.00
 3 -0.00 0.00
 4 -0.50 -0.00
 5 -0.87 -0.00
 6 -1.00 -0.00

fft_cosine_init
Computes the parameters needed for imsl_f_fft_cosine.

Synopsis

#include <imsl.h>

float *imsl_f_fft_cosine_init (int n)

The type double procedure is imsl_d_fft_cosine_init.

Required Arguments

int n (Input)
Length of the sequence to be transformed. It must be greater than 1.

Return Value
A pointer to parameter vector of length (3*n + 15) that can then be used by
imsl_f_fft_cosine when the optional argument IMSL_PARAMS is specified. To
release this space, use free. If no solution was computed, then NULL is returned.

Description
The function imsl_f_fft_cosine_init should be used when many calls must be
made to imsl_f_fft_cosine without changing the sequence length n. The function
imsl_f_fft_cosine_init is based on the routine COSTI in FFTPACK. The

354 � fft_cosine_init IMSL C/Math/Library

package FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Example
This example computes three distinct sine FFTs by calling
imsl_f_fft_cosine_init once, then calling imsl_f_fft_cosine three times.
The internal parameter initialization in imsl_f_fft_cosine is now skipped.

#include <imsl.h>
#include <math.h>

main()
{
 int n = 7;
 int i, k;
 float p[7];
 float q[7];
 float pi;
 float *params;

 pi = imsl_f_constant("pi", 0);

 /* Compute parameters for transform of
 length n */

 params = imsl_f_fft_cosine_init (n);

 /* Different frequencies of the same
 wave will be transformed */
 for (k=0; k<3; k++) {
 printf("\n");

 /* Fill p with a pure cosine wave */

 for (i=0; i<n; i++)
 p[i] = cos((float)((k+1)*i)*pi/(float)(n-1));

 /* Compute the transform of p */

 imsl_f_fft_cosine (n, p,
 IMSL_PARAMS, params,
 IMSL_RETURN_USER, q,
 0);

 printf (" index\t p\t q\n");
 for (i=0; i<n; i++)
 printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]);

 }
}

Output
 index p q
 0 1.00 -0.00
 1 0.87 6.00
 2 0.50 0.00

Chapter 6: Transforms fft_sine � 355

 3 -0.00 0.00
 4 -0.50 -0.00
 5 -0.87 -0.00
 6 -1.00 -0.00

 index p q
 0 1.00 0.00
 1 0.50 -0.00
 2 -0.50 6.00
 3 -1.00 0.00
 4 -0.50 0.00
 5 0.50 0.00
 6 1.00 -0.00

 index p q
 0 1.00 -0.00
 1 -0.00 0.00
 2 -1.00 -0.00
 3 0.00 6.00
 4 1.00 0.00
 5 -0.00 -0.00
 6 -1.00 0.00

fft_sine
Computes the discrete Fourier sine transformation of an odd sequence.

Synopsis

#include <imsl.h>

float *imsl_f_fft_sine (int n, float p[], …, 0)

The type double procedure is imsl_d_fft_sine.

Required Arguments

int n (Input)
Length of the sequence to be transformed. It must be greater than 1.

float p[] (Input)
Array of size n containing the sequence to be transformed.

Return Value
A pointer to the transformed sequence. To release this space, use free. If no solution
was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_fft_sine (int n, float p[],
IMSL_RETURN_USER, float q[],

356 � fft_sine IMSL C/Math/Library

IMSL_PARAMS, float params[],
0)

Optional Arguments
IMSL_RETURN_USER, float q[] (Output)

Store the result in the user-provided space pointed to by q. Therefore, no
storage is allocated for the solution, and imsl_f_fft_sine returns q. The
array must be of length at least n + 1.

IMSL_PARAMS, float params[] (Input)
Pointer returned by a previous call to imsl_f_fft_sine_init. If
imsl_f_fft_sine is used repeatedly with the same value of n, then it is
more efficient to compute these parameters only once.
Default: Initializing parameters computed each time imsl_f_fft_sine is
entered

Description
The function imsl_f_fft_sine computes the discrete Fourier sine transform of a real
vector of size N. The method used is a variant of the Cooley-Tukey algorithm, which is
most efficient when N + 1 is a product of small prime factors. If N satisfies this
condition, then the computational effort is proportional to N logN. Specifically, given
an N-vector p, imsl_f_fft_sine returns in q

� �� �1

0

1 1
2 sin

1

N

m n
n

m n
q p

N
�

�

�

� �� �
� � �

�� �
�

Finally, note that the Fourier sine transform is its own (unnormalized) inverse. The
function imsl_f_fft_sine is based on the sine FFT in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Example
This example inputs a pure sine wave as a data vector and recovers its Fourier sine
series, which is a vector with all components zero, except n at the appropriate
frequency.

#include <imsl.h>
#include <math.h>

main()
{
 int n = 7;
 int i;
 float p[7];
 float *q;
 float pi;

 pi = imsl_f_constant("pi", 0);

 /* fill p with a pure sine wave */

Chapter 6: Transforms fft_sine_init � 357

 for (i=0; i<n; i++)
 p[i] = sin((float)(i+1)*pi/(float)(n+1));

 q = imsl_f_fft_sine (n, p, 0);

 printf (" index\t p\t q\n");
 for (i=0; i<n; i++)
 printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]);
}

Output
 index p q
 0 0.38 8.00
 1 0.71 0.00
 2 0.92 0.00
 3 1.00 0.00
 4 0.92 0.00
 5 0.71 0.00
 6 0.38 0.00

fft_sine_init
Computes the parameters needed for imsl_f_fft_sine.

Synopsis

#include <imsl.h>

float *imsl_f_fft_sine_init (int n)

The type double procedure is imsl_d_fft_sine_init.

Required Arguments

int n (Input)
Length of the sequence to be transformed. It must be greater than 1.

Return Value
A pointer to parameter vector of length (int) (2.5*n + 15) that can then be used by
imsl_f_fft_sine when the optional argument IMSL_PARAMS is specified. To release
this space, use free. If no solution was computed, then NULL is returned.

Description
The function imsl_f_fft_sine_init should be used when many calls must be made
to imsl_f_fft_sine without changing the sequence length n. The function
imsl_f_fft_sine_init is based on the routine SINTI in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

358 � fft_sine_init IMSL C/Math/Library

Example
This example computes three distinct sine FFTs by calling imsl_f_fft_sine_init
once, then calling imsl_f_fft_sine three times. The internal parameter initialization
in imsl_f_fft_sine is now skipped.

#include <imsl.h>
#include <math.h>

main()
{
 int n = 7;
 int i, k;
 float p[7];
 float q[8];
 float pi;
 float *params;

 pi = imsl_f_constant("pi", 0);

 /* Compute parameters for transform of
 length n */

 params = imsl_f_fft_sine_init (n);

 /* Different frequencies of the same
 wave will be transformed */
 for (k=0; k<3; k++) {
 printf("\n");

 /* Fill p with a pure sine wave */

 for (i=0; i<n; i++)
 p[i] = sin((float)((k+1)*(i+1))*pi/(float)(n+1));

 /* Compute the transform of p */

 imsl_f_fft_sine (n, p,
 IMSL_PARAMS, params,
 IMSL_RETURN_USER, q,
 0);

 printf (" index\t p\t q\n");
 for (i=0; i<n; i++)
 printf("\t%1d\t%5.2f\t%5.2f\n", i, p[i], q[i]);

 }
}

Output
 index p q
 0 0.38 8.00
 1 0.71 0.00
 2 0.92 0.00
 3 1.00 0.00
 4 0.92 0.00
 5 0.71 0.00
 6 0.38 0.00

Chapter 6: Transforms fft_2d_complex � 359

 index p q
 0 0.71 -0.00
 1 1.00 8.00
 2 0.71 0.00
 3 -0.00 -0.00
 4 -0.71 0.00
 5 -1.00 -0.00
 6 -0.71 0.00

 index p q
 0 0.92 0.00
 1 0.71 -0.00
 2 -0.38 8.00
 3 -1.00 0.00
 4 -0.38 0.00
 5 0.71 0.00
 6 0.92 0.00

fft_2d_complex
Computes the complex discrete two-dimensional Fourier transform of a complex two-
dimensional array.

Synopsis
#include <imsl.h>
f_complex *imsl_c_fft_2d_complex (int n, int m, f_complex p[], �, 0)

The type d_complex function is imsl_z_fft_2d_complex.

Required Arguments

int n (Input)
Number of rows in the two-dimensional transform.

int m (Input)
Number of columns in the two-dimensional transform.

f_complex p[] (Input)
Two-dimensional array of size n � m containing the sequence that is to be
transformed.

Return Value
A pointer to the transformed array. To release this space, use free. If no value can be
computed, then NULL is returned.

360 � fft_2d_complex IMSL C/Math/Library

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_fft_2d_complex (int n, int m, f_complex p[],

IMSL_P_COL_DIM, int p_col_dim,
IMSL_BACKWARD,
IMSL_RETURN_USER, f_complex q[],
IMSL_Q_COL_DIM, int q_col_dim,
0)

Optional Arguments
IMSL_P_COL_DIM, int p_col_dim (Input)

The column dimension of p.
Default: p_col_dim = m

IMSL_BACKWARD
Compute the backward transform.

IMSL_RETURN_USER, f_complex q[] (Output)
Store the result in the user-provided space pointed to by q. Therefore, no
storage is allocated for the solution, and imsl_c_fft_2d_complex returns
q. The array must be of length at least n � m.

IMSL_Q_COL_DIM, int q_col_dim (Input)
The column dimension of q.
Default: q_col_dim = m

Description
The function imsl_c_fft_2d_complex computes the discrete Fourier transform of
a two-dimensional complex array of size n � m. The method used is a variant of the
Cooley-Tukey algorithm, which is most efficient when both n and m are a product of
small prime factors. If n and m satisfy this condition, then the computational effort is
proportional to nm log nm.

By default, imsl_c_fft_2d_complex computes the forward transform below.
1 1

2 / 2 /

0 0

n m
ijs n ikt m

jk st
s t

q p e e� �

� �

� �

� �

���

Note that we can invert the Fourier transform as follows.
1 1

2 / 2 /

0 0

1 n m
ijs n ikt m

jk st
s t

p q e
nm

� �

� �

� �

� � � e

This formula reveals the fact that, after properly normalizing the Fourier coefficients,
you have the coefficients for a trigonometric interpolating polynomial to the data. The
function imsl_c_fft_2d_complex is based on the complex FFT in FFTPACK,

Chapter 6: Transforms fft_2d_complex � 361

which was developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

If the option IMSL_BACKWARD is selected, then the following computation is
performed.

1 1
2 / 2 /

0 0

n m
ijs n ikt m

jk st
s t

p q e e� �

� �

� �

���

The relation between the forward and backward transforms is that they are
unnormalized inverses of each other. That is, the following code fragment begins with a
vector p and concludes with a vector p2 = nmp.
q = imsl_c_fft_2d_complex(n, m, p, 0);

p2 = imsl_c_fft_2d_complex(n, m, q, IMSL_BACKWARD, 0);

Examples

Example 1
This example computes the Fourier transform of the pure frequency input for a 5 � 4
array

pst = e2pi2s/5 e2pit 3/4

for 0 	 n 	 4 and 0 	 m 	 3. The result, p̂ q� , has all zeros except in the [2][3]
position.

#include <imsl.h>
#include <math.h>
#include <stdio.h>

main()
{
 int s, t, n = 5, m =4;
 float two_pi = 2*imsl_f_constant("pi", 0);
 f_complex p[5][4], *q, z, w;
 /* Fill p with a pure exponential signal */
 for (s = 0; s < n; s++) {
 z.re = 0.;
 z.im = s*two_pi*2./n;
 for(t =0; t < m; t++){
 w.re = 0.;
 w.im = t*two_pi*3./m;
 p[s][t] = imsl_c_mul(imsl_c_exp(z),imsl_c_exp(w));
 }
 }
 q = imsl_c_fft_2d_complex (n, m, (f_complex*)p, 0);
 /* Write the input */
 imsl_c_write_matrix ("The input matrix is ", 5, 4, (f_complex*)p,
 IMSL_ROW_NUMBER_ZERO,
 IMSL_COL_NUMBER_ZERO, 0);
 imsl_c_write_matrix ("The output matrix is ", 5, 4, q,
 IMSL_ROW_NUMBER_ZERO,

362 � fft_2d_complex IMSL C/Math/Library

 IMSL_COL_NUMBER_ZERO, 0);
}

Output
 The input matrix is
 0 1 2
0 (1.000, 0.000) (0.000, -1.000) (-1.000, -0.000)
1 (-0.809, 0.588) (0.588, 0.809) (0.809, -0.588)
2 (0.309, -0.951) (-0.951, -0.309) (-0.309, 0.951)
3 (0.309, 0.951) (0.951, -0.309) (-0.309, -0.951)
4 (-0.809, -0.588) (-0.588, 0.809) (0.809, 0.588)

 3
0 (-0.000, 1.000)
1 (-0.588, -0.809)
2 (0.951, 0.309)
3 (-0.951, 0.309)
4 (0.588, -0.809)

 The output matrix is
 0 1 2
0 (-0, -0) (0, -0) (0, -0)
1 (0, 0) (0, -0) (-0, 0)
2 (-0, -0) (0, -0) (0, -0)
3 (0, 0) (0, -0) (-0, 0)
4 (-0, -0) (0, -0) (0, -0)

 3
0 (0, -0)
1 (0, -0)
2 (20, 0)
3 (-0, -0)
4 (-0, -0)

Example 2
This example uses the backward transform to recover the original sequence. Notice that
the forward transform followed by the backward transform multiplies the entries in the
original sequence by the product of the lengths of the two dimensions.

#include <imsl.h>
#include <math.h>
#include <stdio.h>

main()
{
 int s, t, n = 5, m =4;
 f_complex p[5][4], *q, *p2;
 /* Fill p with a pure exponential signal */
 for (s = 0; s < n; s++) {
 for(t =0; t < m; t++){
 p[s][t].re = s + 5*t;
 p[s][t].im = 0.;
 }
 } /* Forward transform */
 q = imsl_c_fft_2d_complex (n, m, (f_complex*)p, 0);
 /* Backward transform */
 p2 = imsl_c_fft_2d_complex (n, m, q,

Chapter 6: Transforms convolution � 363

 IMSL_BACKWARD, 0);
 /* Write the input */
 imsl_c_write_matrix ("The input matrix is ", 5, 4, (f_complex*)p,
 IMSL_ROW_NUMBER_ZERO,
 IMSL_COL_NUMBER_ZERO, 0);
 imsl_c_write_matrix ("The output matrix is ", 5, 4, p2,
 IMSL_ROW_NUMBER_ZERO,
 IMSL_COL_NUMBER_ZERO, 0);
}

Output
 The input matrix is
 0 1 2
0 (0, 0) (5, 0) (10, 0)
1 (1, 0) (6, 0) (11, 0)
2 (2, 0) (7, 0) (12, 0)
3 (3, 0) (8, 0) (13, 0)
4 (4, 0) (9, 0) (14, 0)

 3
0 (15, 0)
1 (16, 0)
2 (17, 0)
3 (18, 0)
4 (19, 0)

 The output matrix is
 0 1 2
0 (0, 0) (100, 0) (200, 0)
1 (20, 0) (120, 0) (220, 0)
2 (40, 0) (140, 0) (240, 0)
3 (60, 0) (160, 0) (260, 0)
4 (80, 0) (180, 0) (280, 0)

 3
0 (300, 0)
1 (320, 0)
2 (340, 0)
3 (360, 0)
4 (380, 0)

convolution
Computes the convolution, and optionally, the correlation of two real vectors.

Synopsis
#include <imsl.h>
float *imsl_f_convolution (int nx, float x[], int ny, float y[], int *nz,

�, 0)
The type double function is imsl_d_convolution.

364 � convolution IMSL C/Math/Library

Required Arguments
int nx (Input)

Length of the vector x.

float x[] (Input)
Real vector of length nx.

int ny (Input)
Length of the vector y.

float y[] (Input)
Real vector of length ny.

int *nz (Output)
Length of the output vector.

Return Value
A pointer to an array of length nz containing the convolution of x and y. To release this
space, use free. If no zeros are computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

float *imsl_f_convolution (int nx, float x[], int ny, float y[], int *nz,
IMSL_PERIODIC,
IMSL_CORRELATION,
IMSL_FIRST_CALL,
IMSL_CONTINUE_CALL,
IMSL_LAST_CALL,
IMSL_RETURN_USER, float z[],
IMSL_Z_TRANS, float *zhat,
0)

Optional Arguments
IMSL_PERIODIC

The input is periodic.

IMSL_CORRELATION
Return the correlation of x and y.

IMSL_FIRST_CALL
If the function is called multiple times with the same nx and ny, select this
option on the first call.

IMSL_CONTINUE_CALL
If the function is called multiple times with the same nx and ny, select this
option on intermediate calls.

IMSL_LAST_CALL
If the function is called multiple times with the same nx and ny, select this
option on the final call.

Chapter 6: Transforms convolution � 365

j

IMSL_RETURN_USER, float z[] (Output)
User-supplied array of length at least nz containing the convolution or
correlation of x and y.

IMSL_Z_TRANS, float zhat[](Output)
User-supplied array of length at least nz containing on output the discrete
Fourier transform of z.

Description
The function imsl_f_convolution, by default, computes the discrete convolution of
two sequences x and y. More precisely, let nx be the length of x, and ny denote the
length of y. If a circular convolution is desired, the optional argument IMSL_PERIODIC
must be selected. We set

nz = max {ny, nx},

and we pad out the shorter vector with zeros. Then, we compute

1
1

zn

i i j
j

z x y
� �

�

��

where the index on x is interpreted as a positive number between 1 and nz, modulo nz.

The technique used to compute the zi’s is based on the fact that the (complex discrete)
Fourier transform maps convolution into multiplication. Thus, the Fourier transform of
z is given by

� � � � � �ˆ ˆẑ n x n y n�

where the following equation is true.

� � � �� �2 1 1 /

1

ˆ
z

z

n
i m n n

m
m

z n z e �� � �

�

��

The technique used here to compute the convolution is to take the discrete Fourier
transform of x and y, multiply the results together component-wise, and then take the
inverse transform of this product. It is very important to make sure that nz is the product
of small primes if option IMSL_PERIODIC is selected. If nz is a product of small
primes, then the computational effort will be proportional to nzlog(nz). If option
IMSL_PERIODIC is not selected, then a good value is chosen for nz so that the Fourier
transforms are efficient and nz
 nx + ny � 1. This will mean that both vectors will be
padded with zeros.

We point out that no complex transforms of x or y are taken since both sequences are
real, and real transforms can simulate the complex transform above. Such a strategy is
six times faster and requires less space than when using the complex transform.

Optionally, the function imsl_f_convolution computes the discrete correlation of
two sequences x and y. More precisely, let n be the length of x and y. If a circular

366 � convolution IMSL C/Math/Library

j

correlation is desired, then option IMSL_PERIODIC must be selected. We set (on
output)

nz = n if IMSL_PERIODIC is chosen

(nz = 2a3b5g
 2n � 1) if IMSL_PERIODIC is not chosen

where �, �, and
 are nonnegtive integers yielding the smallest number of the type
2a3b5g satisfying the inequality. Once nz is determined, we pad out the vectors with
zeros. Then, we compute

1
1

zn

i i j
j

z x y
� �

�

��

where the index on x is interpreted as a positive number between one and nz, modulo nz.
Note that this means that

zn kz
�

contains the correlation of x(k � 1) with y as k = 0, 1, �, nz�2. Thus, if
x(k � 1) = y(k) for all k, then we would expect

znz

to be the largest component of z. The technique used to compute the zi’s is based on the
fact that the (complex discrete) Fourier transform maps correlation into multiplication.
Thus, the Fourier transform of z is given by

ˆˆ j j jz x y�

where the following equation is true.

� �� �2 1 1 /

1

ˆ
z

z

n
i m j n

j m
m

z z e �� � �

�

��

Thus, the technique used here to compute the correlation is to take the discrete Fourier
transform of x and the conjugate of the discrete Fourier transform of y, multiply the
results together component-wise, and then take the inverse transform of this product. It
is very important to make sure that nz is the product of small primes if
IMSL_PERIODIC is selected. If nz is the product of small primes, then the
computational effort will be proportional to nzlog (nz). If IMSL_PERIODIC is not
chosen, then a good value is chosen for nz so that the Fourier transforms are efficient
and nz
 2n � 1. This will mean that both vectors will be padded with zeros.

We point out that no complex transforms of x or y are taken since both sequences are
real, and real transforms can simulate the complex transform above. Such a strategy is
six times faster and requires less space than when using the complex transform.

Chapter 6: Transforms convolution � 367

Examples

Example 1
This example computes a nonperiodic convolution. The idea here is that you can
compute a moving average of the type found in digital filtering using this function. The
averaging operator in this case is especially simple and is given by averaging five
consecutive points in the sequence. We try to recover the values of an exponential
function contaminated by noise. The large error for the last value has to do with the fact
that the convolution is averaging the zeros in the “pad” rather than the function values.
Notice that the signal size is 100, but only reports the errors at 10 points.

#include "imsl.h"
#include <math.h>

#define NFLTR 5
#define NY 100

 /* Define function */

#define F1(A) exp(A)
main()
{
 int i, k, nz;
 float fltr[NFLTR], fltrer, origer, total1, total2, twopi,
 x, y[NY], *z, *noise;

 /* Set up the filter */
 for (i = 0; i < NFLTR; i++) fltr[i] = 0.2;

 /*
 * Set up y-vector for the nonperiodic casE.
 */

 twopi = 2.0*imsl_f_constant ("Pi", 0);
 imsl_random_seed_set(1234579);
 noise = imsl_f_random_uniform(NY, 0);

 for (i = 0; i < NY; i++) {
 x = (float)(i) / (NY - 1);
 y[i] = F1(x) + 0.5 *noise[i] - 0.25;
 }
 /*
 * Call the convolution routine for the nonperiodic case.
 */

 z = imsl_f_convolution(NFLTR, fltr, NY, y, &nz, 0);
 /*
 * Call test routines to check z & zhat here. Print results
 */
 printf("\n Nonperiodic Case\n");
 printf(" x F1(x) Original Error");
 printf(" Filtered Error\n");

 total1 = 0.0;
 total2 = 0.0;
 for (i = 0; i < NY; i++) {
 if (i >= NY-2)

368 � convolution IMSL C/Math/Library

 k = i - NY + 2;
 else
 k = i + 2;
 x = (float)(i) / (float) (NY - 1);
 origer = fabs(y[i] - F1(x));
 fltrer = fabs(z[i+2] - F1(x));
 if ((i % 11) == 0) {
 printf(" %10.4f%13.4f%18.4f%18.4f\n",
 x, F1(x), origer, fltrer);
 }
 total1 += origer;
 total2 += fltrer;
 }
 printf(" Average absolute error before filter:%10.5f\n",
 total1 / (NY));
 printf(" Average absolute error after filter:%11.5f\n",
 total2 / (NY));

}

Output
Nonperiodic Case
 x F1(x) Original Error Filtered Error
 0.0000 1.0000 0.0811 0.3523
 0.1111 1.1175 0.0226 0.0754
 0.2222 1.2488 0.1526 0.0488
 0.3333 1.3956 0.0959 0.0161
 0.4444 1.5596 0.1747 0.0276
 0.5556 1.7429 0.1035 0.0250
 0.6667 1.9477 0.0402 0.0562
 0.7778 2.1766 0.0673 0.0835
 0.8889 2.4324 0.1044 0.0050
 1.0000 2.7183 0.0154 1.1255
Average absolute error before filter: 0.12481
Average absolute error after filter: 0.06785

Example 2
This example computes both a periodic correlation between two distinct signals x and y.
There are 100 equally spaced points on the interval [0, 2�] and f1(x) = sin (x). Define x
and y as follows:

1

1

2 0, , 1
1

2 0, , 1
1 2

i

i

ix f i n
n

iy f i n
n

�

� �

� �
� �� �

�� �

� �
� 	 � �� �

�� �

�

�

�

Note that the maximum value of z (the correlation of x with) occurs at i = 25, which
corresponds to the offset.

#include "imsl.h"
#include <math.h>

#define N 100

Chapter 6: Transforms convolution � 369

 /* Define function */

#define F1(A) sin(A)

main()
{
 int i, k, nz;
 float pi, max,
 x[N], y[N], *z, xnorm, ynorm;

 /*
 * Set up y-vector for the nonperiodic case.
 */

 pi = imsl_f_constant ("Pi", 0);

 for (i = 0; i < N; i++) {
 x[i] = F1(2.0*pi*(float)(i) / (N-1));
 y[i] = F1(2.0*pi*(float)(i) / (N-1) + pi/2.0);
 }
 /*
 * Call the correlation function for the nonperiodic case.
 */

 z = imsl_f_convolution(N, x, N, y, &nz,
 IMSL_CORRELATION, IMSL_PERIODIC,0);

 xnorm = imsl_f_vector_norm (N, x, 0);
 ynorm = imsl_f_vector_norm (N, y, 0);
 for (i = 0; i < N; i++) {
 z[i] /= xnorm*ynorm;
 }

 max = z[0];
 k = 0;
 for (i = 1; i < N; i++) {
 if (max < z[i]) {
 max = z[i];
 k = i;
 }
 }

 printf("The element of Z with the largest normalized\n");
 printf("value is Z(%2d).\n", k);
 printf("The normalized value of Z(%2d) is %6.3f\n", k, z[k]);

}

Output
The element of Z with the largest normalized
value is Z(25).
The normalized value of Z(25) is 1.000

370 � convolution (complex) IMSL C/Math/Library

convolution (complex)
Computes the convolution, and optionally, the correlation of two complex vectors.

Synopsis
#include <imsl.h>
f_complex *imsl_c_convolution (int nx, f_complex x[], int ny, f_complex

y[], int *nz, �, 0)
The type double function is imsl_d_convolution.

Required Arguments

int nx (Input)
Length of the vector x.

f_complex x[] (Input)
Real vector of length nx.

int ny (Input)
Length of the vector y.

f_complex y[] (Input)
Real vector of length ny.

int *nz (Output)
Length of the output vector.

Return Value
A pointer to an array of length nz containing the convolution of x and y. To release this
space, use free. If no zeros are computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_convolution (int nx, f_complex x[], int ny, f_complex

y[], int*nz,
IMSL_PERIODIC,
IMSL_CORRELATION,
IMSL_FIRST_CALL,
IMSL_CONTINUE_CALL,
IMSL_LAST_CALL,
IMSL_RETURN_USER, f_complex z[],
IMSL_Z_TRANS, f_complex *zhat,
0)

Chapter 6: Transforms convolution (complex) � 371

j

Optional Arguments
IMSL_PERIODIC

The input is periodic.

IMSL_CORRELATION
Return the correlation of x and y.

IMSL_FIRST_CALL
If the function is called multiple times with the same nx and ny, select this
option on the first call.

IMSL_CONTINUE_CALL
If the function is called multiple times with the same nx and ny, select this
option on intermediate calls.

IMSL_LAST_CALL
If the function is called multiple times with the same nx and ny, select this
option on the final call.

IMSL_RETURN_USER, f_complex z[] (Output)
User-supplied array of length at least nz containing the convolution or
correlation of x and y.

IMSL_Z_TRANS, f_complex zhat[] (Output)
User-supplied array of length at least nz containing on output the discrete
Fourier transform of z.

Description
The function imsl_c_convolution, by default, computes the discrete convolution of
two sequences x and y. More precisely, let nx be the length of x, and ny denote the
length of y. If a circular convolution is desired, the optional argument IMSL_PERIODIC
must be selected. We set

nz = max {ny, nx}

and we pad out the shorter vector with zeros. Then, we compute

1
1

zn

i i j
j

z x y
� �

�

��

where the index on x is interpreted as a positive number between 1 and nz, modulo nz.

The technique used to compute the zi’s is based on the fact that the (complex discrete)
Fourier transform maps convolution into multiplication. Thus, the Fourier transform of
z is given by

� � � � � �ˆ ˆẑ n x n y n�

where the following equation is true.

372 � convolution (complex) IMSL C/Math/Library

� � � �� �2 1 1 /

1

ˆ
z

z

n
i m n n

m
m

z n z e �� � �

�

��

The technique used here to compute the convolution is to take the discrete Fourier
transform of x and y, multiply the results together component-wise, and then take the
inverse transform of this product. It is very important to make sure that nz is the product
of small primes if option IMSL_PERIODIC is selected. If nz is a product of small
primes, then the computational effort will be proportional to nzlog (nz). If option
IMSL_PERIODIC is not selected, then a good value is chosen for nz so that the Fourier
transforms are efficient and nz
 nx + ny � 1. This will mean that both vectors will be
padded with zeros.

Optionally, the function imsl_c_convolution computes the discrete correlation of
two sequences x and y. More precisely, let n be the length of x and y. If a circular
correlation is desired, then option IMSL_PERIODIC must be selected.

We set (on output)

nz = n if IMSL_PERIODIC is chosen

(nz = 2a3b5g
 2n � 1) if IMSL_PERIODIC is not chosen

where �, �, and
 are nonnegative integers yielding the smallest number of the type
2a3b5g satisfying the inequality. Once nz is determined, we pad out the vectors with
zeros. Then, we compute

1
1

zn

i i j
j

jz x y
� �

�

��

where the index on x is interpreted as a positive number between one and nz, modulo nz.
Note that this means that

zn kz
�

contains the correlation of x (k � 1) with y as k = 0, 1, �, nz�2. Thus, if
x(k � 1) = y(k) for all k, then we would expect

znz�

to be the largest component of �z. The technique used to compute the zi’s is based on
the fact that the (complex discrete) Fourier transform maps correlation into
multiplication.

Thus, the Fourier transform of z is given by

ˆˆ j j jz x y�

where the following equation is true.

Chapter 6: Transforms convolution (complex) � 373

� �� �2 1 1 /

1

ˆ
z

z

n
i m j n

j m
m

z z e �� � �

�

��

Thus, the technique used here to compute the correlation is to take the discrete Fourier
transform of x and the conjugate of the discrete Fourier transform of y, multiply the
results together component-wise, and then take the inverse transform of this product. It
is very important to make sure that nz is the product of small primes if
IMSL_PERIODIC is selected. If nz is the product of small primes, then the
computational effort will be proportional to nzlog (nz). If IMSL_PERIODIC is not
chosen, then a good value is chosen for nz so that the Fourier transforms are efficient
and nz
 2n � 1. This will mean that both vectors will be padded with zeros.

No complex transforms of x or y are taken since both sequences are real, and real
transforms can simulate the complex transform above. Such a strategy is six times faster
and requires less space than when using the complex transform.

Examples

Example 1
This example computes a nonperiodic convolution. The purpose is to compute a
moving average of the type found in digital filtering. The averaging operator in this
case is especially simple and is given by averaging five consecutive points in the
sequence. We try to recover the values of an exponential function contaminated by
noise. The large error for the last value has to do with the fact that the convolution is
averaging the zeros in the “pad” rather than the function values. Notice that the signal
size is 100, but only report the errors at ten points.

#include "imsl.h"
#include <math.h>

#define NFLTR 5
#define NY 100

#define F1(A) (imsl_c_mul(imsl_cf_convert(exp(A),0.0), \
 imsl_cf_convert(cos(A),sin(A))))

main()
{
 int i, nz;
 f_complex fltr[NFLTR], temp,
 y[NY], *z;
 float x, twopi, total1, total2, *noise, origer, fltrer;

 /* Set up the filter */
 for (i = 0; i < NFLTR; i++) fltr[i] = imsl_cf_convert(0.2,0.0);

 /* Set up y-vector for the periodic case */

 twopi = 2.0*imsl_f_constant ("Pi", 0);
 imsl_random_seed_set(1234579);
 noise = imsl_f_random_uniform(2*NY, 0);

374 � convolution (complex) IMSL C/Math/Library

 for (i = 0; i < NY; i++) {
 x = (float)(i) / (NY - 1);
 temp = imsl_cf_convert(0.5*noise[i]-0.25, 0.5*noise[NY+i]-0.25);
 y[i] = imsl_c_add(F1(x), temp);
 }
 /* Call the convolution routine for the periodic case */
 z = imsl_c_convolution(NFLTR, fltr, NY, y, &nz, 0);

 /* Print results */
 printf(" Periodic Case\n");
 printf(" x F1(x) Original Error");
 printf(" Filtered Error\n");

 total1 = 0.0;
 total2 = 0.0;
 for (i = 0; i < NY; i++) {
 x = (float)(i) / (NY - 1);
 origer = imsl_c_abs(imsl_c_sub(y[i],F1(x)));
 fltrer = imsl_c_abs(imsl_c_sub(z[i+2],F1(x)));
 if ((i % 11) == 0)
 printf(" %10.4f (%6.4f,%6.4f) %12.4f %15.4f\n",
 x, (F1(x)).re, (F1(x)).im, origer, fltrer);

 total1 += origer;
 total2 += fltrer;
 }
 printf(" Average absolute error before filter:%10.5f\n",
 total1 / (NY));
 printf(" Average absolute error after filter:%11.5f\n",
 total2 / (NY));
}

Output
Periodic Case
 x F1(x) Original Error Filtered Error
 0.0000 (1.0000,0.0000) 0.1684 0.3524
 0.1111 (1.1106,0.1239) 0.0582 0.0822
 0.2222 (1.2181,0.2752) 0.1991 0.1054
 0.3333 (1.3188,0.4566) 0.1487 0.1001
 0.4444 (1.4081,0.6706) 0.2381 0.1004
 0.5556 (1.4808,0.9192) 0.1037 0.0708
 0.6667 (1.5307,1.2044) 0.1312 0.0904
 0.7778 (1.5508,1.5273) 0.1695 0.0856
 0.8889 (1.5331,1.8885) 0.1851 0.0698
 1.0000 (1.4687,2.2874) 0.2130 1.0760
Average absolute error before filter: 0.19057
Average absolute error after filter: 0.10024

Example 2
This example computes both a periodic correlation between two distinct signals x and y.
There are 100 equally spaced points on the interval [0, 2�] and f1 (x) = cos (x) + i sin
(x). Define x and y as follows:

Chapter 6: Transforms convolution (complex) � 375

� �

� �

1

1

2 1
1, ,

1

2 1
1, ,

1 2

i

i

i
x f i

n

i
y f i

n

�

� �

�� �
� �� �

�� �

�� �
� 	 �� �

�� �

�

�

n

n

Note that the maximum value of z (the correlation of x with) occurs at i = 25, which
corresponds to the offset.

#include "imsl.h"
#include <math.h>

#define N 100

 /* Define function */

#define F1(A) imsl_cf_convert(cos(A),sin(A))

main()
{
 int i, k, nz;
 float zreal[4*N], pi, max, xnorm, ynorm, sumx, sumy;
 f_complex x[N], y[N], *z;

 /* Set up y-vector for the nonperiodic case */

 pi = imsl_f_constant ("Pi", 0);

 for (i = 0; i < N; i++) {
 x[i] = F1(2.0*pi*(float)(i) / (N-1));
 y[i] = F1(2.0*pi*(float)(i) / (N-1) + pi/2.0);
 }
 /* Call the correlation function for the
 nonperidic case */

 z = imsl_c_convolution(N, x, N, y, &nz,
 IMSL_CORRELATION, IMSL_PERIODIC,0);

 sumx = sumy = 0.0;
 for (i = 0; i < N; i++) {
 sumx += imsl_c_abs(imsl_c_mul(x[i], x[i]));
 sumy += imsl_c_abs(imsl_c_mul(y[i], y[i]));
 }
 xnorm = sqrt((sumx));
 ynorm = sqrt((sumy));
 for (i = 0; i < N; i++) {
 zreal[i] = (z[i].re/(xnorm*ynorm));
 }

 max = zreal[0];
 k = 0;
 for (i = 1; i < N; i++) {
 if (max < zreal[i]) {
 max = zreal[i];
 k = i;
 }
 }

376 � inverse_laplace IMSL C/Math/Library

 printf("The element of Z with the largest normalized\n");
 printf("value is Z(%2d).\n", k);
 printf("The normalized value of Z(%2d) is %6.3f\n", k, zreal[k]);

}

Output
The element of Z with the largest normalized
value is Z(25).
The normalized value of Z(25) is 1.000

inverse_laplace
Computes the inverse Laplace transform of a complex function.

Synopsis

#include <imsl.h>

float *imsl_f_inverse_laplace (f_complex fcn(), float sigma0, int n, float
t[], …, 0)

The type double procedure is imsl_d_inverse_laplace.

Required Arguments

f_complex fcn(f_complex z) (Input)
User-supplied function for which the inverse Laplace transform will be
computed.

float sigma0 (Input)
An estimate for the maximum of the real parts of the singularities of fcn. If
unknown, set sigma0 = 0.0.

int n (Input)
The number of points at which the inverse Laplace transform is desired.

float t[] (Input)
Array of size n containing the points at which the inverse Laplace transform is
desired.

Return Value
A pointer to the array of length n whose i-th component contains the approximate value
of the inverse Laplace transform at the point t[i]. To release this space, use free. If no
solution was computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>

Chapter 6: Transforms inverse_laplace � 377

float *imsl_f_inverse_laplace (f_complex fcn(), float sigma0, int n, float
t[],
IMSL_RETURN_USER, float x[],
IMSL_PSEUDO_ACCURACY, float pseudo_accuracy,
IMSL_FIRST_LAGUERRE_PARAMETER, float sigma,
IMSL_SECOND_LAGUERRE_PARAMETER, float bvalue,
IMSL_MAXIMUM_COEFFICIENTS, int mtop,
IMSL_ERROR_EST, float *error_est,
IMSL_DISCRETIZATION_ERROR_EST, float *disc_error_est,
IMSL_TRUNCATION_ERROR_EST, float *trunc_error_est,
IMSL_CONDITION_ERROR_EST, float *cond_error_est,
IMSL_DECAY_FUNCTION_COEFFICIENT, float *k,
IMSL_DECAY_FUNCTION_BASE, float *r,
IMSL_LOG_LARGEST_COEFFICIENTS, float *log_largest_coefs,
IMSL_LOG_SMALLEST_COEFFICIENTS,
 float *log_smallest_coefs,
IMSL_UNDER_OVERFLOW_INDICATORS,
 Imsl_laplace_flow *indicators,
IMSL_FCN_W_DATA, f_complex fcn (), void *data,
0)

Optional Arguments
IMSL_RETURN_USER, float x[] (Output)

A user-allocated array of length n containing the approximate value of the
inverse Laplace transform.

IMSL_PSEUDO_ACCURACY, float pseudo_accuracy (Input)
The required absolute uniform pseudo accuracy for the coefficients and
inverse Laplace transform values.

Default: pseudo_accuracy = � , where � is machine epsilon

IMSL_FIRST_LAGUERRE_PARAMETER, float sigma (Input)
The first parameter of the Laguerre expansion. If sigma is not greater than
sigma0, it is reset to sigma0 + 0.7.
Default: sigma = sigma0 + 0.7

IMSL_SECOND_LAGUERRE_PARAMETER, float bvalue (Input)
The second parameter of the Laguerre expansion. If bvalue is less than
2.0*(sigma � sigma0), it is reset to 2.5*(sigma � sigma0).
Default: bvalue = 2.5*(sigma � sigma0)

IMSL_MAXIMUM_COEFFICIENTS, int mtop (Input)
An upper limit on the number of coefficients to be computed in the Laguerre
expansion. Argument mtop must be a multiple of four.
Default: mtop = 1024

IMSL_ERROR_EST, float *error_est (Output)
Overall estimate of the pseudo error, disc_error_est +

378 � inverse_laplace IMSL C/Math/Library

trunc_error_est + cond_error_est. See the Description section for
details.

IMSL_DISCRETIZATION_ERROR_EST, float *disc_error_est (Output)
Estimate of the pseudo discretization error.

IMSL_TRUNCATION_ERROR_EST, float *trunc_error_est (Output)
Estimate of the pseudo truncation error.

IMSL_CONDITION_ERROR_EST, float *cond_error_est (Output)
Estimate of the pseudo condition error on the basis of minimal noise levels in
the function values.

IMSL_DECAY_FUNCTION_COEFFICIENT, float *k (Output)
The coefficient of the decay function. See the Description section for details.

IMSL_DECAY_FUNCTION_BASE, float *r (Output)
The base of the decay function. See the Description section for details.

IMSL_LOG_LARGEST_COEFFICIENTS, float *log_largest_coefs (Output)
The logarithm of the largest coefficient in the decay function. See the
Description section for details.

IMSL_LOG_SMALLEST_COEFFICIENTS, float *log_smallest_coefs (Output)
The logarithm of the smallest nonzero coefficient in the decay function.
See the Description section for details.

IMSL_UNDER_OVERFLOW_INDICATORS, Imsl_laplace_flow **indicators
(Output)
The address of a pointer initialized by imsl_f_inverse_laplace to point
to an array of length n containing the overflow/underflow indicators for the
computed approximate inverse Laplace transform. For the ith point at which
the transform is computed, indicators[i] signifies the following:

indicators [i] Meaning
IMSL_NORMAL_TERMINATION Normal termination.
IMSL_TOO_LARGE The value of the inverse Laplace

transform is too large to be
representable. This component of the
result is set to NaN.

IMSL_TOO_SMALL The value of the inverse Laplace
transform is found to be too small to
be representable. This component of
the result is set to 0.0.

IMSL_TOO_LARGE_BEFORE_EXPANSION The value of the inverse Laplace
transform is estimated to be too large,
even before the series expansion, to be
representable. This component of the
result is set to NaN.

Chapter 6: Transforms inverse_laplace � 379

indicators [i] Meaning
IMSL_TOO_SMALL_BEFORE_EXPANSON The value of the inverse Laplace

transform is estimated to be too small,
even before the series expansion, to be
representable. This component of the
result is set to 0.0.

IMSL_FCN_W_DATA, f_complex fcn(f_complex z, void *data) ,void *data, (Input)
User supplied function for which the inverse Laplace transform will be
computed, which also accepts a pointer to data that is supplied by the user.
data is a pointer to the data to be passed to the user-supplied function. See
the Introduction, Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

Description
The function imsl_f_inverse_laplace computes the inverse Laplace transform of
a complex-valued function. Recall that if f is a function that vanishes on the negative
real axis, then the Laplace transform of f is defined by

� �� � � �
0

sxL f s e f x dx
�

�

� �

It is assumed that for some value of s the integrand is absolutely integrable.

The computation of the inverse Laplace transform is based on a modification of Weeks’
method (see Weeks (1966)) due to Garbow et al. (1988). This method is suitable when f
has continuous derivatives of all orders on [0, �). In particular, given a complex-valued
function F(s) = L[f] (s), f can be expanded in a Laguerre series whose coefficients are
determined by F. This is fully described in Garbow et al. (1988) and Lyness and Giunta
(1986).

The algorithm attempts to return approximations g(t) to f(t) satisfying

� � � �
t

g t f t
e�

�

�

�

where � = pseudo_accuracy and � = sigma > sigma0. The expression on the left is
called the pseudo error. An estimate of the pseudo error in available in error_est.

The first step in the method is to transform F to � where

� � ()
1 1 2

b b bz F
z z

� �� �

� �

�

Then, if f is smooth, it is known that � is analytic in the unit disc of the complex plane
and hence has a Taylor series expansion

380 � inverse_laplace IMSL C/Math/Library

� �
0

s
s

s
z a z�

�

�

��

which converges for all z whose absolute value is less than the radius of convergence
Rc. This number is estimated in r, obtained through the optional argument
IMSL_DECAY_FUNCTION_BASE. Using optional argument
IMSL_DECAY_FUNCTION_COEFFICIENT, the smallest number K is estimated which
satisfies

| |s s

Ka
R

�

for all R < Rc.

The coefficients of the Taylor series for � can be used to expand f in a Laguerre series

� � � �/ 2

0

t bt
s s

s
f t e a e L bt�

�

�

�

� �

Examples

Example 1
This example computes the inverse Laplace transform of the function (s � 1)-2, and
prints the computed approximation, true transform value, and difference at five points.
The correct inverse transform is xex. From Abramowitz and Stegun (1964).

#include <imsl.h>
#include <math.h>

main()
{
 f_complex f(f_complex);
 int n = 5;
 float t[5];
 float true_inverse[5];
 float relative_diff[5];
 int i;
 float *inverse;

 /* Initialize t and compute inverse */
 for (i=0; i<n; i++)
 t[i] = (float)i + 0.5;

 inverse = imsl_f_inverse_laplace(f, 1.5, n, t, 0);

 /* Compute true inverse, relative difference */

 for (i=0; i<n; i++) {
 true_inverse[i] = t[i]*exp(t[i]);
 relative_diff[i] = fabs(inverse[i] - true_inverse[i])/
 true_inverse[i];
 }

Chapter 6: Transforms inverse_laplace � 381

 printf("\t t\t\t f_inv\t\t true\t\t diff\n");
 for (i=0; i<n; i++)
 printf ("\t%5.1f\t\t%7.3f\t\t%7.3f\t\t%6.1e\n", t[i],
 inverse[i], true_inverse[i], relative_diff[i]);

}

f_complex f(f_complex s)
{
 /* Return 1/(s-1)**2 */

 f_complex one = {1.0, 0.0};

 return (imsl_c_div(one,
 imsl_c_mul(imsl_c_sub(s, one), imsl_c_sub(s, one))));
}

Output
 t f_inv true diff
 0.5 0.824 0.824 1.5e-05
 1.5 6.722 6.723 1.0e-05
 2.5 30.456 30.456 5.6e-07
 3.5 115.906 115.904 1.8e-05
 4.5 405.054 405.077 5.8e-05

Example 2
This example computes the inverse Laplace transform of the function e-1/s/s, and prints
the computed approximation, true transform value, and difference at five points.
Additionally, the inverse is returned in user-supplied space, and a required accuracy for
the inverse transform values is specified. The correct inverse transform is

� �0 2J x

From Abramowitz and Stegun (1964).
#include <imsl.h>
#include <math.h>

main()
{
 f_complex f(f_complex);
 int n = 5;
 int i;
 float t[5];
 float true_inverse[5];
 float relative_diff[5];
 float inverse[5];
 Imsl_laplace_flow *indicators;

 /* Initialize t and compute inverse */

 for (i=0; i<n; i++) t[i] = (float)i + 0.5;

 imsl_f_inverse_laplace(f, 0.0, n, t,
 IMSL_PSEUDO_ACCURACY, 1.0e-6,

382 � inverse_laplace IMSL C/Math/Library

 IMSL_UNDER_OVERFLOW_INDICATORS, &indicators,
 IMSL_RETURN_USER, inverse,
 0);
 /* Compute true inverse, relative
 difference */

 for (i=0; i<n; i++) {
 true_inverse[i] = imsl_f_bessel_J0(2.0*sqrt(t[i]));
 relative_diff[i] = fabs((inverse[i] - true_inverse[i])/
 true_inverse[i]);
 }

 /* Print results, noting if any results
 overflowed or underflowed */

 printf("\t T\t\t f_inv\t\t true\t\t diff\n");
 for (i=0; i<n; i++)
 if (indicators[i] == IMSL_NORMAL_TERMINATION)
 printf ("\t%5.1f\t\t%7.3f\t\t%7.3f\t\t%6.1e\n",
 t[i],
 inverse[i], true_inverse[i],
 relative_diff[i]);
 else
 printf("Overflow or underflow noted.\n");
}

f_complex f(f_complex s)
{

 /* Return (1/s)(exp(-1/s) */

 f_complex one = {1.0, 0.0};
 f_complex s_inverse;

 s_inverse = imsl_c_div(one, s);
 return (imsl_c_mul(s_inverse, imsl_c_exp(imsl_c_neg(s_inverse))));
}

Output
 T f_inv true diff
 0.5 0.559 0.559 2.1e-07
 1.5 -0.023 -0.023 8.5e-06
 2.5 -0.310 -0.310 9.6e-08
 3.5 -0.401 -0.401 7.4e-08
 4.5 -0.370 -0.370 6.4e-07

Chapter 7: Nonlinear Equations Routines � 383

Chapter 7: Nonlinear Equations

Routines
7.1 Zeros of a Polynomial

Real coefficients using Jenkins-Traub methodzeros_poly 384
Complex coefficients using
Jenkins-Traub method ...zeros_poly (complex) 386

7.2 Zeros of a Function
Real zeros of a real function... zeros_fcn 388

7.3 Root of a System of Equations
Powell’s hybrid method...zeros_sys_eqn 393

Usage Notes
Zeros of a Polynomial
A polynomial function of degree n can be expressed as follows:

p(z) = anzn + an-1 zn-1 + … + a1z + a0

where an � 0. The function imsl_f_zeros_poly finds zeros of a polynomial with real
coefficients using the Jenkins-Traub method.

Zeros of a Function
The function imsl_f_zeros_fcn uses Müller’s method to find the real zeros of a
real-valued function.

Root of System of Equations
A system of equations can be stated as follows:

fi(x) = 0, for i = 1, 2, …, n

384 � zeros_poly IMSL C/Math/Library

where x � Rn, and fi : Rn � R.The function imsl_f_zeros_sys_eqn uses a
modified hybrid method due to M.J.D. Powell to find the zero of a system of nonlinear
equations.

zeros_poly
Finds the zeros of a polynomial with real coefficients using the Jenkins-Traub, three-
stage algorithm.

Synopsis
#include <imsl.h>
f_complex *imsl_f_zeros_poly (int ndeg, float coef[], �, 0)

The type d_complex function is imsl_d_zeros_poly.

Required Arguments

int ndeg (Input)
Degree of the polynomial.

float coef[] (Input)
Array with ndeg + 1 components containing the coefficients of the polynomial
in increasing order by degree. The polynomial is
coef[n] zn + coef [n � 1] zn-1 + � + coef [0], where n = ndeg.

Return Value
A pointer to the complex array of zeros of the polynomial. To release this space, use
free. If no zeros are computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_f_zeros_poly (int ndeg, float coef[],

IMSL_RETURN_USER, f_complex root[],
0)

Optional Arguments
IMSL_RETURN_USER, f_complex root[] (Output)

Array with ndeg components containing the zeros of the polynomial.

Description
The function imsl_f_zeros_poly computes the n zeros of the polynomial

� � 1
1 1

n n
n n 0p z a z a z a z a�

�

� � � � ��

Chapter 7: Nonlinear Equations zeros_poly � 385

where the coefficients ai for i = 0, 1, �, n are real and n is the degree of the
polynomial.

The function imsl_f_zeros_poly uses the Jenkins-Traub, three-stage algorithm
(Jenkins and Traub 1970; Jenkins 1975). The zeros are computed one at a time for real
zeros or two at a time for a complex conjugate pair. As the zeros are found, the real
zero, or quadratic factor, is removed by polynomial deflation.

Examples

Example 1
This example finds the zeros of the third-degree polynomial

p(z) = z3 � 3z2 + 4z � 2

where z is a complex variable.
#include <imsl.h>

#define NDEG 3

main()
{
 f_complex *zeros;
 static float coeff[NDEG + 1] = {-2.0, 4.0, -3.0, 1.0};

 zeros = imsl_f_zeros_poly(NDEG, coeff, 0);

 imsl_c_write_matrix ("The complex zeros found are", 1, 3,
 zeros, 0);
}

Output
 The complex zeros found are
 1 2 3
(1, 0) (1, 1) (1, -1)

Example 2
The same problem is solved with the return option.

#include <imsl.h>

#define NDEG 3

main()
{
 f_complex zeros[3];
 static float coeff[NDEG + 1] = {-2.0, 4.0, -3.0, 1.0};

 imsl_f_zeros_poly(NDEG, coeff,
 IMSL_RETURN_USER, zeros, 0);

386 � zeros_poly (complex) IMSL C/Math/Library

 imsl_c_write_matrix ("The complex zeros found are", 1, 3,
 zeros, 0);
}

Output

 The complex zeros found are
 1 2 3
(1, 0) (1, 1) (1, -1)

Warning Errors
IMSL_ZERO_COEFF The first several coefficients of the polynomial are

equal to zero. Several of the last roots will be set to
machine infinity to compensate for this problem.

IMSL_FEWER_ZEROS_FOUND Fewer than ndeg zeros were found. The root vector
will contain the value for machine infinity in the
locations that do not contain zeros.

zeros_poly (complex)
Finds the zeros of a polynomial with complex coefficients using the Jenkins-Traub,
three-stage algorithm.

Synopsis
#include <imsl.h>
f_complex *imsl_c_zeros_poly (int ndeg, f_complex coef[], �, 0)

The type d_complex function is imsl_z_zeros_poly.

Required Arguments

int ndeg (Input)
Degree of the polynomial.

f_complex coef[] (Input)
Array with ndeg + 1 components containing the coefficients of the polynomial
in increasing order by degree. The degree of the polynomial is

coef [n] zn + coef [n � 1] zn-1 + � + coef [0]

where n = ndeg.

Return Value
A pointer to the complex array of zeros of the polynomial. To release this space, use
free. If no zeros are computed, then NULL is returned.

Chapter 7: Nonlinear Equations zeros_poly (complex) � 387

Synopsis with Optional Arguments
#include <imsl.h>
f_complex *imsl_c_zeros_poly (int ndeg, f_complex coef[],

IMSL_RETURN_USER, f_complex root[],
0)

Optional Arguments
IMSL_RETURN_USER, f_complex root[] (Output)

Array with ndeg components containing the zeros of the polynomial.

Description
The function imsl_c_zeros_poly computes the n zeros of the polynomial

p(z) = anzn + an-1 zn-1 + � + a1z + a0

where the coefficients ai for i = 0, 1, �, n are complex and n is the degree of the
polynomial.

The function imsl_c_zeros_poly uses the Jenkins-Traub, three-stage complex
algorithm (Jenkins and Traub 1970, 1972). The zeros are computed one at a time in
roughly increasing order of modulus. As each zero is found, the polynomial is deflated
to one of lower degree.

Examples

Example 1
This example finds the zeros of the third-degree polynomial

p(z) = z3 � (3 + 6i) z2 � (8 � 12i) z + 10

where z is a complex variable.
#include <imsl.h>

#define NDEG 3

main()
{
 f_complex *zeros;
 f_complex coeff[NDEG + 1] = { {10.0, 0.0},
 {-8.0, 12.0},
 {-3.0, -6.0},
 { 1.0, 0.0} };

 zeros = imsl_c_zeros_poly(NDEG, coeff, 0);

 imsl_c_write_matrix ("The complex zeros found are", 1, 3,
 zeros, 0);
}

388 � zeros_fcn IMSL C/Math/Library

Output
 The complex zeros found are
 1 2 3
(1, 1) (1, 2) (1, 3)

Example 2
The same problem is solved with the return option.

#include <imsl.h>

#define NDEG 3

main()
{
 f_complex zeros[3];
 f_complex coeff[NDEG + 1] = { {10.0, 0.0},
 {-8.0, 12.0},
 {-3.0, -6.0},
 { 1.0, 0.0} };

 imsl_c_zeros_poly(NDEG, coeff, IMSL_RETURN_USER, zeros, 0);

 imsl_c_write_matrix ("The complex zeros found are", 1, 3,
 zeros, 0);
}

Output

 The complex zeros found are
 1 2 3
(1, 1) (1, 2) (1, 3)

Warning Errors
IMSL_ZERO_COEFF The first several coefficients of the polynomial are

equal to zero. Several of the last roots will be set to
machine infinity to compensate for this problem.

IMSL_FEWER_ZEROS_FOUND Fewer than ndeg zeros were found. The root vector
will contain the value for machine infinity in the
locations that do not contain zeros.

zeros_fcn
Finds the real zeros of a real function using Müller’s method.

Synopsis
#include <imsl.h>
float *imsl_f_zeros_fcn (float fcn(), �, 0)

The type double function is imsl_d_zeros_fcn.

Chapter 7: Nonlinear Equations zeros_fcn � 389

Required Arguments

float fcn (float x) (Input/Output)
User-supplied function to compute the value of the function of which the zeros
will be found, where x is the point at which the function is evaluated.

Return Value
A pointer to the zeros x of the function. To release this space, use free. If no zeros can
be found, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_zeros_fcn (float fcn(),

IMSL_XGUESS, float xguess[],
IMSL_NUM_ROOTS, int nroot,
IMSL_ERR_ABS, float err_abs,
IMSL_ERR_REL, float err_rel,
IMSL_ETA, float eta,
IMSL_EPS, float eps,
IMSL_MAX_ITN, int max_itn,
IMSL_RETURN_USER, float x[],
IMSL_INFO, int **info,
IMSL_INFO_USER, int info[],
IMSL_FCN_W_DATA, float fcn (), void *data,
0)

Optional Arguments
IMSL_XGUESS, float xguess[] (Input)

Array with nroot components containing the initial guesses for the zeros.
Default: xguess = 0

IMSL_NUM_ROOTS, int nroot (Input)
The number of zeros to be found by imsl_f_zeros_fcn.
Default: nroot = 1

IMSL_ERR_ABS, float err_abs (Input)
First stopping criterion. A zero xi is accepted if |f(xi)| < err_abs.
Default:

err_abs = �

where e is the machine precision

IMSL_ERR_REL, float err_rel (Input)
Second stopping criterion. A zero xi is accepted if the relative change of two
successive approximations to xi is less than err_rel.
Default:

err_rel = �

390 � zeros_fcn IMSL C/Math/Library

where � is the machine precision

IMSL_ETA, float eta (Input)
Spread criteria for multiple zeros. If the zero xi has been computed and
|xi � xj| < eps, where xj is a previously computed zero, then the computation
is restarted with a guess equal to xi + eta.
Default: eta = 0.01

IMSL_EPS, float eps (Input)
See eta.
Default:

eps = �

where � is the machine precision

IMSL_MAX_ITN, int max_itn (Input)
The maximum allowable number of iterations per zero.
Default: max_itn = 100

IMSL_RETURN_USER, float x[] (Output)
Array with nroot components containing the computed zeros.

IMSL_INFO, int **info (Output)
The address of a pointer info to an array of length nroot containing
convergence information. On return, the necessary space is allocated by
imsl_f_zeros_fcn. The value info[j � 1] is the number of iterations used
in finding the j-th zero when convergence is achieved. If convergence is not
obtained in max_itn iterations, info[j � 1] would be greater than max_itn.

IMSL_INFO_USER, int info[] (Output)
A user-allocated array with nroot components. On return, the value
info[j � 1] is the number of iterations used in finding the j-th zero when
convergence is achieved. If convergence is not obtained in max_itn
iterations, info[j � 1] would be greater than max_itn.

IMSL_FCN_W_DATA, float fcn (float x, void *data) , void *data (Input)
User supplied function to compute the value of the function of which the zeros
will be found, which also accepts a pointer to data that is supplied by the user.
data is a pointer to the data to be passed to the user-supplied function. See
the Introduction, Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

Description
The function imsl_f_zeros_fcn computes n real zeros of a real function f. Given a
user-supplied function f(x) and an n-vector of initial guesses x1, x2, �, xn, the function
uses Müller’s method to locate n real zeros of f. The function has two convergence
criteria: the first requires that

� �� �m
if x

Chapter 7: Nonlinear Equations zeros_fcn � 391

be less than err_abs; the second requires that the relative change of any two
successive approximations to an xi be less than err_rel. Here,

� �m
ix

is the m-th approximation to xi. Let err_abs be denoted by �1 and err_rel be
denoted by �2. The criteria may be stated mathematically as follows:

Criterion 1:
� �� � 1
m

if x ��

Criterion 2:
� � � �

� �

1

2

m m
i i

m
i

x x
x

�

�

�

�

“Convergence” is the satisfaction of either criterion.

Examples

Example 1
This example finds a real zero of the third-degree polynomial

f(x) = x3 � 3x2 + 3x � 1

#include <imsl.h>

float fcn(float x);

main()
{
 float *x;
 /* Solve fcn(x)=0 for x */
 x = imsl_f_zeros_fcn (fcn, 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 1, x, 0);
}

float fcn(float x)
{
 return x * x * x - 3.0 * x * x + 3.0 * x - 1.0;
}

Output
 x
 1

392 � zeros_fcn IMSL C/Math/Library

Example 2
This example finds three real zeros of the third-degree polynomial

f(x) = x3 + 3x2 � 4x � 6

with the three initial guesses (4.6, 0.0, �193.3).
#include <imsl.h>

float fcn(float x);

main()
{
 float xguess[] = {4.6, 0.0, -193.3};
 int nroot = 3;
 float eps = 1.0e-5;
 float err_abs = 1.0e-5;
 float err_rel = 1.0e-5;
 float eta = 1.0e-2;
 int max_itn = 100;
 float *x;
 /* Solve fcn(x)=0 for x */
 x = imsl_f_zeros_fcn (fcn,
 IMSL_XGUESS, xguess,
 IMSL_ERR_REL, err_rel,
 IMSL_ERR_ABS, err_abs,
 IMSL_ETA, eta,
 IMSL_EPS, eps,
 IMSL_NUM_ROOTS, nroot,
 IMSL_MAX_ITN, max_itn,
 0);
 /* Print x */
 imsl_f_write_matrix ("x", 1, 3, x, 0);
}

float fcn(float x)
{
 return x * x * x + 3.0 * x * x - 4.0 * x - 6.0;
}

Output
 x
 1 2 3
 1.646 -1.000 -3.646

In the following plot, the initial guesses x = 0.0 and x = 4.6 are marked with hollow
circles, and the solutions are marked with filled circles. The other initial guess
x = �193.3 does not fit on this plot.

Chapter 7: Nonlinear Equations zeros_sys_eqn � 393

Figure 7-1 Plot of x3 + 3x2 � 4x � 6

Warning Errors
IMSL_NO_CONVERGE_MAX_ITER Failure to converge within max_itn iterations for

at least one of the nroot roots.

zeros_sys_eqn
Solves a system of n nonlinear equations f(x) = 0 using a modified Powell hybrid
algorithm.

Synopsis
#include <imsl.h>
float *imsl_f_zeros_sys_eqn (void fcn(), int n, �, 0)

The type double function is imsl_d_zeros_sys_eqn.

Required Arguments

void fcn (int n, float x[], float f[]) (Input/Output)
User-supplied function to evaluate the system of equations to be solved, where
n is the size of x and f, x is the point at which the functions are evaluated, and
f contains the computed function values at the point x.

int n (Input)
The number of equations to be solved and the number of unknowns.

394 � zeros_sys_eqn IMSL C/Math/Library

Return Value
A pointer to the vector x that is a solution of the system of equations. To release this
space, use free. If no solution can be computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsl.h>
float *imsl_f_zeros_sys_eqn (void fcn(), int n,

IMSL_XGUESS, float xguess[],
IMSL_JACOBIAN, void jacobian(),
IMSL_ERR_REL, float err_rel,
IMSL_MAX_ITN, int max_itn,
IMSL_RETURN_USER, float x[],
IMSL_FNORM, float *fnorm,
IMSL_FCN_W_DATA, void fcn (), void *data,
IMSL_JACOBIAN_W_DATA, void jacobian(), void *data,
0)

Optional Arguments
IMSL_XGUESS, float xguess[] (Input)

Array with n components containing the initial estimate of the root.
Default: xguess = 0

IMSL_JACOBIAN, void jacobian (int n, float x[], float fjac[])
(Input/Output)
User-supplied function to evaluate the Jacobian, where n is the number of
components in x, x is the point at which the Jacobian is evaluated, and fjac is
the computed n � n Jacobian matrix at the point x. Note that each derivative
�fi 	 �xj should be returned in fjac[(i-1)*n+j-1].

IMSL_ERR_REL, float err_rel (Input)
Stopping criterion. The root is accepted if the relative error between two
successive approximations to this root is less than err_rel.
Default:

err_rel = �

where � is the machine precision

IMSL_MAX_ITN, int max_itn (Input)
The maximum allowable number of iterations.
Default: max_itn = 200

IMSL_RETURN_USER, float x[] (Output)
Array with n components containing the best estimate of the root found by
f_zeros_sys_eqn.

IMSL_FNORM, float *fnorm (Output)
Scalar with the value

Chapter 7: Nonlinear Equations zeros_sys_eqn � 395

2 2
1 nf f� ��

at the point x.

IMSL_FCN_W_DATA, void fcn (int n, float x[], float f[] , void *data) , void
*data (Input)
User supplied function to evaluate the system of equations to be solved, which
also accepts a pointer to data that is supplied by the user. data is a pointer to
the data to be passed to the user-supplied function. See the Introduction,
Passing Data to User-Supplied Functions at the beginning of this manual for
more details.

IMSL_JACOBIAN_W_DATA, void jacobian (int m, int n, float x[], float
fjac[], int fjac_col_dim, void *data), void *data (Input)
User supplied function to compute the Jacobian, which also accepts a pointer
to data that is supplied by the user. data is a pointer to the data to be passed
to the user-supplied function. See the Introduction, Passing Data to User-
Supplied Functions at the beginning of this manual for more details.

Description
The function imsl_f_zeros_sys_eqn is based on the MINPACK subroutine
HYBRDJ, which uses a modification of the hybrid algorithm due to M.J.D. Powell.
This algorithm is a variation of Newton’s method, which takes precautions to avoid
undesirable large steps or increasing residuals. For further description, see Moré et al.
(1980).

Examples

Example 1
The following 2 � 2 system of nonlinear equations

� �

� �

1 1 2

2 2
2 1 2

3

9

f x x x

f x x x

� � �

� � �

is solved.
#include <imsl.h>
#include <stdio.h>

#define N 2

void fcn(int, float[], float[]);

void main()
{
 float *x;

 x = imsl_f_zeros_sys_eqn(fcn, N, 0);
 imsl_f_write_matrix("The solution to the system is", 1, N, x, 0);

396 � zeros_sys_eqn IMSL C/Math/Library

� � � �1
21

1 1 2 3 27xf x x e x x�

� � � � �

}

void fcn(int n, float x[], float f[])
{
 f[0] = x[0] + x[1] - 3.0;
 f[1] = x[0]*x[0] + x[1] * x[1] - 9.0;
}

Output
The solution to the system is
 1 2
 0 3

Example 2
The following 3 � 3 system of nonlinear equations

� �

� � � �

2 2 2
2 1 3

2
3 3 2 2

/ 10

sin 2 7

xf x e x x

f x x x x

�

� � �

� � � � �

is solved with the initial guess (4.0, 4.0, 4.0).
#include <imsl.h>
#include <stdio.h>
#include <math.h>

#define N 3

void fcn(int, float[], float[]);

void main()
{
 int maxitn = 100;
 float *x, err_rel = 0.0001, fnorm;
 float xguess[N] = {4.0, 4.0, 4.0};

 x = imsl_f_zeros_sys_eqn(fcn, N,
 IMSL_ERR_REL, err_rel,
 IMSL_MAX_ITN, maxitn,
 IMSL_XGUESS, xguess,
 IMSL_FNORM, &fnorm,
 0);
 imsl_f_write_matrix("The solution to the system is", 1, N, x, 0);
 printf("\nwith fnorm = %5.4f\n", fnorm);
}

void fcn(int n, float x[], float f[])
{
 f[0] = x[0] + exp(x[0] - 1.0) + (x[1] + x[2]) * (x[1] + x[2]) - 27.0;
 f[1] = exp(x[1] - 2.0) / x[0] + x[2] * x[2] - 10.0;
 f[2] = x[2] + sin(x[1] - 2.0) + x[1] * x[1] - 7.0;
}

Chapter 7: Nonlinear Equations zeros_sys_eqn � 397

Output
The solution to the system is
 1 2 3
 1 2 3

with fnorm = 0.0000

Warning Errors
IMSL_TOO_MANY_FCN_EVALS The number of function evaluations has exceeded

max_itn. A new initial guess may be tried.

IMSL_NO_BETTER_POINT Argument err_rel is too small. No further
improvement in the approximate solution is
possible.

IMSL_NO_PROGRESS The iteration has not made good progress. A new
initial guess may be tried.

398 � zeros_sys_eqn IMSL C/Math/Library

IMSL C/Math/Library Appendix A: References � A-1

Appendix A: References

Abramowitz and Stegun
Abramowitz, Milton, and Irene A. Stegun (editors) (1964), Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, National Bureau of Standards, Washington.

Ahrens and Dieter
Ahrens, J.H., and U. Dieter (1974), Computer methods for sampling from
gamma, beta, Poisson, and binomial distributions, Computing, 12,
223–246.

Akima
Akima, H. (1970), A new method of interpolation and smooth curve
fitting based on local procedures, Journal of the ACM, 17, 589–602.
Akima, H. (1978), A method of bivariate interpolation and smooth
surface fitting for irregularly distributed data points, ACM Transactions
on Mathematical Software, 4, 148–159.

Ashcraft
Ashcraft, C. (1987), A vector implementation of the multifrontal method
for large sparse symmetric positive definite systems, Technical Report
ETA-TR-51, Engineering Technology Applications Division, Boeing
Computer Services, Seattle, Washington.

Ashcraft et al.
Ashcraft, C., R. Grimes, J. Lewis, B. Peyton, and H. Simon (1987),
Progress in sparse matrix methods for large linear systems on vector
supercomputers. Intern. J. Supercomputer Applic., 1(4), 10–29.

Atkinson (1979)
Atkinson, A.C. (1979), A family of switching algorithms for the computer
generation of beta random variates, Biometrika, 66, 141–145.

A-2 � Appendix A: References IMSLC/Math/Library

Atkinson (1978)
Atkinson, Ken (1978), An Introduction to Numerical Analysis, John
Wiley & Sons, New York.

Barnett
Barnett, A.R. (1981), An algorithm for regular and irregular Coulomb
and Bessel functions of real order to machine accuracy, Computer
Physics Communication, 21, 297–314.

Barrett and Healy
Barrett, J.C., and M. J.R. Healy (1978), A remark on Algorithm AS 6:
Triangular decomposition of a symmetric matrix, Applied Statistics, 27,
379–380.

Bays and Durham
Bays, Carter, and S.D. Durham (1976), Improving a poor random number
generator, ACM Transactions on Mathematical Software, 2,
59–64.

Blom
Blom, Gunnar (1958), Statistical Estimates and Transformed Beta-
Variables, John Wiley & Sons, New York.

Boisvert
Boisvert, Ronald (1984), A fourth order accurate fast direct method of
the Helmholtz equation, Elliptic Problem solvers II, (edited by G.
Birkhoff and A. Schoenstadt), Academic Press, Orlando, Florida, 35–44.

Bosten and Battiste
Bosten, Nancy E., and E.L. Battiste (1974), Incomplete beta ratio,
Communications of the ACM, 17, 156–157.

Brent
Brent, Richard P. (1973), Algorithms for Minimization without
Derivatives, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Brigham
Brigham, E. Oran (1974), The Fast Fourier Transform, Prentice-Hall,
Englewood Cliffs, New Jersey.

Burgoyne
Burgoyne, F.D. (1963), Approximations to Kelvin functions,
Mathematics of Computation, 83, 295-298.

IMSL C/Math/Library Appendix A: References � A-3

Carlson
Carlson, B.C. (1979), Computing elliptic integrals by duplication,
Numerische Mathematik, 33, 1–16.

Carlson and Notis
Carlson, B.C., and E.M. Notis (1981), Algorithms for incomplete elliptic
integrals, ACM Transactions on Mathematical Software, 7,
398–403.

Carlson and Foley
Carlson, R.E., and T.A. Foley (1991),The parameter R2 in multiquadric
interpolation, Computer Mathematical Applications, 21, 29–42.

Cheng
Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape
parameters, Communications of the ACM, 21, 317–322.

Cohen and Taylor
Cohen, E. Richard, and Barry N. Taylor (1986), The 1986 Adjustment of
the Fundamental Physical Constants, Codata Bulletin, Pergamon Press,
New York.

Cooley and Tukey
Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine
computation of complex Fourier series, Mathematics of Computation, 19,
297–301.

Cooper
Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for
distribution integrals, Applied Statistics, 17, 190–192.

Courant and Hilbert
Courant, R., and D. Hilbert (1962), Methods of Mathematical Physics,
Volume II, John Wiley & Sons, New York, NY.

Craven and Wahba
Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with
spline functions, Numerische Mathematik, 31, 377–403.

Crowe et al.
Crowe, Keith, Yuan-An Fan, Jing Li, Dale Neaderhouser, and Phil Smith
(1990), A direct sparse linear equation solver using linked list storage,
IMSL Technical Report 9006, IMSL, Houston.

A-4 � Appendix A: References IMSLC/Math/Library

Davis and Rabinowitz
Davis, Philip F., and Philip Rabinowitz (1984), Methods of Numerical
Integration, Academic Press, Orlando, Florida.

de Boor
de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag,
New York.

Dennis and Schnabel
Dennis, J.E., Jr., and Robert B. Schnabel (1983), Numerical Methods for
Unconstrained Optimization and Nonlinear Equations, Prentice-Hall,
Englewood Cliffs, New Jersey.

Dongarra et al.
Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979),
LINPACK User’s Guide, SIAM, Philadelphia.

Draper and Smith
Draper, N.R., and H. Smith (1981), Applied Regression Analysis, 2nd.
ed., John Wiley & Sons, New York.

DuCroz et al.
Du Croz, Jeremy, P. Mayes, and G. Radicati (1990), Factorization of
band matrices using Level-3 BLAS, Proceedings of CONPAR 90-VAPP
IV, Lecture Notes in Computer Science, Springer, Berlin, 222.

Duff et al.
Duff, I. S., A. M. Erisman, and J. K. Reid (1986), Direct Methods for
Sparse Matrices, Clarendon Press, Oxford.

Duff and Reid
Duff, I.S., and J.K. Reid (1983), The multifrontal solution of indefinite
sparse symmetric linear equations. ACM Transactions on Mathematical
Software, 9, 302–325.
Duff, I.S., and J.K. Reid (1984), The multifrontal solution of
unsymmetric sets of linear equations. SIAM Journal on Scientific and
Statistical Computing, 5, 633–641.

Enright and Pryce
Enright, W.H., and J.D. Pryce (1987), Two FORTRAN packages for
assessing initial value methods, ACM Transactions on Mathematical
Software, 13, 1–22.

IMSL C/Math/Library Appendix A: References � A-5

Farebrother and Berry
Farebrother, R.W., and G. Berry (1974), A remark on Algorithm AS 6:
Triangular decomposition of a symmetric matrix, Applied Statistics, 23,
477.

Fisher
Fisher, R.A. (1936), The use of multiple measurements in taxonomic
problems, Annals of Eugenics, 7, 179– 188.

Fishman and Moore
Fishman, George S. and Louis R. Moore (1982), A statistical evaluation
of multiplicative congruential random number generators with modulus
231 – 1, Journal of the American Statistical Association, 77, 129–136.

Forsythe
Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for
fitting data with a digital computer, SIAM Journal on Applied
Mathematics, 5, 74–88.

Franke
Franke, R. (1982), Scattered data interpolation: Tests of some methods,
Mathematics of Computation, 38, 181–200.

Garbow et al.
Garbow, B.S., J.M. Boyle, K.J. Dongarra, and C.B. Moler (1977), Matrix
Eigensystem Routines - EISPACK Guide Extension, Springer–Verlag,
New York.
Garbow, B.S., G. Giunta, J.N. Lyness, and A. Murli (1988), Software for
an implementation of Weeks’ method for the inverse Laplace transform
problem, ACM Transactions on Mathematical Software, 14, 163–170.

Gautschi
Gautschi, Walter (1968), Construction of Gauss-Christoffel quadrature
formulas, Mathematics of Computation, 22, 251–270.
Gautschi, Walter (1969), Complex error function, Communications of the
ACM, 12, 635. Gautschi, Walter (1970), Efficient computation of the
complex error function, SIAM Journal on Mathematical Analysis, 7,
187�198.

Gear
Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary
Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

A-6 � Appendix A: References IMSLC/Math/Library

Gentleman
Gentleman, W. Morven (1974), Basic procedures for large, sparse or
weighted linear least squares problems, Applied Statistics, 23, 448–454.

George and Liu
George, A., and J.W.H. Liu (1981), Computer Solution of Large Sparse
Positive Definite Systems, Prentice-Hall, Englewood Cliffs, New Jersey.

Gill and Murray
Gill, Philip E., and Walter Murray (1976), Minimization subject to
bounds on the variables, NPL Report NAC 92, National Physical
Laboratory, England.

Gill et al.
Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright (1985), Model
building and practical aspects of nonlinear programming, in
Computational Mathematical Programming, (edited by K. Schittkowski),
NATO ASI Series, 15, Springer-Verlag, Berlin, Germany.

Goldfarb and Idnani
Goldfarb, D., and A. Idnani (1983), A numerically stable dual method for
solving strictly convex quadratic programs, Mathematical Programming,
27, 1–33.

Golub
Golub, G.H. (1973), Some modified matrix eigenvalue problems, SIAM
Review, 15, 318–334.

Golub and Van Loan
Golub, G.H., and C.F. Van Loan (1989), Matrix Computations, Second
Edition, The Johns Hopkins University Press, Baltimore, Maryland.
Golub, Gene H., and Charles F. Van Loan (1983), Matrix Computations,
Johns Hopkins University Press, Baltimore, Maryland.

Golub and Welsch
Golub, G.H., and J.H. Welsch (1969), Calculation of Gaussian quadrature
rules, Mathematics of Computation, 23, 221–230.

Gregory and Karney
Gregory, Robert, and David Karney (1969), A Collection of Matrices for
Testing Computational Algorithms, Wiley-Interscience, John Wiley &
Sons, New York.

IMSL C/Math/Library Appendix A: References � A-7

Griffin and Redfish
Griffin, R., and K A. Redish (1970), Remark on Algorithm 347: An
efficient algorithm for sorting with minimal storage, Communications of
the ACM, 13, 54.

Grosse
Grosse, Eric (1980), Tensor spline approximation, Linear Algebra and its
Applications, 34, 29–41.

Guerra and Tapia
Guerra, V., and R. A. Tapia (1974), A local procedure for error detection
and data smoothing, MRC Technical Summary Report 1452,
Mathematics Research Center, University of Wisconsin, Madison.

Hageman and Young
Hageman, Louis A., and David M. Young (1981), Applied Iterative
Methods, Academic Press, New York.

Hanson
Hanson, Richard J. (1986), Least squares with bounds and linear
constraints, SIAM Journal Sci. Stat. Computing, 7, #3.

Hardy
Hardy, R.L. (1971), Multiquadric equations of topography and other
irregular surfaces, Journal of Geophysical Research, 76, 1905–1915.

Hart et al.
Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J.Maehly, Charles
K. Mesztenyi, John R. Rice, Henry G. Thacher, Jr., and Christoph
Witzgall (1968), Computer Approximations, John Wiley & Sons, New
York.

Healy
Healy, M.J.R. (1968), Algorithm AS 6: Triangular decomposition of a
symmetric matrix, Applied Statistics, 17, 195–197.

Herraman
Herraman, C. (1968), Sums of squares and products matrix, Applied
Statistics, 17, 289–292.

A-8 � Appendix A: References IMSLC/Math/Library

Higham
Higham, Nicholas J. (1988), FORTRAN Codes for estimating the one-
norm of a real or complex matrix, with applications to condition
estimation, ACM Transactions on Mathematical Software, 14, 381-396.

Hill
Hill, G.W. (1970), Student’s t-distribution, Communications of the ACM,
13, 617–619.

Hindmarsh
Hindmarsh, A.C. (1974), GEAR: Ordinary Differential Equation System
Solver, Lawrence Livermore National Laboratory Report UCID-30001,
Revision 3, Lawrence Livermore National Laboratory, Livermore, Calif.

Hinkley
Hinkley, David (1977), On quick choice of power transformation,
Applied Statistics, 26, 67–69.

Huber
Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York.

Hull et al.
Hull, T.E., W.H. Enright, and K.R. Jackson (1976), User’s guide for
DVERK — A subroutine for solving non-stiff ODEs, Department of
Computer Science Technical Report 100, University of Toronto.

Irvine et al.
Irvine, Larry D., Samuel P. Marin, and Philip W. Smith (1986),
Constrained interpolation and smoothing, Constructive Approximation, 2,
129–151.

Jackson et al.
Jackson, K.R., W.H. Enright, and T.E. Hull (1978), A theoretical
criterion for comparing Runge-Kutta formulas, SIAM Journal of
Numerical Analysis, 15, 618–641.

Jenkins
Jenkins, M.A. (1975), Algorithm 493: Zeros of a real polynomial, ACM
Transactions on Mathematical Software, 1, 178–189.

IMSL C/Math/Library Appendix A: References � A-9

Jenkins and Traub
Jenkins, M.A., and J.F. Traub (1970), A three-stage algorithm for real
polynomials using quadratic iteration, SIAM Journal on Numerical
Analysis, 7, 545–566.
Jenkins, M.A., and J.F. Traub (1970), A three-stage variable-shift
iteration for polynomial zeros and its relation to generalized Rayleigh
iteration, Numerishe Mathematik, 14, 252–263.
Jenkins, M.A., and J.F. Traub (1972), Zeros of a complex polynomial,
Communications of the ACM, 15, 97– 99.

Jöhnk
Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten
Zufalls-zahlen, Metrika, 8, 5–15.

Kendall and Stuart
Kendall, Maurice G., and Alan Stuart (1973), The Advanced Theory of
Statistics, Volume II, Inference and Relationship, Third Edition, Charles
Griffin & Company, London, Chapter 30.

Kennedy and Gentle
Kennedy, William J., Jr., and James E. Gentle (1980), Statistical
Computing, Marcel Dekker, New York.

Kernighan and Richtie
Kernighan, Brian W., and Richtie, Dennis M. 1988, "The C
Programming Language" Second Edition, 241.

Kinnucan and Kuki
Kinnucan, P., and Kuki, H., (1968), A single precision inverse error
function subroutine, Computation Center, University of Chicago.

Knuth
Knuth, Donald E. (1981), The Art of Computer Programming, Volume
II: Seminumerical Algorithms, 2nd. ed., Addison-Wesley, Reading, Mass.

Learmonth and Lewis
Learmonth, G.P., and P.A.W. Lewis (1973), Naval Postgraduate School
Random Number Generator Package LLRANDOM, NPS55LW73061A,
Naval Postgraduate School, Monterey, California.

A-10 � Appendix A: References IMSLC/Math/Library

Lehmann
Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on
Ranks, Holden-Day, San Francisco.

Levenberg
Levenberg, K. (1944), A method for the solution of certain problems in
least squares, Quarterly of Applied Mathematics, 2, 164–168.

Leavenworth
Leavenworth, B. (1960), Algorithm 25: Real zeros of an arbitrary
function, Communications of the ACM, 3, 602.

Lentini and Pereyra
Pereyra, Victor (1978), PASVA3: An adaptive finite-difference
FORTRAN program for first order nonlinear boundary value problems,
in Lecture Notes in Computer Science, 76, Springer-Verlag, Berlin,
67�88.

Lewis et al.
Lewis, P.A.W., A.S. Goodman, and J.M. Miller (1969), A pseudorandom
number generator for the System/ 360, IBM Systems Journal, 8, 136–146.

Liepman
Liepman, David S. (1964), Mathematical constants, in Handbook of
Mathematical Functions, Dover Publications, New York.

Liu
Liu, J.W.H. (1987), A collection of routines for an implementation of the
multifrontal method, Technical Report CS-87-10, Department of
Computer Science, York University, North York, Ontario, Canada.
Liu, J.W.H. (1989), The multifrontal method and paging in sparse
Cholesky factorization. ACM Transactions on Mathematical Software,
15, 310-325.
Liu, J.W.H. (1990), The multifrontal method for sparse matrix solution:
theory and practice, Technical Report CS-90-04, Department of
Computer Science, York University, North York, Ontario, Canada.
Liu, J.W.H. (1986), On the storage requirement in the out-of-core
multifrontal method for sparse factorization. ACM Transactions on
Mathematical Software, 12, 249-264.

IMSL C/Math/Library Appendix A: References � A-11

Lyness and Giunta
Lyness, J.N. and G. Giunta (1986), A modification of the Weeks Method
for numerical inversion of the Laplace transform, Mathematics of
Computation, 47, 313–322.

Madsen and Sincovec
Madsen, N.K., and R.F. Sincovec (1979), Algorithm 540: PDECOL,
General collocation software for partial differential equations, ACM
Transactions on Mathematical Software, 5, #3, 326–351.

Maindonald
Maindonald, J.H. (1984), Statistical Computation, John Wiley & Sons,
New York.

Marquardt
Marquardt, D. (1963), An algorithm for least-squares estimation of
nonlinear parameters, SIAM Journal on Applied Mathematics, 11,
431–441.

Martin and Wilkinson
Martin, R.S., and J.H. Wilkinson (1971), Reduction of the Symmetric
Eigenproblem Ax = �Bx and Related Problems to Standard Form,
Volume II, Linear Algebra Handbook, Springer, New York.
Martin, R.S., and J.H. Wilkinson (1971), The Modified LR Algorithm for
Complex Hessenberg Matrices, Handbook, Volume II, Linear Algebra,
Springer, New York.

Mayle
Mayle, Jan, (1993), Fixed Income Securities Formulas for Price, Yield,
and Accrued Interest, SIA Standard Securities Calculation Methods,
Volume I, Third Edition, pages 17-35.

Michelli
Micchelli, C.A. (1986), Interpolation of scattered data: Distance matrices
and conditionally positive definite functions, Constructive
Approximation, 2, 11–22.

Michelli et al.
Micchelli, C.A., T.J. Rivlin, and S. Winograd (1976), The optimal
recovery of smooth functions, Numerische Mathematik, 26, 279–285.
Micchelli, C.A., Philip W. Smith, John Swetits, and Joseph D. Ward
(1985), Constrained Lp approximation, Constructive Approximation, 1,
93–102.

A-12 � Appendix A: References IMSLC/Math/Library

Moler and Stewart
Moler, C., and G.W. Stewart (1973), An algorithm for generalized matrix
eigenvalue problems, SIAM Journal on Numerical Analysis, 10, 241-256.

Moré et al.
Moré, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User Guide
for MINPACK-1, Argonne National Laboratory Report ANL-80-74,
Argonne, Illinois.

Müller
Müller, D.E. (1956), A method for solving algebraic equations using an
automatic computer, Mathematical Tables and Aids to Computation, 10,
208–215.

Murtagh
Murtagh, Bruce A. (1981), Advanced Linear Programming: Computation
and Practice, McGraw-Hill, New York.

Murty
Murty, Katta G. (1983), Linear Programming, John Wiley and Sons,
New York.

Neter and Wasserman
Neter, John, and William Wasserman (1974), Applied Linear Statistical
Models, Richard D. Irwin, Homewood, Illinois.

Neter et al.
Neter, John, William Wasserman, and Michael H. Kutner (1983), Applied
Linear Regression Models, Richard D. Irwin, Homewood, Illinois.

Østerby and Zlatev
Østerby, Ole, and Zahari Zlatev (1982), Direct Methods for Sparse
Matrices, Lecture Notes in Computer Science, 157, Springer-Verlag, New
York.

Owen
Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley
Publishing Company, Reading, Mass.
Owen, D.B. (1965), A special case of the bivariate non-central t
distribution, Biometrika, 52, 437–446.

IMSL C/Math/Library Appendix A: References � A-13

Parlett
Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey.

Petro
Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for
sorting with minimal storage, Communications of the ACM, 13, 624.

Piessens et al.
Piessens, R., E. deDoncker-Kapenga, C.W. Überhuber, and D.K.
Kahaner (1983), QUADPACK, Springer-Verlag, New York.

Powell
Powell, M.J.D. (1978), A fast algorithm for nonlinearly constrained
optimization calculations, Numerical Analysis Proceedings, Dundee
1977, Lecture Notes in Mathematics, (edited by G. A. Watson), 630,
Springer-Verlag, Berlin, Germany, 144–157.
Powell, M.J.D. (1985), On the quadratic programming algorithm of
Goldfarb and Idnani, Mathematical Programming Study, 25, 46–61.
Powell, M.J.D. (1988), A tolerant algorithm for linearly constrained
optimizations calculations, DAMTP Report NA17, University of
Cambridge, England.
Powell, M.J.D. (1989), TOLMIN: A fortran package for linearly
constrained optimizations calculations, DAMTP Report NA2, University
of Cambridge, England.
Powell, M.J.D. (1983), ZQPCVX a FORTRAN subroutine for convex
quadratic programming, DAMTP Report 1983/NA17, University of
Cambridge, Cambridge, England.

Reinsch
Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische
Mathematik, 10, 177–183.

Rice
Rice, J.R. (1983), Numerical Methods, Software, and Analysis, McGraw-
Hill, New York.

Saad and Schultz
Saad, Y., and M. H. Schultz (1986), GMRES: A generalized minimum
residual algorithm for solving nonsymmetric linear systems, SIAM
Journal of Scientific and Statistical Computing, 7, 856-869.

A-14 � Appendix A: References IMSLC/Math/Library

Sallas and Lionti
Sallas, William M., and Abby M. Lionti (1988), Some useful computing
formulas for the nonfull rank linear model with linear equality
restrictions, IMSL Technical Report 8805, IMSL, Houston.

Savage
Savage, I. Richard (1956), Contributions to the theory of rank order
statistics—the two-sample case, Annals of Mathematical Statistics, 27,
590–615.

Schmeiser
Schmeiser, Bruce (1983), Recent advances in generating observations
from discrete random variates, in Computer Science and Statistics:
Proceedings of the Fifteenth Symposium on the Interface, (edited by
James E. Gentle), North-Holland Publishing Company, Amsterdam, 154–
160.

Schmeiser and Babu
Schmeiser, Bruce W., and A.J.G. Babu (1980), Beta variate generation
via exponential majorizing functions, Operations Research, 28, 917–926.

Schmeiser and Kachitvichyanukul
Schmeiser, Bruce, and Voratas Kachitvichyanukul (1981), Poisson
Random Variate Generation, Research Memorandum 81–4, School of
Industrial Engineering, Purdue University, West Lafayette, Indiana.

Schmeiser and Lal
Schmeiser, Bruce W., and Ram Lal (1980), Squeeze methods for
generating gamma variates, Journal of the American Statistical
Association, 75, 679–682.

Seidler and Carmichael
Seidler, Lee J. and Carmichael, D.R., (editors) (1980), Accountants'
Handbook, Volume I, Sixth Edition, The Ronald Press Company, New
York.

Shampine
Shampine, L.F. (1975), Discrete least squares polynomial fits,
Communications of the ACM, 18, 179–180.

Shampine and Gear
Shampine, L.F. and C.W. Gear (1979), A user’s view of solving stiff
ordinary differential equations, SIAM Review, 21, 1–17.

IMSL C/Math/Library Appendix A: References � A-15

Sincovec and Madsen
Sincovec, R.F., and N.K. Madsen (1975), Software for nonlinear partial
differential equations, ACM Transactions on Mathematical Software, 1,
#3, 232–260.

Singleton
Singleton, T.C. (1969), Algorithm 347: An efficient algorithm for sorting
with minimal storage, Communications of the ACM, 12, 185–187.

Smith et al.
Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C.
Klema, and C.B. Moler (1976), Matrix Eigensystem Routines —
EISPACK Guide, Springer-Verlag, New York.

Smith
Smith, P.W. (1990), On knots and nodes for spline interpolation,
Algorithms for Approximation II, J.C. Mason and M.G. Cox, Eds.,
Chapman and Hall, New York.

Spellucci, Peter
Spellucci, P. (1998), An SQP method for general nonlinear programs
using only equality constrained subproblems, Math. Prog., 82, 413-448,
Physica Verlag, Heidelberg, Germany
Spellucci, P. (1998), A new technique for inconsistent problems in the
SQP method. Math. Meth. of Oper. Res.,47, 355-500, Physica Verlag,
Heidelberg, Germany.

Stewart
Stewart, G.W. (1973), Introduction to Matrix Computations, Academic
Press, New York.

Strecok
Strecok, Anthony J. (1968), On the calculation of the inverse of the error
function, Mathematics of Computation, 22, 144–158.

Stroud and Secrest
Stroud, A.H., and D.H. Secrest (1963), Gaussian Quadrature Formulae,
Prentice-Hall, Englewood Cliffs, New Jersey.

Temme
Temme, N.M (1975), On the numerical evaluation of the modified Bessel
Function of the third kind, Journal of Computational Physics, 19, 324–
337.

A-16 � Appendix A: References IMSLC/Math/Library

Tezuka
Tezuka, S. (1995), Uniform Random Numbers: Theory and Practice.
Academic Publishers, Boston.

Thompson and Barnett
Thompson, I.J. and A.R. Barnett (1987), Modified Bessel functions I

�
(z)

and K
�
(z) of real order and complex argument, Computer Physics

Communication, 47, 245–257.

Tukey
Tukey, John W. (1962), The future of data analysis, Annals of
Mathematical Statistics, 33, 1–67.

Velleman and Hoaglin
Velleman, Paul F., and David C. Hoaglin (1981), Applications, Basics,
and Computing of Exploratory Data Analysis, Duxbury Press, Boston.

Walker
Walker, H.F. (1988), Implementation of the GMRES method using
Householder transformations, SIAM Journal of Scientific and Statistical
Computing, 9, 152-163.

Watkins
Watkins, David S., L. Elsner (1991), Convergence of algorithm of
decomposition type for the eigenvalue problem, Linear Algebra
Applications, 143, pp. 29–47.

Weeks
Weeks, W.T. (1966), Numerical inversion of Laplace transforms using
Laguerre functions, J. ACM, 13, 419–429.

IMSL/C/Math/ Library Appendix B: Alphabetical Summary of Routines � B-1

Appendix B: Alphabetical Summary
of Routines

Function Purpose Statement Page
accr_interest_maturity Evaluates the accrued interest for a security that pays at

maturity.
580

accr_interest_periodic Evaluates the accrued interest for a security that pays
periodic interest.

582

airy_Ai Evaluates the Airy function. 509
airy_Ai_derivative Evaluates the derivative of the Airy function 511
airy_Bi Evaluates the Airy function of the second kind. 510
airy_Bi_derivative Evaluates the derivative of the Airy function of the second

kind.
512

bessel_exp_I0 Evaluates the exponentially scale modified Bessel function of
the first kind of order zero.

489

bessel_exp_I1 Evaluates the exponentially scaled modified Bessel function
of the first kind of order one.

491

bessel_exp_K0 Evaluates the exponentially scaled modified Bessel function
of the third kind of order zero.

495

bessel_exp_K1 Evaluates the exponentially scaled modified Bessel function
of the third kind of order one.

497

bessel_I0 Evaluates the real modified Bessel function of the first kind
of order zero I0(x).

487

bessel_I1 Evaluates the real modified Bessel function of the first kind
of order one I1(x).

490

bessel_Ix Evaluates a sequence of modified Bessel functions of the first
kind with real order and complex arguments.

492

bessel_J0 Evaluates the real Bessel function of the first kind of order
zero J0(x).

478

bessel_J1 Evaluates the real Bessel function of the first kind of order
one J1(x).

480

bessel_Jx Evaluates a sequence of Bessel functions of the first kind
with real order and complex arguments.

481

bessel_K0 Evaluates the real modified Bessel function of the third kind
of order zero K0(x).

493

B-2 � Appendix B: Alphabetical Summary of Routines IMSL C/Math/Library

Function Purpose Statement Page
bessel_K1 Evaluates the real modified Bessel function of the third kind

of order one K1(x).
496

bessel_Kx Evaluates a sequence of modified Bessel functions of the
third kind with real order and complex arguments.

499

bessel_Y0 Evaluates the real Bessel function of the second kind of order
zero Y0(x).

482

bessel_Y1 Evaluates the real Bessel function of the second kind of order
one Y1(x).

484

bessel_Yx Evaluates a sequence of Bessel functions of the second kind
with real order and complex arguments.

485

beta Evaluates the real beta function �(x, y). 469
beta_cdf Evaluates the beta probability distribution function 540
beta_incomplete Evaluates the real incomplete beta function

Ix = �x(a, b)/�(a, b).
472

beta_inverse_cdf Evaluates the inverse of the beta distribution function. 542
binomial_cdf Evaluates the binomial distribution function. 536
bivariate_normal_cdf Evaluates the bivariate normal distribution function. 543
bond_equivalent_yield Evaluates the bond-equivalent for a Treasury yield. 584
bounded_least_squares Solves a nonlinear least-squares problem subject to bounds

on the variables using a modified Levenberg-Marquardt
algorithm.

439

bvp_finite_difference Solves a (parameterized) system of differential equations
with boundary conditions at two points, using a variable
order, variable step size finite difference method with
deferred corrections.

321

chi_squared_cdf Evaluates the chi-squared distribution function 524
chi_squared_inverse_cdf Evaluates the inverse of the chi-squared distribution function. 526
chi_squared_test Performs a chi-squared goodness-of-fit test 638
constant Returns the value of various mathematical and physical

constants.
719

constrained_nlp Solves a general nonlinear programming problem using a
sequential equality constrained quadratic programming
method.

447

convexity Evaluates the convexity for a security. 586
convolution (complex) Computes the convolution, and optionally, the correlation of

two complex vectors.
370

convolution Computes the convolution, and optionally, the correlation of
two real vectors.

363

IMSL/C/Math/ Library Appendix B: Alphabetical Summary of Routines � B-3

Function Purpose Statement Page
coupon_days Evaluates the number of days in the coupon period that

contains the settlement date.
588

coupon_number Evaluates the number of coupons payable between the
settlement date and maturity date.

589

covariances Computes the sample variance-covariance or correlation
matrix.

646

ctime Returns the number of CPU seconds used. 709
cub_spline_integral Computes the integral of a cubic spline. 160
cub_spline_interp_e_cnd Computes a cubic spline interpolant, specifying various

endpoint conditions.
145

cub_spline_interp_shape Computes a shape-preserving cubic spline. 152
cub_spline_smooth Computes a smooth cubic spline approximation to noisy data

by using cross-validation to estimate the smoothing
parameter or by directly choosing the smoothing parameter.

205

cub_spline_value Computes the value of a cubic spline or the value of one of
its derivatives.

157

cumalative_interest Evaluates the cumulative interest paid between two periods. 545
cumalative_principal Evaluates the cumulative principal paid between two periods. 546
date_to_days Evaluates the number of days from January 1, 1900, to the

given date.
709

days_before_settlement Evaluates the number of days from the beginning of the
coupon period to the settlement date.

591

days_to_date Gives the date corresponding to the number of days since
January 1, 1900.

 711

days_to_next_coupon Evaluates the number of days from settlement date to the
next coupon date.

592

depreciation_amordegrc Evaluates the depreciation for each accounting period.
Similar to depreciation_amorlinc.

594

depreciation_amorlinc Evaluates the depreciation for each accounting period.
Similar to depreciation_amordegrc.

596

depreciation_db Evaluates the depreciation of an asset for a specified period
using the fixed-declining balance method.

548

depreciation_ddb Evaluates the depreciation of an asset for a specified period
using the double-declining method.

550

depreciation_sln Evaluates the straight line depreciation of an asset for one
period.

551

depreciation_syd Evaluates the sum-of-years digits depreciation of an asset for
a specified period.

553

B-4 � Appendix B: Alphabetical Summary of Routines IMSL C/Math/Library

Function Purpose Statement Page
depreciation_vdb Evaluates the depreciation of an asset for any given period,

including partial periods, using the double-declining balance
method.

554

discount_price Evaluates the price per $100 face value of a discounted
security.

597

discount_rate Evaluates the discount rate for a security. 599
discount_yield Evaluates the annual yield for a discounted security. 601
dollar_decimal Converts a dollar price, expressed as a fraction, into a dollar

price, expressed as a decimal number.
556

dollar_fraction Converts a dollar price, expressed as a decimal number, into
a dollar price, expressed as a fraction.

557

duration Evaluates the annual duration of a security with periodic
interest payment.

603

effective_rate Evaluates the effective annual interest rate. 558
eig_gen (complex) Computes the eigenexpansion of a complex matrix A. 120
eig_gen Computes the eigenexpansion of a real matrix A 118
eig_herm (complex) Computes the eigenexpansion of a complex Hermitian matrix

A.
126

eig_sym Computes the eigenexpansion of a real symmetric matrix A. 123
eig_symgen Computes the generalized eigenexpansion of a system

Ax = �Bx. A and B are real and symmetric. B is positive
definite.

129

elliptic_integral_E Evaluates the complete elliptic integral of the second kind
E(x).

501

elliptic_integral_K Evaluates the complete elliptic integral of the kind K(x). 500
elliptic_integral_RC Evaluates an elementary integral from which inverse circular

functions, logarithms, and inverse hyperbolic functions can
be computed.

506

elliptic_integral_RD Evaluates Carlson’s elliptic integral of the second kind RD(x,
y, z).

504

elliptic_integral_RF Evaluates Carlson’s elliptic integral of the first kind RF(x, y,
z).

502

elliptic_integral_RJ Evaluates Carlson’s elliptic integral of the third kind RJ(x, y,
z, �).

505

erf Evaluates the real error function erf(x). 460
erf_inverse Evaluates the real inverse error function

erf-1(x).
465

erfc Evaluates the real complementary error function erfc(x). 461

IMSL/C/Math/ Library Appendix B: Alphabetical Summary of Routines � B-5

Function Purpose Statement Page
erfc_inverse Evaluates the real inverse complementary error function

erfc-1(x).
467

erfce Evaluates the exponentially scaled complementary error
function.

463

erfe Evaluates a scaled function related to erfc(z) 464
error_code Gets the code corresponding to the error message from the

last function called.
718

error_options Sets various error handling options. 712
F_cdf Evaluates the F distribution function. 528
F_inverse_cdf Evaluates the inverse of the F distribution function. 530
fast_poisson_2d Solves Poisson’s or Helmholtz’s equation on a two-

dimensional rectangle using a fast Poisson solver based on
the HODIE finite-difference scheme on a uniform mesh.

332

faure_next_point Evaluates a shuffled Faure sequence 687
fcn_derivative Computes the first, second or third derivative of a user-

supplied function.
286

fft_2d_complex Computes the complex discrete two-dimensional Fourier
transform of a complex two-dimensional array.

359

fft_complex Computes the complex discrete Fourier transform of a
complex sequence.

346

fft_complex_init Computes the parameters for imsl_c_fft_complex. 349
fft_cosine Computes the discrete Fourier cosine transformation of an

even sequence.
351

fft_cosine_init Computes the parameters needed for imsl_f_fft_cosine. 353
fft_real Computes the real discrete Fourier transform of a real

sequence.
341

fft_real_init Computes the parameters for imsl_f_fft_real 345
fft_sine Computes the discrete Fourier sine transformation of an odd

sequence.
355

fft_sine_init Computes the parameters needed for imsl_f_fft_sine. 357
fresnel_integral_C Evaluates the cosine Fresnel integral. 507
fresnel_integral_S Evaluates the sine Fresnel integral. 508
future_value Evaluates the future value of an investment. 559
future_value_schedule Evaluates the future value of an initial principal after

applying a series of compound interest rates.
561

gamma Evaluates the real gamma function �(x). 473
gamma_cdf Evaluates the gamma distribution function 534

B-6 � Appendix B: Alphabetical Summary of Routines IMSL C/Math/Library

Function Purpose Statement Page
gamma_incomplete Evaluates the incomplete gamma function

� (a, x).
476

gauss_quad_rule Computes a Gauss, Gauss-Radau, or Gauss-Lobatto
quadrature rule with various classical weight functions.

282

geneig (complex) Computes the generalized eigenexpansion of a system
Ax = �Bx, with A and B complex.

135

geneig Computes the generalized eigenexpansion of a system
Ax = �Bx, with A and B real.

132

generate_test_band
(complex)

Generates test matrices of class Ec(n, c). 784

generate_test_band Generates test matrices of class E(n, c). 782
generate_test_coordinate
(complex)

Generates test matrices of class D(n, c) and E(n, c). 791

generate_test_coordinate Generates test matrices of class D(n, c) and E(n, c). 786
hypergeometric_cdf Evaluates the hypergeometric distribution function. 537
int_fcn Integrates a function using a globally adaptive scheme based

on Gauss-Kronrod rules.
241

int_fcn_2d Computes a two-dimensional iterated integral 272
int_fcn_alg_log Integrates a function with algebraic-logarithmic singularities. 249
int_fcn_cauchy Computes integrals of the form

f x
x c

dx
a

b b g
�
z

in the Cauchy principal value sense.

265

int_fcn_fourier Computes a Fourier sine or cosine transform. 261
int_fcn_hyper_rect Integrates a function on a hyper-rectangle. 276
int_fcn_inf Integrates a function over an infinite or semi-infinite

interval.
253

int_fcn_qmc Integrates a function on a hyper-rectangle using a quasi-
Monte Carlo method.

279

int_fcn_sing Integrates a function, which may have endpoint singularities,
using a globally adaptive scheme based on Gauss-Kronrod
rules.

237

int_fcn_sing_pts Integrates a function with singularity points given 245
int_fcn_smooth Integrates a smooth function using a nonadaptive rule. 268
int_fcn_trig Integrates a function containing a sine or a cosine factor. 257
interest_payment Evaluates the interest payment for a given period for an

investment.
562

interest_rate_annuity Evaluates the interest rate per period for an annuity. 563

IMSL/C/Math/ Library Appendix B: Alphabetical Summary of Routines � B-7

Function Purpose Statement Page
interest_rate_security Evaluates the interest rate for a fully invested security. 605
internal_rate_of_return Evaluates the internal rate of return for a schedule of cash

flows.
565

internal_rate_schedule Evaluates the internal rate of return for a schedule of cash
flows that is not necessarily periodic.

567

inverse_laplace Computes the inverse Laplace transform of a complex
function.

376

kelvin_bei0 Evaluates the Kelvin function of the first kind, bei, of order
zero.

514

kelvin_bei0_derivative Evaluates the derivative of the Kelvin function of the first
kind, bei, of order zero.

518

kelvin_ber0 Evaluates the Kelvin function of the first kind, ber, of order
zero.

513

kelvin_ber0_derivative Evaluates the derivative of the Kelvin function of the first
kind, ber, of order zero.

517

kelvin_kei0 Evaluates the Kelvin function of the second kind, kei, of
order zero.

516

kelvin_kei0_derivative Evaluates the derivative of the Kelvin function of the second
kind, kei, of order zero.

520

kelvin_ker0 Evaluates the Kelvin function of the second kind, der, of
order zero.

515

kelvin_ker0_derivative Evaluates the derivative of the Kelvin function of the second
kind, ker, of order zero.

519

lin_least_squares_gen Solves a linear least-squares problem Ax = b. 84
lin_lsq_lin_constraints Solves a linear least squares problem with linear constraints. 92
lin_prog Solves a linear programming problem using the revised

simplex algorithm.
425

lin_sol_def_cg Solves a real symmetric definite linear system using a
conjugate gradient method.

78

lin_sol_gen (complex) Solves a complex general system of linear equations
Ax = b.

11

lin_sol_gen Solves a real general system of linear equations
Ax = b.

4

lin_sol_gen_band
(complex)

Solves a complex general system of linear equations
Ax = b.

31

lin_sol_gen_band Solves a real geeral band system of linear equations Ax=b. 26
lin_sol_gen_coordinate
(complex)

Solves a system of linear equations Ax = b, with sparse
complex coefficient matrix A.

54

lin_sol_gen_coordinate Solves a sparse system of linear equations Ax = b. 44

B-8 � Appendix B: Alphabetical Summary of Routines IMSL C/Math/Library

Function Purpose Statement Page
lin_sol_gen_min_residual Solves a linear system Ax = b using the restarted generalized

minimum residual (GMRES) method.
73

lin_sol_nonnegdef Solves a real symmetric nonnegative definite system of
linear equations Ax = b.

107

lin_sol_posdef (complex) Solves a complex Hermitian positive definite system of
linear equations Ax = b.

22

lin_sol_posdef Solves a real symmetric positive definite system of linear
equations Ax = b.

17

lin_sol_posdef_band
(complex)

Solves a complex Hermitian positive definite system of
linear equations Ax = b in band symmetric storage mode.

39

lin_sol_posdef_band Solves a real symmetric positive definite system of linear
equations Ax = b in band symmetric storage mode.

35

lin_sol_posdef_coordinate
(complex)

Solves a sparse Hermitian positive definite system of linear
equations Ax = b.

68

lin_sol_posdef_coordinate Solves a sparse real symmetric positive definite system of
linear equations Ax = b.

62

lin_svd_gen (complex) Computes the SVD, A = USVH, of a complex rectangular
matrix A.

102

lin_svd_gen Computes the SVD, A = USVT, of a real rectangular matrix
A.

96

log_beta Evaluates the logarithm of the real beta function ln
� (x, y).

471

log_gamma Evaluates the logarithm of the absolute value of the gamma
function log |�(x)|.

475

machine (float) Returns information describing the computer’s floating-point
arithmetic.

725

machine (integer) Returns integer information describing the computer’s
arithmetic.

723

mat_add_band (complex) Adds two band matrices, both in band storage mode,
C � �A + �B.

764

mat_add_band Adds two band matrices, both in band storage mode,
C � �A + �B.

760

mat_add_coordinate
(complex)

Performs element-wise addition on two complex matrices
stored in coordinate format, C � �A + �B.

771

mat_add_coordinate Performs element-wise addition of two real matrices stored
in coordinate format, C � �A + �B.

 768

mat_mul_rect (complex) Computes the transpose of a matrix, the conjugate-transpose
of a matrix, a matrix-vector product, a matrix-matrix
product, the bilinear form, or any triple product.

738

IMSL/C/Math/ Library Appendix B: Alphabetical Summary of Routines � B-9

Function Purpose Statement Page
mat_mul_rect Computes the transpose of a matrix, a matrix-vector product,

a matrix-matrix product, the bilinear form, or any triple
product.

735

mat_mul_rect_band
(complex)

Computes the transpose of a matrix, a matrix-vector product,
or a matrix-matrix product, all matrices of complex type and
stored in band form.

746

mat_mul_rect_band Computes the transpose of a matrix, a matrix-vector product,
or a matrix-matrix product, all matrices stored in band form.

742

mat_mul_rect_coordinate
(complex)

Computes the transpose of a matrix, a matrix-vector product
or a matrix-matrix product, all matrices stored in sparse
coordinate form.

755

mat_mul_rect_coordinate Computes the transpose of a matrix, a matrix-vector product,
or a matrix-matrix product, all matrices stored in sparse
coordinate form.

751

matrix_norm Computes various norms of a rectangular matrix. 775
matrix_norm_band Computes various norms of a matrix stored in band storage

mode.
777

matrix_norm_coordinate Computes various norms of a matrix stored in coordinate
format.

779

min_con_gen_lin Minimizes a general objective function subject to linear
equality/inequality constraints.

433

min_uncon Finds the minimum point of a smooth function f(x) of a
single variable using only function evaluations.

401

min_uncon_deriv Finds the minimum point of a smooth function f(x) of a
single variable using both function and first derivative
evaluations.

405

min_uncon_multivar Minimizes a function f(x) of n variables using a quasi-
Newton method.

409

modified_duration Evaluates the modified Macauley duration of a security. 607
modified_internal_rate Evaluates the modified internal rate of return for a series of

periodic cash flows.
569

net_present_value Evaluates the net present value of an investment based on a
series of periodic.

570

next_coupon_date Evaluates the next coupon date after the settlement date. 608
nominal_rate Evaluates the nominal annual interest rate. 571
nonlin_least_squares Solves a nonlinear least-squares problem using a modified

Levenberg-Marquardt algorithm.
416

normal_cdf Evaluates the standard normal (Gaussian) distribution
function.

521

normal_inverse_cdf Evaluates the inverse of the standard normal (Gaussian)
distribution function.

523

B-10 � Appendix B: Alphabetical Summary of Routines IMSL C/Math/Library

Function Purpose Statement Page
number_of_periods Evaluates the number of periods for an investment based on

periodic and constant payment and a constant interest rate.
573

ode_adams_gear Solves a stiff initial-value problem for ordinary differential
equations using the Adams-Gear methods.

297

ode_runge_kutta Solves an initial-value problem for ordinary differential
equations using the Runge-Kutta-Verner fifth-order and
sixth-order method.

291

output_file Sets the output file or the error message output file. 704
page Sets or retrieve the page width or length. 697
payment Evaluates the periodic payment for an investment. 574
pde_method_of_lines Solves a system of partial differential equations of the form

ut + f(x, t, u, ux, uxx) using the method of lines.
304

poisson_cdf Evaluates the Poisson distribution function. 539
poly_regression Performs a polynomial least-squares regression. 660
present_value Evaluates the present value of an investment. 576
present_value_schedule Evaluates the present value for a schedule of cash flows that

is not necessarily periodic.
577

previous_coupon_date Evaluates the previous coupon date before the settlement
date.

610

price Evaluates the price per $100 face value of a security that
pays periodic interest.

612

price_maturity Evaluates the price per $100 face value of a security that
pays interest at maturity.

614

principal_payment Evaluates the payment on the principal for a given period. 579
quadratic_prog Solves a quadratic programming problem subject to linear

equality or inequality constraints.
429

radial_evaluate Evaluates a radial basis fit. 231
radial_scattered_fit Computes an approximation to scattered data in Rn for

n � 2 using radial basis functions.
225

random_beta Generates pseudorandom numbers from a beta distribution. 684
random_exponential Generates pseudorandom numbers from a standard

exponential distribution.
685

random_gamma Generates pseudorandom numbers from a standard gamma
distribution.

682

random_normal Generates pseudorandom numbers from a standard normal
distribution using an inverse CDF method.

679

random_option Selects the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

676

IMSL/C/Math/ Library Appendix B: Alphabetical Summary of Routines � B-11

Function Purpose Statement Page
random_poisson Generates pseudorandom numbers from a Poisson

distribution.
680

random_seed_get Retrieves the current value of the seed used in the IMSL
random number generators.

674

random_seed_set Initializes a random seed for use in the IMSL random
number generators.

675

random_uniform Generates pseudorandom numbers from a uniform (0, 1)
distribution.

677

ranks Computes the ranks, normal scores, or exponential scores for
a vector of observations.

667

received_maturity Evaluates the amount received for a fully invested
security.

616

regression Fits a multiple linear regression model using least squares. 651
scattered_2d_interp Computes a smooth bivariate interpolant to scattered data

that is locally a quintic polynomial in two variables.
220

simple_statistics Computes basic univariate statistics. 629
smooth_1d_data Smooth one-dimensional data by error detection 216
sort (integer) Sorts an integer vector by algebraic value. Optionally, a

vector can be sorted by absolute value, and a sort
permutation can be returned.

 730

sort Sorts a vector by algebraic value. Optionally, a vector can be
sorted by absolute value, and a sort permutation can be
returned.

728

spline_2d_integral Evaluates the integral of a tensor-product spline on a
rectangular domain.

186

spline_2d_interp Computes a two-dimensional, tensor-product spline
interpolant from two-dimensional, tensor-product data.

171

spline_2d_least_squares Computes a two-dimensional, tensor-product spline
approximant using least squares.

199

spline_2d_value Computes the value of a tensor-product spline or the value
of one of its partial derivatives.

182

spline_integral Computes the integral of a spline. 180
spline_interp Computes a spline interpolant. 161
spline_knots Computes the knots for a spline interpolant. 167
spline_least_squares Computes a least-squares spline approximation. 193
spline_lsq_constrained Computes a least-squares constrained spline approximation. 209
spline_value Computes the value of a spline or the value of one of its

derivatives.
177

t_cdf Evaluates the Student’s t distribution function. 531

B-12 � Appendix B: Alphabetical Summary of Routines IMSL C/Math/Library

Function Purpose Statement Page
t_inverse_cdf Evaluates the inverse of the Student’s t distribution function. 533
table_oneway Tallies observations into a one-way frequency table. 634
treasury_bill_price Computes the price per $100 face value for a Treasury bill. 618
treasury_bill_yield Computes the yield for a Treasury bill. 619
user_fcn_least_squares Computes a least-squares fit using user-supplied functions. 189
vector_norm Computes various norms of a vector or the difference of two

vectors.
733

version Returns integer information describing the version of the
library, license number, operating system, and compiler.

708

write_matrix Prints a rectangular matrix (or vector) stored in contiguous
memory locations.

691

write_options Sets or retrieve an option for printing a matrix. 698
year_fraction Evaluates the year fraction that represents the number of

whole days between two dates.
621

yield_maturity Evaluates the annual yield of a security that pays interest at
maturity.

622

yield_periodic Evaluates the yield of a security that pays periodic interest. 624
zeros_fcn Finds the real zeros of a real function using Müller’s

method.
388

zeros_poly (complex) Finds the zeros of a polynomial with complex coefficients
using the Jenkins-Traub three-stage algorithm.

386

zeros_poly Finds the zeros of a polynomial with real coefficients using
the Jenkins-Traub three-stage algorithm.

384

zeros_sys_eqn Solves a system of n nonlinear equations f (x) = 0 using a
modified Powell hybrid algorithm.

393

IMSL C Math Library Index � i

Index

A

Adams-Gear method 297
Airy functions 509, 510, 511, 512
algebraic-logarithmic singularities

249
ANSI C ix
approximation 225
arithmetic 800

B

backward differentiation formulas
300

band matrices 760, 764
band storage mode 760, 764, 777
Bauer and Fike theorem 116
Bessel functions 478, 480, 481, 482,

484, 485, 487, 489, 490, 491,
492, 493, 495, 496, 497, 499

beta distributions 684
beta functions 469, 471, 472, 540,

542
binomial functions 536
bivariate functions 543
Blom scores 667
bond functions 580, 582, 584, 586,

588, 589, 591, 592, 594, 596,
597, 599, 601, 603, 605, 607,
608, 610, 612, 614, 616, 618,
619, 621, 622, 624

boundary conditions 321, 2

C

Cauchy principal 265
chi-squared functions 524, 526
chi-squared goodness-of-fit test 638
Cholesky factorization 17, 22, 35,

39, 107, 130
column pivoting 87

complex arithmetic xxiv, 800
complex general band system 31
complex Hermitian positive definite

system 39
computer’s arithmetic 723
computer’s floating-point arithmetic

725
condition numbers 116
conjugate gradient method 78
constrained quadratic programming

447
Constrained_nlp

nonlinear programming 447
convolution 363, 370
coordinate format 768, 771, 779
correlation 363, 370
correlation matrix 646
cosine factor 257
cosine Fresnel integrals 507
CPU time 709
cubic Hermite polynomials 304
cubic spline interpolant 217
cubic splines 145, 152, 157, 160,

205
current value of the seed 674

D

data types 800
dates and days 709, 711
decay rates 290
derivatives 286
differential equations 321, 2

bvp_finite_difference 321
discrete Fourier cosine

transformation 351, 353
discrete Fourier sine transformation

355, 357
distribution functions 521, 523, 524,

526, 528, 530, 531, 533, 534,
536, 537, 539, 540, 542, 543

E

eigenvalues 115, 116, 117, 118, 120,
123, 126, 129, 132, 135

eigenvectors 115, 116, 117, 118,
120, 123, 126, 129, 132, 135

elementary functions 800
elementary integrals 506
element-wise addition 768, 771
elliptic integrals 500, 501, 502, 504,

505

ii � Index IMSL C Math Library

equality/inequality constraints 433
equilibrium 290
error detection 216
error functions 460, 461, 465, 467

complementary
exponentially scaled 463, 5

error handling xxiii, 712, 718
error messages 704
errors 797
Euler’s constant 722
evaluation 157
even sequence 351
expected normal scores 667

F

factorization 2
fast Fourier transforms 339, 340,

341, 345, 346, 349, 359
Faure 689
Faure sequence 687

faure_next_point 687
financial functions 545, 546, 548,

550, 551, 553, 554, 556, 557,
558, 559, 561, 562, 563, 565,
567, 569, 570, 571, 573, 574,
576, 577, 579

Fourier transform 261

G

gamma distributions 682
gamma functions 473, 475, 476, 534
Gauss quadrature 282
Gaussian elimination 7, 14
Gaussian functions 521, 523
Gauss-Kronrod rules 237, 241
generalized inverses 3, 99
GMRES method 73
Gray code 689

H

Harding, L.J. 7
Healy’s algorithm 110
Helmholtz’s equation 332
Hermitian matrices 126
HODIE finite-difference scheme 332
Householder’ s method 86, 87, 99,

104
hypergeometric functions 537
hyper-rectangle 276, 279, 687

I
ill-conditioning 3
imsl.h include file x
infinite interval 253
initialize random seed 675
initial-value problems 289, 297
integration 180, 186, 237, 241, 245,

249, 253, 257, 261, 265, 268,
272, 276, 279, 282

interpolation 142, 145, 152, 161,
167, 171, 220

inverse matrix 11, 17, 22
inversions 2, 4

J

Jenkins-Traub algorithm 384, 386

K

Kelvin functions 513, 514, 515, 516,
517, 518, 519, 520

L

lack-of-fit test 660
least squares 142
least-squares approximation 209
least-squares fit 84, 139, 189, 193,

199, 216, 416, 660
least-squares solutions 3
Lebesque measure 688
Levenberg-Marquardt algorithm 416
linear constraints 92
linear equations 26, 31, 35, 44, 54,

62, 68
linear least squares 3
linear least-squares problem 92
linear system solution 2, 4, 107
loop unrolling and jamming 7
low-discrepancy 689
LU factorization 4, 11, 26, 31, 44, 54

M

mathematical constants 719
matrices xii, 2, 4, 7, 11, 14, 17, 22,

107, 691
general xii
Hermitian xiii
multiplying 735
rectangular xii

IMSL C Math Library Index � iii

symmetric xii
matrix multiply 738
matrix transpose 742, 746, 751, 755
matrix-matrix product 742, 746, 751,

755
matrix-vector produce 755
matrix-vector product 742, 746, 751
matrix-vector products 735, 738
memory allocation xx
method of lines 304
minimization 399, 400, 401, 405,

409, 416, 425, 429, 433, 447,
2

Müller’s method 388
multiple right-hand sides 3

N

non-ANSI C ix
nonlinear least squares 416
nonlinear programming problem

447, 2
norms of a vector 733
numerical ranking 667

O

odd sequence 355
one-way frequency table 634
order statistics 667
ordinary differential equations 289,

291, 297
output files 704
overflow xxiii

P

page size 697
partial differential equations 290,

304
partial pivoting 11, 13
Poisson distributions 680
Poisson functions 539
Poisson solver 332
polynomial functions 383
polynomials 140, 143
Powell hybrid algorithm 393
predator-prey model 294
printing 691, 697, 698
pseudorandom numbers 685

Q

QR factorizations 3, 84
quadratic programming 429
quadrature 235, 236, 237
quasi-Monte Carlo 279, 6
quasi-Newton method 409

R

radial-basis fit 231
radial-basis functions 225
random number generation 628, 629
random numbers 674, 675, 676, 677,

679, 680, 682, 684
rank deficiency 3
real general band system 26
real symmetric definite linear system

78
real symmetric positive definite

system 35
rectangular matrix 775
regression 651, 660
restarted generalized minimum

residual method 73
right-hand side data 4
Runge-Kutta-Verner method 291

S

Savage scores 667
scattered data 220, 225
select random number generator 676
semi-infinite interval 253
simplex algorithm 425
sine factor 257
sine Fresnel integrals 508
singular value decomposition 3
singularity 3
smoothed data 216
smoothing 205
sort 728, 730
sparse Hermitian positive definite

system 68
sparse real symmetric positive

definite system 62
sparse system 44
spline interpolant 161, 167, 171
splines 160
splines 140, 141, 143, 177, 180, 182,

186, 193, 199, 209
standard exponential distributions

685

iv � Index IMSL C Math Library

statistics 629, 646, 651
Van der Waerden scores 667
stiff systems 290
storage modes xii
SVD factorization 96, 102
symbolic factorizations 62, 68

T

test matrices 782, 784, 786, 791
Thread Safe xi

multithreaded application xi
single-threaded application xi
threads and error handling 799

time constants 290
Tukey scores 667

U

uncertainty 4
underflow xxiii
uniform mesh 332
univariate 249
univariate statistics 629

V

variable order 321, 2
vectors 691
Verner, J.H. 294
version 708

Z

zero of a system 393
zeros of a function 388

	C/Math Library Volume 1 - Version 5.5
	Introduction
	IMSL C/Math/Library
	Getting Started
	ANSI C vs. Non-ANSI C
	The imsl.h File

	Thread Safe Usage
	Signal Handling
	Routines that Produce Output
	Input Arguments

	Matrix Storage Modes
	General Mode
	Rectangular Mode
	Symmetric Mode
	Hermitian Mode
	Sparse Coordinate Storage Format
	Band Storage Format
	Choosing Between Banded and Coordinate Forms
	Compressed Sparse Column (CSC) Format

	Memory Allocation for Output Arrays
	Finding the Right Routine
	Organization of the Documentation
	Naming Conventions
	Error Handling, Underflow, Overflow, and Document Examples
	Printing Results
	Complex Arithmetic
	Missing Values
	Passing Data to User-Supplied Functions

	Table of Contents
	Chapter 1: Linear Systems
	Routines
	Usage Notes
	Solving Systems of Linear Equations
	Matrix Factorizations
	Matrix Inversions
	Multiple Right-Hand Sides
	Least-Squares Solutions and QR Factorizations
	Singular Value Decompositions and Generalized Inverses
	Ill-Conditioning and Singularity

	lin_sol_gen
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Warning Errors
	Fatal Errors

	lin_sol_gen (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Example 3
	Warning Errors
	Fatal Errors

	lin_sol_posdef
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Example 3
	Warning Errors
	Fatal Errors

	lin_sol_posdef (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	lin_sol_gen_band
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	lin_sol_gen_band (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	lin_sol_posdef_band
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	lin_sol_posdef_band (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	lin_sol_gen_coordinate
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Example 3

	lin_sol_gen_coordinate (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	lin_sol_posdef_coordinate
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	lin_sol_posdef_coordinate (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	lin_sol_gen_min_residual
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	lin_sol_def_cg
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example 1
	Example 2

	lin_least_squares_gen
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 3
	Fatal Errors

	lin_lsq_lin_constraints
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	lin_svd_gen
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Example 3
	Warning Errors

	lin_svd_gen (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Example 3
	Warning Errors

	lin_sol_nonnegdef
	
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Example 3
	Warning Errors

	Chapter 2: Eigensystem Analysis
	Routines
	Usage Notes
	Error Analysis and Accuracy
	Reformulating Generalized Eigenvalue Problems

	eig_gen
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors

	eig_gen (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Fatal Errors

	eig_sym
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors

	eig_herm (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	eig_symgen
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	geneig
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	geneig (complex)
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	Chapter 3: Interpolation and Approximation
	Routines
	Usage Notes
	Piecewise Polynomials
	Splines and B-Splines
	Cubic Splines
	Tensor Product Splines
	Scattered Data Interpolation
	Least Squares
	Smoothing by Cubic Splines
	Structures for Splines and Piecewise Polynomials

	cub_spline_interp_e_cnd
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Warning Errors
	Fatal Errors

	cub_spline_interp_shape
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	cub_spline_value
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	cub_spline_integral
	
	Return Value
	Description
	Example

	spline_interp
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	spline_knots
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	spline_2d_interp
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	spline_value
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Fatal Errors

	spline_integral
	
	Return Value
	Description
	Example
	Warning Errors
	Fatal Errors

	spline_2d_value
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	spline_2d_integral
	
	Return Value
	Description
	Example
	Warning Errors
	Fatal Errors

	user_fcn_least_squares
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	spline_least_squares
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	spline_2d_least_squares
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	cub_spline_smooth
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	spline_lsq_constrained
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	smooth_1d_data
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Algorithm
	Example
	Output

	scattered_2d_interp
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Fatal Errors

	radial_scattered_fit
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	radial_evaluate
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	Chapter 4: Quadrature
	Routines
	Usage Notes
	Univariate Quadrature
	Multivariate Quadrature
	Gauss Quadrature

	int_fcn_sing
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	int_fcn
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	int_fcn_sing_pts
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	int_fcn_alg_log
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	int_fcn_inf
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	int_fcn_trig
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	int_fcn_fourier
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	int_fcn_cauchy
	
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	int_fcn_smooth
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Fatal Errors

	int_fcn_2d
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors
	Fatal Errors

	int_fcn_hyper_rect
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Warning Errors
	Fatal Errors

	int_fcn_qmc
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example
	Fatal Errors

	gauss_quad_rule
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	fcn_derivative
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	Chapter 5: Differential Equations
	Routines
	Usage Notes
	Ordinary Differential Equations
	Partial Differential Equations

	ode_runge_kutta
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Fatal Errors

	ode_adams_gear
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Fatal Errors

	pde_method_of_lines
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	bvp_finite_difference
	
	Synopsis
	Required Arguments
	Synopsis with Optional Arugments
	Optional Arguments
	Description
	Example 1
	Output
	Example 2
	#include <math.h>
	Output
	Example 3
	Output

	fast_poisson_2d
	
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	Chapter 6: Transforms
	Routines
	Usage Notes
	Fast Fourier Transforms
	Continuous Versus Discrete Fourier Transform

	fft_real
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	fft_real_init
	
	Return Value
	Description
	Example

	fft_complex
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	fft_complex_init
	
	Return Value
	Description
	Example

	fft_cosine
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	fft_cosine_init
	
	Return Value
	Description
	Example

	fft_sine
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Example

	fft_sine_init
	
	Return Value
	Description
	Example

	fft_2d_complex
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	convolution
	
	Required Arguments
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	convolution (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	inverse_laplace
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2

	Chapter 7: Nonlinear Equations
	Routines
	Usage Notes
	Zeros of a Polynomial
	Zeros of a Function
	Root of System of Equations

	zeros_poly
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors

	zeros_poly (complex)
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors

	zeros_fcn
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors

	zeros_sys_eqn
	
	Return Value
	Synopsis with Optional Arguments
	Optional Arguments
	Description
	Examples
	Example 1
	Example 2
	Warning Errors

	Appendix A: References
	Appendix B: Alphabetical Summary of Routines
	Index

